This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An example of the Jantzen filtration of a D-module

Simon Bohun and Anna Romanov
Abstract.

We compute the Jantzen filtration of a 𝒟\mathcal{D}-module on the flag variety of SL2()\operatorname{SL}_{2}(\mathbb{C}). At each step in the computation, we illustrate the 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C})-module structure on global sections to give an algebraic picture of this geometric computation. We conclude by showing that the Jantzen filtration on the 𝒟\mathcal{D}-module agrees with the algebraic Jantzen filtration on its global sections, demonstrating a famous theorem of Beilinson–Bernstein.

1. Introduction

1.1. Overview

Jantzen filtrations arise in many situations in representation theory. The Jantzen filtration of a Verma module over a semisimple Lie algebra provides information on characters (the Jantzen sum formula) [Jan79], and gives representation-theoretic significance to coefficients of Kazhdan–Lusztig polynomials (the Jantzen conjectures) [BB93]. The Jantzen filtration of a Weyl module over a reductive algebraic group of positive characteristic is a helpful tool in the notoriously difficult problem of determining irreducible characters [Jan79]. Jantzen filtrations also play a critical role in the unitary algorithm of [AvLTV20], which determines the irreducible unitary representations of a real reductive group.

Though the utility of Jantzen filtrations in applications is primarily algebraic (providing information about characters or multiplicities of representations), establishing deep properties of the Jantzen filtration usually requires a geometric incarnation due to Beilinson–Bernstein. In [BB93], Beilinson–Bernstein introduce a 𝒟\mathcal{D}-module version of the Jantzen filtration, which provides them with powerful geometric tools to analyze its structure. The constructions in [BB93] require technical and deep machinery in the theory of 𝒟\mathcal{D}-modules, and as such, may not be easily accessible to a reader unfamiliar with this geometric approach to representation theory. However, the persistent utility of Beilinson–Bernstein’s results indicates that the geometric Jantzen filtration is a critical tool.

In our experience, it is often enlightening, insightful, and non-trivial to describe a difficult construction in a simple example. This is the purpose of this paper: to illustrate the construction of Beilinson–Bernstein in the simplest non-trivial example. In doing this, we include simplified proofs of Beilinson–Bernstein’s results for the Lie algebra 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}) and detailed computations which do not appear in the original paper.

The main contribution of our example is to provide algebraic insight into a fundamental geometric construction. Beilinson–Bernstein localisation is a powerful bridge between representation theory and algebraic geometry which has provided geometric proofs of several important algebraic theorems. This strategy of using geometric tools to approach algebraic problems is effective, but it has a drawback — without deep knowledge of the geometry involved, the algebraist using these results is left without a sense of what is happening under the hood, and as a result, geometric results are often used as black boxes.

Our approach in this paper is to shine light into the black box by providing a series of algebraic snapshots of a geometric computation. We do this by computing the global sections of the 𝒟\mathcal{D}-modules which arise at each step in the computation and illustrating the corresponding 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C})-representations. Here we mean “illustrate” in the most literal sense — we include eight figures in which we draw precise pictures of these representations. Our hope is that by giving a concrete visual description, we are able to provide readers with algebraic intuition for the general construction.

This paper is concerned with the example of SL2()\operatorname{SL}_{2}(\mathbb{C}). However, some amount of general theory will be helpful to set the scene. We dedicate the remainder of the introduction to orienting the reader with the necessary general theory.

1.2. The algebraic Jantzen filtration

Let 𝔤𝔟𝔥\mathfrak{g}\supset\mathfrak{b}\supset\mathfrak{h} be a complex semisimple Lie algebra, a Borel subalgebra, and a Cartan subalgebra. Denote by 𝔫=[𝔟,𝔟]\mathfrak{n}=[\mathfrak{b},\mathfrak{b}] the nilradical of 𝔟\mathfrak{b}, and 𝔟¯\overline{\mathfrak{b}} the opposite Borel subalgebra. Given a weight λ𝔥\lambda\in\mathfrak{h}^{*}, let M(λ)=𝒰(𝔤)𝒰(𝔟)λM(\lambda)=\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{U}(\mathfrak{b})}\mathbb{C}_{\lambda} be the corresponding Verma module, I(λ)I(\lambda) the corresponding dual Verma module (defined to be the direct sum of the weight spaces in the 𝔤\mathfrak{g}-module Hom𝒰(𝔟¯)(𝒰(𝔤),λ)\operatorname{Hom}_{\mathcal{U}(\overline{\mathfrak{b}})}(\mathcal{U}(\mathfrak{g}),\mathbb{C}_{\lambda})), and

ψ:M(λ)I(λ).\psi:M(\lambda)\rightarrow I(\lambda).

the canonical 𝔤\mathfrak{g}-module homomorphism from M(λ)M(\lambda) to I(λ)I(\lambda).

The algebraic Jantzen filtration of M(λ)M(\lambda) involves a deformation of the above set-up in a specified direction γ𝔥\gamma\in\mathfrak{h}^{*}. The deformation is constructed as follows. Given γ𝔥\gamma\in\mathfrak{h}^{*}, let T=𝒪(γ)T=\mathcal{O}(\mathbb{C}\gamma) be the ring of regular functions on the line γ𝔥\mathbb{C}\gamma\subset\mathfrak{h}^{*}. This can be identified with a polynomial ring [s]\mathbb{C}[s]. Denote by A=T(s)A=T_{(s)} the local ring of TT at the prime ideal (s)(s).

We use the ring AA to construct the corresponding deformed Verma module, defined to be the (𝔤,A)(\mathfrak{g},A)-bimodule

MA(λ):=𝒰(𝔤)𝒰(𝔟)Aλ,M_{A}(\lambda):=\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{U}(\mathfrak{b})}A_{\lambda},

where Aλ=AA_{\lambda}=A is the (𝔥,A)(\mathfrak{h},A) bimodule given by

(1.1) ha=(λ(h)+γ(h)s)ah\cdot a=(\lambda(h)+\gamma(h)s)a

for h𝔥h\in\mathfrak{h}, aAa\in A, extended trivially to U(𝔟)U(\mathfrak{b}). Equation (1.1) demonstrates that MA(λ)M_{A}(\lambda) is a “deformation of M(λ)M(\lambda) in the direction γ\gamma”.

Similarly, the deformed dual Verma module IA(λ)I_{A}(\lambda) is defined to be the sum of deformed weight spaces (see (2.103)) in the (𝔤,A)(\mathfrak{g},A)-bimodule

Hom𝒰(𝔟¯)(𝒰(𝔤),Aλ).\operatorname{Hom}_{\mathcal{U}(\overline{\mathfrak{b}})}(\mathcal{U}(\mathfrak{g}),A_{\lambda}).

There is a canonical (𝔤,A)(\mathfrak{g},A)-module homomorphism

(1.2) ψA:MA(λ)IA(λ).\psi_{A}:M_{A}(\lambda)\rightarrow I_{A}(\lambda).

Setting s=0s=0 recovers the usual Verma and dual Verma modules, and the canonical morphism ψ\psi.

The AA-submodules siMA(λ)s^{i}M_{A}(\lambda) and siIA(λ)s^{i}I_{A}(\lambda) are 𝔤\mathfrak{g}-stable for all ii, so both MA(λ)M_{A}(\lambda) and IA(λ)I_{A}(\lambda) have (𝔤,A)(\mathfrak{g},A)-module filtrations given by powers of ss. The Jantzen filtration of MA(λ)M_{A}(\lambda) is the filtration obtained by pulling back the filtration of IA(λ)I_{A}(\lambda) by powers of ss along the canonical homomorphism ψA\psi_{A} (1.2). Setting s=0s=0 recovers a filtration of M(λ)M(\lambda). This is the algebraic Jantzen filtration111Analogous constructions yield Jantzen filtrations of the Weyl modules and principal series representations mentioned in §1.1 [Jan79, BB93]. Because we focus on Verma modules in our example, we will not define these other Jantzen filtrations precisely. of the Verma module M(λ)M(\lambda).

Remark 1.1.

(Computability of Jantzen filtration) The algebraic Jantzen filtration is traditionally formulated in terms of a contravariant form, which explicitly realises the canonical map between M(λ)M(\lambda) and I(λ)I(\lambda). See, for example, [Sha72, Jan79]. This explicit realisation makes the filtration directly computable, which is useful in applications. In contrast, other important representation-theoretic filtrations, such as composition series, are known to exist, but are much more difficult to compute algorithmically.

For 𝔤=𝔰𝔩2()\mathfrak{g}=\mathfrak{sl}_{2}(\mathbb{C}), the Jantzen filtration coincides with the composition series, as our computations in §2 illustrate. However, for larger Lie algebras (already starting at 𝔰𝔩3()\mathfrak{sl}_{3}(\mathbb{C})), the Jantzen filtration differs from the composition series, and carries fundamental information about Verma modules and related representations. Jantzen conjectured [Jan79, §5.17] that for γ=ρ\gamma=\rho (the half-sum of positive roots) the Jantzen filtration satisfies the following properties:

  1. (1)

    Embeddings of Verma modules M(μ)M(λ)M(\mu)\hookrightarrow M(\lambda) are strict for Jantzen filtrations.

  2. (2)

    The Jantzen filtration coincides with the socle filtration. In particular, the filtration layers are semisimple.

Subsequent work by Barbasch [Bar83], Gabber-Joseph [GJ81], and others revealed that Jantzen’s conjectures have deep consequences. In particular, Jantzen’s conjectures imply a stronger version of Kazhdan–Lusztig’s famous conjecture on composition series multiplicities of Verma modules [KL79]: multiplicities of simple modules in layers of the Jantzen filtration are given by coefficients of a corresponding Kazhdan–Lusztig polynomial.

Kazhdan–Lusztig’s original multiplicity conjecture was proven by Beilinson–Bernstein in [BB81] using 𝒟\mathcal{D}-module techniques. A proof of Jantzen’s conjectures did not appear until 12 year later in [BB93], using a significant extension of the geometric techniques used in [BB81]. In the following section, we outline their approach.

Remark 1.2.

(Algebraic proof of Jantzen’s conjectures) In [Wil16], Williamson provided an alternate proof of Jantzen’s conjectures using Soergel bimodule techniques, following previous work of Soergel and Kübel [Soe08, Küb12a, Küb12b]. Williamson’s proof holds for Verma modules, whereas Beilinson–Bernstein’s proof also holds for more general Harish-Chandra modules.

Remark 1.3.

(Deformation direction) The definition of the algebraic Jantzen filtration relies on a choice of deformation direction γ𝔥\gamma\in\mathfrak{h}^{*}, which also has a geometric manifestation in Beilinson–Bernstein’s construction. It is clear from the definitions that this direction should be non-degenerate; i.e. that it should not lie on any root hyperplanes. However, it was a long-standing problem (raised in [BB93]) as to whether the deformation direction need be dominant. Williamson showed in [Wil16] that it does, giving examples of non-dominant deformation directions resulting in different filtrations for Lie algebras as small as 𝔤=𝔰𝔩4()\mathfrak{g}=\mathfrak{sl}_{4}(\mathbb{C}).

1.3. The geometric Jantzen filtration

Beilinson–Bernstein’s approach to the Jantzen conjectures is to relate the algebraic Jantzen filtration to a natural geometric filtration on the corresponding 𝒟\mathcal{D}-module under Beilinson–Bernstein localisation. They then argue that this geometric Jantzen filtration coincides with the weight filtration on the 𝒟\mathcal{D}-module, providing them access to powerful techniques in weight theory. In this section, we outline Beilinson–Bernstein’s construction. More details can be found in [BB93].

1.3.1. Monodromy filtrations

Geometric Jantzen filtrations are intimately related to monodromy filtrations. Given an object AA in an abelian category 𝒜\mathcal{A} and a nilpotent endomorphism sEnd𝒜(A)s\in\operatorname{End}_{\mathcal{A}}(A), the monodromy filtration of AA is defined to be the unique increasing exhaustive filtration μ\mu^{\bullet} on AA such that sμnμn2s\mu^{n}\subset\mu^{n-2}, and for kk\in\mathbb{N}, sks^{k} induces an isomorphism grμkAgrμkA.\mathrm{gr}_{\mu}^{k}A\simeq\mathrm{gr}_{\mu}^{-k}A.

The monodromy filtration of AA induces a filtration J!J_{!}^{\bullet} on kers\ker s and a filtration J+J_{+}^{\bullet} on cokers\operatorname{coker}s in the natural way. Moreover, on kers\ker s and cokers\operatorname{coker}s, the monodromy filtration can be described explicitly in terms of powers of ss. Namely,

(1.3) J!i=kersimsi and J+i=(kersi+1+ims)/ims,J_{!}^{i}=\ker s\cap\operatorname{im}s^{-i}\text{ and }J_{+}^{i}=(\ker s^{i+1}+\operatorname{im}s)/\operatorname{im}s,

where it is taken that imsi=A\operatorname{im}s^{i}=A for i0i\leq 0 and kersi=0\ker s^{i}=0 for i0i\leq 0 [BB93, §4.1]. (See also [Del80, §1.6].)

1.3.2. Geometric Jantzen filtrations

Certain 𝒟\mathcal{D}-modules come equipped with nilpotent endomorphisms, and thus acquire monodromy filtrations. In particular, the maximal extension functor222See §2.4 for the precise definition of this functor. provides a recipe for constructing 𝒟\mathcal{D}-modules with nilpotent endomorphisms from 𝒟\mathcal{D}-modules on open subvarieties using a deformation procedure.

More precisely, if YY is a smooth algebraic variety with a fixed regular function f:Y𝔸1f:Y\rightarrow\mathbb{A}^{1}, the maximal extension ΞfU\Xi_{f}\mathcal{M}_{U} of a holonomic 𝒟U\mathcal{D}_{U}-module U\mathcal{M}_{U} on U=f1(𝔸1{0})U=f^{-1}(\mathbb{A}^{1}-\{0\}) is constructed by deforming U\mathcal{M}_{U} by the ring [s]/sn\mathbb{C}[s]/s^{n} using the function ff, then pushing forward the deformed U\mathcal{M}_{U} along the inclusion map j:UYj:U\hookrightarrow Y. The resulting 𝒟Y\mathcal{D}_{Y}-module is an object in the abelian category of holonomic 𝒟Y\mathcal{D}_{Y}-modules which has a natural nilpotent endomorphism ss arising from the deformation of U\mathcal{M}_{U}. Hence it has a monodromy filtration.

The construction of the maximal extension functor guarantees that

ker(s:ΞfUΞfU)=j!U\ker(s:\Xi_{f}\mathcal{M}_{U}\rightarrow\Xi_{f}\mathcal{M}_{U})=j_{!}\mathcal{M}_{U}

and

coker(s:ΞfUΞfU)=j+U,\operatorname{coker}(s:\Xi_{f}\mathcal{M}_{U}\rightarrow\Xi_{f}\mathcal{M}_{U})=j_{+}\mathcal{M}_{U},

so the (non-deformed) !!-standard and ++-standard 𝒟Y\mathcal{D}_{Y}-modules j!Uj_{!}\mathcal{M}_{U} and j+Uj_{+}\mathcal{M}_{U} appear as sub and quotient modules of the maximal extension ΞfU\Xi_{f}\mathcal{M}_{U} [BB93, Lemma 4.2.1]. In this way, we obtain filtrations of the 𝒟Y\mathcal{D}_{Y}-modules j!Uj_{!}\mathcal{M}_{U} and j+Uj_{+}\mathcal{M}_{U} from the monodromy filtration of ΞfU\Xi_{f}\mathcal{M}_{U}. These are the geometric Jantzen filtrations.

Note that analogously to the algebraic Jantzen filtration, the geometric Jantzen filtration depends on a choice of deformation parameter, given by the regular function f:Y𝔸1f:Y\rightarrow\mathbb{A}^{1}. Moreover, the explicit realisation (1.3) in terms of powers of ss means that like the algebraic Jantzen filtration, the geometric Jantzen filtration is explicitly computable.

1.3.3. Geometric Jantzen filtrations on Harish-Chandra sheaves

The 𝒟\mathcal{D}-modules corresponding to Verma modules and dual Verma modules under Beilinson–Bernstein localisation can be made to fit into the framework of §1.3.2, and thus acquire geometric Jantzen filtrations. Such 𝒟\mathcal{D}-modules manifest as Harish-Chandra sheaves, which are a class of 𝒟\mathcal{D}-modules equivariant with respect to a certain group action. We explain this connection below.

Let GG be the simply connected semisimple Lie group associated to 𝔤\mathfrak{g}, BGB\subset G the Borel subgroup corresponding to 𝔟\mathfrak{b}, and NBN\subset B its unipotent radical. Set H:=B/NH:=B/N to be the abstract maximal torus of GG [CG97, Lemma 6.1.1], and identify 𝔥\mathfrak{h} with LieH\operatorname{Lie}H. Let X~:=G/N\widetilde{X}:=G/N be the base affine space and X:=G/BX:=G/B the flag variety. The projection π:X~X\pi:\widetilde{X}\rightarrow X is a principal GG-equivariant HH-bundle with respect to the right action of HH on X~\widetilde{X} by right multiplication.

Remark 1.4.

(HH-monodromic 𝒟X~\mathcal{D}_{\widetilde{X}}-modules) In [BB93], Beilinson-Bernstein work with HH-monodromic 𝒟\mathcal{D}-modules on base affine space X~\widetilde{X} instead of modules over sheaves of twisted differential operators (TDOs) on the flag variety XX, as they do in [BB81]. Working over X~\widetilde{X} has several advantages: it allows one to study entire families of representations at once (see Figures 1 and 2 for an illustration of this phenomenon), and it allows one to study 𝔤\mathfrak{g}-modules with generalised infinitesimal character333A U(𝔤)U(\mathfrak{g})-module MM has generalised infinitesimal character χ:Z(𝔤)\chi:Z(\mathfrak{g})\rightarrow\mathbb{C} if for all zZ(𝔤)z\in Z(\mathfrak{g}) and mMm\in M, (zχ(z))km=0(z-\chi(z))^{k}m=0 for some k>0k\in\mathbb{Z}_{>0}. . In contrast, modules over TDOs can only be used to study 𝔤\mathfrak{g}-modules with strict infinitesimal character. There is a precise relationship between HH-monodromic 𝒟X~\mathcal{D}_{\widetilde{X}}-modules and modules over TDOs, see Remark 2.4.

For an NN-orbit444Note that this construction works for many Harish-Chandra pairs (𝔤,K)(\mathfrak{g},K), not just the pair (𝔤,N)(\mathfrak{g},N). In [BB93, §3.4], the specific conditions on KK necessary for such a construction to hold are discussed. In particular, these constructions can be applied to any symmetric pair [BB93, Lemma 3.5.2], so they can be used in the study of admissible representations of real reductive groups.(i.e. a Bruhat cell) QQ in XX, denote by Q~=π1(Q)\widetilde{Q}=\pi^{-1}(Q) the corresponding union of NN-orbits in X~\widetilde{X}. A choice of dominant regular integral weight γ𝔥\gamma\in\mathfrak{h}^{*} (the “deformation direction”) determines a regular function fγ:Q~¯𝔸1f_{\gamma}:\overline{\widetilde{Q}}\rightarrow\mathbb{A}^{1} on the closure of Q~\widetilde{Q} such that fγ1(𝔸1{0})=Q~f_{\gamma}^{-1}(\mathbb{A}^{1}-\{0\})=\widetilde{Q} [BB93, Lemma 3.5.1]. This function extends to a regular function on X~\widetilde{X}, which, by the process outlined in §1.3.2, determines a maximal extension functor Ξfγ:hol(𝒟U)hol(𝒟X~)\Xi_{f_{\gamma}}:\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{U})\rightarrow\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{\widetilde{X}}). Here UU is the preimage in X~\widetilde{X} of 𝔸1{0}\mathbb{A}^{1}-\{0\} under the extension of fγf_{\gamma}. Restricting Ξfγ\Xi_{f_{\gamma}} to the category of holonomic 𝒟U\mathcal{D}_{U}-modules supported on Q~\widetilde{Q} results in a functor

Ξfγ:hol(𝒟Q~)hol(𝒟Q~¯).\Xi_{f_{\gamma}}:\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{\widetilde{Q}})\rightarrow\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{\overline{\widetilde{Q}}}).

Let 𝒪Q~\mathcal{O}_{\widetilde{Q}} be the structure sheaf on Q~\widetilde{Q} and jQ~:Q~Q~¯j_{\widetilde{Q}}:\widetilde{Q}\hookrightarrow\overline{\widetilde{Q}} the inclusion of Q~\widetilde{Q} into its closure. Via the construction in §1.3.2, the modules jQ~!𝒪Q~j_{\widetilde{Q}!}\mathcal{O}_{\widetilde{Q}} and jQ~+𝒪Q~j_{\widetilde{Q}+}\mathcal{O}_{\widetilde{Q}} acquire from Ξfγ𝒪Q~\Xi_{f_{\gamma}}\mathcal{O}_{\widetilde{Q}} geometric Jantzen filtrations. Because Q~¯\overline{\widetilde{Q}} is closed in X~\widetilde{X}, a theorem of Kashiwara [Mil, Theorem 12.6] allows one to lift these filtrations to filtrations of the standard NN-equivariant 𝒟X~\mathcal{D}_{\widetilde{X}}-modules iQ~!𝒪Q~i_{\widetilde{Q}!}\mathcal{O}_{\widetilde{Q}} and iQ~+𝒪Q~i_{\widetilde{Q}+}\mathcal{O}_{\widetilde{Q}}, for iQ~:Q~X~i_{\widetilde{Q}}:\widetilde{Q}\hookrightarrow\widetilde{X} the inclusion.

There is a natural map

𝒰(𝔤)Γ(X~,𝒟X~),\mathcal{U}(\mathfrak{g})\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}}),

obtained by differentiating the GG-action on X~\widetilde{X} which endows global sections of 𝒟X~\mathcal{D}_{\widetilde{X}}-modules with the structure of 𝒰(𝔤)\mathcal{U}(\mathfrak{g})-modules. In §2.1, we explicitly compute this map for 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}). As 𝒰(𝔤)\mathcal{U}(\mathfrak{g})-modules, the global sections of iQ~!𝒪Q~i_{\widetilde{Q}!}\mathcal{O}_{\widetilde{Q}} and iQ~+𝒪Q~i_{\widetilde{Q}+}\mathcal{O}_{\widetilde{Q}} are direct sums of all integral Verma modules and dual Verma modules, respectively. In §2.3, we illustrate this structure in our example.

Remark 1.5.

(Comparison to [Rom21]) It is interesting to contrast the computations of the current paper to those in Romanov’s previous paper [Rom21], whose goal was to illustrate four families of 𝒟\mathcal{D}-modules corresponding to well-known families of representations (finite-dimensional, Verma/dual Verma, principal series, and Whittaker). Our approach in the current paper is to study all integral Verma/dual Verma modules simultaneously by working over base affine space, as explained above. In contrast, [Rom21, §6] analyses Verma/dual Verma modules one at a time using modules over varying TDOs on the flag variety. (Compare Figures 1 and 2 below to Figures 2 and 3 in [Rom21].) Our techniques in this paper are not specific to Verma modules: by working over base affine space, we could recover each family of examples in [Rom21] using a single HH-monodromic 𝒟\mathcal{D}-module.

Our current approach is not merely stylistic — it is necessary for our goal. Because the deformed Verma modules arising in the construction of the Jantzen filtration do not have a strict infinitesimal character as Verma modules do, they cannot be studied as modules over TDOs on the flag variety. However, deformed Verma modules can be approximated by 𝔤\mathfrak{g}-modules with generalised infinitesimal character (see §2.4.1, and, in particular, (2.71) and (2.70)), so a 𝒟\mathcal{D}-module approach to their study must necessarily work over X~\widetilde{X} instead of XX, see Remark 1.4.

1.3.4. Relationship between monodromy and weight filtrations

The geometric Jantzen filtration of iQ~!𝒪Q~i_{\widetilde{Q}!}\mathcal{O}_{\widetilde{Q}} constructed in the previous section is computable via (1.3), but it is not clear that it should satisfy the properties of Jantzen’s conjectures. The key idea of Beilinson–Bernstein’s proof is to relate the monodromy filtration on Ξfγ𝒪Q~\Xi_{f_{\gamma}}\mathcal{O}_{\widetilde{Q}} to the weight filtration on the corresponding perverse sheaf under the Riemann–Hilbert correspondence, which has strong functoriality and semisimplicity properties.

Weight filtrations on objects in derived categories of constructible \mathbb{Q}_{\ell}-sheaves555Beilinson–Bernstein’s results could also be formulated in the more modern language of Saito’s mixed Hodge modules [Sai88, Sai90], but because the initial draft of their paper was written in 1986 before Saito’s work was published, they instead used the technology of mixed \ell-adic sheaves [Del80]. are a deep generalisation of filtrations on cohomology rings of algebraic varieties. Explicitly constructing weight filtrations is extremely difficult outside of the most basic examples, but they can be shown to exist for complexes built from simple examples via sheaf functors. In particular, the perverse sheaf corresponding to the maximal extension Ξfγ𝒪Q~\Xi_{f_{\gamma}}\mathcal{O}_{\widetilde{Q}} admits a ‘mixed structure’, and hence a weight filtration, as it is the quotient of a push-forward of a 𝒟\mathcal{D}-module of ‘geometric origin’.

Beilinson–Bernstein’s strategy was to utilize a theorem of Gabber [BB93, Theorem 5.1.2], which establishes that on a perverse sheaf obtained by a nearby cycles functor (of which the maximal extension functor is a special instance), the monodromy filtration agrees with the weight filtration. Passing Gabber’s theorem to 𝒟\mathcal{D}-modules via the Riemann–Hilbert correspondence lets them conclude that the geometric Jantzen filtration on iQ~!𝒪Q~i_{\widetilde{Q}!}\mathcal{O}_{\widetilde{Q}} agrees with the weight filtration.

Weight filtrations have two important properties: (1) they are functorial with respect to morphisms of mixed perverse sheaves, and (2) the associated graded object is semisimple. These properties are exactly what is needed to prove Jantzen’s conjectures: the functoriality implies the strictness of the Jantzen filtration with respect to embeddings of Verma modules, and the semisimplicity of the associated graded implies (with some additional pointwise purity arguments) the agreement of the Jantzen filtration with the socle filtration.

The power of Beilinson–Bernstein’s proof comes from the connection between two very different filtrations — the Jantzen filtration, which is explicitly computable, but has no obvious structure, and the weight filtration, which is very difficult to compute, but satisfies remarkable properties.

1.4. Relationship between algebraic and geometric Jantzen filtrations

Beilinson–Bernstein’s proof of Jantzen’s conjectures relies on the fact that the geometric and algebraic Jantzen filtrations align under the global sections functor. Though both constructions involve similar ingredients, such as deformations and relationships between standard and costandard objects, it is not immediately obvious from the definitions that they should yield the same filtration on Verma modules. This crucial relationship is given minimal justification in [BB93].

Because of the critical nature of this relationship, we dedicate the final section of our paper §2.6 to explicitly describing the relationship between the two filtrations for 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}), and illustrating it for a fixed infinitesimal character in Figure 8. Our arguments easily generalise to any Lie algebra.

1.5. Structure of the paper

The remainder of the paper is dedicated to the computation of the geometric Jantzen filtration for the Lie algebra 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}). The computation is structured as follows.

§2.1: We establish an algebra homomorphism from the extended universal enveloping algebra to global differential operators on base affine space. This algebra homomorphism is what allows us to view the global sections of 𝒟X~\mathcal{D}_{\widetilde{X}}-modules as modules over the (extended) universal enveloping algebra.

§2.2: We give some background on HH-monodromic 𝒟X\mathcal{D}_{X}-modules, and explain their relationship to modules over twisted sheaves of differential operators.

§2.3: We introduce the 𝒟X~\mathcal{D}_{\widetilde{X}}-modules whose global sections contain Verma modules and dual Verma modules — these are the 𝒟X~\mathcal{D}_{\widetilde{X}}-modules which we will endow with geometric Jantzen filtrations. We illustrate the 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C})-module structure on their global sections in Figures 1 and 2.

§2.4: We introduce the maximal extension functor, which gives the deformation necessary for the Jantzen filtration. We compute the maximal extension of the structure sheaf on an open subset of X~\widetilde{X}, and illustrate in Figures 3 and 4 how deformed Verma modules and deformed dual Verma modules arise geometrically. We illustrate in Figures 5 and 6 the global sections of the maximal extension, identifying them with the big projective in category 𝒪\mathcal{O}.

§2.5: We define the geometric Jantzen filtration using monodromy filtrations. We compute the monodromy filtration of the maximal extension, and illustrate its global sections in Figure 7. This specialises to the geometric Jantzen filtration on certain sub- and quotient sheaves.

§2.6: We introduce the algebraic Jantzen filtration on a Verma module in §2.6.1, then explain why the global sections of the geometric Jantzen filtration align with the algebraic Jantzen filtration in §2.6.2. Figure 8 illustrates this relationship in our example.

1.6. Acknowledgements

This paper arose from computations in the first author’s honours thesis at the University of New South Wales. We would like to thank the referee for helpful suggestions which greatly improved the readability of the paper. The first author would like to thank Daniel Chan, who influenced his interests in this topic, and broadened his understanding of the various geometric techniques used in this paper. The second author would like to thank Jens Eberhardt, Adam Brown, and Geordie Williamson for many hours of conversations about Jantzen filtrations which contributed significantly to her understanding.

2. Example

Now we proceed with our example. For the remainder of this paper, set G=SL2()G=\operatorname{SL}_{2}(\mathbb{C}), and fix subgroups

B={(ab0a1)|a,b},N={(1b01)|b}B=\Set{\begin{pmatrix}a&b\\ 0&a^{-1}\end{pmatrix}}{\,a\in\mathbb{C}^{*},\,b\in\mathbb{C}},\quad N=\Set{\begin{pmatrix}1&b\\ 0&1\end{pmatrix}}{b\in\mathbb{C}}

and

H={(a00a1)|a}.H=\Set{\begin{pmatrix}a&0\\ 0&a^{-1}\end{pmatrix}}{a\in\mathbb{C}^{*}}.

Let 𝔤\mathfrak{g}, 𝔟\mathfrak{b}, 𝔫\mathfrak{n}, and 𝔥\mathfrak{h} be the corresponding Lie algebras, and 𝔫¯\bar{\mathfrak{n}} the opposite nilpotent subalgebra to 𝔫\mathfrak{n}. Denote by

(2.1) e=(0100),f=(0010),andh=(1001)e=\begin{pmatrix}0&1\\ 0&0\end{pmatrix},\quad f=\begin{pmatrix}0&0\\ 1&0\end{pmatrix},\quad\text{and}\quad h=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}

the standard basis elements of 𝔤\mathfrak{g}, so 𝔫=e\mathfrak{n}=\mathbb{C}e, 𝔥=h\mathfrak{h}=\mathbb{C}h and 𝔫¯=f\bar{\mathfrak{n}}=\mathbb{C}f. Denote by 𝒵(𝔤)\mathcal{Z}(\mathfrak{g}) the center of the universal enveloping algebra 𝒰(𝔤)\mathcal{U}(\mathfrak{g}). The algebra 𝒵(𝔤)\mathcal{Z}(\mathfrak{g}) is generated by the Casimir element

(2.2) Ω=h2+2ef+2fe.\Omega=h^{2}+2ef+2fe.

Let

(2.3) γHC:𝒰(𝔤)𝒰(𝔥)\gamma_{\mathrm{HC}}:\mathcal{U}(\mathfrak{g})\rightarrow\mathcal{U}(\mathfrak{h})

be the projection onto the first coordinate of the direct sum decomposition

𝒰(𝔤)=𝒰(𝔥)(𝔫¯𝒰(𝔤)+𝒰(𝔤)𝔫).\mathcal{U}(\mathfrak{g})=\mathcal{U}(\mathfrak{h})\oplus(\bar{\mathfrak{n}}\mathcal{U}(\mathfrak{g})+\mathcal{U}(\mathfrak{g})\mathfrak{n}).

The restriction of γHC\gamma_{\mathrm{HC}} to 𝒵(𝔤)\mathcal{Z}(\mathfrak{g}) is an algebra homomorphism.

Set X=G/BX=G/B and X~=G/N\widetilde{X}=G/N. Then XX is the flag variety of 𝔤\mathfrak{g}, and we refer to X~\widetilde{X} as base affine space. We identify XX with the complex projective line 1\mathbb{C}\mathbb{P}^{1} via

(2.4) (x1x2)B(x1:x2),\begin{pmatrix}x_{1}&*\\ x_{2}&*\end{pmatrix}B\mapsto(x_{1}:x_{2}),

and X~\widetilde{X} with 2\{(0,0)}\mathbb{C}^{2}\backslash\{(0,0)\} via

(2.5) (x1x2)N(x1,x2).\begin{pmatrix}x_{1}&*\\ x_{2}&*\end{pmatrix}N\mapsto(x_{1},x_{2}).

There are left actions of GG on XX and X~\widetilde{X} by left multiplication. Under the identifications (2.4) and (2.5), these actions are given by

(2.6) (abcd)(x1:x2)=(ax1+bx2:cx1+dx2)\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot(x_{1}:x_{2})=(ax_{1}+bx_{2}:cx_{1}+dx_{2})

and

(2.7) (abcd)(x1,x2)=(ax1+bx2,cx1+dx2).\begin{pmatrix}a&b\\ c&d\end{pmatrix}\cdot(x_{1},x_{2})=(ax_{1}+bx_{2},cx_{1}+dx_{2}).

Because HH normalizes NN, there is also a right action of HH on G/NG/N by right multiplication. Under the identification (2.5), this action is given by

(2.8) (x1,x2)(a00a1)=(ax1,ax2).(x_{1},x_{2})\cdot\begin{pmatrix}a&0\\ 0&a^{-1}\end{pmatrix}=(ax_{1},ax_{2}).

The natural GG-equivariant quotient map

(2.9) π:X~X\pi:\widetilde{X}\rightarrow X

is an HH-torsor over XX. In the language of [BB93, §2.5], this provides an “HH-monodromic structure” on XX.

For an algebraic variety YY, we denote by 𝒪Y\mathcal{O}_{Y} the structure sheaf on YY, and by 𝒪(Y)=Γ(Y,𝒪Y)\mathcal{O}(Y)=\Gamma(Y,\mathcal{O}_{Y}) the algebra of global regular functions. We denote by 𝒟Y\mathcal{D}_{Y} the sheaf of differential operators on YY, and 𝒟(Y)=Γ(Y,𝒟Y)\mathcal{D}(Y)=\Gamma(Y,\mathcal{D}_{Y}) the global differential operators.

Base affine space X~\widetilde{X} is a quasi-affine variety, with affine closure X~¯=𝔸2\overline{\widetilde{X}}=\mathbb{A}^{2}. Throughout this text, we will make use the following facts about quasi-affine varieties. Let YY be an irreducible quasi-affine variety, openly embedded in an affine variety Y¯\overline{Y}.

  • If YY is normal with codimY¯(Y¯\Y)2\mathrm{codim}_{\overline{Y}}(\overline{Y}\backslash Y)\geq 2, then 𝒪(Y)=𝒪(Y¯)\mathcal{O}(Y)=\mathcal{O}(\overline{Y}) and 𝒟(Y)=𝒟(Y¯)\mathcal{D}(Y)=\mathcal{D}(\overline{Y}) [LS06, §2]. (In particular, for Y=X~Y=\widetilde{X}, this implies that global differential operators are nothing more than the Weyl algebra in 2 variables666Outside of 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}), the situation is less straightforward. For a Lie algebra 𝔤𝔰𝔩2()m\mathfrak{g}\neq\mathfrak{sl}_{2}(\mathbb{C})^{m}, the affine closure of the corresponding base affine space is singular, and the ring of global differential operators can be quite complicated, see, for example, [LS06]..)

  • Because the variety Y¯\overline{Y} is affine, it is also DD-affine, meaning that the global sections functor induces an equivalence of categories between the category of quasi-coherent 𝒟Y¯\mathcal{D}_{\overline{Y}}-modules and the category of modules over 𝒟(Y¯)\mathcal{D}(\overline{Y}).

  • Since the inclusion i:YY¯i:Y\rightarrow\overline{Y} is an open immersion, the restriction functor i+i^{+} on the corresponding categories of 𝒟\mathcal{D}-modules is exact, and commutes with pushforwards from open affine subvarieties [Mil, Remark 3.1].

The facts listed above allow us to move freely between 𝒟X~\mathcal{D}_{\widetilde{X}}-modules and 𝒟(𝔸2)\mathcal{D}(\mathbb{A}^{2})-modules. We will do this periodically in computations.

2.1. The map 𝒰(𝔤)𝒵(𝔤)𝒰(𝔥)Γ(X~,𝒟X~)\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{Z}(\mathfrak{g})}\mathcal{U}(\mathfrak{h})\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}})

Our strategy for gaining intuition about the 𝒟X~\mathcal{D}_{\widetilde{X}}-modules arising in the construction of the Jantzen filtration is to illustrate the 𝔤\mathfrak{g}-module structure on their global sections. This will give us an algebraic snapshot as to what is happening at each step in the construction sketched in Section 1.3. The first step is to differentiate the actions (2.7) and (2.8) to obtain a map 𝒰(𝔤)𝒵(𝔤)𝒰(𝔥)Γ(X~,𝒟X~)\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{Z}(\mathfrak{g})}\mathcal{U}(\mathfrak{h})\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}}). This map provides the 𝔤\mathfrak{g}-module structure on the global sections of 𝒟X~\mathcal{D}_{\widetilde{X}}-modules. We dedicate this section to the computation of this map.

By differentiating the left action of GG in (2.7), we obtain an algebra homomorphism

(2.10) L:𝒰(𝔤)Γ(X~,𝒟X~),gLgL:\mathcal{U}(\mathfrak{g})\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}}),\hskip 5.69054ptg\mapsto L_{g}

given by the formula

(2.11) Lgf(x)=ddt|t=0f(exp(tg)1x)L_{g}f(x)=\frac{d}{dt}\bigg{|}_{t=0}f(\mathrm{exp}(tg)^{-1}x)

for gGg\in G, fΓ(X~,𝒪X~)f\in\Gamma(\widetilde{X},\mathcal{O}_{\widetilde{X}}), xX~x\in\widetilde{X}. Computing the image of the basis (2.1) under the homomorphism (2.10) is straighforward. For example, the image of ee is given by the following computation using (2.7).

ef(x1,x2)\displaystyle e\cdot f(x_{1},x_{2}) =ddt|t=0f((1t01)(x1,x2))\displaystyle=\frac{d}{dt}\bigg{|}_{t=0}f\left(\begin{pmatrix}1&-t\\ 0&1\end{pmatrix}\cdot(x_{1},x_{2})\right)
=ddt|t=0f(x1tx2,x2)\displaystyle=\frac{d}{dt}\bigg{|}_{t=0}f(x_{1}-tx_{2},x_{2})
=x21f(x1,x2).\displaystyle=-x_{2}\partial_{1}f(x_{1},x_{2}).

Similar computations determine the image of ff and hh:

(2.12) Le=x21,Lf=x12,Lh=x11+x22.L_{e}=-x_{2}\partial_{1},\quad L_{f}=-x_{1}\partial_{2},\quad L_{h}=-x_{1}\partial_{1}+x_{2}\partial_{2}.

It is also useful to compute the image of the Casimir element (2.2) under the homomorphism LL:

(2.13) LΩ=x1212+3x11+3x22+x2222+2x1x212.L_{\Omega}=x_{1}^{2}\partial_{1}^{2}+3x_{1}\partial_{1}+3x_{2}\partial_{2}+x_{2}^{2}\partial_{2}^{2}+2x_{1}x_{2}\partial_{1}\partial_{2}.

Similarly, the right action of HH determines an algebra homomorphism

(2.14) R:𝒰(𝔥)Γ(X~,𝒟X~),gRg.R:\mathcal{U}(\mathfrak{h})\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}}),\quad g\mapsto R_{g}.

Under this homomorphism, hh is sent to the Euler operator

(2.15) Rh=x11+x22.R_{h}=x_{1}\partial_{1}+x_{2}\partial_{2}.

Combining the homomorphisms LL (2.10) and RR (2.14), we obtain an algebra homomorphism

(2.16) 𝒰(𝔤)𝒰(𝔥)Γ(X~,𝒟X~);ggLgRg\mathcal{U}(\mathfrak{g})\otimes_{\mathbb{C}}\mathcal{U}(\mathfrak{h})\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}});\quad g\otimes g^{\prime}\mapsto L_{g}R_{g^{\prime}}
Lemma 2.1.

The homomorphism (2.16) factors through the quotient

(2.17) 𝒰~:=𝒰(𝔤)𝒵(𝔤)𝒰(𝔥),\widetilde{\mathcal{U}}:=\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{Z}(\mathfrak{g})}\mathcal{U}(\mathfrak{h}),

where 𝒵(𝔤)\mathcal{Z}(\mathfrak{g}) acts on 𝒰(𝔥)\mathcal{U}(\mathfrak{h}) via the Harish-Chandra projection γHC\gamma_{\mathrm{HC}} (2.3).

Proof.

Direct computation shows that the image of Ω1\Omega\otimes 1 and 1γHC(Ω)1\otimes\gamma_{\mathrm{HC}}(\Omega) agree. Indeed,

1γHC(Ω)=1(h2+2h)\displaystyle 1\otimes\gamma_{\mathrm{HC}}(\Omega)=1\otimes(h^{2}+2h)\mapsto Rh2+2Rh\displaystyle R_{h}^{2}+2R_{h}
=(x11+x22)2+2(x11+x22)\displaystyle=(x_{1}\partial_{1}+x_{2}\partial_{2})^{2}+2(x_{1}\partial_{1}+x_{2}\partial_{2})
=x1212+3x11+2x1x212+x22x2+3x2x\displaystyle=x_{1}^{2}\partial_{1}^{2}+3x_{1}\partial_{1}+2x_{1}x_{2}\partial_{1}\partial_{2}+x_{2}^{2}\partial_{x}^{2}+3x_{2}\partial_{x}
=LΩ.\displaystyle=L_{\Omega}.

We refer to the algebra 𝒰~\widetilde{\mathcal{U}} as the extended universal enveloping algebra. By Lemma 2.1, we have an algebra homomorphism

(2.18) α:𝒰~Γ(X~,𝒟X~);ggLgRg.\alpha:\widetilde{\mathcal{U}}\rightarrow\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}});\quad g\otimes g^{\prime}\mapsto L_{g}R_{g^{\prime}}.

Global sections of 𝒟X~\mathcal{D}_{\widetilde{X}}-modules have the structure of 𝒰~\widetilde{\mathcal{U}}-modules via α.\alpha.

2.2. Monodromic 𝒟X\mathcal{D}_{X}-modules

The 𝒟\mathcal{D}-modules which play a role in our story have an additional structure: they are “HH-monodromic”. It is necessary for our purposes to work with HH-monodromic 𝒟\mathcal{D}-modules on base affine space instead of 𝒟\mathcal{D}-modules on the flag variety. This is due to the fact that the 𝔤\mathfrak{g}-modules in the construction of the Jantzen filtration have generalized infinitesimal character, so they do not arise as global sections of modules over twisted sheaves of differential operators on the flag variety.

The machinery of HH-monodromic 𝒟\mathcal{D}-modules is rather technical, and the details of the construction are not strictly necessary for our computation of the Jantzen filtration below. However, we thought that it would be useful to describe this construction in a specific example to illustrate that the equivalences established in [BB93, §2.5] are quite clear for 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}). In this section, we describe the construction of HH-monodromic 𝒟\mathcal{D}-modules for 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{\mathbb{C}}) and explain how it relates to representations of Lie algebras. More details on the general construction can be found in [BB93, BG99].

Definition 2.2.

An HH-monodromic 𝒟X\mathcal{D}_{X}-module is a weakly HH-equivariant777A weakly HH-equivariant 𝒟X~\mathcal{D}_{\widetilde{X}}-module is an HH-equivariant sheaf 𝒱\mathcal{V} equipped with a 𝒟X~\mathcal{D}_{\widetilde{X}}-module structure so that the isomorphism act𝒱p𝒱\mathrm{act}^{*}\mathcal{V}\rightarrow p^{*}\mathcal{V} given by the equivariant sheaf structure on 𝒱\mathcal{V} is a morphism of 𝒟X~𝒪H\mathcal{D}_{\widetilde{X}}\boxtimes\mathcal{O}_{H}-modules. Here act:X~×HX~\mathrm{act}:\widetilde{X}\times H\rightarrow\widetilde{X} is the action map and p:X~×HX~p:\widetilde{X}\times H\rightarrow\widetilde{X} is the projection map. For a reference on weakly equivariant 𝒟\mathcal{D}-modules, see [MP98, §4]. 𝒟X~\mathcal{D}_{\widetilde{X}}-module.

There is an equivalent characterization of HH-monodromic 𝒟X\mathcal{D}_{X}-modules in terms of HH-invariant differential operators which is established in [BB93, §2.5.2]. This perspective makes the structures of our examples more transparent, so we will take this approach to monodromicity. Below we describe the construction for 𝔤=𝔰𝔩2()\mathfrak{g}=\mathfrak{sl}_{2}(\mathbb{C}).

The right HH-action in (2.8) induces a left HH-action on 𝒪X~\mathcal{O}_{\widetilde{X}} and 𝒟X~\mathcal{D}_{\widetilde{X}}. The HH-action on 𝒟X~\mathcal{D}_{\widetilde{X}} satisfies the following relation: for gHg\in H, θ𝒟X~\theta\in\mathcal{D}_{\widetilde{X}}, and f𝒪X~f\in\mathcal{O}_{\widetilde{X}},

(2.19) (gθ)(gf)=g(θ(f)).(g\cdot\theta)(g\cdot f)=g\cdot(\theta(f)).

The HH-action on 𝒟X~\mathcal{D}_{\widetilde{X}} induces an HH-action on the sheaf π(𝒟X~)\pi_{*}(\mathcal{D}_{\widetilde{X}}) by algebra automorphisms, where π:X~X\pi:\widetilde{X}\rightarrow X is the quotient map (2.9). Here π\pi_{*} is the 𝒪\mathcal{O}-module direct image. Denote the sheaf of HH-invariant sections of π𝒟X~\pi_{*}\mathcal{D}_{\widetilde{X}} by

(2.20) 𝒟~:=[π𝒟X~]H.\widetilde{\mathcal{D}}:=[\pi_{*}\mathcal{D}_{\widetilde{X}}]^{H}.

This is a sheaf of algebras on XX. Explicitly, on an open set UXU\subseteq X,

(2.21) 𝒟~(U)=𝒟X~(π1(U))H.\widetilde{\mathcal{D}}(U)=\mathcal{D}_{\widetilde{X}}(\pi^{-1}(U))^{H}.

Note that because π\pi is an HH-torsor, π1(U)\pi^{-1}(U) is HH-stable for any set UU, so this construction is well-defined.

Let (𝒟X~,H)weak\mathcal{M}(\mathcal{D}_{\widetilde{X}},H)_{\mathrm{weak}} be the category of weakly HH-equivariant 𝒟X~\mathcal{D}_{\widetilde{X}}-modules, and (𝒟~)\mathcal{M}(\widetilde{\mathcal{D}}) be the category of 𝒟~\widetilde{\mathcal{D}}-modules. By [BB93, §1.8.9, §2.5.2], there is an equivalence of categories

(2.22) (𝒟X~,H)weak(𝒟~).\mathcal{M}(\mathcal{D}_{\widetilde{X}},H)_{\mathrm{weak}}\simeq\mathcal{M}(\widetilde{\mathcal{D}}).

Hence we can study monodromic 𝒟X\mathcal{D}_{X}-modules by instead considering 𝒟~\widetilde{\mathcal{D}}-modules. For the remainder of the paper, we will take this to be our definition of monodromicity.

Definition 2.3.

An HH-monodromic 𝒟X\mathcal{D}_{X}-module is a 𝒟~\widetilde{\mathcal{D}}-module, where 𝒟~\widetilde{\mathcal{D}} is as in (2.20).

Remark 2.4.

(Relationship to twisted differential operators) The sheaf 𝒟~\widetilde{\mathcal{D}} is a sheaf of S(𝔥)S(\mathfrak{h})-algebras. In our example, the S(𝔥)S(\mathfrak{h})-action is given by multiplication by the operator RhR_{h} (2.15). In particular, we can consider S(𝔥)S(\mathfrak{h}) as a subsheaf of 𝒟~\widetilde{\mathcal{D}}. In fact, it is the center [BB93, §2.5]. For λ𝔥\lambda\in\mathfrak{h}^{*}, denote by 𝔪λS(𝔥)\mathfrak{m}_{\lambda}\subset S(\mathfrak{h}) the corresponding maximal ideal. The sheaf 𝒟λ:=𝒟~/𝔪λ𝒟~\mathcal{D}_{\lambda}:=\widetilde{\mathcal{D}}/\mathfrak{m}_{\lambda}\widetilde{\mathcal{D}} is a twisted sheaf of differential operators (TDO) on XX. Hence 𝒟~\widetilde{\mathcal{D}}-modules on which RhR_{h} acts by eigenvalue λ\lambda can be naturally identified with modules over the TDO 𝒟λ\mathcal{D}_{\lambda}.

Modules over 𝒟~\widetilde{\mathcal{D}} are directly related to modules over the extended universal enveloping algebra (2.17) via the global sections functor. The relationship is as follows. Because the left GG-action and right HH-action commute, the differential operators Le,Lf,L_{e},L_{f}, and LhL_{h} in (2.12) are HH-invariant888This can also be shown via direct computation using (2.12) and (2.15).. Hence the image of the homomorphism (2.18) is contained in HH-invariant differential operators:

α(𝒰~)Γ(X~,𝒟X~)H.\alpha(\widetilde{\mathcal{U}})\subseteq\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}})^{H}.

Composing α\alpha with Γ(π)\Gamma(\pi_{*}), we obtain a map

(2.23) 𝒰~Γ(X,𝒟~).\widetilde{\mathcal{U}}\rightarrow\Gamma(X,\widetilde{\mathcal{D}}).
Theorem 2.5.

[BB93, Lemma 3.2.2] The map (2.23) is an isomorphism.

Proof.

The theorem holds for general 𝔤\mathfrak{g}. We will prove the theorem for 𝔤=𝔰𝔩2()\mathfrak{g}=\mathfrak{sl}_{2}(\mathbb{C}) by direct computation.

We start by describing the sheaves π𝒟X~\pi_{*}\mathcal{D}_{\widetilde{X}} and 𝒟~\widetilde{\mathcal{D}} on X=1X=\mathbb{C}\mathbb{P}^{1} by describing them on the open patches

(2.24) U1:=1\{(0:1)}andU2:=1\{(1:0)}U_{1}:=\mathbb{C}\mathbb{P}^{1}\backslash\{(0:1)\}\quad\text{and}\quad U_{2}:=\mathbb{C}\mathbb{P}^{1}\backslash\{(1:0)\}

and giving gluing conditions. Set

(2.25) V1:=π1(U1)=2\V(x1)andV2:=π1(U2)=2\V(x2),V_{1}:=\pi^{-1}(U_{1})=\mathbb{C}^{2}\backslash V(x_{1})\quad\text{and}\quad V_{2}:=\pi^{-1}(U_{2})=\mathbb{C}^{2}\backslash V(x_{2}),

where V(f(x1,x2))V(f(x_{1},x_{2})) denotes the vanishing of the polynomial f(x1,x2)f(x_{1},x_{2}). By definition, we have

(2.26) π𝒟X~(U1)\displaystyle\pi_{*}\mathcal{D}_{\widetilde{X}}(U_{1}) =𝒟X~(V1)=𝒟(2)[x11],\displaystyle=\mathcal{D}_{\widetilde{X}}(V_{1})=\mathcal{D}(\mathbb{C}^{2})[x_{1}^{-1}],
(2.27) π𝒟X~(U2)\displaystyle\pi_{*}\mathcal{D}_{\widetilde{X}}(U_{2}) =𝒟X~(V2)=𝒟(2)[x21].\displaystyle=\mathcal{D}_{\widetilde{X}}(V_{2})=\mathcal{D}(\mathbb{C}^{2})[x_{2}^{-1}].

with obvious gluing conditions.

Using (2.19), we conclude that the HH-action on 𝒟X~\mathcal{D}_{\widetilde{X}} is given by the local formulas

(2.28) gxi=gxiandgi=g1i,g\cdot x_{i}=gx_{i}\quad\text{and}\quad g\cdot\partial_{i}=g^{-1}\partial_{i},

where gHg\in H is regarded as an element of ×\mathbb{C}^{\times} under the identification

H×,(a00a1)a.H\simeq\mathbb{C}^{\times},\begin{pmatrix}a&0\\ 0&a^{-1}\end{pmatrix}\mapsto a.

From this we obtain a local description of 𝒟~\widetilde{\mathcal{D}}, using (2.21):

(2.29) 𝒟~(U1)\displaystyle\widetilde{\mathcal{D}}(U_{1}) =x11x2,x11,x12,x21,x22𝒟X~(V1)\displaystyle=\langle x_{1}^{-1}x_{2},x_{1}\partial_{1},x_{1}\partial_{2},x_{2}\partial_{1},x_{2}\partial_{2}\rangle\subseteq\mathcal{D}_{\widetilde{X}}(V_{1})
(2.30) 𝒟~(U2)\displaystyle\widetilde{\mathcal{D}}(U_{2}) =x1x21,x11,x12,x21,x22𝒟X~(V2).\displaystyle=\langle x_{1}x_{2}^{-1},x_{1}\partial_{1},x_{1}\partial_{2},x_{2}\partial_{1},x_{2}\partial_{2}\rangle\subseteq\mathcal{D}_{\widetilde{X}}(V_{2}).

Hence the global sections are given by

(2.31) Γ(X,𝒟~)x11,x12,x21,x22=Γ(X~,𝒟X~)HΓ(X~,𝒟X~).\Gamma(X,\widetilde{\mathcal{D}})\simeq\langle x_{1}\partial_{1},x_{1}\partial_{2},x_{2}\partial_{1},x_{2}\partial_{2}\rangle=\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}})^{H}\subseteq\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}}).

Now, it is clear that

(2.32) Le=x21,Lf=x12,Lh+Rh=2x22andLhRh=2x11L_{e}=-x_{2}\partial_{1},\quad L_{f}=-x_{1}\partial_{2},\quad L_{h}+R_{h}=2x_{2}\partial_{2}\quad\text{and}\quad L_{h}-R_{h}=-2x_{1}\partial_{1}

so the operators Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h} generate Γ(X~,𝒟X~)H\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}})^{H}. Since e1,f1,h1e\otimes 1,f\otimes 1,h\otimes 1 and 1h1\otimes h generate 𝒰~\widetilde{\mathcal{U}}, this shows that the map (2.23) is surjective. Direct computations establish that

[Le,Lf]=x21x12x12x21=x22x11=Lh,[L_{e},L_{f}]=x_{2}\partial_{1}x_{1}\partial_{2}-x_{1}\partial_{2}x_{2}\partial_{1}=x_{2}\partial_{2}-x_{1}\partial_{1}=L_{h},
[Le,Lh]=x21(x11x22)(x11x22)x21=2x21=2Le,[L_{e},L_{h}]=x_{2}\partial_{1}(x_{1}\partial_{1}-x_{2}\partial_{2})-(x_{1}\partial_{1}-x_{2}\partial_{2})x_{2}\partial_{1}=2x_{2}\partial_{1}=-2L_{e},
[Lf,Lh]=x12(x11x22)(x11x22)x12=2x12=2Lf,[L_{f},L_{h}]=x_{1}\partial_{2}(x_{1}\partial_{1}-x_{2}\partial_{2})-(x_{1}\partial_{1}-x_{2}\partial_{2})x_{1}\partial_{2}=-2x_{1}\partial_{2}=2L_{f},
[Le,Rh]=[Lf,Rh]=[Lh,Rh]=0.[L_{e},R_{h}]=[L_{f},R_{h}]=[L_{h},R_{h}]=0.

Combining these computations with the fact that Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h} are linearly independent shows that the relations satisfied by Le,Lf,Lh,L_{e},L_{f},L_{h}, and RhR_{h} are precisely those satisfied by e1,f1,h1e\otimes 1,f\otimes 1,h\otimes 1 and 1h.1\otimes h. Therefore, the map (2.23) is also injective. ∎

The relationships described in this section can be summarised with the following commuting diagrams.

(2.33) coh(𝒟X~,H)weak{\mathcal{M}_{coh}(\mathcal{D}_{\widetilde{X}},H)_{\mathrm{weak}}}coh(𝒟X~){\mathcal{M}_{coh}(\mathcal{D}_{\widetilde{X}})}coh(π𝒟X~){\mathcal{M}_{coh}(\pi_{*}\mathcal{D}_{\widetilde{X}})}f.g.(𝒰~){\mathcal{M}_{f.g.}(\widetilde{\mathcal{U}})}coh(𝒟~){\mathcal{M}_{coh}(\widetilde{\mathcal{D}})}forget equiv.Γ\scriptstyle{\Gamma}π\scriptstyle{\pi_{*}}restrictΓ\scriptstyle{\Gamma}

The composition of the top two arrows and the right-most arrow is the equivalence (2.22) (See [BB93, §1.8.9, §2.5.3] for more details.)

2.3. Verma modules and dual Verma modules

Using the map (2.18) constructed in Section 2.1, we can describe the 𝒰~\widetilde{\mathcal{U}}-module structure on various classes of 𝒟X~\mathcal{D}_{\widetilde{X}}-modules. We will start by examining the 𝒟X~\mathcal{D}_{\widetilde{X}}-modules j+𝒪Uj_{+}\mathcal{O}_{U} and j!𝒪Uj_{!}\mathcal{O}_{U}, where j:UX~j:U\hookrightarrow\widetilde{X} is inclusion of the open union of NN-orbits

(2.34) U:=2\V(x2).U:=\mathbb{C}^{2}\backslash V(x_{2}).

Here the ++ and !! indicate the 𝒟\mathcal{D}-module push-forward functors, see [Mil]. These are the 𝒟X~\mathcal{D}_{\widetilde{X}}-modules which will eventually be endowed with geometric Jantzen filtrations in Section 2.5. In this section, we describe the 𝒰~\widetilde{\mathcal{U}}-module structure on Γ(X~,j+𝒪U)\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U}) and Γ(X~,j!𝒪U)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U}).

Because jj is an open embedding, the 𝒟X~\mathcal{D}_{\widetilde{X}}-module j+𝒪Uj_{+}\mathcal{O}_{U} is just the sheaf 𝒪U\mathcal{O}_{U} with 𝒟X~\mathcal{D}_{\widetilde{X}}-module structure given by the restriction of 𝒟U\mathcal{D}_{U} to 𝒟X~𝒟U\mathcal{D}_{\widetilde{X}}\subseteq\mathcal{D}_{U}. Hence the global sections of j+𝒪Uj_{+}\mathcal{O}_{U} can be identified with the ring

(2.35) Γ(X~,j+𝒪U)=[x1,x2,x21].\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U})=\mathbb{C}[x_{1},x_{2},x_{2}^{-1}].

The operators Le,Lf,LhL_{e},L_{f},L_{h}, and RhR_{h} from (2.12) and (2.15) act on monomials x1mx2nx_{1}^{m}x_{2}^{n} for m0m\geq 0 nn\in\mathbb{Z} by the formulas

(2.36) Lex1mx2n\displaystyle L_{e}\cdot x_{1}^{m}x_{2}^{n} =mx1m1x2n+1,\displaystyle=-mx_{1}^{m-1}x_{2}^{n+1},
(2.37) Lfx1mx2n\displaystyle L_{f}\cdot x_{1}^{m}x_{2}^{n} =nx1m+1x2n1,\displaystyle=-nx_{1}^{m+1}x_{2}^{n-1},
(2.38) Lhx1mx2n\displaystyle L_{h}\cdot x_{1}^{m}x_{2}^{n} =(nm)x1mx2n,\displaystyle=(n-m)x_{1}^{m}x_{2}^{n},
(2.39) Rhx1mx2n\displaystyle R_{h}\cdot x_{1}^{m}x_{2}^{n} =(m+n)x1mx2n.\displaystyle=(m+n)x_{1}^{m}x_{2}^{n}.

Using (2.36)-(2.39), we can illustrate the 𝒰~\widetilde{\mathcal{U}}-module structure on Γ(X~,j+𝒪U)\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U}) using nodes and colored arrows. We do this in Figure 1. The monomials x1mx2nx_{1}^{m}x_{2}^{n} for m0m\in\mathbb{Z}_{\geq 0} and nn\in\mathbb{Z} form a basis for Γ(X~,j+𝒪U)\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U}). The green arrows illustrate the action of the operator LeL_{e} on basis elements, the red arrows the action of LfL_{f}, and the blue arrows the action of LhL_{h}. If an operator acts by zero, no arrow is included. The RhR_{h}-eigenspaces are highlighted in grey, with corresponding eigenvalues listed below.

Refer to caption

Figure 1. Dual Verma modules arise as global sections of j+𝒪Uj_{+}\mathcal{O}_{U}.
Remark 2.6.

We make the following observations about the 𝒟X~\mathcal{D}_{\widetilde{X}}-module j+𝒪Uj_{+}\mathcal{O}_{U} and its global sections.

  1. (1)

    As a 𝒰~\widetilde{\mathcal{U}}-module, Γ(X~,j+𝒪U)\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U}) decomposes into a direct sum of submodules, each of which is an RhR_{h}-eigenspace corresponding to an integer eigenvalue:

    Γ(X~,j+𝒪U)=nΓ(X~,j+𝒪U)n\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U})=\bigoplus_{n\in\mathbb{Z}}\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U})_{n}

    In Figure 1, these eigenspaces are highlighted in grey.

  2. (2)

    As a 𝒰(𝔤)\mathcal{U}(\mathfrak{g})-module, the RhR_{h}-eigenspace Γ(X~,j+𝒪U)n\Gamma(\widetilde{X},j_{+}\mathcal{O}_{U})_{n} of eigenvalue nn is isomorphic to the dual Verma module of highest weight nn. In particular, it is irreducible if n<0n<0, and it has a unique irreducible finite-dimensional submodule if n0n\geq 0.

  3. (3)

    The sheaf πj+𝒪U\pi_{*}j_{+}\mathcal{O}_{U} is a monodromic 𝒟X\mathcal{D}_{X}-module because it admits an action of 𝒟~\widetilde{\mathcal{D}} (Definition 2.3). For each positive integer nn, πj+𝒪U\pi_{*}j_{+}\mathcal{O}_{U} has a subsheaf (πj+𝒪U)n(\pi_{*}j_{+}\mathcal{O}_{U})_{n} on which RhR_{h} acts locally by the eigenvalue nn. These subsheaves are 𝒟n\mathcal{D}_{n}-modules, where 𝒟n\mathcal{D}_{n} is the twisted sheaf of differential operators as defined in Remark 2.4. These are exactly the 𝒟n\mathcal{D}_{n}-modules appearing in [Rom21, §6, Fig. 4].

Next we will describe Γ(X~,j!𝒪X~)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{\widetilde{X}}). This is slightly more involved. By definition,

(2.40) j!=𝔻X~j+𝔻U,j_{!}=\mathbb{D}_{\widetilde{X}}\circ j_{+}\circ\mathbb{D}_{U},

where 𝔻\mathbb{D} denotes the holonomic duality functor. Explicitly, for a smooth algebraic variety YY and a holonomic 𝒟Y\mathcal{D}_{Y}-module 𝒱\mathcal{V},

(2.41) 𝔻Y(𝒱):=Ext𝒟YdimY(𝒱,𝒟X).\mathbb{D}_{Y}(\mathcal{V}):=\operatorname{Ext}_{\mathcal{D}_{Y}}^{\dim Y}(\mathcal{V},\mathcal{D}_{X}).

This is a well-defined functor from the category of holonomic 𝒟Y\mathcal{D}_{Y}-modules to itself [HTT08, Corollary 2.6.8].

The first two steps of the composition (2.40) are straightforward to compute. The right 𝒟U\mathcal{D}_{U}-module 𝔻U𝒪U\mathbb{D}_{U}\mathcal{O}_{U} is just the sheaf 𝒪U\mathcal{O}_{U}, viewed as a right 𝒟U\mathcal{D}_{U}-module via the natural right action. Then, since jj is an open immersion, j+𝔻U𝒪Uj_{+}\mathbb{D}_{U}\mathcal{O}_{U} is the sheaf 𝒪U\mathcal{O}_{U} with right 𝒟X~\mathcal{D}_{\widetilde{X}}-module structure given by restriction to 𝒟X~𝒟U\mathcal{D}_{\widetilde{X}}\subset\mathcal{D}_{U}.

To apply 𝔻X~\mathbb{D}_{\widetilde{X}} to j+𝔻U𝒪Uj_{+}\mathbb{D}_{U}\mathcal{O}_{U}, we must take a projective resolution of j+𝔻U𝒪Uj_{+}\mathbb{D}_{U}\mathcal{O}_{U}. First, we make the identification

(2.42) j+𝔻U𝒪U1,2𝒟U\𝒟U.j_{+}\mathbb{D}_{U}\mathcal{O}_{U}\simeq\langle\partial_{1},\partial_{2}\rangle\mathcal{D}_{U}\backslash\mathcal{D}_{U}.

We take the following free (hence projective) resolution of 1,2𝒟U\𝒟U\langle\partial_{1},\partial_{2}\rangle\mathcal{D}_{U}\backslash\mathcal{D}_{U}:

(2.43) 01,2𝒟U\𝒟Uϵ𝒟X~d0𝒟X~𝒟X~d1𝒟X~d200\leftarrow\langle\partial_{1},\partial_{2}\rangle\mathcal{D}_{U}\backslash\mathcal{D}_{U}\xleftarrow{\epsilon}\mathcal{D}_{\widetilde{X}}\xleftarrow{d_{0}}\mathcal{D}_{\widetilde{X}}\oplus\mathcal{D}_{\widetilde{X}}\xleftarrow{d_{1}}\mathcal{D}_{\widetilde{X}}\xleftarrow{d_{2}}0

where the maps are defined by

ϵ:1\displaystyle\epsilon:1 x21,\displaystyle\mapsto x_{2}^{-1},
d0:(θ1,θ2)\displaystyle d_{0}:(\theta_{1},\theta_{2}) 1θ1x22θ2,\displaystyle\mapsto\partial_{1}\theta_{1}-x_{2}\partial_{2}\theta_{2},
d1:1\displaystyle d_{1}:1 (x22,1).\displaystyle\mapsto(x_{2}\partial_{2},\partial_{1}).

Applying Hom𝒟X~,r(,𝒟X~)\mathrm{Hom}_{\mathcal{D}_{\widetilde{X}},r}(-,\mathcal{D}_{\widetilde{X}}) to this complex, we obtain the complex

(2.44) 0Hom𝒟X~,r(𝒟X~,𝒟X~)d0Hom𝒟X~,r(𝒟X~𝒟X~,𝒟X~)d1Hom𝒟X~,r(𝒟X~,𝒟X~)d2 00\rightarrow\mathrm{Hom}_{\mathcal{D}_{\widetilde{X}},r}(\mathcal{D}_{\widetilde{X}},\mathcal{D}_{\widetilde{X}})\xrightarrow{d_{0}^{*}}\mathrm{Hom}_{\mathcal{D}_{\widetilde{X}},r}(\mathcal{D}_{\widetilde{X}}\oplus\mathcal{D}_{\widetilde{X}},\mathcal{D}_{\widetilde{X}})\xrightarrow{d_{1}^{*}}\mathrm{Hom}_{\mathcal{D}_{\widetilde{X}},r}(\mathcal{D}_{\widetilde{X}},\mathcal{D}_{\widetilde{X}})\xrightarrow{d_{2}^{*}}\ 0

where did_{i}^{*} sends a morphism ff to fdif\circ d_{i}.

Because the module j+𝔻U𝒪Uj_{+}\mathbb{D}_{U}\mathcal{O}_{U} is holonomic, the complex (2.44) only has nonzero cohomology in degree 22. This can also be seen by direct computation. By identifying Hom𝒟X~,r(𝒟X~,𝒟X~)𝒟X~\mathrm{Hom}_{\mathcal{D}_{\widetilde{X}},r}(\mathcal{D}_{\widetilde{X}},\mathcal{D}_{\widetilde{X}})\simeq\mathcal{D}_{\widetilde{X}} via ff(1)f\mapsto f(1) and Hom𝒟X~,r(𝒟X~𝒟X~,𝒟X~)𝒟X~𝒟X~\mathrm{Hom}_{\mathcal{D}_{\widetilde{X}},r}(\mathcal{D}_{\widetilde{X}}\oplus\mathcal{D}_{\widetilde{X}},\mathcal{D}_{\widetilde{X}})\simeq\mathcal{D}_{\widetilde{X}}\oplus\mathcal{D}_{\widetilde{X}} via f(f(1,0),f(0,1))f\mapsto(f(1,0),f(0,1)), we see that

kerd2𝒟X~ and imd1𝒟X~1,x22.\ker d_{2}^{*}\simeq\mathcal{D}_{\widetilde{X}}\text{ and }\operatorname{im}d_{1}^{*}\simeq\mathcal{D}_{\widetilde{X}}\langle\partial_{1},x_{2}\partial_{2}\rangle.

Hence,

(2.45) j!𝒪U𝒟X~/𝒟X~1,x22.j_{!}\mathcal{O}_{U}\simeq\mathcal{D}_{\widetilde{X}}/\mathcal{D}_{\widetilde{X}}\langle\partial_{1},x_{2}\partial_{2}\rangle.

Now we can describe the global sections of j!𝒪Uj_{!}\mathcal{O}_{U} and illustrate their 𝒰~\widetilde{\mathcal{U}}-module structure, as we did for 𝒪X~\mathcal{O}_{\widetilde{X}} and j+𝒪Uj_{+}\mathcal{O}_{U}. The monomials x1mx2nx_{1}^{m}x_{2}^{n} and x1m2nx_{1}^{m}\partial_{2}^{n} for m,n0m,n\geq 0 form a basis for Γ(X~,j!𝒪U)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U}). The action of Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h} on x1mx2nx^{m}_{1}x_{2}^{n} for m0m\geq 0 and n>0n>0 is given by equations (2.36)-(2.39). The action of Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h} on x1m2nx^{m}_{1}\partial_{2}^{n} for m0m\geq 0 and n>0n>0 is given by

(2.46) Lex1m2n\displaystyle L_{e}\cdot x_{1}^{m}\partial_{2}^{n} =m(n1)x1m12n1,\displaystyle=m(n-1)x_{1}^{m-1}\partial_{2}^{n-1},
(2.47) Lfx1m2n\displaystyle L_{f}\cdot x_{1}^{m}\partial_{2}^{n} =x1m+12n+1,\displaystyle=-x_{1}^{m+1}\partial_{2}^{n+1},
(2.48) Lhx1m2n\displaystyle L_{h}\cdot x_{1}^{m}\partial_{2}^{n} =(m+n)x1m2n,\displaystyle=-(m+n)x_{1}^{m}\partial_{2}^{n},
(2.49) Rhx1m2n\displaystyle R_{h}\cdot x_{1}^{m}\partial_{2}^{n} =(mn)x1m2n.\displaystyle=(m-n)x_{1}^{m}\partial_{2}^{n}.

The action of LeL_{e} on x1mx_{1}^{m} is given by (2.36), the action of LfL_{f} on x1mx_{1}^{m} is given by (2.47), and the actions of LhL_{h} and RhR_{h} on xmx^{m} are given by either (2.38)-(2.39) or (2.48)-(2.49).

We illustrate the 𝒰~\widetilde{\mathcal{U}}-module structure of Γ(X~,j!𝒪U)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U}) in Figure 2. The colors indicate the same operators as in the earlier example: green is LeL_{e}, red is LfL_{f}, blue is LhL_{h}, and RhR_{h}-eigenspaces are highlighted in grey, with corresponding eigenvalues listed below.

Refer to caption

Figure 2. Verma modules arise as global sections of j!𝒪Uj_{!}\mathcal{O}_{U}.
Remark 2.7.

We make the following observations about Γ(X~,j!𝒪U)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U}).

  1. (1)

    As a 𝒰~\widetilde{\mathcal{U}}-module, Γ(X~,j!𝒪U)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U}) decomposes into a direct sum of submodules, each of which is an RhR_{h}-eigenspace corresponding to an integer eigenvalue. Again, these eigenspaces are highlighted in grey.

  2. (2)

    As a 𝒰(𝔤)\mathcal{U}(\mathfrak{g})-module, the RhR_{h}-eigenspace of Γ(X~,j!𝒪U)\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U}) of eigenvalue nn is isomorphic to the Verma module of highest weight nn. In particular, it is irreducible if n<0n<0, and it has a unique irreducible finite-dimensional quotient if n0n\geq 0.

  3. (3)

    The sheaf πj!𝒪U\pi_{*}j_{!}\mathcal{O}_{U} is an HH-monodromic 𝒟X\mathcal{D}_{X}-module. For each positive integer nn, πj!𝒪U\pi_{*}j_{!}\mathcal{O}_{U} has a subsheaf (πj!𝒪U)n(\pi_{*}j_{!}\mathcal{O}_{U})_{n} on which RhR_{h} acts locally by the eigenvalue nn. These subsheaves are modules over the TDO 𝒟n\mathcal{D}_{n} (Remark 2.4). These are exactly the 𝒟n\mathcal{D}_{n}-modules appearing in [Rom21, §6, Fig. 3].

2.4. The maximal extension Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U}

To describe the geometric Jantzen filtrations on the 𝒟X~\mathcal{D}_{\widetilde{X}}-modules j!𝒪Uj_{!}\mathcal{O}_{U} and j+𝒪Uj_{+}\mathcal{O}_{U}, it is necessary to introduce the maximal extension functor

Ξρ:hol(𝒟U)hol(𝒟X~).\Xi_{\rho}:\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{U})\rightarrow\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{\widetilde{X}}).

This functor (defined in (2.55) below) extends j+j_{+} and j!j_{!} (see (2.57) - (2.58)), so it is a natural way to study both modules j!𝒪Uj_{!}\mathcal{O}_{U} and j+𝒪Uj_{+}\mathcal{O}_{U} at once. In this section, we give the construction of Ξρ\Xi_{\rho}, then describe the 𝒰~\widetilde{\mathcal{U}}-module structure on Γ(X~,Ξρ𝒪U)\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U}).

To start, we recall the construction of maximal extension for 𝒟\mathcal{D}-modules, which is a special case of the construction in [Bei87], which produces the maximal extension and nearby cycles functors. Let YY be a smooth variety, f:Y𝔸1f:Y\rightarrow\mathbb{A}^{1} a regular function, and

(2.50) U:=f1(𝔸1{0})𝑗Y𝑖f1(0)U:=f^{-1}(\mathbb{A}^{1}-\{0\})\xhookrightarrow{j}Y\xhookleftarrow{i}f^{-1}(0)

the corresponding open-closed decomposition of YY. For nn\in\mathbb{N}, denote by

(2.51) I(n):=(𝒪𝔸1{0}[s]/sn)tsI^{(n)}:=\left(\mathcal{O}_{\mathbb{A}^{1}-\{0\}}\otimes\mathbb{C}[s]/s^{n}\right)t^{s}

the free rank 11 𝒪𝔸1{0}[s]/sn\mathcal{O}_{\mathbb{A}^{1}-\{0\}}\otimes\mathbb{C}[s]/s^{n}-module generated by the symbol tst^{s}. The action tts=st1ts\partial_{t}\cdot t^{s}=st^{-1}t^{s} gives I(n)I^{(n)} the structure of a 𝒟𝔸1{0}\mathcal{D}_{\mathbb{A}^{1}-\{0\}}-module. Any 𝒟U\mathcal{D}_{U}-module U\mathcal{M}_{U} can be deformed using I(n)I^{(n)}: set

(2.52) fsU(n):=f+I(n)𝒪UUf^{s}\mathcal{M}_{U}^{(n)}:=f^{+}I^{(n)}\otimes_{\mathcal{O}_{U}}\mathcal{M}_{U}

to be the 𝒟U\mathcal{D}_{U}-module obtained by twisting U\mathcal{M}_{U} by I(n)I^{(n)}. Note that fsU(1)=Uf^{s}\mathcal{M}_{U}^{(1)}=\mathcal{M}_{U}, and that both I(n)I^{(n)} and fsU(n)f^{s}\mathcal{M}_{U}^{(n)} have a natural action by s[s]/sns\in\mathbb{C}[s]/s^{n}.

Assume that U\mathcal{M}_{U} is holonomic. Denote by

(2.53) can:j!fsU(n)j+fsU(n)\mathrm{can}:j_{!}f^{s}\mathcal{M}_{U}^{(n)}\rightarrow j_{+}f^{s}\mathcal{M}_{U}^{(n)}

the canonical map between !! and ++ pushforward, and

(2.54) s1(n):j!fsU(n)j+fsU(n)s^{1}(n):j_{!}f^{s}\mathcal{M}_{U}^{(n)}\rightarrow j_{+}f^{s}\mathcal{M}_{U}^{(n)}

the composition of can\mathrm{can} with multiplication by ss. For large enough nn, the cokernel of s1(n)s^{1}(n) stabilizes; i.e., cokers1(n)=cokers1(n+k)\operatorname{coker}s^{1}(n)=\operatorname{coker}s^{1}(n+k) for all k>0k>0. For n0n\gg 0, define the 𝒟Y\mathcal{D}_{Y}-module

(2.55) ΞfU:=cokers1(n),\Xi_{f}\mathcal{M}_{U}:=\operatorname{coker}s^{1}(n),

called the maximal extension of U\mathcal{M}_{U}. By construction, this module comes equipped with the nilpotent endomorphism ss. The corresponding functor

(2.56) Ξf:hol(𝒟U)hol(𝒟Y)\Xi_{f}:\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{U})\rightarrow\mathcal{M}_{\mathrm{hol}}(\mathcal{D}_{Y})

is exact [BB93, Lemma 4.2.1(i)]. Moreover, there are canonical short exact sequences [BB93, Lemma 4.2.1 (ii)’]

(2.57) 0j!UΞfUcoker(can)0\displaystyle 0\rightarrow j_{!}\mathcal{M}_{U}\rightarrow\Xi_{f}\mathcal{M}_{U}\rightarrow\operatorname{coker}(\mathrm{can})\rightarrow 0
(2.58) 0coker(can)ΞfUj+U0\displaystyle 0\rightarrow\operatorname{coker}(\mathrm{can})\rightarrow\Xi_{f}\mathcal{M}_{U}\rightarrow j_{+}\mathcal{M}_{U}\rightarrow 0

with j!=ker(s:ΞfΞf)j_{!}=\ker(s:\Xi_{f}\rightarrow\Xi_{f}) and j+=coker(s:ΞfΞf)j_{+}=\operatorname{coker}(s:\Xi_{f}\rightarrow\Xi_{f}).

Now, we apply this general construction in the setting of our example. Let X~\widetilde{X} and UU be as above (see (2.5) and (2.34)), and let fρf_{\rho} be the function999This choice of function corresponds to the deformation direction ρ𝔥\rho\in\mathfrak{h}^{*}, see Remarks 1.3 and 2.9..

(2.59) fρ:X~𝔸1;(x1,x2)x2.f_{\rho}:\widetilde{X}\rightarrow\mathbb{A}^{1};(x_{1},x_{2})\mapsto x_{2}.

For a variety YY, set

(2.60) 𝒜Y:=𝒟Y[s]/sn.\mathcal{A}_{Y}:=\mathcal{D}_{Y}\otimes\mathbb{C}[s]/s^{n}.

We will compute the maximal extension Ξρ𝒪U:=Ξfρ𝒪U\Xi_{\rho}\mathcal{O}_{U}:=\Xi_{f_{\rho}}\mathcal{O}_{U} of the structure sheaf 𝒪U\mathcal{O}_{U} using the construction above, then describe the 𝒰~\widetilde{\mathcal{U}}-module structure on its global sections. To clarify the exposition, we list each step as a subsection.

2.4.1. Step 1: Deformation

Let I(n)I^{(n)} be as in (2.51). The deformed version of 𝒪U\mathcal{O}_{U} is

(2.61) fs𝒪U(n)=f+I(n)=𝒪Uf1(𝒪𝔸1{0})f1(I(n)).f^{s}\mathcal{O}_{U}^{(n)}=f^{+}I^{(n)}=\mathcal{O}_{U}\otimes_{f^{-1}(\mathcal{O}_{\mathbb{A}^{1}-\{0\}})}f^{-1}(I^{(n)}).

The global sections of fs𝒪U(n)f^{s}\mathcal{O}_{U}^{(n)} are

(2.62) ([x1,x2,x21][s]/sn)ts,(\mathbb{C}[x_{1},x_{2},x_{2}^{-1}]\otimes\mathbb{C}[s]/s^{n})t^{s},

where the differentials 1,2Γ(X~,𝒟X~)\partial_{1},\partial_{2}\in\Gamma(\widetilde{X},\mathcal{D}_{\widetilde{X}}) act on the generator tst^{s} by

(2.63) 1ts=0 and 2ts=sx21ts.\partial_{1}\cdot t^{s}=0\text{ and }\partial_{2}\cdot t^{s}=sx_{2}^{-1}t^{s}.

Alternatively, we can identify fs𝒪U(n)f^{s}\mathcal{O}_{U}^{(n)} with a quotient of 𝒜U\mathcal{A}_{U}:

(2.64) fs𝒪U(n)=𝒜U/𝒜U1,x22s.f^{s}\mathcal{O}_{U}^{(n)}=\mathcal{A}_{U}/\mathcal{A}_{U}\langle\partial_{1},x_{2}\partial_{2}-s\rangle.

Both descriptions will be useful below.

2.4.2. Step 2: ++-pushforward

Because j:UX~j:U\hookrightarrow\widetilde{X} is an open embedding, the 𝒟X~\mathcal{D}_{\widetilde{X}}-module j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)} is the sheaf fs𝒪U(n)f^{s}\mathcal{O}_{U}^{(n)} with 𝒟X~\mathcal{D}_{\widetilde{X}}-module structure given by restriction to 𝒟X~𝒟U\mathcal{D}_{\widetilde{X}}\subset\mathcal{D}_{U}. Under the identification (2.64), we have

(2.65) j+fs𝒪U(n)=𝒜U/𝒜U1,x22s,j_{+}f^{s}\mathcal{O}_{U}^{(n)}=\mathcal{A}_{U}/\mathcal{A}_{U}\langle\partial_{1},x_{2}\partial_{2}-s\rangle,

with 𝒟X~\mathcal{D}_{\widetilde{X}}-action given by left multiplication.

It is interesting to examine the 𝒰~\widetilde{\mathcal{U}}-module structure on the global sections of this module. The operators Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h} (2.12), (2.15) act on the monomial basis elements of (2.62) by the following formulas

(2.66) Lex1kx2smts\displaystyle L_{e}\cdot x_{1}^{k}x_{2}^{\ell}s^{m}t^{s} =kx1k1x2+1smts;\displaystyle=-kx_{1}^{k-1}x_{2}^{\ell+1}s^{m}t^{s};
(2.67) Lfx1kx2smts\displaystyle L_{f}\cdot x_{1}^{k}x_{2}^{\ell}s^{m}t^{s} =(s)x1k+1x21smts;\displaystyle=(-s-\ell)x_{1}^{k+1}x_{2}^{\ell-1}s^{m}t^{s};
(2.68) Lhx1kx2smts\displaystyle L_{h}\cdot x_{1}^{k}x_{2}^{\ell}s^{m}t^{s} =(sk+)x1kx2smts;\displaystyle=(s-k+\ell)x_{1}^{k}x_{2}^{\ell}s^{m}t^{s};
(2.69) Rhx1kx2smts\displaystyle R_{h}\cdot x_{1}^{k}x_{2}^{\ell}s^{m}t^{s} =(s+k+)x2kx2smts.\displaystyle=(s+k+\ell)x_{2}^{k}x_{2}^{\ell}s^{m}t^{s}.

The resulting 𝒰~\widetilde{\mathcal{U}}-module has a natural filtration given by powers of ss, and it decomposes into a direct sum of submodules spanned by monomials {x1kx2smts}\{x_{1}^{k}x_{2}^{\ell}s^{m}t^{s}\} for fixed integers k+k+\ell. Each of these submodules has the structure of a deformed dual Verma module, as illustrated101010We omit the generator tst^{s} and the arrows corresponding to the RhR_{h}-action in Figure 3 for clarity. in Figure 3 for k+=0k+\ell=0.

Refer to caption

Figure 3. Deformed dual Verma modules arise as global sections of j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)}.

Moreover, one can compute that the Casimir element LΩL_{\Omega} (2.13) acts by

(2.70) LΩx1kx2smts=((k+)2+2(k+)+2s(1+k+)+s2)x1kx2smts.L_{\Omega}\cdot x_{1}^{k}x_{2}^{\ell}s^{m}t^{s}=\left((k+\ell)^{2}+2(k+\ell)+2s(1+k+\ell)+s^{2}\right)x_{1}^{k}x_{2}^{\ell}s^{m}t^{s}.

Since ss is nilpotent, we can see from this computation that a high enough power of the operator

(2.71) LΩγHC(k+)=2s(1+k+)+s2L_{\Omega}-\gamma_{\mathrm{HC}}(k+\ell)=2s(1+k+\ell)+s^{2}

annihilates any monomial basis element. (Here γHC\gamma_{\mathrm{HC}} is the Harish-Chandra projection in (2.3).) Hence, the global sections of the submodules of j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)} spanned by monomials {x1kx2smts}\{x_{1}^{k}x_{2}^{\ell}s^{m}t^{s}\} for fixed integers k+k+\ell have generalised, but not strict, infinitesimal character.

2.4.3. Step 3: !!-pushforward

Recall that j!=𝔻X~j+𝔻Uj_{!}=\mathbb{D}_{\widetilde{X}}\circ j_{+}\circ\mathbb{D}_{U}, where 𝔻\mathbb{D} denotes holonomic duality, as in (2.41). We begin by computing the right 𝒟U\mathcal{D}_{U}-module 𝔻Ufs𝒪U(n)\mathbb{D}_{U}f^{s}\mathcal{O}_{U}^{(n)} by taking a projective resolution of fs𝒪U(n)f^{s}\mathcal{O}_{U}^{(n)} as a left 𝒜U\mathcal{A}_{U}-module. This is straightforward using the description (2.62). The complex

(2.72) 0d2𝒜Ud1𝒜U𝒜Ud0𝒜Uϵ𝒜U/𝒜U1,x22s00\xrightarrow{d_{2}}\mathcal{A}_{U}\xrightarrow{d_{1}}\mathcal{A}_{U}\oplus\mathcal{A}_{U}\xrightarrow{d_{0}}\mathcal{A}_{U}\xrightarrow{\epsilon}\mathcal{A}_{U}/\mathcal{A}_{U}\langle\partial_{1},x_{2}\partial_{2}-s\rangle\rightarrow 0

where ϵ\epsilon is the canonical quotient map, d0d_{0} sends (θ1,θ2)𝒜U𝒜U(\theta_{1},\theta_{2})\in\mathcal{A}_{U}\oplus\mathcal{A}_{U} to θ11θ2(x22s)\theta_{1}\partial_{1}-\theta_{2}(x_{2}\partial_{2}-s), and d1d_{1} sends 1(x22s,1)1\mapsto(x_{2}\partial_{2}-s,\partial_{1}), is a free resolution of the left 𝒜U\mathcal{A}_{U}-module fs𝒪U(n)f^{s}\mathcal{O}_{U}^{(n)}. Applying the functor Hom𝒜U(,𝒜U)\mathrm{Hom}_{\mathcal{A}_{U}}(-,\mathcal{A}_{U}) and making the natural identification

(2.73) Hom𝒜U(𝒜U,𝒜U)𝒜U;φφ(1),\mathrm{Hom}_{\mathcal{A}_{U}}(\mathcal{A}_{U},\mathcal{A}_{U})\simeq\mathcal{A}_{U};\varphi\mapsto\varphi(1),

of right 𝒜U\mathcal{A}_{U}-modules, we see that

(2.74) 𝔻Ufs𝒪U(n)=Ext𝒜U2(fs𝒪U(n),𝒜U)=imd1\kerd2=1,x22s𝒜U\𝒜U.\mathbb{D}_{U}f^{s}\mathcal{O}_{U}^{(n)}=\mathrm{Ext}_{\mathcal{A}_{U}}^{2}(f^{s}\mathcal{O}_{U}^{(n)},\mathcal{A}_{U})=\operatorname{im}d_{1}^{*}\backslash\ker d_{2}^{*}=\langle\partial_{1},x_{2}\partial_{2}-s\rangle\mathcal{A}_{U}\backslash\mathcal{A}_{U}.

Here di(φ)=φdid_{i}^{*}(\varphi)=\varphi\circ d_{i} for an appropriate homomorphism φ\varphi, and the right 𝒜U\mathcal{A}_{U}-module structure is given by right multiplication.

To finish the computation of j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)} we must take a projective resolution of this module. We do so following a similar process to the !!-pushforward computation in Section 2.3. Denote by II the right ideal 1,x22s𝒜U\langle\partial_{1},x_{2}\partial_{2}-s\rangle\mathcal{A}_{U} in 𝒜U\mathcal{A}_{U}. The complex

(2.75) 0I\𝒜Uϵ𝒜X~d0𝒜X~𝒜X~d1𝒜X~d200\leftarrow I\backslash\mathcal{A}_{U}\xleftarrow{\epsilon}\mathcal{A}_{\widetilde{X}}\xleftarrow{d_{0}}\mathcal{A}_{\widetilde{X}}\oplus\mathcal{A}_{\widetilde{X}}\xleftarrow{d_{1}}\mathcal{A}_{\widetilde{X}}\xleftarrow{d_{2}}0

with maps given by

(2.76) ϵ:1\displaystyle\epsilon:1 Ix21;\displaystyle\mapsto Ix_{2}^{-1};
(2.77) d0:(θ1,θ2)\displaystyle d_{0}:(\theta_{1},\theta_{2}) x21θ1(x222x2s)θ2;\displaystyle\mapsto x_{2}\partial_{1}\theta_{1}-(x_{2}^{2}\partial_{2}-x_{2}s)\theta_{2};
(2.78) d1:1\displaystyle d_{1}:1 (x22s,1)\displaystyle\mapsto(x_{2}\partial_{2}-s,\partial_{1})

is a free resolution of 𝔻Ufs𝒪U(n)\mathbb{D}_{U}f^{s}\mathcal{O}_{U}^{(n)} by right 𝒜X~\mathcal{A}_{\widetilde{X}}-modules. Applying Hom𝒜X~,r(,𝒜X~)\mathrm{Hom}_{\mathcal{A}_{\widetilde{X}},r}(-,\mathcal{A}_{\widetilde{X}}) and making the natural identifications as above, we obtain

(2.79) j!fs𝒪U(n)=kerd2/imd1=𝒜X~/𝒜X~1,x22s.j_{!}f^{s}\mathcal{O}_{U}^{(n)}=\ker d_{2}^{*}/\operatorname{im}d_{1}^{*}=\mathcal{A}_{\widetilde{X}}/\mathcal{A}_{\widetilde{X}}\langle\partial_{1},x_{2}\partial_{2}-s\rangle.

The left 𝒜X~\mathcal{A}_{\widetilde{X}}-module structure is given by left multiplication.

Again, it is interesting to examine the 𝒰~\widetilde{\mathcal{U}}-module structure on the global sections of this module. The global sections of j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)} are spanned by monomials x1kx2smx_{1}^{k}x_{2}^{\ell}s^{m} for k,0k,\ell\geq 0 and 0m<n0\leq m<n and x1a2bsmx_{1}^{a}\partial_{2}^{b}s^{m} for a,b0a,b\geq 0 and 0m<n0\leq m<n. For >0\ell>0, the Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h}-actions on the monomials x1kx2smx_{1}^{k}x_{2}^{\ell}s^{m} are as in (2.66) - (2.69) (where we identify the generator tst^{s} of j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)} with the coset containing 11 in j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)}), and the actions on the monomials x1a2bsmx_{1}^{a}\partial_{2}^{b}s^{m} are given by the following formulas:

(2.80) Lex1a2bsm\displaystyle L_{e}\cdot x_{1}^{a}\partial_{2}^{b}s^{m} =a(b1s)x1a12b1sm;\displaystyle=a(b-1-s)x_{1}^{a-1}\partial_{2}^{b-1}s^{m};
(2.81) Lfx1a2bsm\displaystyle L_{f}\cdot x_{1}^{a}\partial_{2}^{b}s^{m} =x1a+12b+1sm;\displaystyle=-x_{1}^{a+1}\partial_{2}^{b+1}s^{m};
(2.82) Lhx1a2bsm\displaystyle L_{h}\cdot x_{1}^{a}\partial_{2}^{b}s^{m} =(sab)x1a2bsm;\displaystyle=(s-a-b)x_{1}^{a}\partial_{2}^{b}s^{m};
(2.83) Rhx1a2bsm\displaystyle R_{h}\cdot x_{1}^{a}\partial_{2}^{b}s^{m} =(s+ab)x1a2bsm.\displaystyle=(s+a-b)x_{1}^{a}\partial_{2}^{b}s^{m}.

For =b=0\ell=b=0, the actions of LhL_{h} and RhR_{h} are as in (2.82)-(2.83), and the actions of LeL_{e} and LfL_{f} are given by

(2.84) Lex1ksm\displaystyle L_{e}\cdot x_{1}^{k}s^{m} =kx1k1x2sm;\displaystyle=-kx_{1}^{k-1}x_{2}s^{m};
(2.85) Lfx1ksm\displaystyle L_{f}\cdot x_{1}^{k}s^{m} =x1k+12sm.\displaystyle=-x_{1}^{k+1}\partial_{2}s^{m}.

As in 2.4.2, this 𝒰~\widetilde{\mathcal{U}}-module has an nn-step filtration by powers of ss, and decomposes into a direct sum of 𝒰~\widetilde{\mathcal{U}}-submodules, each spanned by the set of monomials {x1kx2sm}\{x_{1}^{k}x_{2}^{\ell}s^{m}\} and {x1a2bsm}\{x_{1}^{a}\partial_{2}^{b}s^{m}\} such that k+=abk+\ell=a-b is a fixed integer. For k+=ab=λk+\ell=a-b=\lambda, this submodule is isomorphic to a deformed Verma module of highest weight λ\lambda. We illustrate the module corresponding to λ=0\lambda=0 in Figure 4

Refer to caption

Figure 4. Deformed Verma modules arise as global sections of j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)}.

2.4.4. Step 4: Image of the canonical map

Set IU=𝒜U1,x22sI_{U}=\mathcal{A}_{U}\langle\partial_{1},x_{2}\partial_{2}-s\rangle and IX~=𝒜X~1,x22sI_{\widetilde{X}}=\mathcal{A}_{\widetilde{X}}\langle\partial_{1},x_{2}\partial_{2}-s\rangle to be the left ideals generated by the operators 1\partial_{1} and x22sx_{2}\partial_{2}-s in 𝒜U\mathcal{A}_{U} and 𝒜X~\mathcal{A}_{\widetilde{X}}, respectively. The canonical map between !!- and ++-pushforward is given by

j!fs𝒪U(n)=𝒜X~/IX~\displaystyle j_{!}f^{s}\mathcal{O}_{U}^{(n)}=\mathcal{A}_{\widetilde{X}}/I_{\widetilde{X}} can𝒜U/IU=j+fs𝒪U(n)\displaystyle\xrightarrow{\mathrm{can}}\mathcal{A}_{U}/I_{U}=j_{+}f^{s}\mathcal{O}_{U}^{(n)}
1IX~\displaystyle 1I_{\widetilde{X}} 1IU\displaystyle\longmapsto 1I_{U}

Since 1𝒜X~1\mathcal{A}_{\widetilde{X}} generates j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)} as a 𝒜X~\mathcal{A}_{\widetilde{X}}-module, its image completely determines the morphism can\mathrm{can}. On the monomial basis elements x1kx2smx_{1}^{k}x_{2}^{\ell}s^{m} and x1k2smx_{1}^{k}\partial_{2}^{\ell}s^{m} of j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)}, the canonical map acts by

(2.86) x1kx2smcanx1kx2sm and x1a2bsmcans(s1)(sb+1)x1ax2bsmx_{1}^{k}x_{2}^{\ell}s^{m}\xmapsto{\mathrm{can}}x_{1}^{k}x_{2}^{\ell}s^{m}\text{ and }x_{1}^{a}\partial_{2}^{b}s^{m}\xmapsto{\mathrm{can}}s(s-1)\cdots(s-b+1)x_{1}^{a}x_{2}^{-b}s^{m}

for b>1b>1. For b=1b=1, x1a2smcansx1ax21x_{1}^{a}\partial_{2}s^{m}\xmapsto{\mathrm{can}}sx_{1}^{a}x_{2}^{-1}.

The image of the morphism can\mathrm{can} is the 𝒜X~\mathcal{A}_{\widetilde{X}}-submodule

(2.87) im(can)=𝒜X~/IU𝒜U/IU.\operatorname{im}(\mathrm{can})=\mathcal{A}_{\widetilde{X}}/I_{U}\subset\mathcal{A}_{U}/I_{U}.

In the description of the global sections of j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)} in (2.62), the global sections of im(can)\operatorname{im}(\mathrm{can}) can be identified with

(2.88) ([x1,x2][s]/sn+[x1,x2,x21]s[s]/sn)ts.\left(\mathbb{C}[x_{1},x_{2}]\otimes\mathbb{C}[s]/s^{n}+\mathbb{C}[x_{1},x_{2},x_{2}^{-1}]\otimes s\mathbb{C}[s]/s^{n}\right)t^{s}.

2.4.5. Step 5: The maximal extension

Composing the canonical map can\mathrm{can} with ss gives

(2.89) s1(n):𝒜X~/IX~can𝒜U/IU𝑠𝒜U/IU.s^{1}(n):\mathcal{A}_{\widetilde{X}}/I_{\widetilde{X}}\xrightarrow{\mathrm{can}}\mathcal{A}_{U}/I_{U}\xrightarrow{s}\mathcal{A}_{U}/I_{U}.

The global sections of the image of s1(n)s^{1}(n) (as a submodule of (2.62)) are

(2.90) Γ(X~,ims1(n))([x1,x2]s[s]/sn+[x1,x2,x21]s2[s]/sn)ts.\Gamma(\widetilde{X},\operatorname{im}s^{1}(n))\simeq\left(\mathbb{C}[x_{1},x_{2}]\otimes s\mathbb{C}[s]/s^{n}+\mathbb{C}[x_{1},x_{2},x_{2}^{-1}]\otimes s^{2}\mathbb{C}[s]/s^{n}\right)t^{s}.

This gives us an explicit description of Ξρ𝒪U=cokers1(n)\Xi_{\rho}\mathcal{O}_{U}=\operatorname{coker}s^{1}(n):

(2.91) Γ(X~,Ξρ𝒪U)\displaystyle\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U}) =([x1,x2,x21][s]/sn)ts/Γ(X~,ims1(n))\displaystyle=\left(\mathbb{C}[x_{1},x_{2},x_{2}^{-1}]\otimes\mathbb{C}[s]/s^{n}\right)t^{s}/\Gamma(\widetilde{X},\operatorname{im}s^{1}(n))
(2.92) =([x1,x2,x21][s]/s2)ts/([x1,x2]s[s]/s2)ts\displaystyle=\left(\mathbb{C}[x_{1},x_{2},x_{2}^{-1}]\otimes\mathbb{C}[s]/s^{2}\right)t^{s}/\left(\mathbb{C}[x_{1},x_{2}]\otimes s\mathbb{C}[s]/s^{2}\right)t^{s}

Refer to caption

Figure 5. Caricature of the maximal extension Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U}.

A caricature of the Γ(X~,𝒜X~)\Gamma(\widetilde{X},\mathcal{A}_{\widetilde{X}})-module (2.92) is illustrated as in Figure 5. It has two layers, corresponding to the two non-zero powers of ss, and action by ss moves layers up. As vector spaces, the bottom layer is isomorphic to [x1,x2,x21]\mathbb{C}[x_{1},x_{2},x_{2}^{-1}] and the top layer to sx21[x1,x21]sx_{2}^{-1}\mathbb{C}[x_{1},x_{2}^{-1}].

Our final step is to examine the 𝒰~\widetilde{\mathcal{U}}-module structure on Γ(X~,Ξρ𝒪U)\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U}). The module (2.92) has a basis given by monomials x1kx2tsx_{1}^{k}x_{2}^{\ell}t^{s} for k0k\in\mathbb{Z}_{\geq 0} and \ell\in\mathbb{Z} and x1kx2stsx_{1}^{k}x_{2}^{\ell}st^{s} for k0k\in\mathbb{Z}_{\geq 0} and <0\ell\in\mathbb{Z}_{<0}. The actions of the operators Le,Lf,LhL_{e},L_{f},L_{h} and RhR_{h} (2.12) on these monomials are given by applying the formulas (2.66)- (2.69) and taking the image of the resulting monomials in the quotient (2.92).

The 𝒰~\widetilde{\mathcal{U}}-module Γ(X~,Ξρ𝒪U)\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U}) splits into a direct sum of submodules spanned by monomials x1kx2tsx_{1}^{k}x_{2}^{\ell}t^{s} and x1kx2stsx_{1}^{k}x_{2}^{\ell}st^{s} such that k+k+\ell is a fixed integer. We illustrate the submodule for k+=0k+\ell=0 in Figure 6111111For clarity, we drop the generator tst^{s} from our notation in Figure 6.. If λ0\lambda\geq 0, the submodule corresponding to the integer λ=k+\lambda=k+\ell has the Verma module of highest weight λ\lambda as a submodule, and the dual Verma module corresponding to λ\lambda as a quotient. As a 𝒰(𝔤)\mathcal{U}(\mathfrak{g})-module, it is isomorphic to the big projective module121212The big projective module is the projective cover of the irreducible highest weight module L(w0λ)L(w_{0}\lambda), where w0w_{0} is the longest element of the Weyl group. It is the longest indecomposable projective object in the block 𝒪λ\mathcal{O}_{\lambda} of category 𝒪\mathcal{O} [Hum08, §3.12]. P(w0λ)P(w_{0}\lambda) in the corresponding block of category 𝒪\mathcal{O}.

Refer to caption

Figure 6. Big projective modules arise as global sections of slices of Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U}.

2.5. The monodromy filtration and the geometric Jantzen filtration

The maximal extension Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U} naturally comes equipped with a nilpotent endomorphism ss, giving it a corresponding monodromy filtration. This is the source of the geometric Jantzen filtrations on j!𝒪Uj_{!}\mathcal{O}_{U} and j+𝒪Uj_{+}\mathcal{O}_{U}. In this section, we use the monodromy filtration on Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U} to compute the geometric Jantzen filtration on j!𝒪Uj_{!}\mathcal{O}_{U}. Using the computations of Section 2.4, we then describe the corresponding 𝒰~\widetilde{\mathcal{U}}-module filtration on global sections.

We begin by recalling monodromy filtrations in abelian categories, following [Del80, §1.6]. Given an object AA in an abelian category 𝒜\mathcal{A} and a nilpotent endomorphism s:AAs:A\rightarrow A, it follows from the Jacobson-Morosov theorem [Del80, Proposition 1.6.1] that there exists a unique increasing exhaustive filtration μ\mu^{\bullet} on AA such that sμnμn2s\mu^{n}\subset\mu^{n-2}, and for kk\in\mathbb{N}, sks^{k} induces an isomorphism grμkAgrμkA.\mathrm{gr}_{\mu}^{k}A\simeq\mathrm{gr}_{\mu}^{-k}A. This unique filtration is called the monodromy filtration of AA.

Following Deligne’s proof in [Del80, §1.6], the monodromy filtration can be described explicitly in terms of powers of s.s. Namely, if we set

(2.93) 𝒦pA:={kersp+1for p0;0,for p<0\mathscr{K}^{p}A:=\begin{cases}\ker s^{p+1}&\text{for }p\geq 0;\\ 0,&\text{for }p<0\end{cases}

to be the kernel filtration of AA and

(2.94) qA:={imsqfor q>0;Afor q0,\mathscr{I}^{q}A:=\begin{cases}\operatorname{im}s^{q}&\text{for }q>0;\\ A&\text{for }q\leq 0,\end{cases}

to be the image filtration of AA, then μ\mu^{\bullet} is the convolution of the kernel and image filtrations; i.e.,

(2.95) μr=pq=r𝒦pq.\mu^{r}=\sum_{p-q=r}\mathscr{K}^{p}\cap\mathscr{I}^{q}.

The monodromy filtration μ\mu^{\bullet} induces filtrations J!J_{!}^{\bullet} on kers\ker s and J+J_{+}^{\bullet} on cokers\operatorname{coker}s. By (2.95), these can be seen to be

(2.96) J!i=kersi and J+i=(𝒦i+ims)/ims.J_{!}^{i}=\ker s\cap\mathscr{I}^{-i}\text{ and }J_{+}^{i}=(\mathscr{K}^{i}+\operatorname{im}s)/\operatorname{im}s.

In the setting of holonomic 𝒟\mathcal{D}-modules, the filtrations J!J_{!}^{\bullet} and J+J_{+}^{\bullet} define the geometric Jantzen filtrations.

Definition 2.8.

Let YY be a smooth variety, ff a regular function on YY and U=f1(𝔸1{0})U=f^{-1}(\mathbb{A}^{1}-\{0\}) as in (2.50). For a holonomic 𝒟U\mathcal{D}_{U}-module U\mathcal{M}_{U}, recall that j!U=ker(s:ΞfUΞfU)j_{!}\mathcal{M}_{U}=\ker(s:\Xi_{f}\mathcal{M}_{U}\rightarrow\Xi_{f}\mathcal{M}_{U}) and j+U=coker(s:ΞfUΞfU)j_{+}\mathcal{M}_{U}=\operatorname{coker}(s:\Xi_{f}\mathcal{M}_{U}\rightarrow\Xi_{f}\mathcal{M}_{U}) [BB93, Lemma 4.2.1]. The filtrations J!J_{!}^{\bullet} of j!Uj_{!}\mathcal{M}_{U} and J+J_{+}^{\bullet} of j+Uj_{+}\mathcal{M}_{U} are called the geometric Jantzen filtrations.

Now we return to our running example. The monodromy filtration μ\mu^{\bullet} on Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U} is

(2.97) μ2=0μ1=imsμ0=j!𝒪Uμ1=Ξρ𝒪U.\mu^{-2}=0\subset\mu^{-1}=\operatorname{im}s\subset\mu^{0}=j_{!}\mathcal{O}_{U}\subset\mu^{1}=\Xi_{\rho}\mathcal{O}_{U}.

Restricting this to kers=j!𝒪U\ker s=j_{!}\mathcal{O}_{U}, we obtain the geometric Jantzen filtration of j!𝒪Uj_{!}\mathcal{O}_{U}:

(2.98) 0imsj!𝒪U.0\subset\operatorname{im}s\subset j_{!}\mathcal{O}_{U}.

The induced filtration on cokers=j+𝒪U\operatorname{coker}s=j_{+}\mathcal{O}_{U} gives the geometric Jantzen filtration on j+𝒪Uj_{+}\mathcal{O}_{U}:

(2.99) 0kers/imsj+𝒪U.0\subset\ker s/\operatorname{im}s\subset j_{+}\mathcal{O}_{U}.
Remark 2.9.

(Geometric deformation direction) There are other choices of regular functions on X~\widetilde{X} which we could have used in the construction of these filtrations. In particular, if γ𝔥\gamma\in\mathfrak{h}^{*} is dominant and integral such that γ(h)=n\gamma(h)=n for n>0n\in\mathbb{Z}_{>0}, then the function fγ:(x1,x2)x2nf_{\gamma}:(x_{1},x_{2})\mapsto x_{2}^{n} can be used to define an intermediate extension functor Ξfγ\Xi_{f_{\gamma}} and corresponding Jantzen filtrations. Beilinson–Bernstein establish that all such fγf_{\gamma} lead to the same filtration. For general Lie algebras 𝔤\mathfrak{g}, the construction can also be done for other choices of meromorphic functions on X~\widetilde{X}, but it is unclear geometrically whether these result in different filtrations [BB93, §4.3]. This is comparable to the dependence on deformation direction in the algebraic Jantzen filtration, see Remark 1.3.

Using the computations in Section 2.4, we can examine the 𝒰~\widetilde{\mathcal{U}}-module filtrations that we obtain on global sections. Recall that Γ(X~,Ξρ𝒪U)\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U}) decomposes into a direct sum of submodules spanned by monomials x1kx2tsx_{1}^{k}x_{2}^{\ell}t^{s} and x1kx2stsx_{1}^{k}x_{2}^{\ell}st^{s} such that k+k+\ell is a fixed non-negative integer. Figure 6 illustrates the submodule corresponding to k+=0k+\ell=0. Looking at this figure, it is clear that kers=span{x1kx2sts,ts}\ker s=\mathrm{span}\{x_{1}^{k}x_{2}^{\ell}st^{s},t^{s}\} is isomorphic to the Verma module of highest weight 0, and cokers=span{x1kx2ts}\operatorname{coker}s=\mathrm{span}\{x_{1}^{k}x_{2}^{\ell}t^{s}\} is isomorphic to the corresponding dual Verma module. Moreover, the global sections of the monodromy filtration on Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U} restricted to the submodule corresponding to k+=λk+\ell=\lambda is the composition series of the corresponding big projective module P(w0λ)P(w_{0}\lambda) when λ0\lambda\geq 0. This is illustrated in Figure 7 for λ=0\lambda=0. We conclude that the filtrations on the Verma module M(λ)M(\lambda) and dual Verma module I(λ)I(\lambda) obtained by taking global sections of the geometric Jantzen filtrations are the composition series131313This is an 𝔰𝔩2()\mathfrak{sl}_{2}(\mathbb{C}) phenomenon. For larger groups this procedure will yield a filtration different from the composition series..

Refer to caption

Figure 7. Global sections of the monodromy filtration on Ξρ𝒪U\Xi_{\rho}\mathcal{O}_{U} are the composition series of the big projective module.

2.6. Relation to the algebraic Jantzen filtration

The geometric Jantzen filtrations described above have an algebraic analogue, due to Jantzen [Jan79]. In this section, we recall the construction of the algebraic Jantzen filtration of a Verma module, then explain its relation with the geometric construction in Section 2.5.

2.6.1. The algebraic Jantzen filtration

We follow [Soe08]. Another nice reference for Jantzen filtrations is [IK11].

Let 𝔤\mathfrak{g} be a complex semisimple Lie algebra, 𝔟\mathfrak{b} a fixed Borel subalgebra, 𝔫=[𝔟,𝔟]\mathfrak{n}=[\mathfrak{b},\mathfrak{b}] the nilpotent radical of 𝔟\mathfrak{b}, and 𝔥\mathfrak{h} a Cartan subalgebra so that 𝔟=𝔥𝔫\mathfrak{b}=\mathfrak{h}\oplus\mathfrak{n}. Denote by 𝔟¯\bar{\mathfrak{b}} the opposite Borel subalgebra to 𝔟\mathfrak{b}. For λ𝔥\lambda\in\mathfrak{h}^{*}, denote the Verma module of highest weight λ\lambda by

(2.100) M(λ):=𝒰(𝔤)𝒰(𝔟)λ.M(\lambda):=\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{U}(\mathfrak{b})}\mathbb{C}_{\lambda}.

Denote by I(λ)I(\lambda) the corresponding dual Verma module, defined to be the direct sum of weight spaces in

(2.101) Hom𝒰(𝔟¯)(𝒰(𝔤),λ).\operatorname{Hom}_{\mathcal{U}(\overline{\mathfrak{b}})}(\mathcal{U}(\mathfrak{g}),\mathbb{C}_{\lambda}).

Set T=𝒪(ρ)T=\mathcal{O}(\mathbb{C}\rho) to be the ring of regular functions on the line ρ𝔥\mathbb{C}\rho\subset\mathfrak{h}^{*}, where ρ\rho is the half sum of positive roots in the root system determined by 𝔟\mathfrak{b}. A choice of linear functional s:ρs:\mathbb{C}\rho\rightarrow\mathbb{C} gives an isomorphism T[s]T\simeq\mathbb{C}[s]. Fix such an identification. Set A:=T(s)A:=T_{(s)} to be the local \mathbb{C}-algebra obtained from TT by inverting all polynomials not divisible by ss, and

(2.102) φ:𝒪(𝔥)A\varphi:\mathcal{O}(\mathfrak{h}^{*})\rightarrow A

to be the composition of the restriction map 𝒪(𝔥)T\mathcal{O}(\mathfrak{h}^{*})\rightarrow T with the inclusion TAT\hookrightarrow A. Note that under the identification 𝒰(𝔥)𝒪(𝔥)\mathcal{U}(\mathfrak{h})\simeq\mathcal{O}(\mathfrak{h}^{*}), φ(𝔥)(s)\varphi(\mathfrak{h})\subseteq(s), the unique maximal ideal of AA.

Let VV be a (𝔤,A)(\mathfrak{g},A)-bimodule on which the right and left actions of \mathbb{C} agree. The deformed weight space VμV^{\mu} of VV corresponding to a weight μ\mu is the subspace

(2.103) Vμ:={vV(hμ(h))v=vφ(h) for all h𝔥}.V^{\mu}:=\{v\in V\mid(h-\mu(h))v=v\varphi(h)\text{ for all }h\in\mathfrak{h}\}.

The direct sum of all deformed weight spaces of VV is a (𝔤,A)(\mathfrak{g},A)-submodule of VV [Soe08, §2.3].

For λ𝔥\lambda\in\mathfrak{h}^{*}, the deformed Verma module corresponding to λ\lambda is the (𝔤,A)(\mathfrak{g},A)-bimodule

(2.104) MA(λ):=𝒰(𝔤)𝒰(𝔟)Aλ,M_{A}(\lambda):=\mathcal{U}(\mathfrak{g})\otimes_{\mathcal{U}(\mathfrak{b})}A_{\lambda},

where the 𝒰(𝔟)\mathcal{U}(\mathfrak{b})-module structure on AλA_{\lambda} is given by extending the 𝔥\mathfrak{h}-action

(2.105) ha=(λ+φ)(h)ah\cdot a=(\lambda+\varphi)(h)a

trivially to 𝔟\mathfrak{b}. Here h𝔥h\in\mathfrak{h}, aAa\in A, and φ\varphi is as in (2.102). The deformed Verma module MA(λ)M_{A}(\lambda) is equal to the direct sum of its deformed weight spaces.

The deformed dual Verma module IA(λ)I_{A}(\lambda) corresponding to λ\lambda is the direct sum of deformed weight spaces in the (𝔤,A)(\mathfrak{g},A)-bimodule

(2.106) Hom𝒰(𝔟¯)(𝒰(𝔤),Aλ).\operatorname{Hom}_{\mathcal{U}(\bar{\mathfrak{b}})}(\mathcal{U}(\mathfrak{g}),A_{\lambda}).

There is a canonical isomorphism [Soe08, Proposition 2.12]

(2.107) Hom(𝔤,A)mod(MA(λ),IA(λ))A.\operatorname{Hom}_{(\mathfrak{g},A)\mathrm{-mod}}(M_{A}(\lambda),I_{A}(\lambda))\simeq A.

Under this isomorphism, 1A1\in A distinguishes a canonical (𝔤,A)(\mathfrak{g},A)-bimodule homomorphism

(2.108) ψA,λ:MA(λ)IA(λ).\psi_{A,\lambda}:M_{A}(\lambda)\rightarrow I_{A}(\lambda).

For any AA-module MM, there is a descending AA-module filtration Mi:=siMM^{i}:=s^{i}M with associated graded griM=Mi/Mi+1gr^{i}M=M^{i}/M^{i+1}. Hence there is a reduction map

(2.109) red:Mgr0M=M/sM.\mathrm{red}:M\rightarrow gr^{0}M=M/sM.

For MA(λ)M_{A}(\lambda) and IA(λ)I_{A}(\lambda), the layers of this filtration are 𝔤\mathfrak{g}-stable, so we obtain surjective 𝔤\mathfrak{g}-module homomorphisms

(2.110) red:MA(λ)M(λ)=gr0MA(λ) and red:IA(λ)I(λ)=gr0IA(λ).\mathrm{red}:M_{A}(\lambda)\rightarrow M(\lambda)=gr^{0}M_{A}(\lambda)\text{ and }\mathrm{red}:I_{A}(\lambda)\rightarrow I(\lambda)=gr^{0}I_{A}(\lambda).

Pulling back the filtration above along the canonical map ψA,λ\psi_{A,\lambda} (2.108) gives a (𝔤,A)(\mathfrak{g},A)-bimodule filtration of MA(λ)M_{A}(\lambda).

Definition 2.10.

The algebraic Jantzen filtration of MA(λ)M_{A}(\lambda) is the (𝔤,A)(\mathfrak{g},A)-bimodule filtration

MA(λ)i:={mMA(λ)ψA,λ(m)siIA(λ)},M_{A}(\lambda)^{i}:=\left\{m\in M_{A}(\lambda)\mid\psi_{A,\lambda}(m)\in s^{i}I_{A}(\lambda)\right\},

where ψA,λ\psi_{A,\lambda} is the canonical map (2.108). By applying the reduction map (2.110) to the filtration layers, we obtain a filtration M(λ)M(\lambda)^{\bullet} of M(λ)M(\lambda).

2.6.2. Relationship between algebraic and geometric Jantzen filtrations

Though the constructions seem quite different at first glance, the geometric Jantzen filtration in Section 2.5 aligns with the algebraic Jantzen filtration described in Section 2.6.1 under the global sections functor. In this final section, we illustrate this relationship through our running example.

Recall the canonical map (2.53)

can:j!fs𝒪U(n)j+fs𝒪U(n).\mathrm{can}:j_{!}f^{s}\mathcal{O}_{U}^{(n)}\rightarrow j_{+}f^{s}\mathcal{O}_{U}^{(n)}.

As illustrated in Figures 3 and 4 , the global sections of j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)} and j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)} decompose into direct sums of deformed dual Verma and Verma modules, respectively.141414To be more precise, the submodules of Γ(X~,j!fs𝒪U(n))\Gamma(\widetilde{X},j_{!}f^{s}\mathcal{O}_{U}^{(n)}) and Γ(X~,j+fs𝒪U(n))\Gamma(\widetilde{X},j_{+}f^{s}\mathcal{O}_{U}^{(n)}) corresponding to an integer λ\lambda are truncated versions of MA(λ)M_{A}(\lambda) (2.106) and IA(λ)I_{A}(\lambda) (2.106) obtained by taking a quotient so that sn=0s^{n}=0.. The global sections of can\mathrm{can} are the direct sum of ψA,λ\psi_{A,\lambda} (2.108) for all integral λ\lambda. There are two natural filtrations of j!𝒪Uj_{!}\mathcal{O}_{U} which we have described using this set-up.

Filtration 1: (algebraic Jantzen filtration)

We obtain a filtration of j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)} by pulling back the “powers of s” filtration along can\mathrm{can}. This induces a filtration on the quotient

(2.111) j!(𝒪U)j!fs𝒪U(n)/sj!fs𝒪U(n).j_{!}(\mathcal{O}_{U})\simeq j_{!}f^{s}\mathcal{O}_{U}^{(n)}/sj_{!}f^{s}\mathcal{O}_{U}^{(n)}.

This is exactly the 𝒟\mathcal{D}-module analogue of the algebraic Jantzen filtration described in Section 2.6.1. On global sections, it is the filtration

(2.112) FiΓ(X~,j!𝒪U)={vΓ(X~,j!𝒪U)Γ(can)(v)siΓ(X~,j+fs𝒪U(n))}.F^{i}\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U})=\left\{v\in\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U})\mid\Gamma(\mathrm{can})(v)\in s^{i}\Gamma(\widetilde{X},j_{+}f^{s}\mathcal{O}_{U}^{(n)})\right\}.

Filtration 2: (geometric Jantzen filtration)

There is a unique monodromy filtration on Ξρ𝒪U=coker(scan)\Xi_{\rho}\mathcal{O}_{U}=\operatorname{coker}(s\circ\mathrm{can}). Restricting this to the kernel of ss, we obtain a filtration on

(2.113) j!𝒪Uker(s:Ξρ𝒪UΞρ𝒪U).j_{!}\mathcal{O}_{U}\simeq\ker(s:\Xi_{\rho}\mathcal{O}_{U}\rightarrow\Xi_{\rho}\mathcal{O}_{U}).

This is the geometric Jantzen filtration. It can be realized explicitly in terms of the image of powers of ss using 2.96. On global sections, this gives

(2.114) GiΓ(X~,j!𝒪U)={wker(sΓ(X~,Ξρ𝒪U))wsiΓ(X~,Ξρ𝒪U)}.G^{i}\Gamma(\widetilde{X},j_{!}\mathcal{O}_{U})=\left\{w\in\ker(s\circlearrowright\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U}))\mid w\in s^{i}\Gamma(\widetilde{X},\Xi_{\rho}\mathcal{O}_{U})\right\}.

It is helpful to see these filtrations in a picture. Figure 8 illustrates the set-up when restricted to the submodule corresponding to λ=0\lambda=0.

Refer to caption

Figure 8. Relationship between the algebraic and geometric Jantzen filtrations

The map can\mathrm{can} is described on basis elements in (2.86). Computing these actions for λ=0\lambda=0, we see in Figure 8 that can\mathrm{can} fixes the right-most column and sends any other monomial on the left to a linear combination of monomials directly above the corresponding monomial on the right. The image of s1(n)=scans_{1}(n)=s\circ\mathrm{can} (2.89) is highlighted in grey. The quotient by this image is the maximal extension, which is outlined in the red box. The quotient 2.111 is highlighted in blue in the left hand module, and the submodule 2.113 is highlighted in blue in the right hand module.

We see that there are two copies of j!𝒪Uj_{!}\mathcal{O}_{U} (each highlighted in blue in Figure 8) in this set-up: one as a quotient of the left-hand module j!fs𝒪U(n)j_{!}f^{s}\mathcal{O}_{U}^{(n)}, and one as a submodule of a quotient of the right-hand module j+fs𝒪U(n)j_{+}f^{s}\mathcal{O}_{U}^{(n)}. These two copies can be naturally identified as follows.

Because the submodule sj!fs𝒪U(n)sj_{!}f^{s}\mathcal{O}_{U}^{(n)} is in the kernel of the composition of can\mathrm{can} with the quotient j!fs𝒪U(n)coker(scan)=Ξρ𝒪Uj_{!}f^{s}\mathcal{O}_{U}^{(n)}\rightarrow\operatorname{coker}(s\circ\mathrm{can})=\Xi_{\rho}\mathcal{O}_{U}, the map can\mathrm{can} descends to a map on the quotient:

(2.115) can¯:j!𝒪Uj!fs𝒪U(n)/sj!fs𝒪U(n)Ξρ𝒪U.\overline{\mathrm{can}}:j_{!}\mathcal{O}_{U}\simeq j_{!}f^{s}\mathcal{O}_{U}^{(n)}/sj_{!}f^{s}\mathcal{O}_{U}^{(n)}\rightarrow\Xi_{\rho}\mathcal{O}_{U}.

By construction, the map can¯\overline{\mathrm{can}} is injective. Its image is exactly ker(s:Ξρ𝒪UΞρ𝒪U)\ker(s:\Xi_{\rho}\mathcal{O}_{U}\rightarrow\Xi_{\rho}\mathcal{O}_{U}). This is immediately apparent in Figure 8. Hence can¯\overline{\mathrm{can}} provides an explicit isomorphism which can be used to identify the two copies of j!𝒪Uj_{!}\mathcal{O}_{U}. Under this identification, the algebraic Jantzen filtration 2.112 and the geometric Jantzen filtration 2.114 clearly align.

References

  • [AvLTV20] J. D. Adams, M. A. van Leeuwen, P. E. Trapa, and D. A. Vogan, Jr. Unitary representations of real reductive groups. Astérisque, (417):viii + 188, 2020.
  • [Bar83] D. Barbasch. Filtrations on Verma modules. In Annales scientifiques de l’École Normale Supérieure, volume 16, pages 489–494, 1983.
  • [BB81] A. Beilinson and J. Bernstein. Localisation de g-modules. CR Acad. Sci. Paris, 292:15–18, 1981.
  • [BB93] A. Beilinson and J. Bernstein. A proof of Jantzen conjectures. In I. M. Gel’fand Seminar, volume 16 of Adv. Soviet Math., pages 1–50. Amer. Math. Soc., Providence, RI, 1993.
  • [Bei87] A. A. Beilinson. How to glue perverse sheaves, pages 42–51. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
  • [BG99] A. Beilinson and V. Ginzburg. Wall-crossing functors and 𝒟\mathcal{D}-modules. Representation Theory of the American Mathematical Society, 3(1):1–31, 1999.
  • [CG97] N. Chriss and V. Ginzburg. Representation theory and complex geometry, volume 42. Springer, 1997.
  • [Del80] P. Deligne. La conjecture de Weil : II. Publications Mathématiques de l’IHÉS, 52:137–252, 1980.
  • [GJ81] O. Gabber and A. Joseph. Towards the Kazhdan-Lusztig conjecture. Ann. Sci. École Norm. Sup. (4), 14(3):261–302, 1981.
  • [HTT08] R. Hotta, K. Takeuchi, and T. Tanisaki. D-Modules, Perverse Sheaves, and Representation Theory. Progress in Mathematics. Birkhäuser, 2008.
  • [Hum08] J. E. Humphreys. Representations of semisimple Lie algebras in the BGG category 𝒪\mathcal{O}, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
  • [IK11] K. Iohara and Y. Koga. Representation Theory of the Virasoro Algebra. Springer Monographs in Mathematics. Springer London, 2011.
  • [Jan79] J. C. Jantzen. Moduln mit einem höchsten Gewicht, volume 750 of Lecture Notes in Mathematics. Springer, Berlin, 1979.
  • [KL79] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Inventiones mathematicae, 53(2):165–184, 1979.
  • [Küb12a] J. Kübel. From Jantzen to Andersen filtration via tilting equivalence. Math. Scand., 110(2):161–180, 2012.
  • [Küb12b] J. Kübel. Tilting modules in category 𝒪\mathcal{O} and sheaves on moment graphs. J. Algebra, 371:559–576, 2012.
  • [LS06] T. Levasseur and J. T. Stafford. Differential operators and cohomology groups on the basic affine space. In Studies in Lie theory, volume 243 of Progr. Math., pages 377–403. Birkhäuser Boston, Boston, MA, 2006.
  • [Mil] D. Miličić. Lectures on Algebraic Theory of D-Modules. Unpublished manuscript available at http://math.utah.edu/~milicic.
  • [MP98] D. Miličić and P. Pandžić. Equivariant Derived Categories, Zuckerman Functors and Localization, pages 209–242. Birkhäuser Boston, 1998.
  • [Rom21] A. Romanov. Four examples of beilinson–bernstein localization. Lie Groups, Number Theory, and Vertex Algebras, 768:65–85, 2021.
  • [Sai88] M. Saito. Modules de Hodge polarisables. Publications of the Research Institute for Mathematical Sciences, 24(6):849–995, 1988.
  • [Sai90] M. Saito. Mixed Hodge modules. Publications of the Research Institute for Mathematical Sciences, 26(2):221–333, 1990.
  • [Sha72] N. N. Shapovalov. On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra. Functional Analysis and Its Applications, 6(4):307–312, 1972.
  • [Soe08] W. Soergel. Andersen filtration and hard Lefschetz. Geometric and Functional Analysis, 17(6):2066–2089, 2008.
  • [Wil16] G. Williamson. Local Hodge theory of Soergel bimodules. Acta Math., 217(2):341–404, 2016.