This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An existence theorem for Brakke flow
with fixed boundary conditions

Salvatore Stuvard Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Stop C1200, Austin TX 78712-1202, United States of America [email protected]  and  Yoshihiro Tonegawa Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan [email protected]
Abstract.

Consider an arbitrary closed, countably nn-rectifiable set in a strictly convex (n+1)(n+1)-dimensional domain, and suppose that the set has finite nn-dimensional Hausdorff measure and the complement is not connected. Starting from this given set, we show that there exists a non-trivial Brakke flow with fixed boundary data for all times. As tt\uparrow\infty, the flow sequentially converges to non-trivial solutions of Plateau’s problem in the setting of stationary varifolds.

Keywords: mean curvature flow, varifolds, Plateau’s problem, minimal surfaces.

AMS Math Subject Classification (2020): 53E10 (primary), 49Q20, 49Q05.

1. Introduction

A time-parametrized family {Γ(t)}t0\{\Gamma(t)\}_{t\geq 0} of nn-dimensional surfaces in n+1\mathbb{R}^{n+1} (or in an open domain Un+1U\subset\mathbb{R}^{n+1}) is called a mean curvature flow (abbreviated hereafter as MCF) if the velocity of motion of Γ(t)\Gamma(t) is equal to the mean curvature of Γ(t)\Gamma(t) at each point and time. The aim of the present paper is to establish a global-in-time existence theorem for the MCF {Γ(t)}t0\{\Gamma(t)\}_{t\geq 0} starting from a given surface Γ0\Gamma_{0} while keeping the boundary of Γ(t)\Gamma(t) fixed for all times t0t\geq 0. In particular, we are interested in the case when the initial surface Γ0\Gamma_{0} is not smooth. Typical MCF under consideration in this setting may look like a moving network with multiple junctions for n=1n=1, or a moving cluster of bubbles for n=2n=2, and they may undergo various topological changes as they evolve. Due to the presence of singularities, we work in the framework of the generalized, measure-theoretic notion of MCF introduced by Brakke and since known as the Brakke flow [2, 38]. A global-in-time existence result for a Brakke flow without fixed boundary conditions was established by Kim and the second-named author in [20] by reworking [2] thoroughly. The major challenge of the present work is to devise a modification to the approximation scheme in [20] which preserves the boundary data.

Though somewhat technical, in order to clarify the setting of the problem at this point, we state the assumptions on the initial surface Γ0\Gamma_{0} and the domain UU hosting its evolution. Their validity will be assumed throughout the paper.

Assumption 1.1.

Integers n1n\geq 1 and N2N\geq 2 are fixed, and closA{\rm clos}\,A denotes the topological closure of AA in n+1\mathbb{R}^{n+1}.

  • (A1)

    Un+1U\subset\mathbb{R}^{n+1} is a strictly convex bounded domain with boundary U\partial U of class C2C^{2}.

  • (A2)

    Γ0U\Gamma_{0}\subset U is a relatively closed, countably nn-rectifiable set with finite nn-dimensional Hausdorff measure.

  • (A3)

    E0,1,E0,2,,E0,NE_{0,1},E_{0,2},\ldots,E_{0,N} are non-empty, open, and mutually disjoint subsets of UU such that UΓ0=i=1NE0,iU\setminus\Gamma_{0}=\bigcup_{i=1}^{N}E_{0,i}.

  • (A4)

    Γ0:=(closΓ0)U\partial\Gamma_{0}:=({\rm clos}\,\Gamma_{0})\setminus U is not empty, and for each xΓ0x\in\partial\Gamma_{0} there exist at least two indexes i1i2i_{1}\neq i_{2} in {1,,N}\{1,\ldots,N\} such that xclos(clos(E0,ij)(UΓ0))x\in{\rm clos}\left({\rm clos}(E_{0,i_{j}})\setminus(U\cup\partial\Gamma_{0})\right) for j=1,2j=1,2.

Since N2N\geq 2, we implicitly assume that UΓ0U\setminus\Gamma_{0} is not connected. When n=1n=1, Γ0\Gamma_{0} could be for instance a union of Lipschitz curves joined at junctions, with “labels” from 11 to NN being assigned to each connected component of UΓ0U\setminus\Gamma_{0}. If one defines Fi:=(closE0,i)(UΓ0)F_{i}:=({\rm clos}\,E_{0,i})\setminus(U\cup\partial\Gamma_{0}) for i=1,,Ni=1,\ldots,N, one can check that each FiF_{i} is relatively open in U\partial U, F1,,FNF_{1},\ldots,F_{N} are mutually disjoint, and i=1NFi=UΓ0\cup_{i=1}^{N}F_{i}=\partial U\setminus\partial\Gamma_{0}. The assumption (A4) is equivalent to the requirement that each xΓ0x\in\partial\Gamma_{0} is in Fi1Fi2\partial F_{i_{1}}\cap\partial F_{i_{2}} for some indices i1i2i_{1}\neq i_{2}. The main result of the present paper can then be roughly stated as follows.

Theorem A.

Under the assumptions (A1)-(A4), there exists a MCF {Γ(t)}t0\{\Gamma(t)\}_{t\geq 0} such that

Γ(0)=Γ0,andΓ(t):=(closΓ(t))U=Γ0for all t0.\Gamma(0)=\Gamma_{0}\,,\qquad\mbox{and}\qquad\partial\Gamma(t):=({\rm clos}\,\Gamma(t))\setminus U=\partial\Gamma_{0}\quad\mbox{for all $t\geq 0$}\,.

For all t>0t>0, Γ(t)\Gamma(t) remains within the convex hull of Γ0Γ0\Gamma_{0}\cup\partial\Gamma_{0}.

More precisely, {Γ(t)}t0\{\Gamma(t)\}_{t\geq 0} is a MCF in the sense that Γ(t)\Gamma(t) coincides with the slice, at time tt, of the space-time support of a Brakke flow {Vt}t0\{V_{t}\}_{t\geq 0} starting from Γ0\Gamma_{0}. The method adopted to produce the evolving generalized surfaces Γ(t)\Gamma(t) actually gives us more. Indeed, we show the existence of NN families {Ei(t)}t0\{E_{i}(t)\}_{t\geq 0} (i=1,,Ni=1,\ldots,N) of evolving open sets such that Ei(0)=E0,iE_{i}(0)=E_{0,i} for every ii, and Γ(t)=Ui=1NEi(t)\Gamma(t)=U\setminus\cup_{i=1}^{N}E_{i}(t) for all t0t\geq 0. At each time t0t\geq 0, the sets E1(t),,EN(t)E_{1}(t),\ldots,E_{N}(t) are mutually disjoint and form a partition of UU. Moreover, for each fixed ii the Lebesgue measure of Ei(t)E_{i}(t) is a continuous function of time, so that the evolving Γ(t)\Gamma(t) do not exhibit arbitrary instantaneous loss of mass. See Theorems 2.2 and 2.3 for the full statement.

It is reasonable to expect that the flow Γ(t)\Gamma(t) converges, as tt\rightarrow\infty, to a minimal surface in UU with boundary Γ0\partial\Gamma_{0}. We are not able to prove such a result in full generality; nonetheless, we can show the following

Theorem B.

There exists a sequence of times {tk}k=1\{t_{k}\}_{k=1}^{\infty} with limktk=\lim_{k\to\infty}t_{k}=\infty such that the corresponding varifolds Vk:=VtkV_{k}:=V_{t_{k}} converge to a stationary integral varifold VV_{\infty} in UU such that (clos(sptV))U=Γ0({\rm clos}\,(\mathrm{spt}\|V_{\infty}\|))\setminus U=\partial\Gamma_{0}.

See Corollary 2.4 for a precise statement. The limit VV_{\infty} is a solution to Plateau’s problem with boundary Γ0\partial\Gamma_{0}, in the sense that it has the prescribed boundary in the topological sense specified above and it is minimal in the sense of varifolds. We warn the reader that VV_{\infty} may not be area-minimizing. Furthermore, the flow may converge to different limit varifolds along different diverging sequences of times in all cases when uniqueness of a minimal surface with the prescribed boundary is not guaranteed. The possibility to use Brakke flow in order to select solutions to Plateau’s problem in classes of varifolds seems an interesting byproduct of our theory. See Section 7 for further discussion on these points.

Next, we discuss closely related results. While there are several works on the global-in-time existence of MCF, there are relatively few results on the existence of MCF with fixed boundary conditions. When Γ0\Gamma_{0} is a smooth graph over a bounded domain Ω\Omega in n\mathbb{R}^{n}, global-in-time existence follows from the classical work of Lieberman [25]. Furthermore, under the assumption that Ω\Omega is mean convex, convergence of the flow to the unique solution to the minimal surfaces equation in Ω\Omega with the prescribed boundary was established by Huisken in [16]; see also the subsequent generalizations to the Riemannian setting in [31, 34]. The case of network flows with fixed endpoints and a single triple junction was extensively studied in [30, 28]. For other configurations and related works on the network flows, see the survey paper [29] and references therein. In the case when N=2N=2 (which does not allow triple junctions in general), a powerful approach is the level set method [4, 10]. Existence and uniqueness in this setting were established in [35], and the asymptotic limit as tt\rightarrow\infty was studied in [18]. Recently, White [39] proved the existence of a Brakke flow with prescribed smooth boundary in the sense of integral flat chains mod(2){\rm mod}(2). The proof uses the elliptic regularization scheme discovered by Ilmanen [17], which allows one to obtain a Brakke flow with additional good regularity and compactness properties; see also [32] for an application of elliptic regularization within the framework of flat chains with coefficients in suitable finite groups to the long-time existence and short-time regularity of unconstrained MCF starting from a general surface cluster. Observe that the homological constraint used by White prevents the flow to develop interior junction-type singularities of odd order (namely, junctions which are locally diffeomorphic to the union of an odd number of half-hyperplanes), because these singularities are necessarily boundary points mod(2){\rm mod}(2). As a consequence, the flows obtained in [39] may differ greatly from those produced in the present paper. This is not surprising, as solutions to Brakke flow may be highly non-unique. A complete characterization of the topological changes that the evolving surfaces can undergo with either of the two approaches is, in fact, an interesting open question. It is worth noticing that analogous generic non-uniqueness holds true also for Plateau’s problem: in that context, different definitions of the key words surfaces, area, spanning in its formulation lead to solutions with dramatically different regularity properties, thus making each model a better or worse predictor of the geometric complexity of physical soap films; see e.g. the survey papers [6, 15] and the references therein, as well as the more recent works [7, 27, 23, 22, 24, 8, 9]. It is then interesting and natural to investigate different formulations for Brakke flow as well.

Acknowledgments. The work of S.S. was supported by the NSF grants DMS-1565354, DMS-RTG-1840314 and DMS-FRG-1854344. Y.T. was partially supported by JSPS Grant-in-aid for scientific research 18H03670, 19H00639 and 17H01092.

2. Definitions, Notation, and Main Results

2.1. Basic notation

The ambient space we will be working in is Euclidean space n+1\mathbb{R}^{n+1}. We write +\mathbb{R}^{+} for [0,)[0,\infty). For An+1A\subset\mathbb{R}^{n+1}, closA{\rm clos}\,A (or A¯\overline{A}) is the topological closure of AA in n+1\mathbb{R}^{n+1} (and not in UU), intA{\rm int}\,A is the set of interior points of AA and convA{\rm conv}\,A is the convex hull of AA. The standard Euclidean inner product between vectors in n+1\mathbb{R}^{n+1} is denoted xyx\cdot y, and |x|:=xx\lvert x\rvert:=\sqrt{x\cdot x}. If L,S(n+1;n+1)L,S\in\mathscr{L}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) are linear operators in n+1\mathbb{R}^{n+1}, their (Hilbert-Schmidt) inner product is LS:=trace(LTS)L\cdot S:={\rm trace}(L^{T}\circ S), where LTL^{T} is the transpose of LL and \circ denotes composition. The corresponding (Euclidean) norm in (n+1;n+1)\mathscr{L}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) is then |L|:=LL\lvert L\rvert:=\sqrt{L\cdot L}, whereas the operator norm in (n+1;n+1)\mathscr{L}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) is L:=sup{|L(x)|:xn+1 with |x|1}\|L\|:=\sup\left\{\lvert L(x)\rvert\,\colon\,\mbox{$x\in\mathbb{R}^{n+1}$ with $\lvert x\rvert\leq 1$}\right\}. If u,vn+1u,v\in\mathbb{R}^{n+1} then uv(n+1;n+1)u\otimes v\in\mathscr{L}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) is defined by (uv)(x):=(xv)u(u\otimes v)(x):=(x\cdot v)\,u, so that uv=|u||v|\|u\otimes v\|=\lvert u\rvert\,\lvert v\rvert. The symbol Ur(x)U_{r}(x) (resp. Br(x)B_{r}(x)) denotes the open (resp. closed) ball in n+1\mathbb{R}^{n+1} centered at xx and having radius r>0r>0. The Lebesgue measure of a set An+1A\subset\mathbb{R}^{n+1} is denoted n+1(A)\mathcal{L}^{n+1}(A) or |A||A|. If 1kn+11\leq k\leq n+1 is an integer, Urk(x)U_{r}^{k}(x) denotes the open ball with center xx and radius rr in k\mathbb{R}^{k}. We will set ωk:=k(U1k(0))\omega_{k}:=\mathcal{L}^{k}(U_{1}^{k}(0)). The symbol k\mathcal{H}^{k} denotes the kk-dimensional Hausdorff measure in n+1\mathbb{R}^{n+1}, so that n+1\mathcal{H}^{n+1} and n+1\mathcal{L}^{n+1} coincide as measures.

A Radon measure μ\mu in Un+1U\subset\mathbb{R}^{n+1} is always also regarded as a linear functional on the space Cc(U)C_{c}(U) of continuous and compactly supported functions on UU, with the pairing denoted μ(ϕ)\mu(\phi) for ϕCc(U)\phi\in C_{c}(U). The restriction of μ\mu to a Borel set AA is denoted μ  A\mu\,\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{A}, so that (μ  A)(E):=μ(AE)(\mu\,\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{A})(E):=\mu(A\cap E) for any EUE\subset U. The support of μ\mu is denoted sptμ\mathrm{spt}\,\mu, and it is the relatively closed subset of UU defined by

sptμ:={xU:μ(Br(x))>0 for every r>0}.\mathrm{spt}\,\mu:=\left\{x\in U\,\colon\,\mu(B_{r}(x))>0\mbox{ for every $r>0$}\right\}\,.

The upper and lower kk-dimensional densities of a Radon measure μ\mu at xUx\in U are

θk(μ,x):=lim supr0+μ(Br(x))ωkrk,θk(μ,x):=lim infr0+μ(Br(x))ωkrk,\theta^{*k}(\mu,x):=\limsup_{r\to 0^{+}}\frac{\mu(B_{r}(x))}{\omega_{k}\,r^{k}}\,,\qquad\theta^{k}_{*}(\mu,x):=\liminf_{r\to 0^{+}}\frac{\mu(B_{r}(x))}{\omega_{k}\,r^{k}}\,,

respectively. If θk(μ,x)=θk(μ,x)\theta^{*k}(\mu,x)=\theta^{k}_{*}(\mu,x) then the common value is denoted θk(μ,x)\theta^{k}(\mu,x), and is called the kk-dimensional density of μ\mu at xx. For 1p1\leq p\leq\infty, the space of pp-integrable (resp. locally pp-integrable) functions with respect to μ\mu is denoted Lp(μ)L^{p}(\mu) (resp. Llocp(μ)L^{p}_{loc}(\mu)). For a set EUE\subset U, χE\chi_{E} is the characteristic function of EE. If EE is a set of finite perimeter in UU, then χE\nabla\chi_{E} is the associated Gauss-Green measure in UU, and its total variation χE\|\nabla\chi_{E}\| in UU is the perimeter measure; by De Giorgi’s structure theorem, χE=n  E\|\nabla\chi_{E}\|=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\partial^{*}E}, where E\partial^{*}E is the reduced boundary of EE in UU.

2.2. Varifolds

The symbol 𝐆(n+1,k)\mathbf{G}(n+1,k) will denote the Grassmannian of (unoriented) kk-dimensional linear planes in n+1\mathbb{R}^{n+1}. Given S𝐆(n+1,k)S\in\mathbf{G}(n+1,k), we shall often identify SS with the orthogonal projection operator onto it. The symbol 𝐕k(U)\mathbf{V}_{k}(U) will denote the space of kk-dimensional varifolds in UU, namely the space of Radon measures on 𝐆k(U):=U×𝐆(n+1,k)\mathbf{G}_{k}(U):=U\times\mathbf{G}(n+1,k) (see [1, 33] for a comprehensive treatment of varifolds). To any given V𝐕k(U)V\in\mathbf{V}_{k}(U) one associates a Radon measure V\|V\| on UU, called the weight of VV, and defined by projecting VV onto the first factor in 𝐆k(U)\mathbf{G}_{k}(U), explicitly:

V(ϕ):=𝐆k(U)ϕ(x)𝑑V(x,S)for every ϕCc(U).\|V\|(\phi):=\int_{\mathbf{G}_{k}(U)}\phi(x)\,dV(x,S)\qquad\mbox{for every $\phi\in C_{c}(U)$}\,.

A set Γn+1\Gamma\subset\mathbb{R}^{n+1} is countably kk-rectifiable if it can be covered by countably many Lipschitz images of k\mathbb{R}^{k} into n+1\mathbb{R}^{n+1} up to a k\mathcal{H}^{k}-negligible set. We say that Γ\Gamma is (locally) k\mathcal{H}^{k}-rectifiable if it is k\mathcal{H}^{k}-measurable, countably kk-rectifiable, and k(Γ)\mathcal{H}^{k}(\Gamma) is (locally) finite. If ΓU\Gamma\subset U is locally k\mathcal{H}^{k}-rectifiable, and θLloc1(k  Γ)\theta\in L^{1}_{loc}(\mathcal{H}^{k}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma}) is a positive function on Γ\Gamma, then there is a kk-varifold canonically associated to the pair (Γ,θ)(\Gamma,\theta), namely the varifold 𝐯𝐚𝐫(Γ,θ)\mathbf{var}(\Gamma,\theta) defined by

𝐯𝐚𝐫(Γ,θ)(φ):=Γφ(x,TxΓ)θ(x)𝑑k(x)for every φCc(𝐆k(U)),\mathbf{var}(\Gamma,\theta)(\varphi):=\int_{\Gamma}\varphi(x,T_{x}\Gamma)\,\theta(x)\,d\mathcal{H}^{k}(x)\qquad\mbox{for every }\varphi\in C_{c}(\mathbf{G}_{k}(U))\,, (2.1)

where TxΓT_{x}\Gamma denotes the approximate tangent plane to Γ\Gamma at xx, which exists k\mathcal{H}^{k}-a.e. on Γ\Gamma. Any varifold V𝐕k(U)V\in\mathbf{V}_{k}(U) admitting a representation as in (2.1) is said to be rectifiable, and the space of rectifiable kk-varifolds in UU is denoted by 𝐑𝐕k(U){\bf RV}_{k}(U). If V=𝐯𝐚𝐫(Γ,θ)V=\mathbf{var}(\Gamma,\theta) is rectifiable and θ(x)\theta(x) is an integer at k\mathcal{H}^{k}-a.e. xΓx\in\Gamma, then we say that VV is an integral kk-dimensional varifold in UU: the corresponding space is denoted 𝐈𝐕k(U)\mathbf{IV}_{k}(U).

2.3. First variation of a varifold

If V𝐕k(U)V\in\mathbf{V}_{k}(U) and f:UUf\colon U\to U^{\prime} is C1C^{1} and proper, then we let fV𝐕k(U)f_{\sharp}V\in\mathbf{V}_{k}(U^{\prime}) denote the push-forward of VV through ff. Recall that the weight of fVf_{\sharp}V is given by

fV(ϕ)=𝐆k(U)ϕf(x)|Λkf(x)S|𝑑V(x,S)for every ϕCc(U),\|f_{\sharp}V\|(\phi)=\int_{\mathbf{G}_{k}(U)}\phi\circ f(x)\,\lvert\Lambda_{k}\nabla f(x)\circ S\rvert\,dV(x,S)\qquad\mbox{for every }\,\phi\in C_{c}(U^{\prime})\,, (2.2)

where

|Λkf(x)S|:=|f(x)v1f(x)vk|for any orthonormal basis {v1,,vk} of S\lvert\Lambda_{k}\nabla f(x)\circ S\rvert:=\lvert\nabla f(x)\cdot v_{1}\,\wedge\,\ldots\,\wedge\,\nabla f(x)\cdot v_{k}\rvert\quad\mbox{for any orthonormal basis $\{v_{1},\ldots,v_{k}\}$ of $S$}

is the Jacobian of ff along S𝐆(n+1,k)S\in\mathbf{G}(n+1,k). Given a varifold V𝐕k(U)V\in\mathbf{V}_{k}(U) and a vector field gCc1(U;n+1)g\in C^{1}_{c}(U;\mathbb{R}^{n+1}), the first variation of VV in the direction of gg is the quantity

δV(g):=ddt|t=0(Φt)V(U~),\delta V(g):=\left.\frac{d}{dt}\right|_{t=0}\|(\Phi_{t})_{\sharp}V\|(\tilde{U})\,, (2.3)

where Φt()=Φ(t,)\Phi_{t}(\cdot)=\Phi(t,\cdot) is any one-parameter family of diffeomorphisms of UU defined for sufficiently small |t||t| such that Φ0=idU\Phi_{0}={\rm id}_{U} and tΦ(0,)=g()\partial_{t}\Phi(0,\cdot)=g(\cdot). The U~\tilde{U} is chosen so that closU~U{\rm clos}\,\tilde{U}\subset U is compact and sptgU~{\rm spt}\,g\subset\tilde{U}, and the definition of (2.3) does not depend on the choice of U~\tilde{U}. It is well known that δV\delta V is a linear and continuous functional on Cc1(U;n+1)C^{1}_{c}(U;\mathbb{R}^{n+1}), and in fact that

δV(g)=𝐆k(U)g(x)S𝑑V(x,S)for every gCc1(U;n+1),\delta V(g)=\int_{\mathbf{G}_{k}(U)}\nabla g(x)\cdot S\,dV(x,S)\qquad\mbox{for every $g\in C^{1}_{c}(U;\mathbb{R}^{n+1})$}\,, (2.4)

where, after identifying S𝐆(n+1,k)S\in\mathbf{G}(n+1,k) with the orthogonal projection operator n+1S\mathbb{R}^{n+1}\to S,

gS=trace(gTS)=i,j=1n+1Sijgixj=divSg.\nabla g\cdot S={\rm trace}(\nabla g^{T}\circ S)=\sum_{i,j=1}^{n+1}S_{ij}\,\frac{\partial g_{i}}{\partial x_{j}}={\rm div}^{S}g\,.

If δV\delta V can be extended to a linear and continuous functional on Cc(U;n+1)C_{c}(U;\mathbb{R}^{n+1}), we say that VV has bounded first variation in UU. In this case, δV\delta V is naturally associated with a unique n+1\mathbb{R}^{n+1}-valued measure on UU by means of the Riesz representation theorem. If such a measure is absolutely continuous with respect to the weight V\|V\|, then there exists a V\|V\|-measurable and locally V\|V\|-integrable vector field h(,V)h(\cdot,V) such that

δV(g)=Ug(x)h(x,V)dV(x)for every gCc(U,n+1)\delta V(g)=-\int_{U}g(x)\cdot h(x,V)\,d\|V\|(x)\qquad\mbox{for every $g\in C_{c}(U,\mathbb{R}^{n+1})$} (2.5)

by the Lebesgue-Radon-Nikodým differentiation theorem. The vector field h(,V)h(\cdot,V) is called the generalized mean curvature vector of VV. In particular, if δV(g)=0\delta V(g)=0 for all gCc1(U;n+1)g\in C_{c}^{1}(U;\mathbb{R}^{n+1}), VV is called stationary, and this is equivalent to h(,V)=0h(\cdot,V)=0 V\|V\|-almost everywhere. For any V𝐈𝐕k(U)V\in{\bf IV}_{k}(U) with bounded first variation, Brakke’s perpendicularity theorem [2, Chapter 5] says that

S(h(x,V))=h(x,V)for V-a.e. (x,S)𝐆k(U).S^{\perp}(h(x,V))=h(x,V)\qquad\mbox{for $V$-a.e. $(x,S)\in{\bf G}_{k}(U)$}\,. (2.6)

Here, SS^{\perp} is the projection onto the orthogonal complement of SS in n+1\mathbb{R}^{n+1}. This means that the generalized mean curvature vector is perpendicular to the approximate tangent plane almost everywhere.

Other than the first variation δV\delta V discussed above, we shall also use a weighted first variation, defined as follows. For given ϕCc1(U;+)\phi\in C^{1}_{c}(U;\mathbb{R}^{+}), V𝐕k(U)V\in{\bf V}_{k}(U), and gCc1(U;n+1)g\in C^{1}_{c}(U;\mathbb{R}^{n+1}), we modify (2.3) to introduce the ϕ\phi-weighted first variation of VV in the direction of gg, denoted δ(V,ϕ)(g)\delta(V,\phi)(g), by setting

δ(V,ϕ)(g):=ddt|t=0(Φt)V(ϕ),\delta(V,\phi)(g):=\left.\frac{d}{dt}\right|_{t=0}\|(\Phi_{t})_{\sharp}V\|(\phi)\,, (2.7)

where Φt\Phi_{t} denotes the one-parameter family of diffeomorphisms of UU induced by gg as above. Proceeding as in the derivation of (2.4), one then obtains the expression

δ(V,ϕ)(g)=𝐆k(U)ϕ(x)g(x)S𝑑V(x,S)+Ug(x)ϕ(x)dV(x).\delta(V,\phi)(g)=\int_{{\bf G}_{k}(U)}\phi(x)\,\nabla g(x)\cdot S\,dV(x,S)+\int_{U}g(x)\cdot\nabla\phi(x)\,d\|V\|(x)\,. (2.8)

Using ϕg=(ϕg)gϕ\phi\nabla g=\nabla(\phi g)-g\otimes\nabla\phi in (2.8) and (2.4), we obtain

δ(V,ϕ)(g)=δV(ϕg)+𝐆k(U)g(x)(ϕ(x)S(ϕ(x)))𝑑V(x,S)=δV(ϕg)+𝐆k(U)g(x)S(ϕ(x))𝑑V(x,S).\begin{split}\delta(V,\phi)(g)&=\delta V(\phi g)+\int_{{\bf G}_{k}(U)}g(x)\cdot(\nabla\phi(x)-S(\nabla\phi(x)))\,dV(x,S)\\ &=\delta V(\phi g)+\int_{{\bf G}_{k}(U)}g(x)\cdot S^{\perp}(\nabla\phi(x))\,dV(x,S)\,.\end{split} (2.9)

If δV\delta V has generalized mean curvature h(,V)h(\cdot,V), then we may use (2.5) in (2.9) to obtain

δ(V,ϕ)(g)=Uϕ(x)g(x)h(x,V)dV(x)+𝐆k(U)g(x)S(ϕ(x))𝑑V(x,S).\delta(V,\phi)(g)=-\int_{U}\phi(x)g(x)\cdot h(x,V)\,d\|V\|(x)+\int_{{\bf G}_{k}(U)}g(x)\cdot S^{\perp}(\nabla\phi(x))\,dV(x,S). (2.10)

The definition of Brakke flow requires considering weighted first variations in the direction of the mean curvature. Suppose V𝐈𝐕k(U)V\in{\bf IV}_{k}(U), δV\delta V is locally bounded and absolutely continuous with respect to V\|V\| and h(,V)h(\cdot,V) is locally square-integrable with respect to V\|V\|. In this case, it is natural from the expression (2.10) to define for ϕCc1(U;+)\phi\in C_{c}^{1}(U;\mathbb{R}^{+})

δ(V,ϕ)(h(,V)):=U{ϕ(x)|h(x,V)|2+h(x,V)ϕ(x)}dV(x).\delta(V,\phi)(h(\cdot,V)):=\int_{U}\{-\phi(x)|h(x,V)|^{2}+h(x,V)\cdot\nabla\phi(x)\}\,d\|V\|(x). (2.11)

Observe that here we have used (2.6) in order to replace the term h(x,V)S(ϕ(x))h(x,V)\cdot S^{\perp}(\nabla\phi(x)) with h(x,V)ϕ(x)h(x,V)\cdot\nabla\phi(x).

2.4. Brakke flow

To motivate a weak formulation of the MCF, note that a smooth family of kk-dimensional surfaces {Γ(t)}t0\{\Gamma(t)\}_{t\geq 0} in UU is a MCF if and only if the following inequality holds true for all ϕ=ϕ(x,t)Cc1(U×[0,);+)\phi=\phi(x,t)\in C_{c}^{1}(U\times[0,\infty);\mathbb{R}^{+}):

ddtΓ(t)ϕ𝑑kΓ(t){ϕ|h(,Γ(t))|2+ϕh(,Γ(t))+ϕt}𝑑k.\frac{d}{dt}\int_{\Gamma(t)}\phi\,d\mathcal{H}^{k}\leq\int_{\Gamma(t)}\left\{-\phi\,|h(\cdot,\Gamma(t))|^{2}+\nabla\phi\cdot h(\cdot,\Gamma(t))+\frac{\partial\phi}{\partial t}\right\}\,d\mathcal{H}^{k}\,. (2.12)

In fact, the “only if” part holds with equality in place of inequality. For a more comprehensive treatment of the Brakke flow, see [38, Chapter 2]. Formally, if Γ(t)U\partial\Gamma(t)\subset\partial U is fixed in time, with ϕ=1\phi=1, we also obtain

ddtk(Γ(t))Γ(t)|h(x,Γ(t))|2𝑑k(x),\frac{d}{dt}\mathcal{H}^{k}(\Gamma(t))\leq-\int_{\Gamma(t)}|h(x,\Gamma(t))|^{2}\,d\mathcal{H}^{k}(x)\,, (2.13)

which states the well-known fact that the L2L^{2}-norm of the mean curvature represents the dissipation of area along the MCF. Motivated by (2.12) and (2.13), and for the purposes of this paper, we give the following definition.

Definition 2.1.

We say that a family of varifolds {Vt}t0\{V_{t}\}_{t\geq 0} in UU is a Brakke flow with fixed boundary ΣU\Sigma\subset\partial U if all of the following hold:

  1. (a)

    For a.e. t0t\geq 0, Vt𝐈𝐕k(U)V_{t}\in{\bf IV}_{k}(U);

  2. (b)

    For a.e. t0t\geq 0, δVt\delta V_{t} is bounded and absolutely continuous with respect to Vt\|V_{t}\|;

  3. (c)

    The generalized mean curvature h(x,Vt)h(x,V_{t}) (which exists for a.e. tt by (b)) satisfies for all T>0T>0

    VT(U)+0T𝑑tU|h(x,Vt)|2dVt(x)V0(U);\|V_{T}\|(U)+\int_{0}^{T}dt\int_{U}|h(x,V_{t})|^{2}\,d\|V_{t}\|(x)\leq\|V_{0}\|(U); (2.14)
  4. (d)

    For all 0t1<t2<0\leq t_{1}<t_{2}<\infty and ϕCc1(U×+;+)\phi\in C_{c}^{1}(U\times\mathbb{R}^{+};\mathbb{R}^{+}),

    Vt(ϕ(,t))|t=t1t2t1t2δ(Vt,ϕ(,t))(h(,Vt))+Vt(ϕt(,t))dt,\|V_{t}\|(\phi(\cdot,t))\Big{|}_{t=t_{1}}^{t_{2}}\leq\int_{t_{1}}^{t_{2}}\delta(V_{t},\phi(\cdot,t))(h(\cdot,V_{t}))+\|V_{t}\|\big{(}\frac{\partial\phi}{\partial t}(\cdot,t)\big{)}\,dt\,, (2.15)

    having set Vt(ϕ(,t))|t=t1t2:=Vt2(ϕ(,t2))Vt1(ϕ(,t1))\|V_{t}\|(\phi(\cdot,t))\Big{|}_{t=t_{1}}^{t_{2}}:=\|V_{t_{2}}\|(\phi(\cdot,t_{2}))-\|V_{t_{1}}\|(\phi(\cdot,t_{1}));

  5. (e)

    For all t0t\geq 0, (clos(sptVt))U=Σ({\rm clos}\,({\rm spt}\,\|V_{t}\|))\setminus U=\Sigma.

In this paper, we are interested in the nn-dimensional Brakke flow in particular. Formally, by integrating (2.13) from 0 to TT, we obtain the analogue of (2.14). By integrating (2.12) from t1t_{1} to t2t_{2}, we also obtain the analogue of (2.15) via the expression (2.11). We recall that the closure is taken with respect to the topology of n+1\mathbb{R}^{n+1} while the support of Vt\|V_{t}\| is in UU. Thus (e) geometrically means that “the boundary of VtV_{t} (or Vt\|V_{t}\|) is Σ\Sigma”.

2.5. Main results

The main existence theorem of a Brakke flow with fixed boundary is the following.

Theorem 2.2.

Suppose that U,Γ0U,\Gamma_{0}, and E0,1,,E0,NE_{0,1},\ldots,E_{0,N} satisfy Assumption 1.1 (A1)-(A4). Then, there exists a Brakke flow {Vt}t0\{V_{t}\}_{t\geq 0} with fixed boundary Γ0\partial\Gamma_{0}, and V0=n  Γ0\|V_{0}\|=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma_{0}}. If n(Γ0i=1NE0,i)=0\mathcal{H}^{n}(\Gamma_{0}\setminus\cup_{i=1}^{N}\partial^{*}E_{0,i})=0, we have limt0Vt=n  Γ0\lim_{t\downarrow 0}\|V_{t}\|=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma_{0}}.

Since we are assuming that Γ0\partial\Gamma_{0}\neq\emptyset, we have Vt0V_{t}\neq 0 for all t>0t>0. If the union of the reduced boundaries of the initial partition in UU coincides with Γ0\Gamma_{0} modulo n\mathcal{H}^{n}-negligible sets (note that the assumptions (A2)(A2) and (A3)(A3) in Assumption 1.1 imply that Γ0=Ui=1NE0,i\Gamma_{0}=U\cap\bigcup_{i=1}^{N}\partial E_{0,i}), then the claim is that the initial condition is satisfied continuously as measures. Otherwise, an instantaneous loss of measure may occur at t=0t=0. As far as the regularity is concerned, under the additional assumption that {Vt}t>0\{V_{t}\}_{t>0} is a unit density flow, partial regularity theorems of [2, 19, 37] show that VtV_{t} is a smooth MCF for a.e. time and a.e. point in space, just like [20], see [20, Theorem 3.6] for the precise statement. No claim of the uniqueness is made here, but the next Theorem 2.3 gives an additional structure to VtV_{t} in the form of “moving partitions” starting from E0,1,,E0,NE_{0,1},\ldots,E_{0,N}.

Theorem 2.3.

Under the same assumption of Theorem 2.2 and in addition to {Vt}t0\{V_{t}\}_{t\geq 0}, for each i=1,,Ni=1,\dots,N there exists a one-parameter family {Ei(t)}t0\{E_{i}(t)\}_{t\geq 0} of open sets Ei(t)UE_{i}(t)\subset U with the following properties. Let Γ(t):=Ui=1NEi(t)\Gamma(t):=U\setminus\cup_{i=1}^{N}E_{i}(t).

  1. (1)

    Ei(0)=E0,iE_{i}(0)=E_{0,i} i=1,,N\forall i=1,\dots,N;

  2. (2)

    t0\forall t\geq 0, the sets {Ei(t)}i=1N\{E_{i}(t)\}_{i=1}^{N} are mutually disjoint;

  3. (3)

    U~⊂⊂U\forall\tilde{U}\subset\joinrel\subset U and t0\forall t\geq 0, n(Γ(t)U~)<\mathcal{H}^{n}(\Gamma(t)\cap\tilde{U})<\infty;

  4. (4)

    t0\forall t\geq 0, Γ(t)=Ui=1N(Ei(t))\Gamma(t)=U\cap\cup_{i=1}^{N}\partial(E_{i}(t));

  5. (5)

    t0\forall t\geq 0, Γ(t)conv(Γ0Γ0)\Gamma(t)\subset{\rm conv}(\Gamma_{0}\cup\partial\Gamma_{0});

  6. (6)

    t0\forall t\geq 0 and i=1,,N\forall i=1,\ldots,N, Ei(t)conv(Γ0Γ0)=E0,iconv(Γ0Γ0)E_{i}(t)\setminus{\rm conv}(\Gamma_{0}\cup\partial\Gamma_{0})=E_{0,i}\setminus{\rm conv}(\Gamma_{0}\cup\partial\Gamma_{0});

  7. (7)

    t0\forall t\geq 0, Γ(t):=(closΓ(t))U=Γ0\partial\Gamma(t):=({\rm clos}\,\Gamma(t))\setminus U=\partial\Gamma_{0};

  8. (8)

    t0\forall t\geq 0 and i=1,,N\forall i=1,\ldots,N, χEi(t)Vt\|\nabla\chi_{E_{i}(t)}\|\leq\|V_{t}\| and i=1NχEi(t)2Vt\sum_{i=1}^{N}\|\nabla\chi_{E_{i}(t)}\|\leq 2\|V_{t}\|;

  9. (9)

    Fix i=1,,Ni=1,\ldots,N and Ur(x)⊂⊂UU_{r}(x)\subset\joinrel\subset U, and define g(t):=n+1(Ur(x)Ei(t))g(t):=\mathcal{L}^{n+1}(U_{r}(x)\cap E_{i}(t)). Then, gC0([0,))C0,12((0,))g\in C^{0}([0,\infty))\cap C^{0,\frac{1}{2}}((0,\infty));

  10. (10)

    For each i=1,,Ni=1,\ldots,N, χEi(t)C([0,);L1(U))\chi_{E_{i}(t)}\in C([0,\infty);L^{1}(U));

  11. (11)

    Let μ\mu be the product measure of Vt\|V_{t}\| and dtdt defined on U×+U\times\mathbb{R}^{+}, i.e. dμ:=dVtdtd\mu:=d\|V_{t}\|dt. Then, t>0\forall t>0, we have

    sptVt{xU:(x,t)sptμ}=Γ(t).{\rm spt}\,\|V_{t}\|\subset\{x\in U\,:\,(x,t)\in{\rm spt}\,\mu\}=\Gamma(t).

The claims (1)-(4) imply that {Ei(t)}i=1N\{E_{i}(t)\}_{i=1}^{N} is an n+1\mathcal{L}^{n+1}-partition of UU, and that Γ(t)\Gamma(t) has empty interior in particular. The claim (5) is an expected property for the MCF, and, by (11), sptVt{\rm spt}\,\|V_{t}\| is also in the same convex hull. (7) says that Γ(t)\Gamma(t) has the fixed boundary Γ0\partial\Gamma_{0}. In general, the reduced boundary of the partition and Vt\|V_{t}\| may not match, but the latter is bounded from below by the former as in (8). By (10), the Lebesgue measure of each Ei(t)E_{i}(t) changes continuously in time, so that arbitrary sudden loss of measure of Vt\|V_{t}\| is not allowed. The statement in (11) says that the time-slice of the support of μ\mu at time tt contains the support of Vt\|V_{t}\| and is equal to the topological boundary of the moving partition.

As a corollary of the above, we deduce the following.

Corollary 2.4.

There exist a sequence {tk}k=1\{t_{k}\}_{k=1}^{\infty} with limktk=\lim_{k\rightarrow\infty}t_{k}=\infty and a varifold V𝐈𝐕n(U)V\in\mathbf{IV}_{n}(U) such that VtkVV_{t_{k}}\to V in the sense of varifolds. The varifold VV is stationary. Furthermore, there is a mutually disjoint family {Ei}i=1N\{E_{i}\}_{i=1}^{N} of open subsets of UU such that

  1. (1)

    i=1,,N\forall i=1,\ldots,N, χEiV\|\nabla\chi_{E_{i}}\|\leq\|V\| and i=1NχEi2V\sum_{i=1}^{N}\|\nabla\chi_{E_{i}}\|\leq 2\|V\|;

  2. (2)

    i=1,,N\forall i=1,\ldots,N, Eiconv(Γ0Γ0)=E0,iconv(Γ0Γ0)E_{i}\setminus{\rm conv(\Gamma_{0}\cup\partial\Gamma_{0})}=E_{0,i}\setminus{\rm conv}(\Gamma_{0}\cup\partial\Gamma_{0});

  3. (3)

    Ui=1NEi=sptVU\setminus\bigcup_{i=1}^{N}E_{i}=\mathrm{spt}\|V\|, and 0<n(Ui=1NEi)V(U)n(Γ0)0<\mathcal{H}^{n}(U\setminus\bigcup_{i=1}^{N}E_{i})\leq\|V\|(U)\leq\mathcal{H}^{n}(\Gamma_{0});

  4. (4)

    (clos(sptV))U=(clos(Ui=1NEi))U=Γ0({\rm clos}\,(\mathrm{spt}\|V\|))\setminus U=({\rm clos}(U\setminus\bigcup_{i=1}^{N}E_{i}))\setminus U=\partial\Gamma_{0}.

The varifold VV in Corollary 2.4 is a solution to Plateau’s problem in UU in the class of stationary varifolds satisfying the topological constraint (clos(sptV))U=Γ0({\rm clos}\,(\mathrm{spt}\|V\|))\setminus U=\partial\Gamma_{0}. This is an interesting byproduct of our construction, above all considering that Γ0\partial\Gamma_{0} enjoys in general rather poor regularity (in particular, it may have infinite (n1)(n-1)-dimensional Hausdorff measure, and also it may not be countably (n1)(n-1)-rectifiable). Even though the topological boundary condition specified above seems natural in this setting, other notions of spanning may be adopted: for instance, in Proposition 7.4 we show that a strong homotopic spanning condition in the sense of [14, 7] is preserved along the flow and in the limit if it is satisfied at the initial time t=0t=0. We postpone further discussion and questions concerning the application to Plateau’s problem to Section 7.

2.6. General strategy and structure of the paper

The general idea behind the proof of Theorems 2.2 and 2.3 is to suitably modify the time-discrete approximation scheme introduced in [20, 2]. There, one constructs a time-parametrized flow of open partitions which is piecewise constant in time. We will call epoch any time interval during which the approximating flow is constant. The open partition at a given epoch is constructed from the open partition at the previous epoch by applying two operations, which we call steps. The first step is a small Lipschitz deformation of partitions with the effect of “regularizing singularities” by “locally minimizing the area of the boundary of partitions” at a small scale. This deformation is defined in such a way that, if the boundary of partitions is regular (relative to a certain length scale), then the deformation reduces to the identity. The second step consists of flowing the boundary of partitions by a suitably defined “approximate mean curvature vector”. The latter is computed by smoothing the surface measures via convolution with a localized heat kernel. Note that, typically, the boundary of open partitions has bounded nn-dimensional measure, but the unit-density varifold associated to it may not have bounded first variation. In [20], a time-discrete approximate MCF is obtained by alternating these two steps, epoch after epoch. In the present work, we need to fix the boundary Γ0\partial\Gamma_{0}. The rough idea to achieve this is to perform an “exponentially small” truncation of the approximate mean curvature vector near Γ0\partial\Gamma_{0}, so that the boundary cannot move in the “polynomial time scale” defining an epoch with respect to a certain length scale. We also need to make sure that the time-discrete movement does not push the boundary of open partitions to the outside of UU. To prevent this, in addition to the two steps (Lipschitz deformation and motion by smoothed and truncated mean curvature vector), we add another “retraction to UU” step to be performed in each epoch. All these operations have to come with suitable estimates on the surface measures, in order to have convergence of the approximating flow when we let the epoch time scale approach zero. The final goal is to show that this limit flow is indeed a Brakke flow with fixed boundary Γ0\partial\Gamma_{0} as in Definition 2.1.

The rest of the paper is organized as follows. Section 3 lays the foundations to the technical construction of the approximate flow by proving the relevant estimates to be used in the Lipschitz deformation and flow by smoothed mean curvature steps, and by defining the boundary truncation of the mean curvature. Both the discrete approximate flow and its “vanishing epoch” limit are constructed in Section 4. In Section 5 we show that the one-parameter family of measures obtained in the previous section satisfies conditions (a) to (d) in Definition 2.1. The boundary condition (e) is, instead, proved in Section 6, which therefore also contains the proofs of Theorems 2.2 and 2.3. Finally, Section 7 is dedicated to the limit tt\to\infty: hence, it contains the proof of Corollary 2.4, as well as a discussion of related results and open questions concerning the application of our construction to Plateau’s problem.

3. Preliminaries

In this section we will collect the preliminary results that will play a pivotal role in the construction of the time-discrete approximate flows. Some of the results are straightforward adaptations of the corresponding ones in [20]: when that is the case, we shall omit the proofs, and refer the reader to that paper.

3.1. Classes of test functions and vector fields

Define, for every jj\in\mathbb{N}, the classes 𝒜j\mathcal{A}_{j} and j\mathcal{B}_{j} as follows:

𝒜j:={ϕC2(n+1;+):ϕ(x)1,|ϕ(x)|jϕ(x),2ϕ(x)jϕ(x)for every xn+1},\begin{split}\mathcal{A}_{j}:=\{\phi\in C^{2}(\mathbb{R}^{n+1};\mathbb{R}^{+})\,\colon\,&\phi(x)\leq 1,\;\lvert\nabla\phi(x)\rvert\leq j\,\phi(x),\\ &\|\nabla^{2}\phi(x)\|\leq j\,\phi(x)\,\,\mbox{for every $x\in\mathbb{R}^{n+1}$}\}\,,\end{split} (3.1)
j:={gC2(n+1;n+1):|g(x)|j,g(x)j,2g(x)jfor every xn+1 and gL2j}.\begin{split}\mathcal{B}_{j}:=\{g\in C^{2}(\mathbb{R}^{n+1};\mathbb{R}^{n+1})\,\colon\,&|g(x)|\leq j,\,\,\left\lVert\nabla g(x)\right\rVert\leq j\,,\\ &\|\nabla^{2}g(x)\|\leq j\,\,\mbox{for every $x\in\mathbb{R}^{n+1}$ and $\|g\|_{L^{2}}\leq j$}\}\,.\end{split} (3.2)

The properties of functions ϕ𝒜j\phi\in\mathcal{A}_{j} and vector fields gjg\in\mathcal{B}_{j} are precisely as in [20, Lemma 4.6, Lemma 4.7], and we record them in the following lemma for future reference.

Lemma 3.1.

Let x,yn+1x,y\in\mathbb{R}^{n+1} and jj\in\mathbb{N}. For every ϕ𝒜j\phi\in\mathcal{A}_{j}, the following properties hold:

ϕ(x)\displaystyle\phi(x) ϕ(y)exp(j|xy|),\displaystyle\leq\phi(y)\exp(j\,\lvert x-y\rvert)\,, (3.3)
|ϕ(x)ϕ(y)|\displaystyle\lvert\phi(x)-\phi(y)\rvert j|xy|ϕ(y)exp(j|xy|),\displaystyle\leq j\,\lvert x-y\rvert\phi(y)\exp(j\,\lvert x-y\rvert)\,, (3.4)
|ϕ(x)ϕ(y)ϕ(y)(xy)|\displaystyle\lvert\phi(x)-\phi(y)-\nabla\phi(y)\cdot(x-y)\rvert j|xy|2ϕ(y)exp(j|xy|).\displaystyle\leq j\,\lvert x-y\rvert^{2}\phi(y)\exp(j\,\lvert x-y\rvert)\,. (3.5)

Also, for every gjg\in\mathcal{B}_{j}:

|g(x)g(y)|j|xy|.\lvert g(x)-g(y)\rvert\leq j\,\lvert x-y\rvert\,. (3.6)

3.2. Open partitions and admissible functions

Let U~n+1\tilde{U}\subset\mathbb{R}^{n+1} be a bounded open set. Later, U~\tilde{U} will be an open set which is very close to UU in Assumption 1.1.

Definition 3.2.

For N2N\geq 2, an open partition of U~\tilde{U} in NN elements is a finite and ordered collection ={Ei}i=1N\mathcal{E}=\{E_{i}\}_{i=1}^{N} of subsets EiU~E_{i}\subset\tilde{U} such that:

  • (a)

    E1,,ENE_{1},\dots,E_{N} are open and mutually disjoint;

  • (b)

    n(U~i=1NEi)<\mathcal{H}^{n}(\tilde{U}\setminus\bigcup_{i=1}^{N}E_{i})<\infty;

  • (c)

    i=1NEiU~\bigcup_{i=1}^{N}\partial E_{i}\subset\tilde{U} is countably nn-rectifiable.

The set of all open partitions of U~\tilde{U} of NN elements will be denoted 𝒪𝒫N(U~)\mathcal{OP}^{N}(\tilde{U}).

Note that some of the EiE_{i} may be empty. Condition (b) implies that

U~i=1NEi=i=1NEi,\tilde{U}\setminus\bigcup_{i=1}^{N}E_{i}=\bigcup_{i=1}^{N}\partial E_{i}\,, (3.7)

and thus that i=1NEi\bigcup_{i=1}^{N}\partial E_{i} is n\mathcal{H}^{n}-rectifiable and each EiE_{i} is in fact an open set with finite perimeter in U~\tilde{U}. By De Giorgi’s structure theorem, the reduced boundary Ei\partial^{*}E_{i} is n\mathcal{H}^{n}-rectifiable: nonetheless, the reduced boundary Ei\partial^{*}E_{i} may not coincide in general with the topological boundary Ei\partial E_{i}, which makes condition (c) not redundant. We keep the following for later use. The proof is straightforward.

Lemma 3.3.

Suppose ={Ei}i=1N𝒪𝒫N(U~)\mathcal{E}=\{E_{i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(\tilde{U}) and f:n+1n+1f:\mathbb{R}^{n+1}\to\mathbb{R}^{n+1} is a C1C^{1} diffeomorphism. Then we have {f(Ei)}i=1N𝒪𝒫N(f(U~))\{f(E_{i})\}_{i=1}^{N}\in\mathcal{OP}^{N}(f(\tilde{U})).

Notation.

Given 𝒪𝒫N(U~)\mathcal{E}\in\mathcal{OP}^{N}(\tilde{U}), we will set

:=𝐯𝐚𝐫(i=1NEi,1)𝐈𝐕n(n+1).\partial\mathcal{E}:=\mathbf{var}\left(\bigcup_{i=1}^{N}\partial E_{i},1\right)\in\mathbf{IV}_{n}(\mathbb{R}^{n+1})\,. (3.8)

Here, to avoid some possible confusion, we emphasize that we want to consider \partial\mathcal{E} as a varifold on n+1\mathbb{R}^{n+1} when we construct approximate MCF. On the other hand, note that we still consider the relative topology of U~\tilde{U}, as EiU~\partial E_{i}\subset\tilde{U} here. In particular, writing Γ=i=1NEi\Gamma=\cup_{i=1}^{N}\partial E_{i}, we have =n  Γ\|\partial\mathcal{E}\|=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma}, and

(φ)=Γφ(x,TxΓ)𝑑n(x)for every φCc(𝐆n(n+1)),\partial\mathcal{E}(\varphi)=\int_{\Gamma}\varphi(x,T_{x}\,\Gamma)\,d\mathcal{H}^{n}(x)\qquad\mbox{for every $\varphi\in C_{c}(\mathbf{G}_{n}(\mathbb{R}^{n+1}))$}\,,

where TxΓ𝐆(n+1,n)T_{x}\,\Gamma\in\mathbf{G}(n+1,n) is the approximate tangent plane to Γ\Gamma at xx, which exists and is unique at n\mathcal{H}^{n}-a.e. xΓx\in\Gamma because of Definition 3.2(c).

Definition 3.4.

Given ={Ei}i=1N𝒪𝒫N(U~)\mathcal{E}=\{E_{i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(\tilde{U}) and a closed set C⊂⊂U~C\subset\joinrel\subset\tilde{U}, a function f:n+1n+1f\colon\mathbb{R}^{n+1}\to\mathbb{R}^{n+1} is \mathcal{E}-admissible in CC if it is Lipschitz continuous and satisfies the following. Let E~i:=int(f(Ei))\tilde{E}_{i}:={\rm int}\,(f(E_{i})) for i=1,,Ni=1,\dots,N. Then:

  • (a)

    {x:xf(x)}{f(x):xf(x)}C\{x\,:\,x\neq f(x)\}\cup\{f(x)\,:\,x\neq f(x)\}\subset C;

  • (b)

    {E~i}i=1N\{\tilde{E}_{i}\}_{i=1}^{N} are mutually disjoint;

  • (c)

    U~i=1NE~if(i=1NEi)\tilde{U}\setminus\bigcup_{i=1}^{N}\tilde{E}_{i}\subset f(\bigcup_{i=1}^{N}\partial E_{i}).

Lemma 3.5.

Let ={Ei}i=1N𝒪𝒫N(U~)\mathcal{E}=\{E_{i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(\tilde{U}) be an open partition of U~\tilde{U} in NN elements, C⊂⊂U~C\subset\joinrel\subset\tilde{U}, and let ff be \mathcal{E}-admissible in CC. If we define ~:={E~i}i=1N\tilde{\mathcal{E}}:=\{\tilde{E}_{i}\}_{i=1}^{N} with E~i:=int(f(Ei))\tilde{E}_{i}:={\rm int}\,(f(E_{i})), then ~𝒪𝒫N(U~)\tilde{\mathcal{E}}\in\mathcal{OP}^{N}(\tilde{U}).

Proof.

We check that ~\tilde{\mathcal{E}} satisfies properties (a)-(c) in Definition 3.2. By Definition 3.4(a) and (b), it is clear that E~1,,E~N\tilde{E}_{1},\ldots,\tilde{E}_{N} are open and mutually disjoint subsets of U~\tilde{U}, which gives (a). In order to prove (b), we use Definition 3.4(c) and the area formula to compute:

n(U~i=1NE~i)n(f(i=1NEi))Lip(f)nn(i=1NEi)<,\mathcal{H}^{n}\Big{(}\tilde{U}\setminus\bigcup_{i=1}^{N}\tilde{E}_{i}\Big{)}\leq\mathcal{H}^{n}\Big{(}f(\bigcup_{i=1}^{N}\partial E_{i})\Big{)}\leq\mathrm{Lip}(f)^{n}\,\mathcal{H}^{n}\Big{(}\bigcup_{i=1}^{N}\partial E_{i}\Big{)}<\infty\,,

where we have used Definition 3.2(b) and (3.7). This also shows U~i=1NE~i=i=1NE~i\tilde{U}\setminus\bigcup_{i=1}^{N}\tilde{E}_{i}=\bigcup_{i=1}^{N}\partial\tilde{E}_{i}. Finally, we prove property (c). Observe that, since i=1NEi\bigcup_{i=1}^{N}\partial E_{i} is countably nn-rectifiable, also the set f(i=1NEi)f(\bigcup_{i=1}^{N}\partial E_{i}) is countably nn-rectifiable. Since any subset of a countably nn-rectifiable set is countably nn-rectifiable, also i=1NE~i\bigcup_{i=1}^{N}\partial\tilde{E}_{i} is countably nn-rectifiable. ∎

Notation.

If 𝒪𝒫N(U~)\mathcal{E}\in\mathcal{OP}^{N}(\tilde{U}) and fLip(n+1;n+1)f\in\mathrm{Lip}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) is \mathcal{E}-admissible in CC for some C⊂⊂U~C\subset\joinrel\subset\tilde{U}, then the open partition ~𝒪𝒫N(U~)\tilde{\mathcal{E}}\in\mathcal{OP}^{N}(\tilde{U}) will be denoted ff_{\star}\mathcal{E}.

3.3. Area reducing Lipschitz deformations

Definition 3.6.

For ={Ei}i=1N𝒪𝒫N(U~)\mathcal{E}=\{E_{i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(\tilde{U}), jj\in\mathbb{N} and a closed set C⊂⊂U~C\subset\joinrel\subset\tilde{U}, define 𝐄(,C,j)\mathbf{E}(\mathcal{E},C,j) to be the set of all \mathcal{E}-admissible functions ff in CC such that:

  • (a)

    |f(x)x|1/j2\lvert f(x)-x\rvert\leq\nicefrac{{1}}{{j^{2}}} for every xCx\in C;

  • (b)

    n+1(E~iEi)1/j\mathcal{L}^{n+1}(\tilde{E}_{i}\triangle E_{i})\leq\nicefrac{{1}}{{j}} for all i=1,,Ni=1,\dots,N, where E~i=int(f(Ei))\tilde{E}_{i}={\rm int}\,(f(E_{i})), and where EF:=[EF][FE]E\triangle F:=\left[E\setminus F\right]\cup\left[F\setminus E\right] is the symmetric difference of the sets EE and FF;

  • (c)

    f(ϕ)(ϕ)\|\partial f_{\star}\mathcal{E}\|(\phi)\leq\|\partial\mathcal{E}\|(\phi) for all ϕ𝒜j\phi\in\mathcal{A}_{j}. Here, f={E~i}i=1Nf_{\star}\mathcal{E}=\{\tilde{E}_{i}\}_{i=1}^{N} and \|\partial\mathcal{E}\| is the weight of the multiplicity one varifold associated to the open partition \mathcal{E}.

The set 𝐄(,C,j)\mathbf{E}(\mathcal{E},C,j) is not empty, as it contains the identity map.

Definition 3.7.

Given 𝒪𝒫N(U~)\mathcal{E}\in\mathcal{OP}^{N}(\tilde{U}) and jj, and given a closed set C⊂⊂U~C\subset\joinrel\subset\tilde{U}, we define

Δj(C):=inff𝐄(,C,j){f(C)(C)}=inff𝐄(,C,j){f(n+1)(n+1)}.\begin{split}\Delta_{j}\|\partial\mathcal{E}\|(C):&=\inf_{f\in\mathbf{E}(\mathcal{E},C,j)}\left\{\|\partial f_{\star}\mathcal{E}\|(C)-\|\partial\mathcal{E}\|(C)\right\}\\ &=\inf_{f\in\mathbf{E}(\mathcal{E},C,j)}\left\{\|\partial f_{\star}\mathcal{E}\|(\mathbb{R}^{n+1})-\|\partial\mathcal{E}\|(\mathbb{R}^{n+1})\right\}\,.\end{split} (3.9)

Observe that it always holds Δj(C)0\Delta_{j}\|\partial\mathcal{E}\|(C)\leq 0, since the identity map f(x)=xf(x)=x belongs to 𝐄(,C,j)\mathbf{E}(\mathcal{E},C,j). The quantity Δj(C)\Delta_{j}\|\partial\mathcal{E}\|(C) measures the extent to which \|\partial\mathcal{E}\| can be reduced by acting with area reducing Lipschitz deformations in CC.

3.4. Smoothing of varifolds and first variations

We let ψC(n+1)\psi\in C^{\infty}(\mathbb{R}^{n+1}) be a radially symmetric function such that

ψ(x)=1 for |x|1/2,ψ(x)=0 for |x|1,0ψ(x)1,|ψ(x)|3,2ψ(x)9 for all xn+1,\begin{split}&\psi(x)=1\mbox{ for }\lvert x\rvert\leq 1/2\,,\qquad\psi(x)=0\mbox{ for }\lvert x\rvert\geq 1\,,\\ &0\leq\psi(x)\leq 1\,,\quad\lvert\nabla\psi(x)\rvert\leq 3\,,\quad\|\nabla^{2}\psi(x)\|\leq 9\mbox{ for all }x\in\mathbb{R}^{n+1}\,,\end{split} (3.10)

and we define, for each ε(0,1)\varepsilon\in\left(0,1\right),

Φ^ε(x):=1(2πε2)n+12exp(|x|22ε2),Φε(x):=c(ε)ψ(x)Φ^ε(x),\hat{\Phi}_{\varepsilon}(x):=\frac{1}{(2\pi\varepsilon^{2})^{\frac{n+1}{2}}}\,\exp\left(-\frac{\lvert x\rvert^{2}}{2\varepsilon^{2}}\right)\,,\quad\Phi_{\varepsilon}(x):=c(\varepsilon)\,\psi(x)\,\hat{\Phi}_{\varepsilon}(x)\,, (3.11)

where the constant c(ε)c(\varepsilon) is chosen in such a way that

n+1Φε(x)𝑑x=1.\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(x)\,dx=1\,. (3.12)

The function Φε\Phi_{\varepsilon} will be adopted as a convolution kernel for the definition of the smoothing of a varifold. We record the properties of Φε\Phi_{\varepsilon} in the following lemma (cf. [20, Lemma 4.13]).

Lemma 3.8.

There exists a constant c=c(n)c=c(n) such that, for ε(0,1)\varepsilon\in\left(0,1\right), we have:

|Φε(x)|\displaystyle\lvert\nabla\Phi_{\varepsilon}(x)\rvert |x|ε2Φε(x)+cχB1B1/2(x)exp(ε1),\displaystyle\leq\frac{\lvert x\rvert}{\varepsilon^{2}}\,\Phi_{\varepsilon}(x)+c\,\chi_{B_{1}\setminus B_{1/2}}(x)\,\exp(-\varepsilon^{-1})\,, (3.13)
2Φε(x)\displaystyle\|\nabla^{2}\Phi_{\varepsilon}(x)\| |x|2ε4Φε(x)+cε2Φε(x)+cχB1B1/2(x)exp(ε1).\displaystyle\leq\frac{\lvert x\rvert^{2}}{\varepsilon^{4}}\,\Phi_{\varepsilon}(x)+\frac{c}{\varepsilon^{2}}\,\Phi_{\varepsilon}(x)+c\,\chi_{B_{1}\setminus B_{1/2}}(x)\,\exp(-\varepsilon^{-1})\,. (3.14)

Next, we use the convolution kernel Φε\Phi_{\varepsilon} in order to define the smoothing of a varifold and its first variation. Recall that, given a Radon measure μ\mu on n+1\mathbb{R}^{n+1}, the smoothing of μ\mu by means of the kernel Φε\Phi_{\varepsilon} is defined to be the Radon measure Φεμ\Phi_{\varepsilon}\ast\mu given by

(Φεμ)(ϕ):=μ(Φεϕ)=n+1n+1Φε(xy)ϕ(y)𝑑y𝑑μ(x)for every ϕCc(n+1).(\Phi_{\varepsilon}\ast\mu)(\phi):=\mu(\Phi_{\varepsilon}\ast\phi)=\int_{\mathbb{R}^{n+1}}\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(x-y)\,\phi(y)\,dy\,d\mu(x)\qquad\mbox{for every }\phi\in C_{c}(\mathbb{R}^{n+1})\,. (3.15)

The definition of smoothing of a varifold VV is the equivalent of (3.15) when regarding VV as a Radon measure on 𝐆n(n+1)\mathbf{G}_{n}(\mathbb{R}^{n+1}), keeping in mind that the operator (Φε)(\Phi_{\varepsilon}\ast) acts on a test function φCc(𝐆n(n+1))\varphi\in C_{c}(\mathbf{G}_{n}(\mathbb{R}^{n+1})) by convolving only the space variable. Explicitly, we give the following definition.

Definition 3.9.

Given V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}), we let ΦεV𝐕n(n+1)\Phi_{\varepsilon}\ast V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) be the varifold defined by

(ΦεV)(φ):=V(Φεφ)=𝐆n(n+1)n+1Φε(xy)φ(y,S)𝑑y𝑑V(x,S)(\Phi_{\varepsilon}\ast V)(\varphi):=V(\Phi_{\varepsilon}\ast\varphi)=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(x-y)\,\varphi(y,S)\,dy\,dV(x,S) (3.16)

for every φCc(𝐆n(n+1))\varphi\in C_{c}(\mathbf{G}_{n}(\mathbb{R}^{n+1})).

Observe that, given a Radon measure μ\mu on n+1\mathbb{R}^{n+1}, one can identify the measure Φεμ\Phi_{\varepsilon}\ast\mu with a CC^{\infty} function by means of the Hilbert space structure of L2(n+1)=L2(n+1)L^{2}(\mathbb{R}^{n+1})=L^{2}(\mathcal{L}^{n+1}). Indeed, for any ϕCc(n+1)\phi\in C_{c}(\mathbb{R}^{n+1}) we have that

(Φεμ)(ϕ)=Φεμ|ϕL2(n+1),(\Phi_{\varepsilon}\ast\mu)(\phi)=\langle\Phi_{\varepsilon}\ast\mu\,|\,\phi\rangle_{L^{2}(\mathbb{R}^{n+1})}\,,

where ΦεμC(n+1)\Phi_{\varepsilon}\ast\mu\in C^{\infty}(\mathbb{R}^{n+1}) is defined by

(Φεμ)(x):=n+1Φε(xy)𝑑μ(y).(\Phi_{\varepsilon}\ast\mu)(x):=\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(x-y)\,d\mu(y)\,.

These considerations suggest the following definition for the smoothing of the first variation of a varifold.

Definition 3.10.

Given V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}), the smoothing of δV\delta V by means of the convolution kernel Φε\Phi_{\varepsilon} is the vector field ΦεδVC(n+1;n+1)\Phi_{\varepsilon}\ast\delta V\in C^{\infty}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) defined by

(ΦεδV)(x):=𝐆n(n+1)S(Φε(yx))𝑑V(y,S),(\Phi_{\varepsilon}\ast\delta V)(x):=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}S(\nabla\Phi_{\varepsilon}(y-x))\,dV(y,S)\,, (3.17)

in such a way that

δV(Φεg)=ΦεδV|gL2(n+1)for every gCc1(n+1;n+1).\delta V(\Phi_{\varepsilon}\ast g)=\langle\Phi_{\varepsilon}\ast\delta V\,|\,g\rangle_{L^{2}(\mathbb{R}^{n+1})}\qquad\mbox{for every }g\in C^{1}_{c}(\mathbb{R}^{n+1};\mathbb{R}^{n+1})\,. (3.18)
Lemma 3.11.

For V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}), we have

ΦεV\displaystyle\Phi_{\varepsilon}\ast\|V\| =ΦεV,\displaystyle=\|\Phi_{\varepsilon}\ast V\|\,, (3.19)
ΦεδV\displaystyle\Phi_{\varepsilon}\ast\delta V =δ(ΦεV).\displaystyle=\delta(\Phi_{\varepsilon}\ast V)\,. (3.20)

Moreover, if V(n+1)<\|V\|(\mathbb{R}^{n+1})<\infty then

ΦεV(n+1)V(n+1).\|\Phi_{\varepsilon}\ast V\|(\mathbb{R}^{n+1})\leq\|V\|(\mathbb{R}^{n+1})\,. (3.21)
Proof.

The identities (3.19) and (3.20) are proved in [20, Lemma 4.16]. Concerning (3.21), we observe that for any φCc(𝐆n(n+1))\varphi\in C_{c}(\mathbf{G}_{n}(\mathbb{R}^{n+1})) with φ01\|\varphi\|_{0}\leq 1, setting τz(x):=xz\tau_{z}(x):=x-z, it holds:

(ΦεV)(φ)=𝐆n(n+1)n+1Φε(xy)φ(y,S)𝑑y𝑑V(x,S)=𝐆n(n+1)n+1Φε(z)φ(xz,S)𝑑z𝑑V(x,S)=n+1Φε(z)𝐆n(n+1)φ(τz(x),S)𝑑V(x,S)𝑑zV(n+1).\begin{split}(\Phi_{\varepsilon}\ast V)(\varphi)&=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(x-y)\,\varphi(y,S)\,dy\,dV(x,S)\\ &=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(z)\,\varphi(x-z,S)\,dz\,dV(x,S)\\ &=\int_{\mathbb{R}^{n+1}}\Phi_{\varepsilon}(z)\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\varphi(\tau_{z}(x),S)\,dV(x,S)\,dz\leq\|V\|(\mathbb{R}^{n+1})\,.\end{split}

Taking the supremum among all functions φCc(𝐆n(n+1))\varphi\in C_{c}(\mathbf{G}_{n}(\mathbb{R}^{n+1})) with φ01\|\varphi\|_{0}\leq 1 completes the proof. ∎

3.5. Smoothed mean curvature vector

Definition 3.12.

Given V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) and ε(0,1)\varepsilon\in\left(0,1\right), the smoothed mean curvature vector of VV is the vector field hε(,V)C(n+1;n+1)h_{\varepsilon}(\cdot,V)\in C^{\infty}(\mathbb{R}^{n+1};\mathbb{R}^{n+1}) defined by

hε(,V):=Φε(ΦεδVΦεV+ε).h_{\varepsilon}(\cdot,V):=-\Phi_{\varepsilon}\ast\left(\frac{\Phi_{\varepsilon}\ast\delta V}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\right)\,. (3.22)

We will often make use of [20, Lemma 5.1] with Ω1\Omega\equiv 1 (and c1=0c_{1}=0). For the reader’s convenience, we provide here the statement.

Lemma 3.13.

For every M>0M>0, there exists a constant ε1(0,1)\varepsilon_{1}\in\left(0,1\right), depending only on nn and MM such that the following holds. Let V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) be an nn-dimensional varifold in n+1\mathbb{R}^{n+1} such that V(n+1)M\|V\|(\mathbb{R}^{n+1})\leq M, and, for every ε(0,ε1)\varepsilon\in\left(0,\varepsilon_{1}\right), let hε(,V)h_{\varepsilon}(\cdot,V) be its smoothed mean curvature vector. Then:

|hε(x,V)|2ε2,\lvert h_{\varepsilon}(x,V)\rvert\leq 2\,\varepsilon^{-2}\,, (3.23)
hε(x,V)2ε4,\|\nabla h_{\varepsilon}(x,V)\|\leq 2\,\varepsilon^{-4}\,, (3.24)
2hε(x,V)2ε6.\|\nabla^{2}h_{\varepsilon}(x,V)\|\leq 2\,\varepsilon^{-6}\,. (3.25)

3.6. The cut-off functions ηj\eta_{j}

In this subsection we construct the cut-off functions which will later be used to truncate the smoothed mean curvature vector in order to produce time-discrete approximate flows which almost preserve the boundary Γ0\partial\Gamma_{0}.

Given a set En+1E\subset\mathbb{R}^{n+1} and s>0s>0, (E)s(E)_{s} denotes the ss-neighborhood of EE, namely the open set

(E)s:=xEUs(x).(E)_{s}:=\bigcup_{x\in E}U_{s}(x)\,.

We shall also adopt the convention that (E)0=E(E)_{0}=E.

Let UU and Γ0\Gamma_{0} be as in Assumption 1.1.

Definition 3.14.

We define for jj\in\mathbb{N}:

Dj:={xU:dist(x,U)2j1/4}.D_{j}:=\left\{x\in U\,\colon\,\mathrm{dist}(x,\partial U)\geq\frac{2}{j^{\nicefrac{{1}}{{4}}}}\right\}\,. (3.26)

Observe that DjD_{j} is not empty for all jj sufficiently large (depending on UU).

Also, we define the sets

Kj:=(Γ0Dj)1/j1/4,K~j:=(Γ0Dj)2/j1/4,andK^j:=(Γ0Dj)3/j1/8,K_{j}:=\left(\Gamma_{0}\setminus D_{j}\right)_{1/j^{\nicefrac{{1}}{{4}}}}\,,\qquad\tilde{K}_{j}:=\left(\Gamma_{0}\setminus D_{j}\right)_{2/j^{\nicefrac{{1}}{{4}}}}\,,\quad\mbox{and}\quad\hat{K}_{j}:=\left(\Gamma_{0}\setminus D_{j}\right)_{3/j^{\nicefrac{{1}}{{8}}}}\,, (3.27)

so that KjK~jK^jK_{j}\subset\tilde{K}_{j}\subset\hat{K}_{j}.

Definition 3.15.

Let ψ:(0,)\psi\colon\left(0,\infty\right)\to\mathbb{R} be a smooth function satisfying the following properties:

  • (a)

    0ψ(t)10\leq\psi(t)\leq 1 for every t>0t>0, ψ(t)=t\psi(t)=t for t(0,1/2]t\in\left(0,1/2\right], t/2ψ(t)tt/2\leq\psi(t)\leq t for t[1/2,3/2]t\in\left[1/2,3/2\right], ψ(t)=1\psi(t)=1 for t3/2t\geq 3/2;

  • (b)

    0ψ(t)10\leq\psi^{\prime}(t)\leq 1 for every t>0t>0;

  • (c)

    |ψ′′(t)|2\lvert\psi^{\prime\prime}(t)\rvert\leq 2 for every t>0t>0.

For every jj\in\mathbb{N}, set

d^j(x):=dist(x,n+1(Γ0Dj)2/j1/8)for every xn+1.\hat{\mathrm{d}}_{j}(x):=\mathrm{dist}(x,\mathbb{R}^{n+1}\setminus\left(\Gamma_{0}\setminus D_{j}\right)_{2/j^{\nicefrac{{1}}{{8}}}})\qquad\mbox{for every $x\in\mathbb{R}^{n+1}$}\,.

Let {ϕρ}ρ\{\phi_{\rho}\}_{\rho}, ρ>0\rho>0, be a standard family of mollifiers: precisely, let

ϕ(w):={Anexp(1|w|21)if |w|<10otherwise,\phi(w):=\begin{cases}A_{n}\,\exp\left(\frac{1}{\lvert w\rvert^{2}-1}\right)&\mbox{if $\lvert w\rvert<1$}\\ 0&\mbox{otherwise}\,,\end{cases}

for a suitable normalization constant AnA_{n} chosen in such a way that n+1ϕ(w)𝑑w=1\int_{\mathbb{R}^{n+1}}\phi(w)\,dw=1, and define ϕρ(z):=ρ(n+1)ϕ(z/ρ)\phi_{\rho}(z):=\rho^{-(n+1)}\,\phi(z/\rho). Then, set ρj:=1/(j1/4)\rho_{j}:=1/(j^{\nicefrac{{1}}{{4}}}), and dj:=ϕρjd^j\mathrm{d}_{j}:=\phi_{\rho_{j}}\ast\hat{\mathrm{d}}_{j}. We finally define

ηj(x):=ψ(exp(j1/4(dj(x)j1/4))).\eta_{j}(x):=\psi\left(\exp\left(-j^{\nicefrac{{1}}{{4}}}(\mathrm{d}_{j}(x)-j^{-\nicefrac{{1}}{{4}}})\right)\right)\,. (3.28)
Lemma 3.16.

There exists J=J(n)J=J(n) such that the following properties hold for all jJj\geq J:

  1. (1)

    ηj1\eta_{j}\equiv 1 on n+1K^j\mathbb{R}^{n+1}\setminus\hat{K}_{j};

  2. (2)

    0<ηjexp(j1/8)0<\eta_{j}\leq\exp(-j^{\nicefrac{{1}}{{8}}}) on K~j\tilde{K}_{j};

  3. (3)

    ηj𝒜j3/4\eta_{j}\in\mathcal{A}_{j^{\nicefrac{{3}}{{4}}}}.

Proof.

For the proof of (1), if xK^jx\notin\hat{K}_{j} then d^j(x)=0\hat{\mathrm{d}}_{j}(x)=0. Moreover, since ρj=j1/4<j1/8\rho_{j}=j^{-\nicefrac{{1}}{{4}}}<j^{-\nicefrac{{1}}{{8}}}, evidently d^j(y)=0\hat{\mathrm{d}}_{j}(y)=0 for all yBρj(x)y\in B_{\rho_{j}}(x). This implies that

dj(x)=(ϕρjd^j)(x)=Bρj(x)ϕρj(xy)d^j(y)𝑑y=0.\mathrm{d}_{j}(x)=(\phi_{\rho_{j}}\ast\hat{\mathrm{d}}_{j})(x)=\int_{B_{\rho_{j}}(x)}\phi_{\rho_{j}}(x-y)\,\hat{\mathrm{d}}_{j}(y)\,dy=0\,.

Hence, ηj(x)=ψ(e)=1\eta_{j}(x)=\psi(e)=1 because of property (a) of ψ\psi in Definition 3.15.

Next, we prove (2). Let xK~jx\in\tilde{K}_{j}, so that there exists zΓ0Djz\in\Gamma_{0}\setminus D_{j} such that |xz|<2j1/4\lvert x-z\rvert<2\,j^{-\nicefrac{{1}}{{4}}}. If yBρj(x)y\in B_{\rho_{j}}(x), then |yz|<3j1/4\lvert y-z\rvert<3\,j^{-\nicefrac{{1}}{{4}}} by the definition of ρj\rho_{j}, and thus, for jj suitably large,

d^j(y)=dist(y,n+1(Γ0Dj)2/j1/8)2j1/83j1/4,\hat{\mathrm{d}}_{j}(y)=\mathrm{dist}(y,\mathbb{R}^{n+1}\setminus\left(\Gamma_{0}\setminus D_{j}\right)_{2/j^{\nicefrac{{1}}{{8}}}})\geq 2j^{-\nicefrac{{1}}{{8}}}-3\,j^{-\nicefrac{{1}}{{4}}}\,,

which in turn implies

dj(x)=(ϕρjd^j)(x)=Bρj(x)ϕρj(xy)d^j(y)2j1/83j1/4.\mathrm{d}_{j}(x)=(\phi_{\rho_{j}}\ast\hat{\mathrm{d}}_{j})(x)=\int_{B_{\rho_{j}}(x)}\phi_{\rho_{j}}(x-y)\,\hat{\mathrm{d}}_{j}(y)\geq 2j^{-\nicefrac{{1}}{{8}}}-3\,j^{-\nicefrac{{1}}{{4}}}\,.

Hence, setting t:=exp(j1/4(dj(x)j1/4))t:=\exp\left(-j^{\nicefrac{{1}}{{4}}}(\mathrm{d}_{j}(x)-j^{-\nicefrac{{1}}{{4}}})\right) we have that 0<texp(42j1/8)1/20<t\leq\exp(4-2\,j^{\nicefrac{{1}}{{8}}})\leq 1/2 for jj large enough. Hence, by property (a) of ψ\psi in Definition 3.15:

ηj(x)=ψ(t)=texp(42j1/8)for every xK~j.\eta_{j}(x)=\psi(t)=t\leq\exp(4-2\,j^{\nicefrac{{1}}{{8}}})\qquad\mbox{for every $x\in\tilde{K}_{j}$}\,.

In particular, up to taking larger values of jj, we see that

0<ηj(x)ej1/8for every xK~j.0<\eta_{j}(x)\leq e^{-j^{\nicefrac{{1}}{{8}}}}\qquad\mbox{for every $x\in\tilde{K}_{j}$}\,.

Finally, we prove (3). To this aim, we compute the gradient of ηj\eta_{j}: at any point xx, we have

ηj=j1/4ψ(t)tdj.\nabla\eta_{j}=-j^{\nicefrac{{1}}{{4}}}\,\psi^{\prime}(t)\,t\,\nabla\mathrm{d}_{j}\,.

Using that t=ψ(t)t=\psi(t) for 0t1/20\leq t\leq 1/2, ψ(t)=0\psi^{\prime}(t)=0 for t3/2t\geq 3/2, and that |t|=t2ψ(t)\lvert t\rvert=t\leq 2\,\psi(t) for t[1/2,3/2]t\in\left[1/2,3/2\right], together with the fact that |ψ|1\lvert\psi^{\prime}\rvert\leq 1, we can estimate

|ηj|2j1/4|dj|ηj2j1/4ηj,\lvert\nabla\eta_{j}\rvert\leq 2\,j^{\nicefrac{{1}}{{4}}}\,\lvert\nabla\mathrm{d}_{j}\rvert\,\eta_{j}\leq 2\,j^{\nicefrac{{1}}{{4}}}\,\eta_{j}\,, (3.29)

where we have used that dj(x)=ϕρjd^j(x)\nabla\mathrm{d}_{j}(x)=\phi_{\rho_{j}}\ast\nabla\hat{d}_{j}(x), so that

|dj(x)|Bρj(x)ϕρj(xy)|d^j(y)|1.\lvert\nabla\mathrm{d}_{j}(x)\rvert\leq\int_{B_{\rho_{j}}(x)}\phi_{\rho_{j}}(x-y)\,\lvert\nabla\hat{\mathrm{d}}_{j}(y)\rvert\leq 1\,.

In particular, |ηj|j3/4ηj\lvert\nabla\eta_{j}\rvert\leq j^{\nicefrac{{3}}{{4}}}\,\eta_{j} as soon as j4j\geq 4. Next, we compute the Hessian of ηj\eta_{j}

2ηj=j1/2t(tψ′′(t)+ψ(t))djdjj1/4ψ(t)t2dj,\nabla^{2}\eta_{j}=j^{\nicefrac{{1}}{{2}}}\,t\,\left(t\,\psi^{\prime\prime}(t)+\psi^{\prime}(t)\right)\nabla\mathrm{d}_{j}\otimes\nabla\mathrm{d}_{j}-j^{\nicefrac{{1}}{{4}}}\,\psi^{\prime}(t)\,t\,\nabla^{2}\mathrm{d}_{j}\,,

from which we estimate

2ηj100j1/2ηj+j1/4ηj2dj.\|\nabla^{2}\eta_{j}\|\leq 100\,j^{\nicefrac{{1}}{{2}}}\,\eta_{j}+j^{\nicefrac{{1}}{{4}}}\,\eta_{j}\,\|\nabla^{2}\mathrm{d}_{j}\|\,.

Now, observe that

2djBρj(x)ϕρj(xy)d^j(y)𝑑yBρj|ϕρj(z)|𝑑z=ρj1B1|ϕ(w)|𝑑w=C(n)ρj1.\begin{split}\|\nabla^{2}\mathrm{d}_{j}\|&\leq\int_{B_{\rho_{j}}(x)}\|\nabla\phi_{\rho_{j}}(x-y)\otimes\nabla\hat{\mathrm{d}}_{j}(y)\|\,dy\leq\int_{B_{\rho_{j}}}\lvert\nabla\phi_{\rho_{j}}(z)\rvert\,dz\\ &=\rho_{j}^{-1}\int_{B_{1}}\lvert\nabla\phi(w)\rvert\,dw=C(n)\,\rho_{j}^{-1}\,.\end{split}

Hence, recalling that ρj=j1/4\rho_{j}=j^{-\nicefrac{{1}}{{4}}}, we conclude the estimate

2ηjC(n)j1/2ηj\|\nabla^{2}\eta_{j}\|\leq C(n)\,j^{\nicefrac{{1}}{{2}}}\,\eta_{j} (3.30)

for a constant CC depending only on nn. Thus, we conclude ηj𝒜j3/4\eta_{j}\in\mathcal{A}_{j^{\nicefrac{{3}}{{4}}}} for jj sufficiently large. ∎

3.7. L2L^{2} approximations

In this subsection, we collect a few estimates of the error terms deriving from working with smoothed first variations and smoothed mean curvature vectors. They will be critically important to deduce the convergence of the discrete approximation algorithm. The first estimate is a modification of [20, Proposition 5.3]. We let ηj\eta_{j} be the cut-off function as in Definition 3.15, corresponding to UU and Γ0\Gamma_{0}, and we will suppose that jJ(n)j\geq J(n), in such a way that the conclusions of Lemma 3.16 are satisfied.

Proposition 3.17.

For every M>0M>0, there exists ε2(0,1)\varepsilon_{2}\in\left(0,1\right) depending only on nn and MM such that the following holds. For any jJ(n)j\geq J(n), gjg\in\mathcal{B}_{j}, V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) with V(n+1)M\|V\|(\mathbb{R}^{n+1})\leq M, ε(0,ε2)\varepsilon\in\left(0,\varepsilon_{2}\right) with

j12ε16,j\leq\frac{1}{2}\,\varepsilon^{-\frac{1}{6}}\,, (3.31)

we have for hε()=hε(,V)h_{\varepsilon}(\cdot)=h_{\varepsilon}(\cdot,V):

|n+1hεηjgdV+n+1(ΦεδV)ηjg𝑑x|ε14(n+1ηj|ΦεδV|2ΦεV+ε𝑑x)12.\left\lvert\int_{\mathbb{R}^{n+1}}h_{\varepsilon}\cdot\eta_{j}\,g\,d\|V\|+\int_{\mathbb{R}^{n+1}}\,(\Phi_{\varepsilon}\ast\delta V)\cdot\eta_{j}\,g\,dx\right\rvert\leq\varepsilon^{\frac{1}{4}}\,\left(\int_{\mathbb{R}^{n+1}}\eta_{j}\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx\right)^{\frac{1}{2}}\,. (3.32)

Given the validity of (3.18), we see that (3.32) measures the deviation from the identity (2.5). The difference with [20, Proposition 5.3] is that there, in place of ηjg\eta_{j}g (left-hand side of (3.32)) and ηj\eta_{j} (right-hand side of (3.32)), we have gg and Ω\Omega, respectively. We note that gηjg\,\eta_{j} satisfies |(gηj)(x)|jηj(x)|(g\,\eta_{j})(x)|\leq j\eta_{j}(x) and (gηj)(x)2j7/4ηj(x)\|\nabla(g\,\eta_{j})(x)\|\leq 2\,j^{\nicefrac{{7}}{{4}}}\eta_{j}(x): using these, the modification of the proof is straightforward, and thus we omit the details.

The following is [20, Proposition 5.4].

Proposition 3.18.

There exists a constant ε3(0,1)\varepsilon_{3}\in\left(0,1\right) depending only on nn and MM with the following property. Given any V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) with V(n+1)M\|V\|(\mathbb{R}^{n+1})\leq M, jj\in\mathbb{N}, ϕ𝒜j\phi\in\mathcal{A}_{j}, and ε(0,ε3)\varepsilon\in\left(0,\varepsilon_{3}\right) satisfying (3.31), we have:

|δV(ϕhε)+n+1ϕ|ΦεδV|2ΦεV+ε𝑑x|\displaystyle\Big{|}\delta V(\phi\,h_{\varepsilon})+\int_{\mathbb{R}^{n+1}}\phi\,\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx\Big{|} ε14(n+1ϕ|ΦεδV|2ΦεV+ε𝑑x+1),\displaystyle\leq\varepsilon^{\frac{1}{4}}\,\left(\int_{\mathbb{R}^{n+1}}\phi\,\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx+1\right), (3.33)
n+1|hε|2ϕdV\displaystyle\int_{\mathbb{R}^{n+1}}\lvert h_{\varepsilon}\rvert^{2}\,\phi\,d\|V\| (1+ε14)n+1ϕ|ΦεδV|2ΦεV+ε𝑑x+ε14.\displaystyle\leq(1+\varepsilon^{\frac{1}{4}})\int_{\mathbb{R}^{n+1}}\phi\,\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx+\varepsilon^{\frac{1}{4}}\,. (3.34)

Note that formula (3.33) estimates the deviation from the identity (2.5) with g=h(,V)g=h(\cdot,V).

The next statement is [20, Proposition 5.5]. The proof is a straightforward modification, using (3.32).

Proposition 3.19.

For every M>0M>0, there exists ε4(0,1)\varepsilon_{4}\in\left(0,1\right) depending only on nn and MM with the following property. For any jJ(n)j\geq J(n), gjg\in\mathcal{B}_{j}, V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) with V(n+1)M\|V\|(\mathbb{R}^{n+1})\leq M, ε(0,ε4)\varepsilon\in\left(0,\varepsilon_{4}\right) satisfying (3.31), it holds

|n+1hεηjgdV+δV(ηjg)|ε14(1+(n+1ηj|ΦεδV|2ΦεV+ε𝑑x)12).\left\lvert\int_{\mathbb{R}^{n+1}}h_{\varepsilon}\cdot\eta_{j}\,g\,d\|V\|+\delta V(\eta_{j}\,g)\right\rvert\leq\varepsilon^{\frac{1}{4}}\left(1+\left(\int_{\mathbb{R}^{n+1}}\eta_{j}\,\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx\right)^{\frac{1}{2}}\right)\,. (3.35)

3.8. Curvature of limit varifolds

The next Proposition 3.20 corresponds to [20, Proposition 5.6] when there is no boundary.

Proposition 3.20.

Suppose that {Vj}=1𝐕n(n+1)\{V_{j_{\ell}}\}_{\ell=1}^{\infty}\subset\mathbf{V}_{n}(\mathbb{R}^{n+1}) and {εj}=1(0,1)\{\varepsilon_{j_{\ell}}\}_{\ell=1}^{\infty}\subset\left(0,1\right) are such that:

  1. (1)

    supVj(n+1)<\sup_{\ell}\|V_{j_{\ell}}\|(\mathbb{R}^{n+1})<\infty,

  2. (2)

    lim infn+1ηj|ΦεjδVj|2ΦεjVj+εj𝑑x<\liminf_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta V_{j_{\ell}}\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|V_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx<\infty,

  3. (3)

    limεj=0\lim_{\ell\to\infty}\varepsilon_{j_{\ell}}=0 and jεj16/2j_{\ell}\leq\varepsilon_{j_{\ell}}^{-\frac{1}{6}}/2.

Then, there exists a subsequence {j}{j}\{j^{\prime}_{\ell}\}\subset\{j_{\ell}\} such that VjV𝐕n(n+1)V_{j^{\prime}_{\ell}}\to V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) in the sense of varifolds, and VV has a generalized mean curvature vector h(,V)h(\cdot,V) in UU such that

U|h(,V)|2ϕdVlim infn+1ηjϕ|ΦεjδVj|2ΦεjVj+εj𝑑x\int_{U}\lvert h(\cdot,V)\rvert^{2}\,\phi\,d\|V\|\leq\liminf_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\phi\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta V_{j_{\ell}}\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|V_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx (3.36)

for every ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+}).

Proof.

By (1), we may choose a (not relabeled) subsequence VjV_{j_{\ell}} converging to VV as varifolds on n+1\mathbb{R}^{n+1}, and we may assume that the integrals in (2) for this subsequence converge to the lim inf\liminf of the original sequence. Fix gCc2(U;n+1)g\in C_{c}^{2}(U;\mathbb{R}^{n+1}). For all sufficiently large \ell, we have gηj=gg\,\eta_{j_{\ell}}=g due to Lemma 3.16(1), (3.27) and (3.26). Moreover, we may assume that gηjjg\,\eta_{j_{\ell}}\in\mathcal{B}_{j_{\ell}} due to Lemma 3.16(3). Then, by (3.35), (2) and (3), we have

δV(g)=limδVj(gηj)=limn+1hεj(,Vj)ηjgdVj.\delta V(g)=\lim_{\ell\rightarrow\infty}\delta V_{j_{\ell}}(g\,\eta_{j_{\ell}})=-\lim_{\ell\rightarrow\infty}\int_{\mathbb{R}^{n+1}}h_{\varepsilon_{j_{\ell}}}(\cdot,V_{j_{\ell}})\cdot\eta_{j_{\ell}}\,g\,d\|V_{j_{\ell}}\|. (3.37)

Since ηj𝒜j\eta_{j_{\ell}}\in\mathcal{A}_{j_{\ell}} in particular, by the Cauchy-Schartz inequality and (3.34), we have

δV(g)(lim infn+1|ΦεjδVj|2ηjΦεjVj+εj𝑑x)1/2(n+1|g|2dV)1/2.\delta V(g)\leq\Big{(}\liminf_{\ell\rightarrow\infty}\int_{\mathbb{R}^{n+1}}\frac{|\Phi_{\varepsilon_{j_{\ell}}}\ast\delta V_{j_{\ell}}|^{2}\,\eta_{j_{\ell}}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|V_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx\Big{)}^{\nicefrac{{1}}{{2}}}\Big{(}\int_{\mathbb{R}^{n+1}}|g|^{2}\,d\|V\|\Big{)}^{\nicefrac{{1}}{{2}}}. (3.38)

This shows that δV\delta V is absolutely continuous with respect to V\|V\| on UU and h(,V)h(\cdot,V) satisfies

U|h(,V)|2dVlim infn+1|ΦεjδVj|2ηjΦεjVj+εj𝑑x.\int_{U}|h(\cdot,V)|^{2}\,d\|V\|\leq\liminf_{\ell\rightarrow\infty}\int_{\mathbb{R}^{n+1}}\frac{|\Phi_{\varepsilon_{j_{\ell}}}\ast\delta V_{j_{\ell}}|^{2}\,\eta_{j_{\ell}}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|V_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx. (3.39)

Given ϕCc2(U;+)\phi\in C^{2}_{c}(U;\mathbb{R}^{+}) (CcC_{c} case is by approximation), let ii\in\mathbb{N} be arbitrary and consider ϕ^:=ϕ+i1\hat{\phi}:=\phi+i^{-1}. For all sufficiently large \ell, we have gηjϕ^jg\,\eta_{j_{\ell}}\hat{\phi}\in\mathcal{B}_{j_{\ell}} and ηjϕ^𝒜j\eta_{j_{\ell}}\hat{\phi}\in\mathcal{A}_{j_{\ell}} (we may assume |ϕ^|<1|\hat{\phi}|<1 without loss of generality). Thus the same computation above with gηjϕ^g\,\eta_{j_{\ell}}\hat{\phi} yields

n+1hgϕ^dV(lim infn+1|ΦεjδVj|2ηjϕ^ΦεjVj+εj𝑑x)1/2(n+1|g|2ϕ^dV)1/2.\int_{\mathbb{R}^{n+1}}h\cdot g\,\hat{\phi}\,d\|V\|\leq\Big{(}\liminf_{\ell\rightarrow\infty}\int_{\mathbb{R}^{n+1}}\frac{|\Phi_{\varepsilon_{j_{\ell}}}\ast\delta V_{j_{\ell}}|^{2}\,\eta_{j_{\ell}}\hat{\phi}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|V_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx\Big{)}^{\nicefrac{{1}}{{2}}}\Big{(}\int_{\mathbb{R}^{n+1}}|g|^{2}\hat{\phi}\,d\|V\|\Big{)}^{\nicefrac{{1}}{{2}}}. (3.40)

We let then ii\rightarrow\infty in (3.40) to replace ϕ^\hat{\phi} by ϕ\phi, and finally we approximate h(,V)h(\cdot,V) by gg to obtain (3.36). ∎

3.9. Motion by smoothed mean curvature with boundary damping

We aim at proving the following proposition: it contains the perturbation estimates for a varifold VV which is moved by a vector field consisting of a boundary damping of its smoothed mean curvature for a time Δt\Delta t.

Proposition 3.21.

There exists ε5(0,1)\varepsilon_{5}\in\left(0,1\right), depending only on nn, MM and UU such that the following holds. Suppose that:

  1. (1)

    V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) satisfies sptV(U)1\mathrm{spt}\,\|V\|\subset\left(U\right)_{1} and V(n+1)M\|V\|(\mathbb{R}^{n+1})\leq M;

  2. (2)

    jJ(n)j\geq J(n) and ηj\eta_{j} is as in Definition 3.15;

  3. (3)

    ε(0,ε5)\varepsilon\in\left(0,\varepsilon_{5}\right) satisfies (3.31);

  4. (4)

    Δt[21εκ,εκ]\Delta t\in\left[2^{-1}\varepsilon^{\kappa},\varepsilon^{\kappa}\right], with

    κ=3n+20.\kappa=3n+20\,.

Define

f(x):=x+ηj(x)hε(x,V)Δt.f(x):=x+\eta_{j}(x)h_{\varepsilon}(x,V)\Delta t\,.

Then, for every ϕ𝒜j\phi\in\mathcal{A}_{j} we have the following estimates.

|fV(ϕ)V(ϕ)Δtδ(V,ϕ)(ηjhε(,V))|εκ10,\left|\frac{\|f_{\sharp}V\|(\phi)-\|V\|(\phi)}{\Delta t}-\delta(V,\phi)(\eta_{j}h_{\varepsilon}(\cdot,V))\right|\leq\varepsilon^{\kappa-10}\,, (3.41)
fV(n+1)V(n+1)Δt+14n+1ηj|ΦεδV|2ΦεV+ε𝑑x2ε1/4.\frac{\|f_{\sharp}V\|(\mathbb{R}^{n+1})-\|V\|(\mathbb{R}^{n+1})}{\Delta t}+\frac{1}{4}\int_{\mathbb{R}^{n+1}}\eta_{j}\,\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx\leq 2\,\varepsilon^{\nicefrac{{1}}{{4}}}\,. (3.42)

Furthermore, if also fV(n+1)M\|f_{\sharp}V\|(\mathbb{R}^{n+1})\leq M, then we have

|δ(V,ϕ)(ηjhε(,V))δ(fV,ϕ)(ηjhε(,fV))|εκ2n18,\lvert\delta(V,\phi)(\eta_{j}\,h_{\varepsilon}(\cdot,V))-\delta(f_{\sharp}V,\phi)(\eta_{j}\,h_{\varepsilon}(\cdot,f_{\sharp}V))\rvert\leq\varepsilon^{\kappa-2n-18}\,, (3.43)
|n+1ηj|ΦεδV|2ΦεV+ε𝑑xn+1ηj|Φεδ(fV)|2ΦεfV+ε𝑑x|εκ3n18.\left|\int_{\mathbb{R}^{n+1}}\eta_{j}\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx-\int_{\mathbb{R}^{n+1}}\eta_{j}\frac{\lvert\Phi_{\varepsilon}\ast\delta(f_{\sharp}V)\rvert^{2}}{\Phi_{\varepsilon}\ast\|f_{\sharp}V\|+\varepsilon}\,dx\right|\leq\varepsilon^{\kappa-3n-18}\,. (3.44)
Proof.

We want to estimate the following quantity

A:=fV(ϕ)V(ϕ)δ(V,ϕ)(ηjhε(,V))Δt=fV(ϕ)V(ϕ)δ(V,ϕ)(F),A:=\|f_{\sharp}V\|(\phi)-\|V\|(\phi)-\delta(V,\phi)(\eta_{j}h_{\varepsilon}(\cdot,V))\,\Delta t=\|f_{\sharp}V\|(\phi)-\|V\|(\phi)-\delta(V,\phi)(F)\,,

where F(x):=ηj(x)hε(x,V)Δt=f(x)xF(x):=\eta_{j}(x)h_{\varepsilon}(x,V)\Delta t=f(x)-x. By (2.2) and (2.8), we have that

A=𝐆n(n+1){ϕ(f(x))|Λnf(x)S|ϕ(x)ϕ(x)FSFϕ}𝑑V(x,S),A=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\{\phi(f(x))\,\lvert\Lambda_{n}\nabla f(x)\circ S\rvert-\phi(x)-\phi(x)\,\nabla F\cdot S-F\cdot\nabla\phi\}\,dV(x,S)\,,

which can be written as

A=I1+I2+I3,A=I_{1}+I_{2}+I_{3}\,,

with

I1:\displaystyle I_{1}: =𝐆n(n+1)(ϕ(f(x))ϕ(x))(|Λnf(x)S|1)𝑑V(x,S),\displaystyle=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\left(\phi(f(x))-\phi(x)\right)\,\left(\lvert\Lambda_{n}\nabla f(x)\circ S\rvert-1\right)\,dV(x,S)\,,
I2:\displaystyle I_{2}: =𝐆n(n+1)ϕ(x)(|Λnf(x)S|1FS)𝑑V(x,S),\displaystyle=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\phi(x)\,\left(\lvert\Lambda_{n}\nabla f(x)\circ S\rvert-1-\nabla F\cdot S\right)\,dV(x,S)\,,
I3:\displaystyle I_{3}: =𝐆n(n+1)ϕ(f(x))ϕ(x)ϕ(x)F(x)dV(x,S).\displaystyle=\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\phi(f(x))-\phi(x)-\nabla\phi(x)\cdot F(x)\,dV(x,S)\,.

Choose ε5min{ε1,ε3}\varepsilon_{5}\leq\min\{\varepsilon_{1},\varepsilon_{3}\}, so that the conclusions of Lemma 3.13 and Proposition 3.18 hold with ε(0,ε5)\varepsilon\in\left(0,\varepsilon_{5}\right). In order to estimate the size of the various integrands appearing in the definition of I1,I2I_{1},I_{2} and I3I_{3}, we first observe that, by (3.23) and our assumption on Δt\Delta t,

|F(x)|=|ηjhε(,V)Δt|2εκ2.\lvert F(x)\rvert=\lvert\eta_{j}h_{\varepsilon}(\cdot,V)\Delta t\rvert\leq 2\,\varepsilon^{\kappa-2}\,. (3.45)

Furthermore, using (3.23), (3.24), (3.31), and the fact that ηj𝒜j\eta_{j}\in\mathcal{A}_{j} we obtain

FΔt(ηjhε+hεηj)εκ(2ε4+2jε2)3εκ4.\|\nabla F\|\leq\Delta t\,\left(\eta_{j}\|\nabla h_{\varepsilon}\|+\|h_{\varepsilon}\otimes\nabla\eta_{j}\|\right)\leq\varepsilon^{\kappa}\left(2\,\varepsilon^{-4}+2\,j\,\varepsilon^{-2}\right)\leq 3\,\varepsilon^{\kappa-4}\,. (3.46)

Since ϕ𝒜j\phi\in\mathcal{A}_{j}, we can use the results of Lemma 3.1 to estimate:

|ϕ(f(x))ϕ(x)|\displaystyle\lvert\phi(f(x))-\phi(x)\rvert (3.4)j|F(x)|ϕ(x)exp(j|F(x)|)εκ3,\displaystyle\overset{\eqref{e:1st_order}}{\leq}j\lvert F(x)\rvert\phi(x)\exp\left(j\lvert F(x)\rvert\right)\leq\varepsilon^{\kappa-3}\,, (3.47)
|ϕ(f(x))ϕ(x)ϕ(x)F(x)|\displaystyle\lvert\phi(f(x))-\phi(x)-\nabla\phi(x)\cdot F(x)\rvert (3.5)j|F(x)|2ϕ(x)exp(j|F(x)|)εκ5Δt.\displaystyle\overset{\eqref{e:2nd_order}}{\leq}j\lvert F(x)\rvert^{2}\phi(x)\exp\left(j\lvert F(x)\rvert\right)\leq\varepsilon^{\kappa-5}\,\Delta t\,. (3.48)

Analogously, using that f(x)=x+F(x)f(x)=x+F(x), so that

|Λnf(x)S|=|(Id+F(x))v1(Id+F(x))vn|\lvert\Lambda_{n}\nabla f(x)\circ S\rvert=\lvert({\rm Id}+\nabla F(x))\cdot v_{1}\wedge\ldots\wedge({\rm Id}+\nabla F(x))\cdot v_{n}\rvert

for any orthonormal basis {v1,,vn}\{v_{1},\ldots,v_{n}\} of SS, we can Taylor expand the tangential Jacobian and deduce the estimates

||Λnf(x)S|1|\displaystyle\Big{|}\lvert\Lambda_{n}\nabla f(x)\circ S\rvert-1\Big{|} c(n)F(3.46)c(n)εκ4c(n)Δtε4Δtε5,\displaystyle\leq c(n)\,\|\nabla F\|\overset{\eqref{nabla F in L infty}}{\leq}c(n)\,\varepsilon^{\kappa-4}\leq c(n)\,\Delta t\,\varepsilon^{-4}\leq\Delta t\,\varepsilon^{-5}\,, (3.49)
||Λnf(x)S|1FS|\displaystyle\Big{|}\lvert\Lambda_{n}\nabla f(x)\circ S\rvert-1-\nabla F\cdot S\Big{|} c(n)F2(3.46)c(n)ε2κ8εk9Δt,\displaystyle\leq c(n)\,\|\nabla F\|^{2}\overset{\eqref{nabla F in L infty}}{\leq}c(n)\varepsilon^{2\,\kappa-8}\leq\varepsilon^{k-9}\,\Delta t\,, (3.50)

modulo choosing a smaller value of ε\varepsilon if necessary. Putting all together, we can finally conclude the proof of (3.41):

|A||I1|+|I2|+|I3|(εκ8+εκ9+εκ5)ΔtV(n+1)εκ10Δt.\lvert A\rvert\leq\lvert I_{1}\rvert+\lvert I_{2}\rvert+\lvert I_{3}\rvert\leq\left(\varepsilon^{\kappa-8}+\varepsilon^{\kappa-9}+\varepsilon^{\kappa-5}\right)\,\Delta t\,\|V\|(\mathbb{R}^{n+1})\leq\varepsilon^{\kappa-10}\Delta t\,. (3.51)

In order to prove (3.42), we use (3.41) with ϕ(x)1\phi(x)\equiv 1, which implies that

fV(n+1)V(n+1)ΔtδV(ηjhε(,V))+εκ10.\frac{\|f_{\sharp}V\|(\mathbb{R}^{n+1})-\|V\|(\mathbb{R}^{n+1})}{\Delta t}\leq\delta V(\eta_{j}h_{\varepsilon}(\cdot,V))+\varepsilon^{\kappa-10}\,. (3.52)

On the other hand, since ηj𝒜j\eta_{j}\in\mathcal{A}_{j} we can apply (3.33) to further estimate

δV(ηjhε)(1ε1/4)(n+1ηj|ΦεδV|2ΦεV+ε𝑑x)+ε1/4,\delta V(\eta_{j}h_{\varepsilon})\leq-(1-\varepsilon^{\nicefrac{{1}}{{4}}})\left(\int_{\mathbb{R}^{n+1}}\eta_{j}\,\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx\right)+\varepsilon^{\nicefrac{{1}}{{4}}}\,, (3.53)

so that (3.42) follows by choosing ε\varepsilon so small that 1ε1/41/41-\varepsilon^{\nicefrac{{1}}{{4}}}\geq 1/4.

Finally, we turn to the proof of (3.43) and (3.44). In order to simplify the notation, let us write V^\hat{V} instead of fVf_{\sharp}V. Using the same strategy as in [20, Proof of Proposition 5.7], we can estimate

|ΦεV^(x)ΦεV(x)|I1+I2,\lvert\Phi_{\varepsilon}\ast\|\hat{V}\|(x)-\Phi_{\varepsilon}\ast\|V\|(x)\rvert\leq I_{1}+I_{2}\,,

where

I1=|Φε(f(y)x)Φε(yx)||Λnf(y)S|𝑑V(y,S),I_{1}=\int\lvert\Phi_{\varepsilon}(f(y)-x)-\Phi_{\varepsilon}(y-x)\rvert\,\lvert\Lambda_{n}\nabla f(y)\circ S\rvert\,dV(y,S)\,,

and

I2=Φε(yx)||ΛnfS|1|𝑑V(y,S).I_{2}=\int\Phi_{\varepsilon}(y-x)\,\lvert\lvert\Lambda_{n}\nabla f\circ S\rvert-1\rvert\,dV(y,S)\,.

The first term can be estimated by observing that for some point y^\hat{y} on the segment [yx,f(y)x]\left[y-x,f(y)-x\right],

|Φε(f(y)x)Φε(yx)||Φε(y^)||F(y)|(3.13)|F(y)|(ε2|y^|Φε(y^)+cχB1B1/2(y^)exp(ε1))(3.45)c(n)εκn5χB2(x)(y),\begin{split}\lvert\Phi_{\varepsilon}(f(y)-x)-\Phi_{\varepsilon}(y-x)\rvert&\leq\lvert\nabla\Phi_{\varepsilon}(\hat{y})\rvert\,\lvert F(y)\rvert\\ &\overset{\eqref{e:1st_bound}}{\leq}\lvert F(y)\rvert\,\left(\varepsilon^{-2}\lvert\hat{y}\rvert\Phi_{\varepsilon}(\hat{y})+c\,\chi_{B_{1}\setminus B_{1/2}}(\hat{y})\,\exp(-\varepsilon^{-1})\right)\\ &\overset{\eqref{F in L infty}}{\leq}c(n)\,\varepsilon^{\kappa-n-5}\,\chi_{B_{2}(x)}(y)\,,\end{split}

and using that

|Λnf(y)S|1+εκ5\lvert\Lambda_{n}\nabla f(y)\circ S\rvert\leq 1+\varepsilon^{\kappa-5}

because of (3.49), so that

I1εκn6V(B2(x)).I_{1}\leq\varepsilon^{\kappa-n-6}\,\|V\|(B_{2}(x))\,.

Concerning the second term in the sum, we can use (3.49) again to estimate

I2c(n)εn1εκ5V(B1(x)).I_{2}\leq c(n)\,\varepsilon^{-n-1}\,\varepsilon^{\kappa-5}\,\|V\|(B_{1}(x))\,.

Putting the two estimates together, we see that

|ΦεV^(x)ΦεV(x)|εκn7V(B2(x)).\lvert\Phi_{\varepsilon}\ast\|\hat{V}\|(x)-\Phi_{\varepsilon}\ast\|V\|(x)\rvert\leq\varepsilon^{\kappa-n-7}\,\|V\|(B_{2}(x))\,. (3.54)

Analogous calculations lead to

|ΦεδV^(x)ΦεδV(x)|εκn9V(B2(x)).\lvert\Phi_{\varepsilon}\ast\delta\hat{V}(x)-\Phi_{\varepsilon}\ast\delta V(x)\rvert\leq\varepsilon^{\kappa-n-9}\,\|V\|(B_{2}(x))\,. (3.55)

The rough estimates also give

|ΦεδV(x)|,|ΦεδV^(x)|εn4V(B2(x)).\lvert\Phi_{\varepsilon}\ast\delta V(x)\rvert\,,\lvert\Phi_{\varepsilon}\ast\delta\hat{V}(x)\rvert\leq\varepsilon^{-n-4}\,\|V\|(B_{2}(x))\,. (3.56)

The estimates (3.54), (3.55), and (3.56) immediately yield

|ΦεδV^ΦεV^+εΦεδVΦεV+ε|εκn10V(B2(x))+εκ2n13V(B2(x))2,\left|\frac{\Phi_{\varepsilon}\ast\delta\hat{V}}{\Phi_{\varepsilon}\ast\|\hat{V}\|+\varepsilon}-\frac{\Phi_{\varepsilon}\ast\delta V}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\right|\leq\varepsilon^{\kappa-n-10}\,\|V\|(B_{2}(x))+\varepsilon^{\kappa-2n-13}\,\|V\|(B_{2}(x))^{2}\,, (3.57)

as well as

||ΦεδV^|2ΦεV^+ε|ΦεδV|2ΦεV+ε|εκ2n15V(B2(x))2+εκ3n17V(B2(x))3.\left|\frac{\lvert\Phi_{\varepsilon}\ast\delta\hat{V}\rvert^{2}}{\Phi_{\varepsilon}\ast\|\hat{V}\|+\varepsilon}-\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\right|\leq\varepsilon^{\kappa-2n-15}\,\|V\|(B_{2}(x))^{2}+\varepsilon^{\kappa-3n-17}\,\|V\|(B_{2}(x))^{3}\,. (3.58)

Observe that, since sptV(U)1\mathrm{spt}\|V\|\subset\left(U\right)_{1}, the right-hand side of estimates (3.57) and (3.58) is zero whenever dist(x,clos(U))>3\mathrm{dist}(x,{\rm clos}(U))>3. Hence, (3.58) and the monotonicity of the mass V(B2(x))M\|V\|(B_{2}(x))\leq M imply that

|n+1ηj|ΦεδV|2ΦεV+ε𝑑xn+1ηj|Φεδ(fV)|2ΦεfV+ε𝑑x|(εκ2n15M2+εκ3n17M3)(U)3ηj(x)𝑑xεκ3n18\begin{split}&\left|\int_{\mathbb{R}^{n+1}}\eta_{j}\frac{\lvert\Phi_{\varepsilon}\ast\delta V\rvert^{2}}{\Phi_{\varepsilon}\ast\|V\|+\varepsilon}\,dx-\int_{\mathbb{R}^{n+1}}\eta_{j}\frac{\lvert\Phi_{\varepsilon}\ast\delta(f_{\sharp}V)\rvert^{2}}{\Phi_{\varepsilon}\ast\|f_{\sharp}V\|+\varepsilon}\,dx\right|\\ &\hskip 56.9055pt\leq\left(\varepsilon^{\kappa-2n-15}\,M^{2}+\varepsilon^{\kappa-3n-17}\,M^{3}\right)\,\int_{\left(U\right)_{3}}\eta_{j}(x)\,dx\leq\varepsilon^{\kappa-3n-18}\end{split}

by possibly choosing a smaller value of ε\varepsilon (depending on UU and MM). This proves (3.44).

Finally, we prove (3.43). By (3.22), (3.57), and the properties of Φε\Phi_{\varepsilon}, we deduce that

lhε(V)lhε(V^)\displaystyle\left\lVert\nabla^{l}h_{\varepsilon}(V)-\nabla^{l}h_{\varepsilon}(\hat{V})\right\rVert εκ2n142l(M+M2)\displaystyle\leq\varepsilon^{\kappa-2n-14-2l}(M+M^{2}) (3.59)

for l=0,1,2l=0,1,2. We can conclude using (3.59), (3.45)-(3.49) and suitable interpolations that:

|δ(V,ϕ)(ηjhε(V))δ(V^,ϕ)(ηjhε(V^))|\displaystyle\lvert\delta(V,\phi)(\eta_{j}\,h_{\varepsilon}(V))-\delta(\hat{V},\phi)(\eta_{j}\,h_{\varepsilon}(\hat{V}))\rvert
=|𝐆n(n+1){ϕ(ηjhε(V))S+ηjhε(V)ϕ}dV(x,S)\displaystyle\qquad=\Big{|}\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\left\{\phi\,\nabla(\eta_{j}\,h_{\varepsilon}(V))\cdot S+\eta_{j}\,h_{\varepsilon}(V)\cdot\nabla\phi\right\}dV(x,S)
𝐆n(n+1){ϕf[(ηjhε(V^))]f(fS)\displaystyle\qquad\qquad-\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\big{\{}\phi\circ f\,\left[\nabla(\eta_{j}\,h_{\varepsilon}(\hat{V}))\right]\circ f\cdot(\nabla f\circ S)
+(ηjhε(V^))f(ϕf)}|ΛnfS|dV(x,S)|\displaystyle\qquad\qquad\qquad\qquad\qquad+(\eta_{j}\,h_{\varepsilon}(\hat{V}))\circ f\cdot(\nabla\phi\circ f)\big{\}}\lvert\Lambda_{n}\nabla f\circ S\rvert\,dV(x,S)\Big{|}
εκ2n18.\displaystyle\qquad\leq\varepsilon^{\kappa-2n-18}\,.\qed

4. Existence of limit measures

4.1. The construction of the approximate flows

Suppose UU and Γ0\Gamma_{0} are as in Assumption 1.1. Together with the sets Dj,Kj,K~j,K^jD_{j},K_{j},\tilde{K}_{j},\hat{K}_{j} introduced in Definition 3.14, for k=0,1,k=0,1,\ldots, we set

Dj,k:={xU:dist(x,U)1j1/4kexp(j1/8)}.D_{j,k}:=\left\{x\in U\,\colon\,\mathrm{dist}(x,\partial U)\geq\frac{1}{j^{\nicefrac{{1}}{{4}}}}-k\,\exp(-j^{\nicefrac{{1}}{{8}}})\right\}\,.

Once again, here the indices jj and kk are chosen in such a way that the corresponding sets Dj,kD_{j,k} are non-empty proper subsets of UU. Observe that we have the elementary inclusions Dj,0Dj,kDj,kD_{j,0}\subset D_{j,k}\subset D_{j,k^{\prime}} for every 0kk0\leq k\leq k^{\prime}, and that DjDj,kD_{j}\subset D_{j,k} for every kk.

Before proceeding with the construction of the time-discrete approximate flows, we need to introduce a suitable new class of test functions. Since UU is an open and bounded convex domain with boundary U\partial U of class C2C^{2}, there exists a neighborhood (U)s0\left(\partial U\right)_{s_{0}} such that, denoting dU(x):=dist(x,n+1U)\mathrm{d}_{U}(x):=\mathrm{dist}(x,\mathbb{R}^{n+1}\setminus U) for x(U)s0Ux\in\left(\partial U\right)_{s_{0}}\cap U the distance function from the boundary, the vector field νU(x):=dU(x)\nu_{U}(x):=-\nabla\mathrm{d}_{U}(x) is a C1C^{1} extension to (U)s0:=(U)s0U\left(\partial U\right)_{s_{0}}^{-}:=\left(\partial U\right)_{s_{0}}\cap U of the exterior unit normal vector field to U\partial U.

Definition 4.1.

Define the tubular neighborhood of U\partial U and the vector field νU\nu_{U} as above. Given an open set WW, a function ϕC1(n+1;+)\phi\in C^{1}(\mathbb{R}^{n+1};\mathbb{R}^{+}) is said to be non decreasing in WW along the fibers of the normal bundle of U\partial U oriented by νU\nu_{U}, or simply νU\nu_{U}-non decreasing in WW, if for every xW(U)s0x\in W\cap\left(\partial U\right)_{s_{0}}^{-} the map

tϕ(x+tνU(x))t\mapsto\phi(x+t\,\nu_{U}(x))

is monotone non decreasing for tt such that x+tνU(x)W(U)s0x+t\,\nu_{U}(x)\in W\cap\left(\partial U\right)_{s_{0}}^{-}. For jj\in\mathbb{N}, we will set

j:={ϕC1(n+1;+):ϕ is νU-non decreasing in n+1Dj}.\mathcal{R}_{j}:=\left\{\phi\in C^{1}(\mathbb{R}^{n+1};\mathbb{R}^{+})\,\colon\,\phi\mbox{ is $\nu_{U}$-non decreasing in $\mathbb{R}^{n+1}\setminus D_{j}$}\right\}\,. (4.1)

The following proposition and its proof contain the constructive algorithm which produces the time-discrete approximations of our Brakke flow with fixed boundary.

Proposition 4.2.

Let UU, 0={E0,i}i=1N𝒪𝒫N(U)\mathcal{E}_{0}=\{E_{0,i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(U), and Γ0\Gamma_{0} be as in Assumption 1.1. There exists a positive integer J=J(n)J=J(n) with the following property. For every jJ(n)j\geq J(n), there exist εj(0,1)\varepsilon_{j}\in\left(0,1\right) satisfying (3.31), pjp_{j}\in\mathbb{N}, and, for every k{0,1,,j 2pj}k\in\{0,1,\ldots,j\,2^{p_{j}}\}, a bounded open set Uj,kn+1U_{j,k}\subset\mathbb{R}^{n+1} with boundary Uj,k\partial U_{j,k} of class C2C^{2} and an open partition j,k={Ej,k,i}i=1N𝒪𝒫N(Uj,k)\mathcal{E}_{j,k}=\{E_{j,k,i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(U_{j,k}) such that

Uj,0=Uandj,0=0for every j,U_{j,0}=U\quad\mbox{and}\quad\mathcal{E}_{j,0}=\mathcal{E}_{0}\qquad\mbox{for every $j$}\,, (4.2)

and such that, setting Δtj:=2pj\Delta t_{j}:=2^{-p_{j}}, and defining Γj,k:=Uj,ki=1NEj,k,i\Gamma_{j,k}:=U_{j,k}\setminus\bigcup_{i=1}^{N}E_{j,k,i}, the following holds true:

  1. (1)

    Uj,k(U)kexp(j1/8)\partial U_{j,k}\subset(\partial U)_{k\,\exp(-j^{\nicefrac{{1}}{{8}}})} and Uj,kU(U)kexp(j1/8)U_{j,k}\triangle U\subset\left(\partial U\right)_{k\,\exp(-j^{\nicefrac{{1}}{{8}}})},

  2. (2)

    KjΓj,kDj,k(Γ0)kexp(j1/8)K_{j}\cap\Gamma_{j,k}\setminus D_{j,k}\subset(\Gamma_{0})_{k\,\exp(-j^{\nicefrac{{1}}{{8}}})},

  3. (3)

    Γj,kKj(Dj,k)j10\Gamma_{j,k}\setminus K_{j}\subset(D_{j,k})_{j^{-10}}.

Moreover, we have:

j,k(n+1)0(n+1)+kΔtjεj1/6,\|\partial\mathcal{E}_{j,k}\|(\mathbb{R}^{n+1})\leq\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})+k\,\Delta t_{j}\,\varepsilon_{j}^{\nicefrac{{1}}{{6}}}\,, (4.3)
j,k(n+1)j,k1(n+1)Δtj+14n+1ηj|Φεjδ(j,k)|2Φεjj,k+εj𝑑x(1j5)ΔtjΔjj,k1(Dj)εj1/8,\begin{split}\frac{\|\partial\mathcal{E}_{j,k}\|(\mathbb{R}^{n+1})-\|\partial\mathcal{E}_{j,k-1}\|(\mathbb{R}^{n+1})}{\Delta t_{j}}&+\frac{1}{4}\int_{\mathbb{R}^{n+1}}\eta_{j}\frac{\lvert\Phi_{\varepsilon_{j}}\ast\delta(\partial\mathcal{E}_{j,k})\rvert^{2}}{\Phi_{\varepsilon_{j}}\ast\|\partial\mathcal{E}_{j,k}\|+\varepsilon_{j}}\,dx\\ &-\frac{(1-j^{-5})}{\Delta t_{j}}\,\Delta_{j}\|\partial\mathcal{E}_{j,k-1}\|(D_{j})\leq\varepsilon_{j}^{\nicefrac{{1}}{{8}}}\,,\end{split} (4.4)
j,k(ϕ)j,k1(ϕ)Δtjδ(j,k,ϕ)(ηjhεj(,j,k))+εj1/8\frac{\|\partial\mathcal{E}_{j,k}\|(\phi)-\|\partial\mathcal{E}_{j,k-1}\|(\phi)}{\Delta t_{j}}\leq\delta(\partial\mathcal{E}_{j,k},\phi)(\eta_{j}\,h_{\varepsilon_{j}}(\cdot,\partial\mathcal{E}_{j,k}))+\varepsilon_{j}^{\nicefrac{{1}}{{8}}} (4.5)

for every k{1,,j 2pj}k\in\{1,\ldots,j\,2^{p_{j}}\} and ϕ𝒜jj\phi\in\mathcal{A}_{j}\cap\mathcal{R}_{j}.

Proof of Proposition 4.2.

Set

M:=0(n+1)+1,M:=\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})+1\,, (4.6)

let κ=3n+20\kappa=3n+20 as in Proposition 3.21, and consider the following set of conditions for ε(0,1)\varepsilon\in\left(0,1\right):

{ε<ε:=min{ε1,,ε5},with ε=ε(n,U,M),(3.31) holds, namely ε1/61/(2j),2εκ2j10,2jεκexp(j1/8)1/(4j1/4).\begin{cases}&\varepsilon<\varepsilon_{*}:=\min\{\varepsilon_{1}\,,\ldots\,,\varepsilon_{5}\}\,,\mbox{with $\varepsilon_{*}=\varepsilon_{*}(n,U,M)$}\,,\\ &\mbox{\eqref{e:eps_smallness} holds, namely $\varepsilon^{\nicefrac{{1}}{{6}}}\leq 1/(2\,j)$}\,,\\ &2\,\varepsilon^{\kappa-2}\leq j^{-10}\,,\\ &2\,j\,\varepsilon^{-\kappa}\,\exp(-j^{\nicefrac{{1}}{{8}}})\leq 1/(4j^{\nicefrac{{1}}{{4}}})\,.\end{cases} (4.7)

Notice that the conditions in (4.7) are compatible for large jj, namely there exists j0j_{0} with the property that for every jj0j\geq j_{0} the set of ε(0,1)\varepsilon\in\left(0,1\right) satisfying (4.7) is not empty. Letting J(n)J(n) be the number provided by Lemma 3.16, for every jmax{j0,J(n)}j\geq\max\{j_{0},J(n)\} we choose εj(0,1)\varepsilon_{j}\in\left(0,1\right) such that all conditions in (4.7) are met. Observe that limjεj=0\lim_{j\to\infty}\varepsilon_{j}=0. Then, we choose pjp_{j}\in\mathbb{N} such that

Δtj:=12pj(21εjκ,εjκ].\Delta t_{j}:=\frac{1}{2^{p_{j}}}\in\left(2^{-1}\,\varepsilon_{j}^{\kappa},\varepsilon_{j}^{\kappa}\right]\,. (4.8)

The argument is constructive, and it proceeds by means of an induction process on k{0,1,,j 2pj}k\in\{0,1,\ldots,j\,2^{p_{j}}\}. We set Uj,0:=UU_{j,0}:=U and j,0:=0\mathcal{E}_{j,0}:=\mathcal{E}_{0}. Properties (1), (2), (3), as well as the estimate in (4.3) are then trivially satisfied, given the definition of MM and since Uj,0=UU_{j,0}=U, Γ0Dj,0Γ0\Gamma_{0}\setminus D_{j,0}\subset\Gamma_{0} and Γ0KjΓ0DjDj,0\Gamma_{0}\setminus K_{j}\subset\Gamma_{0}\cap D_{j}\subset D_{j,0}. Next, let k1k\geq 1, and assume we obtained the open partition j,k1={Ej,k1,i}i=1N\mathcal{E}_{j,k-1}=\{E_{j,k-1,i}\}_{i=1}^{N} of Uj,k1U_{j,k-1} satisfying (1), (2), (3), and (4.3) with k1k-1 in place of kk. We will now produce Uj,kU_{j,k} and j,k={Ej,k,i}i=1N\mathcal{E}_{j,k}=\{E_{j,k,i}\}_{i=1}^{N} satisfying the same conditions with kk. At the same time, we will also show that each inductive step satisfies (4.4) and (4.5). Before proceeding, let us record the inductive assumptions for Uj,k1U_{j,k-1} and Γj,k1:=Uj,k1i=1NEj,k1,i\Gamma_{j,k-1}:=U_{j,k-1}\cap\cup_{i=1}^{N}\partial E_{j,k-1,i} in the following set of equations:

Uj,k1(U)(k1)exp(j1/8)andUj,k1U(U)(k1)exp(j1/8),\partial U_{j,k-1}\subset(\partial U)_{(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})}\,\quad\mbox{and}\quad U_{j,k-1}\triangle U\subset\left(\partial U\right)_{{(k-1)\,\exp(-j^{\nicefrac{{1}}{{8}}})}}\,, (4.9)
KjΓj,k1Dj,k1(Γ0)(k1)exp(j1/8),K_{j}\cap\Gamma_{j,k-1}\setminus D_{j,k-1}\subset(\Gamma_{0})_{(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})}\,, (4.10)
Γj,k1Kj(Dj,k1)j10,\Gamma_{j,k-1}\setminus K_{j}\subset(D_{j,k-1})_{j^{-10}}\,, (4.11)
j,k1(n+1)0(n+1)+(k1)Δtjεj1/6.\|\partial\mathcal{E}_{j,k-1}\|(\mathbb{R}^{n+1})\leq\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})+(k-1)\,\Delta t_{j}\,\varepsilon_{j}^{\nicefrac{{1}}{{6}}}\,. (4.12)

Step 1: area reducing Lipschitz deformation. First notice that Dj,k1Uj,k1D_{j,k-1}\subset U_{j,k-1}. Indeed, the definition of Dj,k1D_{j,k-1}, (4.9), and the choice of εj\varepsilon_{j} imply that Dj,k1(Uj,k1U)=D_{j,k-1}\cap(U_{j,k-1}\triangle U)=\emptyset, so that our claim readily follows from Dj,k1UD_{j,k-1}\subset U. In particular, DjDj,k1Uj,k1D_{j}\subset D_{j,k-1}\subset U_{j,k-1}. Hence, we can choose f1𝐄(j,k1,Dj,j)f_{1}\in\mathbf{E}(\mathcal{E}_{j,k-1},D_{j},j) such that, setting j,k:=(f1)j,k1\mathcal{E}_{j,k}^{\star}:=(f_{1})_{\star}\mathcal{E}_{j,k-1} (𝒪𝒫N(Uj,k1)\in\mathcal{OP}^{N}(U_{j,k-1}) by Lemma 3.5), we have

j,k(n+1)j,k1(n+1)(1j5)Δjj,k1(Dj).\|\partial\mathcal{E}_{j,k}^{\star}\|(\mathbb{R}^{n+1})-\|\partial\mathcal{E}_{j,k-1}\|(\mathbb{R}^{n+1})\leq(1-j^{-5})\,\Delta_{j}\|\partial\mathcal{E}_{j,k-1}\|(D_{j})\,\,. (4.13)

Set Γj,k:=Uj,k1i=1NEj,k,i\Gamma_{j,k}^{\star}:=U_{j,k-1}\cap\bigcup_{i=1}^{N}\partial E_{j,k,i}^{\star}, and note that

Γj,kDj=Γj,k1Dj\Gamma_{j,k}^{\star}\setminus D_{j}=\Gamma_{j,k-1}\setminus D_{j} (4.14)

and

j,k(ϕ)j,k1(ϕ)for every ϕ𝒜j.\|\partial\mathcal{E}_{j,k}^{\star}\|(\phi)\leq\|\partial\mathcal{E}_{j,k-1}\|(\phi)\qquad\mbox{for every $\phi\in\mathcal{A}_{j}$}\,. (4.15)

Step 2: retraction. Outside of Dj,k1D_{j,k-1}, we perform a suitable retraction procedure so that Γj,k(Dj,k1Kj)\Gamma_{j,k}^{\star}\setminus(D_{j,k-1}\cup K_{j}) is retracted to Dj,k1\partial D_{j,k-1}. This retraction step is not needed for k=1k=1, since Γj,1Dj,0c=Γj,0Dj,0c\Gamma_{j,1}^{\star}\cap D_{j,0}^{c}=\Gamma_{j,0}\cap D_{j,0}^{c}, and Γj,0KjDj,0\Gamma_{j,0}\setminus K_{j}\subset D_{j,0} already.

Define

Aj,k:={x(Dj,k1)j10:dist(x,Γ0Dj)>1/(2j1/4)},A_{j,k}:=\{x\in\partial(D_{j,k-1})_{j^{-10}}\,:\,{\rm dist}\,(x,\Gamma_{0}\setminus D_{j})>1/(2j^{1/4})\}\,, (4.16)

and observe that f1|Aj,k=id|Aj,k\left.f_{1}\right|_{A_{j,k}}=\left.{\rm id}\right|_{A_{j,k}}, so that Aj,kEj,k,i=Aj,kint(f1(Ej,k1,i))=Aj,kEj,k1,iA_{j,k}\cap E_{j,k,i}^{\star}=A_{j,k}\cap{\rm int}(f_{1}(E_{j,k-1,i}))=A_{j,k}\cap E_{j,k-1,i} for every i=1,,Ni=1,\ldots,N. In particular, Γj,kAj,k=Γj,k1Aj,k\Gamma_{j,k}^{\star}\cap A_{j,k}=\Gamma_{j,k-1}\cap A_{j,k}.

We claim the validity of the following

Lemma 4.3.

We have Aj,kΓj,k=A_{j,k}\cap\Gamma_{j,k}^{\star}=\emptyset. Moreover, for any xAj,kx\in\partial A_{j,k} (the boundary as a subset of (Dj,k1)j10\partial(D_{j,k-1})_{j^{-10}}), we have dist(x,Γj,k)j10{\rm dist}\,(x,\Gamma_{j,k}^{\star})\geq j^{-10}.

Proof.

By the discussion above, Aj,kΓj,k=Aj,kΓj,k1A_{j,k}\cap\Gamma_{j,k}^{\star}=A_{j,k}\cap\Gamma_{j,k-1}. By (4.11), Aj,kΓj,k1Kj=A_{j,k}\cap\Gamma_{j,k-1}\setminus K_{j}=\emptyset. If xAj,kΓj,k1Kjx\in A_{j,k}\cap\Gamma_{j,k-1}\cap K_{j}, then xKjΓj,k1Dj,k1x\in K_{j}\cap\Gamma_{j,k-1}\setminus D_{j,k-1}. Then by (4.10), dist(x,Γ0)<(k1)exp(j1/8)1/(4j1/4){\rm dist}\,(x,\Gamma_{0})<(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})\leq 1/(4\,j^{\nicefrac{{1}}{{4}}}), where the last inequality follows from kj 2pj2jεjκk\leq j\,2^{p_{j}}\leq 2\,j\,\varepsilon_{j}^{-\kappa} and the choice of εj\varepsilon_{j}. By (4.16), we need to have some x~Γ0Dj\tilde{x}\in\Gamma_{0}\cap D_{j} such that |xx~|<(k1)exp(j1/8)|x-\tilde{x}|<(k-1)\exp(-j^{\nicefrac{{1}}{{8}}}). On the other hand, by the definitions of Dj,k1D_{j,k-1} and DjD_{j}, |xx~|dist(Aj,k,Dj)>1/j1/4|x-\tilde{x}|\geq{\rm dist}(A_{j,k},D_{j})>1/j^{1/4}, and we have reached a contradiction. Thus the first claim follows. For the second claim, such point xx satisfies dist(x,Γ0Dj)=1/(2j1/4){\rm dist}\,(x,\Gamma_{0}\setminus D_{j})=1/(2j^{1/4}). If there exists x~Γj,k\tilde{x}\in\Gamma_{j,k}^{\star} with |xx~|<j10|x-\tilde{x}|<j^{-10}, then x~Γj,k1\tilde{x}\in\Gamma_{j,k-1}, and dist(x~,Γ0Dj)<1/(2j1/4)+j10{\rm dist}\,(\tilde{x},\Gamma_{0}\setminus D_{j})<1/(2j^{1/4})+j^{-10}, so that x~KjΓj,k1Dj,k1\tilde{x}\in K_{j}\cap\Gamma_{j,k-1}\setminus D_{j,k-1}. By (4.10), dist(x~,Γ0)(k1)exp(j1/8){\rm dist}\,(\tilde{x},\Gamma_{0})\leq(k-1)\exp(-j^{\nicefrac{{1}}{{8}}}) and thus dist(x,Γ0)<j10+(k1)exp(j1/8){\rm dist}\,(x,\Gamma_{0})<j^{-10}+(k-1)\exp(-j^{\nicefrac{{1}}{{8}}}). Since dist(x,Γ0Dj)=1/(2j1/4){\rm dist}\,(x,\Gamma_{0}\setminus D_{j})=1/(2j^{1/4}), this shows that there exists x^Γ0Dj\hat{x}\in\Gamma_{0}\cap D_{j} such that |x^x|<j10+(k1)exp(j1/8)1/(2j1/4)|\hat{x}-x|<j^{-10}+(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})\leq 1/(2\,j^{1/4}). On the other hand, dist((Dj,k1)j10,Dj)>1/(j1/4){\rm dist}\,(\partial(D_{j,k-1})_{j^{-10}},D_{j})>1/(j^{1/4}), which is a contradiction. Thus we have the second claim. ∎

Next, for each point x(Dj,k1)j10x\in\partial(D_{j,k-1})_{j^{-10}}, let r0(x)Dj,k1r_{0}(x)\in\partial D_{j,k-1} be the nearest point projection of xx onto Dj,k1\partial D_{j,k-1}, and set rs(x):=sx+(1s)r0(x)r_{s}(x):=sx+(1-s)r_{0}(x) for s(0,1)s\in(0,1). With this notation, define

Retj,k:={rs(x):xAj,k,s(0,1)}.{\rm Ret}_{j,k}:=\{r_{s}(x)\,:\,x\in A_{j,k},\,\,s\in(0,1)\}.
Lemma 4.4.

We have (Dj,k1)j10(KjDj,k1)Retj,k(D_{j,k-1})_{j^{-10}}\setminus(K_{j}\cup D_{j,k-1})\subset{\rm Ret}_{j,k}.

Proof.

For any point x~(Dj,k1)j10(KjDj,k1)\tilde{x}\in(D_{j,k-1})_{j^{-10}}\setminus(K_{j}\cup D_{j,k-1}), there exist s(0,1)s\in(0,1) and x(Dj,k1)j10x\in\partial(D_{j,k-1})_{j^{-10}} such that x~=rs(x)\tilde{x}=r_{s}(x). The condition x~Kj\tilde{x}\notin K_{j} means that dist(x~,Γ0Dj)1/j1/4{\rm dist}\,(\tilde{x},\Gamma_{0}\setminus D_{j})\geq 1/j^{1/4}, and then dist(x,Γ0Dj)1/j1/4j10{\rm dist}\,(x,\Gamma_{0}\setminus D_{j})\geq 1/j^{1/4}-j^{-10}. Thus xAj,kx\in A_{j,k} and x~Retj,k\tilde{x}\in{\rm Ret}_{j,k}. ∎

The set Aj,kA_{j,k} is a relatively open subset of (Dj,k1)j10\partial(D_{j,k-1})_{j^{-10}}. Let Aj,k,lAj,kA_{j,k,l}\subset A_{j,k} be any of the (at most countably many) connected components of Aj,kA_{j,k} and define

Retj,k,l:={rs(x):xAj,k,l,s(0,1)}.{\rm Ret}_{j,k,l}:=\{r_{s}(x)\,:\,x\in A_{j,k,l},\,\,s\in(0,1)\}.
Lemma 4.5.

We have (Aj,k,l(Aj,k,l)j10)Γj,k=(A_{j,k,l}\cup(\partial A_{j,k,l})_{j^{-10}})\cap\Gamma_{j,k}^{\star}=\emptyset.

Proof.

The claim follows directly from Lemma 4.3. ∎

Lemma 4.5 implies that for each ll there exists some i(l){1,,N}i(l)\in\{1,\ldots,N\} such that Ej,k,i(l)E_{j,k,i(l)}^{\star} contains Aj,k,l(Aj,k,l)j10A_{j,k,l}\cup(\partial A_{j,k,l})_{j^{-10}}. For each index ll, let i(l)i(l) be this correspondence. We define for each i=1,,Ni=1,\ldots,N

E~j,k,i:=Ej,k,i(i(l)=iRetj,k,l).\tilde{E}_{j,k,i}:=E_{j,k,i}^{\star}\cup(\cup_{i(l)=i}{\rm Ret}_{j,k,l}).

In other words, when Aj,k,l(Aj,k,l)j10A_{j,k,l}\cup(\partial A_{j,k,l})_{j^{-10}} is contained in Ej,k,i(l)E_{j,k,i(l)}^{\star} with i(l)=ii(l)=i, then we replace the open partitions inside Retj,k,l{\rm Ret}_{j,k,l} by E~j,k,i\tilde{E}_{j,k,i}. For the resulting open partition ~j,k:={E~j,k,i}i=1N𝒪𝒫N(Uj,k1)\tilde{\mathcal{E}}_{j,k}:=\{\tilde{E}_{j,k,i}\}_{i=1}^{N}\in\mathcal{OP}^{N}(U_{j,k-1}), define Γ~j,k:=Uj,k1i=1NE~j,k,i\tilde{\Gamma}_{j,k}:=U_{j,k-1}\cap\cup_{i=1}^{N}\partial\tilde{E}_{j,k,i}.

Lemma 4.6.

We have

Γ~j,kKjDj,k1\tilde{\Gamma}_{j,k}\setminus K_{j}\subset D_{j,k-1} (4.17)

and

Γ~j,kDj,k1=Γj,k(Dj,k1Retj,k)=Γj,k1(Dj,k1Retj,k).\tilde{\Gamma}_{j,k}\setminus D_{j,k-1}=\Gamma_{j,k}^{\star}\setminus(D_{j,k-1}\cup{\rm Ret}_{j,k})=\Gamma_{j,k-1}\setminus(D_{j,k-1}\cup{\rm Ret}_{j,k}). (4.18)
Proof.

Note that Γ~j,kRetj,k¯Dj,k1=\tilde{\Gamma}_{j,k}\cap\overline{{\rm Ret}_{j,k}}\setminus D_{j,k-1}=\emptyset since Retj,kDj,k1\partial{\rm Ret}_{j,k}\setminus D_{j,k-1} is contained in some open partition by Lemma 4.5 and Γ~j,kRetj,k=\tilde{\Gamma}_{j,k}\cap{\rm Ret}_{j,k}=\emptyset. If there exists xΓ~j,k(KjDj,k1)x\in\tilde{\Gamma}_{j,k}\setminus(K_{j}\cup D_{j,k-1}), then xRetj,k¯x\notin\overline{{\rm Ret}_{j,k}} and thus xΓj,k(KjDj,k1)=Γj,k1(KjDj,k1)x\in\Gamma_{j,k}^{\star}\setminus(K_{j}\cup D_{j,k-1})=\Gamma_{j,k-1}\setminus(K_{j}\cup D_{j,k-1}). By (4.11), x(Dj,k1)j10(KjDj,k1)x\in(D_{j,k-1})_{j^{-10}}\setminus(K_{j}\cup D_{j,k-1}). By Lemma 4.4, xRetj,kx\in{\rm Ret}_{j,k}, which is a contradiction. This proves the first claim. The second claim follows from the definition of Γ~j,k\tilde{\Gamma}_{j,k}, in the sense that the new partition has no boundary in Retj,k{\rm Ret}_{j,k}, while Γj,k(Dj,k1Retj,k)\Gamma_{j,k}^{\star}\setminus(D_{j,k-1}\cup{\rm Ret}_{j,k}) is kept intact. The identity in (4.14) is also used to obtain the last equality. ∎

Lemma 4.7.

For any ϕj\phi\in\mathcal{R}_{j} we have:

Γ~j,kϕ𝑑nΓj,kϕ𝑑n.\int_{\tilde{\Gamma}_{j,k}}\phi\,d\mathcal{H}^{n}\leq\int_{\Gamma_{j,k}^{\star}}\phi\,d\mathcal{H}^{n}\,. (4.19)
Proof.

Note that Γ~j,kΓj,k(Dj,k1Retj,k¯)Retj,k\tilde{\Gamma}_{j,k}\triangle\Gamma_{j,k}^{\star}\subset(\partial D_{j,k-1}\cap\overline{{\rm Ret}_{j,k}})\cup{\rm Ret}_{j,k}, and that Γ~j,kRetj,k=\tilde{\Gamma}_{j,k}\cap{\rm Ret}_{j,k}=\emptyset. Let Retj,k,l{\rm Ret}_{j,k,l} and Ej,k,i(l)E_{j,k,i(l)}^{\star} be as before. For any xΓ~j,kRetj,k,l¯Dj,k1x\in\tilde{\Gamma}_{j,k}\cap\overline{{\rm Ret}_{j,k,l}}\subset\partial D_{j,k-1}, consider x~(Dj,k1)j10\tilde{x}\in\partial(D_{j,k-1})_{j^{-10}} such that r0(x~)=xr_{0}(\tilde{x})=x. Note that x~=r1(x~)Ej,k,i(l)\tilde{x}=r_{1}(\tilde{x})\in E_{j,k,i(l)}^{\star}. If rs(x~)Γj,kr_{s}(\tilde{x})\notin\Gamma_{j,k}^{\star} for all s[0,1)s\in[0,1), then r0(x~)=xEj,k,i(l)r_{0}(\tilde{x})=x\in E_{j,k,i(l)}^{\star} and we have xE~j,k,i(l)x\in\tilde{E}_{j,k,i(l)}, which is a contradiction to xΓ~j,kx\in\tilde{\Gamma}_{j,k}. Thus there exists s[0,1)s\in[0,1) such that rs(x~)Γj,kr_{s}(\tilde{x})\in\Gamma_{j,k}^{\star}. In particular, we see that Γ~j,kRetj,k¯\tilde{\Gamma}_{j,k}\cap\overline{{\rm Ret}_{j,k}} is in the image of Γj,kRetj,k¯\Gamma_{j,k}^{\star}\cap\overline{{\rm Ret}_{j,k}} through the normal nearest point projection onto Dj,k1\partial D_{j,k-1}. Furthermore, since rs(x~)=x+s|x~x|νU(x)r_{s}(\tilde{x})=x+s\,\lvert\tilde{x}-x\rvert\,\nu_{U}(x), and since ϕ\phi is νU\nu_{U}-non decreasing in n+1Dj\mathbb{R}^{n+1}\setminus D_{j}, it holds ϕ(x)ϕ(rs(x~))\phi(x)\leq\phi(r_{s}(\tilde{x})). Given that the normal nearest point projection onto Dj,k1\partial D_{j,k-1} is a Lipschitz map with Lipschitz constant =1=1, the desired estimate follows from the area formula. ∎

Note that, as a corollary of Lemma 4.7, we have that, setting ~j,k={E~j,k,i}i=1N\tilde{\mathcal{E}}_{j,k}=\{\tilde{E}_{j,k,i}\}_{i=1}^{N},

~j,k(n+1)j,k(n+1).\|\partial\tilde{\mathcal{E}}_{j,k}\|(\mathbb{R}^{n+1})\leq\|\partial\mathcal{E}_{j,k}^{\star}\|(\mathbb{R}^{n+1})\,. (4.20)

Step 3: motion by smoothed mean curvature with boundary damping. Let V~j,k=~j,k\tilde{V}_{j,k}=\partial\tilde{\mathcal{E}}_{j,k} as defined in (3.8), and compute hεj():=hεj(,V~j,k)h_{\varepsilon_{j}}(\cdot):=h_{\varepsilon_{j}}(\cdot,\tilde{V}_{j,k}). Also, let ηj𝒜j3/4\eta_{j}\in\mathcal{A}_{j^{\nicefrac{{3}}{{4}}}} be the cut-off function defined in Definition 3.15. Observe that jj has been chosen so that the conclusions of Lemma 3.16 hold. Define the smooth diffeomorphism fj,k(x):=x+ηj(x)hεj(x)Δtjf_{j,k}(x):=x+\eta_{j}(x)\,h_{\varepsilon_{j}}(x)\,\Delta t_{j}. Observe that the induction hypothesis (4.12), together with (4.15) and (4.20), implies that V~j,k(n+1)M\|\tilde{V}_{j,k}\|(\mathbb{R}^{n+1})\leq M as defined in (4.6). Hence, by Lemma 3.16, and using (3.23) and the definition of Δtj\Delta t_{j}, we can conclude that |ηjhεΔtj|exp(j1/8)\lvert\eta_{j}\,h_{\varepsilon}\,\Delta t_{j}\rvert\leq\exp(-j^{\nicefrac{{1}}{{8}}}) on K~j\tilde{K}_{j}. By the choice of εj\varepsilon_{j}, we also have that |ηjhεΔtj|j10|\eta_{j}\,h_{\varepsilon}\,\Delta t_{j}|\leq j^{-10} everywhere.

Set Uj,k:=fj,k(Uj,k1)U_{j,k}:=f_{j,k}(U_{j,k-1}), Ej,k,i:=fj,k(E~j,k,i)E_{j,k,i}:=f_{j,k}(\tilde{E}_{j,k,i}) and Γj,k:=Uj,ki=1NEj,k,i\Gamma_{j,k}:=U_{j,k}\cap\cup_{i=1}^{N}\partial E_{j,k,i}.

Lemma 4.8.

We have

Uj,k(U)kexp(j1/8)andUj,kU(U)kexp(j1/8),\partial U_{j,k}\subset\left(\partial U\right)_{k\,\exp(-j^{\nicefrac{{1}}{{8}}})}\,\quad\mbox{and}\quad U_{j,k}\triangle U\subset\left(\partial U\right)_{k\,\exp(-j^{\nicefrac{{1}}{{8}}})}\,,

namely (4.9) with kk in place of k1k-1 holds true.

Proof.

Since |xfj,k(x)|ηj|hεj|Δtjexp(j1/8)|x-f_{j,k}(x)|\leq\eta_{j}|h_{\varepsilon_{j}}|\Delta t_{j}\leq\exp(-j^{\nicefrac{{1}}{{8}}}) on KjK_{j} by Lemma 3.16(2), we see with (4.9) that fj,k(Kj(Uj,k1Uj,k1U))(U)kexp(j1/8)f_{j,k}(K_{j}\cap(\partial U_{j,k-1}\cup U_{j,k-1}\triangle U))\subset(\partial U)_{k\exp(-j^{\nicefrac{{1}}{{8}}})}. In order to show that also fj,k((Uj,k1Uj,k1U)Kj)(U)kexp(j1/8)f_{j,k}((\partial U_{j,k-1}\cup U_{j,k-1}\triangle U)\setminus K_{j})\subset(\partial U)_{k\exp(-j^{\nicefrac{{1}}{{8}}})}, we next claim that

min{dist(Uj,k1Kj,Γ~j,k),dist((Uj,k1U)Kj,Γ~j,k)}1/(4j1/4).\min\{\mathrm{dist}(\partial U_{j,k-1}\setminus K_{j},\tilde{\Gamma}_{j,k})\,,\;\mathrm{dist}((U_{j,k-1}\triangle U)\setminus K_{j},\tilde{\Gamma}_{j,k})\}\geq 1/(4\,j^{\nicefrac{{1}}{{4}}})\,. (4.21)

To see this, let x(Uj,k1(Uj,k1U))Kjx\in(\partial U_{j,k-1}\cup(U_{j,k-1}\triangle U))\setminus K_{j} and yΓ~j,ky\in\tilde{\Gamma}_{j,k}. Since xUj,k1(Uj,k1U)x\in\partial U_{j,k-1}\cup(U_{j,k-1}\triangle U), by (4.9) there is x~U\tilde{x}\in\partial U such that |xx~|(k1)exp(j1/8)\lvert x-\tilde{x}\rvert\leq(k-1)\exp(-j^{\nicefrac{{1}}{{8}}}). Now, if yKjy\notin K_{j}, then by Lemma 4.18, yDj,k1y\in D_{j,k-1}. By the definition of Dj,k1D_{j,k-1}, |xy||yx~||x~x|1/j1/42(k1)exp(j1/8)\lvert x-y\rvert\geq\lvert y-\tilde{x}\rvert-\lvert\tilde{x}-x\rvert\geq 1/j^{\nicefrac{{1}}{{4}}}-2(k-1)\exp(-j^{\nicefrac{{1}}{{8}}}), so that |xy|1/(4j1/4)\lvert x-y\rvert\geq 1/(4\,j^{\nicefrac{{1}}{{4}}}). The same conclusion clearly holds if yDj,k1y\in D_{j,k-1}. Finally, if yKjDj,k1y\in K_{j}\setminus D_{j,k-1} then, by (4.18), yΓj,k1KjDj,k1y\in\Gamma_{j,k-1}\cap K_{j}\setminus D_{j,k-1}. Then by (4.10), y(Γ0)(k1)exp(j1/8)Dj,k1y\in(\Gamma_{0})_{(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})}\setminus D_{j,k-1}. By the definition of KjK_{j}, we have |xy|j1/4(k1)exp(j1/8)>1/(4j1/4)|x-y|\geq j^{-\nicefrac{{1}}{{4}}}-(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})>1/(4j^{\nicefrac{{1}}{{4}}}). This proves (4.21). For any point x(Γ~j,k)1/4j1/4x\notin(\tilde{\Gamma}_{j,k})_{1/4j^{\nicefrac{{1}}{{4}}}}, note that

|hεj(x,V~j,k)|εj1Γ~j,k|Φεj(xy)|𝑑n(y)Mexp(1/εj)<exp(j1/8)|h_{\varepsilon_{j}}(x,\tilde{V}_{j,k})|\leq\varepsilon_{j}^{-1}\int_{\tilde{\Gamma}_{j,k}}|\nabla\Phi_{\varepsilon_{j}}(x-y)|\,d\mathcal{H}^{n}(y)\leq M\exp(-1/\varepsilon_{j})<\exp(-j^{\nicefrac{{1}}{{8}}})

for all sufficiently large jj. This shows that fj,k((Uj,k1Uj,k1U)Kj)(U)kexp(j1/8)f_{j,k}((\partial U_{j,k-1}\cup U_{j,k-1}\triangle U)\setminus K_{j})\subset(\partial U)_{k\exp(-j^{\nicefrac{{1}}{{8}}})} and concludes the proof.

Lemma 4.9.

We have

fj,k(Dj,k1)(KjDj,k)=.f_{j,k}(D_{j,k-1})\cap(K_{j}\setminus D_{j,k})=\emptyset.
Proof.

Suppose, towards a contradiction, that xfj,k(Dj,k1)(KjDj,k)x\in f_{j,k}(D_{j,k-1})\cap(K_{j}\setminus D_{j,k}). Since |Δtjηjhεj|1/j1/4|\Delta t_{j}\eta_{j}h_{\varepsilon_{j}}|\ll 1/j^{1/4} for all points, x^:=fj,k1(x)\hat{x}:=f_{j,k}^{-1}(x) is in K~j\tilde{K}_{j} in particular. Then, |ηj(x^)hεj(x^)Δtj|exp(j1/8)|\eta_{j}(\hat{x})\,h_{\varepsilon_{j}}(\hat{x})\,\Delta t_{j}|\leq\exp(-j^{\nicefrac{{1}}{{8}}}). This means that |xx^|exp(j1/8)|x-\hat{x}|\leq\exp(-j^{\nicefrac{{1}}{{8}}}). Since xDj,kx\notin D_{j,k}, we need to have x^Dj,k1\hat{x}\notin D_{j,k-1} by the definition of these sets. But this is a contradiction since x=fj,k(x^)fj,k(Dj,k1)x=f_{j,k}(\hat{x})\in f_{j,k}(D_{j,k-1}) and fj,kf_{j,k} is bijective. ∎

Lemma 4.10.

We have

(Γj,kKj)Dj,k(Γ0)kexp(j1/8),(\Gamma_{j,k}\cap K_{j})\setminus D_{j,k}\subset(\Gamma_{0})_{k\exp(-j^{\nicefrac{{1}}{{8}}})}\,, (4.22)

namely (4.10) with kk in place of k1k-1 holds true.

Proof.

For any x(Γj,kKj)Dj,kx\in(\Gamma_{j,k}\cap K_{j})\setminus D_{j,k}, by Lemma 4.9, xfj,k(Dj,k1)x\notin f_{j,k}(D_{j,k-1}) and there exists x^Γ~j,kDj,k1\hat{x}\in\tilde{\Gamma}_{j,k}\setminus D_{j,k-1} such that fj,k(x^)=xf_{j,k}(\hat{x})=x. By (4.17) and (4.18), x^(Γj,kKj)Dj,k1=(Γj,k1Kj)Dj,k1\hat{x}\in(\Gamma_{j,k}^{\star}\cap K_{j})\setminus D_{j,k-1}=(\Gamma_{j,k-1}\cap K_{j})\setminus D_{j,k-1}. By (4.10), x^(Γ0)(k1)exp(j1/8)\hat{x}\in(\Gamma_{0})_{(k-1)\exp(-j^{\nicefrac{{1}}{{8}}})}; on the other hand, x^Kj\hat{x}\in K_{j} implies |xx^|exp(j1/8)|x-\hat{x}|\leq\exp(-j^{\nicefrac{{1}}{{8}}}). These two estimates together prove (4.22). ∎

Lemma 4.11.

We have

Γj,kKj(Dj,k)j10,\Gamma_{j,k}\setminus K_{j}\subset(D_{j,k})_{j^{-10}}\,, (4.23)

namely (4.11) with kk in place of k1k-1 holds true.

Proof.

If xΓj,kKjx\in\Gamma_{j,k}\setminus K_{j}, then there is x~Γ~j,k\tilde{x}\in\tilde{\Gamma}_{j,k} such that x=fj,k(x~)x=f_{j,k}(\tilde{x}). If x~Kj\tilde{x}\notin K_{j}, then xDj,k1Dj,kx\in D_{j,k-1}\subset D_{j,k} by Lemma 4.18, and since |xx~|<j10\lvert x-\tilde{x}\rvert<j^{-10} by the properties of the diffeomorphism fj,kf_{j,k} our claim holds true. Hence, suppose that x~Kj\tilde{x}\in K_{j}. Since in this case |xx~|exp(j1/8)\lvert x-\tilde{x}\rvert\leq\exp(-j^{\nicefrac{{1}}{{8}}}), if x~Dj,k1\tilde{x}\in D_{j,k-1} then evidently xDj,kx\in D_{j,k}, and the proof is complete. On the other hand, we claim that it has to be x~Dj,k1\tilde{x}\in D_{j,k-1}. Indeed, otherwise we would have x~Γ~j,kKjDj,k1\tilde{x}\in\tilde{\Gamma}_{j,k}\cap K_{j}\setminus D_{j,k-1}, and thus, again by Lemma 4.18, x~Γj,kKjDj,k1=Γj,k1KjDj,k1\tilde{x}\in\Gamma_{j,k}^{\star}\cap K_{j}\setminus D_{j,k-1}=\Gamma_{j,k-1}\cap K_{j}\setminus D_{j,k-1}. But then, by (4.10), there exists yΓ0y\in\Gamma_{0} such that |x~y|<(k1)exp(j1/8)\lvert\tilde{x}-y\rvert<(k-1)\,\exp(-j^{\nicefrac{{1}}{{8}}}). Since x~Dj,k1\tilde{x}\notin D_{j,k-1}, we have yDjy\notin D_{j}, and therefore dist(x,(Γ0Dj))|xx~|+|x~y|<kexp(j1/8)<1/j1/4\mathrm{dist}(x,(\Gamma_{0}\setminus D_{j}))\leq|x-\tilde{x}|+|\tilde{x}-y|<k\,\exp(-j^{\nicefrac{{1}}{{8}}})<1/j^{\nicefrac{{1}}{{4}}}. But this contradicts the fact that xKjx\notin K_{j} and completes the proof. ∎

Conclusion. Together, Lemmas 4.8, 4.10 and 4.11 complete the induction step from k1k-1 to kk for properties (1), (2), (3). Concerning (4.3), first we observe that, since fj,kf_{j,k} is a diffeomorphism,

j,k=𝐯𝐚𝐫(i=1N(Uj,kEj,k,i), 1)=𝐯𝐚𝐫(fj,k(i=1N(Uj,k1E~j,k,i)), 1)=(fj,k)~j,k.\partial\mathcal{E}_{j,k}=\mathbf{var}\left(\bigcup_{i=1}^{N}(U_{j,k}\cap\partial E_{j,k,i})\,,\;1\right)=\mathbf{var}\left(f_{j,k}\Big{(}\bigcup_{i=1}^{N}(U_{j,k-1}\cap\partial\tilde{E}_{j,k,i})\Big{)}\,,\;1\right)=(f_{j,k})_{\sharp}\partial\tilde{\mathcal{E}}_{j,k}\,. (4.24)

We can then use (3.42) with V=~j,kV=\partial\tilde{\mathcal{E}}_{j,k}, MM as defined in (4.6), ε=εj\varepsilon=\varepsilon_{j}, and Δt=Δtj\Delta t=\Delta t_{j} in order to conclude that

j,k(n+1)2Δtjεj1/4+~j,k(n+1).\|\partial\mathcal{E}_{j,k}\|(\mathbb{R}^{n+1})\leq 2\,\Delta t_{j}\,\varepsilon_{j}^{\nicefrac{{1}}{{4}}}+\|\partial\tilde{\mathcal{E}}_{j,k}\|(\mathbb{R}^{n+1})\,. (4.25)

Combining (4.25) with (4.15) and (4.20), and using that 2εj1/4<εj1/62\,\varepsilon_{j}^{\nicefrac{{1}}{{4}}}<\varepsilon_{j}^{\nicefrac{{1}}{{6}}}, we get

j,k(n+1)j,k1(n+1)+Δtjεj1/6,\|\partial\mathcal{E}_{j,k}\|(\mathbb{R}^{n+1})\leq\|\partial\mathcal{E}_{j,k-1}\|(\mathbb{R}^{n+1})+\Delta t_{j}\,\varepsilon_{j}^{\nicefrac{{1}}{{6}}}\,, (4.26)

which, together with (4.12), gives (4.3). Last, we show that the construction of the induction step satisfies (4.4) and (4.5). Since εj\varepsilon_{j} satisfies (3.31) and (4.3) implies (fj,k)~j,k(n+1)M\|(f_{j,k})_{\sharp}\partial\tilde{\mathcal{E}}_{j,k}\|(\mathbb{R}^{n+1})\leq M, so that the estimates in (3.43) and (3.44) hold true. Then (4.4) follows from (3.42), (3.44), (4.20) and (4.13). Finally, (4.5) is a consequence of (3.41), (3.43), (4.19) and (4.15). ∎

We are now in a position to define an approximate flow of open partitions. As anticipated in the introduction, the flow is piecewise constant in time; the parameter Δtj\Delta t_{j} defined in (4.8) is the epoch length, namely the length of the time intervals in which the flow is set to be constant.

Definition 4.12.

For every jmax{j0,J(n)}j\geq\max\{j_{0},J(n)\}, define a family j(t)\mathcal{E}_{j}(t) for t[0,j]t\in\left[0,j\right] by setting

j(t):=j,kif t((k1)Δtj,kΔtj].\mathcal{E}_{j}(t):=\mathcal{E}_{j,k}\quad\mbox{if $t\in\left((k-1)\,\Delta t_{j},k\,\Delta t_{j}\right]$}\,.

4.2. Convergence in the sense of measures

Proposition 4.13.

Under the assumptions of Proposition 4.2, there exist a subsequence {j}=1\{j_{\ell}\}_{\ell=1}^{\infty} and a one-parameter family of Radon measures {μt}t0\{\mu_{t}\}_{t\geq 0} on UU such that

μt(ϕ)=limj(t)(ϕ)\mu_{t}(\phi)=\lim_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi) (4.27)

for all ϕCc(U)\phi\in C_{c}(U) and t+t\in\mathbb{R}^{+}. The limits limst+μs(ϕ)\lim_{s\to t+}\mu_{s}(\phi) and limstμs(ϕ)\lim_{s\to t-}\mu_{s}(\phi) exist and satisfy

limst+μs(ϕ)μt(ϕ)limstμs(ϕ)\lim_{s\to t+}\mu_{s}(\phi)\leq\mu_{t}(\phi)\leq\lim_{s\to t-}\mu_{s}(\phi) (4.28)

for all ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+}) and t+t\in\mathbb{R}^{+}. Furthermore, limst+μs(ϕ)=limstμs(ϕ)\lim_{s\to t+}\mu_{s}(\phi)=\lim_{s\to t-}\mu_{s}(\phi) for all t+Bt\in\mathbb{R}^{+}\setminus B, where B+B\subset\mathbb{R}^{+} is countable. Finally, for every T>0T>0 we have

lim sup0T(n+1ηj|Φεjδ(j(t))|2Φεjj(t)+εj𝑑x1ΔtjΔjj(t)(Dj))𝑑t<,\limsup_{\ell\to\infty}\int_{0}^{T}\left(\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}}(t))\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}(t)\|+\varepsilon_{j_{\ell}}}\,dx-\frac{1}{\Delta t_{j_{\ell}}}\,\Delta_{j_{\ell}}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(D_{j_{\ell}})\right)\,dt<\infty\,, (4.29)

and for a.e. t+t\in\mathbb{R}^{+} it holds

limj2(n+1)Δjj(t)(Dj)=0.\lim_{\ell\to\infty}j_{\ell}^{2(n+1)}\,\Delta_{j_{\ell}}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(D_{j_{\ell}})=0\,. (4.30)
Proof.

Let 22_{\mathbb{Q}} be the set of all non-negative numbers of the form i2j\frac{i}{2^{j}} for some i,j{0}i,j\in\mathbb{N}\cup\{0\}. 22_{\mathbb{Q}} is countable and dense in +\mathbb{R}^{+}. For each fixed TT\in\mathbb{N}, the mass estimate in (4.3) implies that

lim supjsupt[0,T]j(t)(n+1)0(n+1).\limsup_{j\to\infty}\sup_{t\in\left[0,T\right]}\|\partial\mathcal{E}_{j}(t)\|(\mathbb{R}^{n+1})\leq\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})\,. (4.31)

Therefore, by a diagonal argument we can choose a subsequence {j}\{j_{\ell}\} and a family of Radon measures {μt}t2\{\mu_{t}\}_{t\in 2_{\mathbb{Q}}} on n+1\mathbb{R}^{n+1} such that

μt(ϕ)=limj(t)(ϕ)for every ϕCc(n+1), for every t2.\mu_{t}(\phi)=\lim_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi)\qquad\mbox{for every $\phi\in C_{c}(\mathbb{R}^{n+1})$, for every $t\in 2_{\mathbb{Q}}$}\,. (4.32)

Furthermore, with (4.31), we also deduce that

μt(n+1)0(n+1)for every t2.\mu_{t}(\mathbb{R}^{n+1})\leq\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})\qquad\mbox{for every $t\in 2_{\mathbb{Q}}$}\,. (4.33)

Next, let Z:={ϕq}qZ:=\{\phi_{q}\}_{q\in\mathbb{N}} be a countable subset of Cc2(U;+)C^{2}_{c}(U;\mathbb{R}^{+}) which is dense in Cc(U;+)C_{c}(U;\mathbb{R}^{+}) with respect to the supremum norm. We claim that the function

t2gq(t):=μt(ϕq)t2ϕq0(n+1)t\in 2_{\mathbb{Q}}\mapsto g_{q}(t):=\mu_{t}(\phi_{q})-t\,\|\nabla^{2}\phi_{q}\|_{\infty}\,\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1}) (4.34)

is monotone non-increasing. To see this, first observe that since ϕq\phi_{q} has compact support, and since the definition in (4.34) depends linearly on ϕq\phi_{q}, we can assume without loss of generality that ϕq<1\phi_{q}<1. For convenience, for t0t\leq 0, we define gq(t):=μ0(ϕq)=0(ϕq)g_{q}(t):=\mu_{0}(\phi_{q})=\|\partial\mathcal{E}_{0}\|(\phi_{q}). Next, given any jJ(n)j\geq J(n) as in Proposition 4.2, for every positive function ϕ\phi such that ηjϕ𝒜j\eta_{j}\,\phi\in\mathcal{A}_{j} we can compute

δ(j(t),ϕ)(ηjhεj)=δ(j(t))(ηjϕhεj)+𝐆n(n+1)ηj(x)hεjS(ϕ(x))d(j(t))(x,S)=:I1+I2\begin{split}\delta(\partial\mathcal{E}_{j}(t),\phi)(\eta_{j}\,h_{\varepsilon_{j}})&=\delta(\partial\mathcal{E}_{j}(t))(\eta_{j}\,\phi\,h_{\varepsilon_{j}})+\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\eta_{j}(x)\,h_{\varepsilon_{j}}\cdot S^{\perp}(\nabla\phi(x))\,d(\partial\mathcal{E}_{j}(t))(x,S)\\ &=:I_{1}+I_{2}\end{split} (4.35)

for every t[0,j]t\in\left[0,j\right], and where hεj()=hεj(,j(t))h_{\varepsilon_{j}}(\cdot)=h_{\varepsilon_{j}}(\cdot,\partial\mathcal{E}_{j}(t)). By the choice of εj\varepsilon_{j}, and since ηjϕ𝒜j\eta_{j}\,\phi\in\mathcal{A}_{j}, we can use (3.33) to estimate

I1εj1/4(1εj1/4)n+1ηjϕ|Φεjδ(j(t))|2Φεjj(t)+εj𝑑x,I_{1}\leq\varepsilon_{j}^{\nicefrac{{1}}{{4}}}-\left(1-\varepsilon_{j}^{\nicefrac{{1}}{{4}}}\right)\,\int_{\mathbb{R}^{n+1}}\eta_{j}\,\phi\,\frac{\lvert\Phi_{\varepsilon_{j}}\ast\delta(\partial\mathcal{E}_{j}(t))\rvert^{2}}{\Phi_{\varepsilon_{j}}\ast\|\partial\mathcal{E}_{j}(t)\|+\varepsilon_{j}}\,dx\,, (4.36)

whereas Young’s inequality together with (3.34) yields

I212n+1ηjϕ|hεj|2dj(t)+12n+1ηj|S(ϕ)|2ϕdj(t)εj1/42+(12+εj1/42)n+1ηjϕ|Φεjδ(j(t))|2Φεjj(t)+εj𝑑x+12n+1ηj|S(ϕ)|2ϕdj(t).\begin{split}I_{2}&\leq\frac{1}{2}\,\int_{\mathbb{R}^{n+1}}\eta_{j}\,\phi\,\lvert h_{\varepsilon_{j}}\rvert^{2}\,d\|\partial\mathcal{E}_{j}(t)\|+\frac{1}{2}\,\int_{\mathbb{R}^{n+1}}\eta_{j}\,\frac{\lvert S^{\perp}(\nabla\phi)\rvert^{2}}{\phi}\,d\|\partial\mathcal{E}_{j}(t)\|\\ &\leq\frac{\varepsilon_{j}^{\nicefrac{{1}}{{4}}}}{2}+\left(\frac{1}{2}+\frac{\varepsilon_{j}^{\nicefrac{{1}}{{4}}}}{2}\right)\,\int_{\mathbb{R}^{n+1}}\eta_{j}\,\phi\,\frac{\lvert\Phi_{\varepsilon_{j}}\ast\delta(\partial\mathcal{E}_{j}(t))\rvert^{2}}{\Phi_{\varepsilon_{j}}\ast\|\partial\mathcal{E}_{j}(t)\|+\varepsilon_{j}}\,dx+\frac{1}{2}\,\int_{\mathbb{R}^{n+1}}\eta_{j}\,\frac{\lvert S^{\perp}(\nabla\phi)\rvert^{2}}{\phi}\,d\|\partial\mathcal{E}_{j}(t)\|.\end{split} (4.37)

Plugging (4.36) and (4.37) into (4.35), we obtain

δ(j(t),ϕ)(ηjhεj)2εj14+12n+1ηj|ϕ|2ϕdj(t)\delta(\partial\mathcal{E}_{j}(t),\phi)(\eta_{j}\,h_{\varepsilon_{j}})\leq 2\,\varepsilon_{j}^{\frac{1}{4}}+\frac{1}{2}\,\int_{\mathbb{R}^{n+1}}\eta_{j}\,\frac{\lvert\nabla\phi\rvert^{2}}{\phi}\,d\|\partial\mathcal{E}_{j}(t)\| (4.38)

for every t[0,j]t\in\left[0,j\right] and for every positive function ϕ\phi such that ηjϕ𝒜j\eta_{j}\,\phi\in\mathcal{A}_{j}. Now, for every TT\in\mathbb{N}, for every ϕqZ\phi_{q}\in Z with ϕq<1\phi_{q}<1, and for every sufficiently large ii\in\mathbb{N}, choose jmax{T,J(n)}j_{*}\geq\max\{T,J(n)\} so that

  • (i)

    ϕq+i1𝒜jj\phi_{q}+i^{-1}\in\mathcal{A}_{j}\cap\mathcal{R}_{j},

  • (ii)

    ηj(ϕq+i1)𝒜j\eta_{j}\,(\phi_{q}+i^{-1})\in\mathcal{A}_{j}

for every jjj\geq j_{*}. Using that ηj𝒜j3/4\eta_{j}\in\mathcal{A}_{j^{\nicefrac{{3}}{{4}}}} for every jJ(n)j\geq J(n) and that ϕq=0\phi_{q}=0 outside some compact set KUK\subset U, it is easily seen that the two conditions above can be met by choosing jj_{*} sufficiently large, depending on ii, ϕqC2\|\phi_{q}\|_{C^{2}}, and KK. In particular, jj_{*} is so large that ϕq0\phi_{q}\equiv 0 on (U)s0Dj\left(\partial U\right)_{s_{0}}^{-}\setminus D_{j_{*}}, so that ϕq+i1\phi_{q}+i^{-1} is trivially νU\nu_{U}-non decreasing in n+1Dj\mathbb{R}^{n+1}\setminus D_{j_{*}} because it is constant in there. For any fixed t1,t2[0,T]2t_{1},t_{2}\in\left[0,T\right]\cap 2_{\mathbb{Q}} with t2>t1t_{2}>t_{1}, choose a larger jj_{*}, so that both t1t_{1} and t2t_{2} are integer multiples of 1/2pj1/2^{p_{j_{*}}}. Then, both t2t_{2} and t1t_{1} are integer multiples of Δtj\Delta t_{j_{\ell}} for every jjj_{\ell}\geq j_{*}. Hence, for every jjj_{\ell}\geq j_{*} we can apply (4.5) repeatedly with ϕ=ϕq+i1𝒜jj\phi=\phi_{q}+i^{-1}\in\mathcal{A}_{j_{\ell}}\cap\mathcal{R}_{j_{\ell}} and (4.38) again with ϕ=ϕq+i1\phi=\phi_{q}+i^{-1} so that ηjϕ𝒜j\eta_{j_{\ell}}\,\phi\in\mathcal{A}_{j_{\ell}} in order to deduce

j(t2)(ϕq+i1)j(t1)(ϕq+i1)(εj1/8+2εj1/4)(t2t1)+12t1t2n+1ηj|ϕq|2ϕq+i1dj(t)𝑑t.\begin{split}&\|\partial\mathcal{E}_{j_{\ell}}(t_{2})\|(\phi_{q}+i^{-1})-\|\partial\mathcal{E}_{j_{\ell}}(t_{1})\|(\phi_{q}+i^{-1})\\ &\qquad\qquad\qquad\leq\left(\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{8}}}+2\,\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{4}}}\right)(t_{2}-t_{1})+\frac{1}{2}\,\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\frac{\lvert\nabla\phi_{q}\rvert^{2}}{\phi_{q}+i^{-1}}\,d\|\partial\mathcal{E}_{j_{\ell}}(t)\|\,dt\,.\end{split} (4.39)

As we let \ell\to\infty, the left-hand side of (4.39) can be bounded from below, using (4.31) and (4.32), as follows:

μt2(ϕq)μt1(ϕq)i10(n+1).\geq\mu_{t_{2}}(\phi_{q})-\mu_{t_{1}}(\phi_{q})-i^{-1}\,\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})\,. (4.40)

In order to estimate the right-hand side of (4.39), we note that

|ϕq|2ϕq+i1|ϕq|2ϕq22ϕq,\frac{\lvert\nabla\phi_{q}\rvert^{2}}{\phi_{q}+i^{-1}}\leq\frac{\lvert\nabla\phi_{q}\rvert^{2}}{\phi_{q}}\leq 2\,\|\nabla^{2}\phi_{q}\|_{\infty}\,, (4.41)

so that if we plug (4.41) in (4.39), use that ηj1\eta_{j_{\ell}}\leq 1, let \ell\to\infty by means of (4.31), and finally let ii\to\infty we conclude

μt2(ϕq)μt1(ϕq)2ϕq0(n+1)(t2t1)\mu_{t_{2}}(\phi_{q})-\mu_{t_{1}}(\phi_{q})\leq\|\nabla^{2}\phi_{q}\|_{\infty}\,\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})\,(t_{2}-t_{1}) (4.42)

for every t1,t2[0,T]2t_{1},t_{2}\in\left[0,T\right]\cap 2_{\mathbb{Q}} with t2>t1t_{2}>t_{1} and for any ϕqZ\phi_{q}\in Z with ϕq<1\phi_{q}<1, thus proving that the function defined in (4.34) is indeed monotone non-increasing on [0,T][0,T]. Since TT is arbitrary, the same holds on +\mathbb{R}^{+}.

Define now

B:={t+:lim2stgq(s)>lim2st+gq(s)for some q}.B:=\left\{t\in\mathbb{R}^{+}\,\colon\,\lim_{2_{\mathbb{Q}}\ni s\to t-}g_{q}(s)>\lim_{2_{\mathbb{Q}}\ni s\to t+}g_{q}(s)\quad\mbox{for some $q\in\mathbb{N}$}\right\}\,.

By the monotonicity of each gqg_{q}, BB is a countable subset of +\mathbb{R}^{+}, and for every t+(B2)t\in\mathbb{R}^{+}\setminus(B\cup 2_{\mathbb{Q}}) we can define μt(ϕq)\mu_{t}(\phi_{q}) for every ϕqZ\phi_{q}\in Z by

μt(ϕq):=lim2st(gq(s)+s2ϕq0(n+1))=lim2stμs(ϕq).\mu_{t}(\phi_{q}):=\lim_{2_{\mathbb{Q}}\ni s\to t}\left(g_{q}(s)+s\,\|\nabla^{2}\phi_{q}\|_{\infty}\,\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})\right)=\lim_{2_{\mathbb{Q}}\ni s\to t}\mu_{s}(\phi_{q})\,. (4.43)

We claim that

limj(t)(ϕq)=μt(ϕq)for every t+(B2) and ϕqZ.\exists\,\lim_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi_{q})=\mu_{t}(\phi_{q})\qquad\mbox{for every $t\in\mathbb{R}^{+}\setminus(B\cup 2_{\mathbb{Q}})$\mbox{ and }$\phi_{q}\in Z$}\,. (4.44)

Indeed, due to the definition of j(t)\partial\mathcal{E}_{j_{\ell}}(t), there exists a sequence {t}=12\{t_{\ell}\}_{\ell=1}^{\infty}\subset 2_{\mathbb{Q}} with t>tt_{\ell}>t such that limt=t\lim_{\ell\to\infty}t_{\ell}=t and j(t)=j(t)\partial\mathcal{E}_{j_{\ell}}(t)=\partial\mathcal{E}_{j_{\ell}}(t_{\ell}). For any s2s\in 2_{\mathbb{Q}} with s>ts>t, and for all suffciently large \ell so that s>ts>t_{\ell}, we deduce from (4.39) that

j(s)(ϕq+i1)j(t)(ϕq+i1)+O(st).\|\partial\mathcal{E}_{j_{\ell}}(s)\|(\phi_{q}+i^{-1})\leq\|\partial\mathcal{E}_{j_{\ell}}(t_{\ell})\|(\phi_{q}+i^{-1})+{\rm O}(s-t)\,. (4.45)

Taking the lim inf\liminf_{\ell\to\infty} and then the limi\lim_{i\to\infty} on both sides of (4.45) we obtain that

μs(ϕq)lim infj(t)(ϕq)+O(st),\mu_{s}(\phi_{q})\leq\liminf_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t_{\ell})\|(\phi_{q})+{\rm O}(s-t)\,, (4.46)

so that when we let st+s\to t+ the definition of μt\mu_{t} and the fact that j(t)=j(t)\partial\mathcal{E}_{j_{\ell}}(t_{\ell})=\partial\mathcal{E}_{j_{\ell}}(t) yield

μt(ϕq)lim infj(t)(ϕq).\mu_{t}(\phi_{q})\leq\liminf_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi_{q})\,. (4.47)

An analogous argument provides, at the same time,

lim supj(t)(ϕq)μt(ϕq),\limsup_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi_{q})\leq\mu_{t}(\phi_{q})\,, (4.48)

so that (4.47) and (4.48) together complete the proof of (4.44). Since ZZ is dense in Cc(U;+)C_{c}(U;\mathbb{R}^{+}), (4.44) determines the limit measure uniquely, and the convergence holds for every ϕCc(U)\phi\in C_{c}(U) at every t+Bt\in\mathbb{R}^{+}\setminus B. On the other hand, since BB is countable we can extract a further subsequence of {j(t)}=1\{\partial\mathcal{E}_{j_{\ell}}(t)\}_{\ell=1}^{\infty} converging to a Radon measure μt\mu_{t} in UU for every t0t\geq 0. The continuity of μt(ϕ)\mu_{t}(\phi) on +B\mathbb{R}^{+}\setminus B follows from the definition of BB and a density argument. The existence of limits and the inequalities (4.28) can be also deduced from (4.42) in the case ϕ=ϕq\phi=\phi_{q}, and by density for ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+}). This completes the proof of the first part of the statement.

The claim in (4.29) follows from (4.4). Finally, (4.29) implies that for each T>0T>0

lim0Tj2(n+1)Δjj(t)(Dj)dtlimj2(n+1)Δtj=0,\lim_{\ell\to\infty}\int_{0}^{T}-j^{2(n+1)}\,\Delta_{j_{\ell}}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(D_{j_{\ell}})\,dt\lesssim\lim_{\ell\to\infty}j_{\ell}^{2(n+1)}\,\Delta t_{j_{\ell}}=0\,, (4.49)

where in the last identity we have used that

Δtjεjκj2(n+1),\Delta t_{j_{\ell}}\leq\varepsilon_{j_{\ell}}^{\kappa}\ll j_{\ell}^{-2(n+1)}\,,

given the definition of κ\kappa and the fact that εj\varepsilon_{j} satisfies (3.31). The proof is now complete. ∎

5. Brakke’s inequality, rectifiability and integrality of the limit

In the next proposition we deduce further information concerning the family {μt}t0\{\mu_{t}\}_{t\geq 0} of measures in UU introduced in Proposition 4.13.

Proposition 5.1.

Let {j(t)}\{\partial\mathcal{E}_{j_{\ell}}(t)\} for \ell\in\mathbb{N} and t0t\geq 0, and {μt}\{\mu_{t}\} for t0t\geq 0 be as in Proposition 4.13 satisfying (4.27), (4.29) and (4.30). Then, we have the following.

  1. (1)

    For a.e. t+t\in\mathbb{R}^{+} the measure μt\mu_{t} is integral, namely there exists an integral varifold Vt𝐈𝐕n(U)V_{t}\in\mathbf{IV}_{n}(U) such that μt=Vt\mu_{t}=\|V_{t}\|.

  2. (2)

    For a.e. t+t\in\mathbb{R}^{+}, if a subsequence {j}=1{j}=1\{j_{\ell}^{\prime}\}_{\ell=1}^{\infty}\subset\{j_{\ell}\}_{\ell=1}^{\infty} is such that

    supn+1ηj|Φεjδ(j(t))|2Φεjj(t)+εj𝑑x<,\sup_{\ell\in\mathbb{N}}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}^{\prime}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}^{\prime}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}}(t))\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}^{\prime}}}\ast\|\partial\mathcal{E}_{j_{\ell}^{\prime}}(t)\|+\varepsilon_{j_{\ell}^{\prime}}}\,dx<\infty\,, (5.1)

    then j(t)\partial\mathcal{E}_{j_{\ell}^{\prime}}(t) converges to Vt𝐈𝐕n(U)V_{t}\in{\bf IV}_{n}(U) as varifolds in UU as \ell\to\infty, namely

    limj(t)(φ)=Vt(φ)for every φCc(𝐆n(U)).\lim_{\ell\to\infty}\partial\mathcal{E}_{j_{\ell}^{\prime}}(t)(\varphi)=V_{t}(\varphi)\qquad\mbox{for every $\varphi\in C_{c}(\mathbf{G}_{n}(U))$}\,. (5.2)
  3. (3)

    For a.e. t+t\in\mathbb{R}^{+}, VtV_{t} has generalized mean curvature h(,Vt)h(\cdot,V_{t}) in UU which satisfies

    U|h(,Vt)|2ϕdVtlim infn+1ϕηj|Φεjδ(j(t))|2Φεjj(t)+εj𝑑x<\int_{U}\lvert h(\cdot,V_{t})\rvert^{2}\,\phi\,d\|V_{t}\|\leq\liminf_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\phi\,\eta_{j_{\ell}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}}(t))\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}(t)\|+\varepsilon_{j_{\ell}}}\,dx<\infty (5.3)

    for any ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+}).

Before proving Proposition 5.1, we need to state two important results, which are obtained by suitably modifying [20, Theorem 7.3 & Theorem 8.6], respectively.

Theorem 5.2 (Rectifiability Theorem).

Suppose that {Uj}=1\{U_{j_{\ell}}\}_{\ell=1}^{\infty} are open sets in n+1\mathbb{R}^{n+1}, {j}=1\{\mathcal{E}_{j_{\ell}}\}_{\ell=1}^{\infty} are such that j𝒪𝒫N(Uj)\mathcal{E}_{j_{\ell}}\in\mathcal{OP}^{N}(U_{j_{\ell}}), and {εj}l=1(0,1)\{\varepsilon_{j_{\ell}}\}_{l=1}^{\infty}\subset\left(0,1\right). Suppose that they satisfy

  1. (1)

    Uj(U)1/(4j1/4)\partial U_{j_{\ell}}\subset\left(\partial U\right)_{1/(4\,j_{\ell}^{\nicefrac{{1}}{{4}}})} and UjU(U)1/(4j1/4)U_{j_{\ell}}\,\triangle\,U\subset\left(\partial U\right)_{1/(4\,j_{\ell}^{\nicefrac{{1}}{{4}}})},

  2. (2)

    limj4εj=0\lim_{\ell\to\infty}j_{\ell}^{4}\,\varepsilon_{j_{\ell}}=0 and jεj1/6/2j_{\ell}\leq\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{6}}}/2,

  3. (3)

    supj(n+1)<\sup_{\ell\in\mathbb{N}}\|\partial\mathcal{E}_{j_{\ell}}\|(\mathbb{R}^{n+1})<\infty,

  4. (4)

    lim infn+1ηj|Φεjδ(j)|2Φεjj+εj𝑑x<\liminf_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}})\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx<\infty,

  5. (5)

    limΔjj(Dj)=0\lim_{\ell\to\infty}\Delta_{j_{\ell}}\|\partial\mathcal{E}_{j_{\ell}}\|(D_{j_{\ell}})=0.

Then, there exist a subsequence {j}=1{j}=1\{j^{\prime}_{\ell}\}_{\ell=1}^{\infty}\subset\{j_{\ell}\}_{\ell=1}^{\infty} and a varifold V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) such that jV\partial\mathcal{E}_{j^{\prime}_{\ell}}\to V in the sense of varifolds, sptVclosU\mathrm{spt}\,\|V\|\subset{\rm clos}\,U, and

θn(V,x)c0>0for V a.e. xU.\theta^{*n}(\|V\|,x)\geq c_{0}>0\qquad\mbox{for $\|V\|$ a.e. $x\in U$}\,. (5.4)

Here, c0c_{0} is a constant depending only on nn. Furthermore, V  𝐆n(U)𝐑𝐕n(U)V\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}\mathbf{G}_{n}(U)\in\mathbf{RV}_{n}(U).

Proof.

The existence of a subsequence {j}=1\{\partial\mathcal{E}_{j^{\prime}_{\ell}}\}_{\ell=1}^{\infty} converging in the sense of varifolds to V𝐕n(n+1)V\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) follows from the compactness theorem for Radon measures using assumption (3). The limit varifold VV satisfies sptVclosU\mathrm{spt}\|V\|\subset{\rm clos}\,U because of assumption (1). Indeed, since sptjclosUj\mathrm{spt}\|\partial\mathcal{E}_{j_{\ell}}\|\subset{\rm clos}\,U_{j_{\ell}} by definition of open partition, if xn+1closUx\in\mathbb{R}^{n+1}\setminus{\rm clos}\,U then (1) implies that there is a radius r>0r>0 such that j(Ur(x))=0\|\partial\mathcal{E}_{j^{\prime}_{\ell}}\|(U_{r}(x))=0 for all sufficiently large \ell, which in turn gives V(Ur(x))=0\|V\|(U_{r}(x))=0. Furthermore, the validity of (2), (3), and (4) allows us to apply Proposition 3.20 in order to deduce that δV  U\|\delta V\|\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}U is a Radon measure. Hence, the rectifiability of the limit varifold in UU is a consequence of Allard’s rectifiability theorem [1, Theorem 5.5(1)] once we prove (5.4). In turn, the latter can be obtained by repeating verbatim the arguments in [20, Theorem 7.3]. Indeed, the proof in there is local, and for a given x0Ux_{0}\in U it can be reproduced by replacing B1(x0)B_{1}(x_{0}) in [20, Theorem 7.3] by Bρ(x0)B_{\rho}(x_{0}) for sufficiently small ρ>0\rho>0 and large \ell so that Bρ(x0)DjB_{\rho}(x_{0})\subset D_{j^{\prime}_{\ell}} and ηj=1\eta_{j^{\prime}_{\ell}}=1 on Bρ(x0)B_{\rho}(x_{0}). ∎

Theorem 5.3 (Integrality Theorem).

Under the same assumptions of Theorem 5.2, if the stronger

  • (5)’

    limj2(n+1)Δjj(Dj)=0\lim_{\ell\to\infty}j_{\ell}^{2(n+1)}\,\Delta_{j_{\ell}}\|\partial\mathcal{E}_{j_{\ell}}\|(D_{j_{\ell}})=0

holds, then there is a converging subsequence {j}=1\{\partial\mathcal{E}_{j^{\prime}_{\ell}}\}_{\ell=1}^{\infty} such that the limit varifold VV satisfies V  𝐆n(U)𝐈𝐕n(U)V\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}\mathbf{G}_{n}(U)\in\mathbf{IV}_{n}(U).

Just like Theorem 5.2, the claim is local in nature and the proof is the same as [20, Theorem 8.6].

Proof of Proposition 5.1.

First, observe that by (4.29) and Fatou’s lemma we have

lim infn+1ηj|Φεjδ(j(t))|2Φεjj+εj𝑑x<\liminf_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}}(t))\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx<\infty (5.5)

for a.e. t+t\in\mathbb{R}^{+}. Furthermore, from (4.3) and the definition of j(t)\partial\mathcal{E}_{j}(t) we also have that for every T<T<\infty

supsupt[0,T]j(t)(n+1)<.\sup_{\ell\in\mathbb{N}}\sup_{t\in\left[0,T\right]}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\mathbb{R}^{n+1})<\infty\,. (5.6)

Let t+t\in\mathbb{R}^{+} be such that (5.5) and (4.30) hold. We want to show that the sequence {j(t)}=1\{\partial\mathcal{E}_{j_{\ell}}(t)\}_{\ell=1}^{\infty} satisfies the assumptions of Theorem 5.3. Assumption (1) follows from the construction of the discrete flow in Proposition 4.2 and the choice of εj\varepsilon_{j_{\ell}}; (2) follows again from the choice of εj\varepsilon_{j_{\ell}}, more precisely from (3.31); (3) and (4) are (5.6) and (5.5), respectively; (5)’ is (4.30). Hence, Theorem 5.3 implies that, along a further subsequence {j}=1{j}=1\{j_{\ell}^{\prime}\}_{\ell=1}^{\infty}\subset\{j_{\ell}\}_{\ell=1}^{\infty}, j(t)\partial\mathcal{E}_{j_{\ell}^{\prime}}(t) converges, as \ell\to\infty, to a varifold Vt𝐕n(n+1)V_{t}\in\mathbf{V}_{n}(\mathbb{R}^{n+1}) with sptVtclosU\mathrm{spt}\|V_{t}\|\subset{\rm clos}\,U and such that Vt  𝐆n(U)𝐈𝐕n(U)V_{t}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}\mathbf{G}_{n}(U)\in\mathbf{IV}_{n}(U). Since the convergence is in the sense of varifolds, the weights converge as Radon measures, and thus limj(t)=Vt\lim_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}^{\prime}}(t)\|=\|V_{t}\|: (4.27) then readily implies that Vt  U=μt\|V_{t}\|\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}U=\mu_{t} as Radon measures on UU, thus proving (1). Concerning the statement in (2), let {j}=1\{j_{\ell}^{\prime}\}_{\ell=1}^{\infty} be a subsequence along which (5.1) holds. Then, any converging further subsequence must converge to a varifold satisfying the conclusion of Theorem 5.3. A priori, two distinct subsequences may converge to different limits. On the other hand, each subsequential limit VtV_{t} is a rectifiable varifold when restricted to the open set UU, and furthermore it satisfies Vt  U=μt\|V_{t}\|\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}U=\mu_{t}. Since rectifiable varifolds are uniquely determined by their weight, we deduce that the limit in UU is independent of the particular subsequence, and thus (5.1) forces the whole sequence j(t)\partial\mathcal{E}_{j_{\ell}^{\prime}}(t) to converge to a uniquely determined integral varifold VtV_{t} in UU. Finally, (3) follows from Proposition 3.20. ∎

A byproduct of the proof of Proposition 5.1 is the existence of a (uniquely defined) integral varifold Vt𝐈𝐕n(U)V_{t}\in\mathbf{IV}_{n}(U) with weight Vt=μt\|V_{t}\|=\mu_{t} for every t+Zt\in\mathbb{R}^{+}\setminus Z, where 1(Z)=0\mathcal{L}^{1}(Z)=0. Such a varifold VtV_{t} is the limit on UU of any sequence j(t)\partial\mathcal{E}_{j_{\ell}^{\prime}}(t) along which (5.1) holds true. We can now extend the definition of VtV_{t} to tZt\in Z so to have a one-parameter family {Vt}t+𝐕n(U)\{V_{t}\}_{t\in\mathbb{R}^{+}}\subset\mathbf{V}_{n}(U) of varifolds satisfying Vt=μt\|V_{t}\|=\mu_{t} for every t+t\in\mathbb{R}^{+}. Such an extension can be defined in an arbitrary fashion: for instance, if tZt\in Z then we can set Vt(φ):=φ(x,S)𝑑μt(x)V_{t}(\varphi):=\int\varphi(x,S)\,d\mu_{t}(x) for every φCc(𝐆n(U))\varphi\in C_{c}(\mathbf{G}_{n}(U)), where SS is any constant plane in 𝐆(n+1,n)\mathbf{G}(n+1,n).

In the next theorem, we show that the family of varifolds {Vt}\{V_{t}\} is indeed a Brakke flow in UU. The boundary condition and the initial condition will be discussed in the following section.

Theorem 5.4 (Brakke’s inequality).

For every T>0T>0 we have

VT(U)+0TU|h(x,Vt)|2dVt(x)𝑑tn(Γ0).\|V_{T}\|(U)+\int_{0}^{T}\int_{U}\lvert h(x,V_{t})\rvert^{2}\,d\|V_{t}\|(x)\,dt\leq\mathcal{H}^{n}(\Gamma_{0})\,. (5.7)

Furthermore, for any ϕCc1(U×+;+)\phi\in C^{1}_{c}(U\times\mathbb{R}^{+};\mathbb{R}^{+}) and 0t1<t2<0\leq t_{1}<t_{2}<\infty we have:

Vt(ϕ(,t))|t=t1t2t1t2(δ(Vt,ϕ(,t))(h(,Vt))+Vt(ϕt(,t)))𝑑t.\|V_{t}\|(\phi(\cdot,t))\Big{|}_{t=t_{1}}^{t_{2}}\leq\int_{t_{1}}^{t_{2}}\left(\delta(V_{t},\phi(\cdot,t))(h(\cdot,V_{t}))+\|V_{t}\|(\frac{\partial\phi}{\partial t}(\cdot,t))\right)\,dt\,. (5.8)
Proof.

In order to prove (5.7), we use (4.5) with ϕ=1\phi=1 which belongs to 𝒜jj\mathcal{A}_{j}\cap\mathcal{R}_{j} for all jj. Assume T2T\in 2_{\mathbb{Q}} first. By summing over the index kk and for all sufficiently large jj, we have

j(T)(U)0Tδ(j(t))(ηjhεj)𝑑tn(Γ0)+Tεj1/8.\|\partial\mathcal{E}_{j}(T)\|(U)-\int_{0}^{T}\delta(\partial\mathcal{E}_{j}(t))(\eta_{j}h_{\varepsilon_{j}})\,dt\leq\mathcal{H}^{n}(\Gamma_{0})+T\varepsilon_{j}^{\nicefrac{{1}}{{8}}}.

By (3.33) and (5.3) as well as VT(U)lim infj(T)(U)\|V_{T}\|(U)\leq\liminf_{\ell\rightarrow\infty}\|\partial\mathcal{E}_{j_{\ell}}(T)\|(U), we obtain (5.7). For T2T\notin 2_{\mathbb{Q}}, use (4.28) to deduce the same inequality.

We now focus on proving the validity of Brakke’s inequality (5.8).

Step 1. We will first assume that ϕ\phi is independent of tt, and then extend the proof to the more general case. By an elementary density argument, we can assume that ϕCc(U;+)\phi\in C^{\infty}_{c}(U;\mathbb{R}^{+}). Moreover, since the support of ϕ\phi is compact and (5.8) depends linearly on ϕ\phi, we can also normalize ϕ\phi in such a way that ϕ<1\phi<1 everywhere. Then, for all sufficiently large ii\in\mathbb{N}, also ϕ^:=ϕ+i1<1\hat{\phi}:=\phi+i^{-1}<1 everywhere. Arguing as in the proof of Proposition 4.13, we can choose mm\in\mathbb{N} so that mJ(n)m\geq J(n) (see Lemma 3.16) and furthermore

  • (i)

    ϕ^𝒜jj\hat{\phi}\in\mathcal{A}_{j}\cap\mathcal{R}_{j},

  • (ii)

    ηjϕ^𝒜j\eta_{j}\,\hat{\phi}\in\mathcal{A}_{j}

for all jmj\geq m. Next, fix 0t1<t2<0\leq t_{1}<t_{2}<\infty, and let \ell be such that jmj_{\ell}\geq m and jt2j_{\ell}\geq t_{2}, so that j(t)\partial\mathcal{E}_{j_{\ell}}(t) is certainly well defined for t[t1,t2]t\in\left[t_{1},t_{2}\right]. By the condition (i) above, we can apply (4.5) with ϕ^\hat{\phi} and deduce

j(t)(ϕ^)j(tΔtj)(ϕ^)Δtj(δ(j(t),ϕ^)(ηjhεj(,j(t)))+εj1/8)\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\hat{\phi})-\|\partial\mathcal{E}_{j_{\ell}}(t-\Delta t_{j_{\ell}})\|(\hat{\phi})\leq\Delta t_{j_{\ell}}\,\left(\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))+\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{8}}}\right) (5.9)

for every t=Δtj,2Δtj,,j 2pjΔtjt=\Delta t_{j_{\ell}},2\,\Delta t_{j_{\ell}},\ldots,j_{\ell}\,2^{p_{j_{\ell}}}\,\Delta t_{j_{\ell}}. Since Δtj0\Delta t_{j_{\ell}}\to 0 as \ell\to\infty, we can assume without loss of generality that Δtj<t2t1\Delta t_{j_{\ell}}<t_{2}-t_{1}, so that there exist k1,k2k_{1},k_{2}\in\mathbb{N} with k1<k2k_{1}<k_{2} such that t1((k12)Δtj,(k11)Δtj]t_{1}\in\left((k_{1}-2)\,\Delta t_{j_{\ell}},(k_{1}-1)\,\Delta t_{j_{\ell}}\right] and t2((k21)Δtj,k2Δtj]t_{2}\in\left((k_{2}-1)\,\Delta t_{j_{\ell}},k_{2}\,\Delta t_{j_{\ell}}\right]. If we sum (5.9) on t=kΔtjt=k\,\Delta t_{j_{\ell}} for k[k1,k2]k\in\left[k_{1},k_{2}\right]\cap\mathbb{N} we get

j(t)(ϕ^)|t=(k11)Δtjk2Δtjk=k1k2Δtj(δ(j(kΔtj),ϕ^)(ηjhεj(,j(kΔtj)))+εj1/8).\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\hat{\phi})\Big{|}_{t=(k_{1}-1)\,\Delta t_{j_{\ell}}}^{k_{2}\,\Delta t_{j_{\ell}}}\leq\sum_{k=k_{1}}^{k_{2}}\Delta t_{j_{\ell}}\,\left(\delta(\partial\mathcal{E}_{j_{\ell}}(k\,\Delta t_{j_{\ell}}),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(k\,\Delta t_{j_{\ell}})))+\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{8}}}\right)\,. (5.10)

Since ϕ^=ϕ+i1\hat{\phi}=\phi+i^{-1}, we can estimate the left-hand side of (5.10) from below as

j(t)(ϕ^)|t=(k11)Δtjk2Δtjj(t2)(ϕ)j(t1)(ϕ)i1j(t1)(n+1),\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\hat{\phi})\Big{|}_{t=(k_{1}-1)\,\Delta t_{j_{\ell}}}^{k_{2}\,\Delta t_{j_{\ell}}}\geq\|\partial\mathcal{E}_{j_{\ell}}(t_{2})\|(\phi)-\|\partial\mathcal{E}_{j_{\ell}}(t_{1})\|(\phi)-i^{-1}\|\partial\mathcal{E}_{j_{\ell}}(t_{1})\|(\mathbb{R}^{n+1})\,, (5.11)

so that when we let \ell\to\infty we conclude

lim supj(t)(ϕ^)|t=(k11)Δtjk2ΔtjVt(ϕ)|t=t1t2i10(n+1),\limsup_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\hat{\phi})\Big{|}_{t=(k_{1}-1)\,\Delta t_{j_{\ell}}}^{k_{2}\,\Delta t_{j_{\ell}}}\geq\|V_{t}\|(\phi)\Big{|}_{t=t_{1}}^{t_{2}}-i^{-1}\,\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})\,, (5.12)

where we have used (4.27) together with Proposition 5.1(1).

Next, we estimate the right-hand side of (5.10) from above. Setting j=j(t)\partial\mathcal{E}_{j_{\ell}}=\partial\mathcal{E}_{j_{\ell}}(t) and hεj=hεj(,j)h_{\varepsilon_{j_{\ell}}}=h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}), we proceed as in (4.35) writing

δ(j,ϕ^)(ηjhεj)=δ(j)(ηjϕ^hεj)+𝐆n(n+1)ηjS(ϕ)hεjd(j),\delta(\partial\mathcal{E}_{j_{\ell}},\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}})=\delta(\partial\mathcal{E}_{j_{\ell}})(\eta_{j_{\ell}}\,\hat{\phi}\,h_{\varepsilon_{j_{\ell}}})+\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\eta_{j_{\ell}}\,S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}}}\,d(\partial\mathcal{E}_{j_{\ell}})\,, (5.13)

where we have used that ϕ^=ϕ\nabla\hat{\phi}=\nabla\phi. Since ηjϕ^𝒜j\eta_{j_{\ell}}\,\hat{\phi}\in\mathcal{A}_{j_{\ell}}, we can apply (3.33) in order to obtain that

|δ(j)(ηjϕ^hεj)+bj|εj1/4(bj+1),\lvert\delta(\partial\mathcal{E}_{j_{\ell}})(\eta_{j_{\ell}}\,\hat{\phi}\,h_{\varepsilon_{j_{\ell}}})+b_{j_{\ell}}\rvert\leq\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{4}}}\left(b_{j_{\ell}}+1\right)\,, (5.14)

where we have set for simplicity

bj:=n+1ηjϕ^|Φεjδ(j)|2Φεjj+εj𝑑x.b_{j_{\ell}}:=\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\hat{\phi}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}})\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx\,. (5.15)

Concerning the second summand in (5.13), we use the Cauchy-Schwarz inequality to estimate

|𝐆n(n+1)ηjS(ϕ)hεjd(j)|(n+1ηj|ϕ|2ϕ^)1/2(n+1ηjϕ^|hεj|2)1/2cj(n+1)1/2((1+εj1/4)bj+εj1/4)1/2,\begin{split}\left\lvert\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\eta_{j_{\ell}}\,S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}}}\,d(\partial\mathcal{E}_{j_{\ell}})\right\rvert&\leq\left(\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\frac{\lvert\nabla\phi\rvert^{2}}{\hat{\phi}}\right)^{\nicefrac{{1}}{{2}}}\left(\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\hat{\phi}\,\lvert h_{\varepsilon_{j_{\ell}}}\rvert^{2}\right)^{\nicefrac{{1}}{{2}}}\\ &\leq c\,\|\partial\mathcal{E}_{j_{\ell}}\|(\mathbb{R}^{n+1})^{\nicefrac{{1}}{{2}}}\,\left((1+\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{4}}})\,b_{j_{\ell}}+\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{4}}}\right)^{\nicefrac{{1}}{{2}}}\,,\end{split} (5.16)

where cc depends only on ϕC2\|\phi\|_{C^{2}}, and where we have used (3.34). Using (5.14), (5.16) and (4.3), we can then conclude that

supt[t1,t2]δ(j(t),ϕ^)(ηjhεj(,j(t)))c,\sup_{t\in\left[t_{1},t_{2}\right]}\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))\leq c\,, (5.17)

where cc depends only on ϕC2\|\phi\|_{C^{2}} and 0(n+1)\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1}). Using (5.17) together with the definition of j(t)\partial\mathcal{E}_{j_{\ell}}(t) and Fatou’s lemma, one can readily show that, when we take the lim sup\limsup as \ell\to\infty, the right-hand side of (5.10) can be bounded by

lim supk=k1k2Δtj(δ(j(kΔtj),ϕ^)(ηjhεj(,j(kΔtj)))+εj1/8)=lim supt1t2δ(j(t),ϕ^)(ηjhεj(,j(t)))𝑑tt1t2lim supδ(j(t),ϕ^)(ηjhεj(,j(t)))dt.\begin{split}\limsup_{\ell\to\infty}&\sum_{k=k_{1}}^{k_{2}}\Delta t_{j_{\ell}}\,\left(\delta(\partial\mathcal{E}_{j_{\ell}}(k\,\Delta t_{j_{\ell}}),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(k\,\Delta t_{j_{\ell}})))+\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{8}}}\right)\\ &=\limsup_{\ell\to\infty}\int_{t_{1}}^{t_{2}}\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))\,dt\\ &\leq\int_{t_{1}}^{t_{2}}\limsup_{\ell\to\infty}\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))\,dt\,.\end{split} (5.18)

Now, fix t[t1,t2]t\in\left[t_{1},t_{2}\right] such that lim infbj<\liminf_{\ell\to\infty}b_{j_{\ell}}<\infty (which holds for a.e. tt), and let {j}{j}\{j_{\ell}^{\prime}\}\subset\{j_{\ell}\} be a subsequence which realizes the lim sup\limsup, namely with

limδ(j(t),ϕ^)(ηjhεj(,j(t)))=lim supδ(j(t),ϕ^)(ηjhεj(,j(t))).\lim_{\ell\to\infty}\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}}(t),\hat{\phi})(\eta_{j_{\ell}^{\prime}}\,h_{\varepsilon_{j_{\ell}^{\prime}}}(\cdot,\partial\mathcal{E}_{j_{\ell}^{\prime}}(t)))=\limsup_{\ell\to\infty}\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi})(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))\,. (5.19)

By the identity in (5.13), we also have that along the same subsequence

lim(δ(j)(ηjϕ^hεj)𝐆n(n+1)ηjS(ϕ)hεjd(j))=lim inf(δ(j)(ηjϕ^hεj)𝐆n(n+1)ηjS(ϕ)hεjd(j)),\begin{split}\lim_{\ell\to\infty}\Big{(}-\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})&(\eta_{j_{\ell}^{\prime}}\,\hat{\phi}\,h_{\varepsilon_{j_{\ell}^{\prime}}})-\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\eta_{j_{\ell}^{\prime}}\,S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\Big{)}\\ &=\liminf_{\ell\to\infty}\Big{(}-\delta(\partial\mathcal{E}_{j_{\ell}})(\eta_{j_{\ell}}\,\hat{\phi}\,h_{\varepsilon_{j_{\ell}}})-\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\eta_{j_{\ell}}\,S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}}}\,d(\partial\mathcal{E}_{j_{\ell}})\Big{)}\,,\end{split} (5.20)

where once again j=j(t)\partial\mathcal{E}_{j_{\ell}}=\partial\mathcal{E}_{j_{\ell}}(t) and hεj=hεj(,j)h_{\varepsilon_{j_{\ell}}}=h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}). Using (5.14) and (5.16), we see that the right-hand side of (5.20) can be bounded from above by lim inf2bj+c\liminf_{\ell\to\infty}2\,b_{j_{\ell}}+c, whereas the left-hand side can be bounded from below by lim sup12bjc\limsup_{\ell\to\infty}\frac{1}{2}\,b_{j_{\ell}^{\prime}}-c, where cc depends on ϕC2\|\phi\|_{C^{2}} and 0(n+1)\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1}). As a consequence, along any subsequence {j}\{j_{\ell}^{\prime}\} satisfying (5.19) one has that

lim supn+1ηjϕ^|Φεjδ(j)|2Φεjj+εj𝑑x4lim infn+1ηjϕ^|Φεjδ(j)|2Φεjj+εj𝑑x+c<,\limsup_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}^{\prime}}\,\hat{\phi}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}^{\prime}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}^{\prime}}}\ast\|\partial\mathcal{E}_{j_{\ell}^{\prime}}\|+\varepsilon_{j_{\ell}^{\prime}}}\,dx\leq 4\,\liminf_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\hat{\phi}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}})\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,dx+c<\infty\,, (5.21)

where j=j(t)\partial\mathcal{E}_{j_{\ell}^{\prime}}=\partial\mathcal{E}_{j_{\ell}^{\prime}}(t). Let us denote the right-hand side of (5.21) as B(t)B(t). Since ϕ^i1\hat{\phi}\geq i^{-1}, and thanks to (5.21), if B(t)<B(t)<\infty then the assumption (5.1) of Proposition 5.1 is satisfied along jj_{\ell}^{\prime}: hence, the whole sequence {j(t)}=1\{\partial\mathcal{E}_{j_{\ell}^{\prime}}(t)\}_{\ell=1}^{\infty} converges to Vt𝐈𝐕n(U)V_{t}\in\mathbf{IV}_{n}(U) as varifolds in UU. Furthermore, using one more time that ϕ^i1\hat{\phi}\geq i^{-1} we deduce that

lim supn+1ηj|Φεjδ(j)|2Φεjj+εj𝑑xiB(t).\limsup_{\ell\to\infty}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}^{\prime}}\,\frac{\lvert\Phi_{\varepsilon_{j_{\ell}^{\prime}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}^{\prime}}}\ast\|\partial\mathcal{E}_{j_{\ell}^{\prime}}\|+\varepsilon_{j_{\ell}^{\prime}}}\,dx\leq i\,B(t)\,. (5.22)

Using (5.19), (5.13), (5.14), ϕ^>ϕ\hat{\phi}>\phi, and Proposition 5.1(3) with ϕ\phi (recalling ϕCc(U;+)\phi\in C_{c}^{\infty}(U;\mathbb{R}^{+})), we have

lim supδ(j(t),ϕ^)(ηjhεj(,j(t)))=limδ(j(t),ϕ^)(ηjhεj(,j(t)))U|h(,Vt)|2ϕdVt+lim sup𝐆n(U)S(ϕ)hεj(,j(t))d(j(t)),\begin{split}\limsup_{\ell\to\infty}\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi})&(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))=\lim_{\ell\to\infty}\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}}(t),\hat{\phi})(\eta_{j_{\ell}^{\prime}}\,h_{\varepsilon_{j_{\ell}^{\prime}}}(\cdot,\partial\mathcal{E}_{j_{\ell}^{\prime}}(t)))\\ \leq&-\int_{U}\lvert h(\cdot,V_{t})\rvert^{2}\,\phi\,d\|V_{t}\|\\ &+\limsup_{\ell\to\infty}\int_{\mathbf{G}_{n}(U)}S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}(\cdot,\partial\mathcal{E}_{j_{\ell}^{\prime}}(t))\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}}(t))\,,\end{split} (5.23)

where we have also used that, as \ell\to\infty, ηj=1\eta_{j_{\ell}^{\prime}}=1 on {ϕ0}⊂⊂U\{\nabla\phi\neq 0\}\subset\joinrel\subset U.

Now, recall that Vt𝐈𝐕n(U)V_{t}\in\mathbf{IV}_{n}(U). Therefore, there is an n\mathcal{H}^{n}-rectifiable set MtUM_{t}\subset U such that

𝐆n(U)S(ϕ(x))𝑑Vt(x,S)=UTxMt(ϕ(x))dVt(x).\int_{\mathbf{G}_{n}(U)}S^{\perp}(\nabla\phi(x))\,dV_{t}(x,S)=\int_{U}T_{x}M_{t}^{\perp}(\nabla\phi(x))\,d\|V_{t}\|(x)\,. (5.24)

Furthermore, since the map xTxMt(ϕ(x))x\mapsto T_{x}M_{t}^{\perp}(\nabla\phi(x)) is in L2(Vt)L^{2}(\|V_{t}\|), for any ε>0\varepsilon>0 there are a vector field gCc(U;n+1)g\in C^{\infty}_{c}(U;\mathbb{R}^{n+1}) and a positive integer mm^{\prime} such that gmg\in\mathcal{B}_{m^{\prime}} and

U|TxMt(ϕ(x))g(x)|2dVt(x)ε2.\int_{U}\lvert T_{x}M_{t}^{\perp}(\nabla\phi(x))-g(x)\rvert^{2}\,d\|V_{t}\|(x)\leq\varepsilon^{2}\,. (5.25)

In order to estimate the lim sup\limsup in the right-hand side of (5.23), we can now compute, for j=j(t)\partial\mathcal{E}_{j_{\ell}^{\prime}}=\partial\mathcal{E}_{j_{\ell}^{\prime}}(t):

𝐆n(U)S(ϕ)hεj(,j)d(j)=𝐆n(U)(S(ϕ)g)hεjd(j)+(Ughεjdj+δ(j)(g))δ(j)(g)+δVt(g)+Uh(,Vt)(gTMt(ϕ))dVt+𝐆n(U)h(,Vt)S(ϕ)𝑑Vt(,S).\begin{split}\int_{\mathbf{G}_{n}(U)}&S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}(\cdot,\partial\mathcal{E}_{j_{\ell}^{\prime}})\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\\ =&\int_{\mathbf{G}_{n}(U)}(S^{\perp}(\nabla\phi)-g)\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\\ &+\left(\int_{U}g\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d\|\partial\mathcal{E}_{j_{\ell}^{\prime}}\|+\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})(g)\right)-\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})(g)+\delta V_{t}(g)\\ &+\int_{U}h(\cdot,V_{t})\cdot\left(g-T_{\cdot}M_{t}^{\perp}(\nabla\phi)\right)\,d\|V_{t}\|\\ &+\int_{\mathbf{G}_{n}(U)}h(\cdot,V_{t})\cdot S^{\perp}(\nabla\phi)\,dV_{t}(\cdot,S)\,.\end{split} (5.26)

We proceed estimating each term of (5.26). Using that ηj=1\eta_{j_{\ell}^{\prime}}=1 on {ϕ0}\{\nabla\phi\neq 0\} for all \ell sufficiently large, the Cauchy-Schwarz inequality gives that

|𝐆n(U)(S(ϕ)g)hεjd(j)|(𝐆n(U)|S(ϕ)g|2d(j))12(n+1ηj|hεj|2dj)12\begin{split}\Big{|}\int_{\mathbf{G}_{n}(U)}(S^{\perp}(\nabla\phi)-g)&\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\Big{|}\\ &\leq\left(\int_{\mathbf{G}_{n}(U)}\lvert S^{\perp}(\nabla\phi)-g\rvert^{2}\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\right)^{\frac{1}{2}}\,\left(\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}^{\prime}}\,\lvert h_{\varepsilon_{j_{\ell}^{\prime}}}\rvert^{2}\,d\|\partial\mathcal{E}_{j_{\ell}^{\prime}}\|\right)^{\frac{1}{2}}\end{split} (5.27)

for all \ell sufficiently large. Since (x,S)|S(ϕ(x))g(x)|2Cc(𝐆n(U))(x,S)\mapsto\lvert S^{\perp}(\nabla\phi(x))-g(x)\rvert^{2}\in C_{c}(\mathbf{G}_{n}(U)), we have that

lim𝐆n(U)|S(ϕ)g|2d(j)=𝐆n(U)|S(ϕ)g|2𝑑Vt=U|TxMt(ϕ(x))g(x)|2dVt(x)(5.25)ε2.\begin{split}\lim_{\ell\to\infty}\int_{\mathbf{G}_{n}(U)}\lvert S^{\perp}(\nabla\phi)-g\rvert^{2}\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})&=\int_{\mathbf{G}_{n}(U)}\lvert S^{\perp}(\nabla\phi)-g\rvert^{2}\,dV_{t}\\ &=\int_{U}\lvert T_{x}M_{t}^{\perp}(\nabla\phi(x))-g(x)\rvert^{2}\,d\|V_{t}\|(x)\overset{\eqref{Brakke16}}{\leq}\varepsilon^{2}\,.\end{split} (5.28)

Using (3.34), (5.22), (5.27) and (5.28), we then conclude that

lim sup|𝐆n(U)(S(ϕ)g)hεjd(j)|(iB(t))12ε.\limsup_{\ell\to\infty}\Big{|}\int_{\mathbf{G}_{n}(U)}(S^{\perp}(\nabla\phi)-g)\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\Big{|}\leq\left(i\,B(t)\right)^{\frac{1}{2}}\,\varepsilon\,. (5.29)

Analogously, since ηj=1\eta_{j_{\ell}^{\prime}}=1 on {g0}\{g\neq 0\} for all \ell sufficiently large, we have that

lim|Ughεjdj+δ(j)(g)|=lim|n+1ηjghεjdj+δ(j)(ηjg)|=0\lim_{\ell\to\infty}\left\lvert\int_{U}g\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d\|\partial\mathcal{E}_{j_{\ell}^{\prime}}\|+\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})(g)\right\rvert=\lim_{\ell\to\infty}\left\lvert\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}^{\prime}}\,g\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}\,d\|\partial\mathcal{E}_{j_{\ell}^{\prime}}\|+\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})(\eta_{j_{\ell}^{\prime}}\,g)\right\rvert=0 (5.30)

by (3.35) and (5.22).

Next, by varifold convergence of j\partial\mathcal{E}_{j_{\ell}^{\prime}} to VtV_{t} on UU, given that gg has compact support in UU, we also have

lim|δ(j)(g)δVt(g)|=0.\lim_{\ell\to\infty}\lvert\delta(\partial\mathcal{E}_{j_{\ell}^{\prime}})(g)-\delta V_{t}(g)\rvert=0\,. (5.31)

Finally, letting ψ\psi be any function in Cc(U;+)C_{c}(U;\mathbb{R}^{+}) such that ψ=1\psi=1 on {g0}{ϕ0}\{g\neq 0\}\cup\{\nabla\phi\neq 0\} and 0ψ10\leq\psi\leq 1, the Cauchy-Schwarz inequality allows us to estimate

|Uh(x,Vt)(g(x)TxMt(ϕ(x)))dVt|(U|h(x,Vt)|2ψ(x)dVt(x))12(U|g(x)TxMt(ϕ(x))|2dVt(x))12(iB(t))12ε,\begin{split}\Big{|}\int_{U}h(x,V_{t})\cdot&\left(g(x)-T_{x}M_{t}^{\perp}(\nabla\phi(x))\right)\,d\|V_{t}\|\Big{|}\\ &\leq\left(\int_{U}\lvert h(x,V_{t})\rvert^{2}\,\psi(x)\,d\|V_{t}\|(x)\right)^{\frac{1}{2}}\,\left(\int_{U}\lvert g(x)-T_{x}M_{t}^{\perp}(\nabla\phi(x))\rvert^{2}\,d\|V_{t}\|(x)\right)^{\frac{1}{2}}\\ &\leq\left(i\,B(t)\right)^{\frac{1}{2}}\,\varepsilon\,,\end{split} (5.32)

where in the last inequality we have used (5.3) with ψ\psi in place of ϕ\phi, (5.22) and (5.25).

From (5.26), combining (5.29)-(5.32) we conclude that

lim sup𝐆n(U)S(ϕ)hεj(,j)d(j)Uh(,Vt)ϕdVt+2(iB(t))12ε,\limsup_{\ell\to\infty}\int_{\mathbf{G}_{n}(U)}S^{\perp}(\nabla\phi)\cdot h_{\varepsilon_{j_{\ell}^{\prime}}}(\cdot,\partial\mathcal{E}_{j_{\ell}^{\prime}})\,d(\partial\mathcal{E}_{j_{\ell}^{\prime}})\leq\int_{U}h(\cdot,V_{t})\cdot\nabla\phi\,d\|V_{t}\|+2\,\left(i\,B(t)\right)^{\frac{1}{2}}\,\varepsilon\,, (5.33)

where we have also used (2.6).

We can now combine (5.10), (5.12), (5.18), (5.23), and (5.33) to deduce that

Vt(ϕ)|t=t1t2t1t2U(|h(,Vt)|2ϕh(,Vt)ϕ)dVt𝑑t+i10(n+1)+2i12εt1t2B(t)12𝑑t.\begin{split}\|V_{t}\|(\phi)\Big{|}_{t=t_{1}}^{t_{2}}\leq&-\int_{t_{1}}^{t_{2}}\int_{U}\left(\lvert h(\cdot,V_{t})\rvert^{2}\,\phi-h(\cdot,V_{t})\cdot\nabla\phi\right)\,d\|V_{t}\|\,dt\\ &+i^{-1}\,\|\partial\mathcal{E}_{0}\|(\mathbb{R}^{n+1})+2i^{\frac{1}{2}}\varepsilon\,\int_{t_{1}}^{t_{2}}B(t)^{\frac{1}{2}}\,dt\,.\end{split} (5.34)

We use the Cauchy-Schwarz inequality one more time, and combine it with the definition of B(t)B(t) as the right-hand side of (5.21) and with Fatou’s lemma to obtain the bound

t1t2B(t)12𝑑t(t2t1)+c(t2t1)+4lim inft1t2n+1ηjϕ^|Φεjδ(j)|2Φεjj+εj,\int_{t_{1}}^{t_{2}}B(t)^{\frac{1}{2}}\,dt\leq(t_{2}-t_{1})+c\,(t_{2}-t_{1})+4\,\liminf_{\ell\to\infty}\int_{t_{1}}^{t_{2}}\int_{\mathbb{R}^{n+1}}\eta_{j_{\ell}}\,\hat{\phi}\frac{\lvert\Phi_{\varepsilon_{j_{\ell}}}\ast\delta(\partial\mathcal{E}_{j_{\ell}})\rvert^{2}}{\Phi_{\varepsilon_{j_{\ell}}}\ast\|\partial\mathcal{E}_{j_{\ell}}\|+\varepsilon_{j_{\ell}}}\,, (5.35)

which is finite (depending on t2t_{2}) by (4.29) (recall that ϕ^1\hat{\phi}\leq 1 everywhere). Brakke’s inequality (5.8) for a test function ϕ\phi which does not depend on tt is then deduced from (5.34) after letting ε0\varepsilon\downarrow 0 and then ii\uparrow\infty.

Step 2. We consider now the general case of a time dependent test function ϕCc1(U×+;+)\phi\in C^{1}_{c}(U\times\mathbb{R}^{+};\mathbb{R}^{+}). We can once again assume that ϕ\phi is smooth, and then conclude by a density argument. The proof follows the same strategy of Step 1. We define ϕ^\hat{\phi} analogously, and then we apply (4.5) with ϕ=ϕ^(,t)\phi=\hat{\phi}(\cdot,t). In place of (5.9), we then obtain a formula with one extra term, namely

j(s)(ϕ^(,s))|s=tΔtjtΔtj(δ(j(t),ϕ^(,t))(ηjhεj(,j(t)))+εj1/8)+j(tΔtj)(ϕ(,t)ϕ(,tΔtj)).\begin{split}\|\partial\mathcal{E}_{j_{\ell}}(s)\|(\hat{\phi}(\cdot,s))\Big{|}_{s=t-\Delta t_{j_{\ell}}}^{t}\leq\Delta t_{j_{\ell}}\,&\left(\delta(\partial\mathcal{E}_{j_{\ell}}(t),\hat{\phi}(\cdot,t))(\eta_{j_{\ell}}\,h_{\varepsilon_{j_{\ell}}}(\cdot,\partial\mathcal{E}_{j_{\ell}}(t)))+\varepsilon_{j_{\ell}}^{\nicefrac{{1}}{{8}}}\right)\\ &+\|\partial\mathcal{E}_{j_{\ell}}(t-\Delta t_{j_{\ell}})\|(\phi(\cdot,t)-\phi(\cdot,t-\Delta t_{j_{\ell}}))\,.\end{split} (5.36)

Similarly, the inequality in (5.10) needs to be replaced with an analogous one containing, in the right-hand side, also the term

k=k1k2j((k1)Δtj)(ϕ(,kΔtj)ϕ(,(k1)Δtj)).\sum_{k=k_{1}}^{k_{2}}\|\partial\mathcal{E}_{j_{\ell}}((k-1)\Delta t_{j_{\ell}})\|(\phi(\cdot,k\,\Delta t_{j_{\ell}})-\phi(\cdot,(k-1)\Delta t_{j_{\ell}}))\,. (5.37)

Using the regularity of ϕ\phi and the estimates in (4.3) and (4.4), we may deduce that

lim(5.37)=limk=k1k2j(kΔtj)(ϕt(,kΔtj))Δtj=limt1t2j(t)(ϕt(,t))𝑑t=t1t2Vt(ϕt(,t))𝑑t,\begin{split}\lim_{\ell\to\infty}\eqref{Brakke time}&=\lim_{\ell\to\infty}\sum_{k=k_{1}}^{k_{2}}\|\partial\mathcal{E}_{j_{\ell}}(k\,\Delta t_{j_{\ell}})\|\left(\frac{\partial\phi}{\partial t}(\cdot,k\,\Delta t_{j_{\ell}})\right)\Delta t_{j_{\ell}}\\ &=\lim_{\ell\to\infty}\int_{t_{1}}^{t_{2}}\|\partial\mathcal{E}_{j_{\ell}}(t)\|\left(\frac{\partial\phi}{\partial t}(\cdot,t)\right)\,dt\\ &=\int_{t_{1}}^{t_{2}}\|V_{t}\|\left(\frac{\partial\phi}{\partial t}(\cdot,t)\right)\,dt\,,\end{split} (5.38)

where the last identity is a consequence of (4.27), Proposition 5.1(1), and Lebesgue’s dominated convergence theorem. The remaining part of the argument stays the same, modulo the following variation. The identity in (5.18) remains true if ϕ^\hat{\phi} is replaced by the piecewise constant function ϕ^j\hat{\phi}_{j_{\ell}} defined by

ϕ^j(x,t):=ϕ^(x,kΔtj)if t((k1)Δtj,kΔtj].\hat{\phi}_{j_{\ell}}(x,t):=\hat{\phi}(x,k\,\Delta t_{j_{\ell}})\qquad\mbox{if $t\in\left((k-1)\,\Delta t_{j_{\ell}},k\,\Delta t_{j_{\ell}}\right]$}\,.

The error one makes in order to put ϕ^\hat{\phi} back into (5.18) in place of ϕ^j\hat{\phi}_{j_{\ell}} is then given by the product of Δtj\Delta t_{j_{\ell}} times some negative powers of εj\varepsilon_{j_{\ell}}; nonetheless, this error converges to 0 uniformly as \ell\uparrow\infty by the choice of Δtj\Delta t_{j_{\ell}}, see (4.8). This allows us to conclude the proof of (5.8) precisely as in the case of a time-independent ϕ\phi whenever ϕCc(U×+;+)\phi\in C^{\infty}_{c}(U\times\mathbb{R}^{+};\mathbb{R}^{+}), and in turn, by approximation, also when ϕCc1(U×+;+)\phi\in C^{1}_{c}(U\times\mathbb{R}^{+};\mathbb{R}^{+}). ∎

6. Boundary behavior and proof of main results

6.1. Vanishing of measure outside the convex hull of initial data

First, we prove that the limit measures Vt\|V_{t}\| vanish uniformly in time near UΓ0\partial U\setminus\partial\Gamma_{0}. This is a preliminary result, and using the Brakke’s inquality, we eventually prove that they actually vanish outside the convex hull of Γ0Γ0\Gamma_{0}\cup\partial\Gamma_{0} in Proposition 6.4.

Proposition 6.1.

For x^UΓ0\hat{x}\in\partial U\setminus\partial\Gamma_{0}, suppose that an affine hyperplane An+1A\subset\mathbb{R}^{n+1} with x^A\hat{x}\notin A has the following property. Let A+A^{+} and AA^{-} be defined as the open half-spaces separated by AA, i.e., n+1\mathbb{R}^{n+1} is a disjoint union of A+A^{+}, AA and AA^{-}, with x^A+\hat{x}\in A^{+}. Define dA(x):=dist(x,A)d_{A}(x):={\rm dist}\,(x,A^{-}), and suppose that

  1. (1)

    Γ0Γ0A\Gamma_{0}\cup\partial\Gamma_{0}\subset A^{-},

  2. (2)

    dAd_{A} is νU\nu_{U}-non decreasing in A+A^{+}.

Then for any compact set CA+C\subset A^{+}, we have

limjsupt[0,j1/2]j(t)(C)=0.\lim_{j\rightarrow\infty}\sup_{t\in[0,j^{\nicefrac{{1}}{{2}}}]}\|\partial\mathcal{E}_{j}(t)\|(C)=0. (6.1)
Remark 6.2.

Due to the definition of Γ0\partial\Gamma_{0} and the strict convexity of UU, note that there exists such an affine hyperplane AA for any given x^UΓ0\hat{x}\in\partial U\setminus\partial\Gamma_{0}. For example, we may choose a hyperplane AA which is parallel to the tangent space of U\partial U at x^\hat{x} and which passes through x^νU(x^)c\hat{x}-\nu_{U}(\hat{x})c. By the strict convexity of UU and the C1C^{1} regularity of νU\nu_{U}, for all sufficiently small c>0c>0, one can show that such AA satisfies the above (1) and (2).

Remark 6.3.

In the following proof, we adapted a computation from [17, p.60]. There, the object is the Brakke flow, but the basic idea here is that a similar computation can be carried out for the approximate MCF with suitable error estimates.

Proof.

We may assume after a suitable change of coordinates that A={xn+1=0}A=\{x_{n+1}=0\} and A+={xn+1>0}A^{+}=\{x_{n+1}>0\}. With this, we have closΓ0{xn+1<0}{\rm clos}\,\Gamma_{0}\subset\{x_{n+1}<0\} and dA(x)=max{xn+1,0}d_{A}(x)=\max\{x_{n+1},0\} is νU\nu_{U}-non decreasing in {xn+1>0}\{x_{n+1}>0\}. Let s>0s>0 be arbitrary, and define

ϕ(x):=s+(dA(x))β\phi(x):=s+(d_{A}(x))^{\beta} (6.2)

for some β3\beta\geq 3 to be fixed later. Then ϕC2(n+1;+)\phi\in C^{2}(\mathbb{R}^{n+1};\mathbb{R}^{+}), and letting {e1,,en+1}\{e_{1},\,\ldots,\,e_{n+1}\} denote the standard basis of n+1\mathbb{R}^{n+1}, we have

ϕ=βdAβ1en+1,2ϕ=β(β1)dAβ2en+1en+1.\nabla\phi=\beta\,d_{A}^{\beta-1}\,e_{n+1}\,,\qquad\nabla^{2}\phi=\beta\,(\beta-1)\,d_{A}^{\beta-2}\,e_{n+1}\otimes e_{n+1}\,. (6.3)

With s>0s>0 fixed, we choose sufficiently large jj so that ϕ𝒜j\phi\in\mathcal{A}_{j}. Actually, the function ϕ\phi as defined in (6.2) is unbounded. Nonetheless, since we know that sptj(t)(U)1/(4j1/4)\mathrm{spt}\,\|\partial\mathcal{E}_{j}(t)\|\subset(U)_{1/(4j^{\nicefrac{{1}}{{4}}})}, we may modify ϕ\phi suitably away from UU by multiplying it by a small number and truncating it, so that ϕ1\phi\leq 1. We assume that we have done this modification if necessary. We also choose jj so large that ηj=1\eta_{j}=1 on {xn+10}\{x_{n+1}\geq 0\}. This is possible due to Lemma 3.16(1). Additionally, since dAd_{A} is νU\nu_{U}-non decreasing in A+A^{+}, and since ϕ\phi is constant in n+1A+\mathbb{R}^{n+1}\setminus A^{+}, we have ϕj\phi\in\mathcal{R}_{j}. Thus, by (4.5), we have for j,k=:V\partial\mathcal{E}_{j,k}=:V and j,k1=:V^\partial\mathcal{E}_{j,k-1}=:\hat{V} with k{1,,j2pj}k\in\{1,\ldots,j2^{p_{j}}\}

V(ϕ)V^(ϕ)Δtjεj1/8+δ(V,ϕ)(ηjhεj(,V)).\frac{\|V\|(\phi)-\|\hat{V}\|(\phi)}{\Delta t_{j}}\leq\varepsilon_{j}^{\nicefrac{{1}}{{8}}}+\delta(V,\phi)(\eta_{j}\,h_{\varepsilon_{j}}(\cdot,V)). (6.4)

For all sufficiently large jj, we also have ηjϕ𝒜j\eta_{j}\phi\in\mathcal{A}_{j}, thus we may proceed as in (4.35) and estimate

δ(V,ϕ)(ηjhεj(,V))=δV(ϕηjhεj)+𝐆n(n+1)ηjhεj(IS)(ϕ)𝑑V(x,S)(1εj1/4)ηjϕ|ΦεjδV|2ΦεjV+εj𝑑x+εj1/4+12ηjϕ|hεj|2dV+12|S(ϕ)|2ϕ𝑑V+hεjϕdV.\begin{split}\delta(V,\phi)(\eta_{j}h_{\varepsilon_{j}}(\cdot,V))&=\delta V(\phi\,\eta_{j}\,h_{\varepsilon_{j}})+\int_{\mathbf{G}_{n}(\mathbb{R}^{n+1})}\eta_{j}\,h_{\varepsilon_{j}}(I-S)(\nabla\phi)\,dV(x,S)\\ &\leq-(1-\varepsilon_{j}^{\nicefrac{{1}}{{4}}})\int\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|^{2}}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\,dx+\varepsilon_{j}^{\nicefrac{{1}}{{4}}}+\frac{1}{2}\int\eta_{j}\,\phi\,|h_{\varepsilon_{j}}|^{2}\,d\|V\|\\ &\qquad+\frac{1}{2}\int\frac{|S(\nabla\phi)|^{2}}{\phi}\,dV+\int h_{\varepsilon_{j}}\cdot\nabla\phi\,d\|V\|.\end{split} (6.5)

Here we have used that ηj=1\eta_{j}=1 when ϕ0\nabla\phi\neq 0. In the present proof, we omit the domains of integration, which are either n+1\mathbb{R}^{n+1} or 𝐆n(n+1)\mathbf{G}_{n}(\mathbb{R}^{n+1}) unless specified otherwise. We use (3.34) to proceed as:

(1123εj1/42)ηjϕ|ΦεjδV|2ΦεjV+εj𝑑x+2εj1/4+12|S(ϕ)|2ϕ𝑑V+hεjϕdV.\leq-\left(1-\frac{1}{2}-\frac{3\varepsilon_{j}^{\nicefrac{{1}}{{4}}}}{2}\right)\int\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|^{2}}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\,dx+2\varepsilon_{j}^{\nicefrac{{1}}{{4}}}+\frac{1}{2}\int\frac{|S(\nabla\phi)|^{2}}{\phi}\,dV+\int h_{\varepsilon_{j}}\cdot\nabla\phi\,d\|V\|.

We prove that the last term gives a good negative contribution. We have

hεjϕdV=ΦεjΦεjδVΦεjV+εjϕdV=(ΦεjδVΦεjV+εj)(y)Φεj(xy)ϕ(x)dV(x)𝑑y.\begin{split}\int&h_{\varepsilon_{j}}\cdot\nabla\phi\,d\|V\|=-\int\Phi_{\varepsilon_{j}}\ast\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\cdot\nabla\phi\,d\|V\|\\ &=-\int\Big{(}\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}(y)\cdot\int\Phi_{\varepsilon_{j}}(x-y)\nabla\phi(x)\,d\|V\|(x)\,dy.\end{split} (6.6)

Here we replace ϕ(x)\nabla\phi(x) by ϕ(y)\nabla\phi(y) and estimate the error

|(ΦεjδVΦεjV+εj)(y)Φεj(xy)(ϕ(x)ϕ(y))dV(x)dy|.\Big{|}\int\Big{(}\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}(y)\cdot\int\Phi_{\varepsilon_{j}}(x-y)(\nabla\phi(x)-\nabla\phi(y))\,d\|V\|(x)\,dy\Big{|}. (6.7)

To estimate (6.7), since ηjϕ𝒜j\eta_{j}\phi\in\mathcal{A}_{j}, (3.1) and (3.3) imply

|ϕ(x)ϕ(y)|=|(ηjϕ)(x)(ηjϕ)(y)|j|xy|ηj(y)ϕ(y)exp(j|xy|).|\nabla\phi(x)-\nabla\phi(y)|=|\nabla(\eta_{j}\phi)(x)-\nabla(\eta_{j}\phi)(y)|\leq j\,|x-y|\,\eta_{j}(y)\,\phi(y)\,\exp(j|x-y|)\,.

By separating the integration to Bεj(y)B_{\sqrt{\varepsilon_{j}}}(y) and B1(y)Bεj(y)B_{1}(y)\setminus B_{\sqrt{\varepsilon_{j}}}(y),

Φεj(xy)|ϕ(x)ϕ(y)|dV(x)jεjexp(jεj)ηj(y)ϕ(y)(ΦεjV)(y)+c(n)εjn1jexp(j(2εj)1)ηj(y)ϕ(y)V(B1(y)).\begin{split}\int\Phi_{\varepsilon_{j}}(x-y)&|\nabla\phi(x)-\nabla\phi(y)|\,d\|V\|(x)\leq j\,\sqrt{\varepsilon_{j}}\,\exp(j\sqrt{\varepsilon_{j}})\,\eta_{j}(y)\,\phi(y)\,(\Phi_{\varepsilon_{j}}\ast\|V\|)(y)\\ &+c(n)\,\varepsilon_{j}^{-n-1}\,j\,\exp(j-(2\varepsilon_{j})^{-1})\,\eta_{j}(y)\,\phi(y)\,\|V\|(B_{1}(y)).\end{split} (6.8)

Let us denote cεj:=c(n)εjn1jexp(j(2εj)1)c_{\varepsilon_{j}}:=c(n)\varepsilon_{j}^{-n-1}j\exp(j-(2\varepsilon_{j})^{-1}) and note that it is exponentially small (say, exp(εj1/2)\leq\exp(-\varepsilon_{j}^{-\nicefrac{{1}}{{2}}}) for all large jj) due to jεj1/6/2j\leq\varepsilon_{j}^{-1/6}/2. Similarly we have jεjexp(jεj)εj1/4j\sqrt{\varepsilon_{j}}\exp(j\sqrt{\varepsilon_{j}})\leq\varepsilon_{j}^{\nicefrac{{1}}{{4}}}, so that

Φεj(xy)|ϕ(x)ϕ(y)|dV(x)(εj1/4(ΦεjV)(y)+cεjV(B1(y)))ηj(y)ϕ(y).\int\Phi_{\varepsilon_{j}}(x-y)|\nabla\phi(x)-\nabla\phi(y)|\,d\|V\|(x)\leq(\varepsilon_{j}^{\nicefrac{{1}}{{4}}}(\Phi_{\varepsilon_{j}}\ast\|V\|)(y)+c_{\varepsilon_{j}}\|V\|(B_{1}(y)))\eta_{j}(y)\phi(y).

Using this, we can estimate

|(6.7)|(ηjϕ|ΦεjδV|2ΦεjV+εj)12(2εj12(ΦεjV)(y)+cεj2εj1V(B1(y))2dy)12εj14ηjϕ|ΦεjδV|2ΦεjV+εj+εj14(ΦεjV)(y)+cεj2εj54V(B1(y))2dy.\begin{split}|\eqref{ilm2}|&\leq\left(\int\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|^{2}}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\right)^{\frac{1}{2}}\,\left(2\,\int\varepsilon_{j}^{\frac{1}{2}}\,(\Phi_{\varepsilon_{j}}\ast\|V\|)(y)+c_{\varepsilon_{j}}^{2}\,\varepsilon_{j}^{-1}\,\|V\|(B_{1}(y))^{2}\,dy\right)^{\frac{1}{2}}\\ &\leq\varepsilon_{j}^{\frac{1}{4}}\,\int\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|^{2}}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}+\int\varepsilon_{j}^{\frac{1}{4}}\,(\Phi_{\varepsilon_{j}}\ast\|V\|)(y)+c_{\varepsilon_{j}}^{2}\,\varepsilon_{j}^{-\frac{5}{4}}\,\|V\|(B_{1}(y))^{2}\,dy.\end{split} (6.9)

In view of (6.5), this shows that (6.7) can be absorbed as a small error term. Continuing from (6.6) with ϕ(y)\nabla\phi(y) replacing ϕ(x)\nabla\phi(x),

(ΦεjδVΦεjV+εj)(y)Φεj(xy)ϕ(y)dV(x)𝑑y=(ΦεjδVΦεjV+εj)(y)ϕ(y)(ΦεjV)(y)𝑑y=(ΦεjδV)ϕdy+εj(ΦεjδVΦεjV+εj)(y)ϕ(y)𝑑y.\begin{split}&-\int\Big{(}\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}(y)\cdot\int\Phi_{\varepsilon_{j}}(x-y)\nabla\phi(y)\,d\|V\|(x)\,dy\\ =&-\int\Big{(}\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}(y)\cdot\nabla\phi(y)\,(\Phi_{\varepsilon_{j}}\ast\|V\|)(y)\,dy\\ =&-\int(\Phi_{\varepsilon_{j}}\ast\delta V)\cdot\nabla\phi\,dy+\varepsilon_{j}\int\Big{(}\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}(y)\cdot\nabla\phi(y)\,dy\,.\end{split} (6.10)

The last term of (6.10) may be estimated as

εj|(ΦεjδVΦεjV+εj)(y)ϕ(y)dy|jεj(U)2ηjϕ|ΦεjδV|ΦεjV+εjjεj12(ηjϕ|ΦεjδV|2ΦεjV+εj)12((U)2ηjϕ)12εj14ηjϕ|ΦεjδV|2ΦεjV+εj+j2εj34(U)2ηjϕ.\begin{split}\varepsilon_{j}\Big{|}\int\Big{(}\frac{\Phi_{\varepsilon_{j}}\ast\delta V}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}(y)\cdot&\nabla\phi(y)\,dy\Big{|}\leq j\,\varepsilon_{j}\int_{(U)_{2}}\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\\ &\leq j\,\varepsilon_{j}^{\frac{1}{2}}\,\Big{(}\int\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|^{2}}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}\Big{)}^{\frac{1}{2}}\Big{(}\int_{(U)_{2}}\eta_{j}\,\phi\Big{)}^{\frac{1}{2}}\\ &\leq\varepsilon_{j}^{\frac{1}{4}}\int\eta_{j}\,\phi\,\frac{|\Phi_{\varepsilon_{j}}\ast\delta V|^{2}}{\Phi_{\varepsilon_{j}}\ast\|V\|+\varepsilon_{j}}+j^{2}\,\varepsilon_{j}^{\frac{3}{4}}\,\int_{(U)_{2}}\eta_{j}\phi.\end{split} (6.11)

Here, we used the fact that the integrand is 0 far away from UU, for example, outside of (U)2(U)_{2}. The last term of (6.11) can be absorbed as a small error since jεj1/6/2j\leq\varepsilon_{j}^{-1/6}/2 and (U)2ηjϕ\int_{(U)_{2}}\eta_{j}\,\phi is bounded by a constant. We can continue as

(ΦεjδV)ϕdy=S(Φεj(xy))𝑑V(x,S)ϕ(y)𝑑y=S(Φεj(xy)ϕ(y)𝑑y)𝑑V(x,S)=SΦεj(xy)2ϕ(y)𝑑y𝑑V(x,S).\begin{split}-\int(\Phi_{\varepsilon_{j}}\ast\delta V)\cdot\nabla\phi\,dy&=-\iint S(\nabla\Phi_{\varepsilon_{j}}(x-y))\,dV(x,S)\nabla\phi(y)\,dy\\ &=-\int S\cdot\Big{(}\int\nabla\Phi_{\varepsilon_{j}}(x-y)\otimes\nabla\phi(y)\,dy\Big{)}\,dV(x,S)\\ &=-\int S\cdot\int\Phi_{\varepsilon_{j}}(x-y)\,\nabla^{2}\phi(y)\,dy\,dV(x,S).\end{split}

We replace 2ϕ(y)\nabla^{2}\phi(y) by 2ϕ(x)\nabla^{2}\phi(x), with the resulting error being estimated, for instance, by Mεj1/2\leq M\varepsilon_{j}^{\nicefrac{{1}}{{2}}} using standard methods as above. Then, we have

(ΦεjδV)ϕdyS2ϕ(x)𝑑V(x,S)+Mεj1/2.-\int(\Phi_{\varepsilon_{j}}\ast\delta V)\cdot\nabla\phi\,dy\leq-\int S\cdot\nabla^{2}\phi(x)\,dV(x,S)+M\varepsilon_{j}^{\nicefrac{{1}}{{2}}}. (6.12)

Thus, combining (6.4)-(6.12) and recovering the notations, we obtain

j,k(ϕ)j,k1(ϕ)Δtj2εj1/8+|S(ϕ)|22ϕS2ϕdV\frac{\|\partial\mathcal{E}_{j,k}\|(\phi)-\|\partial\mathcal{E}_{j,k-1}\|(\phi)}{\Delta t_{j}}\leq 2\varepsilon_{j}^{\nicefrac{{1}}{{8}}}+\int\frac{|S(\nabla\phi)|^{2}}{2\phi}-S\cdot\nabla^{2}\phi\,dV (6.13)

for all sufficiently large jj. By (6.3), we have

|S(ϕ)|22ϕS2ϕ=(β22i=1n+1Si,n+12β(β1)Sn+1,n+1)dAβ2=(β22β(β1))|Sn+1,n+1|dAβ2,\begin{split}\frac{|S(\nabla\phi)|^{2}}{2\phi}-S\cdot\nabla^{2}\phi&=\left(\frac{\beta^{2}}{2}\,\sum_{i=1}^{n+1}S_{i,n+1}^{2}-\beta\,(\beta-1)\,S_{n+1,n+1}\right)\,d_{A}^{\beta-2}\\ &=\left(\frac{\beta^{2}}{2}-\beta\,(\beta-1)\right)\,\lvert S_{n+1,n+1}\rvert\,d_{A}^{\beta-2}\,,\end{split} (6.14)

where in the last identity we have used that SS is the matrix representing an orthogonal projection operator, so that SS is symmetric and S2=SS^{2}=S, whence

Sn+1,n+1=(S2)n+1,n+1=i=1n+1Si,n+120.S_{n+1,n+1}=(S^{2})_{n+1,n+1}=\sum_{i=1}^{n+1}S_{i,n+1}^{2}\geq 0\,.

In particular, the quantity in (6.14) can be made negative if β=4\beta=4, for example. This shows that (6.13) is less than 2εj1/82\varepsilon_{j}^{\nicefrac{{1}}{{8}}}. By summing over k=1,,j1/2/(Δtj)k=1,\ldots,j^{\nicefrac{{1}}{{2}}}/(\Delta t_{j}) and using that j,0(ϕ)=sn(Γ0)\|\partial\mathcal{E}_{j,0}\|(\phi)=s\,\mathcal{H}^{n}(\Gamma_{0}), we obtain

supt[0,j1/2]j(t)(ϕ)2εj1/8j1/2+sn(Γ0).\sup_{t\in[0,j^{\nicefrac{{1}}{{2}}}]}\|\partial\mathcal{E}_{j}(t)\|(\phi)\leq 2\varepsilon_{j}^{\nicefrac{{1}}{{8}}}j^{\nicefrac{{1}}{{2}}}+s\,\mathcal{H}^{n}(\Gamma_{0}). (6.15)

Fix ρ>0\rho>0 so that C{xn+1>ρ}C\subset\{x_{n+1}>\rho\}. Then we have ϕρβ\phi\geq\rho^{\beta} on CC. With this, we have j(t)(C)ρβj(t)(ϕ)\|\partial\mathcal{E}_{j}(t)\|(C)\leq\rho^{-\beta}\|\partial\mathcal{E}_{j}(t)\|(\phi). We use this in (6.15), and we let first jj\rightarrow\infty and then s0s\rightarrow 0 in order to obtain (6.1). ∎

Proposition 6.4.

For all t0t\geq 0, we have sptVtconv(Γ0Γ0){\rm spt}\,\|V_{t}\|\subset{\rm conv}\,(\Gamma_{0}\cup\partial\Gamma_{0}).

Proof.

Suppose that An+1A\subset\mathbb{R}^{n+1} is a hyperplane such that, using the notation in the statement of Proposition 6.1, Γ0Γ0A\Gamma_{0}\cup\partial\Gamma_{0}\subset A^{-}. If dAd_{A} is νU\nu_{U}-non decreasing in A+A^{+}, then (6.1) proves immediately that Vt(A+)=0\|V_{t}\|(A^{+})=0 for all t0t\geq 0. Thus, suppose that dAd_{A} does not satisfy this property. Still, due to Proposition 6.1, for each xUΓ0x\in\partial U\setminus\partial\Gamma_{0}, there exists a neighborhood Br(x)B_{r}(x) such that Vt(Br(x)U)=0\|V_{t}\|(B_{r}(x)\cap U)=0 for all t0t\geq 0. In particular, there exists some r0>0r_{0}>0 such that

Vt((U)r0A+)=0\|V_{t}\|((\partial U)_{r_{0}}\cap A^{+})=0 (6.16)

for all t0t\geq 0. Let ψCc(U;+)\psi\in C^{\infty}_{c}(U;\mathbb{R}^{+}) be such that ψ=1\psi=1 on U(U)r0U\setminus(\partial U)_{r_{0}} and ψ=0\psi=0 on (U)r02(\partial U)_{\frac{r_{0}}{2}}. We next use ϕ=ψdA4\phi=\psi\,d_{A}^{4} in (5.8) with t1=0t_{1}=0 and an arbitrary t2=t>0t_{2}=t>0 to obtain

Vs(ϕ)|s=0t0tU(ϕϕh(,Vs))h(,Vs)dVs𝑑s0tUS2ϕdVs(,S)𝑑s.\begin{split}\|V_{s}\|(\phi)\Big{|}_{s=0}^{t}&\leq\int_{0}^{t}\int_{U}(\nabla\phi-\phi\,h(\cdot,V_{s}))\cdot h(\cdot,V_{s})\,d\|V_{s}\|\,ds\\ &\leq-\int_{0}^{t}\int_{U}S\cdot\nabla^{2}\phi\,dV_{s}(\cdot,S)\,ds.\end{split} (6.17)

By (6.16), ϕ=dA4\phi=d_{A}^{4} on the support of Vs\|V_{s}\|. Since S2dA40S\cdot\nabla^{2}d_{A}^{4}\geq 0 for any S𝐆(n+1,n)S\in{\bf G}(n+1,n) (see (6.14)), the right-hand side of (6.17) is 0\leq 0. Since V0(ϕ)=0\|V_{0}\|(\phi)=0, we have Vt(A+)=0\|V_{t}\|(A^{+})=0 for all t>0t>0. This proves the claim. ∎

In the following, we list results from [20, Section 10]. The results are local in nature, thus even if we are concerned with a Brakke flow in UU instead of n+1\mathbb{R}^{n+1}, the proofs are the same. We recall the following (cf. Theorem 2.3(11)):

Definition 6.5.

Define a Radon measure μ\mu on U×+U\times\mathbb{R}^{+} by setting dμ:=dVtdtd\mu:=d\|V_{t}\|\,dt, namely

U×+ϕ(x,t)𝑑μ(x,t):=0(Uϕ(x,t)dVt(x))𝑑tfor every ϕCc(U×+).\int_{U\times\mathbb{R}^{+}}\phi(x,t)\,d\mu(x,t):=\int_{0}^{\infty}\left(\int_{U}\phi(x,t)\,d\|V_{t}\|(x)\right)\,dt\qquad\mbox{for every $\phi\in C_{c}(U\times\mathbb{R}^{+})$}\,. (6.18)
Lemma 6.6.

We have the following properties for μ\mu and {Vt}t+\{V_{t}\}_{t\in\mathbb{R}^{+}}.

  1. (1)

    sptVt{xU:(x,t)sptμ}{\rm spt}\,\|V_{t}\|\subset\{x\in U\,:\,(x,t)\in{\rm spt}\,\mu\} for all t>0t>0.

  2. (2)

    For each U~⊂⊂U\tilde{U}\subset\joinrel\subset U and t>0t>0, we have n({xU~:(x,t)sptμ})<\mathcal{H}^{n}(\{x\in\tilde{U}\,:\,(x,t)\in{\rm spt}\,\mu\})<\infty.

The next Lemma (see [20, Lemma 10.10 and 10.11]) is used to prove the continuity of the labeling of partitions.

Lemma 6.7.

Let {j(t)}=1\{\mathcal{E}_{j_{\ell}}(t)\}_{\ell=1}^{\infty} be the sequence obtained in Proposition 5.1, and let {Ej,i(t)}i=1N\{E_{j_{\ell},i}(t)\}_{i=1}^{N} denote the open partitions for each jj_{\ell} and t+t\in\mathbb{R}^{+}, i.e., j(t)={Ej,i(t)}i=1N\mathcal{E}_{j_{\ell}}(t)=\{E_{j_{\ell},i}(t)\}_{i=1}^{N}.

  1. (1)

    For fixed i{1,,N}i\in\{1,\ldots,N\}, B2r(x)⊂⊂UB_{2r}(x)\subset\joinrel\subset U, t>0t>0 with tr2>0t-r^{2}>0, suppose that

    limn+1(B2r(x)Ej,i(t))=0andμ(B2r(x)×[tr2,t+r2])=0.\lim_{\ell\rightarrow\infty}\mathcal{L}^{n+1}(B_{2r}(x)\setminus E_{j_{\ell},i}(t))=0\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\mu(B_{2r}(x)\times[t-r^{2},t+r^{2}])=0.

    Then for all t(tr2,t+r2]t^{\prime}\in(t-r^{2},t+r^{2}], we have

    limn+1(Br(x)Ej,i(t))=0.\lim_{\ell\rightarrow\infty}\mathcal{L}^{n+1}(B_{r}(x)\setminus E_{j_{\ell},i}(t^{\prime}))=0.
  2. (2)

    For fixed i{1,,N}i\in\{1,\ldots,N\}, B2r(x)⊂⊂UB_{2r}(x)\subset\joinrel\subset U and r>0r>0, suppose that

    B2r(x)Ej,i(0)for all andμ(B2r(x)×[0,r2])=0.B_{2r}(x)\subset E_{j_{\ell},i}(0)\hskip 8.5359pt\mbox{for all $\ell\in\mathbb{N}$}\hskip 14.22636pt\mbox{and}\hskip 14.22636pt\mu(B_{2r}(x)\times[0,r^{2}])=0.

    Then for all t(0,r2]t^{\prime}\in(0,r^{2}], we have

    limn+1(Br(x)Ej,i(t))=0.\lim_{\ell\rightarrow\infty}\mathcal{L}^{n+1}(B_{r}(x)\setminus E_{j_{\ell},i}(t^{\prime}))=0.

The following is from [2, 3.7].

Lemma 6.8.

Suppose that Vt(Ur(x))=0\|V_{t}\|(U_{r}(x))=0 for some t+t\in\mathbb{R}^{+} and Ur(x)⊂⊂UU_{r}(x)\subset\joinrel\subset U. Then, for every t[t,t+r22n]t^{\prime}\in\left[t,t+\frac{r^{2}}{2n}\right] it holds Vt(Ur22n(tt)(x))=0\|V_{t^{\prime}}\|(U_{\sqrt{r^{2}-2n\,(t^{\prime}-t)}}(x))=0.

Proof of Theorem 2.3.

Let {j(t)}=1\{\mathcal{E}_{j_{\ell}}(t)\}_{\ell=1}^{\infty} be a sequence as in Lemma 6.7, with j(t)={Ej,i(t)}i=1N\mathcal{E}_{j_{\ell}}(t)=\{E_{j_{\ell},i}(t)\}_{i=1}^{N} for every \ell\in\mathbb{N}. Since Ej,i(t)(U)1E_{j_{\ell},i}(t)\subset\left(U\right)_{1}, for each tt and ii the volumes n+1(Ej,i(t))\mathcal{L}^{n+1}(E_{j_{\ell},i}(t)) are uniformly bounded in \ell. Furthermore, by the mass estimate in (4.31) we also have that χEj,i(t)(n+1)\|\nabla\chi_{E_{j_{\ell},i}(t)}\|(\mathbb{R}^{n+1}) are uniformly bounded. Hence, we can use the compactness theorem for sets of finite perimeter in order to select a (not relabeled) subsequence with the property that, for each fixed i{1,,N}i\in\{1,\ldots,N\},

χEj,i(t)χEi(t)in Lloc1(n+1) for every t2,\chi_{E_{j_{\ell},i}(t)}\to\chi_{E_{i}(t)}\quad\mbox{in $L^{1}_{loc}(\mathbb{R}^{n+1})$ $\qquad$ for every $t\in 2_{\mathbb{Q}}$}\,, (6.19)

where Ei(t)E_{i}(t) is a set of locally finite perimeter in n+1\mathbb{R}^{n+1}. Moreover, using that Ej,i(t)(U)1/(4j1/4)E_{j_{\ell},i}(t)\subset\left(U\right)_{1/(4\,j_{\ell}^{\nicefrac{{1}}{{4}}})} (see Proposition 4.2 and (4.7)) we see that n+1(Ei(t)U)=0\mathcal{L}^{n+1}(E_{i}(t)\setminus U)=0. Since sets of finite perimeter are defined up to measure zero sets, we can then assume without loss of generality that Ei(t)UE_{i}(t)\subset U. Hence, since n(U)<\mathcal{H}^{n}(\partial U)<\infty, Ei(t)E_{i}(t) is in fact a set of finite perimeter in n+1\mathbb{R}^{n+1}.

Next, consider the complement of sptμ(Γ0×{0})\mathrm{spt}\,\mu\cup(\Gamma_{0}\times\{0\}) in U×+U\times\mathbb{R}^{+}, which is relatively open in U×+U\times\mathbb{R}^{+}, and let SS be one of its connected components. For any point (x,t)S(x,t)\in S there exists r>0r>0 such that either B2r(x)×[tr2,t+r2]SB_{2\,r}(x)\times\left[t-r^{2},t+r^{2}\right]\subset S if t>0t>0, or B2r(x)×[0,r2]SB_{2\,r}(x)\times\left[0,r^{2}\right]\subset S if t=0t=0. We first consider the case t=0t=0. Since B2r(x)B_{2\,r}(x) lies in the complement of Γ0\Gamma_{0}, there exists i(x,0){1,,N}i(x,0)\in\{1,\ldots,N\} such that B2r(x)E0,i(x,0)B_{2\,r}(x)\subset E_{0,i(x,0)}, and thus B2r(x)Ej,i(x,0)(0)B_{2\,r}(x)\subset E_{j_{\ell},i(x,0)}(0) for all \ell\in\mathbb{N}. Since also μ(B2r(x)×[0,r2])=0\mu(B_{2\,r}(x)\times\left[0,r^{2}\right])=0, we can apply Lemma 6.7(2) and conclude that

limn+1(Br(x)Ej,i(x,0)(t))=0for all t(0,r2].\lim_{\ell\to\infty}\mathcal{L}^{n+1}(B_{r}(x)\setminus E_{j_{\ell},i(x,0)}(t^{\prime}))=0\qquad\mbox{for all $t^{\prime}\in\left(0,r^{2}\right]$}\,. (6.20)

Similarly, if t>0t>0, since μ(B2r(x)×[tr2,t+r2])=0\mu(B_{2\,r}(x)\times\left[t-r^{2},t+r^{2}\right])=0, we can apply Lemma 6.7(1) to conclude that there is a unique i(x,t){1,,N}i(x,t)\in\{1,\ldots,N\} such that

limn+1(Br(x)Ej,i(x,t)(t))=0for all t(tr2,t+r2].\lim_{\ell\to\infty}\mathcal{L}^{n+1}(B_{r}(x)\setminus E_{j_{\ell},i(x,t)}(t^{\prime}))=0\qquad\mbox{for all $t^{\prime}\in\left(t-r^{2},t+r^{2}\right]$}\,. (6.21)

Now, observe that if SS is any connected component of the complement of sptμ(Γ0×{0})\mathrm{spt}\,\mu\cup(\Gamma_{0}\times\{0\}) in U×+U\times\mathbb{R}^{+}, then by (6.20) and (6.21), and since SS is connected, for any two points (x,t)(x,t) and (y,s)(y,s) in SS it has to be i(x,t)=i(y,s)i(x,t)=i(y,s). For every i{1,,N}i\in\{1,\ldots,N\}, we can then let S(i)S(i) denote the union of all connected components SS such that i(x,t)=ii(x,t)=i for every (x,t)S(x,t)\in S. It is clear that S(i)S(i) are open sets, and that E0,i={xU:(x,0)S(i)}E_{0,i}=\left\{x\in U\,\colon\,(x,0)\in S(i)\right\} (notice that if xE0,ix\in E_{0,i} then (x,0)sptμ(x,0)\notin\mathrm{spt}\,\mu as a consequence of Lemma 6.8), so that each S(i)S(i) is not empty. Furthermore, we have that i=1NS(i)=(U×+)(sptμ(Γ0×{0}))\bigcup_{i=1}^{N}S(i)=(U\times\mathbb{R}^{+})\setminus\left(\mathrm{spt}\,\mu\cup(\Gamma_{0}\times\{0\})\right). For every t+t\in\mathbb{R}^{+}, we can thus define

Ei(t):={xU:(x,t)S(i)},Γ(t):=Ui=1NEi(t).E_{i}(t):=\left\{x\in U\,\colon\,(x,t)\in S(i)\right\}\,,\,\,\Gamma(t):=U\setminus\cup_{i=1}^{N}E_{i}(t). (6.22)

By examining the definition, one obtains Γ(t)={xU:(x,t)sptμ}\Gamma(t)=\{x\in U\,:\,(x,t)\in{\rm spt}\,\mu\} for all t>0t>0. Combined with Lemma 6.6(1), we have (11). By Lemma 6.6(2), we have (3), and this also proves that Γ(t)\Gamma(t) has empty interior, which shows (4). The claims (1) and (2) hold true by construction. (5) is a consequence of Proposition 6.4 and the definition of μ\mu being the product measure. (6) is similar: if xUconv(Γ0Γ0)x\in U\setminus{\rm conv}(\Gamma_{0}\cup\partial\Gamma_{0}) then the half-line t+γx(t):=(x,t)U×+t\in\mathbb{R}^{+}\mapsto\gamma_{x}(t):=\left(x,t\right)\in U\times\mathbb{R}^{+} must be contained in the same connected component of (U×+)(sptμ(Γ0×{0}))(U\times\mathbb{R}^{+})\setminus(\mathrm{spt}\,\mu\cup(\Gamma_{0}\times\{0\})), for otherwise there would be t>0t>0 such that (x,t)sptμ(x,t)\in\mathrm{spt}\,\mu, thus contradicting (5). For (7), by the strict convexity of UU and (5), we have Γ(t)Γ0\partial\Gamma(t)\subset\partial\Gamma_{0} for all t>0t>0. Later in Proposition 6.9, we prove (clos(sptVt))U=Γ0({\rm clos}\,({\rm spt}\,\|V_{t}\|))\setminus U=\partial\Gamma_{0} and Γ0Γ(t)\partial\Gamma_{0}\subset\partial\Gamma(t) follows from this and (11). Coming to (8), we use (6.21) together with the conclusions in Proposition 4.2(1) to see that χEj,i(t)χEi(t)\chi_{E_{j_{\ell},i}(t)}\to\chi_{E_{i}(t)} in L1(n+1)L^{1}(\mathbb{R}^{n+1}) as \ell\uparrow\infty, for every t+t\in\mathbb{R}^{+}. In particular, the lower semi-continuity of perimeter allows us to deduce that for any ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+})

χEi(t)(ϕ)lim infχEj,i(t)(ϕ)lim infj(t)(ϕ)=Vt(ϕ),\|\nabla\chi_{E_{i}(t)}\|(\phi)\leq\liminf_{\ell\to\infty}\|\nabla\chi_{E_{j_{\ell},i}(t)}\|(\phi)\leq\liminf_{\ell\to\infty}\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi)=\|V_{t}\|(\phi)\,,

thus proving χEi(t)Vt\|\nabla\chi_{E_{i}(t)}\|\leq\|V_{t}\| of (8). Using the cluster structure of each j(t)\partial\mathcal{E}_{j_{\ell}}(t) (see e.g. [26, Proposition 29.4]), we have in fact that

12i=1NχEj,i(t)(ϕ)=n  (i=1NEj,i(t))(ϕ)j(t)(ϕ)for every ϕ as above,\frac{1}{2}\sum_{i=1}^{N}\|\nabla\chi_{E_{j_{\ell},i}(t)}\|(\phi)=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{(\cup_{i=1}^{N}\partial^{*}E_{j_{\ell},i}(t))}(\phi)\leq\|\partial\mathcal{E}_{j_{\ell}}(t)\|(\phi)\qquad\mbox{for every $\phi$ as above}\,,

which shows the other statement i=1NχEi(t)2Vt\sum_{i=1}^{N}\|\nabla\chi_{E_{i}(t)}\|\leq 2\,\|V_{t}\| in (8). Since the claim of (9) is interior in nature, the proof is identical to the case without boundary as in [20, Theorem 3.5(6)]. For the proof of (10), for t¯0\bar{t}\geq 0, we prove that χEi(t)χEi(t¯)\chi_{E_{i}(t)}\to\chi_{E_{i}(\bar{t})} in L1(U)L^{1}(U) as tt¯t\to\bar{t} for each i=1,,Ni=1,\ldots,N. Since χEi(t)(U)Vt(U)n(Γ0)\|\nabla\chi_{E_{i}(t)}\|(U)\leq\|V_{t}\|(U)\leq\mathcal{H}^{n}(\Gamma_{0}), for any tkt¯t_{k}\to\bar{t}, there exists a subsequence (denoted by the same index) and E~iU\tilde{E}_{i}\subset U such that χEi(tk)χE~i\chi_{E_{i}(t_{k})}\to\chi_{\tilde{E}_{i}} in L1(U)L^{1}(U) and n+1\mathcal{L}^{n+1} a.e. by the compactness theorem for sets of finite perimeter. We also have n+1(E~iE~j)=0\mathcal{L}^{n+1}(\tilde{E}_{i}\cap\tilde{E}_{j})=0 for iji\neq j and n+1(Ui=1NE~i)=0\mathcal{L}^{n+1}(U\setminus\cup_{i=1}^{N}\tilde{E}_{i})=0. For a contradiction, assume that n+1(Ei(t¯)E~i)>0\mathcal{L}^{n+1}(E_{i}(\bar{t})\setminus\tilde{E}_{i})>0 for some ii. Then, there must be Ur(x)⊂⊂Ei(t¯)U_{r}(x)\subset\joinrel\subset E_{i}(\bar{t}) such that n+1(Ur(x)E~i)>0\mathcal{L}^{n+1}(U_{r}(x)\setminus\tilde{E}_{i})>0. We then use Theorem 2.3(9) with g(t)=n+1(Ei(t)Ur(x))g(t)=\mathcal{L}^{n+1}(E_{i}(t)\cap U_{r}(x)), which gives limtt¯g(t)=g(t¯)=n+1(Ei(t¯)Ur(x))=n+1(Ur(x))\lim_{t\to\bar{t}}g(t)=g(\bar{t})=\mathcal{L}^{n+1}(E_{i}(\bar{t})\cap U_{r}(x))=\mathcal{L}^{n+1}(U_{r}(x)). On the other hand, χEi(t)χE~i\chi_{E_{i}(t)}\to\chi_{\tilde{E}_{i}} in L1(U)L^{1}(U) implies limtt¯g(t)=n+1(E~iUr(x))<n+1(Ur(x))\lim_{t\to\bar{t}}g(t)=\mathcal{L}^{n+1}(\tilde{E}_{i}\cap U_{r}(x))<\mathcal{L}^{n+1}(U_{r}(x)) because of n+1(Ur(x)E~i)>0\mathcal{L}^{n+1}(U_{r}(x)\setminus\tilde{E}_{i})>0. This is a contradiction. Thus, we have n+1(Ei(t¯)E~i)=0\mathcal{L}^{n+1}(E_{i}(\bar{t})\setminus\tilde{E}_{i})=0 for all i=1,,Ni=1,\ldots,N. Since {E~1,,E~N}\{\tilde{E}_{1},\ldots,\tilde{E}_{N}\} is a partion of UU, we have n+1(Ei(t¯)E~i)=0\mathcal{L}^{n+1}(E_{i}(\bar{t})\triangle\tilde{E}_{i})=0 for all ii. This proves (9), and finishes the proof of (1)-(11) except for (7), which is independent and is proved once we prove Proposition 6.9. ∎

Proposition 6.9.

For all t0t\geq 0, it holds (clos(sptVt))U=Γ0({\rm clos}\,(\mathrm{spt}\|V_{t}\|))\setminus U=\partial\Gamma_{0}.

Proof.

Let x(clos(sptVt))Ux\in({\rm clos}\,(\mathrm{spt}\|V_{t}\|))\setminus U, and let {xk}k=1\{x_{k}\}_{k=1}^{\infty} be a sequence with xksptVtx_{k}\in\mathrm{spt}\,\|V_{t}\| such that xkxx_{k}\to x as kk\uparrow\infty. If xΓ0x\notin\partial\Gamma_{0}, then by Proposition 6.1 there is r>0r>0 such that Vt(Br(x)U)=0\|V_{t}\|(B_{r}(x)\cap U)=0. For all suitably large kk so that |xxk|<r\lvert x-x_{k}\rvert<r we then have Vt(Br|xxk|(xk)U)=0\|V_{t}\|(B_{r-\lvert x-x_{k}\rvert}(x_{k})\cap U)=0, which contradicts the fact that xksptVtx_{k}\in\mathrm{spt}\|V_{t}\|.

Conversely, let xΓ0x\in\partial\Gamma_{0}, and suppose for a contradiction that xclos(sptVt)x\notin{\rm clos}\,(\mathrm{spt}\|V_{t}\|), so that there is a radius r>0r>0 with the property that Br(x)sptVt=B_{r}(x)\cap\mathrm{spt}\|V_{t}\|=\emptyset. Then, Theorem 2.3(8) implies that χEi(t)(Br(x)U)=0\|\nabla\chi_{E_{i}(t)}\|(B_{r}(x)\cap U)=0 for every i{1,,N}i\in\{1,\ldots,N\}. Since Br(x)UB_{r}(x)\cap U is connected by the convexity of UU, every χEi(t)\chi_{E_{i}(t)} is either constantly equal to 0 or 11 on Br(x)UB_{r}(x)\cap U, namely

Br(x)UE(t)for some {1,,N}.B_{r}(x)\cap U\subset E_{\ell}(t)\qquad\mbox{for some $\ell\in\{1,\ldots,N\}$}\,. (6.23)

If t=0t=0, since Ei(0)=E0,iE_{i}(0)=E_{0,i} for every i=1,,Ni=1,\ldots,N, the conclusion in (6.23) is evidently incompatible with (A4)(A4), thus providing the desired contradiction. We can then assume t>0t>0. By (A4)(A4), there are at least two indices ii{1,,N}i\neq i^{\prime}\in\{1,\ldots,N\} and sequences of balls {Brj(xj)}j=1\{B_{r_{j}}(x_{j})\}_{j=1}^{\infty}, {Brj(xj)}j=1\{B_{r_{j}^{\prime}}(x_{j}^{\prime})\}_{j=1}^{\infty} such that xj,xjUx_{j},x_{j}^{\prime}\in\partial U, limjxj=limjxj=x\lim_{j\to\infty}x_{j}=\lim_{j\to\infty}x_{j}^{\prime}=x and Brj(xj)UE0,iB_{r_{j}}(x_{j})\cap U\subset E_{0,i} whereas Brj(xj)UE0,iB_{r_{j}^{\prime}}(x_{j}^{\prime})\cap U\subset E_{0,i^{\prime}}. Let zz denote any of the points xjx_{j} or xjx_{j}^{\prime}, and observe that the above condition guarantees that zUΓ0z\in\partial U\setminus\partial\Gamma_{0}. In turn, by arguing as in Remark 6.2 we deduce that there is a neighborhood Bρ(z)UB_{\rho}(z)\cap U such that Vt(Bρ(z)U)=0\|V_{t}\|(B_{\rho}(z)\cap U)=0 for all t0t\geq 0, and thus also χEl(t)(Bρ(z)U)=0\|\nabla\chi_{E_{l}(t)}\|(B_{\rho}(z)\cap U)=0 for every t0t\geq 0 and for every l{1,,N}l\in\{1,\ldots,N\}. Since Bρ(z)UB_{\rho}(z)\cap U is connected this implies that Bρ(z)UEl(t)B_{\rho}(z)\cap U\subset E_{l}(t) for some ll. Applying this argument with z=xjz=x_{j} and z=xjz=x_{j}^{\prime} we then find radii ρj\rho_{j} and ρj\rho_{j}^{\prime} such that, necessarily, Bρj(xj)UEi(t)B_{\rho_{j}}(x_{j})\cap U\subset E_{i}(t) whereas Bρj(xj)UEi(t)B_{\rho_{j}^{\prime}}(x_{j}^{\prime})\cap U\subset E_{i^{\prime}}(t) for all t0t\geq 0. Since xjxx_{j}\to x and xjxx_{j}^{\prime}\to x this conclusion is again incompatible with (6.23), thus completing the proof. ∎

Proposition 6.10.

We have for each ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+})

n  (i=1NE0,i)(ϕ)lim inft0Vt(ϕ)=lim supt0Vt(ϕ)n  Γ0(ϕ).\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{(\cup_{i=1}^{N}\partial^{*}E_{0,i})}(\phi)\leq\liminf_{t\downarrow 0}\|V_{t}\|(\phi)=\limsup_{t\downarrow 0}\|V_{t}\|(\phi)\leq\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma_{0}}(\phi).

In particular, if n(Γ0i=1NE0,i)=0\mathcal{H}^{n}(\Gamma_{0}\setminus\cup_{i=1}^{N}\partial^{*}E_{0,i})=0, then we have

limt0Vt=n  Γ0as Radon measures in U.\lim_{t\downarrow 0}\|V_{t}\|=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma_{0}}\qquad\mbox{as Radon measures in $U$}\,.
Proof.

By [26, Proposition 29.4], we have for each ϕCc(U;+)\phi\in C_{c}(U;\mathbb{R}^{+})

2n (i=1NE0,i)(ϕ)=i=1NχE0,i(ϕ)i=1Nlim inft0χEi(t)(ϕ)lim inft0i=1NχEi(t)(ϕ)2lim inft0Vt(ϕ)\begin{split}&2\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{(\cup_{i=1}^{N}\partial^{*}E_{0,i})}(\phi)=\sum_{i=1}^{N}\|\nabla\chi_{E_{0,i}}\|(\phi)\leq\sum_{i=1}^{N}\liminf_{t\downarrow 0}\|\nabla\chi_{E_{i}(t)}\|(\phi)\\ &\leq\liminf_{t\downarrow 0}\sum_{i=1}^{N}\|\nabla\chi_{E_{i}(t)}\|(\phi)\leq 2\liminf_{t\downarrow 0}\|V_{t}\|(\phi)\end{split}

where we also used Theorem 2.3(8) and (10). This proves the first inequality. The second equality and the third inequality follow from (4.28), μt=Vt\mu_{t}=\|V_{t}\| and V0=n  Γ0\|V_{0}\|=\mathcal{H}^{n}\mathbin{\vrule height=6.88889pt,depth=0.0pt,width=0.55974pt\vrule height=0.55974pt,depth=0.0pt,width=5.59721pt}_{\Gamma_{0}}. ∎

The proof of Theorem 2.2 is now complete: {Vt}t0\{V_{t}\}_{t\geq 0} is a Brakke flow with fixed boundary Γ0\partial\Gamma_{0} due to Proposition 5.1(1), Theorem 5.4 and Proposition 6.9. Proposition 6.10 proves the claim on the continuity of measure at t=0t=0.

7. Applications to the problem of Plateau

As anticipated in the introduction, an interesting byproduct of our global existence result for Brakke flow is the existence of a stationary integral varifold VV in UU satisfying the topological boundary constraint clos(sptV)U=Γ0{\rm clos}(\mathrm{spt}\|V\|)\setminus U=\partial\Gamma_{0}. This is the content of Corollary 2.4, which we prove next.

Proof of Corollary 2.4.

By the estimate in (5.7), the function

H(t):=U|h(x,Vt)|2dVt(x)H(t):=\int_{U}\lvert h(x,V_{t})\rvert^{2}\,d\|V_{t}\|(x)

is in L1((0,))L^{1}(\left(0,\infty\right)). Hence, there exists a sequence {tk}k=1\{t_{k}\}_{k=1}^{\infty} such that

limktk=,limkH(tk)=0.\lim_{k\to\infty}t_{k}=\infty\,,\qquad\lim_{k\to\infty}H(t_{k})=0\,. (7.1)

Let Vk:=VtkV_{k}:=V_{t_{k}}. Again by (5.7), we have that

supkVk(U)n(Γ0).\sup_{k}\|V_{k}\|(U)\leq\mathcal{H}^{n}(\Gamma_{0})\,. (7.2)

Furthermore, combining (2.5) with (7.2) yields, via the Cauchy-Schwarz inequality, that

|δVk(g)|gC0(n(Γ0))12(H(tk))12for every gCc(U;n+1),\lvert\delta V_{k}(g)\rvert\leq\|g\|_{C^{0}}\,\left(\mathcal{H}^{n}(\Gamma_{0})\right)^{\frac{1}{2}}\,\left(H(t_{k})\right)^{\frac{1}{2}}\qquad\mbox{for every $g\in C_{c}(U;\mathbb{R}^{n+1})$}\,, (7.3)

so that

limkδVk(U)=0.\lim_{k\to\infty}\|\delta V_{k}\|(U)=0\,. (7.4)

Hence, we can apply Allard’s compactness theorem for integral varifolds, see [33, Theorem 42.7], in order to conclude the existence of a stationary integral varifold V𝐈𝐕n(U)V\in\mathbf{IV}_{n}(U) such that VkVV_{k}\to V in the sense of varifolds.

Next, we prove the existence of the family {Ei}i=1N\{E_{i}\}_{i=1}^{N}. Fix i{1,,N}i\in\{1,\ldots,N\}, and consider the sequence {Eik}k=1\{E_{i}^{k}\}_{k=1}^{\infty}, where Eik:=Ei(tk)E_{i}^{k}:=E_{i}(t_{k}). By Theorem 2.3(8) and (5.7) we have, along a (not relabeled) subsequence, the convergence

χEikχEiin L1(U) and pointwise n+1-a.e. as k,\chi_{E_{i}^{k}}\to\chi_{E_{i}}\qquad\mbox{in $L^{1}(U)$ and pointwise $\mathcal{L}^{n+1}$-a.e. as $k\to\infty$}\,, (7.5)

where EiUE_{i}\subset U are sets of finite perimeter. Since, by Theorem 2.3(3), i=1NχEik=χU\sum_{i=1}^{N}\chi_{E_{i}^{k}}=\chi_{U} as L1L^{1} functions, we conclude that

n+1(Ui=1NEi)=0,andn+1(EiEj)=0if ij,\mathcal{L}^{n+1}\left(U\setminus\bigcup_{i=1}^{N}E_{i}\right)=0\,,\qquad\mbox{and}\qquad\mathcal{L}^{n+1}(E_{i}\cap E_{j})=0\quad\mbox{if $i\neq j$}\,,

so that i=1NEi\bigcup_{i=1}^{N}E_{i} is an n+1\mathcal{L}^{n+1}-partition of UU. The validity of Theorem 2.3(8) implies conclusion (1), namely that

χEiVfor every i{1,,N}andi=1NχEi2V\|\nabla\chi_{E_{i}}\|\leq\|V\|\quad\mbox{for every $i\in\{1,\ldots,N\}$}\qquad\mbox{and}\qquad\sum_{i=1}^{N}\|\nabla\chi_{E_{i}}\|\leq 2\,\|V\| (7.6)

in the sense of Radon measures in UU. As a consequence of (7.6), we have that sptχEisptV\mathrm{spt}\,\|\nabla\chi_{E_{i}}\|\subset\mathrm{spt}\,\|V\| for every i=1,,Ni=1,\ldots,N. Since VV is a stationary integral varifold, the monotonicity formula implies that sptV\mathrm{spt}\|V\| is n\mathcal{H}^{n}-rectifiable, and V=𝐯𝐚𝐫(sptV,θ)V=\mathbf{var}(\mathrm{spt}\,\|V\|,\theta) for some upper semi-continuous θ:U+\theta\,\colon\,U\to\mathbb{R}^{+} with θ(x)1\theta(x)\geq 1 at each xsptVx\in\mathrm{spt}\|V\|. In particular, setting Γ:=sptV\Gamma:=\mathrm{spt}\,\|V\|, we have

n(Γ)=𝐯𝐚𝐫(Γ,1)(U)V(U)n(Γ0),\mathcal{H}^{n}(\Gamma)=\|\mathbf{var}(\Gamma,1)\|(U)\leq\|V\|(U)\leq\mathcal{H}^{n}(\Gamma_{0})\,, (7.7)

where the last inequality is a consequence of (5.7) and the lower semicontinuity of the weight with respect to varifold convergence.

Next, we observe that, since sptχEiΓ\mathrm{spt}\,\|\nabla\chi_{E_{i}}\|\subset\Gamma, on each connected component of UΓU\setminus\Gamma each χEi\chi_{E_{i}} is almost everywhere constant. Denoting {Oh}h\{O_{h}\}_{h\in\mathbb{N}} the connected components of the open set UΓU\setminus\Gamma, we may then modify each set EiE_{i} (i{1,,N}i\in\{1,\ldots,N\}) by setting

Ei:={Oh:χEi=1a.e. on Oh}Oh.E_{i}^{*}:=\bigcup_{\{O_{h}\,\colon\,\chi_{E_{i}}=1\quad\mbox{a.e. on }O_{h}\}}O_{h}.

By definition, each set EiE_{i}^{*} is open; furthermore, the sets EiE_{i}^{*} are pairwise disjoint, and i=1NEi=UΓ\bigcup_{i=1}^{N}E_{i}^{*}=U\setminus\Gamma. Since for each ii we have n+1(EiΔEi)=0\mathcal{L}^{n+1}(E_{i}\Delta E_{i}^{*})=0, and since sets of finite perimeter are defined up to n+1\mathcal{L}^{n+1}-negligible sets, we can thus replace the family {Ei}\{E_{i}\} with {Ei}\{E_{i}^{*}\}, and drop the superscript \,{}^{*} to ease the notation.

Property (2) is a consequence of Theorem 2.3(6), since the convergence χEikχEi\chi_{E_{i}^{k}}\to\chi_{E_{i}} now holds pointwise on Uconv(Γ0Γ0)U\setminus{\rm conv}(\Gamma_{0}\cup\partial\Gamma_{0}). We have not excluded the possibility that n(Γ)=0\mathcal{H}^{n}(\Gamma)=0. But this should imply V=0\|V\|=0 by (7.7), and χEi=0\|\nabla\chi_{E_{i}}\|=0 for every i{1,,N}i\in\{1,\ldots,N\} by (7.6), which is a contradiction to (2). Thus we have necessarily n(Γ)>0\mathcal{H}^{n}(\Gamma)>0 and this completes the proof of (3). In order to conclude the proof, we are just left with the boundary condition (4), namely

(clos(sptV))U=Γ0.({\rm clos}\,(\mathrm{spt}\,\|V\|))\setminus U=\partial\Gamma_{0}\,. (7.8)

Towards the first inclusion, suppose that x(clos(sptV))Ux\in({\rm clos}\,(\mathrm{spt}\,\|V\|))\setminus U, and let {xh}h=1\{x_{h}\}_{h=1}^{\infty} be a sequence with xhsptVx_{h}\in\mathrm{spt}\|V\| such that xhxx_{h}\to x as hh\to\infty. If xΓ0x\notin\partial\Gamma_{0} then Proposition 6.1 implies that there exists r>0r>0 such that

lim supkVk(UBr(x))=0.\limsup_{k\to\infty}\|V_{k}\|(U\cap B_{r}(x))=0\,.

By the lower semi-continuity of the weight with respect to varifold convergence, we deduce then that V(UUr(x))=0\|V\|(U\cap U_{r}(x))=0. For hh large enough so that |xxh|<r\lvert x-x_{h}\rvert<r we then have V(UUr|xxh|(xh))=0\|V\|(U\cap U_{r-\lvert x-x_{h}\rvert}(x_{h}))=0, thus contradicting that xhsptVx_{h}\in\mathrm{spt}\|V\|. For the second inclusion, let xΓ0x\in\partial\Gamma_{0}, and suppose towards a contradiction that xclos(sptV)Ux\notin{\rm clos}(\mathrm{spt}\,\|V\|)\setminus U. Then, there exists a radius r>0r>0 such that Ur(x)sptV=U_{r}(x)\cap\mathrm{spt}\,\|V\|=\emptyset. In particular, χEi(UUr(x))=0\|\nabla\chi_{E_{i}}\|(U\cap U_{r}(x))=0 for every i{1,,N}i\in\{1,\ldots,N\}. Since UU is convex, UUr(x)U\cap U_{r}(x) is connected, and thus every χEi\chi_{E_{i}} is either identically 0 or 11 in Ur(x)UU_{r}(x)\cap U, namely

Ur(x)UEfor some {1,,N}.U_{r}(x)\cap U\subset E_{\ell}\qquad\mbox{for some $\ell\in\{1,\ldots,N\}$}\,. (7.9)

Because xΓ0x\in\partial\Gamma_{0}, by property (A4)(A4) in Assumption 1.1 there are two indices ii{1,,N}i\neq i^{\prime}\in\{1,\ldots,N\} and sequences {xj}j=1,{xj}j=1\{x_{j}\}_{j=1}^{\infty}\,,\{x^{\prime}_{j}\}_{j=1}^{\infty} with limjxj=x=limjxj\lim_{j\to\infty}x_{j}=x=\lim_{j\to\infty}x_{j}^{\prime} such that xj,xjUΓ0x_{j},x_{j}^{\prime}\in\partial U\setminus\partial\Gamma_{0} and Urj(xj)UE0,iU_{r_{j}}(x_{j})\cap U\subset E_{0,i}, Urj(xj)UE0,iU_{r_{j}^{\prime}}(x_{j}^{\prime})\cap U\subset E_{0,i^{\prime}} for some rj,rj>0r_{j},r_{j}^{\prime}>0. If zz denotes any of the points xjx_{j} or xjx_{j}^{\prime}, Proposition 6.1 and Remark 6.2 ensure the existence of ρ\rho such that Vt(Bρ(z)U)=0\|V_{t}\|(B_{\rho}(z)\cap U)=0 for all t0t\geq 0. Again by lower semicontinuity of the weight with respect to varifold convergence, V(Uρ(z)U)=0\|V\|(U_{\rho}(z)\cap U)=0. Since each Uρ(z)UU_{\rho}(z)\cap U is connected and sptχEisptV\mathrm{spt}\|\nabla\chi_{E_{i}}\|\subset\mathrm{spt}\|V\| for all ii, we deduce that Uρj(xj)UEiU_{\rho_{j}}(x_{j})\cap U\subset E_{i} and Uρj(xj)UEiU_{\rho_{j}^{\prime}}(x_{j}^{\prime})\cap U\subset E_{i^{\prime}} for some iii\neq i^{\prime}. Since both xjxx_{j}\to x and xjxx_{j}^{\prime}\to x, this conclusion is incompatible with (7.9). This completes the proof. ∎

The stationary varifold VV from Corollary 2.4 is a generalized minimal surface in UU, and for this reason it can be thought of as a solution to Plateau’s problem in UU with the prescribed boundary Γ0\partial\Gamma_{0}. Brakke flow provides, therefore, an interesting alternative approach to the existence theory for Plateau’s problem compared to more classical methods based on mass (or area) minimization. Another novelty of this approach is that the structure of partitions allows to prescribe the boundary datum in the purely topological sense, by means of the constraint (clos(sptV))U=Γ0({\rm clos}\,(\mathrm{spt}\|V\|))\setminus U=\partial\Gamma_{0}. This adds to the several other possible interpretations of the spanning conditions that have been proposed in the literature: among them, let us mention the homological boundary conditions in Federer and Fleming’s theory of integral currents [12] or of integral currents mod(p){\rm mod}(p) [11] (see also Brakke’s covering space model for soap films [3]); the sliding boundary conditions in David’s sliding minimizers [6, 5]; and the homotopic spanning condition of Harrison [13], Harrison-Pugh [14] and De Lellis-Ghiraldin-Maggi [7].

Concerning the latter, we can actually show that, under a suitable extra assumption on the initial partition 0\mathcal{E}_{0}, a homotopic spanning condition is satisfied at all times along the flow. Before stating and proving this result, which is Proposition 7.4 below, let us first record the definition of homotopic spanning condition after [7].

Definition 7.1 (see [7, Definition 3]).

Let n2n\geq 2, and let Σ\Sigma be a closed subset of n+1\mathbb{R}^{n+1}. Consider the family

𝒞Σ:={γ:𝕊1n+1Σ:γ is a smooth embedding of 𝕊1 into n+1Σ}.\mathcal{C}_{\Sigma}:=\left\{\gamma\colon\mathbb{S}^{1}\to\mathbb{R}^{n+1}\setminus\Sigma\,\colon\,\gamma\mbox{ is a smooth embedding of $\mathbb{S}^{1}$ into $\mathbb{R}^{n+1}\setminus\Sigma$}\right\}\,. (7.10)

A subfamily 𝒞𝒞Σ\mathcal{C}\subset\mathcal{C}_{\Sigma} is said to be homotopically closed if γ𝒞\gamma\in\mathcal{C} implies that γ~𝒞\tilde{\gamma}\in\mathcal{C} for every γ~[γ]\tilde{\gamma}\in\left[\gamma\right], where [γ]\left[\gamma\right] is the equivalence class of γ\gamma modulo homotopies in n+1Σ\mathbb{R}^{n+1}\setminus\Sigma. Given a homotopically closed 𝒞𝒞Σ\mathcal{C}\subset\mathcal{C}_{\Sigma}, a relatively closed subset Kn+1ΣK\subset\mathbb{R}^{n+1}\setminus\Sigma is 𝒞\mathcal{C}-spanning Σ\Sigma if 222With a slight abuse of notation, in what follows we will always identify the map γ\gamma with its image γ(𝕊1)n+1Σ\gamma(\mathbb{S}^{1})\subset\mathbb{R}^{n+1}\setminus\Sigma.

Kγfor every γ𝒞.K\cap\gamma\neq\emptyset\qquad\mbox{for every $\gamma\in\mathcal{C}$}\,. (7.11)
Remark 7.2.

If 𝒞𝒞Σ\mathcal{C}\subset\mathcal{C}_{\Sigma} contains a homotopically trivial curve, then any 𝒞\mathcal{C}-spanning set KK will necessarily have non-empty interior (and therefore infinite n\mathcal{H}^{n} measure). For this reason, we are only interested in subfamilies 𝒞\mathcal{C} with [γ]0\left[\gamma\right]\neq 0 for every γ𝒞\gamma\in\mathcal{C}.

Definition 7.3.

We will say that a relatively closed subset Kn+1ΣK\subset\mathbb{R}^{n+1}\setminus\Sigma strongly homotopically spans Σ\Sigma if it 𝒞\mathcal{C}-spans Σ\Sigma for every homotopically closed family 𝒞𝒞Σ\mathcal{C}\subset\mathcal{C}_{\Sigma} which does not contain any homotopically trivial curve. Namely, if KγK\cap\gamma\neq\emptyset for every γ𝒞Σ\gamma\in\mathcal{C}_{\Sigma} such that [γ]0\left[\gamma\right]\neq 0 in π1(n+1Σ)\pi_{1}(\mathbb{R}^{n+1}\setminus\Sigma).

We can prove the following proposition, whose proof is a suitable adaptation of the argument in [7, Lemma 10].

Proposition 7.4.

Let n2n\geq 2, and let U,Γ0,0U,\Gamma_{0},\mathcal{E}_{0} be as in Assumption 1.1. Suppose that the initial partition 0\mathcal{E}_{0} satisfies the following additional property:

Given any two connected components S1 and S2 of UΓ0,there are two indices i,j{1,,N} with ijsuch that S1closE0,i and S2closE0,j.\begin{split}&\mbox{Given any two connected components $S_{1}$ and $S_{2}$ of $\partial U\setminus\partial\Gamma_{0}$}\,,\\ &\mbox{there are two indices $i,j\in\{1,\ldots,N\}$ with $i\neq j$}\\ &\mbox{such that $S_{1}\subset{\rm clos}\,E_{0,i}$ and $S_{2}\subset{\rm clos}\,E_{0,j}$}\,.\end{split} (\diamond)

Then, the set Γ(t)\Gamma(t) strongly homotopically spans Γ0\partial\Gamma_{0} for every t[0,]t\in\left[0,\infty\right].

Proof.

Let γ:𝕊1n+1Γ0\gamma\colon\mathbb{S}^{1}\to\mathbb{R}^{n+1}\setminus\partial\Gamma_{0} be a smooth embedding that is not homotopically trivial in n+1Γ0\mathbb{R}^{n+1}\setminus\partial\Gamma_{0}. The goal is to prove that, for every t[0,]t\in\left[0,\infty\right], Γ(t)γ\Gamma(t)\cap\gamma\neq\emptyset. First observe that it cannot be γU\gamma\subset U, for otherwise γ\gamma would be homotopically trivial. For the same reason, since the ambient dimension is n+13n+1\geq 3 also γn+1closU\gamma\subset\mathbb{R}^{n+1}\setminus{\rm clos}\,U is incompatible with the properties of γ\gamma. Hence, we conclude that γ\gamma must necessarily intersect U\partial U. We first prove the result under the additional assumption that γ\gamma and U\partial U intersect transversally. We can then find finitely many closed arcs Ih=[ah,bh]𝕊1I_{h}=\left[a_{h},b_{h}\right]\subset\mathbb{S}^{1} with the property that γU=hγ((ah,bh))\gamma\cap U=\bigcup_{h}\gamma(\left(a_{h},b_{h}\right)), and γ(UΓ0)=h{γ(ah),γ(bh)}\gamma\cap(\partial U\setminus{\partial\Gamma_{0}})=\bigcup_{h}\{\gamma(a_{h}),\gamma(b_{h})\}. If there is hh such that γ(ah)\gamma(a_{h}) and γ(bh)\gamma(b_{h}) belong to two distinct connected components of UΓ0\partial U\setminus{\partial\Gamma_{0}}, then (\diamond7.4) implies that the arc σh:=γ|(ah,bh)\sigma_{h}:=\left.\gamma\right|_{\left(a_{h},b_{h}\right)} must intersect UEi(0)U\cap\partial E_{i}(0) for some i=1,,Ni=1,\ldots,N. In fact, since the labeling of the open partition at the boundary of UU is invariant along the flow, the same conclusion holds for every t[0,]t\in\left[0,\infty\right]. In particular, in this case γ\gamma intersects i(Ei(t)U)=Γ(t)\bigcup_{i}(\partial E_{i}(t)\cap U)=\Gamma(t) for every t[0,]t\in\left[0,\infty\right]. Hence, if by contradiction γ\gamma has empty intersection with Γ(t)\Gamma(t), then necessarily for every hh there is a connected component ShS_{h} of UΓ0\partial U\setminus{\partial\Gamma_{0}} such that γ(ah),γ(bh)Sh\gamma(a_{h}),\gamma(b_{h})\in S_{h} (note that it may be Sh=ShS_{h}=S_{h^{\prime}} for hhh\neq h^{\prime}). Since each ShS_{h} is connected, for every hh we can find a smooth embedding τh:IhSh\tau_{h}\colon I_{h}\to S_{h} with the property that τh(ah)=γ(ah)\tau_{h}(a_{h})=\gamma(a_{h}) and τh(bh)=γ(bh)\tau_{h}(b_{h})=\gamma(b_{h}). Furthermore, this can be achieved under the additional condition that τh(Ih)τh(Ih)=\tau_{h}(I_{h})\cap\tau_{h^{\prime}}(I_{h^{\prime}})=\emptyset for every hhh\neq h^{\prime}. We can then define a piecewise smooth embedding γ~\tilde{\gamma} of 𝕊1\mathbb{S}^{1} into n+1Γ0\mathbb{R}^{n+1}\setminus{\partial\Gamma_{0}} such that γ~|Ih:=τh|Ih\left.\tilde{\gamma}\right|_{I_{h}}:=\left.\tau_{h}\right|_{I_{h}} for every hh, and γ~=γ\tilde{\gamma}=\gamma on the open set 𝕊1hIh\mathbb{S}^{1}\setminus\bigcup_{h}I_{h}. We have [γ~]=[γ]\left[\tilde{\gamma}\right]=\left[\gamma\right] in π1(n+1Γ0)\pi_{1}(\mathbb{R}^{n+1}\setminus{\partial\Gamma_{0}}). We can then construct a smooth embedding γ^:𝕊1n+1Γ0\hat{\gamma}\colon\mathbb{S}^{1}\to\mathbb{R}^{n+1}\setminus{\partial\Gamma_{0}} such that [γ^]=[γ]\left[\hat{\gamma}\right]=\left[\gamma\right] in π1(n+1Γ0)\pi_{1}(\mathbb{R}^{n+1}\setminus{\partial\Gamma_{0}}), and with γ^n+1U\hat{\gamma}\subset\mathbb{R}^{n+1}\setminus\partial U. Since n+13n+1\geq 3 this contradicts the assumption that [γ]0\left[\gamma\right]\neq 0 and completes the proof if γ\gamma and U\partial U intersect transversally.

Finally, we remove the transversality assumption. Let δ=δ(U)>0\delta=\delta(\partial U)>0 be such that the tubular neighborhood (U)2δ(\partial U)_{2\delta} has a well-defined smooth nearest point projection Π\Pi, and consider, for |s|<δ\lvert s\rvert<\delta, the open sets UsU_{s} having boundary Us={xsνU(x):xU}\partial U_{s}=\left\{x-s\,\nu_{U}(x)\,\colon\,x\in\partial U\right\}, where νU\nu_{U} is the exterior normal unit vector field to U\partial U. Since γ\gamma is smooth, by Sard’s theorem γ\gamma intersects Us\partial U_{s} transversally for a.e. |s|<δ\lvert s\rvert<\delta. Fix such an s(0,δ)s\in\left(0,\delta\right), and let Φs:n+1n+1\Phi_{s}\colon\mathbb{R}^{n+1}\to\mathbb{R}^{n+1} be the smooth diffeomorphism of n+1\mathbb{R}^{n+1} defined by

Φs(x):=x+φs(ρU(x))νU(Π(x)),\Phi_{s}(x):=x+\varphi_{s}(\rho_{U}(x))\,\nu_{U}(\Pi(x))\,, (7.12)

where

ρU(x):={|xΠ(x)|if x(U)2δU|xΠ(x)|if x(U)2δU\rho_{U}(x):=\begin{cases}\lvert x-\Pi(x)\rvert&\mbox{if }x\in(\partial U)_{2\delta}\cap U\\ -\lvert x-\Pi(x)\rvert&\mbox{if }x\in(\partial U)_{2\delta}\setminus U\end{cases}

is the signed distance function from U\partial U, and φs=φs(t)\varphi_{s}=\varphi_{s}(t) is a smooth function such that

φs(t)=0for all |t|2s,andφs(s)=s.\varphi_{s}(t)=0\quad\mbox{for all $|t|\geq 2s$}\,,\qquad\mbox{and}\qquad\varphi_{s}(s)=s\,.

In particular, Φs\Phi_{s} maps Us\partial U_{s} diffeomorphically onto U\partial U, and furthermore

Φsiduniformly on n+1 as s0+.\Phi_{s}\to{\rm id}\qquad\mbox{uniformly on $\mathbb{R}^{n+1}$ as $s\to 0+$}\,. (7.13)

Since γ\gamma intersects Us\partial U_{s} transversally, the curve Φsγ\Phi_{s}\circ\gamma intersects U\partial U transversally. Furthermore, since γ\gamma and Γ0{\partial\Gamma_{0}} are two compact sets with empty intersection, (7.13) implies that if we choose ss sufficiently small then also (Φsγ)Γ0=(\Phi_{s}\circ\gamma)\cap{\partial\Gamma_{0}}=\emptyset. Since [Φsγ]=[γ]0\left[\Phi_{s}\circ\gamma\right]=\left[\gamma\right]\neq 0 in π1(n+1Γ0)\pi_{1}(\mathbb{R}^{n+1}\setminus\partial\Gamma_{0}), the first part of the proof guarantees that for every t[0,]t\in\left[0,\infty\right] we have Γ(t)(Φsγ)\Gamma(t)\cap(\Phi_{s}\circ\gamma)\neq\emptyset. For every tt we then have points zs(t)Γ(t)Φsγz_{s}(t)\in\Gamma(t)\cap\Phi_{s}\circ\gamma. Along a sequence sh0+s_{h}\to 0+, then, by compactness, (7.13), and the fact that each set Γ(t)\Gamma(t) is closed, we have that the points zsh(t)z_{s_{h}}(t) converge to a point z0(t)Γ(t)γz_{0}(t)\in\Gamma(t)\cap\gamma. The proof is now complete. ∎

Example 7.5.

Suppose that U=U1(0)3U=U_{1}(0)\subset\mathbb{R}^{3}, and Γ0\partial\Gamma_{0} is the union of two parallel circles contained in 𝕊2=U\mathbb{S}^{2}=\partial U at distance 2h2h from one another, with h(0,1)h\in\left(0,1\right). Then, UΓ0\partial U\setminus\partial\Gamma_{0} consists of the union of three connected components SuSlSdS_{u}\cup S_{l}\cup S_{d} (here u,l,du,l,d stand for up, lateral, and down, respectively). If hh is suitably small, then there are two smooth minimal catenoidal surfaces C1UC_{1}\subset U and C2UC_{2}\subset U, one stable and the other unstable, satisfying clos(Cj)U=Γ0{\rm clos}(C_{j})\setminus U=\partial\Gamma_{0}. Nonetheless if the initial partition {E0,i}i\{E_{0,i}\}_{i} satisfies (\diamond7.4), then, as a consequence of Proposition 7.4, both C1C_{1} and C2C_{2} are not admissible limits of Brakke flow as in Corollary 2.4, since there exists a smooth and homotopically non-trivial embedding γ:𝕊13Γ0\gamma\colon\mathbb{S}^{1}\to\mathbb{R}^{3}\setminus\partial\Gamma_{0} having empty intersection with each of them. For instances, if N=3N=3 and the initial partition is such that SuclosE0,1S_{u}\subset{\rm clos}\,E_{0,1}, SlclosE0,2S_{l}\subset{\rm clos}\,E_{0,2}, and SdclosE0,3S_{d}\subset{\rm clos}\,E_{0,3}, then the corresponding Brakke flows will converge, instead, to a singular minimal surface Γ\Gamma in UU consisting of the union Γ=C~1C~2D\Gamma=\tilde{C}_{1}\cup\tilde{C}_{2}\cup D, where C~j\tilde{C}_{j} are pieces of catenoids, and DD is a disc contained in the plane {z=0}\{z=0\}, which join together forming 120120^{\circ} angles along the “free boundary” circle Σ=D\Sigma=\partial D; see Figure 1.

Refer to caption
Figure 1. The singular limit varifold detailed in Example 7.5.

We will conclude the section with three remarks containing some interesting possible future research directions.

Remark 7.6.

First, we stress that the requirements on Γ0\partial\Gamma_{0} are rather flexible, above all in terms of regularity. It would be interesting to characterize, for a given strictly convex domain Un+1U\subset\mathbb{R}^{n+1}, all its admissible boundaries, namely all subsets ΣU\Sigma\subset\partial U such that there are N2N\geq 2 and 0\mathcal{E}_{0}, Γ0\Gamma_{0} as in Assumption 1.1 such that Σ=Γ0\Sigma=\partial\Gamma_{0}. A first observation is that admissible boundaries do not need to be countably (n1)(n-1)-rectifiable, or to have finite (n1)(n-1)-dimensional Hausdorff measure: for example, it is not difficult to construct an admissible ΣU1(0)\Sigma\subset\partial U_{1}(0) in 2\mathbb{R}^{2} with 1(Σ)>0\mathcal{H}^{1}(\Sigma)>0, essentially a “fat” Cantor set in 𝕊1\mathbb{S}^{1}. The assumption (A4)(A4) requires any admissible boundary to have empty interior. It is unclear whether this condition is also sufficient for a subset Σ\Sigma to be admissible.

Remark 7.7.

Let us explicitly observe that, even in the case when Γ0\Gamma_{0} (or more precisely V0:=𝐯𝐚𝐫(Γ0,1)V_{0}:=\mathbf{var}(\Gamma_{0},1)) is stationary, it is false in general that Vt=V0V_{t}=V_{0} for t>0t>0. In other words, the approximation scheme which produces the Brakke flow VtV_{t} may move the initial datum V0V_{0} even when the latter is stationary. A simple example is a set consisting of two line segments with a crossing, for which multiple non-trivial solutions (depending on the choice of the initial partition) are possible; see Figure 2. In fact, one can prove that such one-dimensional configuration cannot stay time-independent with respect to the Brakke flow constructed in the present paper: [21, Theorem 2.2], indeed, shows that one-dimensional Brakke flows obtained in the present paper and in [20] necessarily satisfy a specific angle condition at junctions for a.e. time, with the only admissible angles being 0, 6060, or 120120 degrees. Thus, depending on the initial labeling of domains, one of the two evolutions depicted in Figure 2 has to occur instantly.

Refer to caption
Figure 2. Non-uniqueness without loss of mesure when N=2N=2 (top) or N=4N=4 (bottom).

If Γ0\Gamma_{0} is a smooth minimal surface with smooth boundary Γ0\partial\Gamma_{0}, the uniqueness theorem for classical MCF should allow ΓtΓ0\Gamma_{t}\equiv\Gamma_{0} as the unique solution, even if the latter is unstable (i.e. the second variation is negative for some direction). In other words, in the smooth case we expect that there is no other Brakke flow starting from Γ0\Gamma_{0} other than the time-independent solution (notice, in passing, that both the area-reducing Lipschitz deformation step and the motion by smoothed mean curvature step in our time-discrete approximation of Brakke flow trivialize in this case - at least locally -, because smooth minimal surfaces are already locally area minimizing at suitably small scales around each point).

On the other hand, in [36] we show that time-dependent solutions may arise even from the existence, on Γ0\Gamma_{0}, of singular points at which V0V_{0} has a flat tangent cone, that is a tangent cone which is a plane TT with multiplicity Q2Q\geq 2. It would be interesting to characterize the regularity properties of those stationary Γ0\Gamma_{0} with E0,1,,E0,NE_{0,1},\ldots,E_{0,N} satisfying Assumption 1.1 and n(Γ0i=1NE0,i)=0\mathcal{H}^{n}(\Gamma_{0}\setminus\cup_{i=1}^{N}\partial^{*}E_{0,i})=0 which do not allow any non-trivial Brakke flows (dynamically stable stationary varifolds, in the terminology introduced in [36]). We expect that such a Γ0\Gamma_{0} should have some local measure minimizing properties.

Remark 7.8.

Let VV, {Ei}i=1N\{E_{i}\}_{i=1}^{N} and Γ\Gamma be as in Corollary 2.4 obtained as tkt_{k}\to\infty along a Brakke flow. Since VV is integral and stationary, V=𝐯𝐚𝐫(Γ,θ)V=\mathbf{var}(\Gamma,\theta) for some n\mathcal{H}^{n}-measurable function θ:Γ\theta:\Gamma\to\mathbb{N}. One can check that Γ\Gamma and {Ei}i=1N\{E_{i}\}_{i=1}^{N} (after removing empty EiE_{i}’s if necessary) again satisfy the Assumption 1.1, thus we may apply Theorem 2.2 and obtain another Brakke flow with the same fixed boundary. Note that if we have V({x:θ(x)2})>0\|V\|(\{x\,:\,\theta(x)\geq 2\})>0, then 𝐯𝐚𝐫(Γ,1)\mathbf{var}(\Gamma,1) may not be stationary, and the Brakke flow starting from non-stationary 𝐯𝐚𝐫(Γ,1)\mathbf{var}(\Gamma_{,}1) is genuinely time-dependent. We then obtain another stationary varifold as tt\to\infty by Corollary 2.4. It is likely that, after a finite number of iterations, this process produces a unit density stationary varifold which does not move anymore. The other possibility is also interesting, in that we would have infinitely many different integral stationary varifolds with the same boundary condition, each having strictly smaller n\mathcal{H}^{n} measure than the previous one.

References

  • [1] William K. Allard. On the first variation of a varifold. Ann. of Math. (2), 95:417–491, (1972).
  • [2] Kenneth A. Brakke. The motion of a surface by its mean curvature, volume 20 of Mathematical Notes. Princeton University Press, Princeton, N.J., 1978.
  • [3] Kenneth A. Brakke. Soap films and covering spaces. J. Geom. Anal., 5(4):445–514, (1995).
  • [4] Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom., 33(3):749–786, (1991).
  • [5] Guy David. Regularity of minimal and almost minimal sets and cones: J. Taylor’s theorem for beginners. In Analysis and geometry of metric measure spaces, volume 56 of CRM Proc. Lecture Notes, pages 67–117. Amer. Math. Soc., Providence, RI, (2013).
  • [6] Guy David. Should we solve Plateau’s problem again? In Advances in analysis: the legacy of Elias M. Stein, volume 50 of Princeton Math. Ser., pages 108–145. Princeton Univ. Press, Princeton, NJ, (2014).
  • [7] Camillo De Lellis, Francesco Ghiraldin, and Francesco Maggi. A direct approach to Plateau’s problem. J. Eur. Math. Soc. (JEMS), 19(8):2219–2240, (2017).
  • [8] Camillo De Lellis, Jonas Hirsch, Andrea Marchese, and Salvatore Stuvard. Area-minimizing currents mod 2Q: linear regularity theory. Comm. Pure Appl. Math., (2020). https://doi.org/10.1002/cpa.21964.
  • [9] Camillo De Lellis, Jonas Hirsch, Andrea Marchese, and Salvatore Stuvard. Regularity of area minimizing currents mod pp. Geom. Funct. Anal., 30(5):1224–1336, (2020).
  • [10] Lawrence C. Evans and Joel Spruck. Motion of level sets by mean curvature. I. J. Differential Geom., 33(3):635–681, (1991).
  • [11] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
  • [12] Herbert Federer and Wendell H. Fleming. Normal and integral currents. Ann. of Math. (2), 72:458–520, (1960).
  • [13] Jenny Harrison. Soap film solutions to Plateau’s problem. J. Geom. Anal., 24(1):271–297, (2014).
  • [14] Jenny Harrison and Harrison Pugh. Existence and soap film regularity of solutions to Plateau’s problem. Adv. Calc. Var., 9(4):357–394, (2016).
  • [15] Jenny Harrison and Harrison Pugh. Plateau’s problem. In Open problems in mathematics, pages 273–302. Springer, [Cham], (2016).
  • [16] Gerhard Huisken. Nonparametric mean curvature evolution with boundary conditions. J. Differential Equations, 77(2):369–378, (1989).
  • [17] Tom Ilmanen. Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc., 108(520):x+90, (1994).
  • [18] Tom Ilmanen, Peter Sternberg, and William P. Ziemer. Equilibrium solutions to generalized motion by mean curvature. J. Geom. Anal., 8(5):845–858, (1998). Dedicated to the memory of Fred Almgren.
  • [19] Kota Kasai and Yoshihiro Tonegawa. A general regularity theory for weak mean curvature flow. Calc. Var. Partial Differential Equations, 50(1-2):1–68, (2014).
  • [20] Lami Kim and Yoshihiro Tonegawa. On the mean curvature flow of grain boundaries. Ann. Inst. Fourier (Grenoble), 67(1):43–142, (2017).
  • [21] Lami Kim and Yoshihiro Tonegawa. Existence and regularity theorems of one-dimensional Brakke flows. Interfaces Free Bound., 22:505–550, (2020).
  • [22] Darren King, Francesco Maggi, and Salvatore Stuvard. Collapsing and the convex hull property in a soap film capillarity model. arXiv preprint arXiv:2002.06273, (2020).
  • [23] Darren King, Francesco Maggi, and Salvatore Stuvard. Plateau’s problem as a singular limit of capillarity problems. Comm. Pure Appl. Math., (2020). https://doi.org/10.1002/cpa.21951.
  • [24] Darren King, Francesco Maggi, and Salvatore Stuvard. Smoothness of collapsed regions in a capillarity model for soap films. arXiv preprint arXiv:2007.14868, (2020).
  • [25] Gary M. Lieberman. The first initial-boundary value problem for quasilinear second order parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13(3):347–387, (1986).
  • [26] Francesco Maggi. Sets of finite perimeter and geometric variational problems, volume 135 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2012.
  • [27] Francesco Maggi, Antonello Scardicchio, and Salvatore Stuvard. Soap films with gravity and almost-minimal surfaces. Discrete Cont. Dyn. Syst., 39(12):6877–6912, (2019).
  • [28] Annibale Magni, Carlo Mantegazza, and Matteo Novaga. Motion by curvature of planar networks, II. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15:117–144, (2016).
  • [29] Carlo Mantegazza, Matteo Novaga, Alessandra Pluda, and Felix Schulze. Evolution of networks with multiple junctions. arXiv preprint arXiv:1611.08254, (2016).
  • [30] Carlo Mantegazza, Matteo Novaga, and Vincenzo Maria Tortorelli. Motion by curvature of planar networks. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 3(2):235–324, (2004).
  • [31] Barbara Priwitzer. Mean curvature flow with Dirichlet boundary conditions in Riemannian manifolds with symmetries. Ann. Global Anal. Geom., 23(2):157–171, (2003).
  • [32] Felix Schulze and Brian White. A local regularity theorem for mean curvature flow with triple edges. J. Reine Angew. Math., 758:281–305, (2020).
  • [33] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
  • [34] Joel Spruck. Interior gradient estimates and existence theorems for constant mean curvature graphs in Mn×M^{n}\times\mathbb{R}. Pure Appl. Math. Q., 3(3, Special Issue: In honor of Leon Simon. Part 2):785–800, (2007).
  • [35] Peter Sternberg and William P. Ziemer. Generalized motion by curvature with a Dirichlet condition. J. Differential Equations, 114(2):580–600, (1994).
  • [36] Salvatore Stuvard and Yoshihiro Tonegawa. Dynamical instability of minimal surfaces at flat singular points. arXiv preprint arXiv:2008.13728, (2020).
  • [37] Yoshihiro Tonegawa. A second derivative Hölder estimate for weak mean curvature flow. Adv. Calc. Var., 7(1):91–138, (2014).
  • [38] Yoshihiro Tonegawa. Brakke’s mean curvature flow: An introduction. SpringerBriefs in Mathematics. Springer, Singapore, 2019.
  • [39] Brian White. Mean curvature flow with boundary. arXiv preprint arXiv:1901.03008, (2019).