This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An asymptotic formula for the number of integral matrices with a fixed characteristic polynomial via orbital integrals

Seongsu Jeon  and  Yuchan Lee Seongsu Jeon
Department of Mathematics, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, KOREA
[email protected] Yuchan Lee
Department of Mathematics, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, 37673, KOREA
[email protected]
Abstract.

For an arbitrarily given irreducible polynomial χ(x)[x]\chi(x)\in\mathbb{Z}[x] of degree nn with [x]/(χ(x))\mathbb{Q}[x]/(\chi(x)) totally real, let N(X,T)N(X,T) be the number of n×nn\times n matrices over \mathbb{Z} whose characteristic polynomial is χ(x)\chi(x), bounded by a positive number TT with respect to a certain norm. In this paper, we will provide an asymptotic formula for N(X,T)N(X,T) as TT\to\infty in terms of the orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n}. This generalizes the work of A. Eskin, S. Mozes, and N. Shah (1996) which assumed that [x]/(χ(x))\mathbb{Z}[x]/(\chi(x)) is the ring of integers.

In addition, we will provide an asymptotic formula for N(X,T)N(X,T), using the orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n}, when \mathbb{Q} is generalized to a totally real number field kk and when nn is a prime number. Here we need a mild restriction on splitness of χ(x)\chi(x) over kvk_{v} at pp-adic places vv of kk for pnp\leq n when k[x]/(χ(x))k[x]/(\chi(x)) is unramified Galois over kk.

Our method is based on the strong approximation property with Brauer-Manin obstruction on a variety, the formula for orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n}, and the Langlands-Shelstad fundamental lemma for 𝔰𝔩n\mathfrak{sl}_{n}.

2020 Mathematics Subject Classification:
MSC11F72, 11G35, 11R37, 11S80, 14F22, 14G12, 20G30, 20G35
The authors are supported by Samsung Science and Technology Foundation under Project Number SSTF-BA2001-04.

1. Introduction

For an algebraic variety defined over \mathbb{Z}, understanding its \mathbb{Z}-points can be viewed as a classical number-theoretic problem, studying solutions of a Diophantine equation. More generally, one can expand objects to a variety XX defined over 𝒪k\mathcal{O}_{k}, where 𝒪k\mathcal{O}_{k} is the ring of integers of a number field kk. In this context, a Diophantine analysis investigating the distribution of X(𝒪k)X(\mathcal{O}_{k}) has been thoroughly studied for k=k=\mathbb{Q} ([Bir62], [BR95], [DRS93], and [Sch85]). Here the distribution of X(𝒪k)X(\mathcal{O}_{k}) means the asymptotic behavior of N(X,T)N(X,T) as TT\rightarrow\infty where

N(X,T)=#{xX(𝒪k)xT}N(X,T)=\#\{x\in X(\mathcal{O}_{k})\mid\lVert x\rVert\leq T\}

with a certain norm \lVert\cdot\rVert defined on X(k)X(k).

We concentrate on a variety XX which represents the set of n×nn\times n matrices whose characteristic polynomial is χ(x)\chi(x), where χ(x)𝒪k[x]\chi(x)\in\mathcal{O}_{k}[x] is an irreducible monic polynomial of degree nn. We aim to formulate the constant CC\in\mathbb{R} and rr\in\mathbb{Z} such that N(X,T)CTr1\frac{N(X,T)}{CT^{r}}\rightarrow 1 as TT\rightarrow\infty, with respect to the norm given by

(1.1) x=maxvki,j=1n|xij|v2,\lVert x\rVert=\max_{v\in\infty_{k}}\sqrt{\sum_{i,j=1}^{n}|x_{ij}|_{v}^{2}},

where xx embeds to (xij)Mn(k)(x_{ij})\in\mathrm{M}_{n}(k) and k\infty_{k} denotes the set of Archimedean places of kk.

This is the case investigated in [EMS96, Theorem 1.1 and Theorem 1.16] under a certain restriction. More precisely, they established the following formula

(1.2) N(X,T)2n1hKRKwnΔχk=2nΛ(k/2)Tn(n1)2,N(X,T)\sim\frac{2^{n-1}h_{K}R_{K}w_{n}}{\sqrt{\Delta_{\chi}}\cdot\prod_{k=2}^{n}\Lambda(k/2)}T^{\frac{n(n-1)}{2}},

under the restrictions

(1.3) {(1) k=;(2) [x]/(χ(x)) is the ring of integers of [x]/(χ(x));(3) [x]/(χ(x)) is totally real, equivalently χ(x) splits completely over .\left\{\begin{array}[]{l}\textit{(1) $k=\mathbb{Q}$};\\ \textit{(2) $\mathbb{Z}[x]/(\chi(x))$ is the ring of integers of $\mathbb{Q}[x]/(\chi(x))$};\\ \textit{(3) $\mathbb{Q}[x]/(\chi(x))$ is totally real, equivalently $\chi(x)$ splits completely over $\mathbb{R}$}.\end{array}\right.

Here, for two functions A(T)A(T) and B(T)B(T) for TT, we denote A(T)B(T)A(T)\sim B(T) if limTA(T)B(T)=1\lim\limits_{T\rightarrow\infty}\frac{A(T)}{B(T)}=1. hKh_{K} is the class number of 𝒪K\mathcal{O}_{K} and RKR_{K} is the regulator of KK, where K=[x]/(χ(x))K=\mathbb{Q}[x]/(\chi(x)) and 𝒪K\mathcal{O}_{K} is its ring of integers. Δχ\Delta_{\chi} is the discriminant of χ(x)\chi(x), wnw_{n} is the volume of the unit ball in n(n1)2\mathbb{R}^{\frac{n(n-1)}{2}}, and Λ(s)=πsΓ(s)ζ(2s)\Lambda(s)=\pi^{-s}\Gamma(s)\zeta(2s).

The main goal of this paper is to weaken the first two restrictions in (1.3). More precisely, we will describe the asymptotic formula for N(X,T)N(X,T) in Theorem 7.1 (which is summarized in Theorem 1.5) using orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n}, under the following restrictions

(1.4) {(1) k and K(:=k[x]/(χ(x))) are totally real number fields;(2) if k, then χ(x) is of prime degree n;(3) if K/k is unramified Galois, then χ(x) splits over kv at p-adic places v of k, for pn.\left\{\begin{array}[]{l}\textit{(1) $k$ and $K\left(:=k[x]/(\chi(x))\right)$ are totally real number fields};\\ \textit{(2) if $k\neq\mathbb{Q}$, then $\chi(x)$ is of prime degree $n$};\\ \textit{(3) if $K/k$ is unramified Galois, then $\chi(x)$ splits over $k_{v}$ at $p$-adic places $v$ of $k$, for $p\leq n$}.\end{array}\right.

This largely generalizes (1.3); if k=k=\mathbb{Q}, then the above conditions (2) and (3) are unnecessary so that we do not need the condition (2) of (1.3) (cf. Remark 7.2).

In contrast to [EMS96], our method is based on the strong approximation property with Brauer-Manin obstruction suggested in [WX16]. We will also use the formula for orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n} (cf. [CKL] and [CHL]) and the Langlands-Shelstad fundamental lemma for 𝔰𝔩n\mathfrak{sl}_{n} (cf. [Ngfrm[o]–0, Theorem 1]).

1.1. Backgrounds

One of the important observations to understand the asymptotic behavior of N(X,T)N(X,T) for k=k=\mathbb{Q} is introduced in [BR95], which is called Hardy-Littlewood expectation. M. Borovoi and Z. Rudnick proved in [BR95, Theorem 5.3] that a particular homogeneous space of a semisimple group, including our case when k=k=\mathbb{Q}, can be represented by the integration of a certain function defined on the adelic points of XX. However, their description of the integrand is complicated to compute directly (cf. [BR95, Section 3.5, Theorem 5.3]).

In [WX16], D. Wei and F. Xu generalized the observation of M. Borovoi and Z. Rudnick for XX defined over any number field kk. They also gave a more handleable description of the Hardy-Littlewood expectation to approximate N(X,T)N(X,T). They mainly used the fact that XX satisfies the strong approximation property with Brauer-Manin obstruction following [BD13, Theorem 0.1]. This implies that the integral points of XX are related to the Brauer elements (cf. [LX15, Theorem 2.10]). Combining this observation with the equidistribution property in [BO12, Theorem 1.5], they obtained Proposition 1.1.

To introduce the results in [WX16], we define the following notations;

{Ωk is the set of places of k, and k is the set of Archimedean places of k;kv is a completion with respect to the place v;𝒪kv is its ring of integers and πv is a uniformizer of 𝒪kv for vΩkk;κv is the residue field of 𝒪kv and qv=#κv for vΩkk.\left\{\begin{array}[]{l}\textit{$\Omega_{k}$ is the set of places of $k$, and $\infty_{k}$ is the set of Archimedean places of $k$};\\ \textit{$k_{v}$ is a completion with respect to the place $v$};\\ \textit{$\mathcal{O}_{k_{v}}$ is its ring of integers and $\pi_{v}$ is a uniformizer of $\mathcal{O}_{k_{v}}$ for $v\in\Omega_{k}\setminus\infty_{k}$};\\ \textit{$\kappa_{v}$ is the residue field of $\mathcal{O}_{k_{v}}$ and $q_{v}=\#\kappa_{v}$ for $v\in\Omega_{k}\setminus\infty_{k}$}.\end{array}\right.
Proposition 1.1.

[WX16, Theorem 4.3] Let χ(x)\chi(x) be an irreducible monic polynomial over 𝒪k\mathcal{O}_{k}. Then

(1.5) N(X,T)|Δk|12dimXξBrX/BrkvΩkkX(𝒪kv)ξv(x)|ωX|vvkX(kv,T)ξv(x)|ωX|v,N(X,T)\sim\lvert\Delta_{k}\rvert^{-\frac{1}{2}\dim X}\sum_{\xi\in\operatorname{Br}X/\operatorname{Br}k}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\int_{X(\mathcal{O}_{k_{v}})}\xi_{v}(x)\ \lvert\omega_{X}\rvert_{v}\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\xi_{v}(x)\ \lvert\omega_{X}\rvert_{v},

where

{X(kv,T)={xX(kv)xvT} for vk and T>0;|ωX|v is the measure defined in Section 3.2 for vΩk;Δk is the absolute discriminant of k;BrX/Brk is the quotient group defined in Remark 4.4;ξv(x) denotes a Brauer evaluation on xX(kv) which is defined in Definition 4.3.\left\{\begin{array}[]{l}X(k_{v},T)=\{x\in X(k_{v})\mid\lVert x\rVert_{v}\leq T\}\textit{ for $v\in\infty_{k}$ and $T>0$};\\ \lvert\omega_{X}\rvert_{v}\textit{ is the measure defined in Section \ref{subsec:measureonX} for $v\in\Omega_{k}$};\\ \Delta_{k}\textit{ is the absolute discriminant of $k$};\\ \textit{$\operatorname{Br}X/\operatorname{Br}k$ is the quotient group defined in Remark \ref{rem:normalized_eval}};\\ \xi_{v}(x)\textit{ denotes a Brauer evaluation on $x\in X(k_{v})$ which is defined in Definition \ref{def:brauer_evaluation}}.\end{array}\right.

As a special case of Proposition 1.1, they also deduced the same results with (1.2) under the assumptions in (1.3). They observed that a non-trivial element in BrX/Brk\operatorname{Br}X/\operatorname{Br}k does not affect the summation in (1.5). Indeed, X(p)ξp(x)|ωX|p\int_{X(\mathbb{Z}_{p})}\xi_{p}(x)\ \lvert\omega_{X}\rvert_{p} vanishes for a ramified prime number pp, which always exists by the assumption k=k=\mathbb{Q}. After that, they computed the local integration for a trivial element in BrX/Brk\operatorname{Br}X/\operatorname{Br}k under the assumption that [x]/(χ(x))\mathbb{Z}[x]/(\chi(x)) is the ring of integers of [x]/(χ(x))\mathbb{Q}[x]/(\chi(x)).

However, this method is not applicable for general number fields since the ramified place might not exist for a number field other than \mathbb{Q} (cf. [WX16, Example 6.3]). In addition, the computation of the local integration is quite a challenging problem unless [x]/(χ(x))\mathbb{Z}[x]/(\chi(x)) is the ring of integers of [x]/(χ(x))\mathbb{Q}[x]/(\chi(x)) (cf. Proposition 5.9).

1.2. Main results

Our strategy to obtain the asymptotic formula for N(X,T)N(X,T) is based on Proposition 1.1. We first figure out the evaluation of ξBrX\xi\in\operatorname{Br}X in (1.5), and then investigate each local integration of ξv\xi_{v}. According to Section 2, our method depends on the GLn\mathrm{GL}_{n}-homogeneous space (resp. SLn\mathrm{SL}_{n}-homogeneous space) structure of XX. By Proposition 2.1, we fix x0X(𝒪k)x_{0}\in X(\mathcal{O}_{k}) and thus we have

Tx0\GLnX(resp.Sx0\SLnX),gg1x0g,\mathrm{T}_{x_{0}}\backslash\mathrm{GL_{n}}\xrightarrow{\sim}X\ (resp.\ \mathrm{S}_{x_{0}}\backslash\mathrm{SL}_{n}\xrightarrow{\sim}X),\ g\mapsto g^{-1}x_{0}g,

where Tx0\mathrm{T}_{x_{0}} (resp. Sx0\mathrm{S}_{x_{0}}) denotes the stabilizer of x0x_{0} under the GLn\mathrm{GL}_{n}-action (resp. the SLn\mathrm{SL}_{n}-action) on XX.

1.2.1. Brauer evaluation of ξBrX\xi\in\operatorname{Br}X on X(kv)X(k_{v})

The Brauer evaluation of ξBrX\xi\in\operatorname{Br}X on local points X(kv)X(k_{v}) is defined by using the functoriality of the Brauer group in Definition 4.3. We interpret this functoriality through the local class field theory and obtain Proposition 1.2. To establish the well-definedness of the local evaluation of ξBrX\xi\in\operatorname{Br}X, we consider the normalized evaluation ξ~v\tilde{\xi}_{v} (cf. Definition 4.5). In Remark 4.4, we show that this normalization does not affect the product in (1.5).

Proposition 1.2.

Suppose that χ(x)\chi(x) is of prime degree. For ξBrX\xi\in\operatorname{Br}X, the normalized evaluation ξ~v\tilde{\xi}_{v} is formulated as follows.

  1. (1)

    (Proposition 5.1) If K/kK/k is not Galois, then ξ~v(x)=1\tilde{\xi}_{v}(x)=1.

  2. (2)

    (Proposition 5.5) If K/kK/k is Galois and Kv/kvK_{v}/k_{v} is not a field extension, then ξ~v(x)=1\tilde{\xi}_{v}(x)=1.

  3. (3)

    (Proposition 5.2) If K/kK/k is Galois and Kv/kvK_{v}/k_{v} is a field extension, then

    ξ~v(x)=exp2πiΨ(ξ)(ϕKv/kv(detgx)),\tilde{\xi}_{v}(x)=\exp 2\pi i\Psi(\xi)(\phi_{K_{v}/k_{v}}(\det g_{x})),

    where

    {Ψ:BrX/BrkHom(Gal(K/k),/) is an isomorphism defined in Proposition 5.2;gxGLn(kv) such that gx1x0gx=x;ϕKv/kv:kv×/NmKv/kvKv×Gal(Kv/kv) is the Artin reciprocity isomorphism (cf. [Ser79, Chapter XI]).\left\{\begin{array}[]{l}\textit{$\Psi:\operatorname{Br}X/\operatorname{Br}k\xrightarrow{\sim}\operatorname{Hom}(\operatorname{Gal}(K/k),\mathbb{Q}/\mathbb{Z})$ is an isomorphism defined in Proposition \ref{prop:evaluation}};\\ \textit{$g_{x}\in\mathrm{GL}_{n}(k_{v})$ such that $g_{x}^{-1}x_{0}g_{x}=x$};\\ \textit{$\phi_{K_{v}/k_{v}}:k_{v}^{\times}/\operatorname{Nm}_{K_{v}/k_{v}}K_{v}^{\times}\xrightarrow{\sim}\operatorname{Gal}(K_{v}/k_{v})$ is the Artin reciprocity isomorphism }\\ (\textit{cf. \cite[cite]{[\@@bibref{}{Ser}{}{}, Chapter XI]}}).\end{array}\right.

1.2.2. Computation of each local integration

To investigate the integration of ξ~v\tilde{\xi}_{v} for each vΩkv\in\Omega_{k}, we will use the more handlealbe measure |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} defined in Section 3.2.2. Here, in the equation (1.5), Proposition 3.9 enables us to interchange the measure |ωX|v|\omega_{X}|_{v} with |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v}.

In the case of an Archimedean place, it is enough to consider the case that ξ~v\tilde{\xi}_{v} is trivial by the assumption (1) in (1.4). We formulate the integration as the following proposition by using the Iwasawa decomposition on GLn()\mathrm{GL}_{n}(\mathbb{R}).

Proposition 1.3.

(Proposition 5.6) Suppose that kk and KK are totally real number fields. Then we have

vkX(kv,T)ξ~v(x)|ωXkvcan|v(wnπn(n+1)4Tn(n1)2i=1nΓ(i2)1)[k:]vΩkk|Δχ|v12,\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\tilde{\xi}_{v}(x)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}\sim\left(w_{n}\pi^{\frac{n(n+1)}{4}}T^{\frac{n(n-1)}{2}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}\right)^{[k:\mathbb{Q}]}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\lvert\Delta_{\chi}\rvert_{v}^{\frac{1}{2}},

where wnw_{n} is the volume of the unit ball in n(n1)2\mathbb{R}^{\frac{n(n-1)}{2}} and Δχ\Delta_{\chi} is the discriminant of χ(x)\chi(x).

In the case of a non-Archimedean place, Proposition 1.2 implies that ξ~v\tilde{\xi}_{v} is non-trivial only if K/kK/k is Galois and KvK_{v} is a Galois field extension over kvk_{v}. In this case, we address the following cases separately; when Kv/kvK_{v}/k_{v} is ramified and when Kv/kvK_{v}/k_{v} is unramified.

Proposition 1.4.

Suppose vΩkkv\in\Omega_{k}\setminus\infty_{k}.

  1. (1)

    (Proposition 5.9) If ξ~v\tilde{\xi}_{v} is trivial, then we have

    X(𝒪kv)ξ~v(x)|ωXkvcan|v=Tx0,kv(kv)\GLn(kv)𝟙𝔤𝔩n(𝒪kv)(g1x0g)|ωXkvcan|v.\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=\int_{\mathrm{T}_{x_{0},k_{v}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{gl}_{n}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}g)\ |\omega_{X_{k_{v}}}^{can}|_{v}.

    Here, the right hand side is the orbital integral of x0x_{0} for 𝔤𝔩n\mathfrak{gl}_{n} with respect to the measure |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v}.

  2. (2)

    If ξ~v\tilde{\xi}_{v} is non-trivial (and so Kv/kvK_{v}/k_{v} is a Galois field extension), then we have the following equations.

    • (Proposition 5.11) If Kv/kvK_{v}/k_{v} is a ramified Galois extension, then we have

      X(𝒪kv)ξ~v(x)|ωXkvcan|v=0.\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}=0.
    • (Proposition 6.8) If Kv/kvK_{v}/k_{v} is an unramified Galois extension and the characteristic of the residue field of kvk_{v} is bigger than nn, then we have

      X(𝒪kv)ξ~v(x)|ωXkvcan|v=|Δχ|v12#SLn,𝒪kv(κv)qvn21#Sx0,𝒪kv(κv)qvn1,\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=\lvert\Delta_{\chi}\rvert_{v}^{-\frac{1}{2}}\frac{\#\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{n^{2}-1}}{\#\mathrm{S}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{n-1}},

      where Sx0,𝒪kv\mathrm{S}_{x_{0},\mathcal{O}_{k_{v}}}, is an integral model of the stabilizer Sx0\mathrm{S}_{x_{0}} of x0x_{0} in SLn,kv\mathrm{SL}_{n,k_{v}}, defined in Section 6.1.1.

When ξ~v\tilde{\xi}_{v} is trivial, the formula directly follows that of the orbital integral for 𝔤𝔩n\mathfrak{gl}_{n}. Although the orbital integral, which appears in the geometric side of the Arthur-Selberg trace formula, has been studied extensively in the literature, to obtain its closed formula is quite involved.

In this paper, for the closed formula of the orbital integral for 𝔤𝔩n\mathfrak{gl}_{n}, we will refer to the results in [CKL] for the case that n=2,3n=2,3 and the results in [CHL] for the case that 𝒪k[x]/(χ(x))\mathcal{O}_{k}[x]/(\chi(x)) is a Bass order. Here a Bass order is an order of a number field whose fractional ideals are generated by two elements (cf. [CHL, Definition 6.1]). We note that majority of number fields contain infinitely many Bass orders. For example, any order of a number field which contains the maximal order of a subfield with degree 2 or whose discriminant is fourth-power-free in \mathbb{Z}, is a Bass order.

In the case that ξ~v\tilde{\xi}_{v} is non-trivial and Kv/kvK_{v}/k_{v} is an unramified Galois extension, we use the Langlands-Shelstad fundamental lemma in [Ngfrm[o]–0, Theorem 1]. This is the reason why we need the assumption (3) in (1.4), involving the characteristic of κv\kappa_{v}.

1.2.3. Conclusion

Combining Propositions 1.2-1.4, we conclude our main theorem.

Theorem 1.5 (Theorem 7.1).

Let kk be a number field and χ(x)𝒪k[x]\chi(x)\in\mathcal{O}_{k}[x] be an irreducible monic polynomial of degree nn. Let XX be an 𝒪k\mathcal{O}_{k}-scheme representing the set of n×nn\times n matrices whose characteristic polynomial is χ(x)\chi(x). We define

N(X,T)=#{xX(𝒪k)xT},N(X,T)=\#\{x\in X(\mathcal{O}_{k})\mid\lVert x\rVert\leq T\},

for T>0T>0, where the norm \lVert\cdot\rVert is defined in (1.1).

Suppose that kk and K=k[x]/(χ(x))K=k[x]/(\chi(x)) are totally real, and if kk\neq\mathbb{Q}, we further assume that nn is a prime number. Then we have the following asymptotic formulas.

  1. (1)

    If K/kK/k is not Galois or ramified Galois, then

    N(X,T)CTvΩkk𝒮𝒪v(χ)qvSv(χ).N(X,T)\sim C_{T}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}.
  2. (2)

    If K/kK/k is unramified Galois and splits over all pp-adic places for pnp\leq n, then

    N(X,T)CT(vΩkk𝒮𝒪v(χ)qvSv(χ)+n1).N(X,T)\sim C_{T}\left(\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}+n-1\right).

Here, CTC_{T} is formulated as follows

CT=|Δk|n2+n2RKhK|ΔK|1Rkhk|Δk|1i=2nζk(i)1(2n1πn(n+1)4wni=1nΓ(i2)Tn(n1)2)[k:],C_{T}=\lvert\Delta_{k}\rvert^{\frac{-n^{2}+n}{2}}\frac{R_{K}h_{K}\sqrt{\lvert\Delta_{K}\rvert}^{-1}}{R_{k}h_{k}\sqrt{\lvert\Delta_{k}\rvert}^{-1}}\prod_{i=2}^{n}\zeta_{k}(i)^{-1}\left(\frac{2^{n-1}\pi^{\frac{n(n+1)}{4}}w_{n}}{\prod_{i=1}^{n}\Gamma(\frac{i}{2})}T^{\frac{n(n-1)}{2}}\right)^{[k:\mathbb{Q}]},

and we use the following notations

{RF is the regulator of F for F=k or K;hF is the class number of 𝒪F for F=k or K;ΔF is the discriminant of F/ for F=k or K;wn is the volume of the unit ball in n(n1)2;ζk is the dedekind zeta function of k;Sv(χ) is the 𝒪kv-module length between 𝒪Kv and 𝒪kv[x]/(χ(x));𝒮𝒪v(χ) is the orbital integral for 𝔤𝔩n,kv associated with χ(x) with respect to dgvdtv(cf. Proposition 5.9 and Lemma 3.7).\left\{\begin{array}[]{l}\textit{$R_{F}$ is the regulator of $F$ for $F=k$ or $K$};\\ \textit{$h_{F}$ is the class number of $\mathcal{O}_{F}$ for $F=k$ or $K$};\\ \textit{$\Delta_{F}$ is the discriminant of $F/\mathbb{Q}$ for $F=k$ or $K$};\\ \textit{$w_{n}$ is the volume of the unit ball in $\mathbb{R}^{\frac{n(n-1)}{2}}$};\\ \textit{$\zeta_{k}$ is the dedekind zeta function of $k$};\\ \textit{$S_{v}(\chi)$ is the $\mathcal{O}_{k_{v}}$-module length between $\mathcal{O}_{K_{v}}$ and $\mathcal{O}_{k_{v}}[x]/(\chi(x))$};\\ \textit{$\mathcal{SO}_{v}(\chi)$ is the orbital integral for $\mathfrak{gl}_{n,k_{v}}$ associated with $\chi(x)$ with respect to $\frac{dg_{v}}{dt_{v}}$}\\ \textit{(cf. Proposition \ref{prop:result_case:trivial} and Lemma \ref{cor:compareclassic})}.\end{array}\right.

In Proposition 7.3 (respectively, Proposition 7.4), we will provide a closed formula for the product vΩkk𝒮𝒪v(χ)\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi) when n=2n=2 or n=3n=3 (respectively, when 𝒪k[x]/(χ(x))\mathcal{O}_{k}[x]/(\chi(x)) is a Bass order).

Remark 1.6.

According to [Yun13, Theorem 1.5], 𝒮𝒪v(χ)\mathcal{SO}_{v}(\chi) is an integer, which is a \mathbb{Z}-polynomial in qvq_{v}, whose leading term is qvSv(χ)q_{v}^{S_{v}(\chi)}. Since Sv(χ)=0S_{v}(\chi)=0 for all but finitely many places vΩkkv\in\Omega_{k}\setminus\infty_{k}, the product vΩkk𝒮𝒪v(χ)qvSv(χ)\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}} is a finite product.

Remark 1.7.

In this remark, we explain how the assumptions in (1.4) affect the main steps of our argument.

  1. (1)

    Since we assume that kk is totally real, for the integration on X(kv,T)X(k_{v},T) where vkv\in\infty_{k}, we can apply the theory of \mathbb{R}-manifolds (cf. Propsition 5.6-5.8).

    On the other hand, by virtue of the assumption that KK is totally real, Proposition 5.5 yields that the Brauer evaluations for Archimedean places are trivial. Moreover, this condition enables us to describe the stabilizer Tx0,kv\mathrm{T}_{x_{0},k_{v}}, for vkv\in\infty_{k}, in Section 3.2.2. This description affects the computations in Proposition 5.2.

  2. (2)

    The assumption (2) in (1.4) implies that the Brauer evaluation is non-trivial only if K/kK/k is an abelian extension, as explained in Proposition 5.1, which enables us to use Proposion 5.2.

    This assumption also facilitates figuring out an endoscopic group associated with a local integration for kvk_{v}, in Lemma 6.6, when Kv/kvK_{v}/k_{v} is unramified.

  3. (3)

    As we explained in Section 1.2.2, we assumed (3) in (1.4) in order to use the Langlands-Shelstad fundamental fundamental lemma for the Lie algebra 𝔰𝔩n\mathfrak{sl}_{n} of SLn\mathrm{SL}_{n} over kvk_{v}, where Kv/kvK_{v}/k_{v} is unramified.

Organizations. We organize this paper as follows. In Section 2, we observe the structure of XX as a homogeneous space and investigate the related objects. In Section 3, we introduce the Tamagawa measures on homogeneous spaces and the canonical measure on XX which is used in our local calculations. To apply Proposition 1.3, we define the notion of Brauer evaluation in Section 4. The description of Brauer evaluation and the computation of local integrations are in Section 5-6. In Section 7, we provide the asymptotic formula for N(X,T)N(X,T), in terms of the orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n}, and we refer to the closed formula of orbital integrals of 𝔤𝔩n\mathfrak{gl}_{n} in [CKL] and [CHL] for certain cases.

Acknowledgments. We would like to thank our advisor Sungmun Cho for suggesting this problem and encouraging us, and Sug Woo Shin for helpful comments on Section 6. We also thank Seewoo Lee for meaningful discussions on the exterior product of differential forms and Fei Xu for his lecture note on Brauer-Manin obstruction, which was given at POSTECH in 2019.

1.3. Notations

  • Let kk be a number field with ring of integers 𝒪k\mathcal{O}_{k}, and k¯\bar{k} be an algebraic closure of kk.

  • Suppose that AA is a commutative 𝒪k\mathcal{O}_{k}-algebra. We define the following schemes over AA.

    {GLn,A: the general linear group scheme over A𝔤𝔩n,A: the Lie algebra of GLn,A;SLn,A: the special linear group scheme over A𝔰𝔩n,A: the Lie algebra of SLn,A;Mn,A: the scheme over A representing the set of n×n matrices.\left\{\begin{array}[]{l}\textit{$\mathrm{GL}_{n,A}:$ the general linear group scheme over $A$, $\mathfrak{gl}_{n,A}:$ the Lie algebra of $\mathrm{GL}_{n,A}$};\\ \textit{$\mathrm{SL}_{n,A}:$ the special linear group scheme over $A$, $\mathfrak{sl}_{n,A}:$ the Lie algebra of $\mathrm{SL}_{n,A}$};\\ \textit{$\mathrm{M}_{n,A}:$ the scheme over $A$ representing the set of $n\times n$ matrices.}\end{array}\right.

    If there is no confusion, we sometimes omit AA in the subscript to express schemes over kk.

  • Let χ(x)𝒪k[x]\chi(x)\in\mathcal{O}_{k}[x] be an irreducible monic polynomial of degree nn. We define XX to be the closed subscheme of Mn,𝒪k\mathrm{M}_{n,\mathcal{O}_{k}} representing the set of n×nn\times n matrices whose characteristic polynomial is χ(x)\chi(x).

  • Let Ωk\Omega_{k} be the set of places and k\infty_{k} be the set of Archimedean places. For vΩkv\in\Omega_{k}, we denote the normalized absolute value associated with vv by ||v|\cdot|_{v} and the completion with respect to ||v|\cdot|_{v} by kvk_{v}.

  • For vΩkkv\in\Omega_{k}\setminus\infty_{k}, we define the following notations

    {𝒪kv: the ring of integers of kv;πv: a uniformizer of 𝒪kv;κv: the residue field of 𝒪kv;qv: the cardinality of the residue field κv.\left\{\begin{array}[]{l}\mathcal{O}_{k_{v}}:\textit{ the ring of integers of $k_{v}$};\\ \pi_{v}:\textit{ a uniformizer of $\mathcal{O}_{k_{v}}$};\\ \kappa_{v}:\textit{ the residue field of $\mathcal{O}_{k_{v}}$};\\ q_{v}:\textit{ the cardinality of the residue field $\kappa_{v}$}.\end{array}\right.

    For an element xkvx\in k_{v}, the exponential order of xx with respect to the maximal ideal in 𝒪kv\mathcal{O}_{k_{v}} is written by ordv(x)\operatorname{ord}_{v}(x). We then have that |x|v=qvordv(x)|x|_{v}=q_{v}^{-\operatorname{ord}_{v}(x)}.

  • We define K=k[x]/(χ(x))K=k[x]/(\chi(x)) with ring of integers 𝒪K\mathcal{O}_{K}. For vΩkv\in\Omega_{k}, we define Kv=kv[x]/(χ(x))K_{v}=k_{v}[x]/(\chi(x)) with ring of integers 𝒪Kv\mathcal{O}_{K_{v}}.

  • For vΩkv\in\Omega_{k}, let Bv(χ)B_{v}(\chi) be an index set in bijection with the irreducible factors χv,i\chi_{v,i} of χ\chi over kvk_{v}. For iBv(χ)i\in B_{v}(\chi), we define the following notations

    {Kv,i=kv[x]/(χv,i(x)) with ring of integers 𝒪Kv,i;κKv,i: the residue field of 𝒪Kv,i.\left\{\begin{array}[]{l}\textit{$K_{v,i}=k_{v}[x]/(\chi_{v,i}(x))$ with ring of integers $\mathcal{O}_{K_{v,i}}$};\\ \kappa_{K_{v,i}}:\textit{ the residue field of $\mathcal{O}_{K_{v,i}}$}.\end{array}\right.

    Here, we note that KviBv(χ)Kv,iK_{v}\cong\prod_{i\in B_{v}(\chi)}K_{v,i} and 𝒪KviBv(χ)𝒪Kv,i\mathcal{O}_{K_{v}}\cong\prod_{i\in B_{v}(\chi)}\mathcal{O}_{K_{v,i}}.

  • For a finite field extension E/FE/F where FF is \mathbb{Q} or kvk_{v}, let ΔE/F\Delta_{E/F} be the discriminant ideal of E/FE/F.

    • If F=F=\mathbb{Q}, then we denote ΔE/\Delta_{E/\mathbb{Q}} by ΔE\Delta_{E}, and |ΔE|\lvert\Delta_{E}\rvert by the absolute value of a genearator of ΔE\Delta_{E} as an ideal in \mathbb{Z}.

    • If F=kvF=k_{v}, then ordv(ΔE/kv)\operatorname{ord}_{v}(\Delta_{E/k_{v}}) (resp. |ΔE/kv|v|\Delta_{E/k_{v}}|_{v}) denotes the exponential order (resp. the normalized absolute value) of a generator of ΔE/kv\Delta_{E/k_{v}} as an ideal in 𝒪kv\mathcal{O}_{k_{v}}.

  • For a field FF, let ΔfF\Delta_{f}\in F be the discriminant of a polynomial f(x)F[x]f(x)\in F[x].

  • We define norms for xX(k)x\in X(k) by

    xv=i,j=1n|xij|v2 and x=maxvkxv,\lVert x\rVert_{v}=\sqrt{\sum_{i,j=1}^{n}|x_{ij}|_{v}^{2}}\ \ \text{ and }\ \lVert x\rVert=\max_{v\in\infty_{k}}\lVert x\rVert_{v},

    where xx embeds to (xij)Mn(k)(x_{ij})\in\mathrm{M}_{n}(k). For T>0T>0, we define

    N(X,T)=#{xX(𝒪k)xT}.N(X,T)=\#\{x\in X(\mathcal{O}_{k})\mid\lVert x\rVert\leq T\}.

    We note that N(X,T)N(X,T) is finite since 𝒪k\mathcal{O}_{k} is discrete in kvk_{v} for each Archimendian place vkv\in\infty_{k}.

  • For two functions A(T)A(T) and B(T)B(T) for TT, we denote A(T)B(T)A(T)\sim B(T) if limTA(T)B(T)=1\lim\limits_{T\rightarrow\infty}\frac{A(T)}{B(T)}=1.

2. Homogeneous space XX

2.1. Homogeneous space

In this section, we observe that XX is a homogeneous space of both GLn\mathrm{GL}_{n} and SLn\mathrm{SL}_{n}. We write χ(x)=xn+i=0n1aixi\chi(x)=x^{n}+\sum_{i=0}^{n-1}a_{i}x^{i} where ai𝒪ka_{i}\in\mathcal{O}_{k} for 0in10\leq i\leq n-1. To regard XX as a homogeneous space of GLn\mathrm{GL}_{n} (resp. SLn\mathrm{SL}_{n}), we fix an integral matrix x0X(𝒪k)x_{0}\in X(\mathcal{O}_{k}) whose characteristic polynomial is χ(x)\chi(x). For example, we can choose x0x_{0} as the companion matrix of χ(x)\chi(x). We define a map

(2.1) φGLn:GLnX(resp. φSLn:SLnX),gg1x0g.\varphi_{\mathrm{GL}_{n}}:\mathrm{GL}_{n}\rightarrow X\ (\text{resp. }\varphi_{\mathrm{SL}_{n}}:\mathrm{SL}_{n}\rightarrow X),\ g\mapsto g^{-1}x_{0}g.

We define a right GLn\mathrm{GL}_{n}-action (resp. SLn\mathrm{SL}_{n}-action) on XX by the conjugation xg=g1xgx\cdot g=g^{-1}xg, so that φGLn\varphi_{\mathrm{GL}_{n}} (resp. φSLn\varphi_{\mathrm{SL}_{n}}) is an equivariant map under the right action of GLn\mathrm{GL}_{n} (resp. SLn\mathrm{SL}_{n}).

Proposition 2.1.
  1. (1)

    XX is a homogeneous space of GLn\mathrm{GL}_{n} (resp. SLn\mathrm{SL}_{n}) with respect to conjugation by GLn\mathrm{GL}_{n} (resp. SLn\mathrm{SL}_{n}) and φGLn\varphi_{\mathrm{GL}_{n}} (resp. φSLn\varphi_{\mathrm{SL}_{n}}) induces an following isomorphism

    XTx0\GLn(resp.XSx0\SLn),X\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL_{n}}\ (resp.\ X\cong\mathrm{S}_{x_{0}}\backslash\mathrm{SL}_{n}),

    where Tx0\mathrm{T}_{x_{0}} (resp. Sx0\mathrm{S}_{x_{0}}) denotes the stabilizer of x0x_{0} under the GLn\mathrm{GL}_{n}-action (resp. the SLn\mathrm{SL}_{n}-action) on XX.

  2. (2)

    We have the following isomorphism for the stabilizer of x0x_{0}

    Tx0RK/k(𝔾m,K) (resp. Sx0RK/k(1)(𝔾m,K)),\mathrm{T}_{x_{0}}\cong\mathrm{R}_{K/k}(\mathbb{G}_{m,K})\textit{ $($resp. $\mathrm{S}_{x_{0}}\cong\mathrm{R}^{(1)}_{K/k}(\mathbb{G}_{m,K}))$},

    where we use the following notations:

    {RK/k(𝔾m,K) is the Weil restriction of 𝔾m,K and;RK/k(1)(𝔾m,K):=ker(NmK/k:RK/k(𝔾m,K)𝔾m,k) is the norm-1 torus of K/k.\left\{\begin{array}[]{l}\textit{$\mathrm{R}_{K/k}(\mathbb{G}_{m,K})$ is the Weil restriction of $\mathbb{G}_{m,K}$ and};\\ \textit{$\mathrm{R}^{(1)}_{K/k}(\mathbb{G}_{m,K}):=\ker(\operatorname{Nm}_{K/k}:\mathrm{R}_{K/k}(\mathbb{G}_{m,K})\to\mathbb{G}_{m,k})$ is the norm-1 torus of $K/k$}.\end{array}\right.
Proof.

Since every square matrix over a field has a rational canonical form determined by its characteristic polynomial, for xX(k¯)x\in X(\bar{k}), there exists gGLn(k¯)g\in\mathrm{GL}_{n}(\bar{k}) such that x=g1x0gx=g^{-1}x_{0}g. Therefore, XX is a homogeneous space of GLn\mathrm{GL}_{n}. Similarly, we can show that XX is also a homogeneous space of SLn\mathrm{SL}_{n} by choosing h=gdetgnSLn(k¯)h=\frac{g}{\sqrt[n]{\det g}}\in\mathrm{SL}_{n}(\bar{k}). We then obtain the following identifications induced by φGLn\varphi_{\mathrm{GL}_{n}} and φSLn\varphi_{\mathrm{SL}_{n}} defined in (2.1),

XTx0\GLnSx0\SLn.X\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL}_{n}\cong\mathrm{S}_{x_{0}}\backslash\mathrm{SL}_{n}.

We now prove the second statement. Since x0x_{0} has a rational canonical form, there exists an invertible matrix QGLn(k)Q\in\mathrm{GL}_{n}(k) such that

(2.2) x0=Q1(00a010a101an1)Q.x_{0}=Q^{-1}\begin{pmatrix}0&\cdots&0&-a_{0}\\ 1&\cdots&0&-a_{1}\\ \vdots&\ddots&\vdots&\vdots\\ 0&\cdots&1&-a_{n-1}\\ \end{pmatrix}Q.

For each 1in1\leq i\leq n, we define fiK=k[x]/(χ(x))f_{i}\in K=k[x]/(\chi(x)) by

fi=k=1nQkixk1.f_{i}=\sum_{k=1}^{n}Q_{ki}x^{k-1}.

Since {1,x,,xn1}\{1,x,\ldots,x^{n-1}\} is a kk-basis of KK, {f1,f2,,fn}\{f_{1},f_{2},\ldots,f_{n}\} is also a basis.

For each kk-algebra RR, we now construct an explicit bijection Tx0(R)RK/k(𝔾m,K)(R)\mathrm{T}_{x_{0}}(R)\cong\mathrm{R}_{K/k}(\mathbb{G}_{m,K})(R). Let VV be a free RR-module R[x]/(χ(x))R[x]/(\chi(x)). With respect to the basis {f1,,fn}\{f_{1},\ldots,f_{n}\} of VV, we have the following identification

Φ:Mn(R)EndR(V).\Phi:\mathrm{M}_{n}(R)\xrightarrow{\sim}\mathrm{End}_{R}(V).

Since the companion matrix in (2.2) represents the left-multiplication by xx with respect to the basis {1,x,,xn1}\{1,x,\ldots,x^{n-1}\}, we have that Φ(x0)\Phi(x_{0}) equals to (f(x)xf(x))EndR(V)(f(x)\mapsto xf(x))\in\operatorname{End}_{R}(V) by the change of basis.

For gMn(R)g\in\mathrm{M}_{n}(R), gx0=x0ggx_{0}=x_{0}g in Mn(R)\mathrm{M}_{n}(R) if and only if Φ(g)(xv)=xΦ(g)(v)\Phi(g)(xv)=x\Phi(g)(v) for each vVv\in V. We then identify the stabilizer Tx0(R)Mn(R)\mathrm{T}_{x_{0}}(R)\subset\mathrm{M}_{n}(R) with the set of RR-linear automorphisms on VV that commute with xx, under the isomorphism Φ\Phi. By the RR-linearity, we also have

(2.3) Tx0(R)={gMn(R)g is invertible and Φ(g)(v1v2)=v1Φ(g)(v2) for all v1,v2V}.\mathrm{T}_{x_{0}}(R)=\{g\in\mathrm{M}_{n}(R)\mid g\text{ is invertible and }\Phi(g)(v_{1}v_{2})=v_{1}\Phi(g)(v_{2})\text{ for all }v_{1},v_{2}\in V\}.

We now define the following RR-linear map

ΦR:Tx0(R)(R[x]/(χ(x)))×,gΦ(g)(1R),\Phi_{R}:\mathrm{T}_{x_{0}}(R)\to(R[x]/(\chi(x)))^{\times},\ g\mapsto\Phi(g)(1_{R}),

where 1R1_{R} is the identity element in RR. The image of ΦR\Phi_{R} is contained in (R[x]/(χ(x)))×(R[x]/(\chi(x)))^{\times} since, for gTx0(R)g\in\mathrm{T}_{x_{0}}(R),

ΦR(g)ΦR(g1)=Φ(g)(Φ(g)1(1R))=1R.\Phi_{R}(g)\Phi_{R}(g^{-1})=\Phi(g)(\Phi(g)^{-1}(1_{R}))=1_{R}.

We assert that ΦR\Phi_{R} is a bijection by constructing the inverse. For v(R[x]/(χ(x)))×v\in(R[x]/(\chi(x)))^{\times}, let gvMn(R)g_{v}\in\mathrm{M}_{n}(R) be a matrix whose ii-th column consists of the coefficients of fivVf_{i}v\in V with respect to the basis {f1,,fn}\{f_{1},\ldots,f_{n}\}. Then we have Φ(gv)(f)=fv\Phi(g_{v})(f)=fv for all fVf\in V. Since vv is invertible, gvg_{v} is contained in Tx0(R)\mathrm{T}_{x_{0}}(R) using the identification (2.3). Thus, (R[x]/(χ(x)))×Tx0(R),vgv(R[x]/(\chi(x)))^{\times}\to\mathrm{T}_{x_{0}}(R),\ v\mapsto g_{v} defines an inverse of ΦR\Phi_{R}. One can deduce that ΦR\Phi_{R} is functorial in RR and this concludes that Tx0RK/k(𝔾m,K)\mathrm{T}_{x_{0}}\cong\mathrm{R}_{K/k}(\mathbb{G}_{m,K}) as kk-schemes.

Moreover, since NmK/k:RK/k(𝔾m,K)𝔾m,k\mathrm{Nm}_{K/k}:\mathrm{R}_{K/k}(\mathbb{G}_{m,K})\to\mathbb{G}_{m,k} commutes with det:GLn𝔾m,k\det:\mathrm{GL}_{n}\to\mathbb{G}_{m,k}, it follows that Sx0kerNmK/k=RK/k(1)(𝔾m,K)\mathrm{S}_{x_{0}}\cong\ker\mathrm{Nm}_{K/k}=\mathrm{R}^{(1)}_{K/k}(\mathbb{G}_{m,K}). ∎

2.2. Conjugacy class of GLn(kv)\mathrm{GL}_{n}(k_{v}) and SLn(kv)\mathrm{SL}_{n}(k_{v}) in X(kv)X(k_{v})

In this subsection, we will recall useful properties of a homogeneous space XX. In the previous subsection, we proved that XX over kk is identified as follows.

XTx0\GLnSx0\SLn.X\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL}_{n}\cong\mathrm{S}_{x_{0}}\backslash\mathrm{SL}_{n}.

By [EvdGM, 4.30], the homogeneous space structure is preserved under base change and thus we have

XkvTx0,kv\GLn,kvSx0,kv\SLn,kv,X_{k_{v}}\cong\mathrm{T}_{x_{0},k_{v}}\backslash\mathrm{GL}_{n,k_{v}}\cong\mathrm{S}_{x_{0},k_{v}}\backslash\mathrm{SL}_{n,k_{v}},

for any place vΩkv\in\Omega_{k}. The structures of Tx0,kv\mathrm{T}_{x_{0},k_{v}} and Sx0,kv\mathrm{S}_{x_{0},k_{v}} are described in the following lemma.

Lemma 2.2.

We have the following isomorphisms

{Tx0,kviBv(χ)RKv,i/kv(𝔾m,Kv,i);Sx0,kvker(iBv(χ)NmKv,i/kv:iBv(χ)RKv,i/kv(𝔾m,Kv,i)𝔾m,kv),\left\{\begin{array}[]{l}\mathrm{T}_{x_{0},k_{v}}\cong\prod\limits_{i\in B_{v}(\chi)}\mathrm{R}_{K_{v,i}/k_{v}}(\mathbb{G}_{m,K_{v,i}});\\ \mathrm{S}_{x_{0},k_{v}}\cong\ker\Big{(}\prod\limits_{i\in B_{v}(\chi)}\operatorname{Nm}_{K_{v,i}/k_{v}}:\prod\limits_{i\in B_{v}(\chi)}\mathrm{R}_{K_{v,i}/k_{v}}(\mathbb{G}_{m,K_{v,i}})\rightarrow\mathbb{G}_{m,k_{v}}\Big{)},\end{array}\right.

where

{Bv(χ) is an index set in bijection with the irreducible factors χi of χ over kv;Kv=kv[x]/(χ(x)) and Kv,i=kv[x]/(χi(x)).\left\{\begin{array}[]{l}\textit{$B_{v}(\chi)$ is an index set in bijection with the irreducible factors $\chi_{i}$ of $\chi$ over $k_{v}$};\\ \textit{$K_{v}=k_{v}[x]/(\chi(x))$ and $K_{v,i}=k_{v}[x]/(\chi_{i}(x))$.}\end{array}\right.
Proof.

The describtion for Tx0,kv\mathrm{T}_{x_{0},k_{v}} follows from [Vos98, 3.12]. For the second description, we consider the following exact sequence of algebraic groups

(2.4) 1Sx0,kvTx0,kv𝔾m,kv1.1\to\mathrm{S}_{x_{0},k_{v}}\to\mathrm{T}_{x_{0},k_{v}}\to{\mathbb{G}}_{m,k_{v}}\to 1.

We claim that the norm map for an étale algebra iBv(χ)Kv,i\prod_{i\in B_{v}(\chi)}K_{v,i} over kvk_{v} is the product of norms for Kv,iK_{v,i} for iBv(χ)i\in B_{v}(\chi).

We verify the statements for Sx0,kv\mathrm{S}_{x_{0},k_{v}} on AA-points for each kvk_{v}-algebra AA. We fix an element xAx\in A and define ϕ:AkKAkK\phi:A\otimes_{k}K\to A\otimes_{k}K to be the left-multiplication by x1x\otimes 1. Under the following composition of isomorphisms

AkK=(Akvkv)kKAkv(kvkK)AkviBv(χ)Kv,iiBv(χ)AkvKv,i,A\otimes_{k}K=(A\otimes_{k_{v}}k_{v})\otimes_{k}K\cong A\otimes_{k_{v}}(k_{v}\otimes_{k}K)\cong A\otimes_{k_{v}}\prod_{i\in B_{v}(\chi)}K_{v,i}\cong\prod_{i\in B_{v}(\chi)}A\otimes_{k_{v}}K_{v,i},

the transfer of ϕ\phi from iBv(χ)AkvKv,i\prod_{i\in B_{v}(\chi)}A\otimes_{k_{v}}K_{v,i} to itself is also the left-multiplication by x1x\otimes 1. We then have

NmAkK/A(x)=detϕ=iBv(χ)detϕi=iBv(χ)NmAkvKv,i/A(x),\operatorname{Nm}_{A\otimes_{k}K/A}(x)=\det\phi=\prod_{i\in B_{v}(\chi)}\det\phi_{i}=\prod_{i\in B_{v}(\chi)}\operatorname{Nm}_{A\otimes_{k_{v}}K_{v,i}/A}(x),

where ϕi:AkvKv,iAkvKv,i\phi_{i}:A\otimes_{k_{v}}K_{v,i}\to A\otimes_{k_{v}}K_{v,i} is the left-multiplication on AkvKv,iA\otimes_{k_{v}}K_{v,i} by x1x\otimes 1. This proves the claim and concludes the lemma. ∎

We now describe the orbits of X(kv)X(k_{v}) under the GLn(kv)\mathrm{GL}_{n}(k_{v})-action and the SLn(kv)\mathrm{SL}_{n}(k_{v})-action, respectively.

Proposition 2.3.

There is only one GLn(kv)\mathrm{GL}_{n}(k_{v})-orbit in X(kv)X(k_{v}) and thus X(kv)Tx0(kv)\GLn(kv)X(k_{v})\cong\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v}).

Proof.

We consider the following exact sequence for the homogeneous space XkvX_{k_{v}},

1Tx0,kvGLn,kvXkv1.1\to\mathrm{T}_{x_{0},k_{v}}\to\mathrm{GL}_{n,k_{v}}\to X_{k_{v}}\to 1.

This induces the following long exact sequence

GLn(kv)X(kv)H1(kv,Tx0,kv).\cdots\to\mathrm{GL}_{n}(k_{v})\to X(k_{v})\to\mathrm{H}^{1}(k_{v},\mathrm{T}_{x_{0},k_{v}})\to\cdots.

Using Lemma 2.2, by [Vos98, 3.12] and Hilbert’s Theorem 90, we have

H1(kv,Tx0,kv)iBv(χ)H1(kv,RKv,i/kv(𝔾m,Kv,i))iBv(χ)H1(Kv,i,𝔾m,Kv,i)=1,\mathrm{H}^{1}(k_{v},\mathrm{T}_{x_{0},k_{v}})\cong\prod_{i\in B_{v}(\chi)}\mathrm{H}^{1}(k_{v},\mathrm{R}_{K_{v,i}/k_{v}}(\mathbb{G}_{m,K_{v,i}}))\cong\prod_{i\in B_{v}(\chi)}\mathrm{H}^{1}(K_{v,i},\mathbb{G}_{m,K_{v,i}})=1,

where KkkviBv(χ)Kv,iK\otimes_{k}k_{v}\cong\prod_{i\in B_{v}(\chi)}K_{v,i}. ∎

Proposition 2.4.

The set of SLn(kv)\mathrm{SL}_{n}(k_{v})-orbits within X(kv)X(k_{v}) is in bijection with H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}).

Proof.

We consider the following exact sequence for the homogeneous space XkvX_{k_{v}},

1Sx0,kvSLn,kvXkv1.1\to\mathrm{S}_{x_{0},k_{v}}\to\mathrm{SL}_{n,k_{v}}\to X_{k_{v}}\to 1.

This induces the following long exact sequence

SLn(kv)X(kv)H1(kv,Sx0,kv)H1(kv,SLn,kv).\cdots\to\mathrm{SL}_{n}(k_{v})\to X(k_{v})\to\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})\to\mathrm{H}^{1}(k_{v},\mathrm{SL}_{n,k_{v}})\to\cdots.

Since H1(kv,SLn,kv)=1\mathrm{H}^{1}(k_{v},\mathrm{SL}_{n,k_{v}})=1, it follows that the set of SLn(kv)\mathrm{SL}_{n}(k_{v})-orbits is in bijection with H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}). ∎

Remark 2.5.

If KvK_{v} is a field extension of kvk_{v}, then H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) is isomorphic to Gal(Kv/kv)ab\operatorname{Gal}(K_{v}/k_{v})^{ab}. Indeed, the following exact sequence is induced by (2.4),

Kv×NmKv/kvkv×H1(kv,Sx0,kv)H1(kv,Tx0,kv).K_{v}^{\times}\xrightarrow{\operatorname{Nm}_{K_{v}/k_{v}}}k_{v}^{\times}\to\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})\to\mathrm{H}^{1}(k_{v},\mathrm{T}_{x_{0},k_{v}}).

As shown in the proof of Proposition 2.3, we have H1(kv,Tx0,kv)=0\mathrm{H}^{1}(k_{v},\mathrm{T}_{x_{0},k_{v}})=0. Thus, H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) is isomorphic to kv×/NmKv/kvKv×k_{v}^{\times}/\operatorname{Nm}_{K_{v}/k_{v}}K_{v}^{\times} by (2.4) and this quotient is isomorphic to Gal(Kv/kv)ab\operatorname{Gal}(K_{v}/k_{v})^{ab} by [Ser79, Section 3, XI].

Definition 2.6.

We define x0,v\mathcal{R}_{x_{0},v} to be the set of representatives of each SLn(kv)\mathrm{SL}_{n}(k_{v})-orbits in X(kv)X(k_{v}). For each x0x0,vx_{0}^{\prime}\in\mathcal{R}_{x_{0},v}, we define zx0z_{x_{0}^{\prime}} to be the element in H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) corresponding to the orbit x0SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v}) according to Proposition 2.4.

Remark 2.7.

By Proposition 2.4, we can describe X(kv)X(k_{v}) as the following disjoint union.

X(kv)=x0x0,vx0SLn(kv)x0x0,vSx0(kv)\SLn(kv),X(k_{v})=\bigsqcup_{x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}}x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v})\cong\bigsqcup_{x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}}\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v}),

where Sx0\mathrm{S}_{x_{0}^{\prime}} is the stabilizer of x0x_{0}^{\prime} under the SLn\mathrm{SL}_{n}-action.

Remark 2.8.

We remark that each SLn(kv)\mathrm{SL}_{n}(k_{v})-orbit is open in X(kv)X(k_{v}). For each xX(kv)x\in X(k_{v}), we define the equivariant map over kvk_{v}, φx:SLnX\varphi_{x}:\mathrm{SL}_{n}\to X by gxgg\to x\cdot g. By the same argument in Lemma 2.2, one can deduce that the stabilizer StabSLn(kv)(x)\mathrm{Stab}_{\mathrm{SL}_{n}(k_{v})}(x) is isomorphic to ker(iBv(χ)NmKv,i/kv)\ker(\prod_{i\in B_{v}(\chi)}\operatorname{Nm}_{K_{v,i}/k_{v}}) and it is smooth over kvk_{v}. Thus, φx\varphi_{x} is also smooth over kvk_{v} by [EvdGM, Corollary 4.33] and φx(kv)\varphi_{x}(k_{v}) is an open map by [Poo17, Proposition 3.5.73]. Therefore, the image of SLn(kv)\mathrm{SL}_{n}(k_{v}) via φx\varphi_{x}, that is the SLn(kv)\mathrm{SL}_{n}(k_{v})-orbit of xx, is open in X(kv)X(k_{v}).

3. Measures on XX

In this section, we introduce the Tamagawa measure on X(𝔸k)X(\mathbb{A}_{k}), which is used to explain the Hardy-Littlewood expectation in Proposition 1.5. The Tamagawa measure is induced from a gauge form on XX (cf. Definition 3.1), and so we provide various concepts about volume forms.

In Section 3.1, we define the Tamagawa measure on V(𝔸k)V(\mathbb{A}_{k}) in the general setting: VV is a homogeneous space VH\GV\cong H\backslash G over kk where GG and HH are assumed to be connected reductive kk-groups. In Section 3.2, we return to XX in Section 2.1, and describe the Tamgawa measure on X(𝔸k)X({\mathbb{A}}_{k}) using another handleable measure |ωXcan|v\lvert\omega_{X}^{can}\rvert_{v}, which is defined in Section 3.2.2.

3.1. Tamagawa Measure on a homogeneous space

Let VH\GV\cong H\backslash G be a homogeneous space of GG where GG and HH are connected reductive kk-groups. To define the Tamagawa measure on V(𝔸k)V(\mathbb{A}_{k}), we will use a top-degree volume form on VV that is "compatible" with non-vanishing invariant top-degree volume forms on GG and HH (cf. Definition 3.2). In our case where XTx0\GLnSx0\SLnX\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL}_{n}\cong\mathrm{S}_{x_{0}}\backslash\mathrm{SL}_{n}, we will prove that the Tamagawa measure on XX is unique. We mainly follow concepts and backgrounds in [Wei82, Section 2] and [BR95, Section 1].

3.1.1. Gauge forms

Definition 3.1.

For a geometrically irreducible non-singular algebraic variety VV over a field kk, a gauge form on VV is a nowhere-zero and regular differential form in dimVΩV/k(V)\bigwedge^{\dim V}\Omega_{V/k}(V) where ΩV/k\Omega_{V/k} denotes a cotangent sheaf of VV.

From now on, we will simply denote dΩV/k\bigwedge^{d}\Omega_{V/k} by ΩV/kd\Omega_{V/k}^{d}. We assume that VV has a kk-point x0x_{0} whose stabilizer is HH. This gives the canonical map from GG into VV,

(3.1) φG:GV,gx0g,\varphi_{G}:G\rightarrow V,\ g\mapsto x_{0}\cdot g,

which induces an isomorphism H\GVH\backslash G\cong V. Using this identification, we introduce the notion of algebraically matching for gauge forms on homogeneous spaces.

Definition 3.2 ([Wei82, Section 2.4, p24]).

Let ωG\omega_{G}, ωH\omega_{H}, and ωV\omega_{V} be an invariant gauge form on GG, an invariant gauge form on HH, and a GG-invariant gauge form on VV, respectively. Let φGωV\varphi_{G}^{*}\omega_{V} be the pullback of ωV\omega_{V} along the morphism φG\varphi_{G} in (3.1), and let a differential form ω~H\widetilde{\omega}_{H} on GG be a lifting of ωH\omega_{H} such that, for every gGg\in G, ω~H(gh)\widetilde{\omega}_{H}(gh) induces on HH the form ωH(h)\omega_{H}(h) for hHh\in H. Then the form φGωVω~H\varphi_{G}^{*}\omega_{V}\wedge\widetilde{\omega}_{H} is a gauge form which is independent of the choice of a lifting ω~H\widetilde{\omega}_{H}. We say that ωG\omega_{G}, ωH\omega_{H}, and ωV\omega_{V} match together algebraically, if ωG=φGωVω~H\omega_{G}=\varphi_{G}^{*}\omega_{V}\wedge\tilde{\omega}_{H} and we denote it by ωG=ωVωH\omega_{G}=\omega_{V}\cdot\omega_{H}.

We note that GG and HH are unimodular since they are connected reductive kk-groups. As shown in [Wei82, Corollary of Theorem 2.2.2], GG and HH admit translation-invariant gauge forms. Moreover, VV admits a GG-invariant gauge form ωV\omega_{V} by [BR95, Section 1.4]. Following the arguments in [Wei82, p. 24], by multiplying a constant in k×k^{\times} on ωV\omega_{V}, we can assume that ωG=ωVωH\omega_{G}=\omega_{V}\cdot\omega_{H}.

For a gauge form ω\omega on a variety VV over kk, let |ω|v|\omega|_{v} denote the measure on V(kv)V(k_{v}) induced from the canonical Haar measure on kvk_{v}, as in [Wei82, Section 2.2.1], for each vΩkv\in\Omega_{k}. We then have the following proposition in the sentence right below [BR95, Lemma 1.6.4].

Proposition 3.3.

Let ωG,ωH\omega_{G},\omega_{H}, and ωV\omega_{V} be a translation-invariant gauge form on GG, a translation-invariant gauge form on HH, and GG-invariant gauge form on VV, respectively, such that ωG=ωVωH\omega_{G}=\omega_{V}\cdot\omega_{H}. Then we have

(3.2) G(kv)f(g)|ωG|v=H(kv)\G(kv)|ωV|vH(kv)f(hg)|ωH|v.\int_{G(k_{v})}f(g)|\omega_{G}|_{v}=\int_{H(k_{v})\backslash G(k_{v})}|\omega_{V}|_{v}\int_{H(k_{v})}f(hg)|\omega_{H}|_{v}.

Here we note that H(kv)\G(kv)H(k_{v})\backslash G(k_{v}) is an open set in V(kv)V(k_{v}). For triples of measures (|ωG|v,|ωH|v,|ωV|v)(|\omega_{G}|_{v},|\omega_{H}|_{v},|\omega_{V}|_{v}) satisfying (3.2), we say that they match together topologically.

3.1.2. Tamagawa measure

From the previous section, we choose a GG-invariant gauge form ωV\omega_{V} on VH\GV\cong H\backslash G. Using this gauge form, we define the Tamagawa measure on V(𝔸k)V({\mathbb{A}}_{k}) as follows.

Definition 3.4.

We define the Tamagawa measure mVTamm_{V}^{Tam} on V(𝔸k)V(\mathbb{A}_{k}) with respect to ωV\omega_{V} to be

mVTam=|Δk|12dimVvΩk|ωV|v.m_{V}^{Tam}=\lvert\Delta_{k}\rvert^{-\frac{1}{2}\dim V}\prod_{v\in\Omega_{k}}\lvert\omega_{V}\rvert_{v}.
Remark 3.5.

In general, the volume of a compact set vΩkkV(𝒪kv)\prod_{v\in\Omega_{k}\setminus\infty_{k}}V(\mathcal{O}_{k_{v}}) with respect to the non-Archimedean part vΩkk|ωV|v\prod_{v\in\Omega_{k}\setminus\infty_{k}}\lvert\omega_{V}\rvert_{v} of the Tamagawa measure does not converge. To resolve this problem, Ono introduced the convergence factors using the Artin L-function in [Ono65]. However, in the case of XX in Section 2.1, the product vΩkkvol(X(𝒪kv),|ωX|v)\prod_{v\in\Omega_{k}\setminus\infty_{k}}vol(X(\mathcal{O}_{k_{v}}),|\omega_{X}|_{v}) already converges and thus we use the notion for the Tamagawa measure without convergence factors.

The definition of the Tamagawa measure mVTamm_{V}^{Tam} might depend on the choice of a GG-invariant gauge form ωV\omega_{V}. However, the following proposition yields that the Tamgawa measure on XX, in Section 2.1, is uniquely defined regardless of the choice of a gauge form.

Proposition 3.6.

The Tamagawa measure on XX is independent of the choice of a gauge form ωX\omega_{X}.

Proof.

We claim that any gauge form on XX is unique up to a constant factor in k×k^{\times}. A gauge form ωΩX/kdimX(X)\omega\in\Omega_{X/k}^{\dim X}(X) defines an isomorphism 𝒪XΩX/kdimX(X)\mathcal{O}_{X}\cong\Omega_{X/k}^{\dim X}(X) of locally free 𝒪X\mathcal{O}_{X}-modules, by mapping 1ω1\mapsto\omega. For another gauge form ω\omega^{\prime} on XX, ωω1\omega\circ\omega^{\prime-1} defines a nowhere-zero regular automorphism on 𝒪X\mathcal{O}_{X} which corresponds to an element in the unit group of the coordinate ring k[X]×k[X]^{\times}. Thus, we have ω=cω\omega^{\prime}=c\omega for some ck[X]×c\in k[X]^{\times}. Since XX is a homogeneous space of SLn\mathrm{SL}_{n} and Hom(SLn,𝔾m)=1\operatorname{Hom}(\mathrm{SL}_{n},\mathbb{G}_{m})=1, we have k[X]×=k×k[X]^{\times}=k^{\times} by [BR95, Lemma 1.5.1].

For ck×c\in k^{\times}, we have |cω|v=|c|v|ω|v\lvert c\omega\rvert_{v}=\lvert c\rvert_{v}\lvert\omega\rvert_{v}, and the product formula yields that vΩk|c|v=1\prod_{v\in\Omega_{k}}|c|_{v}=1. Therefore, the Tamagawa measure is independent of the choice of a gauge form on XX. ∎

3.2. Measures on X(𝔸k)X(\mathbb{A}_{k}) for XTx0\GLnX\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL}_{n}

We now return to our main task. We note that XTx0\GLnX\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL}_{n} where both GLn\mathrm{GL}_{n} and Tx0\mathrm{T}_{x_{0}} are connected reductive groups. The Tamagawa measure used in (1.5) is therefore given by |Δk|12dimXvΩk|ωX|v|\Delta_{k}|^{-\frac{1}{2}\dim X}\prod_{v\in\Omega_{k}}|\omega_{X}|_{v}, which is independent of the choice of a gauge form ωX\omega_{X} on XX by Proposition 3.6. To clarify the subsequent statements in this section, we fix a translation-invariant gauge form ωGLn\omega_{\mathrm{GL}_{n}} on GLn\mathrm{GL}_{n}, a translation-invariant gauge form ωTx0\omega_{\mathrm{T}_{x_{0}}} on Tx0\mathrm{T}_{x_{0}}, and let ωX\omega_{X} be a GLn\mathrm{GL}_{n}-invariant gauge form on XX such that ωGLn=ωXωTx0\omega_{\mathrm{GL}_{n}}=\omega_{X}\cdot\omega_{\mathrm{T}_{x_{0}}}.

To compute each integration in (1.5), we need an explicit description of the measure |ωX|v|\omega_{X}|_{v} on X(kv)X(k_{v}). To address this, we define a translation-invariant gauge form ωXkvcan\omega_{X_{k_{v}}}^{can} on XkvX_{k_{v}} such that the induced measure |ωXkvcan|v\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v} is suitable to investigate the integration of ξv\xi_{v} for each vΩkv\in\Omega_{k}. After that, we will establish a relation between the Tamagawa measure and vΩk|ωXkvcan|v\prod_{v\in\Omega_{k}}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}.

3.2.1. The standard integral model for Tx0,kv\mathrm{T}_{x_{0},k_{v}} for vΩkkv\in\Omega_{k}\setminus\infty_{k}

To define a translation-invariant volume form on Tx0,kv{\mathrm{T}_{x_{0},k_{v}}} for vΩkkv\in\Omega_{k}\setminus\infty_{k}, we need a precise description of an integral model for Tx0,kv\mathrm{T}_{x_{0},k_{v}}.

For vΩkkv\in\Omega_{k}\setminus\infty_{k}, we recall that the following description of Tx0,kv\mathrm{T}_{x_{0},k_{v}} given in Lemma 2.2,

Tx0,kviBv(χ)RKv,i/kv𝔾m,Kv,i.\mathrm{T}_{x_{0},k_{v}}\cong\prod_{i\in B_{v}(\chi)}\mathrm{R}_{K_{v,i}/k_{v}}\mathbb{G}_{m,K_{v,i}}.

For each iBv(χ)i\in B_{v}(\chi), the component RKv,i/kv𝔾m,Kv,i\mathrm{R}_{K_{v,i}/k_{v}}\mathbb{G}_{m,K_{v,i}} has an integral model, given by the smooth group scheme R𝒪Kv,i/𝒪kv𝔾m,𝒪Kv,i\mathrm{R}_{\mathcal{O}_{K_{v,i}}/\mathcal{O}_{k_{v}}}\mathbb{G}_{m,\mathcal{O}_{K_{v,i}}} over 𝒪kv\mathcal{O}_{k_{v}} (cf. [KP23, B.3.(2)]). Thus, Tx0,kv\mathrm{T}_{x_{0},k_{v}} has a smooth integral structure Tx0,𝒪kv\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}, given by

Tx0,𝒪kv:=iBv(χ)R𝒪Kv,i/𝒪kv𝔾m,𝒪Kv,i.\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}:=\prod_{i\in B_{v}(\chi)}\mathrm{R}_{\mathcal{O}_{K_{v,i}}/\mathcal{O}_{k_{v}}}\mathbb{G}_{m,\mathcal{O}_{K_{v,i}}}.

This is refered to the standard integral model for Tx0,kv\mathrm{T}_{x_{0},k_{v}} and we note that Tx0,𝒪kv(𝒪kv)=iBv(χ)𝒪Kv,i×\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})=\prod_{i\in B_{v}(\chi)}\mathcal{O}_{K_{v,i}}^{\times} is the maximal compact open subgroup of Tx0(kv)\mathrm{T}_{x_{0}}(k_{v}). Moreover, the identity component 𝒯x00\mathcal{T}^{0}_{x_{0}} of the Néron-Raynaud model 𝒯x0\mathcal{T}_{x_{0}} (cf. [BLR90, Chapter 6]) for Tx0,kv\mathrm{T}_{x_{0},k_{v}} coincides with the standard integral model by the description right below [Bit11, Remark 1.2].

3.2.2. Volume forms on XkvTx0,kv\GLn,kvX_{k_{v}}\cong\mathrm{T}_{x_{0},k_{v}}\backslash\mathrm{GL}_{n,k_{v}}

To define ωXkvcan\omega_{X_{k_{v}}}^{can}, we construct the translation-invariant volume forms ωGLn,kvcan\omega_{\mathrm{GL}_{n,k_{v}}}^{can} on GLn,kv\mathrm{GL}_{n,k_{v}} and ωTx0,kvcan\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can} on Tx0,kv\mathrm{T}_{x_{0},k_{v}}. Since our main computation on Archimdean places requires the assumption (1) in (1.4), we assume that both kk and KK are totally real.

For an Archimedean place vkv\in\infty_{k}, by the assumption, we have kvk_{v}\cong\mathbb{R} and χ(x)\chi(x) splits completely over kvk_{v} for all vkv\in\infty_{k}. In this case we define the volume forms on GLn,kv\mathrm{GL}_{n,k_{v}} and Tx0,kv\mathrm{T}_{x_{0},k_{v}} as follows.

  1. (1)

    On GLn,kv\mathrm{GL}_{n,k_{v}}, we define ωGLn,kvcan\omega_{\mathrm{GL}_{n,k_{v}}}^{can} to be a translation-invariant volume form in ΩGLn,kv/kvn2(GLn)\Omega^{n^{2}}_{\mathrm{GL}_{n,k_{v}}/k_{v}}(\mathrm{GL}_{n}) which generates the free \mathbb{Z}-module Hom(n2𝔤𝔩n,(),)\operatorname{Hom}(\bigwedge^{n^{2}}\mathfrak{gl}_{n,\mathbb{Z}}(\mathbb{Z}),\mathbb{Z}), following [GG99, Section 9]. We note that a translation-invariant volume form on GLn,kv\mathrm{GL}_{n,k_{v}} is a form of

    cdetn1i,jndxij\frac{c}{\det^{n}}\bigwedge_{1\leq i,j\leq n}dx_{ij}

    for some ckv×c\in k_{v}^{\times}. To generate Hom(n2𝔤𝔩n,(),)\operatorname{Hom}(\bigwedge^{n^{2}}\mathfrak{gl}_{n,\mathbb{Z}}(\mathbb{Z}),\mathbb{Z}), the constant cc must be ±1\pm 1. We note that both choices induce the same measure on GLn(kv)\mathrm{GL}_{n}(k_{v}).

  2. (2)

    Since kk and KK are totally real, we have

    Tx0,kvRKv/kv(𝔾m,Kv)𝔾m,kvn.\mathrm{T}_{x_{0},k_{v}}\cong\mathrm{R}_{K_{v}/k_{v}}(\mathbb{G}_{m,K_{v}})\cong\mathbb{G}_{m,k_{v}}^{n}.

    On Tx0,kv\mathrm{T}_{x_{0},k_{v}}, we define ωTx0,kvcan\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can} to be a pullback of a translation-invariant volume form in Ω𝔾m,kvn/kvn(𝔾m,kvn)\Omega^{n}_{\mathbb{G}_{m,k_{v}}^{n}/k_{v}}(\mathbb{G}_{m,k_{v}}^{n}) which generates the free \mathbb{Z}-module Hom(n𝔾a,n(),)\operatorname{Hom}(\bigwedge^{n}\mathbb{G}_{a,\mathbb{Z}}^{n}(\mathbb{Z}),\mathbb{Z}), following [GG99, Section 9]. We note that a translation-invariant volume form on 𝔾m,kvn\mathbb{G}^{n}_{m,k_{v}} is a form of

    ci=1ndxixic\bigwedge_{i=1}^{n}\frac{dx_{i}}{x_{i}}

    for some ckv×c\in k_{v}^{\times}. To generate Hom(n2𝔾a,n(),)\operatorname{Hom}(\bigwedge^{n^{2}}\mathbb{G}^{n}_{a,\mathbb{Z}}(\mathbb{Z}),\mathbb{Z}), the constant cc must be ±1\pm 1. We note that both choices induce the same measure on Tx0(kv)\mathrm{T}_{x_{0}}(k_{v}).

On the other hand, for a non-Archimedean place vΩkkv\in\Omega_{k}\setminus\infty_{k}, we define the volume forms on GLn,kv\mathrm{GL}_{n,k_{v}} and Tx0,kv\mathrm{T}_{x_{0},k_{v}} as follows.

  1. (1)

    On GLn,kv\mathrm{GL}_{n,k_{v}}, we define ωGLn,kvcan\omega_{\mathrm{GL}_{n,k_{v}}}^{can} to be a translation-invariant volume form in ΩGLn,kv/kvn2(GLn,kv)\Omega^{n^{2}}_{\mathrm{GL}_{n,k_{v}}/k_{v}}(\mathrm{GL}_{n,k_{v}}) which generates the 𝒪kv\mathcal{O}_{k_{v}}-submodule Hom(n2𝔤𝔩n,𝒪kv(𝒪kv),𝒪kv)\operatorname{Hom}(\bigwedge^{n^{2}}\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}). Then the volume form ωGLn,kvcan\omega_{\mathrm{GL}_{n,k_{v}}}^{can} has good reduction (mod πv\pi_{v}) in the sense of [Gro97, Section 4]. We then have the following equation by [Gro97, Proposition 4.7],

    vol(GLn,𝒪kv(𝒪kv),|ωGLn,kvcan|v)=#GLn,𝒪kv(κv)qvn2.vol(\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v})=\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})}{q_{v}^{n^{2}}}.
  2. (2)

    On Tx0,kv\mathrm{T}_{x_{0},k_{v}}, we define ωTx0,kvcan\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can} to be a translation-invariant volume form in ΩTx0,kv/kvn(Tx0,kv)\Omega^{n}_{\mathrm{T}_{x_{0},k_{v}}/k_{v}}(\mathrm{T}_{x_{0},k_{v}}) which generates the 𝒪kv\mathcal{O}_{k_{v}}-submodule Hom(nLie(Tx0,𝒪kv)(𝒪kv),𝒪kv)\mathrm{Hom}(\bigwedge^{n}\mathrm{Lie}(\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}})(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}). Since 𝒯x00Tx0,𝒪kv\mathcal{T}_{x_{0}}^{0}\cong\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}, the volume form ωTx0,kvcan\omega_{\mathrm{T}_{x_{0},k_{v}}^{can}} has good redcution (mod πv\pi_{v}) in the sense of [Gro97, Section 4]. We then have the following equation by [Bit11, Proposition 2.14],

    vol(Tx0,𝒪kv(𝒪kv),|ωTx0,kvcan|v)=#Tx0,𝒪kv(κv)qvn.vol(\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),|\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can}|_{v})=\frac{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})}{q_{v}^{n}}.

In both two cases, for vΩkv\in\Omega_{k}, we define ωXkvcan\omega_{X_{k_{v}}}^{can} on XkvTx0,kv\GLn,kvX_{k_{v}}\cong\mathrm{T}_{x_{0},k_{v}}\backslash\mathrm{GL}_{n,k_{v}} to be a translation-invariant volume form such that ωGLn,kvcan=ωXkvcanωTx0,kvcan\omega_{\mathrm{GL}_{n,k_{v}}}^{can}=\omega_{X_{k_{v}}}^{can}\cdot\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can}. Then by Proposition 3.3, |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} defines a measure on Tx0(kv)\GLn(kv)\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v}) which matches topologically together with |ωGLn,kvcan|v|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v} and |ωTx0,kvcan|v|\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can}|_{v}.

For vΩkkv\in\Omega_{k}\setminus\infty_{k}, comparing with the quotient measure dgvdtv\frac{dg_{v}}{dt_{v}} induced from the canonically normalized Haar measures dgvdg_{v} on GLn(kv)\mathrm{GL}_{n}(k_{v}) and dtvdt_{v} on Tx0(kv)\mathrm{T}_{x_{0}}(k_{v}), we have the following relation.

Lemma 3.7.

Suppose that vΩkkv\in\Omega_{k}\setminus\infty_{k}. Let dgvdtv\frac{dg_{v}}{dt_{v}} be the quotient measure on X(kv)X(k_{v}), which is defined via the isomorphism X(kv)Tx0(kv)\GLn(kv)X(k_{v})\cong\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v}), where

{dgv be the Haar measure on GLn(kv) such that vol(dgv,GLn,𝒪kv(𝒪kv))=1;dtv be the Haar measure on Tx0(kv) such that vol(dtv,Tx0,𝒪kv(𝒪kv))=1.\left\{\begin{array}[]{l}\textit{$dg_{v}$ be the Haar measure on $\mathrm{GL}_{n}(k_{v})$ such that $\mathrm{vol}(dg_{v},\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=1$};\\ \textit{$dt_{v}$ be the Haar measure on $\mathrm{T}_{x_{0}}(k_{v})$ such that $\mathrm{vol}(dt_{v},\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=1$}.\end{array}\right.

We have

|ωXkvcan|v=#GLn,𝒪kv(κv)qvn2#Tx0,𝒪kv(κv)qvndgvdtv.|\omega_{X_{k_{v}}}^{can}|_{v}=\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}}{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}}\cdot\frac{dg_{v}}{dt_{v}}.
Lemma 3.8.

We have the following equations which are independent of the choice of gauge forms ωGLn\omega_{\mathrm{GL}_{n}} and ωTx0\omega_{\mathrm{T}_{x_{0}}}, respectively,

vΩk|ωGLn,kvcan|v|ωGLn|v=1 and vΩk|ωTx0,kvcan|v|ωTx0|v=vΩkkiBv(χ)|ΔKv,i/kv|12.\prod_{v\in\Omega_{k}}\frac{|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v}}{|\omega_{\mathrm{GL}_{n}}|_{v}}=1\textit{ and }\prod_{v\in\Omega_{k}}\frac{|\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can}|_{v}}{|\omega_{\mathrm{T}_{x_{0}}}|_{v}}=\prod_{v\in\Omega_{k}\setminus\infty_{k}}\prod_{i\in B_{v}(\chi)}|\Delta_{K_{v,i}/k_{v}}|^{-\frac{1}{2}}.
Proof.

For G=GLnG=\mathrm{GL}_{n} or Tx0,kv\mathrm{T}_{x_{0},k_{v}}, by [GG99, Corollary 7.3 and Proposition 9.3] we have that

vΩk|ωGkvcan|v|ωG|v=f(MG)12,\prod_{v\in\Omega_{k}}\frac{|\omega_{G_{k_{v}}}^{can}|_{v}}{|\omega_{G}|_{v}}=f(M_{G})^{\frac{1}{2}},

which is independent of the choice of a gauge form ωG\omega_{G} where f(MG)f(M_{G}) is the global conductor of the motive MGM_{G} of GG (cf. [GG99, Equation (9.1)]).

  1. (1)

    Since GLn\mathrm{GL}_{n} is split over kk, we take a gauge form ωGLn\omega_{\mathrm{GL}_{n}} to generate the Chevalley differetials over \mathbb{Z}. Then by the proof of [GG99, Proposition 9.3], we have |ωGLn,kvcan|v=|ωGLn|v|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v}=|\omega_{\mathrm{GL}_{n}}|_{v} for all vΩkv\in\Omega_{k} and so we have f(MGLn)12=1f(M_{\mathrm{GL}_{n}})^{\frac{1}{2}}=1.

  2. (2)

    On the other hand, in the case of Tx0\mathrm{T}_{x_{0}}, the global conductor of the motive MTx0M_{\mathrm{T}_{x_{0}}} is given by f(MTx0)=vΩkkqvap(X(Tx0))f(M_{\mathrm{T}_{x_{0}}})=\prod_{v\in\Omega_{k}\setminus\infty_{k}}q_{v}^{a_{p}(X^{*}(\mathrm{T}_{x_{0}})\otimes\mathbb{Q})} where ap(X(Tx0))a_{p}(X^{*}(\mathrm{T}_{x_{0}}\otimes\mathbb{Q})) is the local Artin conductor of X(Tx0)X^{*}(\mathrm{T}_{x_{0}}\otimes\mathbb{Q}) following [Gro97, Section 2]. By [Neu99, Proposition VII.11.7] and the argument in [Lee21, Section 1.2], we have that

    f(MTx0)=vΩkkiBv(χ)|ΔKv,i/kv|1.f(M_{\mathrm{T}_{x_{0}}})=\prod_{v\in\Omega_{k}\setminus\infty_{k}}\prod_{i\in B_{v}(\chi)}|\Delta_{K_{v,i}/k_{v}}|^{-1}.

Then Proposition 3.3 and Lemma 3.8 directly yield the following relation between two global measures vΩk|ωX|v\prod_{v\in\Omega_{k}}\lvert\omega_{X}\rvert_{v} and vΩk|ωXkvcan|v\prod_{v\in\Omega_{k}}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}.

Proposition 3.9.

We have

vΩk|ωX|v=vΩkkiBv(χ)|ΔKv,i/kv|12vΩk|ωXkvcan|v.\prod_{v\in\Omega_{k}}\lvert\omega_{X}\rvert_{v}=\prod_{v\in\Omega_{k}\setminus\infty_{k}}\prod_{i\in B_{v}(\chi)}|\Delta_{K_{v,i}/k_{v}}|^{-\frac{1}{2}}\prod_{v\in\Omega_{k}}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}.

4. Brauer groups and evaluations

In this section, we will explain various notions, used in the observation of D. Wei and F. Xu in Proposition 1.1. For the reader’s convenience, we restate this proposition as follows.

Proposition 4.1.

[WX16, Theorem 4.3] Suppose that χ(x)\chi(x) is an irreducible monic polynomial over 𝒪k\mathcal{O}_{k}. Then we have

(4.1) N(X,T)|Δk|12dimXξBrX/BrkvΩkkX(𝒪kv)ξv(x)|ωX|vvkX(kv,T)ξv(x)|ωX|v,N(X,T)\sim\lvert\Delta_{k}\rvert^{-\frac{1}{2}\dim X}\sum_{\xi\in\operatorname{Br}X/\operatorname{Br}k}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\int_{X(\mathcal{O}_{k_{v}})}\xi_{v}(x)\ \lvert\omega_{X}\rvert_{v}\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\xi_{v}(x)\ \lvert\omega_{X}\rvert_{v},

where

{X(kv,T)={xX(kv)xvT} for vk and T>0;|ωX|v is the measure defined in 3.1.1;ξv(x) denotes a Brauer evaluation for xX(kv) which is defined in Definition 4.3.\left\{\begin{array}[]{l}X(k_{v},T)=\{x\in X(k_{v})\mid\lVert x\rVert_{v}\leq T\}\textit{ for $v\in\infty_{k}$ and $T>0$};\\ \lvert\omega_{X}\rvert_{v}\textit{ is the measure defined in \ref{subsec:gauge_form}};\\ \xi_{v}(x)\textit{ denotes a Brauer evaluation for $x\in X(k_{v})$ which is defined in Definition \ref{def:brauer_evaluation}}.\end{array}\right.

We mainly follow [Poo17, Section 8] to define the Brauer group and the evaluation of each element in the Brauer group.

Definition 4.2.

For any kk-scheme YY, the Brauer group is defined by

BrY=He´t2(Y,𝔾m),\operatorname{Br}Y=\mathrm{H}_{\acute{e}t}^{2}(Y,\mathbb{G}_{m}),

where 𝔾m\mathbb{G}_{m} stands for the étale sheaf associated with the multiplicative group 𝔾m\mathbb{G}_{m} over YY (cf. [Poo17, Proposition 6.3.19]). To ease the notation, we denote Br(SpecA)\operatorname{Br}(\operatorname{Spec}A) by BrA\operatorname{Br}A for affine schemes.

Since He´t2(,𝔾m)\mathrm{H}_{\acute{e}t}^{2}(-,\mathbb{G}_{m}) gives a contravariant functor from Schk\mathrm{Sch}_{k} to Ab\mathrm{Ab}, each element of BrY\operatorname{Br}Y induces an evaluation on the set of AA-points Y(A)Y(A), for any kk-algebra AA, as follows.

Definition 4.3.

Let YY be a kk-scheme and AA be a kk-algebra.

  1. (1)

    For any xY(A)x\in Y(A) and ξBrY\xi\in\operatorname{Br}Y, we define the Brauer evaluation ξ(x)\xi(x) to be the image of ξ\xi under the morphism Br(SpecAY)\operatorname{Br}(\operatorname{Spec}A\to Y).

  2. (2)

    In particular, for a local field A=kvA=k_{v}, [Poo17, Theorem 1.5.34] yields that the invariant map inv:Brkv/\operatorname{inv}:\operatorname{Br}k_{v}\to\mathbb{Q}/\mathbb{Z} is injective. In this case, for any xY(kv)x\in Y(k_{v}) and ξBrY\xi\in\operatorname{Br}Y, we define the Brauer evaluation ξv(x)\xi_{v}(x) to be the image of ξ\xi under the following composition,

    BrYBr(x)Brkvinv/xexp(2πix)×.\operatorname{Br}Y\xrightarrow{\operatorname{Br}(x)}\operatorname{Br}k_{v}\xhookrightarrow{\operatorname{inv}}\mathbb{Q}/\mathbb{Z}\xrightarrow{x\mapsto\exp(2\pi ix)}\mathbb{C}^{\times}.
Remark 4.4.

We note that XX in Section 2.1 has a kk-point x0X(𝒪k)X(k)x_{0}\in X(\mathcal{O}_{k})\subset X(k). Since XX is a kk-scheme, the structure morphism induces a morphism BrkBrX\operatorname{Br}k\to\operatorname{Br}X. Let BrX/Brk\operatorname{Br}X/\operatorname{Br}k be the quotient group of BrX\operatorname{Br}X by the image of Brk\operatorname{Br}k under this induced morphism. We remark that the summation in (4.1) is well-defined. More precisely, each infinite product over vΩkv\in\Omega_{k} is independent of the choice of representatives of BrX/Brk\operatorname{Br}X/\operatorname{Br}k.

Since the Brauer evaluation BrX×\operatorname{Br}X\to\mathbb{C}^{\times} is a group homomorphism, it suffices to show that the evaluation ξv\xi_{v} is constant on X(kv)X(k_{v}) and the product of these constant values over vΩkv\in\Omega_{k} is trivial. For a fixed embedding kkvk\hookrightarrow k_{v}, the composition BrkBrXBr(x)Brkv\operatorname{Br}k\rightarrow\operatorname{Br}X\xrightarrow{\operatorname{Br}(x)}\operatorname{Br}k_{v} is independenet of xX(kv)x\in X(k_{v}). This concludes that ξv(x)\xi_{v}(x) is constant on X(kv)X(k_{v}) by Definition 4.3.(2). Therefore it suffices to show that vΩkξv(x0)\prod_{v\in\Omega_{k}}\xi_{v}(x_{0}) is trivial for x0X(k)X(kv)x_{0}\in X(k)\subset X(k_{v}), and this follows from [Poo17, Proposition 8.2.2].

For XX in Section 2.1, we define the normalized Brauer evaluation as follows to remove the vagueness.

Definition 4.5.

For each ξBrX\xi\in\operatorname{Br}X, we define the normalized Brauer evaluation ξ~v\tilde{\xi}_{v} on xX(kv)x\in X(k_{v}) to be

ξ~v(x)=ξv(x)ξv(x0),\tilde{\xi}_{v}(x)=\frac{\xi_{v}(x)}{\xi_{v}(x_{0})},

where vΩkv\in\Omega_{k} and x0x_{0} is the point in X(𝒪k)X(\mathcal{O}_{k}) chosen in Section 2.1.

Remark 4.4 indicates that the evaluation ξ~vξ~v\tilde{\xi}_{v}\equiv\tilde{\xi}_{v}^{\prime} on X(kv)X(k_{v}) if ξ\xi and ξ\xi^{\prime} belong to the same coset in BrX/Brk\operatorname{Br}X/\operatorname{Br}k. We also have that for ξBrX\xi\in\operatorname{Br}X

(4.2) vΩkkX(𝒪kv)ξ~v(x)\displaystyle\prod_{v\in\Omega_{k}\setminus\infty_{k}}\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x) |ωX|vvkX(kv,T)ξ~v(x)|ωX|v\displaystyle\ \lvert\omega_{X}\rvert_{v}\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\tilde{\xi}_{v}(x)\ \lvert\omega_{X}\rvert_{v}
=vΩkkX(𝒪kv)ξv(x)|ωX|vvkX(kv,T)ξv(x)|ωX|v\displaystyle=\prod_{v\in\Omega_{k}\setminus\infty_{k}}\int_{X(\mathcal{O}_{k_{v}})}\xi_{v}(x)\ \lvert\omega_{X}\rvert_{v}\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\xi_{v}(x)\ \lvert\omega_{X}\rvert_{v}

by [Poo17, Proposition 8.2.2] since x0x_{0} is in X(k)X(k). Therefore, we can use the normalized Brauer evaluation ξ~v\tilde{\xi}_{v} on (4.1).

Remark 4.6.

If ξ\xi is trivial in BrX/Brk\operatorname{Br}X/\operatorname{Br}k, then the normalized Brauer evaluation is trivial on X(kv)X(k_{v}) by Remark 4.4. However, the normalized Brauer evaluation can be trivial even if ξ\xi is non-trivial in BrX/Brk\operatorname{Br}X/\operatorname{Br}k.

5. The asymptotic formula for N(X,T)N(X,T)

From now on, throughout the remaining part of this paper, we will work on the following assumptions in (1.4),

{(1) k and K are totally real number fields;(2) if k, then χ(x) is of prime degree n;(3) if K/k is unramified Galois, then χ(x) splits over kv at p-adic places v of k, for pn.\left\{\begin{array}[]{l}\textit{(1) $k$ and $K$ are totally real number fields};\\ \textit{(2) if $k\neq\mathbb{Q}$, then $\chi(x)$ is of prime degree $n$};\\ \textit{(3) if $K/k$ is unramified Galois, then $\chi(x)$ splits over $k_{v}$ at $p$-adic places $v$ of $k$, for $p\leq n$}.\end{array}\right.

We mainly use the result in Proposition 4.1. According to the formula (4.1), we will investigate the Brauer evaluation ξv\xi_{v}, using the local class field theory, in Section 5.1. Based on this observation, we will investigate the integration for each place vΩkv\in\Omega_{k} throughout Section 5.2- 5.3 and Section 6.

5.1. Evaluation of ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k

In Definition 4.3, we described a concrete definition of the Brauer evaluation using the functor Br\operatorname{Br} and the invariant map. Alternatively, we can explicitly formulate the Brauer evaluation using local class field theory in our case, where XX is a homogeneous space of SLn\mathrm{SL}_{n}. The key fact is that SLn\mathrm{SL}_{n} is a semisimple and simply connected algebraic group (cf. [CTX09, Section 2]). We divide into cases based on whether K/kK/k is Galois or not.

5.1.1. The case that K/kK/k is not a Galois extension

If K/kK/k is not Galois, the lemma below states that BrX/Brk\operatorname{Br}X/\operatorname{Br}k is trivial. Thus, by Remark 4.6, we do not need to consider any nontrivial Brauer evaluation in this case.

Proposition 5.1.

If K/kK/k is of prime degree and not Galois, then BrX/Brk\operatorname{Br}X/\operatorname{Br}k is trivial.

Proof.

Let LL be the Galois closure of K/kK/k, with Λ=Gal(L/k)\Lambda=\operatorname{Gal}(L/k) and Υ=Gal(L/K)\Upsilon=\operatorname{Gal}(L/K) as the corresponding Galois groups. By the proof of [WX16, Theorem 6.1] and [CTX09, Proposition 2.10], we have

BrX/BrkPicSx0ker(Hom(Λ,/)Hom(Υ,/)).\operatorname{Br}X/\operatorname{Br}k\cong\operatorname{Pic}\mathrm{S}_{x_{0}}\cong\ker(\operatorname{Hom}(\Lambda,\mathbb{Q}/\mathbb{Z})\to\operatorname{Hom}(\Upsilon,\mathbb{Q}/\mathbb{Z})).

Suppose that there is a non-trivial element ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k. Let fHom(Λ,/)f\in\operatorname{Hom}(\Lambda,\mathbb{Q}/\mathbb{Z}) be the image of ξ\xi via the above isomorphism, and let AA be the fixed field of kerf\ker f. We claim that A=KA=K. Then KK is Galois over kk since kerf\ker f is normal in Λ\Lambda, which contradicts the hypothesis. Since ff vanishes on Υ\Upsilon, we have ΥkerfΛ\Upsilon\subset\ker f\subset\Lambda. The non-trivial ξ\xi yields that kerf\ker f is not equal to Λ\Lambda. We then have that kerf=Υ\ker f=\Upsilon since deg(K/k)\deg(K/k) is a prime number, which implies that A=KA=K. ∎

5.1.2. The case that K/kK/k is a Galois extension

Since we assume deg(K/k)\deg(K/k) is a prime number, the field extension K/kK/k is an abelian extension if it is Galois. For any non-Archimedean place vΩkkv\in\Omega_{k}\setminus\infty_{k}, if Kv=KkkvK_{v}=K\otimes_{k}k_{v} is a field, we can explictly describe the normalized Brauer evaluation.

Proposition 5.2.

Suppose that K/kK/k is an abelian extension. Let Λ=Gal(K/k)\Lambda=\operatorname{Gal}(K/k). Then there is an isomorphism

Ψ:BrX/BrkPicSx0Hom(Λ,/).\Psi:\operatorname{Br}X/\operatorname{Br}k\xrightarrow{\sim}\operatorname{Pic}\mathrm{S}_{x_{0}}\xrightarrow{\sim}\operatorname{Hom}(\Lambda,\mathbb{Q}/\mathbb{Z}).

In particular, if Kv=KkkvK_{v}=K\otimes_{k}k_{v} is a field for vΩkkv\in\Omega_{k}\setminus\infty_{k}, then the normalized Brauer evaluation ξ~v\tilde{\xi}_{v} for ξBrX\xi\in\operatorname{Br}X is given by

ξ~v(x)=exp2πiΨ(ξ)(ϕKv/kv(detgx))\tilde{\xi}_{v}(x)=\exp 2\pi i\Psi(\xi)(\phi_{K_{v}/k_{v}}(\det g_{x}))

for xX(kv)x\in X(k_{v}). Here, ϕKv/kv:kv×/NmKv/kvKv×Gal(Kv/kv)Λ\phi_{K_{v}/k_{v}}:k_{v}^{\times}/\operatorname{Nm}_{K_{v}/k_{v}}K_{v}^{\times}\to\operatorname{Gal}(K_{v}/k_{v})\subset\Lambda is the Artin reciprocity isomorphism (cf. [Ser79, Chapter XI]) and gxGLn(kv)g_{x}\in\mathrm{GL}_{n}(k_{v}) such that gx1x0gx=xg_{x}^{-1}x_{0}g_{x}=x.

Proof.

The first isomorphism, BrX/BrkPicSx0\operatorname{Br}X/\operatorname{Br}k\xrightarrow{\sim}\operatorname{Pic}\mathrm{S}_{x_{0}} in Ψ\Psi, is proved in [CTX09, Proposition 2.10]. On the other hand, the isomorphism PicSx0Hom(Λ,/)\operatorname{Pic}\mathrm{S}_{x_{0}}\xrightarrow{\sim}\operatorname{Hom}(\Lambda,\mathbb{Q}/\mathbb{Z}) in Ψ\Psi is proved in [WX16, Theorem 6.1]. The same arguments apply for Ψv:BrX/BrkvPicSx0,kvHom(Λv,/)\Psi_{v}:\operatorname{Br}X/\operatorname{Br}k_{v}\xrightarrow{\sim}\operatorname{Pic}\mathrm{S}_{x_{0},k_{v}}\xrightarrow{\sim}\operatorname{Hom}(\Lambda_{v},\mathbb{Q}/\mathbb{Z}) where Λv=Gal(Kv/kv)Λ\Lambda_{v}=\operatorname{Gal}(K_{v}/k_{v})\subset\Lambda, and it satisfies the following commutative diagram,

BrX/Brk{{\operatorname{Br}X/\operatorname{Br}k}}Hom(Λ,/){{\operatorname{Hom}(\Lambda,\mathbb{Q}/\mathbb{Z})}}BrX/Brkv{{\operatorname{Br}X/\operatorname{Br}k_{v}}}Hom(Λv,/).{{\operatorname{Hom}(\Lambda_{v},\mathbb{Q}/\mathbb{Z})}.}Ψ\scriptstyle{\Psi}res\scriptstyle{res}Ψv\scriptstyle{\Psi_{v}}

Therefore it suffices to consider the evaluation for the base change XkvSx0,kv\SLn,kvX_{k_{v}}\cong\mathrm{S}_{x_{0},k_{v}}\backslash\mathrm{SL}_{n,k_{v}}.

The Brauer evaluation of a homogeneous space is induced from the following commutative diagram, as shown in [CTX09, Proposition 2.9-2.10],

(5.1) X(kv){{X(k_{v})}}×{\times}BrX{{\operatorname{Br}_{*}X}}{\to}/{{\mathbb{Q}/\mathbb{Z}}}xexp(2πix){\xrightarrow{x\mapsto\exp(2\pi ix)}}×{{\mathbb{C}^{\times}}}H1(kv,Sx0,kv){{\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})}}×{\times}H1(kv,Sx0,kv^){{\mathrm{H}^{1}(k_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}})}}{\xrightarrow{\cup}}/{{\mathbb{Q}/\mathbb{Z}}}xexp(2πix){\xrightarrow{x\mapsto\exp(2\pi ix)}}×.{{\mathbb{C}^{\times}}.}\scriptstyle{\sim}

Here, BrXBrX\operatorname{Br}_{*}X\subset\operatorname{Br}X is the subgroup of the Brauer group consisting of the elements whose evaluation vanishes at x0X(kv)x_{0}\in X(k_{v}). The pairing in the first row is the Brauer evaluation for BrX\operatorname{Br}_{*}X, and the second row is the cup product \cup on the group cohomology. We will explain the first vertical map later. The second vertical map is defined by

BrXBrX/BrkvPicSx0,kvH1(kv,Sx0,kv^).\operatorname{Br}_{*}X\cong\operatorname{Br}X/\operatorname{Br}k_{v}\to\operatorname{Pic}\mathrm{S}_{x_{0},k_{v}}\cong\mathrm{H}^{1}(k_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}}).

First, we explain how to operate the cup product in the second row of (5.1). Since the cup product is compatible with inflation homomorphisms, and both Sx0,kv\mathrm{S}_{x_{0},k_{v}} and Sx0,kv^\widehat{\mathrm{S}_{x_{0},k_{v}}} split over KvK_{v}, we consider the cup product \cup on the group cohomology for Λv\Lambda_{v}-modules as follows,

H1(Λv,Sx0,kv)×H1(Λv,Sx0,kv^)H2(Λv,Sx0,kvSx0,kv^)H2(Λv,Kv×)inv/.\mathrm{H}^{1}(\Lambda_{v},\mathrm{S}_{x_{0},k_{v}})\times\mathrm{H}^{1}(\Lambda_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}})\xrightarrow{\cup}\mathrm{H}^{2}(\Lambda_{v},\mathrm{S}_{x_{0},k_{v}}\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}})\to\mathrm{H}^{2}(\Lambda_{v},K_{v}^{\times})\xrightarrow{\operatorname{inv}}\mathbb{Q}/\mathbb{Z}.

We claim that the following diagram commutes, allowing us to use the cup product in the second row.

(5.2) H1(Λv,Sx0,kv){{\mathrm{H}^{1}(\Lambda_{v},\mathrm{S}_{x_{0},k_{v}})}}×{\times}H1(Λv,Sx0,kv^){{\mathrm{H}^{1}(\Lambda_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}})}}{\xrightarrow{\cup}}H2(Λv,Sx0,kvSx0,kv^){{\mathrm{H}^{2}(\Lambda_{v},\mathrm{S}_{x_{0},k_{v}}\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}})}}H0(Λv,Kv×){{\mathrm{H}^{0}(\Lambda_{v},K_{v}^{\times})}}×{\times}H2(Λv,){{\mathrm{H}^{2}(\Lambda_{v},\mathbb{Z})}}{\xrightarrow{\cup}}H2(Λv,Kv×).{{\mathrm{H}^{2}(\Lambda_{v},K_{v}^{\times}\otimes_{\mathbb{Z}}\mathbb{Z})}.}δ1\scriptstyle{\delta_{1}}δ2\scriptstyle{\delta_{2}}

Here, the right vertical map is obtained from the canonical pairing. δ1\delta_{1} and δ2\delta_{2} are connecting homomorphisms derived from the following exact sequences of Λv\Lambda_{v}-modules,

(5.3) 0{0}Sx0,kv(Kv){\mathrm{S}_{x_{0},k_{v}}(K_{v})}(KvkvKv)×{{(K_{v}\otimes_{k_{v}}K_{v})^{\times}}}Kv×{{K_{v}^{\times}}}0 and;{0\textit{ and};}0{0}{\mathbb{Z}}[Λv]{{\mathbb{Z}[\Lambda_{v}]}}Sx0,kv^(Kv){{\widehat{\mathrm{S}_{x_{0},k_{v}}}(K_{v})}}0.{0.}

One can show that two exact sequences in (5.3) split by choosing splitting homomorphisms Kv×(KvkvKv)×,a1aK_{v}^{\times}\to(K_{v}\otimes_{k_{v}}K_{v})^{\times},\ a\mapsto 1\otimes a and [Λv],σnσσn1\mathbb{Z}[\Lambda_{v}]\to\mathbb{Z},\ \sum_{\sigma}n_{\sigma}\sigma\mapsto n_{1}, respectively. We have that δ1\delta_{1} is surjective since the proof of Proposition 2.3 yields that H1(Λv,(KvkvKv)×)\mathrm{H}^{1}(\Lambda_{v},(K_{v}\otimes_{k_{v}}K_{v})^{\times}) is trivial. Since [Λv]=Ind1Λv\mathbb{Z}[\Lambda_{v}]=\operatorname{Ind}_{1}^{\Lambda_{v}}\mathbb{Z}, we have

Hi(Λv,[Λv])Hi(1,)=0\mathrm{H}^{i}(\Lambda_{v},\mathbb{Z}[\Lambda_{v}])\cong\mathrm{H}^{i}(1,\mathbb{Z})=0

for i=1i=1 and 22, by Shapiro’s lemma, and thus δ2\delta_{2} is an isomorphism. From the exact sequences in (5.3), we consider the diagram obtained by applying ()Sx0,kv^(Kv)(-)\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}}(K_{v}) at the first row, and by applying Kv×()K_{v}^{\times}\otimes_{\mathbb{Z}}(-) at the second row as follows,

0{0}Sx0,kv(Kv)Sx0,kv^(Kv){{\mathrm{S}_{x_{0},k_{v}}(K_{v})\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}}}(K_{v})}(KvKv)×Sx0,kv^(Kv){{(K_{v}\otimes K_{v})^{\times}\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}}}(K_{v})}Kv×Sx0,kv^(Kv){{K_{v}^{\times}\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}}}(K_{v})}0{0}0{0}Kv×{{K_{v}^{\times}\otimes_{\mathbb{Z}}\mathbb{Z}}}Kv×[Λv]{{K_{v}^{\times}\otimes_{\mathbb{Z}}\mathbb{Z}[\Lambda_{v}]}}Kv×Sx0,kv^(Kv){{K_{v}^{\times}\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}}}(K_{v})}0.{0.}

The first vertical map is defined by the canonical pairing of the character modules. Since ()Sx0,kv^(Kv)(-)\otimes_{\mathbb{Z}}\widehat{\mathrm{S}_{x_{0},k_{v}}}(K_{v}) and Kv×()K_{v}^{\times}\otimes_{\mathbb{Z}}(-) preserve split exactness, both two rows are also split exact. Thus, there is an induced central map that such that the diagram commutes, through the splitting homomorphisms. Let δ3\delta_{3} and δ4\delta_{4} be the connecting homomorphisms from the above two. Then the diagram below commutes.

H1(Λv,Kv×Sx0,kv^){{\mathrm{H}^{1}(\Lambda_{v},K_{v}^{\times}\otimes\widehat{\mathrm{S}_{x_{0},k_{v}}})}}H2(Λv,Sx0,kvSx0,kv^){{\mathrm{H}^{2}(\Lambda_{v},\mathrm{S}_{x_{0},k_{v}}\otimes\widehat{\mathrm{S}_{x_{0},k_{v}}})}}H1(Λv,Kv×Sx0,kv^){{\mathrm{H}^{1}(\Lambda_{v},K_{v}^{\times}\otimes\widehat{\mathrm{S}_{x_{0},k_{v}}})}}H2(Λv,Kv×).{{\mathrm{H}^{2}(\Lambda_{v},K_{v}^{\times}\otimes\mathbb{Z})}.}δ3\scriptstyle{\delta_{3}}δ4\scriptstyle{\delta_{4}}

For aH0(Λv,Kv×)a\in\mathrm{H}^{0}(\Lambda_{v},K_{v}^{\times}) and bH1(Λv,Sx0,kv^)b\in\mathrm{H}^{1}(\Lambda_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}}), it follows from [Ser79, Proposition 5, VIII] that δ3(ab)=δ1ab\delta_{3}(a\cup b)=\delta_{1}a\cup b and δ4(ab)=aδ2b\delta_{4}(a\cup b)=a\cup\delta_{2}b. By the commutativity of δ3\delta_{3} and δ4\delta_{4}, δ1ab\delta_{1}a\cup b and aδ2ba\cup\delta_{2}b coincide in H2(Λv,Kv×)\mathrm{H}^{2}(\Lambda_{v},K_{v}^{\times}), so that the diagram (5.2) commutes.

Now we describe the map X(kv)H1(kv,Sx0,kv)X(k_{v})\to\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) in the commutative diagram (5.1) explicitly. By Proposition 2.1, we have

(5.4) Sx0,kv(kv)SLn(kv)X(kv)H1(kv,Sx0,kv)Tx0,kv(kv)GLn(kv)X(kv)H0(kv,𝔾m,kv)kv×H1(kv,Sx0,kv)Nmδ1.\leavevmode\hbox to352.98pt{\vbox to128.82pt{\pgfpicture\makeatletter\hbox{\hskip 176.49146pt\lower-64.4122pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-176.49146pt}{-64.4122pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 75.11633pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-70.81079pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{S}_{x_{0},k_{v}}(k_{v})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 75.11633pt\hfil&\hfil\hskip 43.99597pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.69046pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{SL}_{n}(k_{v})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 19.996pt\hfil&\hfil\hskip 40.94724pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.64172pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{X(k_{v})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 16.94727pt\hfil&\hfil\hskip 51.28604pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.98053pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 27.28607pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 21.5805pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.27496pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{T}_{x_{0},k_{v}}(k_{v})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 21.5805pt\hfil&\hfil\hskip 45.1418pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.83629pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{GL}_{n}(k_{v})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 21.14183pt\hfil&\hfil\hskip 40.94724pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.64172pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{X(k_{v})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 16.94727pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 28.49007pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.18452pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{H}^{0}(k_{v},\mathbb{G}_{m,k_{v}})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 28.49007pt\hfil&\hfil\hskip 32.52362pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.21811pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{k_{v}^{\times}}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.52365pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 27.28607pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-22.98053pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${{\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 27.28607pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-26.05879pt}{47.9217pt}\pgfsys@lineto{-1.71295pt}{47.9217pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.51297pt}{47.9217pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-101.37512pt}{38.52867pt}\pgfsys@lineto{-101.37512pt}{21.32858pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-101.37512pt}{21.1286pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{39.07901pt}{47.9217pt}\pgfsys@lineto{63.42485pt}{47.9217pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{63.62483pt}{47.9217pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.88301pt}{39.062pt}\pgfsys@lineto{18.88301pt}{21.32858pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{18.88301pt}{21.1286pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{98.11934pt}{47.9217pt}\pgfsys@lineto{121.31935pt}{47.9217pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{121.51933pt}{47.9217pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{{}}{}{}{{}}\pgfsys@moveto{80.97208pt}{39.062pt}\pgfsys@lineto{80.97208pt}{20.92862pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{80.97208pt}{39.062pt}\pgfsys@lineto{80.97208pt}{20.92862pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-79.59462pt}{12.06891pt}\pgfsys@lineto{-2.85878pt}{12.06891pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.6588pt}{12.06891pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-101.37512pt}{2.67587pt}\pgfsys@lineto{-101.37512pt}{-14.52422pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-101.37512pt}{-14.7242pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-99.02235pt}{-8.51581pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\operatorname{Nm}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{40.22484pt}{12.06891pt}\pgfsys@lineto{63.42485pt}{12.06891pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{62.18492pt}{12.06891pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{63.62483pt}{12.06891pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{18.88301pt}{3.2092pt}\pgfsys@lineto{18.88301pt}{-14.5842pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{18.88301pt}{-13.34427pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{18.88301pt}{-14.78418pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{2.33746pt}\pgfsys@invoke{ }{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-72.68506pt}{-24.92165pt}\pgfsys@lineto{10.15936pt}{-24.92165pt}\pgfsys@stroke\pgfsys@invoke{ }\pgfsys@beginscope\pgfsys@invoke{ }{\pgfsys@setlinewidth{1.5375pt}\pgfsys@invoke{ }\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@moveto{-72.68506pt}{-24.92165pt}\pgfsys@lineto{10.15936pt}{-24.92165pt}\pgfsys@stroke\pgfsys@invoke{ }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-101.37512pt}{-34.31468pt}\pgfsys@lineto{-101.37512pt}{-51.51477pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-101.37512pt}{-51.71475pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-99.02235pt}{-44.9008pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\delta_{1}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

To identify two H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) in the diagram, we choose gxGLn(kv)g_{x}\in\mathrm{GL}_{n}(k_{v}) for xX(kv)x\in X(k_{v}) such that gx1x0gx=xg_{x}^{-1}x_{0}g_{x}=x. Thus, δ1(detgx)\delta_{1}(\det g_{x}) represents the image of xx in H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}). For ξBrX\xi\in\operatorname{Br}X, we can choose ξ0Brkv\xi_{0}\in\operatorname{Br}k_{v} such that invξ0=ξv(x0)/\operatorname{inv}\xi_{0}=\xi_{v}(x_{0})\in\mathbb{Q}/\mathbb{Z}, which implies that ξξ0BrX\xi-\xi_{0}\in\operatorname{Br}_{*}X. Let χHom(Λv,/)\chi\in\operatorname{Hom}(\Lambda_{v},\mathbb{Q}/\mathbb{Z}) be the image of ξξ0\xi-\xi_{0} under

BrXH1(kv,Sx0,kv^)PicSx0,kvHom(Λv,/).\operatorname{Br}_{*}X\cong\mathrm{H}^{1}(k_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}})\cong\operatorname{Pic}\mathrm{S}_{x_{0},k_{v}}\cong\operatorname{Hom}(\Lambda_{v},\mathbb{Q}/\mathbb{Z}).

We note that the evaluation of ξξ0BrXBrX\xi-\xi_{0}\in\operatorname{Br}_{*}X\subset\operatorname{Br}X equals the normalized evaluation ξ~v\tilde{\xi}_{v}. By the proof of [WX16, Theorem 6.1] that PicSx0,kvHom(Λv,/)\operatorname{Pic}\mathrm{S}_{x_{0},k_{v}}\cong\operatorname{Hom}(\Lambda_{v},\mathbb{Q}/\mathbb{Z}), the image of ξξ0\xi-\xi_{0} under

BrXH1(kv,Sx0,kv^)δ2H2(Λv,)\operatorname{Br}_{*}X\cong\mathrm{H}^{1}(k_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}})\xrightarrow{\delta_{2}}\mathrm{H}^{2}(\Lambda_{v},\mathbb{Z})

coincides with dχd\chi. Here, d:Hom(Λv,/)=H1(Λv,/)H2(Λ,)d:\operatorname{Hom}(\Lambda_{v},\mathbb{Q}/\mathbb{Z})=\mathrm{H}^{1}(\Lambda_{v},\mathbb{Q}/\mathbb{Z})\to\mathrm{H}^{2}(\Lambda,\mathbb{Z}) is a connecting homomorphism derived from the exact sequence

0/0.0\to\mathbb{Z}\to\mathbb{Q}\to\mathbb{Q}/\mathbb{Z}\to 0.

Therefore, the evaluation of ξξ0\xi-\xi_{0} in (5.1) is

(ξξ0)v(x)=ξ~v(x)=inv(detgxdχ)=Ψ(ξ)(ϕKv/kv(detgx))(\xi-\xi_{0})_{v}(x)=\tilde{\xi}_{v}(x)=\operatorname{inv}(\det g_{x}\cup d\chi)=\Psi(\xi)(\phi_{K_{v}/k_{v}}(\det g_{x}))

by [Ser79, Proposition 2, XI]. ∎

Corollary 5.3.

Suppose that K/kK/k is an abelian extension. For vΩkkv\in\Omega_{k}\setminus\infty_{k}, if KvK_{v} is a field, then the normalized Brauer evaluation ξ~v\tilde{\xi}_{v} on X(kv)X(k_{v}) is constant on each SLn(kv)\mathrm{SL}_{n}(k_{v})-orbits in X(kv)X(k_{v}), for any ξBrX\xi\in\operatorname{Br}X.

Proof.

For x,xX(kv)x,x^{\prime}\in X(k_{v}) on the same SLn(kv)\mathrm{SL}_{n}(k_{v})-orbit, we have x=xgx=x^{\prime}\cdot g for some gSLn(kv)g\in\mathrm{SL}_{n}(k_{v}). Then, by Proposition 5.2, we have ξ~v(x)=ξ~v(x)\tilde{\xi}_{v}(x)=\tilde{\xi}_{v}(x^{\prime}) for any ξBrX\xi\in\operatorname{Br}X. ∎

Corollary 5.4.

If K/kK/k is a Galois extension of prime degree and Kv/kvK_{v}/k_{v} is also a field extension, then for a non-trivial ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k, the evaluation ξ~v\tilde{\xi}_{v} on X(kv)X(k_{v}) is non-trivial.

Proof.

The hypothesis on KK and KvK_{v} yields that Gal(K/k)=Gal(Kv/kv)\operatorname{Gal}(K/k)=\operatorname{Gal}(K_{v}/k_{v}) and it is abelian. By Proposition 5.2, Ψ(ξ)Hom(Gal(K/k),/)\Psi(\xi)\in\operatorname{Hom}(\operatorname{Gal}(K/k),\mathbb{Q}/\mathbb{Z}) is non-trivial. In other words, there exists σGal(K/k)=Gal(Kv/kv)\sigma\in\operatorname{Gal}(K/k)=\operatorname{Gal}(K_{v}/k_{v}) such that Ψ(ξ)(σ)0\Psi(\xi)(\sigma)\neq 0. Let ckv×c\in k_{v}^{\times} be any lift of ϕKv/kv1(σ)kv×/NmKv/kvKv×\phi_{K_{v}/k_{v}}^{-1}(\sigma)\in k_{v}^{\times}/\operatorname{Nm}_{K_{v}/k_{v}}K_{v}^{\times} and we define g=diag(c,1,,1)GLn(kv)g=\operatorname{diag}(c,1,\ldots,1)\in\mathrm{GL}_{n}(k_{v}). Then, ξ~v(x0g)\tilde{\xi}_{v}(x_{0}\cdot g) is nontrivial by Proposition 5.2. ∎

For the case that KvK_{v} is not a field, the normalized Brauer evaluation is always trivial.

Proposition 5.5.

If K/kK/k is a Galois extension of prime degree and KvK_{v} is not a field, then ξ~v1\tilde{\xi}_{v}\equiv 1 on X(kv)X(k_{v}).

Proof.

Since KK is a Galois extension of kk of prime degree, if KvK_{v} is not a field, then χ(x)\chi(x) splits completely over kvk_{v}. By [CTX09, Propositoin 2.10], we have

BrX/BrkvPicSx0,kvH1(kv,Sx0,kv^).\operatorname{Br}X/\operatorname{Br}k_{v}\cong\operatorname{Pic}\mathrm{S}_{x_{0},k_{v}}\cong\mathrm{H}^{1}(k_{v},\widehat{\mathrm{S}_{x_{0},k_{v}}}).

By Lemma 2.2, Sx0,kv\mathrm{S}_{x_{0},k_{v}} is the kernel of the multiplication map 𝔾m,kvn𝔾m,kv\mathbb{G}_{m,k_{v}}^{n}\to\mathbb{G}_{m,k_{v}}, which is isomorphic to 𝔾m,kvn1\mathbb{G}_{m,k_{v}}^{n-1}. Since Sx0,kv\mathrm{S}_{x_{0},k_{v}} splits over kvk_{v}, Sx0,kv^\widehat{\mathrm{S}_{x_{0},k_{v}}} is also splits over kvk_{v}. We conclude that BrX/Brkv\operatorname{Br}X/\operatorname{Br}k_{v} is trivial. If ξBrX\xi\in\operatorname{Br}X is contained in the image of BrkvBrX\operatorname{Br}k_{v}\to\operatorname{Br}X, then for xX(kv)x\in X(k_{v}), ξv(x)\xi_{v}(x) is defined by the image of ξ\xi via

BrkvBrXBr(x)Brkvinv/xexp(2πix)×.\operatorname{Br}k_{v}\to\operatorname{Br}X\xrightarrow{\operatorname{Br}(x)}\operatorname{Br}k_{v}\xrightarrow{\operatorname{inv}}\mathbb{Q}/\mathbb{Z}\xrightarrow{x\mapsto\exp(2\pi ix)}\mathbb{C}^{\times}.

Since ξv\xi_{v} is constant on X(kv)X(k_{v}), ξ~v\tilde{\xi}_{v} is trivial on X(kv)X(k_{v}). ∎

5.2. Computation on Archimedean places

We now investigate the integration in (4.1) for Archimedean places. Since we assume that kk and KK are totally real number fields, χ(x)\chi(x) splits completely over kvk_{v} for any Archimedean place vkv\in\infty_{k}. Thus, by Proposition 5.5, the Brauer evaluation ξ~v\tilde{\xi}_{v} is trivial. It suffices to consider the volume of X(kv,T)X(k_{v},T) defined in (4.1), with respect to |ωXkvcan|v\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}.

Proposition 5.6.

Suppose that kk and KK are totally real number fields. Then we have

vkX(kv,T)|ωXkvcan|v(wnπn(n+1)4Tn(n1)2i=1nΓ(i2)1)[k:]vΩkk|Δχ|v12,\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}\sim\left(w_{n}\pi^{\frac{n(n+1)}{4}}T^{\frac{n(n-1)}{2}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}\right)^{[k:\mathbb{Q}]}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\lvert\Delta_{\chi}\rvert_{v}^{\frac{1}{2}},

where wnw_{n} is the volume of the unit ball in n(n1)2\mathbb{R}^{\frac{n(n-1)}{2}}.

Proof.

We fix an Archimedean place vkv\in\infty_{k}. Since kk and KK are totally real, we have kvk_{v}\cong\mathbb{R} and χ(x)\chi(x) splits completely over kvk_{v}. Let λ1,,λnkv\lambda_{1},\ldots,\lambda_{n}\in k_{v} be the distinct roots of χ(x)\chi(x), and λ:=diag(λ1,,λn)X(kv)\lambda:=\operatorname{diag}(\lambda_{1},\ldots,\lambda_{n})\in X(k_{v}) be the diagonal matrix. We denote by Tλ,kv\mathrm{T}_{\lambda,k_{v}} the stabilizer of λ\lambda under the conjugation of GLn,kv\mathrm{GL}_{n,k_{v}}. Since the roots λi\lambda_{i} are distinct, the stabilizer Tλ,kv(kv)\mathrm{T}_{\lambda,k_{v}}(k_{v}) is the set of diagonal matrices in GLn(kv)\mathrm{GL}_{n}(k_{v}).

To obtain the volume X(kv,T)|ωXkvcan|v\int_{X(k_{v},T)}|\omega_{X_{k_{v}}}^{can}|_{v}, we define a test function 𝟙GT\mathbbm{1}_{G_{T}} where GTGLn(kv)G_{T}\subset\mathrm{GL}_{n}(k_{v}) denotes

GT={gGLn(kv)λgvT and 1<rii<2 for g=rq}.G_{T}=\{g\in\mathrm{GL}_{n}(k_{v})\mid\lVert\lambda\cdot g\rVert_{v}\leq T\text{ and }1<r_{ii}<2\text{ for }g=rq\}.

Here, g=rqg=rq represents the unique RQ-decomposition of gGLn(kv)g\in\mathrm{GL}_{n}(k_{v}), where rr is an upper triangular matrix with positive diagonal entries, and qq is an orthogonal matrix in GLn(kv)\mathrm{GL}_{n}(k_{v}).

We note that

(5.5) X(kv)=Tx0,kv(kv)\GLn(kv)=Tλ,kv(kv)\GLn(kv).X(k_{v})=\mathrm{T}_{x_{0},k_{v}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v})=\mathrm{T}_{\lambda,k_{v}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v}).

As explained in Section 3.2.2, we have (𝔾m,kv)nTx0,kv(\mathbb{G}_{m,k_{v}})^{n}\cong\mathrm{T}_{x_{0},k_{v}}. Comparing this with Tλ,kv\mathrm{T}_{\lambda,k_{v}}, we have (𝔾m,kv)nTx0,kvTλ,kv(\mathbb{G}_{m,k_{v}})^{n}\cong\mathrm{T}_{x_{0},k_{v}}\cong\mathrm{T}_{\lambda,k_{v}} by (ti)diag(ti)(t_{i})\mapsto\operatorname{diag}(t_{i}). Thus, the pullback of ωTx0,kvcan\omega_{\mathrm{T}_{x_{0},k_{v}}}^{can} under the isomorphism Tx0,kvTλ,kv\mathrm{T}_{x_{0},k_{v}}\cong\mathrm{T}_{\lambda,k_{v}} induces the Haar measure i=1ndti|ti|\bigwedge_{i=1}^{n}\frac{dt_{i}}{\lvert t_{i}\rvert} on Tλ,kv(kv)\mathrm{T}_{\lambda,k_{v}}(k_{v}). Therefore, through the identification (5.5), the triple of measures (|ωGLn,kvcan|v,i=1ndti|ti|,|ωXkvcan|v)(\lvert\omega_{\mathrm{GL}_{n,k_{v}}}^{can}\rvert_{v},\bigwedge_{i=1}^{n}\frac{dt_{i}}{\lvert t_{i}\rvert},\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}) match together topologically by Proposition 3.3, we have

(5.6) GLn(kv)𝟙GT(g)|ωGLn,kvcan|v=X(kv)(Tλ,kv(kv)𝟙GT(tg)i=1ndti|ti|)|ωXkvcan|v.\int_{\mathrm{GL}_{n}(k_{v})}\mathbbm{1}_{G_{T}}(g)\lvert\omega_{\mathrm{GL}_{n,k_{v}}}^{can}\rvert_{v}=\int_{X(k_{v})}\left(\int_{\mathrm{T}_{\lambda,k_{v}}(k_{v})}\mathbbm{1}_{G_{T}}(tg)\bigwedge_{i=1}^{n}\frac{dt_{i}}{\lvert t_{i}\rvert}\right)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}.

First, we express the inner integration in the right hand side of (5.6) in terms of 𝟙X(kv,T)\mathbbm{1}_{X(k_{v},T)}. We fix an element gGLn(kv)g\in\mathrm{GL}_{n}(k_{v}), with the unique RQ-decomposition g=rqg=rq. For any t=diag(t1,,tn)Tλ(kv)t=\operatorname{diag}(t_{1},\ldots,t_{n})\in\mathrm{T}_{\lambda}(k_{v}), the condition tgGTtg\in G_{T} is equivalent that λgX(kv,T)\lambda\cdot g\in X(k_{v},T) and 1<|ti|rii<21<\lvert t_{i}\rvert r_{ii}<2. Thus, we have

(5.7) Tλ,kv(kv)𝟙GT(tg)i=1ndti|ti|=(i=1n21/rii2/riidtiti)𝟙X(kv,T)(λg)=(2ln2)n𝟙X(kv,T)(λg).\int_{\mathrm{T}_{\lambda,k_{v}}(k_{v})}\mathbbm{1}_{G_{T}}(tg)\bigwedge_{i=1}^{n}\frac{dt_{i}}{\lvert t_{i}\rvert}=\left(\prod_{i=1}^{n}2\int_{1/r_{ii}}^{2/r_{ii}}\frac{dt_{i}}{t_{i}}\right)\mathbbm{1}_{X(k_{v},T)}(\lambda\cdot g)=(2\ln 2)^{n}\mathbbm{1}_{X(k_{v},T)}(\lambda\cdot g).

Next, we compute the left hand side of (5.6) by applying the Iwasawa decomposition

(5.8) GLn(kv)=ANK,\mathrm{GL}_{n}(k_{v})=ANK,

where

{A is the subgroup of GLn(kv) consisting of positive diagonal matrices;N is the subgroup of GLn(kv) consisting of unipotent upper triangular matrices;K is the orthogonal group On(kv)GLn(kv).\left\{\begin{array}[]{l}\textit{$A$ is the subgroup of $\mathrm{GL}_{n}(k_{v})$ consisting of positive diagonal matrices};\\ \textit{$N$ is the subgroup of $\mathrm{GL}_{n}(k_{v})$ consisting of unipotent upper triangular matrices};\\ \textit{$K$ is the orthogonal group $\mathrm{O}_{n}(k_{v})\subset\mathrm{GL}_{n}(k_{v})$}.\\ \end{array}\right.

By decomposing GTGLn(kv)G_{T}\subset\mathrm{GL}_{n}(k_{v}), we have

GT=(1,2)nNTK,G_{T}=(1,2)^{n}N_{T}K,

where (1,2)n(1,2)^{n} represents the set of diagonal matrices with entries in (1,2)(1,2) and NT:={nNn1λnT}N_{T}:=\{n\in N\mid\lVert n^{-1}\lambda n\rVert\leq T\}. Indeed, for g=ankGLn(kv)g=ank\in\mathrm{GL}_{n}(k_{v}), we have g1λg=n1λn\lVert g^{-1}\lambda g\rVert=\lVert n^{-1}\lambda n\rVert.

We decompose the Haar measure |ωGLn,kvcan|v|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v} following [Kna02, Section 8] with respect to the decomposition (5.8). Let dada and dndn be Haar measures on AA and NN defined as follows,

(5.9) {da=i=1ndti|ti|on A;dn=1i<jndxijon N.\left\{\begin{array}[]{ll}da=\bigwedge_{i=1}^{n}\frac{dt_{i}}{\lvert t_{i}\rvert}&\text{on }A;\\ dn=\bigwedge_{1\leq i<j\leq n}dx_{ij}&\text{on }N.\end{array}\right.

Then [Kna02, Proposition 8.43] implies that there exists the Haar measure dkdk on KK such that

(5.10) |ωGLn,kvcan|v=1|det|n1i,jndxij=dadndk.|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v}=\frac{1}{\lvert\det\rvert^{n}}\bigwedge_{1\leq i,j\leq n}dx_{ij}=da\ dn\ dk.

To obtain the volume of GTG_{T} with respect to |ωGLn,kvcan|v|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v}, it suffices to compute each factor in the right hand side of the following equation,

vol(GT,|ωGLn,kvcan|v)=vol((1,2)n,da)vol(NT,dn)vol(K,dk).vol(G_{T},|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v})=vol((1,2)^{n},da)\cdot vol(N_{T},dn)\cdot vol(K,dk).

By definition of dada, we have vol((1,2)n,da)=(ln2)nvol((1,2)^{n},da)=(\ln 2)^{n}. The formulas in [EMS96, p. 282] yield that

vol(NT,dn)wn|Δχ|v12Tn(n1)2.vol(N_{T},dn)\sim w_{n}\lvert\Delta_{\chi}\rvert_{v}^{-\frac{1}{2}}T^{\frac{n(n-1)}{2}}.

Lemma 5.7, provided below, proves that

vol(K,dk)=2nπn(n+1)4i=1nΓ(i2)1.vol(K,dk)=2^{n}\pi^{\frac{n(n+1)}{4}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}.

Combining these results with (5.7), we have

vol(X(kv,T),|ωXkvcan|v)\displaystyle vol(X(k_{v},T),|\omega_{X_{k_{v}}}^{can}|_{v}) =(2ln2)nvol(GT,|ωGLn,kvcan|v)\displaystyle=(2\ln 2)^{-n}vol(G_{T},|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v})
=(2ln2)nvol((1,2)n,da)vol(NT,dn)vol(K,dk)\displaystyle=(2\ln 2)^{-n}\cdot vol((1,2)^{n},da)\cdot vol(N_{T},dn)\cdot vol(K,dk)
πn(n+1)4(i=1nΓ(i2)1)wn|Δχ|v12Tn(n1)2.\displaystyle\sim\pi^{\frac{n(n+1)}{4}}\left(\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}\right)w_{n}\lvert\Delta_{\chi}\rvert_{v}^{-\frac{1}{2}}T^{\frac{n(n-1)}{2}}.

By the product formula for Δχk\Delta_{\chi}\in k, we obtain

vkX(kv,T)|ωXkvcan|v(wnπn(n+1)4Tn(n1)2i=1nΓ(i2)1)[k:]vΩkk|Δχ|v12.\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}\sim\left(w_{n}\pi^{\frac{n(n+1)}{4}}T^{\frac{n(n-1)}{2}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}\right)^{[k:\mathbb{Q}]}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\lvert\Delta_{\chi}\rvert_{v}^{\frac{1}{2}}.

Lemma 5.7.

Let dkdk be the Haar measure on K=On(kv)K=\mathrm{O}_{n}(k_{v}) satisfying (5.10). Then we have

vol(K,dk)=2nπn(n+1)4i=1nΓ(i2)1.vol(K,dk)=2^{n}\pi^{\frac{n(n+1)}{4}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}.
Proof.

To obtain the volume of KK, we introduce an alternative Haar measure dkdk^{\prime} on KK using another decomposition

(5.11) GLn(kv)=KMAN,\mathrm{GL}_{n}(k_{v})=KMAN,

where MM denotes the set of signature matrices, and KK, AA, and NN are as defined in (5.8). Like defining dkdk in (5.10), we should fix the other Haar measures on MM, AA, and NN. We define dada on AA and dndn on NN as (5.9).

We choose a Haar measure dmdm on MM such that

(5.12) |ωGLn,kvcan|v=e2ρlogadn¯dmdadn,|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v}=e^{2\rho\log a}d\bar{n}\ dm\ da\ dn,

where 2ρ2\rho denotes the sum of positive roots in the root system of GLn\operatorname{GL}_{n} (cf. [Kna02, Proposition 8.45]). Here, dn¯=1j<indxijd\bar{n}=\bigwedge_{1\leq j<i\leq n}dx_{ij} denotes a Haar measure on the subgroup N¯\bar{N} of GLn(kv)\mathrm{GL}_{n}(k_{v}) consisting of unipotent lower triangular matrices. We claim that dmdm is the counting measure on MM so that vol(M,dm)=2nvol(M,dm)=2^{n}. To express the Haar measure |ωGLn,kvcan|v\lvert\omega_{\mathrm{GL}_{n,k_{v}}}^{can}\rvert_{v} in terms of dada, dndn, and dn¯d\bar{n}, we apply Lemma 5.8, provided below, which describe the Jacobian of the LDU-decomposition. Let a=diag(t1,,tn)a=\operatorname{diag}(t_{1},\ldots,t_{n}) be the diagonal matrix, and n¯\bar{n} (resp. nn) be a unipotent lower (resp. upper) triangular matrix with entries xijx_{ij} for 1j<in1\leq j<i\leq n (resp. 1i<jn1\leq i<j\leq n). By a change of variables, we obtain

1|det(xij)|n1i,jndxij\displaystyle\frac{1}{\lvert\det(x_{ij})\rvert^{n}}\bigwedge_{1\leq i,j\leq n}dx_{ij} =|t12n2t22n4tn1||t1t2tn|n1j<indxij1indti1i<jndxij\displaystyle=\frac{\lvert t_{1}^{2n-2}t_{2}^{2n-4}\cdots t_{n-1}\rvert}{\lvert t_{1}t_{2}\cdots t_{n}\rvert^{n}}\bigwedge_{1\leq j<i\leq n}dx_{ij}\wedge\bigwedge_{1\leq i\leq n}dt_{i}\wedge\bigwedge_{1\leq i<j\leq n}dx_{ij}
=|t1n1t2n3tnn+1|1j<indlij1|t1t2tn|1indti1i<jndxij\displaystyle=\left|t_{1}^{n-1}t_{2}^{n-3}\cdots t_{n}^{-n+1}\right|\bigwedge_{1\leq j<i\leq n}dl_{ij}\wedge\frac{1}{\lvert t_{1}t_{2}\cdots t_{n}\rvert}\bigwedge_{1\leq i\leq n}dt_{i}\wedge\bigwedge_{1\leq i<j\leq n}dx_{ij}
=e2ρlogadn¯dadn.\displaystyle=e^{2\rho\log a}d\bar{n}\ da\ dn.

The last equality follows from the root system of GLn\operatorname{GL}_{n}, for a=diag(t1,,tn)Aa=\operatorname{diag}(t_{1},\cdots,t_{n})\in A,

e2ρloga=|1i<jntitj|=|t1n1t2n3tnn+1|.e^{2\rho\log a}=\left|\prod_{1\leq i<j\leq n}\frac{t_{i}}{t_{j}}\right|=\lvert t_{1}^{n-1}t_{2}^{n-3}\cdots t_{n}^{-n+1}\rvert.

The decomposition (5.12) then implies that each element in MM has measure 1.

[Kna02, Proposition 8.44] implies that there exists a Haar measure dkdk^{\prime} on KK such that

(5.13) |ωGLn,kvcan|v=e2ρlogadkdmdadn.|\omega_{\mathrm{GL}_{n,k_{v}}}^{can}|_{v}=e^{2\rho\log a}dk^{\prime}\ dm\ da\ dn.

By [Kna02, Proposition 8.43], exchanging dkdk and dadnda\ dn in (5.10) yields

dadndk=e2ρlogadkdadn.da\ dn\ dk=e^{2\rho\log a}dk\ da\ dn.

Combining this with (5.13), we have dk=vol(M,dm)dk=2ndkdk=vol(M,dm)dk^{\prime}=2^{n}dk^{\prime}. [Kna02, Proposition 8.46] determines the normalization of dkdk^{\prime},

K𝑑k=N¯e2ρloga(n¯)𝑑n¯=πn(n+1)4i=1nΓ(i2)1,\int_{K}dk^{\prime}=\int_{\bar{N}}e^{-2\rho\log a(\bar{n})}d\bar{n}=\pi^{\frac{n(n+1)}{4}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1},

where a(n¯)a(\bar{n}) is the diagonal matrix in the decomposition of n¯\bar{n} with respect to (5.11) and the second equality follows from [Vos98, Theorem 1, 14.10]. Therefore, we conclude that

vol(K,dk)=2nvol(K,dk)=2nπn(n+1)4i=1nΓ(i2)1.vol(K,dk)=2^{n}vol(K,dk^{\prime})=2^{n}\pi^{\frac{n(n+1)}{4}}\prod_{i=1}^{n}\Gamma(\frac{i}{2})^{-1}.

Lemma 5.8.

Let

ϕn:n(n1)2×(>0)n×n(n1)2Mn()n2\phi_{n}:\mathbb{R}^{\frac{n(n-1)}{2}}\times(\mathbb{R}_{>0})^{n}\times\mathbb{R}^{\frac{n(n-1)}{2}}\to\mathrm{M}_{n}(\mathbb{R})\cong\mathbb{R}^{n^{2}}

defined by

(xij)i>j,(ti),(xij)i<jn¯an(x_{ij})_{i>j},(t_{i}),(x_{ij})_{i<j}\mapsto\bar{n}an

where n¯\bar{n} (resp. nn) is the unipotent lower (resp. upper) triangular matrix with the entries xijx_{ij} for 1j<in1\leq j<i\leq n (resp. 1i<jn1\leq i<j\leq n), and a=diag(t1,,tn)a=\operatorname{diag}(t_{1},\ldots,t_{n}). Then the absolute value of the Jacobian of ϕn\phi_{n} is |detJϕn|=|t12n2t22n4tn1||\det J_{\phi_{n}}|=\lvert t_{1}^{2n-2}t_{2}^{2n-4}\cdots t_{n-1}\rvert.

Proof.

We use an induction on nn. For n=1n=1 and ϕ=id\phi=\operatorname{id}, we have the Jacobian of ϕn\phi_{n} is 1. Suppose that the lemma holds for n=k1n=k-1. We denote the blocks of ll, dd, and uu by

l=(10x21n¯xn1),d=(t100a),u=(1x12x1n0n).l=\left(\begin{array}[]{c|ccc}1&&0&\\ \hline\cr x_{21}&&&\\ \vdots&&\bar{n}^{\prime}&\\ x_{n1}&&&\end{array}\right),\ \ d=\left(\begin{array}[]{c|ccc}t_{1}&&0&\\ \hline\cr&&&\\ 0&&a^{\prime}&\\ &&&\end{array}\right),\ \ u=\left(\begin{array}[]{c|ccc}1&x_{12}&\cdots&x_{1n}\\ \hline\cr&&&\\ 0&&n^{\prime}&\\ &&&\end{array}\right).

Then, we have

n¯an=(t1t1x12t1x1nt1x21n¯ant1xn1).\bar{n}an=\left(\begin{array}[]{c|ccc}t_{1}&t_{1}x_{12}&\cdots&t_{1}x_{1n}\\ \hline\cr t_{1}x_{21}&&&\\ \vdots&&\bar{n}^{\prime}a^{\prime}n^{\prime}&\\ t_{1}x_{n1}&&&\end{array}\right).

Since the entries of n¯an\bar{n}^{\prime}a^{\prime}n^{\prime} are independent of t1t_{1}, xi1x_{i1}, and x1ix_{1i} for 2in2\leq i\leq n, the Jacobian matrix JϕnJ_{\phi_{n}} equals diag(1,t1,,t1)Jϕn1\operatorname{diag}(1,t_{1},\ldots,t_{1})\oplus J_{\phi_{n-1}}. This completes the proof by the inductive assumption. ∎

5.3. Computation on non-Archimedean places

Now we consider the integration ξ~v\tilde{\xi}_{v} on X(𝒪kv)X(\mathcal{O}_{k_{v}}) for vΩkkv\in\Omega_{k}\setminus\infty_{k}. In the case that the evaluation ξ~v\tilde{\xi}_{v} is trivial, we find that the integration is associated with the orbital integral for 𝔤𝔩n\mathfrak{gl}_{n} (cf. Proposition 5.9). Otherwise, Kv/kvK_{v}/k_{v} is a Galois field extension by Proposition 5.1 and Proposition 5.5. In this case, we will address the two cases separately; when Kv/kvK_{v}/k_{v} is ramified and when Kv/kvK_{v}/k_{v} is unramified.

In particular, when Kv/kvK_{v}/k_{v} is unramified, we use the Langlands-Shelstad fundamental lemma for 𝔰𝔩n\mathfrak{sl}_{n}, proven by Ngô in [Ngfrm[o]–0]. Because of the complexity and the various involved concepts, we will provide it in Section 6.

5.3.1. The case that the evaluation ξ~v\tilde{\xi}_{v} is trivial

By Proposition 5.1 and Proposition 5.5, the evaluation ξ~v\tilde{\xi}_{v} is trivial if the following cases hold.

{K/k is not a Galois field extension;K/k is a Galois field extension and Kv/kv splits;K/k is a Galois field extension, Kv/kv is a field extension, and ξBrX/Brk is trivial.\left\{\begin{array}[]{l}K/k\textit{ is not a Galois field extension};\\ K/k\textit{ is a Galois field extension and $K_{v}/k_{v}$ splits};\\ K/k\textit{ is a Galois field extension, $K_{v}/k_{v}$ is a field extension, and $\xi\in\operatorname{Br}X/\operatorname{Br}k$ is trivial}.\end{array}\right.

Otherwise, Kv/kvK_{v}/k_{v} is a Galois field extension and ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k is non-trivial, then the evaluation ξ~v\tilde{\xi}_{v} is non-trivial by Proposition 5.4.

Proposition 5.9.

For vΩkkv\in\Omega_{k}\setminus\infty_{k}, we identify Mn,𝒪kv(𝒪kv)\mathrm{M}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}) with 𝔤𝔩n,𝒪kv(𝒪kv)\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}) so that x0𝔤𝔩n,𝒪kv(𝒪kv)x_{0}\in\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}). Then, we have the following equation.

X(𝒪kv)|ωXkvcan|v=Tx0(kv)\GLn(kv)𝟙𝔤𝔩n,𝒪kv(𝒪kv)(g1x0g)|ωXkvcan|v.\int_{X(\mathcal{O}_{k_{v}})}|\omega_{X_{k_{v}}}^{can}|_{v}=\int_{\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}g)\ |\omega_{X_{k_{v}}}^{can}|_{v}.

Here, the right hand side is the orbital integral of x0x_{0} for 𝔤𝔩n\mathfrak{gl}_{n} with respect to the measure |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} (See [Yun13, Section 1.3] for the definition of the orbital integral for 𝔤𝔩n\mathfrak{gl}_{n} with respect to the measure dgvdtv\frac{dg_{v}}{dt_{v}}).

Proof.

Via the identification XTx0\GLnX\cong\mathrm{T}_{x_{0}}\backslash\mathrm{GL}_{n} in Proposition 2.1.(1) and Proposition 2.3, we have

X(kv)Tx0(kv)\GLn(kv).X(k_{v})\cong\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v}).

Under this identification, we have X(𝒪kv){gTx0(kv)\GLn(kv)g1x0g𝔤𝔩n,𝒪kv(𝒪kv)}X(\mathcal{O}_{k_{v}})\cong\{g\in\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v})\mid g^{-1}x_{0}g\in\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})\} and this yields the formula. ∎

In general, obtaining the closed formula of the orbital integral for 𝔤𝔩n\mathfrak{gl}_{n} is a challenging problem, and the difficulty increases as the rank nn grows. In certain cases, including n=2,3n=2,3, we will summarize the closed formula of the orbital integrals for 𝔤𝔩n\mathfrak{gl}_{n} in Proposition 7.3-7.4.

Remark 5.10.

Suppose that χ(x)\chi(x) is a irreducible polynomial such that 𝒪K=𝒪k[x]/(χ(x))\mathcal{O}_{K}=\mathcal{O}_{k}[x]/(\chi(x)) (cf. assumption (2) in (1.3)). By [Yun13, Theorem 1.5], we have

(5.14) X(𝒪kv)dgvdtv=Tx0(kv)\GLn(kv)𝟙𝔤𝔩n,𝒪kv(𝒪kv)(g1x0g)dgvdtv=1,\int_{X(\mathcal{O}_{k_{v}})}\frac{dg_{v}}{dt_{v}}=\int_{\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}g)\ \frac{dg_{v}}{dt_{v}}=1,

where the measure dgvdtv\frac{dg_{v}}{dt_{v}} is defined in Lemma 3.7. Indeed, according to loc. cit. the orbtal integral of x0x_{0} for 𝔤𝔩n\mathfrak{gl}_{n} with respect to dgvdtv\frac{dg_{v}}{dt_{v}} is an integer formulated by a \mathbb{Z}-polynomial in qvq_{v} whose leading term is qvSv(χ)q_{v}^{S_{v}(\chi)}. Here Sv(χ)S_{v}(\chi) is the 𝒪kv\mathcal{O}_{k_{v}}-module length between 𝒪Kv\mathcal{O}_{K_{v}} and 𝒪kv[x]/(χ(x))\mathcal{O}_{k_{v}}[x]/(\chi(x)). Therefore the assumption yields that Sv(χ)=0S_{v}(\chi)=0 and thus (5.14) holds.

5.3.2. The case that the evaluation ξ~v\tilde{\xi}_{v} is non-trivial and Kv/kvK_{v}/k_{v} is ramified

Proposition 5.11.

Suppose that Kv/kvK_{v}/k_{v} is a ramified Galois extension of prime degree nn. For ξBr(X)\xi\in\mathrm{Br}(X) whose evaluation ξ~v\tilde{\xi}_{v} is non-trivial, we have

X(𝒪kv)ξ~v(x)|ωXkvcan|v=0.\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}=0.
Proof.

[Neu99, (1.7) Proposition, Chapter 5] states that Kv/kvK_{v}/k_{v} is ramified if and only if there exists an element u𝒪kv×u\in\mathcal{O}_{k_{v}}^{\times} such that uNmKv/kvKv×u\notin\operatorname{Nm}_{K_{v}/k_{v}}K_{v}^{\times}. Therefore the image of uu under the Artin reciprocity isomorphism ϕKv/kv\phi_{K_{v}/k_{v}}, defined in Proposition 5.2, is non-trivial in Gal(Kv/kv)\operatorname{Gal}(K_{v}/k_{v}). On the other hand, by the assumption that deg(K/k)\mathrm{deg}(K/k) is a prime number, we have that Gal(K/k)=Gal(Kv/kv)\operatorname{Gal}(K/k)=\operatorname{Gal}(K_{v}/k_{v}). Then the kernel of Ψ(ξ)Hom(Gal(Kv/kv),/)\Psi(\xi)\in\operatorname{Hom}(\operatorname{Gal}(K_{v}/k_{v}),\mathbb{Q}/\mathbb{Z}) is trivial, where Ψ\Psi is defined in Proposition 5.2. We then have that exp2πiΨ(ξ)(ϕKv/kv(u))1\exp 2\pi i\Psi(\xi)(\phi_{K_{v}/k_{v}}(u))\neq 1.

Let g:=diag(u,1,,1)GLn,𝒪k(𝒪k)g:=\operatorname{diag}(u,1,\ldots,1)\in\mathrm{GL}_{n,\mathcal{O}_{k}}(\mathcal{O}_{k}). Since |ωXkvcan|v\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v} is a GLn(kv)\mathrm{GL}_{n}(k_{v})-invariant measure and X(𝒪k)X(\mathcal{O}_{k}) is stable under the GLn,𝒪k(𝒪k)\mathrm{GL}_{n,\mathcal{O}_{k}}(\mathcal{O}_{k})-action, we have

X(kv)ξ~v(x) 1X(𝒪k)|ωXkvcan|v(x)\displaystyle\int_{X(k_{v})}\tilde{\xi}_{v}(x)\ \mathbbm{1}_{X(\mathcal{O}_{k})}\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}(x) =X(kv)ξ~v(xg) 1X(𝒪k)(xg)|ωXkvcan|v\displaystyle=\int_{X(k_{v})}\tilde{\xi}_{v}(x\cdot g)\ \mathbbm{1}_{X(\mathcal{O}_{k})}(x\cdot g)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}
=exp2πiΨ(ξ)(ϕKv/kv(u))X(kv)ξ~v(x) 1X(𝒪k)(x)|ωXkvcan|\displaystyle=\exp 2\pi i\Psi(\xi)(\phi_{K_{v}/k_{v}}(u))\int_{X(k_{v})}\tilde{\xi}_{v}(x)\ \mathbbm{1}_{X(\mathcal{O}_{k})}(x)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert

by Proposition 5.2. Therefore, we have

X(𝒪k)ξ~v(x)|ωXkvcan|v=0.\int_{X(\mathcal{O}_{k})}\tilde{\xi}_{v}(x)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}=0.

6. Computation on non-Archimedean places: the case that the evaluation ξ~v\tilde{\xi}_{v} is non-trivial and Kv/kvK_{v}/k_{v} is unramified

By Proposition 5.3, the integration of ξ~v\tilde{\xi}_{v} on X(𝒪kv)X(\mathcal{O}_{k_{v}}) turns to be the weighted summation for each SLn(kv)\mathrm{SL}_{n}(k_{v})-orbit. In the case that Kv/kvK_{v}/k_{v} is unramified and ξ~v\tilde{\xi}_{v} is non-trivial, we will show that the enumeration of this summation follows from the Langlands-Shelstad fundamental lemma, which is proven in [Ngfrm[o]–0].

We first collect the necessary materials to state the Langlands-Shelstad fundamental lemma for 𝔰𝔩n\mathfrak{sl}_{n} in Section 6.1. Summing up our observations, we will provide the conclusion in Section 6.2. Throughout this section, we fix vΩkkv\in\Omega_{k}\setminus\infty_{k} such that Kv/kvK_{v}/k_{v} is an unramified Galois field extension.

6.1. Measures on each SLn(kv)\mathrm{SL}_{n}(k_{v})-orbit in X(kv)X({k_{v}})

In the Langlands-Shelstad fundamental lemma, the measure dhvdsv\frac{dh_{v}}{ds^{\prime}_{v}} defined in Lemma 6.1 is used, whereas our integration is defined with respect to the measure |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v}. Therefore, it is necessary to describe the difference between two measures |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} and dhvdsv\frac{dh_{v}}{ds^{\prime}_{v}} on x0SLn(kv)Sx0(kv)\SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v})\cong\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v}), for each x0x0,vx_{0}^{\prime}\in\mathcal{R}_{x_{0},v}.

To address this, we will define a measure |ωXkv,x0can|v|\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}|_{v} on each x0SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v}), which behaves as a bridge between two measures |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} and dhvdsv\frac{dh_{v}}{ds^{\prime}_{v}} (cf. Lemma 6.1-6.2). The construction of this measure will follow the method used in Section 3.2.2.

6.1.1. Integral models for Sx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}} when Kv/kvK_{v}/k_{v} is an unramified field extension

As in Subsection 3.2.1, we first construct an integral model for Sx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}}. Since Lemma 2.2 is independent of the choice of x0x_{0}, we have the following description of Sx0,kvSx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}}\cong\mathrm{S}_{x_{0},k_{v}},

Sx0,kvker(NmKv/kv:RKv/kv(𝔾m,Kv)𝔾m,kv).\mathrm{S}_{x_{0}^{\prime},k_{v}}\cong\ker\bigg{(}\operatorname{Nm}_{K_{v}/k_{v}}:\mathrm{R}_{K_{v}/k_{v}}(\mathbb{G}_{m,K_{v}})\rightarrow\mathbb{G}_{m,k_{v}}\bigg{)}.

By [Vos98, Section 10.5], the standard integral model for Sx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}} is given by Sx0,𝒪kv:=R𝒪Kv/𝒪kv(1)(𝔾m,𝒪Kv)\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}:=\mathrm{R}^{(1)}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}(\mathbb{G}_{m,\mathcal{O}_{K_{v}}}) which is the kernel of the following morphism,

Nm𝒪Kv/𝒪kv:R𝒪Kv/𝒪kv(𝔾m,𝒪Kv)𝔾m,𝒪kv,gσGal(Kv/kv)σ(g).\operatorname{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}:\mathrm{R}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}(\mathbb{G}_{m,\mathcal{O}_{K_{v}}})\rightarrow\mathbb{G}_{m,\mathcal{O}_{k_{v}}},\ g\mapsto\prod_{\sigma\in\operatorname{Gal}(K_{v}/k_{v})}\sigma(g).

Since Kv/kvK_{v}/k_{v} is unramified, [Vos98, Theorem 2, 10.3] yields that Sx0,𝒪kv\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}} is an 𝒪kv\mathcal{O}_{k_{v}}-torus, with Sx0,𝒪kv𝒪kv𝒪Kv𝔾m,𝒪Kvn1\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}\otimes_{\mathcal{O}_{k_{v}}}\mathcal{O}_{K_{v}}\cong\mathbb{G}_{m,\mathcal{O}_{K_{v}}}^{n-1} which is smooth over 𝒪Kv\mathcal{O}_{K_{v}} and has a connected fiber over each point in Spec(𝒪Kv)\mathrm{Spec}(\mathcal{O}_{K_{v}}). Then by [Poo17, Theorem 4.3.7], these properties descend to Sx0,𝒪kv\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}} as well and thus Sx0,𝒪kv\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}} is also smooth over 𝒪kv\mathcal{O}_{k_{v}} and its fiber over each point in Spec(𝒪kv)\mathrm{Spec}(\mathcal{O}_{k_{v}}) is connected. Indeed, Spec(𝒪Kv)Spec(𝒪kv)\mathrm{Spec}(\mathcal{O}_{K_{v}})\rightarrow\mathrm{Spec}(\mathcal{O}_{k_{v}}) is a fpqc morphism. Moreover, the identity component 𝒮x00\mathcal{S}_{x_{0}^{\prime}}^{0} of the Néron-Raynaud model 𝒮x0\mathcal{S}_{x_{0}^{\prime}} (cf. [BLR90, Chapter 10]) for Sx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}} coincides with the standard integral model by [Bit11, Corollary 1.4].

6.1.2. Volume forms on XkvSx0,kv\SLn,kvX_{k_{v}}\cong\mathrm{S}_{x_{0}^{\prime},k_{v}}\backslash\mathrm{SL}_{n,k_{v}}

We construct translation-invariant volume forms ωSLn,kvcan\omega_{\mathrm{SL}_{n,k_{v}}}^{can} on SLn,kv\mathrm{SL}_{n,k_{v}}, ωSx0,kvcan\omega_{\mathrm{S}_{x_{0}^{\prime},k_{v}}}^{can} on Sx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}}, and the corresponding SLn,kv\mathrm{SL}_{n,k_{v}}-invariant volume form ωXkv,x0can\omega_{X_{k_{v}},x_{0}^{\prime}}^{can} on XkvX_{k_{v}} as follows.

  1. (1)

    On SLn,kv\mathrm{SL}_{n,k_{v}}, we define ωSLn,kvcan\omega_{\mathrm{SL}_{n,k_{v}}}^{can} to be a translation-invariant volume form in ΩSLn,kv/kvn21(SLn,kv)\Omega^{n^{2}-1}_{\mathrm{SL}_{n,k_{v}}/k_{v}}(\mathrm{SL}_{n,k_{v}}) which generates the 𝒪kv\mathcal{O}_{k_{v}}-submodule Hom(n21𝔰𝔩n,𝒪kv(𝒪kv),𝒪kv)\operatorname{Hom}(\bigwedge^{n^{2}-1}\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}). Then the volume form ωSLn,kvcan\omega_{\mathrm{SL}_{n,k_{v}}}^{can} has good reduction (mod πv\pi_{v}) in the sense of [Gro97, Section 4]. We then have the following equation by [Gro97, Proposition 4.7],

    vol(|ωSLn,kvcan|v,SLn,𝒪kv(𝒪kv))=#SLn,𝒪kv(κv)qvn21.\mathrm{vol}(|\omega_{\mathrm{SL}_{n,k_{v}}}^{can}|_{v},\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=\frac{\#\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})}{q_{v}^{n^{2}-1}}.
  2. (2)

    On Sx0,kv\mathrm{S}_{x_{0}^{\prime},k_{v}}, we define ωSx0,kvcan\omega_{\mathrm{S}_{x_{0}^{\prime},k_{v}}}^{can} to be a translation-invariant volume form in ΩSx0,kv/kvn1(Sx0,kv)\Omega^{n-1}_{\mathrm{S}_{x_{0}^{\prime},k_{v}}/k_{v}}(\mathrm{S}_{x_{0}^{\prime},k_{v}}) which generates the 𝒪kv\mathcal{O}_{k_{v}}-submodule Hom(n1Lie(Sx0,𝒪kv)(𝒪kv),𝒪kv)\mathrm{Hom}(\bigwedge^{n-1}\mathrm{Lie}(\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}})(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}). Since 𝒮x00Sx0,𝒪kv\mathcal{S}_{x_{0}^{\prime}}^{0}\cong\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}, the volume form ωSx0,kvcan\omega_{\mathrm{S}_{x_{0}^{\prime},k_{v}}}^{can} has good reduction (mod πv\pi_{v}) in the sense of [Gro97, Section 4]. We then have the following equation by [Bit11, Proposition 2.14],

    vol(|ωSx0,kvcan|v,Sx0,𝒪kv(𝒪kv))=#Sx0,𝒪kv(κv)qvn1.\mathrm{vol}(|\omega_{\mathrm{S}_{x_{0}^{\prime},k_{v}}}^{can}|_{v},\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=\frac{\#\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}(\kappa_{v})}{q_{v}^{n-1}}.
  3. (3)

    On XkvSx0,kv\SLn,kvX_{k_{v}}\cong\mathrm{S}_{x_{0}^{\prime},k_{v}}\backslash\mathrm{SL}_{n,k_{v}}, we define ωXkv,x0can\omega_{X_{k_{v}},x_{0}^{\prime}}^{can} to be a SLn,kv\mathrm{SL}_{n,k_{v}}-invariant volume form such that ωSLn,kvcan=ωXkv,x0canωSx0,kvcan\omega_{\mathrm{SL}_{n,k_{v}}}^{can}=\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}\cdot\omega_{\mathrm{S}_{x_{0}^{\prime},k_{v}}}^{can}. Then by Proposition 3.3, |ωXkv,x0can|v|\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}|_{v} defines a measure on x0SLn(kv)Sx0(kv)\SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v})\cong\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v}) which matches topologically together with |ωSLn,kvcan|v|\omega_{\mathrm{SL}_{n,k_{v}}}^{can}|_{v} and |ωSx0,kvcan|v|\omega_{\mathrm{S}_{x_{0}^{\prime},k_{v}}}^{can}|_{v}.

Comparing with the quotient measure dhvdsv\frac{dh_{v}}{ds_{v}^{\prime}} induced from the canonically normalized Haar measures dhvdh_{v} on SLn(kv)\mathrm{SL}_{n}(k_{v}) and dsvds_{v}^{\prime} on Sx0(kv)\mathrm{S}_{x_{0}^{\prime}}(k_{v}), we have the following relation.

Lemma 6.1.

Let dhvdsv\frac{dh_{v}}{ds^{\prime}_{v}} be the quotient measure on x0SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v}), which is defined via the isomorphism x0SLn(kv)Sx0(kv)\SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v})\cong\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v}), where

{dhv be the Haar measure on SLn(kv) such that vol(dhv,SLn,𝒪kv(𝒪kv))=1;dsv be the Haar measure on Sx0(kv) such that vol(dsv,Sx0,𝒪kv(𝒪kv))=1.\left\{\begin{array}[]{l}\textit{$dh_{v}$ be the Haar measure on $\mathrm{SL}_{n}(k_{v})$ such that $\mathrm{vol}(dh_{v},\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=1$};\\ \textit{$ds^{\prime}_{v}$ be the Haar measure on $\mathrm{S}_{x_{0}^{\prime}}(k_{v})$ such that $\mathrm{vol}(ds^{\prime}_{v},\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=1$}.\end{array}\right.

We have

|ωXkv,x0can|v=#SLn,𝒪kv(κv)qv(n21)#Sx0,𝒪kv(κv)qv(n1)dhvdsv.|\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}|_{v}=\frac{\#\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-(n^{2}-1)}}{\#\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-(n-1)}}\cdot\frac{dh_{v}}{ds^{\prime}_{v}}.

On the other hand, the measure |ωXkv,x0can|v|\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}|_{v} coincides with the restriction of |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} on x0SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v}), by the following lemma.

Lemma 6.2.

We have

|ωXkvcan|v|x0SLn(kv)=|ωXkv,x0can|v.|\omega_{X_{k_{v}}}^{can}|_{v}\Big{|}_{x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v})}=|\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}|_{v}.
Proof.

In this proof, to ease the notations, we will omit the subscript kvk_{v} for each scheme over kvk_{v} if there is no confusion. For the centralizer Tx0\mathrm{T}_{x_{0}^{\prime}} of x0x_{0}^{\prime} in GLn\mathrm{GL}_{n}, we define ωTx0can\omega_{\mathrm{T}_{x_{0}^{\prime}}}^{can} following Section 3.2.2. Since there exists gGLn(kv)g\in\mathrm{GL}_{n}(k_{v}) such that g1x0g=x0g^{-1}x_{0}g=x_{0}^{\prime}, we have Tx0(kv)Tx0(kv)\mathrm{T}_{x_{0}}(k_{v})\cong\mathrm{T}_{x_{0}^{\prime}}(k_{v}) and X(kv)Tx0(kv)\GLn(kv)Tx0(kv)\GLn(kv)X(k_{v})\cong\mathrm{T}_{x_{0}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v})\cong\mathrm{T}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{GL}_{n}(k_{v}). Therefore |ωTx0\ωGLn|v|\omega_{\mathrm{T}_{x_{0}^{\prime}}}\backslash\omega_{\mathrm{GL}_{n}}|_{v} and |ωTx0\ωGLn|v|\omega_{\mathrm{T}_{x_{0}}}\backslash\omega_{\mathrm{GL}_{n}}|_{v} are the same measure on X(kv)X(k_{v}) by Lemma 3.7. Here we note that Sx0,𝒪kv\mathrm{S}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}} is embedded in Tx0,𝒪kv\mathrm{T}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}} as the kernel of Nm𝒪Kv/𝒪kv:Tx0,𝒪kv𝔾m,𝒪kv\mathrm{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}:{\mathrm{T}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}}\to{\mathbb{G}_{m,\mathcal{O}_{k_{v}}}}. We consider the following commutative diagram defined over 𝒪kv\mathcal{O}_{k_{v}},

(6.1) Tx0,𝒪kv{{\mathrm{T}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}}}𝔾m,𝒪kv{{\mathbb{G}_{m,\mathcal{O}_{k_{v}}}}}GLn,𝒪kv{{\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}}}𝔾m,𝒪kv.{{\mathbb{G}_{m,\mathcal{O}_{k_{v}}}.}}Nm𝒪Kv/𝒪kv\scriptstyle{\operatorname{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}}id\scriptstyle{id}det\scriptstyle{\mathrm{det}}

Here the first horizontal morphism Nm𝒪Kv/𝒪kv\operatorname{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}} is smooth over 𝒪kv\mathcal{O}_{k_{v}} since Kv/kvK_{v}/k_{v} is unramified. On the other hand, the second horizontal morphism det\mathrm{det} is also smooth over 𝒪kv\mathcal{O}_{k_{v}} since its differential d(det)=tr:𝔤𝔩n,𝒪kv(𝒪kv)𝔾a,𝒪kv(𝒪kv)d(\mathrm{det})=\mathrm{tr}:\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})\rightarrow\mathbb{G}_{a,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}) is surjective.

We first claim that there exists a translation-invariant gauge form ω𝔾m\omega_{\mathbb{G}_{m}} on 𝔾mSLn\GLnSx0\Tx0\mathbb{G}_{m}\cong\mathrm{SL}_{n}\backslash\mathrm{GL}_{n}\cong\mathrm{S}_{x_{0}^{\prime}}\backslash\mathrm{T}_{x_{0}^{\prime}} satisfying the following two equations, up to multiplication of a unit in 𝒪kv\mathcal{O}_{k_{v}},

ωGLncan=ω𝔾mωSLncan and ωTx0can=ω𝔾mωSx0can.\omega_{\mathrm{GL}_{n}}^{can}=\omega_{\mathbb{G}_{m}}\cdot\omega_{\mathrm{SL}_{n}}^{can}\textit{ and }\omega_{\mathrm{T}_{x_{0}^{\prime}}}^{can}=\omega_{\mathbb{G}_{m}}^{\prime}\cdot\omega_{\mathrm{S}_{x_{0}^{\prime}}}^{can}.

Since ωSLncan\omega_{\mathrm{SL}_{n}}^{can} generates an 𝒪kv\mathcal{O}_{k_{v}}-module Hom(n21𝔰𝔩n,𝒪kv(𝒪kv),𝒪kv)\mathrm{Hom}(\bigwedge^{n^{2}-1}\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}), its lifting ω~SLncan\widetilde{\omega}_{\mathrm{SL}_{n}}^{can} on GLn\mathrm{GL}_{n} (cf. Definition 3.2), which is in Hom(n21𝔤𝔩n,𝒪kv(𝒪kv),𝒪kv)\mathrm{Hom}(\bigwedge^{n^{2}-1}\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}), does not vanish under the modulo πv\pi_{v} reduction. Since ωGLncan\omega_{\mathrm{GL}_{n}}^{can} generates an 𝒪kv\mathcal{O}_{k_{v}}-module Hom(n2𝔤𝔩n,𝒪kv(𝒪kv),𝒪kv)\mathrm{Hom}(\bigwedge^{n^{2}}\mathfrak{gl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}),\mathcal{O}_{k_{v}}) and det:GLn,𝒪kv𝔾m,𝒪kv\det:\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}\to\mathbb{G}_{m,\mathcal{O}_{k_{v}}} is smooth over 𝒪kv\mathcal{O}_{k_{v}}, a translation-invariant volume form ω𝔾m\omega_{\mathbb{G}_{m}} on 𝔾m\mathbb{G}_{m}, such that ωGLncan=detω𝔾mω~SLncan\omega_{\mathrm{GL}_{n}}^{can}=\det^{*}\omega_{\mathbb{G}_{m}}\wedge\tilde{\omega}_{\mathrm{SL}_{n}}^{can}, has good reduction (mod π\pi). Since Nm𝒪Kv/𝒪kv:Tx0,𝒪kv𝔾m,𝒪kv\mathrm{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}:{\mathrm{T}_{x_{0}^{\prime},\mathcal{O}_{k_{v}}}}\to{\mathbb{G}_{m,\mathcal{O}_{k_{v}}}} is smooth over 𝒪kv\mathcal{O}_{k_{v}}, a translation-invariant gauge form ω𝔾m\omega_{\mathbb{G}_{m}}^{\prime} such that ωTx0can=(Nm𝒪Kv/𝒪kv)ω𝔾mω~Sx0can\omega_{\mathrm{T}_{x_{0}^{\prime}}}^{can}=(\operatorname{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}})^{*}\omega_{\mathbb{G}_{m}}^{\prime}\wedge\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can} also has good reduction (mod π\pi) by the same argument. By [Gro97, p. 293], ω𝔾m\omega_{\mathbb{G}_{m}}^{\prime} differs from ω𝔾m\omega_{\mathbb{G}_{m}} up to multiplication of a unit in 𝒪kv\mathcal{O}_{k_{v}}. This yields the claim.

Now we denote a lifting of a volume form ω\omega on Sx0,Tx0,\mathrm{S}_{x_{0}^{\prime}},\mathrm{T}_{x_{0}^{\prime}}, or SLn\mathrm{SL}_{n} in the sense of Definition 3.2, along the embedding into GLn\mathrm{GL}_{n}, by ω~GLn\tilde{\omega}^{\mathrm{GL}_{n}}. Since ωGLncan=ωXcanωTx0can\omega_{\mathrm{GL}_{n}}^{can}=\omega_{X}^{can}\cdot\omega_{\mathrm{T}_{x_{0}^{\prime}}}^{can}, we have

ωGLncan=φGLnωXcanω~Tx0can,GLn,\omega_{\mathrm{GL}_{n}}^{can}=\varphi_{\mathrm{GL}_{n}}^{*}\omega^{can}_{X}\wedge\tilde{\omega}_{\mathrm{T}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}},

where φGLn:GLnX\varphi_{\mathrm{GL}_{n}}:\mathrm{GL}_{n}\rightarrow X represents the mapping defined by gg1x0gg\rightarrow g^{-1}x_{0}^{\prime}g. The above claim yields that

(6.2) detω𝔾mω~SLncan,GLn=φGLnωXcanω~Tx0can,GLn,\mathrm{det}^{*}\omega_{\mathbb{G}_{m}}\wedge\tilde{\omega}_{\mathrm{SL}_{n}}^{can,\mathrm{GL}_{n}}=\varphi_{\mathrm{GL}_{n}}^{*}\omega^{can}_{X}\wedge\tilde{\omega}_{\mathrm{T}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}},

where ω~Tx0can,GLn\tilde{\omega}_{\mathrm{T}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}} is equal to a lifting of Nm𝒪Kv/𝒪kvω𝔾mω~Sx0can\operatorname{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}^{*}\omega_{\mathbb{G}_{m}}\wedge\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can}, along Tx0GLn\mathrm{T}_{x_{0}^{\prime}}\hookrightarrow\mathrm{GL}_{n}. Since the right hand side of (6.2) is independent of the choice of a lifting ω~Tx0can,GLn\tilde{\omega}_{\mathrm{T}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}} (cf. Definition 3.2), we choose it to be the exterior product of liftings of Nm𝒪Kv/𝒪kvω𝔾m\operatorname{Nm}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}^{*}\omega_{\mathbb{G}_{m}} and ω~Sx0can,GLn\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}} on GLn\mathrm{GL}_{n}. By the commutative diagram (6.1), detω𝔾m\det^{*}\omega_{\mathbb{G}_{m}} is a lifting of Nm𝒪Kv/𝒪kvω𝔾m\mathrm{Nm}^{*}_{\mathcal{O}_{K_{v}}/\mathcal{O}_{k_{v}}}\omega_{\mathbb{G}_{m}} along Tx0GLn\mathrm{T}_{x_{0}^{\prime}}\hookrightarrow\mathrm{GL}_{n}. We then have

detω𝔾mω~SLncan,GLn=φGLnωXcandetω𝔾mω~Sx0can,GLn.\mathrm{det}^{*}\omega_{\mathbb{G}_{m}}\wedge\tilde{\omega}^{can,\mathrm{GL}_{n}}_{\mathrm{SL}_{n}}=\varphi_{\mathrm{GL}_{n}}^{*}\omega_{X}^{can}\wedge\mathrm{det}^{*}\omega_{\mathbb{G}_{m}}\wedge\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}}.

Therefore the (n21)(n^{2}-1)-form ω~SLncan,GLn+φGLnωXcanω~Sx0can,GLn\tilde{\omega}^{can,\mathrm{GL}_{n}}_{\mathrm{SL}_{n}}+\varphi_{\mathrm{GL}_{n}}^{*}\omega_{X}^{can}\wedge\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}} vanishes under the exterior product with detω𝔾m\mathrm{det}^{*}\omega_{\mathbb{G}_{m}}. Since detω𝔾m\det^{*}\omega_{\mathbb{G}_{m}} is of degree 1, there exists an (n22)(n^{2}-2)-differential form ω\omega^{\prime} on GLn\mathrm{GL}_{n} such that

ω~SLncan,GLn+φGLnωXcanω~Sx0can,GLn=detω𝔾mω.\tilde{\omega}^{can,\mathrm{GL}_{n}}_{\mathrm{SL}_{n}}+\varphi_{\mathrm{GL}_{n}}^{*}\omega_{X}^{can}\wedge\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can,\mathrm{GL}_{n}}=\mathrm{det}^{*}\omega_{\mathbb{G}_{m}}\wedge\omega^{\prime}.

Restricting this equation on SLn\mathrm{SL}_{n}, by plugging det=1\det=1 with d(det)=0d(\det)=0, we then have the following equation up to sign

ωSLncan=φSLnωXcanω~Sx0can,SLn,\omega_{\mathrm{SL}_{n}}^{can}=\varphi_{\mathrm{SL}_{n}}^{*}\omega_{X}^{can}\wedge\tilde{\omega}_{\mathrm{S}_{x_{0}^{\prime}}}^{can,\mathrm{SL}_{n}},

where φSLn:SLnX\varphi_{\mathrm{SL}_{n}}:\mathrm{SL}_{n}\rightarrow X represents the mapping defined by gg1x0gg\mapsto g^{-1}x_{0}^{\prime}g. This yields that |ωXkvcan|v=|ωXkv,x0can|v|\omega_{X_{k_{v}}}^{can}|_{v}=|\omega_{X_{k_{v}},x_{0}^{\prime}}^{can}|_{v} on Sx0(kv)\SLn(kv)x0SLn(kv)\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})\cong x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v}) by Proposition 3.3. ∎

6.2. Computation using the Langlands-Shelstad fundamental lemma

The Langlands-Shelstad fundamental lemma, stated in [Ngfrm[o]–0, Theorem 1], represents the equation between two orbital integrals encoded by an endoscopic data (cf. [Hal05, Section 2-3] and [Kot84, Section 7.1]). We find that the evaluation ξ~v\tilde{\xi}_{v} on X(𝒪kv)X(\mathcal{O}_{k_{v}}) is related to an endoscopic data for SLn\mathrm{SL}_{n}, and one side of the fundamental lemma for 𝔰𝔩n\mathfrak{sl}_{n} coincides with the integration of ξ~v\tilde{\xi}_{v} on X(𝒪kv)X(\mathcal{O}_{k_{v}}).

In Section 6.2.1, we will provide the explicit relation between the evaluation ξ~v\tilde{\xi}_{v} and an endoscopic data for SLn\mathrm{SL}_{n}, and demonstrate that Sx0,kv\mathrm{S}_{x_{0},k_{v}} is an endoscopic group associated with the endoscopic data derived from ξ~v\tilde{\xi}_{v}. This connection provides the information on the other side of the fundamental lemma for 𝔰𝔩n\mathfrak{sl}_{n}. Using this argument, in Section 6.2.2, we will formulate the integration of ξ~v\tilde{\xi}_{v} on X(𝒪kv)X(\mathcal{O}_{k_{v}}).

6.2.1. Endoscopic data and endoscopic group for SLn\mathrm{SL}_{n}

Since SLn,kv\mathrm{SL}_{n,k_{v}} is a split group over kvk_{v}, we use the definition for the endoscopic data and the endoscopic group, in terms of the root data following [Hal05, Section 2-3].

Definition 6.3 ([Hal05, Section 2]).

Let GG be a reductive group over kvk_{v}. If GG is a quasi-split group which splits over an unramified extension over kvk_{v}, then GG is said to be an unramified reductive group.

An unramified reductive group GG is classified by the following root data

(X(T),X(T),ΦG,ΦG,σG)(X^{*}(T),X_{*}(T),\Phi_{G},\Phi_{G}^{\vee},\sigma_{G})

where

{X(T) is the character group of a Cartan subgroup T of G;X(T) is the cocharacter group of a Cartan subgroup T of G;ΦG is the set of roots;ΦG is the set of coroots;σG is an automorphism of finite order of X(T) sending a set of simple roots in ΦG to itself.\left\{\begin{array}[]{l}X^{*}(T)\textit{ is the character group of a Cartan subgroup $T$ of $G$};\\ X_{*}(T)\textit{ is the cocharacter group of a Cartan subgroup $T$ of $G$};\\ \Phi_{G}\textit{ is the set of roots};\\ \Phi_{G}^{\vee}\textit{ is the set of coroots};\\ \sigma_{G}\textit{ is an automorphism of finite order of $X^{*}(T)$ sending a set of simple roots in $\Phi_{G}$ to itself.}\end{array}\right.

In general, σG\sigma_{G} is obtained from the action on X(T)X^{*}(T) induced from the Frobenius automorphism of Gal(kvun/kv)\mathrm{Gal}(k_{v}^{un}/k_{v}) on the maximally split Cartan subgroup in GG. Here, kvunk_{v}^{un} is the maximal unramified extension over kvk_{v}, in a fixed algebraically closure k¯v\overline{k}_{v} of kvk_{v} containing k¯\overline{k}.

Definition 6.4 ([Kot84, Section 7.1] and [Hal05, Section 3]).

Let GG be an unramified reductive group over kvk_{v} with the root data (X(T),X(T),ΦG,ΦG,σG)(X^{*}(T),X_{*}(T),\Phi_{G},\Phi_{G}^{\vee},\sigma_{G}). HH is an endoscopic group of GG if it is an unramified reductive group over kvk_{v} whose classifying data has the form

(X(T),X(T),ΦH,ΦH,σH).(X^{*}(T),X_{*}(T),\Phi_{H},\Phi_{H}^{\vee},\sigma_{H}).

The data for HH is subject to the constraints that there exists an element κHom(X(T),×)\kappa\in\mathrm{Hom}(X_{*}(T),\mathbb{C}^{\times}) and a Weyl group element wW(ΦG)w\in W(\Phi_{G}) such that ΦH={αΦGκ(α)=1}\Phi_{H}^{\vee}=\{\alpha\in\Phi_{G}^{\vee}\mid\kappa(\alpha)=1\}, σH=wσG\sigma_{H}=w\circ\sigma_{G}, and σH(κ)=κ\sigma_{H}(\kappa)=\kappa.

Now, we return to our context, plugging G=SLn,kvG=\mathrm{SL}_{n,k_{v}} and T=Sx0,kvT=\mathrm{S}_{x_{0},k_{v}}. The following two lemmas explain an endoscopic data of SLn,kv\mathrm{SL}_{n,k_{v}} associated with the evaluation ξ~v\tilde{\xi}_{v} and the corresponding endoscopic group.

Lemma 6.5.

The following morphism κξ~v\kappa_{\tilde{\xi}_{v}} is a character of H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}),

κξ~v:H1(kv,Sx0,kv)×,zx0ξ~v(x0)\kappa_{\tilde{\xi}_{v}}:\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})\rightarrow\mathbb{C}^{\times},\ z_{x_{0}^{\prime}}\mapsto\tilde{\xi}_{v}(x_{0}^{\prime})

where x0x0,vx_{0}^{\prime}\in\mathcal{R}_{x_{0},v} and zx0H1(kv,Sx0,kv)z_{x_{0}^{\prime}}\in\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) are in Definition 2.6.

Proof.

By Proposition 2.4 and Corollary 5.3, the morphism κξ~v\kappa_{\tilde{\xi}_{v}} is well-defined and independent of the choice of x0,v\mathcal{R}_{x_{0},v}. For gx0GLn(kv)g_{x_{0}^{\prime}}\in\mathrm{GL}_{n}(k_{v}) such that gx01x0gx0=x0g_{x_{0}^{\prime}}^{-1}x_{0}g_{x_{0}^{\prime}}=x_{0}^{\prime}, we have

κξ~v(zx0)=ξ~v(x0)=exp2πiΨ(ξ)(ϕKv/kv(detgx0))=exp2πiΨ(ξ)(ϕKv/kv(δ11(zx0)))\kappa_{\tilde{\xi}_{v}}(z_{x_{0}^{\prime}})=\tilde{\xi}_{v}(x_{0}^{\prime})=\exp 2\pi i\Psi(\xi)(\phi_{K_{v}/k_{v}}(\det g_{x_{0}^{\prime}}))=\exp 2\pi i\Psi(\xi)(\phi_{K_{v}/k_{v}}(\delta_{1}^{-1}(z_{x_{0}^{\prime}})))

by Proposition 5.2, where the notations Ψ\Psi and ϕKv/kv\phi_{K_{v}/k_{v}} are defined in loc. cit. and δ1\delta_{1} is defined in the diagram (5.4). Since the morphisms exp\exp, Ψ(ξ)\Psi(\xi), ϕKv/kv\phi_{K_{v}/k_{v}}, and δ11\delta_{1}^{-1} are group homomorphisms, the above equation concludes the desired result. ∎

By the Tate-Nakayama isomorphism (cf. [Lab08, Theorem 6.5.1]) for Sx0,kv\mathrm{S}_{x_{0},k_{v}}, we can identify the character κ\kappa of H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) as an element in Hom(X(Sx0,kv),×)\mathrm{Hom}(X_{*}(\mathrm{S}_{x_{0},k_{v}}),\mathbb{C}^{\times}). Since Sx0,kvRKv/kv(1)(𝔾m,Kv)\mathrm{S}_{x_{0},k_{v}}\cong\mathrm{R}_{K_{v}/k_{v}}^{(1)}(\mathbb{G}_{m,K_{v}}) by Section 6.1.1, we have

Sx0,Kv𝔾m,Kvn1 and X(Sx0,kv)(n)Σ=0\mathrm{S}_{x_{0},K_{v}}\cong\mathbb{G}_{m,K_{v}}^{n-1}\textit{ and }X_{*}(\mathrm{S}_{x_{0},k_{v}})\cong(\mathbb{Z}^{n})_{\Sigma=0}

where (n)Σ=0={(z1,,zn)nizi=0}(\mathbb{Z}^{n})_{\Sigma=0}=\{(z_{1},\cdots,z_{n})\in\mathbb{Z}^{n}\mid\sum_{i}z_{i}=0\}. Here, the action of Λv=Gal(Kv/kv)/n\Lambda_{v}=\mathrm{Gal}(K_{v}/k_{v})\cong\mathbb{Z}/n\mathbb{Z} on X(Sx0,kv)X_{*}(\mathrm{S}_{x_{0},k_{v}}), induced from that on Sx0,Kv\mathrm{S}_{x_{0},K_{v}}, is given by cyclic permutations of the factors of (n)Σ=0(\mathbb{Z}^{n})_{\Sigma=0}. On the other hand, by [Lab08, Proposition 6.5.2], we have the following isomorphism

ker(NΛv)/IΛvX(Sx0,kv)H1(kv,Sx0,kv)\mathrm{ker}(N_{\Lambda_{v}})/I_{\Lambda_{v}}X_{*}(\mathrm{S}_{x_{0},k_{v}})\cong\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})

where

{NΛv:X(Sx0,kv)X(Sx0,kv),xσΛvσ(x);IΛv:={τ=σΛvnσσσΛvnσ=0}.\left\{\begin{array}[]{l}N_{\Lambda_{v}}:X_{*}(\mathrm{S}_{x_{0},k_{v}})\rightarrow X_{*}(\mathrm{S}_{x_{0},k_{v}}),\ x\mapsto\sum_{\sigma\in\Lambda_{v}}\sigma(x);\\ I_{\Lambda_{v}}:=\{\tau=\sum_{\sigma\in\Lambda_{v}}n_{\sigma}\sigma\mid\sum_{\sigma\in\Lambda_{v}}n_{\sigma}=0\}.\end{array}\right.

Since NΛvN_{\Lambda_{v}} is a trivial morphism in X(Sx0,kv)(n)Σ=0X_{*}(\mathrm{S}_{x_{0},k_{v}})\cong(\mathbb{Z}^{n})_{\Sigma=0}, the following composition is surjective

X(Sx0,kv)X(Sx0,kv)/IΛvX(Sx0,kv)H1(kv,Sx0,kv).X_{*}(\mathrm{S}_{x_{0},k_{v}})\rightarrow X_{*}(\mathrm{S}_{x_{0},k_{v}})/I_{\Lambda_{v}}X_{*}(\mathrm{S}_{x_{0},k_{v}})\cong\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}).

Hence, a character κ\kappa on H1(kv,Sx0,kv)\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) assigns an element in Hom(X(Sx0,kv),×)\mathrm{Hom}(X_{*}(\mathrm{S}_{x_{0},k_{v}}),\mathbb{C}^{\times}).

Lemma 6.6.

Under the above identifiaction of κξ~v\kappa_{\tilde{\xi}_{v}} as an element in Hom(X(Sx0,kv),×)\operatorname{Hom}(X_{*}(\mathrm{S}_{x_{0},k_{v}}),\mathbb{C}^{\times}), an unramified reductive group Sx0,kv\mathrm{S}_{x_{0},k_{v}} is an endoscopic group of SLn,kv\mathrm{SL}_{n,k_{v}}, associated with κξ~v\kappa_{\tilde{\xi}_{v}} (cf. Definition 6.4).

Proof.

Let σSx0,kv\sigma_{\mathrm{S}_{x_{0},k_{v}}} be the action on X(Sx0,kv)X^{*}(\mathrm{S}_{x_{0},k_{v}}) induced from the Frobenius automorphism of Gal(Kv/kv)\mathrm{Gal}(K_{v}/k_{v}) on Sx0,Kv\mathrm{S}_{x_{0},K_{v}}. We claim that there exists an element ww of Weyl group for ΦSLn,kv\Phi_{\mathrm{SL}_{n,k_{v}}} such that σSx0,kv=wσSLn,kv\sigma_{\mathrm{S}_{x_{0},k_{v}}}=w\circ\sigma_{\mathrm{SL}_{n,k_{v}}} and σSx0,kv(κξ~v)=κξ~v\sigma_{\mathrm{S}_{x_{0},k_{v}}}(\kappa_{\tilde{\xi}_{v}})=\kappa_{\tilde{\xi}_{v}}. Since SLn,kv\mathrm{SL}_{n,k_{v}} is split over kvk_{v}, we have σSLn,kv=id\sigma_{\mathrm{SL}_{n,k_{v}}}=id. The Weyl group W(ΦSLn,kv)W(\Phi_{\mathrm{SL}_{n,k_{v}}}) is isomorphic to the symmetric group SnS_{n} which acts on X(Sx0,kv)Σ=0nX_{*}(\mathrm{S}_{x_{0},k_{v}})\cong\mathbb{Z}^{n}_{\Sigma=0} by permuting the factors. Thus we can find wSnw\in S_{n} such that σSx0,kv=wσSLn,kv=w\sigma_{\mathrm{S}_{x_{0},k_{v}}}=w\circ\sigma_{\mathrm{SL}_{n,k_{v}}}=w. Indeed, σSx0,kv\sigma_{\mathrm{S}_{x_{0},k_{v}}} acts on X(Sx0,kv)Σ=0nX_{*}(\mathrm{S}_{x_{0},k_{v}})\cong\mathbb{Z}^{n}_{\Sigma=0} by a cyclic permuation of the factors. On the other hand, since idσSx0,kvIΛvid-\sigma_{\mathrm{S}_{x_{0},k_{v}}}\in I_{\Lambda_{v}}, we have σSx0,kv(κξ~v)=κξ~v\sigma_{\mathrm{S}_{x_{0},k_{v}}}(\kappa_{\tilde{\xi}_{v}})=\kappa_{\tilde{\xi}_{v}}.

We now verify that

(X(Sx0,kv),X(Sx0,kv),ΦH,ΦH,σSx0,kv)(X^{*}(\mathrm{S}_{x_{0},k_{v}}),X_{*}(\mathrm{S}_{x_{0},k_{v}}),\Phi_{H},\Phi_{H}^{\vee},\sigma_{\mathrm{S}_{x_{0},k_{v}}})

is the root data classifying an unramified reductive group Sx0,kv\mathrm{S}_{x_{0},k_{v}}, where ΦH={αΦSLn,kvκξ~v(α)=1}\Phi^{\vee}_{H}=\{\alpha\in\Phi_{\mathrm{SL}_{n,k_{v}}}^{\vee}\mid\kappa_{\tilde{\xi}_{v}}(\alpha)=1\} and ΦH\Phi_{H} is its dual set. Since the evaluation ξ~v\tilde{\xi}_{v} is non-trivial, κξ~v\kappa_{\tilde{\xi}_{v}} is also non-trivial by Lemma 6.5. Moreover since H1(kv,Sx0,kv)/n\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}})\cong\mathbb{Z}/n\mathbb{Z} and nn is a prime number, the induced morphism in Hom(X(Sx0,kv),×)\mathrm{Hom}(X_{*}(\mathrm{S}_{x_{0},k_{v}}),\mathbb{C}^{\times}) from κξ~v\kappa_{\tilde{\xi}_{v}}, via the above identification, maps ϵ1,2Σ=0X(Sx0,kv)\epsilon_{1,2}\in\mathbb{Z}_{\Sigma=0}\cong X_{*}(\mathrm{S}_{x_{0},k_{v}}) to a non-trivial nn-th root of unity ζn\zeta_{n} in S1×S^{1}\subset\mathbb{C}^{\times} where ϵi,j=({0,,0,1i,0,,0,1ji,0,,0nj)\epsilon_{i,j}=(\{\underbrace{0,\cdots,0,1}_{i},\underbrace{0,\cdots,0,-1}_{j-i},\underbrace{0,\cdots,0}_{n-j}). Indeed, ϵ1,2\epsilon_{1,2} represents a non-trivial element in X(Sx0,kv)/IΛvX(Sx0,kv)X_{*}(\mathrm{S}_{x_{0},k_{v}})/I_{\Lambda_{v}}X_{*}(\mathrm{S}_{x_{0},k_{v}}). For any coroot ϵi,jΦSLn,kv\epsilon_{i,j}\in\Phi_{\mathrm{SL}_{n,k_{v}}}^{\vee} where 1i<jn1\leq i<j\leq n, we then have

(6.3) κξ~v(ϵi,j)=κξ~v(k=0ji1σi+k1(ϵ1,2))=k=0ji1κξ~v(σi+k1(ϵ1,2))=ζnji,\kappa_{\tilde{\xi}_{v}}(\epsilon_{i,j})=\kappa_{\tilde{\xi}_{v}}(\sum_{k=0}^{j-i-1}\sigma^{i+k-1}(\epsilon_{1,2}))=\prod_{k=0}^{j-i-1}\kappa_{\tilde{\xi}_{v}}(\sigma^{i+k-1}(\epsilon_{1,2}))=\zeta_{n}^{j-i},

where σΛv\sigma\in\Lambda_{v} such that σ((α1,,αn))=(αn,α1,,αn1)\sigma((\alpha_{1},\cdots,\alpha_{n}))=(\alpha_{n},\alpha_{1},\cdots,\alpha_{n-1}). Here, the last equality in (6.3) follows from the fact that idσi+k1IΛvid-\sigma^{i+k-1}\in I_{\Lambda_{v}}. Since 1jin1\leq j-i\leq n, we then have

ΦSx0,kv={αΦSLn,kvκξ~v(α)=1}=,\Phi^{\vee}_{\mathrm{S}_{x_{0},k_{v}}}=\{\alpha\in\Phi_{\mathrm{SL}_{n,k_{v}}}^{\vee}\mid\kappa_{\tilde{\xi}_{v}}(\alpha)=1\}=\emptyset,

and the dual set ΦSx0,kv\Phi_{\mathrm{S}_{x_{0},k_{v}}} is also empty. In conculusion, the root data (X(Sx0,kv),X(Sx0,kv),,,σSx0,kv)(X^{*}(\mathrm{S}_{x_{0},k_{v}}),X_{*}(\mathrm{S}_{x_{0},k_{v}}),\emptyset,\emptyset,\sigma_{\mathrm{S}_{x_{0},k_{v}}}) corresponds to Sx0,kv\mathrm{S}_{x_{0},k_{v}}. ∎

6.2.2. Computation

We first introduce one lemma which will be used in our main formulation.

Lemma 6.7.

For c𝒪kc\in\mathcal{O}_{k}, let XcX_{c} be the closed subscheme of Mn,𝒪k\mathrm{M}_{n,\mathcal{O}_{k}} representing the set of n×nn\times n matrices whose characteristic polynomial is χ(xc)\chi(x-c).

  1. (1)

    Then, XcX_{c} is a homogeneous space of GLn\mathrm{GL}_{n} (resp. SLn\mathrm{SL}_{n}), in the sence of Section 2.1 with a point xc:=x0+cInx_{c}:=x_{0}+cI_{n}, and we have the following isomorphism

    XcTxc\GLn(resp.XcSxc\SLn),X_{c}\cong\mathrm{T}_{x_{c}}\backslash\mathrm{GL_{n}}\ (resp.\ X_{c}\cong\mathrm{S}_{x_{c}}\backslash\mathrm{SL}_{n}),

    where Txc\mathrm{T}_{x_{c}} (resp. Sxc\mathrm{S}_{x_{c}}) is the stabilizer of xcx_{c} under the GLn\mathrm{GL}_{n}-action (resp. the SLn\mathrm{SL}_{n}-action) on XX.

  2. (2)

    There is an isomorphism BrXBrXc,ξξc\operatorname{Br}X\cong\operatorname{Br}X_{c},\ \xi\mapsto\xi_{c} such that ξ~v(x)=ξ~c,v(x+cIn)\tilde{\xi}_{v}(x)=\tilde{\xi}_{c,v}(x+cI_{n}) and the following equation holds

    X(𝒪kv)ξ~v(x)|ωXkvcan|v=Xc(𝒪kv)ξ~c,v(x)|ωXc,kvcan|v.\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=\int_{{X_{c}}(\mathcal{O}_{k_{v}})}\tilde{\xi}_{c,v}(x)\ |\omega_{X_{c,k_{v}}}^{can}|_{v}.
Proof.

Since the map ιc:XXc,xx+cIn\iota_{c}:X\rightarrow X_{c},\ x\mapsto x+cI_{n} is an isomorphism which is compatible with conjugation of GLn\mathrm{GL}_{n} (resp. SLn\mathrm{SL}_{n}), we obtain the first argument from the homogeneous space structure of XX with a point x0x_{0}, in Proposition 2.1. This directly yields the following commutative diagram.

Xkv{X_{k_{v}}}Xc,kv{X_{c,k_{v}}}Tx0,kv\GLn,kv{\mathrm{T}_{x_{0},k_{v}}\backslash\mathrm{GL}_{n,k_{v}}}Txc,kv\GLn,kv.{\mathrm{T}_{x_{c},k_{v}}\backslash\mathrm{GL}_{n,k_{v}}.}\scriptstyle{\sim}ιc\scriptstyle{\iota_{c}}\scriptstyle{\sim}id\scriptstyle{id}

Here, Tx0,kv=Txc,kv\mathrm{T}_{x_{0},k_{v}}=\mathrm{T}_{x_{c},k_{v}}. Therefore the measure |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} transports to the measure |ωXc,kvcan|v|\omega_{X_{c,k_{v}}}^{can}|_{v} along the isomorphism ιc(kv):X(kv)Xc(kv)\iota_{c}(k_{v}):X(k_{v})\rightarrow X_{c}(k_{v}), according to Section 3.2.2.

On the other hand, applying the functor Br=He´t2(,𝔾m)\operatorname{Br}=\mathrm{H}_{\acute{e}t}^{2}(-,\mathbb{G}_{m}) on the isomorphism ιc\iota_{c} (cf. Definition 4.2), we have the induced isomorphism Br(ιc):BrXcBrX\operatorname{Br}(\iota_{c}):\operatorname{Br}X_{c}\xrightarrow{\sim}\operatorname{Br}X. We then have the following commutative diagram for xX(kv)x\in X(k_{v}),

BrXc{\operatorname{Br}X_{c}}Brkv{\operatorname{Br}k_{v}}BrX{\operatorname{Br}X}Brkv{\operatorname{Br}k_{v}}/{\mathbb{Q}/\mathbb{Z}}×.{\mathbb{C}^{\times}.}Br(x+cIn)\scriptstyle{\operatorname{Br}(x+cI_{n})}\scriptstyle{\sim}Br(ιc)\scriptstyle{\operatorname{Br}(\iota_{c})}id\scriptstyle{id}Br(x)\scriptstyle{\operatorname{Br}(x)}inv\scriptstyle{\operatorname{inv}}xexp(2πix)\scriptstyle{x\mapsto\exp(2\pi ix)}

For ξBrX\xi\in\operatorname{Br}X, this yields that ξv(x)=ξc,v(x+cIn)\xi_{v}(x)=\xi_{c,v}(x+cI_{n}) where ξc:=Br(ιc)1ξ\xi_{c}:=\operatorname{Br}(\iota_{c})^{-1}\xi. By Definition 4.5, we have

ξ~v(x)=ξv(x)ξv(x0)=ξc,v(x+cIn)ξc,v(xc)=ξ~c,v(x+cIn)=ξ~c,v(ιc(kv)(x))\tilde{\xi}_{v}(x)=\frac{\xi_{v}(x)}{\xi_{v}(x_{0})}=\frac{\xi_{c,v}(x+cI_{n})}{\xi_{c,v}(x_{c})}=\tilde{\xi}_{c,v}(x+cI_{n})=\tilde{\xi}_{c,v}(\iota_{c}(k_{v})(x))

for xX(kv)x\in X(k_{v}). Since the measure |ωXc,kvcan|v|\omega_{X_{c,k_{v}}}^{can}|_{v} and the evaluation ξ~c,v\tilde{\xi}_{c,v} on Xc(kv)X_{c}(k_{v}) are compatible with the measure |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} and the evaluation ξ~v\tilde{\xi}_{v} on X(kv)X(k_{v}) along the isomorphism ιc:XkvXc,kv\iota_{c}:X_{k_{v}}\rightarrow X_{c,k_{v}}, we conclude that

Xc(𝒪kv)ξ~c,v(x)|ωXc,kvcan|v=X(𝒪kv)ξ~c,v(x+cIn)|ωXkvcan|v=X(𝒪kv)ξ~v(x)|ωXkvcan|v.\int_{X_{c}(\mathcal{O}_{k_{v}})}\tilde{\xi}_{c,v}(x)\ |\omega_{X_{c,k_{v}}}^{can}|_{v}=\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{c,v}(x+cI_{n})\ |\omega_{X_{k_{v}}}^{can}|_{v}=\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}.

Proposition 6.8.

Suppose that Kv/kvK_{v}/k_{v} is an unramified Galois extension of prime degree nn. For ξBr(X)\xi\in\mathrm{Br}(X) whose evaluation ξ~v\tilde{\xi}_{v} is non-trivial, we have

X(𝒪kv)ξ~v(x)|ωXkvcan|v=qvordv(Δχ)2#SLn,𝒪kv(κv)qv(n21)#Sx0,𝒪kv(κv)qv(n1),\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=q_{v}^{\frac{\operatorname{ord}_{v}(\Delta_{\chi})}{2}}\frac{\#\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-(n^{2}-1)}}{\#\mathrm{S}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-(n-1)}},

where char(κv)>n\mathrm{char}(\kappa_{v})>n.

Proof.

Since char(κv)>n\mathrm{char}(\kappa_{v})>n, we can always choose c𝒪kc\in\mathcal{O}_{k} for x0x_{0} such that xc:=x0+cIn𝔰𝔩n,𝒪kv(𝒪kv)x_{c}:=x_{0}+cI_{n}\in\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}). Accordingly, we can take xc,v\mathcal{R}_{x_{c},v} to be {x0+cInx0x0,v}𝔰𝔩n,𝒪kv(𝒪kv)\{x_{0}^{\prime}+cI_{n}\mid x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}\}\subset\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}) as well. Since the discriminant Δχ\Delta_{\chi} is invaraint under the constant translation on χ(x)\chi(x) and Sx0,kv=Sxc,kv\mathrm{S}_{x_{0},k_{v}}=\mathrm{S}_{x_{c},k_{v}}, we may and do assume that x0𝔰𝔩n,𝒪kv(𝒪kv)x_{0}\in\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}) with x0,v𝔰𝔩n,𝒪kv(𝒪kv)\mathcal{R}_{x_{0},v}\subset\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}) by Lemma 6.7.

By Lemma 5.3 and Lemma 6.5, we have the folowing equation where zx0H1(kv,Sx0,kv)z_{x_{0}^{\prime}}\in\mathrm{H}^{1}(k_{v},\mathrm{S}_{x_{0},k_{v}}) which corresponds to x0x0,vx_{0}^{\prime}\in\mathcal{R}_{x_{0},v} (cf. Definition 2.6),

(6.4) X(𝒪kv)ξ~v(x)|ωXkvcan|v=x0x0,vκξ~v(zx0)(Sx0(kv)\SLn(kv))X(𝒪kv)|ωXkvcan|v,\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=\sum_{x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}}\kappa_{\tilde{\xi}_{v}}(z_{x_{0}^{\prime}})\cdot\int_{\left(\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})\right)\cap X(\mathcal{O}_{k_{v}})}\ |\omega_{X_{k_{v}}}^{can}|_{v},

with the identification x0SLn(kv)Sx0(kv)\SLn(kv)x_{0}^{\prime}\cdot\mathrm{SL}_{n}(k_{v})\cong\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v}) in Remark 2.7. By the similar argument in the proof of Proposition 5.9 and the assumption that x0,v𝔰𝔩n,𝒪kv(𝒪kv)\mathcal{R}_{x_{0},v}\subset\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}), we have

(Sx0(kv)\SLn(kv))X(𝒪kv)|ωXkvcan|v=Sx0(kv)\SLn(kv)𝟙𝔰𝔩n,𝒪kv(𝒪kv)(g1x0g)|ωXkvcan|v.\int_{\left(\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})\right)\cap X(\mathcal{O}_{k_{v}})}\ |\omega_{X_{k_{v}}}^{can}|_{v}=\int_{\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}^{\prime}g)\ |\omega_{X_{k_{v}}}^{can}|_{v}.

Combining the above two equations, we have

(6.5) X(𝒪kv)ξ~v(x)|ωXkvcan|v=x0x0,vκξ~v(zx0)Sx0(kv)\SLn(kv)𝟙𝔰𝔩n,𝒪kv(𝒪kv)(g1x0g)|ωXkvcan|v,\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=\sum_{x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}}\kappa_{\tilde{\xi}_{v}}(z_{x_{0}^{\prime}})\int_{\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}^{\prime}g)\ |\omega_{X_{k_{v}}}^{can}|_{v},

for x0𝔰𝔩n,𝒪kv(𝒪kv)x_{0}\in\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}).

To compute the right hand side of (6.5), we apply the formula in [Ngfrm[o]–0, Theorem 1] by plugging G=SLn,kv,H=Sx0,kvG=\mathrm{SL}_{n,k_{v}},\ H=\mathrm{S}_{x_{0},k_{v}}, and κ=κξ~v\kappa=\kappa_{\tilde{\xi}_{v}} according to Lemma 6.6. We note that the condition char(κv)>n\mathrm{char}(\kappa_{v})>n is necessary to apply this formula. For the measure dsvds_{v} on Sx0(kv)\mathrm{S}_{x_{0}}(k_{v}) such that vol(dsv,Sx0,𝒪kv(𝒪kv))=1\mathrm{vol}(ds_{v},\mathrm{S}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}))=1, we have

(6.6) 𝒪a(x0)κξ~v(𝟙𝔰𝔩n,𝒪kv(𝒪kv),dsv)=qvord(𝒟SLn,kv(a(x0)))ord(𝒟Sx0,kv(a(x0,H)))2𝒮𝒪a(x0,H)(𝟙𝔰x0,𝒪kv(𝒪kv),dsv).\mathcal{O}_{a(x_{0})}^{\kappa_{\tilde{\xi}_{v}}}(\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v})=q_{v}^{\frac{\mathrm{ord}(\mathcal{D}_{\mathrm{SL}_{n,k_{v}}}(a(x_{0})))-\mathrm{ord}(\mathcal{D}_{\mathrm{S}_{x_{0},k_{v}}}(a(x_{0,H})))}{2}}\cdot\mathcal{SO}_{a(x_{0,H})}(\mathbbm{1}_{\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v}).

We explain the notations in the following (1)-(3), and further compute the right hand side of (6.6) in (2)-(3).

  1. (1)

    The κξ~v\kappa_{\tilde{\xi}_{v}}-orbital integral 𝒪a(x0)κξ~v(𝟙𝔰𝔩n,𝒪kv(𝒪kv),dsv)\mathcal{O}_{a(x_{0})}^{\kappa_{\tilde{\xi}_{v}}}(\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v}) in the left hand side of (6.6) is formulated as follows

    𝒪a(x0)κξ~v(𝟙𝔰𝔩n,𝒪kv(𝒪kv),dsv)=x0x0,vκξ~v(zx0)Sx0(kv)\SLn(kv)𝟙𝔰𝔩n,𝒪kv(𝒪kv)(g1x0g)dhvdsv,\mathcal{O}_{a(x_{0})}^{\kappa_{\tilde{\xi}_{v}}}(\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v})=\sum_{x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}}\kappa_{\tilde{\xi}_{v}}(z_{x_{0}^{\prime}})\int_{\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}^{\prime}g)\ \frac{dh_{v}}{ds^{\prime}_{v}},

    where a(x0)a(x_{0}) is the stable conjugacy class of x0x_{0} and the measure dhvdsv\frac{dh_{v}}{ds^{\prime}_{v}} is defined in Lemma 6.1.

  2. (2)

    We denote the Lie algebra of Sx0,kv\mathrm{S}_{x_{0},k_{v}} by 𝔰x0,kv\mathfrak{s}_{x_{0},k_{v}}, and correspondingly the Lie algebra of Sx0,𝒪kv\mathrm{S}_{x_{0},\mathcal{O}_{k_{v}}} by 𝔰x0,𝒪kv\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}. Let x0,Hx_{0,H} be an element in 𝔰x0,𝒪kv(𝒪kv)\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}}), whose stable conjugacy class a(x0,H)a(x_{0,H}) transfers to a(x0)a(x_{0}) via the map given by [Ngfrm[o]–0, Section 1.9]. By [Ngfrm[o]–0, Lemma 1.4.3 and Lemma 1.9.2], the centralizer of x0,Hx_{0,H} in Sx0,kv\mathrm{S}_{x_{0},k_{v}} coincides with Sx0,kv\mathrm{S}_{x_{0},k_{v}}. Then the stable orbital integral 𝒮𝒪a(x0,H)(𝟙𝔰x0,𝒪kv(𝒪kv),dsv)\mathcal{SO}_{a(x_{0,H})}(\mathbbm{1}_{\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v}) in the right hand side of (6.6) is formulated as follows

    𝒮𝒪a(x0,H)(𝟙𝔰x0,𝒪kv(𝒪kv),dsv)=Sx0(kv)\Sx0(kv)𝟙𝔰x0,𝒪kv(𝒪kv)(g1x0,Hg)dsvdsv,\mathcal{SO}_{a(x_{0,H})}(\mathbbm{1}_{\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v})=\int_{\mathrm{S}_{x_{0}}(k_{v})\backslash{\mathrm{S}_{x_{0}}(k_{v})}}\mathbbm{1}_{\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0,H}g)\frac{ds_{v}}{ds_{v}},

    where a(x0,H) is the stable conjugacy class of x0,Ha(x_{0,H})\text{ is the stable conjugacy class of $x_{0,H}$}. Indeed, the adjoint action of Sx0,kv\mathrm{S}_{x_{0},k_{v}} on 𝔰x0,kv\mathfrak{s}_{x_{0},k_{v}} is trivial and so a(x0,H)={x0,H}a(x_{0,H})=\{x_{0,H}\}. Therefore we have

    𝒮𝒪a(x0,H)(𝟙𝔰x0,𝒪kv(𝒪kv),dsv)=1.\mathcal{SO}_{a(x_{0,H})}(\mathbbm{1}_{\mathfrak{s}_{x_{0},\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})},ds_{v})=1.
  3. (3)

    In the right hand side of (6.6), 𝒟SLn,kv\mathcal{D}_{\mathrm{SL}_{n,k_{v}}} and 𝒟Sx0,kv\mathcal{D}_{\mathrm{S}_{x_{0},k_{v}}} are discriminant functions of SLn,kv\mathrm{SL}_{n,k_{v}} and Sx0,kv\mathrm{S}_{x_{0},k_{v}} defined in [Ngfrm[o]–0, Section 1.10], respectively. Since Sx0,kv\mathrm{S}_{x_{0},k_{v}} is torus, 𝒟Sx0,kv\mathcal{D}_{\mathrm{S}_{x_{0},k_{v}}} is trivial and so

    ordv(𝒟Sx0,kv(a(x0,H)))=0.\operatorname{ord}_{v}(\mathcal{D}_{\mathrm{S}_{x_{0},k_{v}}}(a(x_{0,H})))=0.

    On the other hand, by [Gor22, (20) and Example 3.6], we have

    ordv(𝒟SLn,kv(a(x0)))=ordv(Δχ).\operatorname{ord}_{v}(\mathcal{D}_{\mathrm{SL}_{n,k_{v}}}(a(x_{0})))=\operatorname{ord}_{v}(\Delta_{\chi}).

To sum up, we have

x0x0,vκξ~v(zx0)Sx0(kv)\SLn(kv)𝟙𝔰𝔩n,𝒪kv(𝒪kv)(g1x0g)dhvdsv=qvordv(Δχ)2.\sum_{x_{0}^{\prime}\in\mathcal{R}_{x_{0},v}}\kappa_{\tilde{\xi}_{v}}(z_{x_{0}^{\prime}})\int_{\mathrm{S}_{x_{0}^{\prime}}(k_{v})\backslash\mathrm{SL}_{n}(k_{v})}\mathbbm{1}_{\mathfrak{sl}_{n,\mathcal{O}_{k_{v}}}(\mathcal{O}_{k_{v}})}(g^{-1}x_{0}g)\ \frac{dh_{v}}{ds^{\prime}_{v}}=q_{v}^{\frac{\operatorname{ord}_{v}(\Delta_{\chi})}{2}}.

Finally, by the measure difference between dhvdsv\frac{dh_{v}}{ds_{v}^{\prime}} and |ωXkvcan|v|\omega_{X_{k_{v}}}^{can}|_{v} obtained in Lemma 6.1-6.2, we obtain the desired conclusion. ∎

7. Main Result

We provide our main theorem on the asymptotic formula for N(X,T)N(X,T) based on the results in Section 5-6. We note that the product vΩkk𝒮𝒪v(χ)\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi) which appears in the following theorem is a finite product by Remark 1.6.

Theorem 7.1.

Let kk be a number field and χ(x)𝒪k[x]\chi(x)\in\mathcal{O}_{k}[x] be an irreducible monic polynomial of degree nn. Let XX be an 𝒪k\mathcal{O}_{k}-scheme representing the set of n×nn\times n matrices whose characteristic polynomial is χ(x)\chi(x). We define

N(X,T)=#{xX(𝒪k)xT},N(X,T)=\#\{x\in X(\mathcal{O}_{k})\mid\lVert x\rVert\leq T\},

for T>0T>0, where the norm \lVert\cdot\rVert is defined in (1.1).

Suppose that kk and K=k[x]/(χ(x))K=k[x]/(\chi(x)) are totally real, and if kk\neq\mathbb{Q}, we further assume that nn is a prime number. Then we have the following asymptotic formulas.

  1. (1)

    If K/kK/k is not Galois or ramified Galois, then

    N(X,T)CTvΩkk𝒮𝒪v(χ)qvSv(χ).N(X,T)\sim C_{T}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}.
  2. (2)

    If K/kK/k is unramified Galois and splits over all pp-adic places for pnp\leq n, then

    N(X,T)CT(vΩkk𝒮𝒪v(χ)qvSv(χ)+n1).N(X,T)\sim C_{T}\left(\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}+n-1\right).

Here, CTC_{T} is formulated as follows

CT=|Δk|n2+n2RKhK|ΔK|1Rkhk|Δk|1i=2nζk(i)1(2n1πn(n+1)4wni=1nΓ(i2)Tn(n1)2)[k:],C_{T}=\lvert\Delta_{k}\rvert^{\frac{-n^{2}+n}{2}}\frac{R_{K}h_{K}\sqrt{\lvert\Delta_{K}\rvert}^{-1}}{R_{k}h_{k}\sqrt{\lvert\Delta_{k}\rvert}^{-1}}\prod_{i=2}^{n}\zeta_{k}(i)^{-1}\left(\frac{2^{n-1}\pi^{\frac{n(n+1)}{4}}w_{n}}{\prod_{i=1}^{n}\Gamma(\frac{i}{2})}T^{\frac{n(n-1)}{2}}\right)^{[k:\mathbb{Q}]},

where we use the following notations,

{ΔF is the discriminant of F/ for F=K or k;RF is the regulator of F for F=K or k;hF is the class number of 𝒪F for F=K or k;wn is the volume of the unit ball in n(n1)2;ζk is the dedekind zeta function of k;Sv(χ) is the 𝒪kv-module length between 𝒪Kv and 𝒪kv[x]/(χ(x));𝒮𝒪v(χ) is the orbital integral for 𝔤𝔩n,kv associated with χ(x) with respect to dgvdtv(cf. Proposition 5.9 and Lemma 3.7).\left\{\begin{array}[]{l}\textit{$\Delta_{F}$ is the discriminant of $F/\mathbb{Q}$ for $F=K$ or $k$};\\ \textit{$R_{F}$ is the regulator of $F$ for $F=K$ or $k$};\\ \textit{$h_{F}$ is the class number of $\mathcal{O}_{F}$ for $F=K$ or $k$};\\ \textit{$w_{n}$ is the volume of the unit ball in $\mathbb{R}^{\frac{n(n-1)}{2}}$};\\ \textit{$\zeta_{k}$ is the dedekind zeta function of $k$};\\ \textit{$S_{v}(\chi)$ is the $\mathcal{O}_{k_{v}}$-module length between $\mathcal{O}_{K_{v}}$ and $\mathcal{O}_{k_{v}}[x]/(\chi(x))$};\\ \textit{$\mathcal{SO}_{v}(\chi)$ is the orbital integral for $\mathfrak{gl}_{n,k_{v}}$ associated with $\chi(x)$ with respect to $\frac{dg_{v}}{dt_{v}}$}\\ \textit{(cf. Proposition \ref{prop:result_case:trivial} and Lemma \ref{cor:compareclassic})}.\end{array}\right.
Proof.

We recall the formula in Proposition 4.1, by the equation (4.2), we have

(7.1) N(X,T)|Δk|12dimXξBrX/BrkvΩkkX(𝒪kv)ξ~v(x)|ωX|vvkX(kv,T)ξ~v(x)|ωX|v.N(X,T)\sim\lvert\Delta_{k}\rvert^{-\frac{1}{2}\dim X}\sum_{\xi\in\operatorname{Br}X/\operatorname{Br}k}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ \lvert\omega_{X}\rvert_{v}\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\tilde{\xi}_{v}(x)\ \lvert\omega_{X}\rvert_{v}.

By Proposition 3.9, we have

vΩk|ωX|v=vΩkkiBv(χ)|ΔKv,i/kv|12vΩkk|ωXkvcan|v.\prod_{v\in\Omega_{k}}|\omega_{X}|_{v}=\prod_{v\in\Omega_{k}\setminus\infty_{k}}\prod_{i\in B_{v}(\chi)}|\Delta_{K_{v,i}/k_{v}}|^{-\frac{1}{2}}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}.

For Archimedean place vkv\in\infty_{k}, the assumption yields that ξ~v\tilde{\xi}_{v} is trivial. By Proposition 5.6, we have

vkX(kv,T)|ωXkvcan|v(πn(n+1)4wni=1nΓ(i2)Tn(n1)2)[k:]vΩkk|Δχ|v12.\prod_{v\in\infty_{k}}\int_{X(k_{v},T)}\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}\sim\left(\frac{\pi^{\frac{n(n+1)}{4}}w_{n}}{\prod_{i=1}^{n}\Gamma(\frac{i}{2})}T^{\frac{n(n-1)}{2}}\right)^{[k:\mathbb{Q}]}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\lvert\Delta_{\chi}\rvert_{v}^{\frac{1}{2}}.

We denote the 𝒪kv\mathcal{O}_{k_{v}}-module length between 𝒪Kv,i\mathcal{O}_{K_{v,i}} and 𝒪kv[x]/(χv,i(x))\mathcal{O}_{k_{v}}[x]/(\chi_{v,i}(x)) by Sv(χv,i)S_{v}(\chi_{v,i}). Then by [CKL, Proposition 2.5], we have

|Δχ|v12iBv(χ)|ΔKv,i/kv|v12=(|Δχ|v12iBv(χ)|Δχv,i|v12)iBv(χ)qvSv(χv,i)=qvSv(χ),\lvert\Delta_{\chi}\rvert_{v}^{\frac{1}{2}}\prod_{i\in B_{v}(\chi)}|\Delta_{K_{v,i}/k_{v}}|_{v}^{-\frac{1}{2}}=\Big{(}\lvert\Delta_{\chi}\rvert_{v}^{\frac{1}{2}}\prod_{i\in B_{v}(\chi)}\lvert\Delta_{\chi_{v,i}}\rvert_{v}^{-\frac{1}{2}}\Big{)}\prod_{i\in B_{v}(\chi)}q_{v}^{-S_{v}(\chi_{v,i})}=q_{v}^{-S_{v}(\chi)},

where the last equality follows from [Yun13, Section 4.1] and [Bou03, Corollary 1 of Prosition 11 in Chapter 4.6]. Therefore we have

N(X,T)|Δk|n2+n2(πn(n+1)4wni=1nΓ(i2)Tn(n1)2)[k:](ξBrX/BrkvΩkk1qvSv(χ)X(𝒪kv)ξ~v(x)|ωXkvcan|v).N(X,T)\sim|\Delta_{k}|^{\frac{-n^{2}+n}{2}}\left(\frac{\pi^{\frac{n(n+1)}{4}}w_{n}}{\prod_{i=1}^{n}\Gamma(\frac{i}{2})}T^{\frac{n(n-1)}{2}}\right)^{[k:\mathbb{Q}]}\left(\sum_{\xi\in\operatorname{Br}X/\operatorname{Br}k}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{1}{q_{v}^{S_{v}(\chi)}}\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}\right).

We now compute the integration of ξ~v(x)\tilde{\xi}_{v}(x) on X(𝒪kv)X(\mathcal{O}_{k_{v}}) with respect to |ωXkvcan|v\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v} for each vΩkkv\in\Omega_{k}\setminus\infty_{k}. For k=k=\mathbb{Q}, we note that the only case (1) is possible since every extension of \mathbb{Q} is ramified.

  1. (1)

    We claim that the summand in (7.1) for a non-trivial element ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k vanishes. Therefore, it suffices to obtain the volume of X(𝒪kv)X(\mathcal{O}_{k_{v}}) with respect to |ωXkvcan|v\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v} by Remark 4.6. In the case that kk\neq\mathbb{Q} and K/kK/k is not Galois, BrX/Brk\operatorname{Br}X/\operatorname{Br}k is trivial by Proposition 5.1. On the other hand, if kk\neq\mathbb{Q} and K/kK/k is ramified, then Corollary 5.4 and Proposition 5.11 yields the claim. In the case that k=k=\mathbb{Q}, without the assumption that nn is a prime number, the claim also holds by the proof of [WX16, Theorem 6.1].

    By Lemma 3.7 and Proposition 5.9, we then have

    X(𝒪kv)|ωXkvcan|v=#GLn,𝒪kv(κv)qvn2#Tx0,𝒪kv(κv)qvn𝒮𝒪v(χ).\int_{X(\mathcal{O}_{k_{v}})}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}=\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}}{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}}\mathcal{SO}_{v}(\chi).

    Here, we note that the following equalities hold,

    {#GLn,𝒪kv(κv)qvn2=(11qvn)(11qvn1)(11qv);#Tx0,𝒪kv(κv)qvn=iBv(χ)(11#κKv,i),\left\{\begin{array}[]{l}\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}=(1-\frac{1}{q_{v}^{n}})(1-\frac{1}{q_{v}^{n-1}})\cdots(1-\frac{1}{q_{v}});\\ \#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}=\prod_{i\in B_{v}(\chi)}(1-\frac{1}{\#\kappa_{K_{v,i}}}),\end{array}\right.

    where the formula for #Tx0,𝒪kv(κv)\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v}) is induced from Lemma 2.2 and the fact that

    #R𝒪Kv,i/𝒪kv(𝔾m,𝒪Kv,i)(κv)=qv[Kv,i:kv](11#κKv,i).\#\mathrm{R}_{\mathcal{O}_{K_{v,i}}/\mathcal{O}_{k_{v}}}(\mathbb{G}_{m,\mathcal{O}_{K_{v,i}}})(\kappa_{v})=q_{v}^{[K_{v,i}:k_{v}]}(1-\frac{1}{\#\kappa_{K_{v,i}}}).

    Therefore, we have

    vΩkk1qvSv(χ)X(𝒪kv)|ωXkvcan|v=ζK(s)ζk(s)|s=1i=2nζk(i)1vΩkk𝒮𝒪v(χ)qvSv(χ)=2(n1)[k:]RKhK|Δk|1Rkhk|Δk|1i=2nζk(i)1vΩkk𝒮𝒪v(χ)qvSv(χ),\displaystyle\begin{split}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{1}{q_{v}^{S_{v}(\chi)}}\int_{X(\mathcal{O}_{k_{v}})}\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}&=\left.\frac{\zeta_{K}(s)}{\zeta_{k}(s)}\right|_{s=1}\prod_{i=2}^{n}\zeta_{k}(i)^{-1}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{{q_{v}^{S_{v}(\chi)}}}\\ &=2^{(n-1)[k:\mathbb{Q}]}\frac{R_{K}h_{K}\sqrt{\lvert\Delta_{k}\rvert}^{-1}}{R_{k}h_{k}\sqrt{\lvert\Delta_{k}\rvert}^{-1}}\prod_{i=2}^{n}\zeta_{k}(i)^{-1}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}},\end{split}

    where the last equality follows from the class number formula for kk and KK. In conclusion, we have

    N(X,T)CTvΩkk𝒮𝒪v(χ)qvSv(χ).N(X,T)\sim C_{T}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}.
  2. (2)

    In the case that ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k is trivial, the computation of the integration of ξ~v\tilde{\xi}_{v} on X(𝒪kv)X(\mathcal{O}_{k_{v}}) is exactly same with that of (1), and so we will omit this. For a non-trivial element ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k, we address the following two cases separately; KvK_{v} splits completely over kvk_{v} and KvK_{v} is unramified over kvk_{v}.

    • If KvK_{v} splits completely over kvk_{v}, then the evaluation ξ~v\tilde{\xi}_{v} is trivial by Proposition 5.5. We then apply the computation in (1),

      1qvSv(χ)X(𝒪kv)|ωXkvcan|v=#GLn,𝒪kv(κv)qvn2#Tx0,𝒪kv(κv)qvn𝒮𝒪v(χ)qvSv(χ).\frac{1}{q_{v}^{S_{v}(\chi)}}\int_{X(\mathcal{O}_{k_{v}})}\lvert\omega_{X_{k_{v}}}^{can}\rvert_{v}=\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}}{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}.

      Here, 𝒮𝒪v(χ)qvSv(χ)=1\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}=1 by the following argument. Since χv,i\chi_{v,i} is a linear polynomial for each iBv(χ)i\in B_{v}(\chi) where χ=iBvχv,i\chi=\prod_{i\in B_{v}}\chi_{v,i} over kvk_{v}, the orbital integral 𝒮𝒪v(χv,i)\mathcal{SO}_{v}(\chi_{v,i}) for 𝔤𝔩n\mathfrak{gl}_{n} associated with χv,i(x)\chi_{v,i}(x) is equal to 1. In addition, the 𝒪kv\mathcal{O}_{k_{v}}-module length Sv(χv,i)S_{v}(\chi_{v,i}) between 𝒪Kv,i=𝒪kv\mathcal{O}_{K_{v,i}}=\mathcal{O}_{k_{v}} and 𝒪kv[x]/(χv,i(x))\mathcal{O}_{k_{v}}[x]/(\chi_{v,i}(x)) equals to 0. By [Yun13, Corollary 4.10], we then have

      𝒮𝒪v(χ)=qvSv(χ)iBv(χ)Sv(χv,i)iBv(χ)𝒮𝒪v(χv,i)=qvSv(χ).\mathcal{SO}_{v}(\chi)=q_{v}^{S_{v}(\chi)-\sum\limits_{i\in B_{v}(\chi)}S_{v}(\chi_{v,i})}\prod_{i\in B_{v}(\chi)}\mathcal{SO}_{v}(\chi_{v,i})=q_{v}^{S_{v}(\chi)}.
    • If KvK_{v} is unramified over kvk_{v} and so the place vv is pp-adic for p>np>n by the assumption, then the evaluation ξ~v\tilde{\xi}_{v} is non-trivial by Corollary 5.4. By Proposition 6.8, we then have

      1qvSv(χ)X(𝒪kv)ξ~v(x)|ωXkvcan|v=#SLn,𝒪kv(κv)qv(n21)#Sx0,𝒪kv(κv)qv(n1)=#GLn,𝒪kv(κv)qvn2#Tx0,𝒪kv(κv)qvn.\frac{1}{q_{v}^{S_{v}(\chi)}}\int_{X(\mathcal{O}_{k_{v}})}\tilde{\xi}_{v}(x)\ |\omega_{X_{k_{v}}}^{can}|_{v}=\frac{\#\mathrm{SL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-(n^{2}-1)}}{\#\mathrm{S}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-(n-1)}}=\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}}{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}}.

      Indeed, ordv(Δχ)2=Sv(χ)+ordv(ΔKv/kv)2=Sv(χ)\frac{\operatorname{ord}_{v}(\Delta_{\chi})}{2}=S_{v}(\chi)+\frac{\operatorname{ord}_{v}(\Delta_{K_{v}/k_{v}})}{2}=S_{v}(\chi) by [CKL, Proposition 2.5] and [Neu99, Theorem 2.6 in Chapter III].

    To sum up, for a non-trivial ξBrX/Brk\xi\in\operatorname{Br}X/\operatorname{Br}k, we have

    vΩkk1qvSv(χ)X(𝒪kv)|ωXkvcan|v\displaystyle\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{1}{q_{v}^{S_{v}(\chi)}}\int_{X(\mathcal{O}_{k_{v}})}\ \lvert\omega_{X_{k_{v}}}^{can}\rvert_{v} =vΩkkv:splits#GLn,𝒪kv(κv)qvn2#Tx0,𝒪kv(κv)qvnvΩkkv:unram#GLn,𝒪kv(κv)qvn2#Tx0,𝒪kv(κv)qvn\displaystyle=\prod_{\begin{subarray}{c}v\in\Omega_{k}\setminus\infty_{k}\\ v:splits\end{subarray}}\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}}{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}}\prod_{\begin{subarray}{c}v\in\Omega_{k}\setminus\infty_{k}\\ v:unram\end{subarray}}\frac{\#\mathrm{GL}_{n,\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n^{2}}}{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cdot q_{v}^{-n}}
    =(2(n1)[k:]RKhK|Δk|1Rkhk|Δk|1i=2nζk(i)1).\displaystyle=\left(2^{(n-1)[k:\mathbb{Q}]}\frac{R_{K}h_{K}\sqrt{\lvert\Delta_{k}\rvert}^{-1}}{R_{k}h_{k}\sqrt{\lvert\Delta_{k}\rvert}^{-1}}\prod_{i=2}^{n}\zeta_{k}(i)^{-1}\right).

    Proposition 5.2 yields that BrX/BrkHom(Gal(K/k),/)\operatorname{Br}X/\operatorname{Br}k\cong\operatorname{Hom}(\operatorname{Gal}(K/k),\mathbb{Q}/\mathbb{Z}). Since Gal(K/k)\operatorname{Gal}(K/k) is a cyclic group of prime order nn, we have n1n-1 nontrivial elements in BrX/Brk\operatorname{Br}X/\operatorname{Br}k. In conclusion, we have

    N(X,T)CT(vΩkk𝒮𝒪v(χ)qvSv(χ)+n1).N(X,T)\sim C_{T}\left(\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}+n-1\right).

Remark 7.2.

Suppose that k=k=\mathbb{Q} and χ(x)\chi(x) splits completely over \mathbb{R} (assumptions (1.3) without the assumption (2) that [x]/(χ(x))=𝒪K\mathbb{Z}[x]/(\chi(x))=\mathcal{O}_{K}). Since every extension of \mathbb{Q} is ramified, the asymptotic formula for N(X,T)N(X,T) follows from Theorem 7.1.(1). We then have

N(X,T)(2n1hKRKwnΔKk=2nΛ(k/2)vΩkk𝒮𝒪v(χ)qvSv(χ))Tn(n1)2,N(X,T)\sim\left(\frac{2^{n-1}h_{K}R_{K}w_{n}}{\sqrt{\Delta_{K}}\prod_{k=2}^{n}\Lambda(k/2)}\prod_{v\in\Omega_{k}\setminus\infty_{k}}\frac{\mathcal{SO}_{v}(\chi)}{q_{v}^{S_{v}(\chi)}}\right)T^{\frac{n(n-1)}{2}},

where Λ(k/2)=πk/2Γ(k/2)ζ(k)\Lambda(k/2)=\pi^{-k/2}\Gamma(k/2)\zeta(k).

We verify that the above formula coincides with (1.2) when [x]/(χ(x))=𝒪K\mathbb{Z}[x]/(\chi(x))=\mathcal{O}_{K}. Indeed, since [x]/(χ(x))=𝒪K\mathbb{Z}[x]/(\chi(x))=\mathcal{O}_{K}, equivalently Sv(χ)=0S_{v}(\chi)=0 for all vΩkkv\in\Omega_{k}\setminus\infty_{k}, we have 𝒮𝒪v(χ)=1\mathcal{SO}_{v}(\chi)=1 by Remark 5.10 and ΔK=Δχ\Delta_{K}=\Delta_{\chi}. Therefore we have

N(X,T)2n1hKRKwnΔχk=2nΛ(k/2)Tn(n1)2.N(X,T)\sim\frac{2^{n-1}h_{K}R_{K}w_{n}}{\sqrt{\Delta_{\chi}}\cdot\prod_{k=2}^{n}\Lambda(k/2)}T^{\frac{n(n-1)}{2}}.

In the case that n=2n=2 and 33, we refer to the results in [CKL], for the closed formula of vΩkk𝒮𝒪v(χ)\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi).

Proposition 7.3.
  1. (1)

    For n=2n=2, the product of orbital integrals 𝒮𝒪v(χ)\mathcal{SO}_{v}(\chi) is given as follows

    vΩkk𝒮𝒪v(χ)=vΩkk(1+#Tx0,𝒪kv(κv)qv1qvSv(χ)1qv1).\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi)=\prod_{v\in\Omega_{k}\setminus\infty_{k}}\left(1+\frac{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})}{q_{v}-1}\frac{q_{v}^{S_{v}(\chi)}-1}{q_{v}-1}\right).
  2. (2)

    For n=3n=3, the product of orbital integrals 𝒮𝒪v(χ)\mathcal{SO}_{v}(\chi) is given as follows

    vΩkk𝒮𝒪v(χ)=vΩkkqvρv(χ)(1+#Tx0,𝒪kv(κv)(qv1)2Φv(χ)).\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi)=\prod_{v\in\Omega_{k}\setminus\infty_{k}}q_{v}^{\rho_{v}(\chi)}\left(1+\frac{\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})}{(q_{v}-1)^{2}}\Phi_{v}(\chi)\right).

    Here,

    {#Tx0,𝒪kv(κv)=iBv(χ)qv[Kv,i:kv][κKv,i:κv](qv[κKv,i:κv]1),ρv(χ):={i,j}Bv(χ),ijordv(Res(χv,i,χv,j))={0if |Bv(χ)|=1;Sv(χ)δvif |Bv(χ)|=2;Sv(χ)if |Bv(χ)|=3,Φv(χ)={qvδv1qv1if Kv splits over kv;qvδv1qv13(qvδvdv1)qv21if Kv is an unramified field extension of kv;qvδv1qv13(qvδvdv1)qv21+(1+δv3dv)qvδvdv1qv(qv+1)if Kv is a ramified field extension of kv,\left\{\begin{array}[]{l}\#\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})=\prod\limits_{i\in B_{v}(\chi)}q_{v}^{[K_{v,i}:k_{v}]-[\kappa_{K_{v,i}}:\kappa_{v}]}(q_{v}^{[\kappa_{K_{v,i}}:\kappa_{v}]}-1),\\ \rho_{v}(\chi):=\sum\limits_{{\{i,j\}\subset B_{v}(\chi),i\neq j}}\operatorname{ord}_{v}(\mathrm{Res}(\chi_{v,i},\chi_{v,j}))=\left\{\begin{array}[]{l l}0&\textit{if }|B_{v}(\chi)|=1;\\ S_{v}(\chi)-\delta_{v}&\textit{if }|B_{v}(\chi)|=2;\\ S_{v}(\chi)&\textit{if }|B_{v}(\chi)|=3,\end{array}\right.\\ \Phi_{v}(\chi)=\left\{\begin{array}[]{l l}\frac{q_{v}^{\delta_{v}}-1}{q_{v}-1}&\textit{if $K_{v}$ splits over $k_{v}$};\\ \frac{q_{v}^{\delta_{v}}-1}{q_{v}-1}-\frac{3(q_{v}^{\delta_{v}-d_{v}}-1)}{q_{v}^{2}-1}&\textit{if $K_{v}$ is an unramified field extension of $k_{v}$};\\ \frac{q_{v}^{\delta_{v}}-1}{q_{v}-1}-\frac{3(q_{v}^{\delta_{v}-d_{v}}-1)}{q_{v}^{2}-1}+\frac{(1+\delta_{v}-3d_{v})q_{v}^{\delta_{v}-d_{v}}-1}{q_{v}(q_{v}+1)}&\textit{if $K_{v}$ is a ramified field extension of $k_{v}$},\end{array}\right.\end{array}\right.

    where {Bv(χ) is an index set in bijection with irreducible factors χv,i of χ over 𝒪kv;Res(χv,i,χv,j) denotes the resultant of two polynomials χv,i and χv,j;δv:=maxiBv(χ){Sv(χv,i)} for the 𝒪kv-module length Sv(χv,i) between 𝒪Kv,i and 𝒪kv[x]/(χv,i(x));dv:=δv3 for the floor function .\left\{\begin{array}[]{l}\textit{$B_{v}(\chi)$ is an index set in bijection with irreducible factors $\chi_{v,i}$ of $\chi$ over $\mathcal{O}_{k_{v}}$};\\ \textit{$\mathrm{Res}(\chi_{v,i},\chi_{v,j})$ denotes the resultant of two polynomials $\chi_{v,i}$ and $\chi_{v,j}$};\\ \delta_{v}:=\max\limits_{i\in B_{v}(\chi)}\{S_{v}(\chi_{v,i})\}\textit{ for the $\mathcal{O}_{k_{v}}$-module length $S_{v}(\chi_{v,i})$ between $\mathcal{O}_{K_{v,i}}$ and $\mathcal{O}_{k_{v}}[x]/(\chi_{v,i}(x))$};\\ d_{v}:=\lfloor\frac{\delta_{v}}{3}\rfloor\textit{ for the floor function $\lfloor\cdot\rfloor$}.\end{array}\right.

Proof.
  1. (1)

    By [CKL, Remark 5.7], we have

    𝒮𝒪v(χ)={qvSv(χ)if Kv splits over kv;1+(qv+1)qvSv(χ)1qv1if Kv is an unramified field extension over kv;qvSv(χ)+11qv1if Kv is a ramified field extension over kv.\mathcal{SO}_{v}(\chi)=\left\{\begin{array}[]{l l}q_{v}^{S_{v}(\chi)}&\textit{if $K_{v}$ splits over $k_{v}$};\\ 1+(q_{v}+1)\frac{q_{v}^{S_{v}(\chi)}-1}{q_{v}-1}&\textit{if $K_{v}$ is an unramified field extension over $k_{v}$};\\ \frac{q_{v}^{S_{v}(\chi)+1}-1}{q_{v}-1}&\textit{if $K_{v}$ is a ramified field extension over $k_{v}$}.\end{array}\right.

    In order to write the above in a uniform way, we describe Tx0,𝒪kv(κv)\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v}) explicitly as follows.

    Tx0,𝒪kv(κv){(κv×κv)×if Kv splits over kv;κKv×if Kv is an unramified field extension over kv;(κv[x]/(x2))×if Kv is a ramified field extension over kv,\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cong\left\{\begin{array}[]{l l}(\kappa_{v}\times\kappa_{v})^{\times}&\textit{if $K_{v}$ splits over $k_{v}$};\\ \kappa_{K_{v}}^{\times}&\textit{if $K_{v}$ is an unramified field extension over $k_{v}$};\\ (\kappa_{v}[x]/(x^{2}))^{\times}&\textit{if $K_{v}$ is a ramified field extension over $k_{v}$},\end{array}\right.

    where in the second case, κKv\kappa_{K_{v}} is a quadratic field extension over κv\kappa_{v}. Plugging it into the above formula for 𝒮𝒪v(χ)\mathcal{SO}_{v}(\chi), we obtain the desired formula.

  2. (2)

    By [CKL, Remark 6.7], we have

    1. (a)

      If χ(x)\chi(x) is an irreducible monic polynomial 𝒪kv\mathcal{O}_{k_{v}}, then we have

      𝒮𝒪v(χ)={(qv2+qv+1)i=1dv(qv3i2+2qv3i3+3qv2i2qvi11qv1)+1if Kv/kv is unramified and Sv(χ)=3dv;i=1dv(qv3i+2qv3i1+qv2i1+3qv2iqvi11qv1)+1if Kv/kv is ramified and Sv(χ)=3dv;i=1dv(qv3i+1+2qv3i+2qv2i+3qv2i+1qvi11qv1)+qv+1if Kv/kv is ramified and Sv(χ)=3dv+1.{\small\mathcal{SO}_{v}(\chi)=\left\{\begin{array}[]{l l}(q_{v}^{2}+q_{v}+1)\sum\limits_{i=1}^{d_{v}}(q_{v}^{3i-2}+2q_{v}^{3i-3}+3q_{v}^{2i-2}\frac{q_{v}^{i-1}-1}{q_{v}-1})+1&\textit{if $K_{v}/k_{v}$ is unramified and $S_{v}(\chi)=3d_{v}$};\\ \sum\limits_{i=1}^{d_{v}}(q_{v}^{3i}+2q_{v}^{3i-1}+q_{v}^{2i-1}+3q_{v}^{2i}\frac{q_{v}^{i-1}-1}{q_{v}-1})+1&\textit{if $K_{v}/k_{v}$ is ramified and $S_{v}(\chi)=3d_{v}$};\\ \sum\limits_{i=1}^{d_{v}}(q_{v}^{3i+1}+2q_{v}^{3i}+2q_{v}^{2i}+3q_{v}^{2i+1}\frac{q_{v}^{i-1}-1}{q_{v}-1})+q_{v}+1&\textit{if $K_{v}/k_{v}$ is ramified and $S_{v}(\chi)=3d_{v}+1$}.\\ \end{array}\right.}

      Here, we note that Sv(χ)S_{v}(\chi) cannot be of the form 3dv+23d_{v}+2 (cf. [CKL, Proposition 6.2]).

    2. (b)

      If χ(x)=χv,1(x)χv,2(x)\chi(x)=\chi_{v,1}(x)\chi_{v,2}(x) over 𝒪kv\mathcal{O}_{k_{v}} where χv,1(x)𝒪kv[x]\chi_{v,1}(x)\in\mathcal{O}_{k_{v}}[x] is an irreducible monic quadratic polynomial, we have

      𝒮𝒪v(χ)={qvSv(χ)Sv(χv,1)(1+(qv+1)qvSv(χv,1)1qv1)if Kv,1/kv is unramified;qvSv(χ)Sv(χv,1)qvSv(χv,1)+11qv1if Kv,1/kv is ramified.\mathcal{SO}_{v}(\chi)=\left\{\begin{array}[]{l l}q_{v}^{S_{v}(\chi)-S_{v}(\chi_{v,1})}(1+(q_{v}+1)\frac{q_{v}^{S_{v}(\chi_{v,1})}-1}{q_{v}-1})&\textit{if $K_{v,1}/k_{v}$ is unramified};\\ q_{v}^{S_{v}(\chi)-S_{v}(\chi_{v,1})}\frac{q_{v}^{S_{v}(\chi_{v,1})+1}-1}{q_{v}-1}&\textit{if $K_{v,1}/k_{v}$ is ramified}.\end{array}\right.
    3. (c)

      If χ(x)\chi(x) splits into linear terms completely over 𝒪kv\mathcal{O}_{k_{v}}, we have

      𝒮𝒪v(χ)=qvSv(χ).\mathcal{SO}_{v}(\chi)=q_{v}^{S_{v}(\chi)}.

    On the other hand, by [Yun13, Section 4.1], we have ρv(χ)=Sv(χ)iBv(χ)Sv(χv,i)\rho_{v}(\chi)=S_{v}(\chi)-\sum\limits_{i\in B_{v}(\chi)}S_{v}(\chi_{v,i}). Since Sv(χv,i)=0S_{v}(\chi_{v,i})=0 for a linear factor χv,i(x)𝒪kv[x]\chi_{v,i}(x)\in\mathcal{O}_{k_{v}}[x] of χ(x)\chi(x), we verify that

    ρv(χ)={0if |Bv(χ)|=1;Sv(χ)δvif |Bv(χ)|=2;Sv(χ)if |Bv(χ)|=3.\rho_{v}(\chi)=\left\{\begin{array}[]{l l}0&\textit{if }|B_{v}(\chi)|=1;\\ S_{v}(\chi)-\delta_{v}&\textit{if }|B_{v}(\chi)|=2;\\ S_{v}(\chi)&\textit{if }|B_{v}(\chi)|=3.\end{array}\right.

    In order to write the above in a uniform way, we describe Tx0,𝒪kv(κv)\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v}) explicitly as follows.

    Tx0,𝒪kv(κv){κKv×in the case (a), if Kv/kv is unramified;(κv[x]/(x3))×in the case (a), if Kv/kv is ramified;(κKv,1×κv)×in the case (b), if Kv,1/kv is unramified;(κv[x]/(x2)×κv)×in the case (b), if Kv,1/kv is ramified;(κv3)×in the case (c),\mathrm{T}_{x_{0},\mathcal{O}_{k_{v}}}(\kappa_{v})\cong\left\{\begin{array}[]{l l}\kappa_{K_{v}}^{\times}&\textit{in the case (a), if $K_{v}/k_{v}$ is unramified;}\\ (\kappa_{v}[x]/(x^{3}))^{\times}&\textit{in the case (a), if $K_{v}/k_{v}$ is ramified;}\\ (\kappa_{K_{v,1}}\times\kappa_{v})^{\times}&\textit{in the case (b), if $K_{v,1}/k_{v}$ is unramified;}\\ (\kappa_{v}[x]/(x^{2})\times\kappa_{v})^{\times}&\textit{in the case (b), if $K_{v,1}/k_{v}$ is ramified;}\\ (\kappa_{v}^{3})^{\times}&\textit{in the case (c)},\end{array}\right.

    where κKv\kappa_{K_{v}} is a cubic field extension over κv\kappa_{v} in the first case, and κKv,1\kappa_{K_{v,1}} is a quadratic field extension over κv\kappa_{v} in the third case. Plugging it into the above formula for 𝒮𝒪v(χ)\mathcal{SO}_{v}(\chi), we obtain the desired formula.

In the case that an 𝒪k\mathcal{O}_{k}-order 𝒪k[x]/(χ(x))\mathcal{O}_{k}[x]/(\chi(x)) is a Bass order, we refer to the results in [CHL], for the closed formula of vΩkk𝒮𝒪v(χ)\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi). A Bass order is an order of a number field whose fractional ideals are generated by two elements (cf. [CHL, Definition 6.1]). For example, any order of a number field which contains the maximal order of a subfield with degree 2 or whose discriminant is fourth-power-free in \mathbb{Z}, is a Bass order.

To state the closed formula of vΩkk𝒮𝒪v(χ)\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi) when R:=𝒪k[x]/(χ(x))R:=\mathcal{O}_{k}[x]/(\chi(x)) is a Bass order, we define |R||R| to be the set of maximal ideals of RR and define the following notations for w|R|w\in|R|;

{Rw is a w-adic completion of R;Kw is the ring of total fractions of Rw;𝒪Kw is the ring of integers of Kw.\left\{\begin{array}[]{l}R_{w}\textit{ is a $w$-adic completion of $R$};\\ K_{w}\textit{ is the ring of total fractions of $R_{w}$};\\ \mathcal{O}_{K_{w}}\textit{ is the ring of integers of $K_{w}$}.\end{array}\right.

Let |R|irred|R|^{irred} and |R|split|R|^{split} be subsets of |R||R| such that

{|R|irred{w|R|: Rw is an integral domain};|R|split{w|R|: Rw is not an integral domain}and thus |R|=|R|irred|R|split.\left\{\begin{array}[]{l}|R|^{irred}\subset\{w\in|R|:\textit{ $R_{w}$ is an integral domain}\};\\ |R|^{split}\subset\{w\in|R|:\textit{ $R_{w}$ is not an integral domain}\}\end{array}\right.\textit{and thus }~{}~{}~{}~{}~{}~{}~{}|R|=|R|^{irred}\sqcup|R|^{split}.

We denote the residue field of RwR_{w} by κRw\kappa_{R_{w}} and the cardinality of κRw\kappa_{R_{w}} by qRwq_{R_{w}}. For w|R|irredw\in|R|^{irred}, we denote the residue field of 𝒪Kw\mathcal{O}_{K_{w}} by κKw\kappa_{K_{w}}.

Proposition 7.4.

Suppose that R=𝒪k[x]/(χ(x))R=\mathcal{O}_{k}[x]/(\chi(x)) is a Bass order. The product of orbital integrals 𝒮𝒪v(χ)\mathcal{SO}_{v}(\chi) is given as follows

vΩkk𝒮𝒪v(χ)=(w|R|splitqRwSw(Rw)w|R|irred(qRwSw(Rw)+[κKw:κRw]qRwSw(Rw)1qRw1)),\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi)=\left(\prod_{w\in|R|^{split}}q_{R_{w}}^{S_{w}(R_{w})}\cdot\prod_{w\in|R|^{irred}}\bigg{(}q_{R_{w}}^{S_{w}(R_{w})}+[\kappa_{K_{w}}:\kappa_{R_{w}}]\frac{q_{R_{w}}^{S_{w}(R_{w})}-1}{q_{R_{w}}-1}\bigg{)}\right),

where Sw(Rw):={𝒪kv-module length between 𝒪Kw and Rw}/[κRw:κv]S_{w}(R_{w}):=\{\textit{$\mathcal{O}_{k_{v}}$-module length between $\mathcal{O}_{K_{w}}$ and $R_{w}$}\}/[\kappa_{R_{w}}:\kappa_{v}].

Proof.

To ease the notation, we denote 𝒪kv[x]/(χ(x))\mathcal{O}_{k_{v}}[x]/(\chi(x)) by RvR_{v}. For (𝒪,E)=(Rv,Kv)(\mathcal{O},E)=(R_{v},K_{v}) or (Rw,Kw)(R_{w},K_{w}) respectively, we define

{X𝒪 to be the set of frational 𝒪-ideals and;ΛE to be complementary to 𝒪E× inside E×, which acts on X𝒪 by multiplication.\left\{\begin{array}[]{l}X_{\mathcal{O}}\textit{ to be the set of frational $\mathcal{O}$-ideals and};\\ \Lambda_{E}\textit{ to be complementary to $\mathcal{O}_{E}^{\times}$ inside $E^{\times}$, which acts on $X_{\mathcal{O}}$ by multiplication.}\end{array}\right.

By [CHL, Definition 2.3], we have the following identification

𝒮𝒪v(χ)=#(ΛKv\XRv).\mathcal{SO}_{v}(\chi)=\#(\Lambda_{K_{v}}\backslash X_{R_{v}}).

The isomorphism Rvw|v,w|R|RwR_{v}\cong\bigoplus\limits_{w|v,\ w\in|R|}R_{w} in [CHL, Remark B.(1)] yields that XRvw|v,w|R|XRwX_{R_{v}}\cong\prod\limits_{w|v,\ w\in|R|}X_{R_{w}} and thus ΛKv\XRvw|v,w|R|ΛKw\XRw\Lambda_{K_{v}}\backslash X_{R_{v}}\cong\prod\limits_{w|v,\ w\in|R|}\Lambda_{K_{w}}\backslash X_{R_{w}}. Since the map from SpecR\mathrm{Spec}\ R to Spec𝒪k\mathrm{Spec}\ \mathcal{O}_{k} is surjective, we then have

(7.2) vΩkk𝒮𝒪v(χ)=w|R|#(ΛKw\XRw).\prod_{v\in\Omega_{k}\setminus\infty_{k}}\mathcal{SO}_{v}(\chi)=\prod_{w\in|R|}\#(\Lambda_{K_{w}}\backslash X_{R_{w}}).

For w|R|irredw\in|R|^{irred}, by [CHL, Theorem 3.7.(1)], we have

#(ΛEw\XRw)=qRwSw(Rw)+[κKw:κRw]qRwSw(Rw)1qRw1.\#(\Lambda_{E_{w}}\backslash X_{R_{w}})=q_{R_{w}}^{S_{w}(R_{w})}+[\kappa_{K_{w}}:\kappa_{R_{w}}]\frac{q_{R_{w}}^{S_{w}(R_{w})}-1}{q_{R_{w}}-1}.

For w|R|splitw\in|R|^{split}, by [CHL, Theorem 6.11], we have

#(ΛEw\XRw)=qRwSw(Rw).\#(\Lambda_{E_{w}}\backslash X_{R_{w}})=q_{R_{w}}^{S_{w}(R_{w})}.

Plugging these closed formula for #(ΛEw\XRw)\#(\Lambda_{E_{w}}\backslash X_{R_{w}}) into (7.2), we have the desired result. ∎

References

  • [BD13] Mikhail Borovoi and Cyril Demarche. Manin obstruction to strong approximation for homogeneous spaces. Comment. Math. Helv., 88(1):1–54, 2013.
  • [Bir62] B. J. Birch. Forms in many variables. Proc. Roy. Soc. London Ser. A, 265:245–263, 1961/62.
  • [Bit11] Rony A. Bitan. The discriminant of an algebraic torus. J. Number Theory, 131(9):1657–1671, 2011.
  • [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models, volume 21. Springer Science & Business Media, 1990.
  • [BO12] Yves Benoist and Hee Oh. Effective equidistribution of SS-integral points on symmetric varieties. Ann. Inst. Fourier (Grenoble), 62(5):1889–1942, 2012.
  • [Bou03] Nicolas Bourbaki. Algebra II. Chapters 4–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, french edition, 2003.
  • [BR95] Mikhail Borovoi and Zeév Rudnick. Hardy-Littlewood varieties and semisimple groups. Invent. Math., 119(1):37–66, 1995.
  • [CHL] Sungmun Cho, Jungtaek Hong, and Yuchan Lee. Orbital integrals and ideal calss monoids for a bass order. arXiv:2408.16199v2.
  • [CKL] Sungmun Cho, Taeyeoup Kang, and Yuchan Lee. Orbital integrals for classical lie algebras and smooth integral models. arXiv:2411.16054.
  • [CTX09] Jean-Louis Colliot-Thélène and Fei Xu. Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms. Compos. Math., 145(2):309–363, 2009. With an appendix by Dasheng Wei and Xu.
  • [DRS93] W. Duke, Z. Rudnick, and P. Sarnak. Density of integer points on affine homogeneous varieties. Duke Math. J., 71(1):143–179, 1993.
  • [EMS96] Alex Eskin, Shahar Mozes, and Nimish Shah. Unipotent flows and counting lattice points on homogeneous varieties. Ann. of Math. (2), 143(2):253–299, 1996.
  • [EvdGM] Bas Edixhoven, Gerard van der Geer, and Ben Moonen. Abelian varieties, preprint available at http://van-der-geer.nl/~gerard/AV.pdf.
  • [GG99] Benedict H. Gross and Wee Teck Gan. Haar measure and the Artin conductor. Trans. Amer. Math. Soc., 351(4):1691–1704, 1999.
  • [Gor22] Julia Gordon. Orbital integrals and normalizations of measures. arXiv preprint arXiv:2205.02391, 2022.
  • [Gro97] Benedict H. Gross. On the motive of a reductive group. Invent. Math., 130(2):287–313, 1997.
  • [Hal05] Thomas C. Hales. A statement of the fundamental lemma. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc., pages 643–658. Amer. Math. Soc., Providence, RI, 2005.
  • [Kna02] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 2002.
  • [Kot84] Robert E. Kottwitz. Stable trace formula: cuspidal tempered terms. Duke Math. J., 51(3):611–650, 1984.
  • [KP23] Tasho Kaletha and Gopal Prasad. Bruhat-Tits theory—a new approach, volume 44 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2023.
  • [Lab08] Jean-Pierre Labesse. Introduction to endoscopy. In Representation theory of real reductive Lie groups, volume 472 of Contemp. Math., pages 175–213. Amer. Math. Soc., Providence, RI, 2008.
  • [Lee21] Jungin Lee. Counting algebraic tori over \mathbb{Q} by artin conductor. arXiv preprint arXiv:2104.02855, 2021.
  • [LX15] Qing Liu and Fei Xu. Very strong approximation for certain algebraic varieties. Math. Ann., 363(3-4):701–731, 2015.
  • [Neu99] Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
  • [Ngfrm[o]–0] Bao Châu Ngô. Le lemme fondamental pour les algèbres de Lie. Publ. Math. Inst. Hautes Études Sci., (111):1–169, 2010.
  • [Ono65] Takashi Ono. On the relative theory of Tamagawa numbers. Ann. of Math. (2), 82:88–111, 1965.
  • [Poo17] Bjorn Poonen. Rational points on varieties, volume 186 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2017.
  • [Sch85] Wolfgang M. Schmidt. The density of integer points on homogeneous varieties. Acta Math., 154(3-4):243–296, 1985.
  • [Ser79] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg.
  • [Vos98] V. E. Voskresenskiĭ. Algebraic groups and their birational invariants, volume 179 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ].
  • [Wei82] André Weil. Adeles and algebraic groups, volume 23 of Progress in Mathematics. Birkhäuser, Boston, MA, 1982. With appendices by M. Demazure and Takashi Ono.
  • [WX16] Dasheng Wei and Fei Xu. Counting integral points in certain homogeneous spaces. J. Algebra, 448:350–398, 2016.
  • [Yun13] Zhiwei Yun. Orbital integrals and Dedekind zeta functions. In The legacy of Srinivasa Ramanujan, volume 20 of Ramanujan Math. Soc. Lect. Notes Ser., pages 399–420. Ramanujan Math. Soc., Mysore, 2013.