This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An explicit formula for the AA-polynomial of the knot with Conway’s notation C(2n,4)C(2n,4)

Ji-Young Ham111This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2018R1A2B6005847). School of Liberal Arts, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, korea 01811
Department of Architecture, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Korea 05029
[email protected]
Joongul Lee222The author was supported by 2018 Hongik University Research Fund. Department of Mathematics Education, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, Korea 04066 [email protected]
Abstract

An explicit formula for the AA-polynomial of the knot having Conway’s notation C(2n,4)C(2n,4) is computed up to repeated factors. Our polynomial contains exactly the same irreducible factors as the AA-polynomial defined in [1].

keywords:
AA-polynomial, explicit formula, knot with Conway’s notation C(2n,4)C(2n,4), Riley-Mednykh polynomial
journal: Journal of  Templates

1 Introduction

In 1994, Cooper, Culler, Gillet, Long, and Shalen introduced the AA-polynomial, A(L,M)Z[L,M]A(L,M)\in Z[L,M], of a compact 3-manifold NN with a single torus boundary [1]. A-polynomials are related to the following invariants: incompressible surfaces [1], the Culler-Shalen seminorm [2, 3], cusp shapes [4], the volumes [1, 5, 6] and Chern-Simons invariants [7, 8, 9, 10, 11] of the deformed orbifolds, Mahler measure [12], Alexander polynomials [1], AJAJ conjecture [13, 14], etc. The AJAJ conjecture has been proved for some knots. For example, our knot, the knot with Conway’s notation C(2n,4)C(2n,4) has been proved to satisfy the AJAJ conjecture [15] except C(4,4)C(-4,4).

AA-polynomials are known only for a few due to the difficulty of computations. Among them some are not full ones. A-polynomials were obtained using triangulation in [16, 17, 18, 19, 20]. In [21], Culler presented AA-polynomials up to 88 crossings and most 99 crossings and many 1010 crossings, and all knots that can be triangulated with up to seven ideal tetrahedra. AA-polynomials are known for twist knots [22], (2,3,1+2n)(-2,3,1+2n) pretzel knots [23, 24], J[m,2n]J[m,2n] [22, for mm between 22 and 33]  [25, for mm between 22 and 55 and for m=2nm=2n], recursively. Explicit formulas for the A-polynomials were computed for two-bridge torus knots [1, 22, 26], iterated torus knots [27], twist knots [8, 28, 29, 30], knots with Conway’s notation C(2n,3)C(2n,3) [31], and the twisted torus knots T(5,15n,2,2)T(5,1-5n,2,2) [30]. We recall here that J[4,2n]J[4,-2n] is the mirror image of C(2n,4)C(2n,4).

The main purpose of the paper is to find the explicit formula for the AA-polynomial of the knot having Conway’s notation C(2n,4)C(2n,4) up to repeated factors. Let us denote the AA-polynomial of the knot having Conway’s notation C(2n,4)C(2n,4) by A2nA_{2n}. The following theorem gives the explicit formula for the AA-polynomial of C(2n,4)C(2n,4).

Theorem 1.1

The AA-polynomial A2n=A2n(L,M)A_{2n}=A_{2n}(L,M) is given explicitly by

A2n=p2n(u)p2n(u)\displaystyle\qquad\qquad\qquad A_{2n}=p_{2n}(u)p_{2n}(-u)
where
p2n(z)=\displaystyle p_{2n}(z)= {i=02n(i2+ni)22i+12i(M2)i22i+12+i+n(LM2+1)2i+12i+2n×(2LM6+LM4LM2M4+M2z+M22)i+12×(LM2+L+M2+z+1)i(3LM2+L+M2+z3)i12×((1)i+1(LM2+1)2LM2+L+M2+z2)if n0,i=02n(i12ni)22i+12i(M2)i22i+12+in(LM2+1)122i+12i2n×(2LM6+LM4LM2M4+M2z+M22)i+12×(LM2+L+M2+z+1)i(3LM2+L+M2+z3)i12×((1)i(2LM2+L+M2+z2)LM21)if n<0,\displaystyle\begin{cases}\sum_{i=0}^{2n}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i}2^{-2\left\lfloor\frac{i+1}{2}\right\rfloor-i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+i+n}\left(LM^{2}+1\right)^{-2\left\lfloor\frac{i+1}{2}\right\rfloor-i+2n}\\ \times\left(-2LM^{6}+LM^{4}-LM^{2}-M^{4}+M^{2}z+M^{2}-2\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}\\ \times\left(LM^{2}+L+M^{2}+z+1\right)^{i}\left(-3LM^{2}+L+M^{2}+z-3\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\\ \times\left((-1)^{i+1}\left(LM^{2}+1\right)-2LM^{2}+L+M^{2}+z-2\right)\qquad\qquad\text{if $n\geq 0$,}\\ \sum_{i=0}^{-2n}\binom{\left\lfloor\frac{i-1}{2}\right\rfloor-n}{i}2^{-2\left\lfloor\frac{i+1}{2}\right\rfloor-i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+i-n}\left(LM^{2}+1\right)^{-\frac{1}{2}-2\left\lfloor\frac{i+1}{2}\right\rfloor-i-2n}\\ \times\left(-2LM^{6}+LM^{4}-LM^{2}-M^{4}+M^{2}z+M^{2}-2\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}\\ \times\left(LM^{2}+L+M^{2}+z+1\right)^{i}\left(-3LM^{2}+L+M^{2}+z-3\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\\ \times\left((-1)^{i}\left(-2LM^{2}+L+M^{2}+z-2\right)-LM^{2}-1\right)\qquad\qquad\text{if $n<0$,}\end{cases}
and
u\displaystyle u =5L2M42L2M2+L22LM4+12LM22L+M42M2+5.\displaystyle=\sqrt{5L^{2}M^{4}-2L^{2}M^{2}+L^{2}-2LM^{4}+12LM^{2}-2L+M^{4}-2M^{2}+5}.

Our writing is parallel with that in [31] which is based on [8, 22, 29]. The AA-polynomial of C(2n,4)C(2n,4) can be obtained from the Riley-Mednykh polynomial in [32]. With our theorem, we can easily get AA-polynomials for C(2n,4)C(2n,4) having more than 12 crossings.

2 Proof of Theorem 1.1

Refer to caption
Refer to caption
Figure 1: A two bridge knot having Conway’s notation C(2n,4)C(2n,4) for n>0n>0 (left) and for n<0n<0 (right)

A knot KK is a two bridge knot with Conway’s notation C(2n,4)C(2n,4) if KK has a regular two-dimensional projection of the form in Figure 1. Let us denote the exterior of C(2n,4)C(2n,4) by X2nX_{2n}. The following proposition gives the fundamental group of X2nX_{2n} [22, 32, 33].

Proposition 2.1
π1(X2n)=s,t|swt1w1=1,\pi_{1}(X_{2n})=\left\langle s,t\ |\ swt^{-1}w^{-1}=1\right\rangle,

where w=(ts1ts1t1st1s)nw=(ts^{-1}ts^{-1}t^{-1}st^{-1}s)^{n}.

Given a set of generators, {s,t}\{s,t\}, of the fundamental group for π1(X2n)\pi_{1}(X_{2n}), we define a representation ρ:π1(X2n)SL(2,)\rho\ :\ \pi_{1}(X_{2n})\rightarrow\text{SL}(2,\mathbb{C}) by

ρ(s)=[M10M1],ρ(t)=[M02M2M2xM1].\begin{array}[]{ccccc}\rho(s)=\left[\begin{array}[]{cc}M&1\\ 0&M^{-1}\end{array}\right]\text{,}\ \ \ \rho(t)=\left[\begin{array}[]{cc}M&0\\ 2-M^{2}-M^{-2}-x&M^{-1}\end{array}\right].\end{array}

Then ρ\rho can be identified with the point (M,x)2(M,x)\in\mathbb{C}^{2}. When MM varies we have an algebraic set whose defining equation is the following explicit Riley-Mednykh polynomial P2n=P2n(M,x)P_{2n}=P_{2n}(M,x) defined recursively by the following form:

P2n={QP2(n1)M12P2(n2)if n>1,QP2(n+1)M12P2(n+2)if n<1,\displaystyle P_{2n}=\begin{cases}QP_{2(n-1)}-M^{12}P_{2(n-2)}\ \text{if $n>1$},\\ QP_{2(n+1)}-M^{12}P_{2(n+2)}\ \text{if $n<-1$},\end{cases} (1)

with initial conditions

P2\displaystyle P_{-2} =M4x3(2M6M4+2M2)x2(M8M6+2M4M2+1)x+M4,\displaystyle=-M^{4}x^{3}-\left(2M^{6}-M^{4}+2M^{2}\right)x^{2}-\left(M^{8}-M^{6}+2M^{4}-M^{2}+1\right)x+M^{4},
P0\displaystyle P_{0} =M2forn<0andP0=1forn0,\displaystyle=M^{-2}\ \text{{for}}\ n<0\qquad\text{{and}}\qquad P_{0}=1\ \text{{for}}\ n\geq 0,
P2\displaystyle P_{2} =M6x4+(3M8M6+3M4)x3+(3M102M8+5M62M4+3M2)x2\displaystyle=M^{6}x^{4}+\left(3M^{8}-M^{6}+3M^{4}\right)x^{3}+\left(3M^{10}-2M^{8}+5M^{6}-2M^{4}+3M^{2}\right)x^{2}
+(M12M10+2M82M6+2M4M2+1)x+M6,\displaystyle+\left(M^{12}-M^{10}+2M^{8}-2M^{6}+2M^{4}-M^{2}+1\right)x+M^{6},

and

Q\displaystyle Q =M6x4+(3M82M6+3M4)x3+(3M104M8+6M64M4+3M2)x2\displaystyle=M^{6}x^{4}+\left(3M^{8}-2M^{6}+3M^{4}\right)x^{3}+\left(3M^{10}-4M^{8}+6M^{6}-4M^{4}+3M^{2}\right)x^{2}
+(M122M10+3M84M6+3M42M2+1)x+2M6.\displaystyle+\left(M^{12}-2M^{10}+3M^{8}-4M^{6}+3M^{4}-2M^{2}+1\right)x+2M^{6}.

It is known in [32] that ρ\rho is a representation of π1(X2n)\pi_{1}(X_{2n}) if and only if xx is a root of P2nP_{2n}. We use different initial conditions P0P_{0} for P2n(n>1)P_{2n}(n>1) and P2n(n<1)P_{2n}(n<-1), but the same PP for both series for simplicity.

Lemma 2.2

The Riley-Mednykh polynomial P2n=P2n(x,M)P_{2n}=P_{2n}(x,M) is described explicitly by

P2n={i=02n(i2+ni)(M2)i22i+12+3nxi+12(M4+M2x2M2+1)i12×(M4+M2x+1)i(((1)i+1+1)M2/2+M4+M2x2M2+1)if n0,i=02n(i12ni)(M2)i22i+123n1xi+12(M4+M2x2M2+1)i12×(M4+M2x+1)i(((1)i1)M2/2+(1)i(M4+M2x2M2+1))if n<0.\displaystyle\footnotesize P_{2n}=\begin{cases}\sum_{i=0}^{2n}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3n}x^{\left\lfloor\frac{i+1}{2}\right\rfloor}\left(M^{4}+M^{2}x-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\\ \times\left(M^{4}+M^{2}x+1\right)^{i}\left(\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}x-2M^{2}+1\right)\qquad\ \ \\ \text{if $n\geq 0$},\\ \sum_{i=0}^{-2n}\binom{\left\lfloor\frac{i-1}{2}\right\rfloor-n}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor-3n-1}x^{\left\lfloor\frac{i+1}{2}\right\rfloor}\left(M^{4}+M^{2}x-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\\ \times\left(M^{4}+M^{2}x+1\right)^{i}\left(\left((-1)^{i}-1\right)M^{2}/2+(-1)^{i}\left(M^{4}+M^{2}x-2M^{2}+1\right)\right)\ \\ \text{if $n<0$}.\end{cases}
Proof 1

Write f2nf_{2n} for the claimed formula and show that f2n=P2nf_{2n}=P_{2n}.

Case I: n0n\geq 0. When i>2ni>2n or i<0i<0, (i2+ni)\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i} is undefined and can be considered as zero. Hence the finite sum can be regarded as an infinite sum. Direct computation shows that f0=P0f_{0}=P_{0} and f2=P2f_{2}=P_{2}. Now, we only need to show that f2nf_{2n} satisfies the recursive relation. Note that QQ can be written as x(M4+M2x+1)2(M4+M2x2M2+1)+2M6x\left(M^{4}+M^{2}x+1\right)^{2}\left(M^{4}+M^{2}x-2M^{2}+1\right)+2M^{6}.

Qf2(n1)M12f2(n2)\displaystyle Qf_{2(n-1)}-M^{12}f_{2(n-2)}
=(x(M4+M2x+1)2(M4+M2x2M2+1)+2M6)\displaystyle=\left(x\left(M^{4}+M^{2}x+1\right)^{2}\left(M^{4}+M^{2}x-2M^{2}+1\right)+2M^{6}\right)
×i(i2+n1i)(M2)i22i+12+3(n1)xi+12(M4+M2x2M2+1)i12\displaystyle\times\sum_{i}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n-1}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3(n-1)}x^{\left\lfloor\frac{i+1}{2}\right\rfloor}\left(M^{4}+M^{2}x-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}
×(M4+M2x+1)i(((1)i+1+1)M2/2+M4+M2x2M2+1)\displaystyle\times\left(M^{4}+M^{2}x+1\right)^{i}\left(\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}x-2M^{2}+1\right)
M12i(i2+n2i)(M2)i22i+12+3(n2)xi+12(M4+M2x2M2+1)i12\displaystyle-M^{12}\sum_{i}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n-2}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3(n-2)}x^{\left\lfloor\frac{i+1}{2}\right\rfloor}\left(M^{4}+M^{2}x-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}
×(M4+M2x+1)i(((1)i+1+1)M2/2+M4+M2x2M2+1)\displaystyle\times\left(M^{4}+M^{2}x+1\right)^{i}\left(\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}x-2M^{2}+1\right)
=i[(i2+n2i2)+2(i2+n1i)(i2+n2i)]\displaystyle=\sum_{i}\left[\binom{\left\lfloor\frac{i}{2}\right\rfloor+n-2}{i-2}+2\binom{\left\lfloor\frac{i}{2}\right\rfloor+n-1}{i}-\binom{\left\lfloor\frac{i}{2}\right\rfloor+n-2}{i}\right]
(M2)i22i+12+3nxi+12(M4+M2x2M2+1)i12\displaystyle\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3n}x^{\left\lfloor\frac{i+1}{2}\right\rfloor}\left(M^{4}+M^{2}x-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}
×(M4+M2x+1)i(((1)i+1+1)M2/2+M4+M2x2M2+1)\displaystyle\times\left(M^{4}+M^{2}x+1\right)^{i}\left(\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}x-2M^{2}+1\right)
=i(i2+ni)(M2)i22i+12+3nxi+12(M4+M2x2M2+1)i12\displaystyle=\sum_{i}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3n}x^{\left\lfloor\frac{i+1}{2}\right\rfloor}\left(M^{4}+M^{2}x-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}
×(M4+M2x+1)i(((1)i+1+1)M2/2+M4+M2x2M2+1)\displaystyle\times\left(M^{4}+M^{2}x+1\right)^{i}\left(\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}x-2M^{2}+1\right)
=f2n\displaystyle=f_{2n}

In the last equality we use the binomial relation

(ab)=(a1b1)+(a1b)\binom{a}{b}=\binom{a-1}{b-1}+\binom{a-1}{b}

three times.

Case II: n<0n<0. When i>2n1i>-2n-1 or i<0i<0, (i12ni)\binom{\left\lfloor\frac{i-1}{2}\right\rfloor-n}{i} is undefined and can be considered as zero. Hence the finite sum can be regarded as an infinite sum. Direct computation shows that f0=P0f_{0}=P_{0} and f2=P2f_{-2}=P_{-2}. As in Case I, one can easily show that f2nf_{2n} satisfies the recursive relation. \qed

Let l=wwl=ww^{*} [1, 22], where ww^{*} is the word obtained by reversing ww (by reading words in ww from right to left). Let L=ρ(l)11L=\rho(l)_{11} (the left upper entry of ρ(l)\rho(l), [32, lemma 7.9]). Then ll is the longitude which is null-homologous in X2nX_{2n} (you can read a twisted longitude wwww^{*} from the Schubert normal form of the knot C(2n,4)C(2n,4)), and we have

Lemma 2.3

[32, Theorem 7.10]

L\displaystyle L =M2M4M2+(2M2+M21)x+x2M4M2+(M2+2M21)x+x2,\displaystyle=-M^{-2}\frac{M^{-4}-M^{-2}+(2M^{-2}+M^{2}-1)x+x^{2}}{M^{4}-M^{2}+(M^{-2}+2M^{2}-1)x+x^{2}},
x\displaystyle x =2LM8+LM6LM4M6+M4z+M42M22(LM6+M4)\displaystyle=\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}
where
z=u\displaystyle z=u =5L2M42L2M2+L22LM4+12LM22L+M42M2+5\displaystyle=\sqrt{5L^{2}M^{4}-2L^{2}M^{2}+L^{2}-2LM^{4}+12LM^{2}-2L+M^{4}-2M^{2}+5}
or z=u.\displaystyle\text{ or }z=-u.

Now substituting 2LM8+LM6LM4M6+M4z+M42M22(LM6+M4)\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)} for xx into P2nP_{2n}, for n>0n>0, gives

i=02n(i2+ni)(M2)i22i+12+3n(2LM8+LM6LM4M6+M4z+M42M22(LM6+M4))i+12\displaystyle\sum_{i=0}^{2n}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3n}\left(\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}
×(M4+M22LM8+LM6LM4M6+M4z+M42M22(LM6+M4)2M2+1)i12\displaystyle\times\left(M^{4}+M^{2}\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}-2M^{2}+1\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}
×(M4+M22LM8+LM6LM4M6+M4z+M42M22(LM6+M4)+1)i\displaystyle\times\left(M^{4}+M^{2}\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}+1\right)^{i}
×(((1)i+1+1)M2/2+M4+M22LM8+LM6LM4M6+M4z+M42M22(LM6+M4)2M2+1)\displaystyle\times\left(\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}-2M^{2}+1\right)

We observe that

2LM8+LM6LM4M6+M4z+M42M22(LM6+M4)=M2(2LM6+LM4LM2M4+M2z+M22)2M4(LM2+1),\displaystyle\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}=\frac{M^{2}\left(-2LM^{6}+LM^{4}-LM^{2}-M^{4}+M^{2}z+M^{2}-2\right)}{2M^{4}\left(LM^{2}+1\right)},
M4+M22LM8+LM6LM4M6+M4z+M42M22(LM6+M4)2M2+1=M6(3LM2+L+M2+z3)2M4(LM2+1),\displaystyle M^{4}+M^{2}\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}-2M^{2}+1=\frac{M^{6}\left(-3LM^{2}+L+M^{2}+z-3\right)}{2M^{4}\left(LM^{2}+1\right)},
M4+M22LM8+LM6LM4M6+M4z+M42M22(LM6+M4)+1=M6(LM2+L+M2+z+1)2M4(LM2+1),\displaystyle M^{4}+M^{2}\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}+1=\frac{M^{6}\left(LM^{2}+L+M^{2}+z+1\right)}{2M^{4}\left(LM^{2}+1\right)},

and

((1)i+1+1)M2/2+M4+M22LM8+LM6LM4M6+M4z+M42M22(LM6+M4)2M2+1\displaystyle\left((-1)^{i+1}+1\right)M^{2}/2+M^{4}+M^{2}\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)}-2M^{2}+1
=M6((1)i+1(LM2+1)2LM2+L+M2+z2)2M4(LM2+1).\displaystyle=\frac{M^{6}\left((-1)^{i+1}\left(LM^{2}+1\right)-2LM^{2}+L+M^{2}+z-2\right)}{2M^{4}\left(LM^{2}+1\right)}.

The resulting expression is

q2n(z)\displaystyle q_{2n}(z) =i=02n(i2+ni)(M2)i22i+12+3n(2LM6+LM4LM2M4+M2z+M222M2(LM2+1))i+12\displaystyle=\sum_{i=0}^{2n}\binom{\left\lfloor\frac{i}{2}\right\rfloor+n}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor+3n}\left(\frac{-2LM^{6}+LM^{4}-LM^{2}-M^{4}+M^{2}z+M^{2}-2}{2M^{2}\left(LM^{2}+1\right)}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}
×(M2(3LM2+L+M2+z3)2(LM2+1))i12(M2(LM2+L+M2+z+1)2(LM2+1))i\displaystyle\times\left(\frac{M^{2}\left(-3LM^{2}+L+M^{2}+z-3\right)}{2\left(LM^{2}+1\right)}\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\left(\frac{M^{2}\left(LM^{2}+L+M^{2}+z+1\right)}{2\left(LM^{2}+1\right)}\right)^{i}
×(M2((1)i+1(LM2+1)2LM2+L+M2+z2)2(LM2+1)).\displaystyle\times\left(\frac{M^{2}\left((-1)^{i+1}\left(LM^{2}+1\right)-2LM^{2}+L+M^{2}+z-2\right)}{2\left(LM^{2}+1\right)}\right).

Since q2n(u)q_{2n}(u) is a non-polynomial factor of the AA-polynomial, we multiply it by its Galois conjugate q2n(u)q_{2n}(-u) to obtain the entire AA-polynomial [1, 22]. This is actually another method of defining the resultant of two polynomials [34, p.209-p.210]. We multiply q2n(u)q2n(u)q_{2n}(u)q_{2n}(-u) by M8n(LM2+1)4nM^{-8n}\left(LM^{2}+1\right)^{4n} to clear the denominators and factor out some power of MM so that we have the AA-polynomial A2n(L,M)=p2n(u)p2n(u)A_{2n}(L,M)=p_{2n}(u)p_{2n}(-u) in Theorem 1.1. Formally, it can be done by multiplying q2n(z)q_{2n}(z) by M4n(LM2+1)2nM^{-4n}\left(LM^{2}+1\right)^{2n}. Notice that p2n(z)=M4n(LM2+1)2nq2n(z)p_{2n}(z)=M^{-4n}\left(LM^{2}+1\right)^{2n}q_{2n}(z) and recall that

u=5L2M42L2M2+L22LM4+12LM22L+M42M2+5.u=\sqrt{5L^{2}M^{4}-2L^{2}M^{2}+L^{2}-2LM^{4}+12LM^{2}-2L+M^{4}-2M^{2}+5}.

Now we want to show that the claimed formula does not have fractions. Direct computation shows that A0(L,M)=1A_{0}(L,M)=1, A2(L,M)A_{2}(L,M), and A4(L,M)A_{4}(L,M) (see, Appendix B) are polynomials in [L,M]\mathbb{Z}[L,M]. From now on a polynomial means a polynomial in [L,M]\mathbb{Z}[L,M]. Let us assume that A2kA_{2k} for knk\leq n is a polynomial. From the equation (1), we have P2n=QP2(n1)M12P2(n2)P_{2n}=QP_{2(n-1)}-M^{12}P_{2(n-2)} for n>1n>1. Hence q2n=Qq2(n1)M12q2(n2)q_{2n}=Qq_{2(n-1)}-M^{12}q_{2(n-2)} and

p2n(z)=M4(LM2+1)2Qp2(n1)(z)(LM2+1)4M4p2(n2)(z).\displaystyle p_{2n}(z)=M^{-4}\left(LM^{2}+1\right)^{2}Qp_{2(n-1)}(z)-\left(LM^{2}+1\right)^{4}M^{4}p_{2(n-2)}(z). (2)

Now, we have

Proposition 2.4
A2n=p2n(u)p2n(u)\displaystyle A_{2n}=p_{2n}(u)p_{2n}(-u)
=M8(LM2+1)4Q(u)Q(u)p2(n1)(u)p2(n1)(u)\displaystyle=M^{-8}\left(LM^{2}+1\right)^{4}Q(u)Q(-u)p_{2(n-1)}(u)p_{2(n-1)}(-u) (3)
(LM2+1)6(Q(u)p2(n1)(u)p2(n2)(u)+Q(u)p2(n1)(u)p2(n2)(u))\displaystyle-\left(LM^{2}+1\right)^{6}\left(Q(u)p_{2(n-1)}(u)p_{2(n-2)}(-u)+Q(-u)p_{2(n-1)}(-u)p_{2(n-2)}(u)\right) (4)
+M8(LM2+1)8p2(n2)(u)p2(n2)(u).\displaystyle+M^{8}\left(LM^{2}+1\right)^{8}p_{2(n-2)}(u)p_{2(n-2)}(-u). (5)

By direct computations,

Q(u)\displaystyle Q(u) =21M4(LM2+1)4(a(L,M)+Lb(L,M)u)\displaystyle=2^{-1}M^{4}\left(LM^{2}+1\right)^{-4}\left(a(L,M)+Lb(L,M)u\right) (6)
Q(u)\displaystyle Q(-u) =21M4(LM2+1)4(a(L,M)Lb(L,M)u)\displaystyle=2^{-1}M^{4}\left(LM^{2}+1\right)^{-4}\left(a(L,M)-Lb(L,M)u\right) (7)
Q(u)Q(u)\displaystyle Q(u)Q(-u) =M8(LM2+1)4f(L,M)\displaystyle=M^{8}\left(LM^{2}+1\right)^{-4}f(L,M) (8)
Q(u)Q(u)\displaystyle Q(u)Q(u) =21M8(LM2+1)8(g(L,M)+h(L,M)u)\displaystyle=2^{-1}M^{8}\left(LM^{2}+1\right)^{-8}\left(g(L,M)+h(L,M)u\right) (9)
Q(u)Q(u)\displaystyle Q(-u)Q(-u) =21M8(LM2+1)8(g(L,M)h(L,M)u)\displaystyle=2^{-1}M^{8}\left(LM^{2}+1\right)^{-8}\left(g(L,M)-h(L,M)u\right) (10)

where a(L,M)a(L,M), b(L,M)b(L,M), f(L,M)f(L,M), g(L,M)g(L,M) and h(L,M)h(L,M) are some polynomials (see Appendix A). Since A2n=p2n(u)p2n(u)A_{2n}=p_{2n}(u)p_{2n}(-u), A2(n1)=p2(n1)(u)p2(n1)(u)A_{2(n-1)}=p_{2(n-1)}(u)p_{2(n-1)}(-u), and

A2(n2)=p2(n2)(u)p2(n2)(u)A_{2(n-2)}=p_{2(n-2)}(u)p_{2(n-2)}(-u)

are polynomials and since M8(LM2+1)4Q(u)Q(u)M^{-8}\left(LM^{2}+1\right)^{4}Q(u)Q(-u) is a polynomial by Equation (8), the terms in Proposition 2.4-(3) and Proposition 2.4-(5) are polynomials and hence the term

(LM2+1)6(Q(u)p2(n1)(u)p2(n2)(u)+Q(u)p2(n1)(u)p2(n2)(u))-\left(LM^{2}+1\right)^{6}\left(Q(u)p_{2(n-1)}(u)p_{2(n-2)}(-u)+Q(-u)p_{2(n-1)}(-u)p_{2(n-2)}(u)\right)

in Proposition 2.4-(4) is a polynomial. Now we only need to show that A2(n+1)=p2(n+1)(u)p2(n+1)(u)A_{2(n+1)}=p_{2(n+1)}(u)p_{2(n+1)}(-u) is a polynomial. By Proposition 2.4, we have

A2(n+1)=p2(n+1)(u)p2(n+1)(u)\displaystyle A_{2(n+1)}=p_{2(n+1)}(u)p_{2(n+1)}(-u)
=M8(LM2+1)4Q(u)Q(u)p2n(u)p2n(u)\displaystyle=M^{-8}\left(LM^{2}+1\right)^{4}Q(u)Q(-u)p_{2n}(u)p_{2n}(-u) (11)
(LM2+1)6(Q(u)p2n(u)p2(n1)(u)+Q(u)p2n(u)p2(n1)(u))\displaystyle-\left(LM^{2}+1\right)^{6}\left(Q(u)p_{2n}(u)p_{2(n-1)}(-u)+Q(-u)p_{2n}(-u)p_{2(n-1)}(u)\right) (12)
+M8(LM2+1)8p2(n1)(u)p2(n1)(u).\displaystyle+M^{8}\left(LM^{2}+1\right)^{8}p_{2(n-1)}(u)p_{2(n-1)}(-u). (13)

Since the terms in (11) and (13) are polynomials by the induction hypothesis and Equation (8), we only need to show the term in (12) is a polynomial. Now 1-1 times the term in (12) becomes

M4(LM2+1)8(Q(u)Q(u)+Q(u)Q(u))p2(n1)(u)p2(n1)(u)\displaystyle M^{-4}\left(LM^{2}+1\right)^{8}\left(Q(u)Q(u)+Q(-u)Q(-u)\right)p_{2(n-1)}(u)p_{2(n-1)}(-u) (14)
M4(LM2+1)10(Q(u)p2(n1)(u)p2(n2)(u)+Q(u)p2(n1)(u)p2(n2)(u))\displaystyle-M^{4}\left(LM^{2}+1\right)^{10}(Q(u)p_{2(n-1)}(-u)p_{2(n-2)}(u)+Q(-u)p_{2(n-1)}(u)p_{2(n-2)}(-u)) (15)

by using Equation (2). The term in (14) is a polynomial because of Equations (9), (10), and the induction hypothesis. We will show that the term in (15) is a polynomial. By using Equation (2) again, 1-1 times the term in (15) becomes

2(LM2+1)12Q(u)Q(u)p2(n2)(u)p2(n2)(u)\displaystyle 2\left(LM^{2}+1\right)^{12}Q(u)Q(-u)p_{2(n-2)}(-u)p_{2(n-2)}(u)
M8(LM2+1)14(Q(u)p2(n2)(u)p2(n3)(u)+Q(u)p2(n2)(u)p2(n3)(u)).\displaystyle-M^{8}\left(LM^{2}+1\right)^{14}\left(Q(u)p_{2(n-2)}(u)p_{2(n-3)}(-u)+Q(-u)p_{2(n-2)}(-u)p_{2(n-3)}(u)\right).

It is a polynomial by (4), (8), and the induction hypothesis. Therefore, for all n>0n>0, by induction, A2n(L,M)=p2n(u)p2n(u)A_{2n}(L,M)=p_{2n}(u)p_{2n}(-u) is a polynomial.

Now, we are going to show that A2n(L,M)A_{2n}(L,M) for n>0n>0 has L2L^{2} and M8nM^{8n} as terms so that it does not have any redundant LL or MM factors. Let us consider p2np_{2n} and QQ as functions of LL, MM and zz and uu as a function of LL and MM. Let (β1)=(L,0,u(L,0))(\beta_{1})=(L,0,u(L,0)) and (β1¯)=(L,0,u(L,0))(\bar{\beta_{1}})=(L,0,-u(L,0)). When MM is equal to zero, Proposition 2.4 simplifies to

Proposition 2.5
p2n(β1)p2n(β1¯)\displaystyle p_{2n}(\beta_{1})p_{2n}(\bar{\beta_{1}})
=f(L,0)p2(n1)(β1)p2(n1)(β1¯)\displaystyle=f(L,0)p_{2(n-1)}(\beta_{1})p_{2(n-1)}(\bar{\beta_{1}})
=(13L+3L2L3)p2(n1)(β1)p2(n1)(β1¯).\displaystyle=(1-3L+3L^{2}-L^{3})p_{2(n-1)}(\beta_{1})p_{2(n-1)}(\bar{\beta_{1}}).

Since

p2(β1)p2(β1¯)=L2L3,\displaystyle p_{2}(\beta_{1})p_{2}(\bar{\beta_{1}})=L^{2}-L^{3}, (16)

for all n>0n>0, by induction, A2n(L,M)=p2n(u)p2n(u)A_{2n}(L,M)=p_{2n}(u)p_{2n}(-u) has L2L^{2} as a term. Let (β2)=(0,M,u(0,M))(\beta_{2})=\left(0,M,u(0,M)\right) and (β2¯)=(0,M,u(0,M))(\bar{\beta_{2}})=\left(0,M,-u(0,M)\right). Since Q(β2)=Q(β2¯)=M4(1+M4)Q(\beta_{2})=Q(\bar{\beta_{2}})=M^{4}(1+M^{4}), we have the following equations from Equation (2):

p2n(β2)\displaystyle p_{2n}(\beta_{2}) =(1+M4)p2(n1)(β2)M4p2(n2)(β2)\displaystyle=(1+M^{4})p_{2(n-1)}(\beta_{2})-M^{4}p_{2(n-2)}(\beta_{2})
p2n(β2¯)\displaystyle p_{2n}(\bar{\beta_{2}}) =(1+M4)p2(n1)(β2¯)M4p2(n2)(β2¯).\displaystyle=(1+M^{4})p_{2(n-1)}(\bar{\beta_{2}})-M^{4}p_{2(n-2)}(\bar{\beta_{2}}).

Since p0=1p_{0}=1, p2(β2)=p2(β2¯)=M4p_{2}(\beta_{2})=p_{2}(\bar{\beta_{2}})=M^{4}, by induction, we have p2n(β2)=p2n(β2¯)=M4np_{2n}(\beta_{2})=p_{2n}(\bar{\beta_{2}})=M^{4n} and A2n(0,M)=M8nA_{2n}(0,M)=M^{8n}. Therefore A2n(L,M)A_{2n}(L,M) for n>0n>0 has M8nM^{8n} as a term. Now, we are going to show that A2n(L,M)A_{2n}(L,M) for n>0n>0 has L3nL^{3n} as a term and does not have a constant (nonzero) times L3n+1M2L^{3n+1}M^{2} as a term so that it does not have any redundant LM2+1LM^{2}+1 factors. By Proposition 2.5 and Equation (16), A2n(L,M)A_{2n}(L,M) for n>0n>0 has L3nL^{3n} as a term. Since p0=1p_{0}=1 and p2(±u)p_{2}(\pm u) (see Appendix C) is a polynomial up to (2(LM2+1))2\left(2\left(LM^{2}+1\right)\right)^{2}, by Equations (2),  (6) and (7), p2n(±u)p_{2n}(\pm u) for n>0n>0 is a polynomial up to (2(LM2+1))2n\left(2\left(LM^{2}+1\right)\right)^{2n}. Hence, all the terms in (5) have at least 8th power of MM, and, by using Equations (6), (7) again, all the terms in (4) have at least 4th power of MM because we know that factoring out (2(LM2+1))\left(2\left(LM^{2}+1\right)\right)^{*} from a polynomial won’t affect MM^{**} factor of it and formulae in (4) and (5) are polynomials. Therefore if there were a constant (nonzero) times L3n+1M2L^{3n+1}M^{2} in A2n(L,M)A_{2n}(L,M) for n>0n>0, it would be in the terms in (3). By using Equation (8), the terms in (3) can be rewritten as

f(L,M)p2(n1)(u)p2(n1)(u).\displaystyle f(L,M)p_{2(n-1)}(u)p_{2(n-1)}(-u). (17)

The terms in f(L,M)f(L,M) whose power of MM is less than or equal to 22 are

L3+3L23L+1+(2L38L2+6L)M2.-L^{3}+3L^{2}-3L+1+\left(2L^{3}-8L^{2}+6L\right)M^{2}.

The terms in A2(L,M)=p2(u)p2(u)A_{2}(L,M)=p_{2}(u)p_{2}(-u) whose power of MM is less than or equal to 22 are

L3+L2+(L3+L2)M2.L^{3}+L^{2}+\left(L^{3}+L^{2}\right)M^{2}.

Now, one can easily prove that the terms in 17 do not include a constant (nonzero) times L3n+1M2L^{3n+1}M^{2}.

From now on, we will deal with the case for n<0n<0.

Substituting 2LM8+LM6LM4M6+M4z+M42M22(LM6+M4)\frac{-2LM^{8}+LM^{6}-LM^{4}-M^{6}+M^{4}z+M^{4}-2M^{2}}{2\left(LM^{6}+M^{4}\right)} for xx into P2nP_{2n}, for n<0n<0, gives

q2n(z)\displaystyle q_{2n}(z) =i=02n(i12ni)(M2)i22i+123n1(2LM6+LM4LM2M4+M2z+M222M2(LM2+1))i+12\displaystyle=\sum_{i=0}^{-2n}\binom{\left\lfloor\frac{i-1}{2}\right\rfloor-n}{i}\left(M^{2}\right)^{-\left\lfloor\frac{i}{2}\right\rfloor-2\left\lfloor\frac{i+1}{2}\right\rfloor-3n-1}\left(\frac{-2LM^{6}+LM^{4}-LM^{2}-M^{4}+M^{2}z+M^{2}-2}{2M^{2}\left(LM^{2}+1\right)}\right)^{\left\lfloor\frac{i+1}{2}\right\rfloor}
×(M2(3LM2+L+M2+z3)2(LM2+1))i12(M2(LM2+L+M2+z+1)2(LM2+1))i\displaystyle\times\left(\frac{M^{2}\left(-3LM^{2}+L+M^{2}+z-3\right)}{2\left(LM^{2}+1\right)}\right)^{\left\lfloor\frac{i-1}{2}\right\rfloor}\left(\frac{M^{2}\left(LM^{2}+L+M^{2}+z+1\right)}{2\left(LM^{2}+1\right)}\right)^{i}
×(M2((1)i(2LM2+L+M2+z2)LM21)2(LM2+1)).\displaystyle\times\left(\frac{M^{2}\left((-1)^{i}\left(-2LM^{2}+L+M^{2}+z-2\right)-LM^{2}-1\right)}{2\left(LM^{2}+1\right)}\right).

As in case n>0n>0, we multiply it by its Galois conjugate q2n(u)q_{2n}(-u) to obtain the entire AA-polynomial. We multiply q2n(u)q2n(u)q_{2n}(u)q_{2n}(-u) by M8n+4(LM2+1)4n+1M^{8n+4}\left(LM^{2}+1\right)^{-4n+1} to clear the denominators and factor out some power of MM so that we have the AA-polynomial A2n(L,M)=p2n(u)p2n(u)A_{2n}(L,M)=p_{2n}(u)p_{2n}(-u) in Theorem 1.1. Similarly as in case n>0n>0, we can show that A2n(L,M)A_{2n}(L,M) for n<0n<0 does not have any redundant LL, MM or LM2+1LM^{2}+1 factors. It can be done by showing that it has 11 and L3(n1)+1L^{3(n-1)+1} as terms and does not have a constant times L3(n1)+2M2L^{3(n-1)+2}M^{2} as a term.

3 Appendix A

a(L,M)=2L4(M12+M8)+L3(3M12+10M10+5M8+4M6M4+2M21)+2(M4+1)\displaystyle a(L,M)=2L^{4}\left(M^{12}+M^{8}\right)+L^{3}\left(-3M^{12}+10M^{10}+5M^{8}+4M^{6}-M^{4}+2M^{2}-1\right)+2\left(M^{4}+1\right)
+2L2(M124M10+5M8+8M6+5M44M2+1)L(M122M10+M84M65M410M2+3)\displaystyle+2L^{2}\left(M^{12}-4M^{10}+5M^{8}+8M^{6}+5M^{4}-4M^{2}+1\right)-L\left(M^{12}-2M^{10}+M^{8}-4M^{6}-5M^{4}-10M^{2}+3\right)
b(L,M)=(L1)(M1)3(M+1)3(M2+1)2\displaystyle b(L,M)=(L-1)(M-1)^{3}(M+1)^{3}\left(M^{2}+1\right)^{2}
f(L,M)=L3+3L23L+1+(6L38L2+2L)M14+(6L3+8L2+2L)M10+(2L3+8L2+6L)M6\displaystyle f(L,M)=-L^{3}+3L^{2}-3L+1+\left(6L^{3}-8L^{2}+2L\right)M^{14}+\left(6L^{3}+8L^{2}+2L\right)M^{10}+\left(2L^{3}+8L^{2}+6L\right)M^{6}
+(2L3+2L2+2L+2)M4+(2L38L2+6L)M2+(L43L3+3L2L)M16\displaystyle+\left(-2L^{3}+2L^{2}+2L+2\right)M^{4}+\left(2L^{3}-8L^{2}+6L\right)M^{2}+\left(L^{4}-3L^{3}+3L^{2}-L\right)M^{16}
+(2L4+2L3+2L22L)M12+(L4+4L3+14L2+4L+1)M8.\displaystyle+\left(2L^{4}+2L^{3}+2L^{2}-2L\right)M^{12}+\left(L^{4}+4L^{3}+14L^{2}+4L+1\right)M^{8}.
g(L,M)=2L8(M4+1)2M16+2L7(3M16+10M14+2M12+14M10+4M8+6M62M4+2M21)M8\displaystyle g(L,M)=2L^{8}\left(M^{4}+1\right)^{2}M^{16}+2L^{7}\left(-3M^{16}+10M^{14}+2M^{12}+14M^{10}+4M^{8}+6M^{6}-2M^{4}+2M^{2}-1\right)M^{8}
+L6(11M2452M22+54M20+76M18+91M168M14+68M128M107M84M6+6M44M2+1)\displaystyle+L^{6}\left(11M^{24}-52M^{22}+54M^{20}+76M^{18}+91M^{16}-8M^{14}+68M^{12}-8M^{10}-7M^{8}-4M^{6}+6M^{4}-4M^{2}+1\right)
2L5(7M2434M22+52M20+18M18106M16178M14+54M1222M1031M8+4M6+22M412M2+2)\displaystyle-2L^{5}\left(7M^{24}-34M^{22}+52M^{20}+18M^{18}-106M^{16}-178M^{14}+54M^{12}-22M^{10}-31M^{8}+4M^{6}+22M^{4}-12M^{2}+2\right)
+2L4(5M2428M22+44M20+4M1871M16+24M14+324M12+24M1071M8+4M6+44M428M2+5)\displaystyle+2L^{4}\left(5M^{24}-28M^{22}+44M^{20}+4M^{18}-71M^{16}+24M^{14}+324M^{12}+24M^{10}-71M^{8}+4M^{6}+44M^{4}-28M^{2}+5\right)
2L3(2M2412M22+22M20+4M1831M1622M14+54M12178M10106M8+18M6+52M434M2+7)\displaystyle-2L^{3}\left(2M^{24}-12M^{22}+22M^{20}+4M^{18}-31M^{16}-22M^{14}+54M^{12}-178M^{10}-106M^{8}+18M^{6}+52M^{4}-34M^{2}+7\right)
+L2(M244M22+6M204M187M168M14+68M128M10+91M8+76M6+54M452M2+11)\displaystyle+L^{2}\left(M^{24}-4M^{22}+6M^{20}-4M^{18}-7M^{16}-8M^{14}+68M^{12}-8M^{10}+91M^{8}+76M^{6}+54M^{4}-52M^{2}+11\right)
+L(2M16+4M144M12+12M10+8M8+28M6+4M4+20M26)+2(M4+1)2\displaystyle+L\left(-2M^{16}+4M^{14}-4M^{12}+12M^{10}+8M^{8}+28M^{6}+4M^{4}+20M^{2}-6\right)+2\left(M^{4}+1\right)^{2}
h(L,M)=L(L1)(M21)3(M2+1)2h1(L,M)\displaystyle h(L,M)=L\left(L-1\right)\left(M^{2}-1\right)^{3}\left(M^{2}+1\right)^{2}h_{1}(L,M)
h1(L,M)=L4(2M12+2M8)+L3(3M12+10M10+5M8+4M6M4+2M21)\displaystyle h_{1}(L,M)=L^{4}\left(2M^{12}+2M^{8}\right)+L^{3}\left(-3M^{12}+10M^{10}+5M^{8}+4M^{6}-M^{4}+2M^{2}-1\right)
+L2(2M128M10+10M8+16M6+10M48M2+2)\displaystyle+L^{2}\left(2M^{12}-8M^{10}+10M^{8}+16M^{6}+10M^{4}-8M^{2}+2\right)
+L(M12+2M10M8+4M6+5M4+10M23)+2M4+2\displaystyle+L\left(-M^{12}+2M^{10}-M^{8}+4M^{6}+5M^{4}+10M^{2}-3\right)+2M^{4}+2

4 Appendix B

A2(L,M)=L4M8+L3(2M12+3M10+3M8+M21)+L2(M163M14M12+3M10+6M8+3M6M43M2+1)\displaystyle A_{2}(L,M)=L^{4}M^{8}+L^{3}\left(-2M^{12}+3M^{10}+3M^{8}+M^{2}-1\right)+L^{2}\left(M^{16}-3M^{14}-M^{12}+3M^{10}+6M^{8}+3M^{6}-M^{4}-3M^{2}+1\right)
+L(M16+M14+3M8+3M62M4)+M8\displaystyle+L\left(-M^{16}+M^{14}+3M^{8}+3M^{6}-2M^{4}\right)+M^{8}
A4(L,M)=L8M16+L7(2M24+3M222M20+M18+8M16+M142M12+3M102M8)\displaystyle A_{4}(L,M)=L^{8}M^{16}+L^{7}\left(-2M^{24}+3M^{22}-2M^{20}+M^{18}+8M^{16}+M^{14}-2M^{12}+3M^{10}-2M^{8}\right)\qquad\qquad\qquad\qquad\qquad
+L6(M323M30+3M28M264M249M22+15M20+13M182M16+13M14\displaystyle+L^{6}\left(M^{32}-3M^{30}+3M^{28}-M^{26}-4M^{24}-9M^{22}+15M^{20}+13M^{18}-2M^{16}+13M^{14}\right.
+15M129M104M8M6+3M43M2+1)\displaystyle\left.+15M^{12}-9M^{10}-4M^{8}-M^{6}+3M^{4}-3M^{2}+1\right)
+L5(4M32+16M3014M2821M26+24M24+16M2256M20\displaystyle+L^{5}\left(-4M^{32}+16M^{30}-14M^{28}-21M^{26}+24M^{24}+16M^{22}-56M^{20}\right.
+17M18+100M16+17M1456M12+16M10+24M821M614M4+16M24)\displaystyle\left.+17M^{18}+100M^{16}+17M^{14}-56M^{12}+16M^{10}+24M^{8}-21M^{6}-14M^{4}+16M^{2}-4\right)
+L4(6M3226M30+22M28+40M2659M2464M22+82M20\displaystyle+L^{4}\left(6M^{32}-26M^{30}+22M^{28}+40M^{26}-59M^{24}-64M^{22}+82M^{20}\right.
+50M1832M16+50M14+82M1264M1059M8+40M6+22M426M2+6)\displaystyle\left.+50M^{18}-32M^{16}+50M^{14}+82M^{12}-64M^{10}-59M^{8}+40M^{6}+22M^{4}-26M^{2}+6\right)
+L3(4M32+16M3014M2821M26+24M24+16M2256M20+17M18+100M16\displaystyle+L^{3}\left(-4M^{32}+16M^{30}-14M^{28}-21M^{26}+24M^{24}+16M^{22}-56M^{20}+17M^{18}+100M^{16}\right.
+17M1456M12+16M10+24M821M614M4+16M24)\displaystyle\left.+17M^{14}-56M^{12}+16M^{10}+24M^{8}-21M^{6}-14M^{4}+16M^{2}-4\right)
+L2(M323M30+3M28M264M249M22+15M20+13M182M16+13M14+15M129M10\displaystyle+L^{2}\left(M^{32}-3M^{30}+3M^{28}-M^{26}-4M^{24}-9M^{22}+15M^{20}+13M^{18}-2M^{16}+13M^{14}+15M^{12}-9M^{10}\right.
4M8M6+3M43M2+1)\displaystyle\left.-4M^{8}-M^{6}+3M^{4}-3M^{2}+1\right)
+L(2M24+3M222M20+M18+8M16+M142M12+3M102M8)+M16\displaystyle+L\left(-2M^{24}+3M^{22}-2M^{20}+M^{18}+8M^{16}+M^{14}-2M^{12}+3M^{10}-2M^{8}\right)+M^{16}

5 Appendix C

p2(±u)=(2(LM2+1))2[L(M41)2(L+M2)u\displaystyle p_{2}(\pm u)=\left(2\left(LM^{2}+1\right)\right)^{-2}\left[\mp L\left(M^{4}-1\right)^{2}\left(L+M^{2}\right)u\right.
+2L4M8+L3(2M12+3M10+3M8+4M6+M21)+L2(M126M10+5M8+12M6+5M46M2+1)\displaystyle\left.+2L^{4}M^{8}+L^{3}\left(-2M^{12}+3M^{10}+3M^{8}+4M^{6}+M^{2}-1\right)+L^{2}\left(M^{12}-6M^{10}+5M^{8}+12M^{6}+5M^{4}-6M^{2}+1\right)\right.\qquad\qquad\qquad\qquad\qquad
+L(M12+M10+4M6+3M4+3M22)+2M4]\displaystyle\left.+L\left(-M^{12}+M^{10}+4M^{6}+3M^{4}+3M^{2}-2\right)+2M^{4}\right]
p2(±u)=(2(LM2+1))32[±L(M41)2u\displaystyle p_{-2}(\pm u)=(2\left(LM^{2}+1\right))^{-\frac{3}{2}}\left[\pm L\left(M^{4}-1\right)^{2}u\right.
+2L3M10L2(M105M82M6+M21)+L(M10M8+2M4+5M21)+2]\displaystyle\left.+2L^{3}M^{10}-L^{2}\left(M^{10}-5M^{8}-2M^{6}+M^{2}-1\right)+L\left(M^{10}-M^{8}+2M^{4}+5M^{2}-1\right)+2\right]\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad
p4(±u)=(2(LM2+1))7/2[±L(M41)2(L4(2M4M2+1)M8+L3(3M12+9M10+M8+M6M4+2M21)\displaystyle p_{-4}(\pm u)=\left(2\left(LM^{2}+1\right)\right)^{-7/2}\left[\pm L\left(M^{4}-1\right)^{2}\left(L^{4}\left(2M^{4}-M^{2}+1\right)M^{8}+L^{3}\left(-3M^{12}+9M^{10}+M^{8}+M^{6}-M^{4}+2M^{2}-1\right)\right.\right.
+L2(2M128M10+7M8+10M6+7M48M2+2)+L(M12+2M10M8+M6+M4+9M23)+M4M2+2)u\displaystyle\left.\left.+L^{2}\left(2M^{12}-8M^{10}+7M^{8}+10M^{6}+7M^{4}-8M^{2}+2\right)+L\left(-M^{12}+2M^{10}-M^{8}+M^{6}+M^{4}+9M^{2}-3\right)+M^{4}-M^{2}+2\right)u\right.
+2L7M22+L6(4M14+15M12+6M105M8+3M42M2+1)M8\displaystyle\left.+2L^{7}M^{22}+L^{6}\left(-4M^{14}+15M^{12}+6M^{10}-5M^{8}+3M^{4}-2M^{2}+1\right)M^{8}\right.
+L5(7M2225M20+22M18+51M16M1432M12+13M10+10M82M63M4+3M21)\displaystyle\left.+L^{5}\left(7M^{22}-25M^{20}+22M^{18}+51M^{16}-M^{14}-32M^{12}+13M^{10}+10M^{8}-2M^{6}-3M^{4}+3M^{2}-1\right)\right.
+L4(7M22+28M2021M1831M16+62M14+82M1250M1030M8+33M6+18M417M2+3)\displaystyle\left.+L^{4}\left(-7M^{22}+28M^{20}-21M^{18}-31M^{16}+62M^{14}+82M^{12}-50M^{10}-30M^{8}+33M^{6}+18M^{4}-17M^{2}+3\right)\right.
+L3(3M2217M20+18M18+33M1630M1450M12+82M10+62M831M621M4+28M27)\displaystyle\left.+L^{3}\left(3M^{22}-17M^{20}+18M^{18}+33M^{16}-30M^{14}-50M^{12}+82M^{10}+62M^{8}-31M^{6}-21M^{4}+28M^{2}-7\right)\right.
L2(M223M20+3M18+2M1610M1413M12+32M10+M851M622M4+25M27)\displaystyle\left.-L^{2}\left(M^{22}-3M^{20}+3M^{18}+2M^{16}-10M^{14}-13M^{12}+32M^{10}+M^{8}-51M^{6}-22M^{4}+25M^{2}-7\right)\right.
+L(M142M12+3M105M6+6M4+15M24)+2]\displaystyle\left.+L\left(M^{14}-2M^{12}+3M^{10}-5M^{6}+6M^{4}+15M^{2}-4\right)+2\right]

Acknowledgement

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2018R1A2B6005847). The second author was supported by 2018 Hongik University Research Fund.

References

References