This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An effective method for computing Grothendieck point residue mappings

Shinichi Tajima Graduate School of Science and Technology, Niigata University,
8050, Ikarashi 2-no-cho, Nishi-ku Niigata, Japan
[email protected]
   Katsusuke Nabeshima Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, Japan [email protected]
Abstract

Grothendieck point residue is considered in the context of computational complex analysis. A new effective method is proposed for computing Grothendieck point residues mappings and residues. Basic ideas of our approach are the use of Grothendieck local duality and a transformation law for local cohomology classes. A new tool is devised for efficiency to solve the extended ideal membership problems in local rings. The resulting algorithms are described with an example to illustrate them. An extension of the proposed method to parametric cases is also discussed as an application.

keywords:
Grothendieck local residues mapping \sepalgebraic local cohomology \septransformation law \MSC32A27 \sep32C36 \sep13P10 \sep14B15
journal:  thanks: This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (Nos 18K03214,18K03320).

1 Introduction

The theory of Grothendieck residue and duality is a cornerstone of algebraic geometry and complex analysis (Griffiths and Harris, 1978; Grothendieck, 1957; Hartshorne, 1966; Kunz, 2009). It has been used and applied in diverse problems of several different fields of mathematics (Baum and Bott, 1972; Bykov et al., 1991; Cardinal and Mourrain, 1996; Dickenstein and Sessa, 1991; Griffiths, 1976; Lehmann, 1991; O’Brian, 1975; Perotti, 1998; Suwa, 2005). In the global situation, methods for computing the total sum of Grothendieck residues have been extensively studied and applied by several authors (Bykov et al., 1991; Cattani et al., 1996; Kytmanov, 1988; Yushakov, 1984).

The concept of Grothendieck local residue together with the local duality theory also play quite important roles in complex analysis, especially in singularity theory (Brasselet et al., 2009; Cherveny, 2018; Corrêa et al., 2016; Klehn, 2002; O’Brian, 1975; Suwa, 1988). Computing  Grothendieck local residues is therefore of fundamental importance. However, since the problem is local in nature, it is difficult in general to compute Grothendieck local residues (O’Brian, 1977). In fact, a direct use of the classical transformation law described in (Hartshorne, 1966) only gives algorithms which lack efficiency. Compared to the global situation, despite the importance, much less work has been done on algorithmic aspects of computing Grothendieck local residues (Elkadi and Mourrain, 2007; Mourrain, 1997; Ohara and Tajima, 2019a, b; Tajima and Nakamura, 2005b). Grothendieck local residues with parameters are useful in the study of singularity theory, for example, deformations of singularity and unfoldings of holomorphic foliations (Kulikov, 1998; Saito, 1983; Varchenko, 1986). However, to the best of our knowledge, existing algorithm of computing Grothendieck local residues are not designed to be able to treat parametric cases.

In this paper, we consider methods for computing Grothendieck point residues from the point of view of complex analysis and singularity theory. We propose a new effective method for computing Grothendieck point residues mappings and residues, which can be extended to treat parametric cases.

Let XnX\subset{\mathbb{C}}^{n} be an open neighborhood of the origin OnO\in{\mathbb{C}}^{n} and let f1(z),f2(z),f_{1}(z),f_{2}(z), ,fn(z)\ldots,f_{n}(z) be nn holomorphic functions defined on XX, where z=(z1,z2,,zn)Xz=(z_{1},z_{2},\ldots,z_{n})\in X. Assume that their common locus in XX is the origin OO: {zXf1(z)=f2(z)==fn(z)=0}={O}\{z\in X\mid f_{1}(z)=f_{2}(z)=\cdots=f_{n}(z)=0\}=\{O\}.

Then, for a given germ h(z)h(z) of holomorphic function at OO, the Grothendieck point residue at the origin OO, denoted by

res{O}(h(z)dzf1(z)f2(z)fn(z)),{\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right),

of the differential form h(z)dzf1(z)f2(z)fn(z)\displaystyle{\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}} can be expressed, or defined, as the integral

(12π1)nγϵh(z)dzf1(z)f2(z)fn(z),\left(\frac{1}{2\pi\sqrt{-1}}\right)^{n}\int\cdots\int_{\gamma_{\epsilon}}\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)},

where dz=dz1dz2dzn,dz=dz_{1}\wedge dz_{2}\wedge\cdots\wedge dz_{n}, and where γϵ\gamma_{\epsilon} is a real nn-dimensional cycle:

γϵ={zX|f1(z)|=|f2(z)|==|fn(z)|=ϵ},\gamma_{\epsilon}=\{z\in X\mid|f_{1}(z)|=|f_{2}(z)|=\cdots=|f_{n}(z)|=\epsilon\},

with 0<ϵ1.0<\epsilon\ll 1. (See for instance, (Baum and Bott, 1972; Griffiths and Harris, 1978; Tong, 1973)).

Let

h(z)res{O}(h(z)dzf1(z)f2(z)fn(z))h(z)\longrightarrow{\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right)

be the Grothendieck point residue mapping that assigns to a holomorphic function h(z)h(z) the value of the Grothendieck point residue. We show that, based on the concept of local cohomology, the use of Grothendieck local duality and a transformation law for local cohomology classes given by J. Lipman (Lipman, 1984) allows us to design an effective method for computing Grothendieck local residue mappings and another one for computing Grothendieck local residues. Note that the classical transformation law on Grothendieck residue is of no avail for computing Grothendieck local residue mappings. Since we compute Grothendieck local residue mappings, our method is applicable when the holomorphic function h(z)h(z) in the numerator is computable, that is the case when the coefficients of the Taylor expansion of h(z)h(z) is computable. This is an advantage of our approach. We also show that the proposed method can be extended to treat parametric cases. This is another advantage of our approach.

In Section 2, we recall the transformation law for local cohomology classes and Grothendieck local duality. In Section 3, we fix our notation and we briefly recall our basic tool, an algorithm for computing Grothendieck local duality. We devise, in the context of exact computation, a new tool which plays a key role in the resulting algorithm. In Section 4, we describe the resulting algorithm for computing Grothendieck point residue mappings and the algorithm for computing Grothendieck point residues. In Section 5, as an application, we generalize the proposed method to treat parametric cases and we show, by using an example, an algorithm for computing Grothendieck point residues associated to a μ\mu-constant deformation of quasi homogeneous isolated hypersurface singularities.

2 Local analytic residues

The concept of Grothendieck point residue was introduced by A. Grothendieck in terms of derived categories and local cohomology. In this section, we briefly recall some basics on transformation law for local cohomology classes and Grothendieck local duality.

Let XnX\subset{\mathbb{C}}^{n} be an open neighborhood of the origin OnO\in{\mathbb{C}}^{n}. Let 𝒪X{\mathcal{O}}_{X} be the sheaf on XX of holomorphic functions, and ΩXn\Omega_{X}^{n} the sheaf of holomorphic nn-forms. Let {O}n(𝒪X){\mathcal{H}}_{\{O\}}^{n}({\mathcal{O}}_{X}) (resp. {O}n(ΩXn){\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n}) ) denote the local cohomology supported at OO of 𝒪X{\mathcal{O}}_{X} (resp. ΩXn\Omega_{X}^{n}).

Then, 𝒪X,O{\mathcal{O}}_{X,O}, the stalk at OO of the sheaf 𝒪X{\mathcal{O}}_{X}, and the local cohomology {O}n(ΩXn){\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n}) are mutually dual as locally convex topological vector spaces (Bănică and Stănăşilă, 1974). The duality is given by the point residue pairing:

res{O}(,):𝒪X,O×{O}n(ΩXn){\rm res}_{\{O\}}(\ast,\ \ast):{\mathcal{O}}_{X,O}\times{\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n})\longrightarrow{\mathbb{C}}

Let F=[f1(z),f2(z),,fn(z)]F=[f_{1}(z),f_{2}(z),\ldots,f_{n}(z)] be an nn-tuple of nn holomorphic functions defined on XX. Assume that their common locus {zXf1(z)=f2(z)==fn(z)=0}\{z\in X\mid f_{1}(z)=f_{2}(z)=\cdots=f_{n}(z)=0\} in XX is the origin O.O. Let IFI_{F} denote the ideal in 𝒪X,O{\mathcal{O}}_{X,O} generated by f1(z),f2(z),,fn(z).f_{1}(z),f_{2}(z),\ldots,f_{n}(z). Let ωF\omega_{F} denote a local cohomology class

ωF=[dzf1(z)f2(z)fn(z)]\omega_{F}=\left[\begin{array}[]{c}dz\\ f_{1}(z)f_{2}(z)\cdots f_{n}(z)\end{array}\right]

in {O}n(ΩXn){\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n}), where dz=dz1dz2dzn,dz=dz_{1}\wedge dz_{2}\wedge\cdots\wedge dz_{n}, and []\left[\quad\right] stands for Grothendieck symbol (Hartshorne, 1966; Grothendieck, 1967). Residue theory says that, for h(z)h(z) in 𝒪X,O,{\mathcal{O}}_{X,O}, one has

res{O}(h(z)dzf1(z)f2(z)fn(z))=res{O}(h(z),ωF).{\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right)={\rm res}_{\{O\}}(h(z),\omega_{F}).

2.1 Transformation law

Since V(IF)X={O},V(I_{F})\cap X=\{O\}, there exists, for each i=1,2,,n,i=1,2,\ldots,n, a positive integer mim_{i} such that zimiIF.z_{i}^{m_{i}}\in I_{F}. There exists an nn-tuple of holomorphic functions ai,1(z),ai,2(z),,ai,n(z)a_{i,1}(z),a_{i,2}(z),\ldots,a_{i,n}(z) such that

zimi=ai,1(z)f1(z)+ai,2(z)f2(z)++ai,n(z)fn(z),i=1,2,,n.z_{i}^{m_{i}}=a_{i,1}(z)f_{1}(z)+a_{i,2}(z)f_{2}(z)+\cdots+a_{i,n}(z)f_{n}(z),\qquad i=1,2,\ldots,n.

Set A(z)=det(ai,j(z))1i,jn.A(z)=\det(a_{i,j}(z))_{1\leq i,j\leq n}.

We have the following key lemma (Lipman, 1984).

Lemma 1 (Transformation law for local cohomology classes).

In {O}n(ΩXn),{\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n}), the following formula holds.

ωF=[A(z)dzz1m1z2m2znmn].\omega_{F}=\left[\begin{array}[]{c}A(z)dz\\ z_{1}^{m_{1}}z_{2}^{m_{2}}\cdots z_{n}^{m_{n}}\end{array}\right].

For the proof of the result above, we refer the reader to (Kunz, 2009; Lipman, 1984). Note that the formula above implies the classical transformation law

res{O}(h(z)dzf1(z)f2(z)fn(z))=res{O}(h(z)A(z)dzz1m1z2m2znmn){\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right)={\rm res}_{\{O\}}\left(\frac{h(z)A(z)dz}{z_{1}^{m_{1}}z_{2}^{m_{2}}\cdots z_{n}^{m_{n}}}\right)

for point residues described in (Hartshorne, 1966). See also (Baum and Bott, 1972; Boyer and Hickel, 1997; Griffiths and Harris, 1978; Kytmanov, 1988).

2.2 Grothendieck local duality

We define WFW_{F} to be the set of local cohomology classes in {O}n(ΩXn){\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n}) that are killed by IF:I_{F}:

WF={ω{O}n(ΩXn)f1(z)ω=f2(z)ω==fn(z)ω=0}.W_{F}=\{\omega\in{\mathcal{H}}_{\{O\}}^{n}(\Omega_{X}^{n})\mid f_{1}(z)\omega=f_{2}(z)\omega=\cdots=f_{n}(z)\omega=0\}.

Then, according to Grothendieck local duality, the pairing

res{O}(,):𝒪X,O/IF×WF{\rm res}_{\{O\}}(*,\ *):{\mathcal{O}}_{X,O}/I_{F}\times W_{F}\longrightarrow{\mathbb{C}}

induced by the residue mapping is non-degenerate (Altman and Kleiman, 1970; Grothendieck, 1957; Hartshorne, 1966; Lipman, 2002).

Let 1\succ^{-1} be a local term ordering on the local ring 𝒪X,O{\mathcal{O}}_{X,O} and let {zααΛF}\{z^{\alpha}\mid\alpha\in\Lambda_{F}\} denote the monomial basis of the quotient space 𝒪X,O/IF{\mathcal{O}}_{X,O}/I_{F} with respect to the local term ordering 1,\succ^{-1}, where ΛFn\Lambda_{F}\subset{\mathbb{N}}^{n} is the set of exponents α\alpha of basis monomials zαz^{\alpha}.

Let {ωαWFαΛF}\{\omega_{\alpha}\in W_{F}\mid\alpha\in\Lambda_{F}\} denote the dual basis of {zααΛF}\{z^{\alpha}\mid\alpha\in\Lambda_{F}\} with respect to the Grothendieck point residue. Then, we have

  1. (i)

    𝒪X,O/IFSpan{zααΛF},{\mathcal{O}}_{X,O}/I_{F}\cong{\rm Span}_{{\mathbb{C}}}\{z^{\alpha}\mid\alpha\in\Lambda_{F}\},

  2. (ii)

    WF=Span{ωααΛF},W_{F}={\rm Span}_{{\mathbb{C}}}\{\omega_{\alpha}\mid\alpha\in\Lambda_{F}\},

  3. (iii)

    res{O}(zα,ωβ)={1,α=β,0,αβ,α,βΛF.{\rm res}_{\{O\}}(z^{\alpha},\omega_{\beta})=\left\{\begin{array}[]{rl}1,&\alpha=\beta,\\ 0,&\alpha\neq\beta,\qquad\alpha,\beta\in\Lambda_{F}.\\ \end{array}\right.

2.3 Residue mapping

Since ωF\omega_{F} satisfies f1(z)ωF=f2(z)ωF==fn(z)ωF=0,f_{1}(z)\omega_{F}=f_{2}(z)\omega_{F}=\cdots=f_{n}(z)\omega_{F}=0, the local cohomology class ωF\omega_{F} is in WFW_{F}. Therefore ωF\omega_{F} can be expressed as a linear combination of the basis {ωααΛF}.\{\omega_{\alpha}\mid\alpha\in\Lambda_{F}\}.

Assume that, for the moment, we have the following expression:

ωF=αΛFbαωα,bα.\omega_{F}=\sum_{\alpha\in\Lambda_{F}}b_{\alpha}\omega_{\alpha},\quad b_{\alpha}\in{\mathbb{C}}.

Now let

NF1(h)(z)=αΛFhαzα,hα{\rm NF}_{\succ^{-1}}(h)(z)=\sum_{\alpha\in\Lambda_{F}}h_{\alpha}z^{\alpha},\quad h_{\alpha}\in{\mathbb{C}}

be the normal form of the given holomorphic function h(z).h(z). Then, we have the following.

Theorem 2.
res{O}(h(z)dzf1(z)f2(z)fn(z))=αΛFhαbα{\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right)=\sum_{\alpha\in\Lambda_{F}}h_{\alpha}b_{\alpha}
Proof 2.1.

Since hNF1(h)IF,h-{\rm NF}_{\succ^{-1}}(h)\in I_{F}, we have

res{O}(h(z),ωF)=res{O}(NF1(h)(z),ωF).{\rm res}_{\{O\}}(h(z),\omega_{F})={\rm res}_{\{O\}}({\rm NF}_{\succ^{-1}}(h)(z),\omega_{F}).

Therefore,

res{O}(h(z)dzf1(z)f2(z)fn(z))=res{O}(αΛFhαzα,βΛFbβωβ),\displaystyle{\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right)={\rm res}_{\{O\}}\left(\sum_{\alpha\in\Lambda_{F}}h_{\alpha}z^{\alpha},\sum_{\beta\in\Lambda_{F}}b_{\beta}\omega_{\beta}\right),

which is equal to

α,βΛFhαbβres{O}(zα,ωβ)=αΛFhαbα.\displaystyle\sum_{\alpha,\beta\in\Lambda_{F}}h_{\alpha}b_{\beta}{\rm res}_{\{O\}}(z^{\alpha},\omega_{\beta})=\sum_{\alpha\in\Lambda_{F}}h_{\alpha}b_{\alpha}.

This completes the proof.

3 Tools

Let us consider a method for computing Grothendieck point residues in the context of symbolic computation. We start by recalling some basics on an algorithm for computing Grothendieck local duality given in (Tajima and Nakamura, 2009; Tajima et al., 2009).

Let K=K={\mathbb{Q}} be the field of rational numbers and let z=(z1,z2,,zn)n.z=(z_{1},z_{2},\ldots,z_{n})\in{\mathbb{C}}^{n}. Let H[O]n(K[z])H^{n}_{[O]}(K[z]) denote the algebraic local cohomology defined to be

H[O]n(K[z])=limkExtK[z]n(K[z]/𝔪k,ΩXn),H^{n}_{[O]}(K[z])=\lim_{k\rightarrow\infty}Ext^{n}_{K[z]}(K[z]/{\mathfrak{m}}^{k},\Omega_{X}^{n}),

where 𝔪{\mathfrak{m}} is the maximal ideal 𝔪=z1,z2,,zn{\mathfrak{m}}=\langle z_{1},z_{2},\ldots,z_{n}\rangle in K[z]=K[z1,z2,,zn].K[z]=K[z_{1},z_{2},\ldots,z_{n}].

We adopt the notation used in (Nabeshima and Tajima, 2015a, b, 2016a, 2016b) to handle local cohomology classes. For instance, a polynomial λcλξλ\sum_{\lambda}c_{\lambda}\xi^{\lambda} in K[ξ]=K[ξ1,ξ2,,ξn]K[\xi]=K[\xi_{1},\xi_{2},\ldots,\xi_{n}] represents the local cohomology class of the form λ=(1,2,,n)cλ[1z11+1z22+1znn+1].\displaystyle\sum_{\lambda=(\ell_{1},\ell_{2},\ldots,\ell_{n})}c_{\lambda}\left[\begin{array}[]{c}1\\ z_{1}^{\ell_{1}+1}z_{2}^{\ell_{2}+1}\cdots z_{n}^{\ell_{n}+1}\end{array}\right]. Note that a multiplication on ξβ\xi^{\beta} by zαz^{\alpha} is

zαξβ={ξβα,βα.0,otherwise.z^{\alpha}\ast\xi^{\beta}=\left\{\begin{array}[]{cl}\xi^{\beta-\alpha},&\beta\geq\alpha.\\ 0,&\text{otherwise.}\\ \end{array}\right.

Let \succ be a term ordering on K[ξ]K[\xi]. For a local cohomology class ψ=cαξα+ξαξγcγξγ\displaystyle\psi=c_{\alpha}\xi^{\alpha}+\sum_{\xi^{\alpha}\succ\xi^{\gamma}}c_{\gamma}\xi^{\gamma}, we call ξα\xi^{\alpha} the head monomial of ψ\psi, and αn\alpha\in{\mathbb{N}}^{n} the head exponent of ψ\psi.

Let F=[f1(z),f2(z),,fn(z)]F=[f_{1}(z),f_{2}(z),\ldots,f_{n}(z)] be a list of nn polynomials f1,,fnf_{1},\dots,f_{n} in K[z]K[z]. We also assume as in the previous section that there exists an open neighborhood XX of the origin OO such that their common locus is the origin: {zXf1(z)=f2(z)==fn(z)=0}={O}.\{z\in X\mid f_{1}(z)=f_{2}(z)=\cdots=f_{n}(z)=0\}=\{O\}.

We set

HF={ψH[O]n(K[z])f1(z)ψ=f2(z)ψ==fn(z)ψ=0}.H_{F}=\{\psi\in H^{n}_{[O]}(K[z])\mid f_{1}(z)\ast\psi=f_{2}(z)\ast\psi=\cdots=f_{n}(z)\ast\psi=0\}.

3.1 Algorithm for computing Grothendieck local duality

In (Nabeshima and Tajima, 2017; Tajima et al., 2009), an algorithm for computing bases of HFH_{F} is introduced. Let ΨF\Psi_{F} denote an output of the algorithm. Then,

WF=Span{ψdzψΨF}W_{F}={\rm Span}_{{\mathbb{C}}}\{\psi dz\mid\psi\in\Psi_{F}\}

holds. Furthermore, the algorithm computes Grothendieck local duality with respect to the Grothendieck local residue pairing. Here we recall some basic properties of the algorithm.

An output of the algorithm, say ΨF,\Psi_{F}, a basis of the vector space HFH_{F}, has the following form:

ΨF={ψα|ψα=ξα+ξαξγcγξγ,αΛF},\Psi_{F}=\left\{{\psi_{\alpha}}\left|\,\vphantom{\psi_{\alpha}}{\psi_{\alpha}=\xi^{\alpha}+\sum_{\xi^{\alpha}\succ\xi^{\gamma}}c_{\gamma}\xi^{\gamma},\quad\alpha\in\Lambda_{F}}\right.\right\},

where ΛFn\Lambda_{F}\subset{\mathbb{N}}^{n} is the set of the head exponents of local cohomology classes in ΨF\Psi_{F}.

Let LFL_{F} denote the set of lower exponents of local cohomology classes in ΨF:\Psi_{F}:

LF={γn|ψα=ξα+ξαξγcγξγΨF such that cγ0}.L_{F}=\left\{{\gamma\in{\mathbb{N}}^{n}}\left|\,\vphantom{\gamma\in{\mathbb{N}}^{n}}{\exists\ \psi_{\alpha}=\xi^{\alpha}+\sum_{\xi^{\alpha}\succ\xi^{\gamma}}c_{\gamma}\xi^{\gamma}\in\Psi_{F}\text{ such that }\ c_{\gamma}\neq 0}\right.\right\}.

Set EF=ΛFLFE_{F}=\Lambda_{F}\cup L_{F} and TF={ξλλEF}.T_{F}=\{\xi^{\lambda}\mid\lambda\in E_{F}\}. Now let F,i=max{ξiTF}.\ell_{F,i}={\rm max}\{\ell\mid\xi_{i}^{\ell}\in T_{F}\}. Then Grothendieck local duality implies the following.

Lemma 3.

Set mi=F,i+1.m_{i}=\ell_{F,i}+1. Then zimiIFz_{i}^{m_{i}}\in I_{F} holds, where IFI_{F} is the ideal in the local ring K{z}K\{z\} generated by f1(z),f2(z),,fn(z).f_{1}(z),f_{2}(z),\ldots,f_{n}(z).

Proof 3.1.

Since zimiψα=0z_{i}^{m_{i}}\ast\psi_{\alpha}=0 and ψαΨF\psi_{\alpha}\in\Psi_{F} hold, we have zimiψ=0z_{i}^{m_{i}}\ast\psi=0 for ψHF.\psi\in H_{F}. It follows from the Grothendieck local duality that zimiz_{i}^{m_{i}} is in IF.I_{F}.

Now let us consider the set of monomials MFM_{F} in K{z}K\{z\} defined to be MF={zααΛF}M_{F}=\{z^{\alpha}\mid\alpha\in\Lambda_{F}\}. Let 1\succ^{-1} denote the local term ordering on K{z}K\{z\} defined as the inverse ordering of .\succ. Then, MFM_{F} constitutes a monomial basis of the quotient K{z}/IFK\{z\}/I_{F} with respect to the local term ordering 1.\succ^{-1}. Furthermore, we have the following result (Tajima and Nakamura, 2005a, b, 2009).

Theorem 4.

Let ΨF,MF\Psi_{F},M_{F} be as above. Then, ΨF\Psi_{F} is the dual basis of the basis MFM_{F} with respect to Grothendieck local residue pairing. That is, for zαMFz^{\alpha}\in M_{F} and for ψβΨF,\psi_{\beta}\in\Psi_{F},

res{O}(zα,ψβdz)={1,α=β,0,αβ,{\rm res}_{\{O\}}(z^{\alpha},\psi_{\beta}dz)=\left\{\begin{array}[]{rl}1,&\alpha=\beta,\\ 0,&\alpha\neq\beta,\\ \end{array}\right.

holds.

Sketch of the proof.  Since the algorithm outputs a reduced basis of HF,H_{F}, we have ΛFLF=,\Lambda_{F}\cap L_{F}=\emptyset, which implies the result. \hfill\qed

3.2 A key tool

Let mim_{i} be an integer such that zimiz_{i}^{m_{i}} is in the ideal IF=(f1,f2,,fn)I_{F}=(f_{1},f_{2},\ldots,f_{n}) in the local ring. Then there exist germs ai,1(z),ai,2(z),,ai,n(z)a_{i,1}(z),a_{i,2}(z),\ldots,a_{i,n}(z) of holomorphic functions such that

zimi=ai,1(z)f1(z)+ai,2(z)f2(z)++ai,n(z)fn(z),i=1,2,,n.z_{i}^{m_{i}}=a_{i,1}(z)f_{1}(z)+a_{i,2}(z)f_{2}(z)+\cdots+a_{i,n}(z)f_{n}(z),\qquad i=1,2,\ldots,n.

Theory of symbolic computation asserts that such nn-tuple of holomorphic functions can be obtained by computing syzygies in the local ring K{z}.K\{z\}. Whereas, since the cost of computation of syzygies in local rings is high, a direct use of the classical algorithm of computing syzygy is not appropriate in actual computations. In fact, it is difficult to obtain these holomorphic functions. In previous papers (Nabeshima and Tajima, 2016b), the authors of the present paper have proposed a new effective method to overcome this type of difficulty.

We adopt the proposed method mentioned above and devise a new, much more efficient algorithm by improving the previous algorithm presented in (Nabeshima and Tajima, 2015b, 2016b). We start by recalling the main idea given in (Nabeshima and Tajima, 2016b). Let JF=f1(z),f2(z),,J_{F}=\langle f_{1}(z),f_{2}(z),\ldots, fn(z)f_{n}(z)\rangle denote the ideal in the polynomial ring K[z]K[z] generated by f1(z),f2(z),f_{1}(z),f_{2}(z), ,fn(z).\ldots,f_{n}(z). Let JF,OJ_{F,O} be the primary component of JFJ_{F} whose associated prime is the maximal ideal 𝔪=z1,z2,,zn,{\mathfrak{m}}=\left<z_{1},z_{2},\ldots,z_{n}\right>, and GQG_{Q} a Gröbner basis of the ideal quotient Q=JF:JF,OK[z].Q=J_{F}:J_{F,O}\subset K[z]. Then there is in GQG_{Q} a polynomial, say q(z),q(z), such that q(O)0.q(O)\neq 0.

Now let r(z)JF,O.r(z)\in J_{F,O}. Then, since q(z)r(z)JF,q(z)r(z)\in J_{F}, there exists an nn-tuple of polynomials p1(z),p2(z),,pn(z)p_{1}(z),p_{2}(z),\ldots,p_{n}(z) in K[z]K[z], such that

q(z)r(z)=p1(z)f1(z)+p2(z)f2(z)++pn(z)fn(z).q(z)r(z)=p_{1}(z)f_{1}(z)+p_{2}(z)f_{2}(z)+\cdots+p_{n}(z)f_{n}(z).

Since, q(O)0,q(O)\neq 0, we have a following expression in the local ring K{z}:K\{z\}:

r(z)=p1(z)q(z)f1(z)+p2(z)q(z)f2(z)++pn(z)q(z)fn(z).r(z)=\frac{p_{1}(z)}{q(z)}f_{1}(z)+\frac{p_{2}(z)}{q(z)}f_{2}(z)+\cdots+\frac{p_{n}(z)}{q(z)}f_{n}(z).

Since IF=K{z}JF,OI_{F}=K\{z\}\otimes J_{F,O} and zimiIF,z_{i}^{m_{i}}\in I_{F}, zimiJF,Oz_{i}^{m_{i}}\in J_{F,O} holds. Therefore, the argument above can be applied to compute germs ai,1(z),ai,2(z),,ai,n(z)a_{i,1}(z),a_{i,2}(z),\ldots,a_{i,n}(z) of holomorphic functions. Note also that, since JF,O={p(z)K[z]p(z)ψα=0,ψαΨF},J_{F,O}=\{p(z)\in K[z]\mid p(z)*\psi_{\alpha}=0,\ \psi_{\alpha}\in\Psi_{F}\}, the primary ideal JF,OJ_{F,O} can be computed by using ΨF.\Psi_{F}.

Let GF={g1,g2,,gν}G_{F}=\{g_{1},g_{2},\ldots,g_{\nu}\} be a Gröbner basis of JF.J_{F}. Let RFR_{F} be a list of relations between gjg_{j} and F=[f1,f2,,fn]:F=[f_{1},f_{2},\ldots,f_{n}]:

gj=r1,jf1+r2,jf2++rn,jfn,g_{j}=r_{1,j}f_{1}+r_{2,j}f_{2}+\cdots+r_{n,j}f_{n},

where ri,jK[z],i=1,2,,nr_{i,j}\in K[z],\ i=1,2,\ldots,n, and j=1,2,,ν.j=1,2,\ldots,\nu. Let SFS_{F} be a Gröbner basis of the module of syzygies among F:F:

s1f1+s2f2++snfn=0,s_{1}f_{1}+s_{2}f_{2}+\cdots+s_{n}f_{n}=0,

where siK[z],i=1,2,,n.s_{i}\in K[z],\ i=1,2,\ldots,n. Let qq be a polynomial in GQG_{Q} such that q(O)0.q(O)\neq 0.

Now we are ready to present a new tool.


Algorithm 1. localexpression

Input: GF,RF,SF,q,r.G_{F},R_{F},S_{F},q,r.
Output: [p1,p2,,pn][p_{1},p_{2},\ldots,p_{n}]  such that q(z)r(z)=p1(z)f1(z)+p2(z)f2(z)++pn(z)fn(z).q(z)r(z)=p_{1}(z)f_{1}(z)+p_{2}(z)f_{2}(z)+\cdots+p_{n}(z)f_{n}(z).
BEGIN

  1. step 1:

    divide qrqr by the Gröbner basis GF={g1,g2,,gν}G_{F}=\{g_{1},g_{2},...,g_{\nu}\}:

    qr=e1g1+e2g2++eνgν;qr=e_{1}g_{1}+e_{2}g_{2}+\cdots+e_{\nu}g_{\nu};

  2. step 2:

    rewrite the relation above by using RFR_{F}:

    qr=(jrj,1ej)f1+(jrj,2ej)f2++(jrj,2ej)fn;qr=\left(\sum_{j}r_{j,1}e_{j}\right)f_{1}+\left(\sum_{j}r_{j,2}e_{j}\right)f_{2}+\cdots+\left(\sum_{j}r_{j,2}e_{j}\right)f_{n};

  3. step 3:

    simplify the expression above by using SFS_{F}:

    q(z)r(z)=p1(z)f1(z)+p2(z)f2(z)++pn(z)fn(z);q(z)r(z)=p_{1}(z)f_{1}(z)+p_{2}(z)f_{2}(z)+\cdots+p_{n}(z)f_{n}(z);

return [p1,p2,,pn];[p_{1},p_{2},\ldots,p_{n}];
END

Example 5 (E12E_{12} singularity).

Let f(x,y)=x3+y7+xy5f(x,y)=x^{3}+y^{7}+xy^{5} and let F=[fx(x,y),F=[\frac{\partial f}{\partial x}(x,y), fy(x,y)].\frac{\partial f}{\partial y}(x,y)]. Note that f(x,y)f(x,y) is a semi quasi-homogeneous function with respect to the weight vector (7,3).(7,3). Let \succ be the weighted degree lexicographical ordering on K[ξ,η]K[\xi,\eta] with respect to the weight vector (7,3),(7,3), where ξ,η\xi,\eta correspond to x,y.x,y.

Then, dimK(HF)=12,\dim_{K}(H_{F})=12, the Milnor number at the origin (0,0)(0,0) of the curve {(x,y)2f(x,y)=0}.\{(x,y)\in{\mathbb{C}}^{2}\mid f(x,y)=0\}. The algorithm for computing Grothendieck local duality, mentioned in this section, outputs a basis ΨF\Psi_{F} that consists of the following 12 local cohomology classes;

1,η,ξ,η2,ξη,η3,ξη2,η4,η513ξ2,ξη3,ξη457η6+521ξ2η,1,\eta,\xi,\eta^{2},\xi\eta,\eta^{3},\xi\eta^{2},\eta^{4},\eta^{5}-\frac{1}{3}\xi^{2},\xi\eta^{3},\xi\eta^{4}-\frac{5}{7}\eta^{6}+\frac{5}{21}\xi^{2}\eta,

ξη557η713ξ3+521ξ2η2.\xi\eta^{5}-\frac{5}{7}\eta^{7}-\frac{1}{3}\xi^{3}+\frac{5}{21}\xi^{2}\eta^{2}.

Note for instance that the local cohomology class [1xy6]13[1x3y]\left[\begin{array}[]{c}1\\ xy^{6}\end{array}\right]-\frac{1}{3}\left[\begin{array}[]{c}1\\ x^{3}y\end{array}\right] represented by ψ(0,5)=η513ξ2\psi_{(0,5)}=\eta^{5}-\frac{1}{3}\xi^{2} above acts on a holomorphic function h(x,y)=(i,j)c(i,j)xiyjh(x,y)=\sum_{(i,j)}c_{(i,j)}x^{i}y^{j} by

resO(h(x,y),ψ(0,5)dxdy)=c(0,5)13c(2,0).{\rm res}_{O}(h(x,y),\psi_{(0,5)}dx\wedge dy)=c_{(0,5)}-\frac{1}{3}c_{(2,0)}.

The output implies that

ΛF={(0,0),(0,1),(0,2),(1,0),(0.3),(1,1),(0,4),(1,2),(0,5),(1,3),(1,4),\Lambda_{F}=\{(0,0),(0,1),(0,2),(1,0),(0.3),(1,1),(0,4),(1,2),(0,5),(1,3),(1,4),

(1,5)}(1,5)\}

and MF={xiyj(i,j)ΛF}M_{F}=\{x^{i}y^{j}\mid(i,j)\in\Lambda_{F}\} is the monomial basis of the quotient space K{x,y}/IFK\{x,y\}/I_{F} with respect to the local term ordering 1\succ^{-1} on K{x,y},K\{x,y\}, where IFI_{F} denote the ideal in K{x,y}K\{x,y\} generated by fx,fy\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}. Furthermore WF={ψdxdyψΨF}W_{F}=\{\psi dx\wedge dy\mid\psi\in\Psi_{F}\} is the dual basis of the monomial basis MFM_{F} with respect to the Grothendieck local residue pairing. Since λF=(3,7)\lambda_{F}=(3,7), we have x4,y8IF.x^{4},y^{8}\in I_{F}.

Let JFJ_{F} be the ideal in K[x,y]K[x,y] generated by the two polynomials fx,fy.\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}. Let JF,OJ_{F,O} be the primary component of JFJ_{F} whose associated prime is the maximal ideal x,y.\left<x,y\right>. A Gröbner basis of the ideal quotient JF,O:JFJ_{F,O}:J_{F} is

3125x+151263, 25y+147.3125x+151263,\ 25y+147.

Set q(x,y)=25y+147.q(x,y)=25y+147. Then, the algorithm localexpression outputs the following:

q(x,y)x4\displaystyle q(x,y)x^{4} =\displaystyle= (49x2+25/3x2y49/3y5)fx+(5/3xy2+7/3y4)fy,\displaystyle(49x^{2}+25/3x^{2}y-49/3y^{5})\frac{\partial f}{\partial x}+(-5/3xy^{2}+7/3y^{4})\frac{\partial f}{\partial y},
q(x,y)y8\displaystyle q(x,y)y^{8} =\displaystyle= 25y4fx+(15x+21y2)fy.\displaystyle 25y^{4}\frac{\partial f}{\partial x}+(-15x+21y^{2})\frac{\partial f}{\partial y}.

4 Algorithms

Let τF\tau_{F} denote the local cohomology class in HFH_{F} defined to be

τF=[1f1(z)f2(z)fn(z)].\tau_{F}=\left[\begin{array}[]{c}1\\ f_{1}(z)f_{2}(z)\cdots f_{n}(z)\end{array}\right].

Since ωF=τFdz,\omega_{F}=\tau_{F}dz, the local cohomology class τF\tau_{F} is the kernel function of the point residue mapping.

Let

q(z)zimi=pi,1(z)f1(z)+pi,2(z)f2(z)++pi,n(z)fn(z),i=1,2,,n,q(z)z_{i}^{m_{i}}=p_{i,1}(z)f_{1}(z)+p_{i,2}(z)f_{2}(z)+\cdots+p_{i,n}(z)f_{n}(z),\ i=1,2,\ldots,n,

and set Det(z)=det(pi,j(z))1i,jn.{\rm Det}(z)={\rm det}(p_{i,j}(z))_{1\leq i,j\leq n}.

Let IMI_{M} be the ideal in K[z]K[z] generated by z1m1,z2m2,,znmn.z_{1}^{m_{1}},z_{2}^{m_{2}},\ldots,z_{n}^{m_{n}}. Let u(z)K[z]u(z)\in K[z] be a polynomial such that u(z)q(z)1IMu(z)q(z)-1\in I_{M}.

Since A(z)=det(pi,j(z)/q(z))1i,jnA(z)=\det(p_{i,j}(z)/q(z))_{1\leq i,j\leq n} is equal to 1q(z)nDet(z),\frac{1}{q(z)^{n}}{\rm Det}(z), the transformation law implies the following

τF=[u(z)nDet(z)z1m1z2m2znmn].\displaystyle\tau_{F}=\left[\begin{array}[]{c}u(z)^{n}{\rm Det}(z)\\ z_{1}^{m_{1}}z_{2}^{m_{2}}\cdots z_{n}^{m_{n}}\end{array}\right].

Let λF=(F,1,F,2,,F,n).\lambda_{F}=(\ell_{F,1},\ell_{F,2},\ldots,\ell_{F,n}). Since mi=F,i+1,m_{i}=\ell_{F,i}+1, the formula above can be rewritten as τF=u(z)nDet(z)ξλF.\tau_{F}=u(z)^{n}{\rm Det}(z)\ast\xi^{\lambda_{F}}.

Note that, according to an algorithm in (Sato and Suzuki, 2009) discovered by Y. Sato and A. Suzuki, the inverse u(z)u(z) of q(z)q(z) in K[z]/IMK[z]/I_{M} can be obtained by using Gröbner basis computation.

The following algorithm computes a representation of the local cohomology class τF\tau_{F}, the kernel function of the point residue mapping.


Algorithm 2. tau

Input: V=[z1,z2,,zn],,F=[f1(z),f2(z),,fn(z)].V=[z_{1},z_{2},\ldots,z_{n}],\succ,F=[f_{1}(z),f_{2}(z),\ldots,f_{n}(z)].
                 /* VV: a list of variables, \succ: a term order */
Output: τF=αΛFbαψα.\tau_{F}=\sum_{\alpha\in\Lambda_{F}}b_{\alpha}\psi_{\alpha}.
BEGIN

  1. step 1:

    compute a basis ΨF={ψααΛF}\Psi_{F}=\{\psi_{\alpha}\mid\alpha\in\Lambda_{F}\} of the space HFH_{F};
            /* ΛF\Lambda_{F}: the set of head terms of ΨF\Psi_{F} */

  2. step 2:

    compute F,i=max{|ξiTF}\ell_{F,i}=\max\{\ell|\xi_{i}^{\ell}\in T_{F}\} and set mi=F,i+1,i=1,2,,nm_{i}=\ell_{F,i}+1,\ i=1,2,\ldots,n;
            /* TF={ξλλEF}T_{F}=\{\xi^{\lambda}\mid\lambda\in E_{F}\} */

  3. step 3:

    compute a Gröbner basis of the ideal

    JF,O={p(z)K[z]p(z)ψα=0,αΛF};J_{F,O}=\{p(z)\in K[z]\mid p(z)\ast\psi_{\alpha}=0,\alpha\in\Lambda_{F}\};
  4. step 4:

    compute GF,RF,SFG_{F},R_{F},S_{F};
            /* notations are from subsection 3.2*/

  5. step 5:

    compute a Gröbner basis GQG_{Q} of the quotient ideal Q=JF:JF,OQ=J_{F}:J_{F,O} and choose a polynomial q(z)q(z) from GQG_{Q} such that q(O)0q(O)\neq 0;

  6. step 6:

    compute

    q(z)zimi=pi,1(z)f1(z)+pi,2(z)f2(z)++pi,n(z)fn(z),(i=1,2,,n),q(z)z_{i}^{m_{i}}=p_{i,1}(z)f_{1}(z)+p_{i,2}(z)f_{2}(z)+\cdots+p_{i,n}(z)f_{n}(z),\ (i=1,2,\ldots,n),

    by using the algorithm localexpression;

  7. step 7:

    compute Det(z)=det(pi,j(z))1i,jn{\rm Det}(z)={\rm det}(p_{i,j}(z))_{1\leq i,j\leq n} and set ND=NFIM(Det(z)),{\rm ND}={\rm NF}_{I_{M}}({\rm Det}(z)), the normal form of Det(z){\rm Det}(z) with respect to IMI_{M};

  8. step 8:

    compute a Gröbner basis of the ideal in K[z,u]K[z,u] generated by

    1q(z)u,z1m1,z2m2,,znmn1-q(z)u,z_{1}^{m_{1}},z_{2}^{m_{2}},\ldots,z_{n}^{m_{n}}

    with respect to an elimination ordering to eliminate uu;

  9. step 9:

    choose a polynomial of degree one with respect to uu, of the form cu+poly(z)cu+poly(z), from the Gröbner basis of step 8 and set

    Den=(c)n,NU=NFIM(poly(z)n),Num=NFIM(ND×NU);{\rm Den}=(-c)^{n},\ {\rm NU}={\rm NF}_{I_{M}}(poly(z)^{n}),\ {\rm Num}={\rm NF}_{I_{M}}({\rm ND}\times{\rm NU});
  10. step10:

    compute ψ=NumξλF\psi={\rm Num}\ast\xi^{\lambda_{F}} and set Coeff={cααΛF}{\rm Coeff}=\{c_{\alpha}\mid\alpha\in\Lambda_{F}\};
            /* cαc_{\alpha} is the coefficient of a term ξα\xi^{\alpha} of ψ\psi, αΛF.\alpha\in\Lambda_{F}. */

return [ΛF,ΨF,Coeff,Den];[\Lambda_{F},\Psi_{F},{\rm Coeff},{\rm Den}];
END

The return of the algorithm above means

τF=1DenαΛFcαψα.\tau_{F}=\frac{1}{{\rm Den}}\sum_{\alpha\in\Lambda_{F}}c_{\alpha}\psi_{\alpha}.

Note that, since,

resO(h(z)τFdz)=1DenαΛFbα|resO(h(z)ψαdz){\operatorname{res}}_{O}(h(z)\tau_{F}dz)=\frac{1}{{\rm Den}}\sum_{\alpha\in\Lambda_{F}}b_{\alpha}{|res}_{O}(h(z)\psi_{\alpha}dz)

holds, the output of the algorithm above completely describes the Grothendieck point residue mapping

h(z)res{O}(h(z)dzf1(z)f2(z)fn(z)).h(z)\longrightarrow{\rm res}_{\{O\}}\left(\frac{h(z)dz}{f_{1}(z)f_{2}(z)\cdots f_{n}(z)}\right).

Let ResF=𝐭𝐚𝐮(V,,F){\rm Res}_{F}={\bf tau}(V,\succ,F) be the output of the algorithm tau. The following algorithm residues evaluates the value of Grothendieck point residue.


Algorithm 3. residues

Input: hK[z],h\in K[z],  ResF.{\rm Res}_{F}.
Output: res{O}(h(z)τFdz).{\rm res}_{\{O\}}(h(z)\tau_{F}dz).
BEGIN

  1. step 1:

    compute the normal form of hh by using ΨF\Psi_{F}, i.e., NF(h)(z)=αΛFhαzα\displaystyle{\rm NF}_{\succ}(h)(z)=\sum_{\alpha\in\Lambda_{F}}h_{\alpha}z^{\alpha};

  2. step 2:

    compute sum=αΛFhαcα;\displaystyle{\rm sum}=\sum_{\alpha\in\Lambda_{F}}h_{\alpha}c_{\alpha};

return sumDen\displaystyle\frac{{\rm sum}}{{\rm Den}} ;
END

Note that NF(h){\rm NF}_{\succ}(h) is computed by the algorithms given in (Tajima and Nakamura, 2009; Tajima et al., 2009). The algorithm is free from standard bases computation. All the algorithms given in the present paper are implemented in a computer algebra system Risa/Asir(Noro and Takeshima, 1992)).

Example 6 (E12E_{12} singularity).

Let us continue the computation. Since step 1 to step 6 are done, we start from step 7. From

(p1,1p1,2p2,1p2,2)=(25/3x2y+49x25/3xy2+7/3y425y415x+21y2),\left(\begin{array}[]{cc}p_{1,1}&p_{1,2}\\ p_{2,1}&p_{2,2}\end{array}\right)=\left(\begin{array}[]{cc}25/3x^{2}y+49x^{2}&-5/3xy^{2}+7/3y^{4}\\ 25y^{4}&-15x+21y^{2}\end{array}\right),

we have the determinant

Det=(125y735)x3+(175y3+1029y2)x2+(125/3y6+245y5)x175/3y8343y7.{\rm Det}=(-125y-735)x^{3}+(175y^{3}+1029y^{2})x^{2}+(125/3y^{6}+245y^{5})x-175/3y^{8}-343y^{7}.

A Gröbner basis of the ideal in K[x,y,u]K[x,y,u] generated by 1uq(x,y),x4,y81-uq(x,y),x^{4},y^{8} with respect to a elimination ordering ux,yu\succ x,y is
{x4,y8,6103515625y7+35888671875y6211025390625y5+1240829296875y4\{x^{4},y^{8},-6103515625y^{7}+35888671875y^{6}-211025390625y^{5}+1240829296875y^{4} 7296076265625y3+42900928441875y2252257459238225y21804125746715-7296076265625y^{3}+42900928441875y^{2}-252257459238225y-21804125746715 2161u+1483273860320763}.2161u+1483273860320763\}.

We have

Num=(6654091109227055694580078125y7391260557222550874841308593{\rm Num}=(6654091109227055694580078125y^{7}-391260557222550874841308593 75y6+230061207646859914406689453125y5135275990096353629671133398475y^{6}+230061207646859914406689453125y^{5}-1352759900963536296711333984 375y4+7954228217665593424662643828125y346770861919873689337016345375y^{4}+7954228217665593424662643828125y^{3}-46770861919873689337016345 709375y2+275012668088857293301656112771125y1617074488362480884613709375y^{2}+275012668088857293301656112771125y-1617074488362480884613 737943094215)x3+(322085690705603880169365234375y7+189386386134895737943094215)x^{3}+(-322085690705603880169365234375y^{7}+189386386134895 0815395867578125y611135919504731830794527701359375y5+65479206680815395867578125y^{6}-11135919504731830794527701359375y^{5}+6547920668 7823165071822883993125y4385017735324400210622318557879575y3+226397823165071822883993125y^{4}-385017735324400210622318557879575y^{3}+22639 04283707473238459233120331901y2)x2+(155902873066245631123387819031204283707473238459233120331901y^{2})x^{2}+(1559028730662456311233878190312 5y791670889362952431100552037590375y6+5390248294541602948712459815y^{7}-91670889362952431100552037590375y^{6}+539024829454160294871245981 031405y5)x754634761235824412819744373443967y7031405y^{5})x-754634761235824412819744373443967y^{7}
and Den=(218041257467152161)2.{\rm Den}=(218041257467152161)^{2}.

Since bα=cαDen,\displaystyle b_{\alpha}=\frac{c_{\alpha}}{{\rm Den}}, we have τF=1Den(Num(ξ3η7)).\tau_{F}=\displaystyle{\frac{1}{{\rm Den}}({\rm Num}\ast(\xi^{3}\eta^{7}))}.

Therefore,

τF=30517578125/2180412574671521611220703125/1483273860320763η+4\tau_{F}=30517578125/218041257467152161-1220703125/1483273860320763\eta+4 8828125/10090298369529η21953125/68641485507η2+78125/466948881η438828125/10090298369529\eta^{2}-1953125/68641485507\eta^{2}+78125/466948881\eta^{4}-3 125/3176523η5+125/21609η65/147η79765625/1441471195647ξ+390625/9125/3176523\eta^{5}+125/21609\eta^{6}-5/147\eta^{7}-9765625/1441471195647\xi+390625/9 805926501ξη15625/66706983ξη2+625/453789ξη325/3087ξη4+1/21ξη5+3125/9529569ξ2125/64827ξ2η+5/441ξ2η21/63ξ3.805926501\xi\eta-15625/66706983\xi\eta^{2}+625/453789\xi\eta^{3}-25/3087\xi\eta^{4}+1/21\xi\eta^{5}+3125/9529569\xi^{2}-125/64827\xi^{2}\eta+5/441\xi^{2}\eta^{2}-1/63\xi^{3}.

This yields

τF=0i,j5bi,jψi,j,\tau_{F}=\sum_{0\leq i,j\leq 5}b_{i,j}\psi_{i,j},

where  b0,0=30517578125/218041257467152161,b_{0,0}=30517578125/218041257467152161,
b0,1=1220703125/1483273860320763,b0,2=48828125/10090298369529,b0,3=1953125/68641485507,b0,4=78125/466948881,b0,5=3125/3176523,b1,0=9765625/1441471195647,b1,1=390625/9805926501,b1,2=15625/66706983,b1,3=625/453789,b1,4=25/3087,b1,5=1/21.b_{0,1}=-1220703125/1483273860320763,\\ b_{0,2}=48828125/10090298369529,b_{0,3}=-1953125/68641485507,\\ b_{0,4}=78125/466948881,b_{0,5}=-3125/3176523,\\ b_{1,0}=-9765625/1441471195647,b_{1,1}=390625/9805926501,\\ b_{1,2}=-15625/66706983,b_{1,3}=625/453789,b_{1,4}=-25/3087,b_{1,5}=1/21.
and

ψ0,0=1,ψ0,1=η,ψ0,2=η2,ψ0,3=η3,ψ0,4=η4,ψ0,5=η513ξ2,ψ1,0=ξ,ψ1,1=ξη,ψ1,2=ξη2,ψ1,3=ξη3,ψ1,4=ξη457η6+521ξ2η,ψ1,5=ξη557η713ξ3+521ξ2η2.\psi_{0,0}=1,\ \psi_{0,1}=\eta,\ \psi_{0,2}=\eta^{2},\ \psi_{0,3}=\eta^{3},\ \psi_{0,4}=\eta^{4},\ \psi_{0,5}=\eta^{5}-\dfrac{1}{3}\xi^{2},\\ \psi_{1,0}=\xi,\ \psi_{1,1}=\xi\eta,\psi_{1,2}=\xi\eta^{2},\ \psi_{1,3}=\xi\eta^{3},\\ \psi_{1,4}=\xi\eta^{4}-\dfrac{5}{7}\eta^{6}+\dfrac{5}{21}\xi^{2}\eta,\ \psi_{1,5}=\xi\eta^{5}-\dfrac{5}{7}\eta^{7}-\dfrac{1}{3}\xi^{3}+\dfrac{5}{21}\xi^{2}\eta^{2}.

Let NF(h)(x,y)=(i,j)ΛFhi,jxiyj.{\rm NF}_{\succ}(h)(x,y)=\sum_{(i,j)\in\Lambda_{F}}h_{i,j}x^{i}y^{j}. Then,

res{O}(h(x,y),τFdxdy)=(i,j)ΛFhi,jbi,j.{\rm res}_{\{O\}}(h(x,y),\tau_{F}dx\wedge dy)=\sum_{(i,j)\in\Lambda_{F}}h_{i,j}b_{i,j}.

We have for instance,  res{O}(dxdyfxfy)=30517578125218041257467152161.\displaystyle{{\rm res}_{\{O\}}\left(\frac{dx\wedge dy}{\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}}\right)=\frac{30517578125}{218041257467152161}.}

Recall that , as local cohomology class ωF=τFdxdy\omega_{F}=\tau_{F}dx\wedge dy is in {(0,0)}2(ΩX2),{\mathcal{H}}_{\{(0,0)\}}^{2}(\Omega_{X}^{2}), the cohomology class τF\tau_{F} defines the residue mapping

res{O}(,τF):𝒪X,O.{\rm res}_{\{O\}}(\ast,\tau_{F}):{\mathcal{O}}_{X,O}\longrightarrow{\mathbb{C}}.

Therefore, the formula above is valid for germs of holomorphic functions h(x,y)h(x,y). More precisely, for a germ of holomorphic function h(x,y)=(i,j)ci,jxiyj\displaystyle h(x,y)=\sum_{(i,j)}c_{i,j}x^{i}y^{j}, we have

res{O}(h(x,y),τFdxdy)=c0,0b0,0+c0,1b0,1+c0,2b0,2+c1,0b1,0+c0,3b0,3+c1,1b1,1+c0,4b0,4+c1,2b1,2+(c0,513c2,0)b0,5+c1,3b1,3+(c1,457c0,6+521c2,1)b1,4+(c1,513c3,057c0,7+521c2,2)b1,5.{\rm res}_{\{O\}}(h(x,y),\tau_{F}dx\wedge dy)=c_{0,0}b_{0,0}+c_{0,1}b_{0,1}+c_{0,2}b_{0,2}+c_{1,0}b_{1,0}+c_{0,3}b_{0,3}+c_{1,1}b_{1,1}+c_{0,4}b_{0,4}+c_{1,2}b_{1,2}+(c_{0,5}-\frac{1}{3}c_{2,0})b_{0,5}+c_{1,3}b_{1,3}+(c_{1,4}-\frac{5}{7}c_{0,6}+\frac{5}{21}c_{2,1})b_{1,4}+(c_{1,5}-\frac{1}{3}c_{3,0}-\frac{5}{7}c_{0,7}+\frac{5}{21}c_{2,2})b_{1,5}.

5 μ\mu-constant deformation

In this section, we consider a μ\mu-constant deformation of a quasi homogeneous singularity, a family of semi-quasi homogeneous isolated hypersurface singularities (Greuel, 1986; Lê and Ramanujam, 1976). We give, as an application of the algorithms presented in the previous section, an algorithm for computing Grothendieck point residues associated to a μ\mu-constant deformation of a quasi homogeneous isolated hypersurface singularity. The keys of the resulting algorithm are the use of parametric local cohomology systems and parametric Gröbner systems (comprehensive Gröbner systems).

Let w=(w1,w2,,wn)nw=(w_{1},w_{2},\ldots,w_{n})\in{\mathbb{N}}^{n} be a weight vector for z=(z1,z2,,zn).z=(z_{1},z_{2},\ldots,z_{n}). Let dw(zλ)d_{w}(z^{\lambda}) denote the weighted degree of a monomial zλ=z11z22znnz^{\lambda}=z_{1}^{\ell_{1}}z_{2}^{\ell_{2}}\cdots z_{n}^{\ell_{n}} defined to be

dw(zλ)=1w1+2w2++nwn.d_{w}(z^{\lambda})=\ell_{1}w_{1}+\ell_{2}w_{2}+\cdots+\ell_{n}w_{n}.
Definition 7.
  1. (1)

    A non-zero polynomial f0f_{0} is called a weighted homogeneous (or quasi homogeneous) polynomial of type (d,w)(d,w), if all monomials of f0f_{0} have the same weighted degree dd with respect to the weight vector ww, that is f0=dw(zλ)=dcλzλf_{0}=\sum_{d_{w}(z^{\lambda})=d}c_{\lambda}z^{\lambda} where cλKc_{\lambda}\in K.

  2. (2)

    A polynomial f(z)=f0(z)+g(z)f(z)=f_{0}(z)+g(z) is called a semi weighted homogeneous (or semi quasi homogeneous) polynomial of type (d,w)(d,w), if

  3. (i)

    f0f_{0} is weighted homogeneous of type (d,w)(d,w), and f0(z)=0f_{0}(z)=0 has an isolated singularity at the origin OO, and

  4. (ii)

    g(z)=dw(zβj)>dbjzβj,g(z)=\sum_{d_{w}(z^{\beta_{j}})>d}b_{j}z^{\beta_{j}}, where bjb_{j} are coefficients.

Let t=(t1,t2,,tm)t=(t_{1},t_{2},\ldots,t_{m}) denote a set of new indeterminates, and let T={ttm}.T=\{t\mid t\in{\mathbb{C}}^{m}\}. Let

ft(z)=f0(z)+g(z,t),withg(z,t)=dw(zβj)>dtjzβjf_{t}(z)=f_{0}(z)+g(z,t),\ \mbox{with}\ \ g(z,t)=\sum_{d_{w}(z^{\beta_{j}})>d}t_{j}z^{\beta_{j}}

be a family of semi weighted homogeneous polynomials in K(t)[z]K(t)[z], where tTt\in T is regarded as a deformation parameter. Then ftf_{t} is a μ\mu-constant deformation of f0.f_{0}.

Set F=[fz1,fz2,,fzn].F=[\frac{\partial f}{\partial z_{1}},\frac{\partial f}{\partial z_{2}},\ldots,\frac{\partial f}{\partial z_{n}}]. Let IFI_{F} denote a family of ideals in K(t){z}K(t)\{z\} generated by FF with the parameter tTt\in T and let

HF={ψH{O}n(K(t)[z])|fz1ψ=fz2ψ==fznψ=0}.H_{F}=\left\{{\psi\in H_{\{O\}}^{n}(K(t)[z])}\left|\,\vphantom{\psi\in H_{\{O\}}^{n}(K(t)[z])}{\frac{\partial f}{\partial z_{1}}\ast\psi=\frac{\partial f}{\partial z_{2}}\ast\psi=\cdots=\frac{\partial f}{\partial z_{n}}\ast\psi=0}\right.\right\}.

Let \succ be a term ordering on K(t)[ξ]=K(t)[ξ1,ξ2,,ξn]K(t)[\xi]=K(t)[\xi_{1},\xi_{2},\ldots,\xi_{n}] compatible with the weight vector w.w. It is known, for semi weighted homogeneous cases, that the set of leading exponents ΛF\Lambda_{F} is independent of tt and thus so is the corresponding basis monomial set MF.M_{F}. In our previous papers (Nabeshima and Tajima, 2015c, b), an algorithm for computing a basis ΨF\Psi_{F} of HFH_{F} is given. The algorithm also computes Grothendieck local duality as in the non parametric cases. The other steps, from step 3 to step 10 in the algorithm tau are also executable by using parametric Gröbner systems. The step 1 and step 2 of the algorithm residues are also executable.

Here we give an example of computation.

Example 8 (E12E_{12} singularity).

Let us consider f=x3+y7+txy5f=x^{3}+y^{7}+txy^{5} ( t0t\neq 0).
step 1:  A basis ΨF\Psi_{F} of the vector space HFH_{F} with respect to a term ordering \succ compatible with the weight w=(7,3)w=(7,3) is

{1,η,η2,ξ,η3,ξη,η4,ξη2,η5t3ξ2,ξη3,ξη45t7η6+5t221ξ2η,\left\{1,\eta,\eta^{2},\xi,\eta^{3},\xi\eta,\eta^{4},\xi\eta^{2},\eta^{5}-\frac{t}{3}\xi^{2},\xi\eta^{3},\xi\eta^{4}-\frac{5t}{7}\eta^{6}+\frac{5t^{2}}{21}\xi^{2}\eta,\right.

ξη5t3ξ35t7η7+5t221ξ2η2}.\left.\xi\eta^{5}-\frac{t}{3}\xi^{3}-\frac{5t}{7}\eta^{7}+\frac{5t^{2}}{21}\xi^{2}\eta^{2}\right\}.

The set ΛF\Lambda_{F} is

ΛF={(0,0),(0,1),(0,2),(1,0),(0.3),(1,1),(0,4),(1,2),(0,5),(1,3),(1,4),\Lambda_{F}=\{(0,0),(0,1),(0,2),(1,0),(0.3),(1,1),(0,4),(1,2),(0,5),(1,3),(1,4),

(1,5)}.(1,5)\}.

step 2: x4,y8IF.x^{4},y^{8}\in I_{F}.

step 5: q(x,y)=147+25t3yJF:JF,O.q(x,y)=147+25t^{3}y\in J_{F}:J_{F,O}.

step 6: (q(x,y)x4q(x,y)y8)\left(\begin{array}[]{c}q(x,y)x^{4}\\ q(x,y)y^{8}\end{array}\right)
             =((25/3t3y+49)x249/3ty5,5/3t3y2x+7/3t2y425t2y415tx+21y2)(fxfy).=\left(\begin{array}[]{cc}(25/3t^{3}y+49)x^{2}-49/3ty^{5},&-5/3t^{3}y^{2}x+7/3t^{2}y^{4}\\ 25t^{2}y^{4}&-15tx+21y^{2}\end{array}\right)\left(\begin{array}[]{c}\frac{\partial f}{\partial x}\\ \frac{\partial f}{\partial y}\end{array}\right).

step 7:  Det(x,y){\rm Det}(x,y) is

(125t4y735t)x3+(175t3y3+1029y2)x2+(125/3t5y6+245t2y5)x175/3t4y8343ty7.(-125t^{4}y-735t)x^{3}+(175t^{3}y^{3}+1029y^{2})x^{2}+(125/3t^{5}y^{6}+245t^{2}y^{5})x-175/3t^{4}y^{8}-343ty^{7}.

step 8:  A Gröbner basis of x4,y8,1q(x,y)u\langle x^{4},y^{8},1-q(x,y)u\rangle is

{y8,x4,6103515625t21y7+35888671875t18y6211025390625t15y5+12408292\{y^{8},x^{4},-6103515625t^{21}y^{7}+35888671875t^{18}y^{6}-211025390625t^{15}y^{5}+12408292 96875t12y47296076265625t9y3+42900928441875t6y2252257459238225t3y218041257467152161u+1483273860320763}.96875t^{12}y^{4}-7296076265625t^{9}y^{3}+42900928441875t^{6}y^{2}-252257459238225t^{3}y-218041257467152161u+1483273860320763\}.

step 9:  We have

Den=(218041257467152161)2,{\rm Den}=(218041257467152161)^{2},

poly(x,y)=6103515625t21y7+35888671875t18y6211025390625t15y5+1poly(x,y)=-6103515625t^{21}y^{7}+35888671875t^{18}y^{6}-211025390625t^{15}y^{5}+1 240829296875t12y47296076265625t9y3+42900928441875t6y2252257459238240829296875t^{12}y^{4}-7296076265625t^{9}y^{3}+42900928441875t^{6}y^{2}-252257459238 225t3y+1483273860320763,225t^{3}y+1483273860320763,

NU=72425481460974755859375000t21y7+372629102116715118896484375{\rm NU}=-72425481460974755859375000t^{21}y^{7}+372629102116715118896484375 t18y61878050674668244199238281250t15y5+920244830587439657626757812t^{18}y^{6}-1878050674668244199238281250t^{15}y^{5}+920244830587439657626757812 5t12y443288316830833161494762687500t9y3+190901477223974242191903455t^{12}y^{4}-43288316830833161494762687500t^{9}y^{3}+19090147722397424219190345 1875t6y2748333790717979029392261531350t3y+2200101344710858346413241875t^{6}y^{2}-748333790717979029392261531350t^{3}y+220010134471085834641324 8902169,8902169,

and

Num=(6654091109227055694580078125t22y739126055722255087484130859{\rm Num}=(6654091109227055694580078125t^{22}y^{7}-39126055722255087484130859 375t19y6+230061207646859914406689453125t16y513527599009635362967113375t^{19}y^{6}+230061207646859914406689453125t^{16}y^{5}-13527599009635362967113 33984375t13y4+7954228217665593424662643828125t10y34677086191987368933984375t^{13}y^{4}+7954228217665593424662643828125t^{10}y^{3}-46770861919873689 337016345709375t7y2+27501266808885729330165611277112tt4y16170744883337016345709375t^{7}y^{2}+27501266808885729330165611277112tt^{4}y-16170744883 62480884613737943094215t)x3+(322085690705603880169365234375t15y7+162480884613737943094215t)x^{3}+(-322085690705603880169365234375t^{15}y^{7}+1 893863861348950815395867578125t12y611135919504731830794527701359375893863861348950815395867578125t^{12}y^{6}-11135919504731830794527701359375 t9y5+65479206687823165071822883993125t6y438501773532440021062231855t^{9}y^{5}+65479206687823165071822883993125t^{6}y^{4}-38501773532440021062231855 7879575t3y3+2263904283707473238459233120331901y2)x2+(1559028730662457879575t^{3}y^{3}+2263904283707473238459233120331901y^{2})x^{2}+(155902873066245 63112338781903125t8y791670889362952431100552037590375t5y6+53902482963112338781903125t^{8}y^{7}-91670889362952431100552037590375t^{5}y^{6}+539024829 454160294871245981031405t2y5)x754634761235824412819744373443967ty7.454160294871245981031405t^{2}y^{5})x-754634761235824412819744373443967ty^{7}.

As an output we thus have

τF=0i,j5bi,jψi,j,\displaystyle\tau_{F}=\sum_{0\leq i,j\leq 5}b_{i,j}\psi_{i,j},

where
b0,0=30517578125t22/218041257467152161,b0,1=1220703125t19/1483273860320763,b0,2=48828125t16/10090298369529,b0,3=1953125t13/68641485507,b0,4=78125t10/466948881,b0,5=3125t7/3176523,b1,0=9765625t15/1441471195647,b1,1=390625t12/9805926501,b1,2=15625t9/66706983,b1,3=625t6/453789,b1,4=25t3/3087,b1,5=1/21.b_{0,0}=30517578125t^{22}/218041257467152161,\\ b_{0,1}=-1220703125t^{19}/1483273860320763,\\ b_{0,2}=48828125t^{16}/10090298369529,b_{0,3}=-1953125t^{13}/68641485507,\\ b_{0,4}=78125t^{10}/466948881,b_{0,5}=-3125t^{7}/3176523,\\ b_{1,0}=-9765625t^{15}/1441471195647,\\ b_{1,1}=390625t^{12}/9805926501,b_{1,2}=-15625t^{9}/66706983,\\ b_{1,3}=625t^{6}/453789,b_{1,4}=-25t^{3}/3087,b_{1,5}=1/21.
and

ψ0,0=1,ψ0,1=η,ψ0,2=η2,ψ0,3=η3,ψ0,4=η4,ψ0,5=η5t3ξ2,ψ1,0=ξ,ψ1,1=ξη,ψ1,2=ξη2,ψ1,3=ξη3,ψ1,4=ξη45t7η6+5t221ξ2η,ψ1,5=ξη55t7η7t3ξ3+5t221ξ2η2.\psi_{0,0}=1,\ \psi_{0,1}=\eta,\ \psi_{0,2}=\eta^{2},\ \psi_{0,3}=\eta^{3},\ \psi_{0,4}=\eta^{4},\ \psi_{0,5}=\eta^{5}-\dfrac{t}{3}\xi^{2},\\ \psi_{1,0}=\xi,\ \psi_{1,1}=\xi\eta,\ \psi_{1,2}=\xi\eta^{2},\ \psi_{1,3}=\xi\eta^{3},\ \psi_{1,4}=\xi\eta^{4}-\dfrac{5t}{7}\eta^{6}+\dfrac{5t^{2}}{21}\xi^{2}\eta,\\ \psi_{1,5}=\xi\eta^{5}-\dfrac{5t}{7}\eta^{7}-\dfrac{t}{3}\xi^{3}+\dfrac{5t^{2}}{21}\xi^{2}\eta^{2}.

We have, for instance,

res{O}(dxdyfxfy)=30517578125218041257467152161t22.\displaystyle{\rm res}_{\{O\}}\left(\frac{dx\wedge dy}{\frac{\partial f}{\partial x}\frac{\partial f}{\partial y}}\right)=\frac{30517578125}{218041257467152161}t^{22}.

References

  • Altman and Kleiman (1970) Altman, A., Kleiman, S., 1970. Introduction to Grothendieck Duality Theory, Lecture Notes in Math. 146. Springer.
  • Bănică and Stănăşilă (1974) Bănică, C., Stănăşilă, O., 1974. Méthodes Algebriques dans la Théorie Globale des Espaces Complexes. Gauthier-Villars.
  • Baum and Bott (1972) Baum, P.F., Bott, R., 1972. Singularities of holomorphic foliations. J. Differential Geometry 7, 279–342.
  • Boyer and Hickel (1997) Boyer, J.Y., Hickel, M., 1997. Une généralisation de la loi de transformation pour les résidus. Bull. Soc. Math. France 125, 315–335.
  • Brasselet et al. (2009) Brasselet, J.P., Seade, J., Suwa, T., 2009. Vector Fields on Singular Varieties, Lecture Notes in Math. 1987. Springer.
  • Bykov et al. (1991) Bykov, V., Kytmanov, A., Lazman, M., Passare, M., 1991. Elimination Methods in Polynomial Computer Algebra, Mathematics and its Applications. Kluwer.
  • Cardinal and Mourrain (1996) Cardinal, J.P., Mourrain, B., 1996. Algebraic approach of residues and applications, in: The Mathematics of Numerical Analysis, Lectures in Applied Math. 32, AMS. pp. 186–210.
  • Cattani et al. (1996) Cattani, E., Dickenstein, A., Sturmfels, B., 1996. Computing multidimensional residues. Progress in Math. 143, 135–164.
  • Cherveny (2018) Cherveny, L., 2018. Remarks on localizing Futaki-Morita integrals at isolated degenerate zeros. Differential Geom. Appl. 56, 1–12.
  • Corrêa et al. (2016) Corrêa, M., Rodriguez, P., Soares, M.G., 2016. A Bott-type residue formula on complex orbifolds. Int. Math. Res. Not. IMRN 10, 2889–2911.
  • Dickenstein and Sessa (1991) Dickenstein, A.E., Sessa, C., 1991. Duality methods for the membership problem. Progress in Math. 94, 86–103.
  • Elkadi and Mourrain (2007) Elkadi, M., Mourrain, B., 2007. Introduction à la Résolution des Systèmes Polynomiaux. Springer.
  • Greuel (1986) Greuel, G.M., 1986. Constant Milnor number implies constant multiplicity for quasi homogeneous singularities. Manuscripta Math. 56, 156–166.
  • Griffiths (1976) Griffiths, P., 1976. Variations on a theorem of Abel. Invent. Math. 35, 321–390.
  • Griffiths and Harris (1978) Griffiths, P., Harris, J., 1978. Principles of Algebraic Geometry. Wiley Interscience.
  • Grothendieck (1957) Grothendieck, A., 1957. Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149.
  • Grothendieck (1967) Grothendieck, A., 1967. Local Cohomology, notes by R. Hartshorne, Lecture Notes in Math., 41. Springer.
  • Hartshorne (1966) Hartshorne, R., 1966. Residues and Duality. Lecture Notes in Math. 20. Springer.
  • Klehn (2002) Klehn, O., 2002. Local residues of holomorphic 1-forms on an isolated surface singularity. Manuscripta Math. 109, 93–108.
  • Kulikov (1998) Kulikov, V.S., 1998. Mixed Hodge Structure and Singularities, Cambridge Tracts in Math. 132. Cambridge Univ. Press.
  • Kunz (2009) Kunz, E., 2009. Residues and Duality for Projective Algebraic Varieties. Univ. Lecture Series 47. AMS.
  • Kytmanov (1988) Kytmanov, A.M., 1988. A transformation formula for Grothendieck residues and some of its applications. Siberian Math. J. 169, 495–499.
  • Lê and Ramanujam (1976) Lê, D.T., Ramanujam, C.P., 1976. The invariance of Milnor’s number implies the imvariance of the topological type. Amer. J. Math. 98, 67–78.
  • Lehmann (1991) Lehmann, D., 1991. Résidues des sous-variétes invariantes d’un feuilletage singulier. Ann. Inst. Fourier, Grenoble 41, 211–258.
  • Lipman (1984) Lipman, J., 1984. Dualizing Sheaves, Differentials and Residues on Algebraic Varieties. Astérisque 117.
  • Lipman (2002) Lipman, J., 2002. Lectures on local cohomology and duality. Lecture Notes in Pure and Applied Math. 226, 39–89.
  • Mourrain (1997) Mourrain, B., 1997. Isolated points, duality and residues. J. Pure and Applied Algebra 117/118, 460–493.
  • Nabeshima and Tajima (2015a) Nabeshima, K., Tajima, S., 2015a. Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities, in: International Symposium on Symbolic and Algebraic Computation, ACM. pp. 291–298.
  • Nabeshima and Tajima (2015b) Nabeshima, K., Tajima, S., 2015b. Efficient computation of algebraic local cohomology classes and change of ordering for zero-dimensinal standard bases, in: International Workshop on Computer Algebra in Scientific Computing 2015, Lecture Notes in Computer Science, 9301, Springer. pp. 334–348.
  • Nabeshima and Tajima (2015c) Nabeshima, K., Tajima, S., 2015c. On the computation of algebraic local cohomology classes associated with semi-quasihomogeneous singularities. Advanced Studies in Pure Mathematics 66, 143–159.
  • Nabeshima and Tajima (2016a) Nabeshima, K., Tajima, S., 2016a. Computing Tjurina stratifications of μ\mu-constant deformations via parametric local cohomology systems. Applicable Algebra in Engineering, Computation and Computing 27, 451–467.
  • Nabeshima and Tajima (2016b) Nabeshima, K., Tajima, S., 2016b. Solving extended ideal membership problems in rings of convergent power series via Gröbner bases, in: International Conference on Mathematical Aspects of Computer and Information Sciences 2016, Lecture Notes in Computer Science, 9582, Springer. pp. 252–267.
  • Nabeshima and Tajima (2017) Nabeshima, K., Tajima, S., 2017. Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. Journal of Symbolic Computation 82, 91–122.
  • Noro and Takeshima (1992) Noro, M., Takeshima, T., 1992. Risa/Asir- A computer algebra system, in: International Symposium on Symbolic and Algebraic Computation, ACM. pp. 387–396.
  • O’Brian (1975) O’Brian, N.R., 1975. Zeros of holomorphic vector fields and the Grothendieck residues. Bull. London Math. Soc. 7, 33–38.
  • O’Brian (1977) O’Brian, N.R., 1977. Zeros of holomorphic vector fields and Grothendieck duality theory. Trans. AMS. 229, 289–306.
  • Ohara and Tajima (2019a) Ohara, K., Tajima, S., 2019a. An algorithm for computing Grothendieck local residues I - shape base case -. Mathematics in Computer Science 1-2, 205–216.
  • Ohara and Tajima (2019b) Ohara, K., Tajima, S., 2019b. An algorithm for computing Grothendieck local residues II - general case -. to apper in Mathematics in Computer Science ArXiv:1811.08054.
  • Perotti (1998) Perotti, A., 1998. Multidimensional residues and ideal membership. Publ. Mat. 42, 143–152.
  • Saito (1983) Saito, S., 1983. The higher residue pairings for a family of hypersurface singular points, in: Symposia in Pure Math. 40, Part 2, pp. 441–463.
  • Sato and Suzuki (2009) Sato, Y., Suzuki, A., 2009. Computation of inverses in residue class rings of parametric polynomial ideals, in: International Symposium on Symbolic and Algebraic Computation, ACM. pp. 311–315.
  • Suwa (1988) Suwa, T., 1988. Indices of Vector Fields and Residues of Singular Holomorphic Foliations. Hermann.
  • Suwa (2005) Suwa, T., 2005. Residues of Chern classes on singular varieties. Séminaires et Congrès, Soc. Math. France. 10, 265–285.
  • Tajima and Nakamura (2005a) Tajima, S., Nakamura, Y., 2005a. Algebraic local cohomology classes attached to quasi-homogeneous hypersurface isolated singularities. Publ. Res. Inst. Math. Sci. 41, 1–10.
  • Tajima and Nakamura (2005b) Tajima, S., Nakamura, Y., 2005b. Computational aspects of Grothendieck local residues. Séminaires et Congrès, oc. Math. France. 10, 287–305.
  • Tajima and Nakamura (2009) Tajima, S., Nakamura, Y., 2009. Annihilating ideals for an algebraic local cohomology class. Journal of Symbolic Computation 44, 435–448.
  • Tajima et al. (2009) Tajima, S., Nakamura, Y., Nabeshima, K., 2009. Standard bases and algebraic local cohomology for zero dimensional ideals. Advanced Studies in Pure Mathematics 56, 341–361.
  • Tong (1973) Tong, Y.L., 1973. Integral representation formulae and Grothendieck residue symbol. Amer. J. Math. 95, 904–917.
  • Varchenko (1986) Varchenko, A.N., 1986. On the local residue and the intersection form on the vanishing cohomology. Math. USSR Izvestiya 26, 31–52.
  • Yushakov (1984) Yushakov, A.P., 1984. On the computation of the complete sum of residues relative to a polynomial mapping in 𝕔n{\mathbb{c}}^{n}. Akad. Nauk. SSSR 275, 817–820.