This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An Application of Dirac’s Interaction
Picture to Option Pricing.

Mauricio Contreras G Universidad Metropolitana de Ciencias de la Educación UMCE, Chile, email: [email protected]

In this paper, the Dirac’s quantum mechanical interaction picture is applied to option pricing to obtain a solution of the Black–Scholes equation in the presence of a time-dependent arbitrage bubble. In particular, for the case of a call perturbed by a square bubble, an approximate solution (valid up third order in a perturbation series) is given in terms of the three first Greeks: Delta, Gamma, and Speed. Then an exact solution is constructed in terms of all higher order SS-derivatives of the Black–Scholes formula.
It is also shown that the interacting Black–Scholes equation is invariant under a discrete transformation that interchanges the interest rate with the mean of the underlying asset and vice versa. This implies that the interacting Black–Scholes equation can be written in a ‘low energy’ and a ‘high energy’ form, in such a way that the high-interaction limit of the low energy form corresponds to the weak-interaction limit of the high energy form. One can apply a perturbative analysis to the high energy form to study the high-interaction limit of the low energy form.


Keywords: Quantum Mechanics; Perturbation theory; Interaction picture; Option pricing; Black–Scholes equation; Arbitrage bubbles.

1 Introduction

It is well known that the quantum mechanical evolution of a physical system can be found by using any one of three representations: the Schrödinger picture, the Heisenberg picture, or the interaction picture [1, 2]. In particular, the Interaction or Dirac’s picture is well suited to describe systems that have time-dependent forces. This framework permits, for example, obtaining the solution for the wave-function, Green’s functions, or scattering amplitudes of the correlated system as a perturbation series in the same free quantities. The usual old fashioned form of this method that uses operator algebraic manipulations has been applied in the quantum field theoretic description of many-body systems [3, 4], condensed matter [5, 6], and particle physics [7, 8]. A fourth picture based on the Feynman’s path integral formalism is capable of implementing the modern gauge theory model of the fundamental forces more easily. This last scheme also permits developing a perturbation series, which is equivalent to that of Dirac’s picture [9, 10].

On the other hand, physicists have begun to apply their methods and mathematical machinery to disciplines outside of physics, such as finance and economics. For example, one can find thermodynamic [11, 12] and statistical mechanical approaches [13, 14] applied to financial markets. Also, different ideas have been proposed to understand the Black–Scholes model as a Quantum Mechanical one [15][17]. Quantum field theoretical methods have been applied to interest rate modeling [18][20] and even ideas from super-symmetry have been applied to option pricing [21][23]. Even more, the theoretical optimal control description of economic systems can be understood as a constrained classical system in phase space [24][28]. Stochastic volatility models and the multi-asset Black–Scholes model can also be thought of as constrained quantum systems [29, 30]. There are also gauge theoretical descriptions of the arbitrage process [31].

In [32], inspired by the ideas in [31], a generalization of the Black–Scholes (B–S) model that incorporates market imperfections through the presence of arbitrage bubbles was proposed. In this case, the Black–Scholes equation is given by

πt+12σ2S22πS2+r(σαf(S,t)r)(σf(S,t))(SπSπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+r\frac{\left(\sigma-\frac{\alpha f(S,t)}{r}\right)}{(\sigma-f(S,t))}\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0, (1)

where the function f=f(S,t)f=f(S,t) is called the amplitude of the arbitrage bubble. The above equation can written as

πt+12σ2S22πS2+r(SπSπ)+v(S,t)(SπSπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+r\left(S\frac{\partial\pi}{\partial S}-\pi\right)+v(S,t)\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0, (2)

with

v(S,t)=(rα)f(S,t)σf(S,t),v(S,t)=\frac{(r-\alpha)f(S,t)}{\sigma-f(S,t)}, (3)

which can be interpreted as the potential of an external time-dependent force generated by the arbitrage bubble f(S,t)f(S,t). In fact, from a physicist’s point of view, v(S,t)v(S,t) is equivalent to a magnetic and electric field of the same strengths. Thus, market imperfections produce interactions that are equivalent to an external electromagnetic field of force that acts on the Black–Scholes particle.
By using the coordinate transformation

x=lnS(r12σ2)t,x=\ln S-\left(r-\frac{1}{2}\sigma^{2}\right)t, (4)

the interacting Black–Scholes equation (2) becomes

πt+12σ22πx2rπ+(rα)f~σfˇ(πxπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}\frac{\partial^{2}\pi}{\partial x^{2}}-r\pi+\frac{(r-\alpha)\tilde{f}}{\sigma-\check{f}}\left(\frac{\partial\pi}{\partial x}-\pi\right)=0, (5)

where

fˇ(x,t)=f(ex+(r12σ2)t,t).\check{f}(x,t)=f\left(\mathrm{e}^{x+\left(r-\frac{1}{2}\sigma^{2}\right)t},t\right). (6)

Now by defining

π(x,t)=er(Tt)ψ(x,t),\pi(x,t)=\mathrm{e}^{-r(T-t)}\psi(x,t), (7)

equation (5) becomes

ψ(x,t)t+12σ22ψ(x,t)x2+v(x,t)(ψ(x,t)xψ(x,t))=0,\frac{\partial\psi(x,t)}{\partial t}+\frac{1}{2}\sigma^{2}\frac{\partial^{2}\psi(x,t)}{\partial x^{2}}+v(x,t)\left(\frac{\partial\psi(x,t)}{\partial x}-\psi(x,t)\right)=0, (8)

with

v(x,t)=(rα)fˇ(x,t)σfˇ(x,t).v(x,t)=\frac{(r-\alpha)\check{f}(x,t)}{\sigma-\check{f}(x,t)}. (9)

Now, finally by doing a Wick rotation in time

t=iτ,t=-i\tau, (10)

equation (8) becomes

iψ(x,τ)τ=12σ22ψ(x,τ)x2v(x,τ)(ψ(x,τ)xψ(x,τ)).i\frac{\partial\psi(x,\tau)}{\partial\tau}=-\frac{1}{2}\sigma^{2}\frac{\partial^{2}\psi(x,\tau)}{\partial x^{2}}-v(x,\tau)\left(\frac{\partial\psi(x,\tau)}{\partial x}-\psi(x,\tau)\right). (11)

The last equation is an interacting Schrödinger equation for a particle of mass 1/σ21/\sigma^{2} with wave function ψ(x,t)\psi(x,t) in an external time-dependent field generated by the potential v(x,t)v(x,t). If we write the above interacting Schrödinger equation as

ψ(x,t)t=Hˇψ(x,t)\frac{\partial\psi(x,t)}{\partial t}=\check{H}\psi(x,t) (12)

one can express the Hamiltonian operator as

Hˇ=12σ22x2v(x,t)(xI).\check{H}=-\frac{1}{2}\sigma^{2}\frac{\partial^{2}}{\partial x^{2}}-v(x,t)\left(\frac{\partial}{\partial x}-I\right). (13)

Note that if f=0f=0, the potential v=0v=0 and so (13) corresponds to the Hamiltonian of a free particle. When the amplitude ff of the bubble is small, and so the second term in (13) can be thought of as a perturbation of the free Hamiltonian. Since ff is time-dependent, one can apply the interaction picture to study the effect of the perturbation on the free solution, that is, on the usual Black–Scholes solution.
In the following section I develop these ideas but not in the (x,τ)(x,\tau) space, but directly in the (S,t)(S,t) space.

2 The Euclidean interaction picture and option pricing

Consider again the Black–Scholes equation (2) in the (S,t)(S,t) space in the presence of an arbitrage bubble f(S,t)f(S,t). This equation must be integrated with the final condition

π(S,T)=Φ(S).\pi(S,T)=\Phi(S). (14)

The function Φ\Phi is called the contract function and defines the type of option. Note that equation (2) must be integrated backward in time from the future time t=Tt=T to the present time t=0t=0. One can change the direction of time by using the change of variables given by

τ=Tt\tau=T-t (15)

which implies that

τ=t\frac{\partial}{\partial\tau}=-\frac{\partial}{\partial t} (16)

so (2) can be written as forward τ\tau time Euclidean Schrödinger like equation

πτ=12σ2S22πS2+r(SπSπ)+v(S,τ)(SπSπ).\frac{\partial\pi}{\partial\tau}=\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+r\left(S\frac{\partial\pi}{\partial S}-\pi\right)+v(S,\tau)\left(S\frac{\partial\pi}{\partial S}-\pi\right). (17)

From (17) one can identify the Euclidean Hamiltonian operator as

Hˇ=12σ2Tˇ+rPˇ+v(S,τ)Pˇ,\check{H}=\frac{1}{2}\sigma^{2}\check{T}+r\check{P}+v(S,\tau)\check{P}, (18)

with

Tˇ=S22S2,\check{T}=S^{2}\frac{\partial^{2}}{\partial S^{2}}, (19)

and

Pˇ=(SπSIˇ).\check{P}=\left(S\frac{\partial\pi}{\partial S}-\check{I}\right). (20)

When the amplitude of the bubble is zero, the potential function v(S,τ)v(S,\tau) also is zero, and the Hamiltonian reduces to

Hˇ0=12σ2Tˇ+rPˇ,\check{H}_{0}=\frac{1}{2}\sigma^{2}\check{T}+r\check{P}, (21)

which gives the evolution of the usual Black–Scholes model. Thus one has that

Hˇ=Hˇ0+Vˇ,\check{H}=\check{H}_{0}+\check{V}, (22)

with

Vˇ=Vˇ(S,τ)=v(S,τ)Pˇ.\check{V}=\check{V}(S,\tau)=v(S,\tau)\check{P}. (23)

In this way, the interacting Black–Scholes equation is

πτ=Hˇ0π+Vˇπ\frac{\partial\pi}{\partial\tau}=\check{H}_{0}\pi+\check{V}\pi (24)

Now introduce the Euclidean interaction picture by defining the interaction option price

πI(S,τ)=eHˇ0τπ(S,τ),\pi_{I}(S,\tau)=e^{-\check{H}_{0}\tau}\pi(S,\tau), (25)

or

π(S,τ)=eHˇ0τπI(S,τ).\pi(S,\tau)=e^{\check{H}_{0}\tau}\pi_{I}(S,\tau). (26)

Taking the derivative with respect to time,

π(S,τ)τ=Hˇ0eHˇ0τπI(S,τ)+eHˇ0τπI(S,τ)τ.\frac{\partial\pi(S,\tau)}{\partial\tau}=\check{H}_{0}e^{\check{H}_{0}\tau}\pi_{I}(S,\tau)+e^{\check{H}_{0}\tau}\frac{\partial\pi_{I}(S,\tau)}{\partial\tau}. (27)

By substituting the above equation in (24) and using (26), one obtains

Hˇ0eHˇ0τπI(S,τ)+eHˇ0τπI(S,τ)τ=Hˇ0eHˇ0τπI(S,τ)+VˇeHˇ0τπI(S,τ),\check{H}_{0}e^{\check{H}_{0}\tau}\pi_{I}(S,\tau)+e^{\check{H}_{0}\tau}\frac{\partial\pi_{I}(S,\tau)}{\partial\tau}=\check{H}_{0}e^{\check{H}_{0}\tau}\pi_{I}(S,\tau)+\check{V}e^{\check{H}_{0}\tau}\pi_{I}(S,\tau), (28)

or

πI(S,τ)τ=eHˇ0τVˇ(S,τ)eHˇ0τπI(S,τ).\frac{\partial\pi_{I}(S,\tau)}{\partial\tau}=e^{-\check{H}_{0}\tau}\check{V}(S,\tau)e^{\check{H}_{0}\tau}\pi_{I}(S,\tau). (29)

If Oˇ(S,τ)\check{O}(S,\tau) is an operator defined in the Schödinger picture, then in the interaction picture it is given by

OˇI(S,τ)=eHˇ0τOˇ(S,τ)eHˇ0τ,\check{O}_{I}(S,\tau)=e^{-\check{H}_{0}\tau}\check{O}(S,\tau)e^{\check{H}_{0}\tau}, (30)

and one can verify that

OˇI(S,τ)τ=[Hˇ0,OˇI(S,τ)]+eHˇ0τOˇ(S,τ)τeHˇ0τ.\frac{\partial\check{O}_{I}(S,\tau)}{\partial\tau}=[\check{H}_{0},\check{O}_{I}(S,\tau)]+e^{-\check{H}_{0}\tau}\frac{\partial\check{O}(S,\tau)}{\partial\tau}e^{\check{H}_{0}\tau}. (31)

Finally, equation (29) can be written as

πI(S,τ)τ=VˇI(S,τ)πI(S,τ),\frac{\partial\pi_{I}(S,\tau)}{\partial\tau}=\check{V}_{I}(S,\tau)\pi_{I}(S,\tau), (32)

with

VˇI(S,τ)=eHˇ0τVˇ(S,τ)eHˇ0τ=eHˇ0τv(S,τ)PˇeHˇ0τ.\check{V}_{I}(S,\tau)=e^{-\check{H}_{0}\tau}\check{V}(S,\tau)e^{\check{H}_{0}\tau}=e^{-\check{H}_{0}\tau}v(S,\tau)\check{P}e^{\check{H}_{0}\tau}. (33)

Equation (32) can be integrated to give

πI(S,τ)=πI(S,τ0)+τ0τVˇI(S,τ)πI(S,τ)𝑑τ.\pi_{I}(S,\tau)=\pi_{I}(S,\tau_{0})+\int_{\tau_{0}}^{\tau}\check{V}_{I}(S,\tau^{\prime})\pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}. (34)

By choosing τ0=0\tau_{0}=0 and using the fact that

πI(S,0)=eHˇ0 0π(S,0)=Φ(S)\pi_{I}(S,0)=e^{-\check{H}_{0}\ 0}\pi(S,0)=\Phi(S) (35)

one has finally that

πI(S,τ)=Φ(S)+0τVˇI(S,τ)πI(S,τ)𝑑τ.\pi_{I}(S,\tau)=\Phi(S)+\int_{0}^{\tau}\check{V}_{I}(S,\tau^{\prime})\pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}. (36)

One can apply (36) to construct an approximate solution for the option price in presence of a perturbation generated by an arbitrage bubble.

3 The square bubble

In that follows, I consider an important special case: the square-time bubble defined by

f(t)={0t<T1f0T1<t<T20T2<t<Tf(t)=\left\{\begin{array}[]{ll}0&t<T_{1}\\ f_{0}&T_{1}<t<T_{2}\\ 0&T_{2}<t<T\end{array}\right. (37)

or, in terms of τ\tau,

f(τ)={0τ<τ1f0τ1<τ<τ20τ2<τ<Tf(\tau)=\left\{\begin{array}[]{ll}0&\tau<\tau_{1}\\ f_{0}&\tau_{1}<\tau<\tau_{2}\\ 0&\tau_{2}<\tau<T\end{array}\right. (38)

where τ1=TT2\tau_{1}=T-T_{2} and τ2=TT1\tau_{2}=T-T_{1}. This bubble is important, because any other shape of a bubble can be approximated locally by the square case. Because this bubble is independent of the SS coordinate, the potential function (3) is also independent of SS, and given by

v(τ)={0τ<τ1v0=(rα)f0σf0,τ1<τ<τ20τ2<τ<Tv(\tau)=\left\{\begin{array}[]{ll}0&\tau<\tau_{1}\\ v_{0}=\frac{(r-\alpha)f_{0}}{\sigma-f_{0}},&\tau_{1}<\tau<\tau_{2}\\ 0&\tau_{2}<\tau<T\end{array}\right. (39)

and the potential operator (33) becomes

VˇI(S,τ)=v(τ)eHˇ0τPˇeHˇ0τ.\check{V}_{I}(S,\tau)=v(\tau)e^{-\check{H}_{0}\tau}\check{P}e^{\check{H}_{0}\tau}. (40)

To evaluate (40) one need the commutation relations between Hˇ0\check{H}_{0} and Pˇ\check{P}. In fact

[Hˇ0,Pˇ]=[12σ2Tˇ+rPˇ,Pˇ]=12σ2[Tˇ,Pˇ].[\check{H}_{0},\check{P}]=[\frac{1}{2}\sigma^{2}\check{T}+r\check{P},\check{P}]=\frac{1}{2}\sigma^{2}[\check{T},\check{P}]. (41)

Now

[Tˇ,Pˇ]=\displaystyle[\check{T},\check{P}]= TˇPˇPˇTˇ\displaystyle\check{T}\check{P}-\check{P}\check{T} (42)
=\displaystyle= S22S2(SSIˇ)(SSIˇ)(S22S2)\displaystyle S^{2}\frac{\partial^{2}}{\partial S^{2}}\left(S\frac{\partial}{\partial S}-\check{I}\right)-\left(S\frac{\partial}{\partial S}-\check{I}\right)\left(S^{2}\frac{\partial^{2}}{\partial S^{2}}\right) (43)
=\displaystyle= S2S(S+S2S2S)(SS(S22S2)S22S2)\displaystyle S^{2}\frac{\partial}{\partial S}\left(\frac{\partial}{\partial S}+S\frac{\partial^{2}}{\partial S^{2}}-\frac{\partial}{\partial S}\right)-\left(S\frac{\partial}{\partial S}\left(S^{2}\frac{\partial^{2}}{\partial S^{2}}\right)-S^{2}\frac{\partial^{2}}{\partial S^{2}}\right) (44)
=\displaystyle= S2(2S2+S3S3)(S(2S2S2+S23S3)S22S2)\displaystyle S^{2}\left(\frac{\partial^{2}}{\partial S^{2}}+S\frac{\partial^{3}}{\partial S^{3}}\right)-\left(S\left(2S\frac{\partial^{2}}{\partial S^{2}}+S^{2}\frac{\partial^{3}}{\partial S^{3}}\right)-S^{2}\frac{\partial^{2}}{\partial S^{2}}\right) (45)
=\displaystyle= S2(2S2+S3S3)(S22S2+S33S3)\displaystyle S^{2}\left(\frac{\partial^{2}}{\partial S^{2}}+S\frac{\partial^{3}}{\partial S^{3}}\right)-\left(S^{2}\frac{\partial^{2}}{\partial S^{2}}+S^{3}\frac{\partial^{3}}{\partial S^{3}}\right) (46)
=\displaystyle= 0,\displaystyle 0, (47)

thus Pˇ\check{P} commutes with the free Hamiltonian Hˇ0\check{H}_{0}, so (40) is equal to

VˇI(S,τ)=v(τ)PˇeHˇ0τeHˇ0τ=v(τ)Pˇ,\check{V}_{I}(S,\tau)=v(\tau)\check{P}e^{-\check{H}_{0}\tau}e^{\check{H}_{0}\tau}=v(\tau)\check{P}, (48)

and (36) becomes

πI(S,τ)=Φ(S)+0τv(τ)PˇπI(S,τ)𝑑τ.\pi_{I}(S,\tau)=\Phi(S)+\int_{0}^{\tau}v(\tau^{\prime})\check{P}\ \pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}. (49)

Note that for 0<τ<τ10<\tau<\tau_{1}, using (39) shows that v(τ)=0v(\tau)=0, so in this temporal interval the option price is constant and equal to its initial value

πI(S,τ)=Φ(S).\pi_{I}(S,\tau)=\Phi(S). (50)

For τ1<τ<τ2\tau_{1}<\tau<\tau_{2} the option price is given by

πI(S,τ)=Φ(S)+τ1τv(τ)PˇπI(S,τ)𝑑τ.\pi_{I}(S,\tau)=\Phi(S)+\int_{\tau_{1}}^{\tau}v(\tau^{\prime})\check{P}\ \pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}. (51)

At last, for τ2<τ<T\tau_{2}<\tau<T, the potential function v(τ)=0v(\tau^{\prime})=0 again, so the option price is again constant and so must be equal to its value at τ=τ2\tau=\tau_{2}

πI(S,τ2)=Φ(S)+τ1τ2v(τ)PˇπI(S,τ)𝑑τ,τ1<τ<τ2.\pi_{I}(S,\tau_{2})=\Phi(S)+\int_{\tau_{1}}^{\tau_{2}}v(\tau^{\prime})\check{P}\ \pi_{I}(S,\tau^{\prime})\ d\tau^{\prime},\ \ \ \ \ \ \ \ \tau_{1}<\tau<\tau_{2}. (52)

Thus, by equation (39) one has that

πI(S,τ)={Φ(S)0<τ<τ1Φ(S)+v0τ1τPˇπI(S,τ)𝑑ττ1<τ<τ2Φ(S)+v0τ1τ2PˇπI(S,τ)𝑑ττ2<τ<T\pi_{I}(S,\tau)=\left\{\begin{array}[]{ll}\Phi(S)&0<\tau<\tau_{1}\\ \Phi(S)+v_{0}\int_{\tau_{1}}^{\tau}\check{P}\ \pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}&\tau_{1}<\tau<\tau_{2}\\ \Phi(S)+v_{0}\int_{\tau_{1}}^{\tau_{2}}\check{P}\ \pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}&\tau_{2}<\tau<T\end{array}\right. (53)

By taken the derivative with respect to time of the above equation one has that

πI(S,τ)τ={00<τ<τ1v0PˇπI(S,τ)τ1<τ<τ20τ2<τ<T\frac{\partial\pi_{I}(S,\tau)}{\partial\tau}=\left\{\begin{array}[]{ll}0&0<\tau<\tau_{1}\\ v_{0}\check{P}\ \pi_{I}(S,\tau)&\tau_{1}<\tau<\tau_{2}\\ 0&\tau_{2}<\tau<T\end{array}\right. (54)

So for τ1<τ<τ2\tau_{1}<\tau<\tau_{2}

πI(S,τ)τ=v0PˇπI(S,τ),\frac{\partial\pi_{I}(S,\tau)}{\partial\tau}=v_{0}\check{P}\ \pi_{I}(S,\tau), (55)

and since the right side does not depend on time and using the initial condition πI(S,τ1)=Φ(S)\pi_{I}(S,\tau_{1})=\Phi(S) it can be integrated to give

πI(S,τ)=ev0Pˇ(ττ1)Φ(S)\pi_{I}(S,\tau)=e^{v_{0}\check{P}(\tau-\tau_{1})}\Phi(S) (56)

so

πI(S,τ2)=ev0Pˇ(τ2τ1)Φ(S)\pi_{I}(S,\tau_{2})=e^{v_{0}\check{P}(\tau_{2}-\tau_{1})}\Phi(S) (57)

and (53) can be written also as

πI(S,τ)={Φ(S)0<τ<τ1ev0Pˇ(ττ1)Φ(S)τ1<τ<τ2ev0Pˇ(τ2τ1)Φ(S)τ2<τ<T.\pi_{I}(S,\tau)=\left\{\begin{array}[]{ll}\Phi(S)&0<\tau<\tau_{1}\\ e^{v_{0}\check{P}(\tau-\tau_{1})}\Phi(S)&\tau_{1}<\tau<\tau_{2}\\ e^{v_{0}\check{P}(\tau_{2}-\tau_{1})}\Phi(S)&\tau_{2}<\tau<T.\end{array}\right. (58)

The evolution of the option price in the Schrödinger picture is then given by (26)

π(S,τ)={eHˇ0τΦ(S)0<τ<τ1eHˇ0τev0Pˇ(ττ1)Φ(S)τ1<τ<τ2eHˇ0τev0Pˇ(τ2τ1)Φ(S)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}e^{\check{H}_{0}\tau}\Phi(S)&0<\tau<\tau_{1}\\ e^{\check{H}_{0}\tau}e^{v_{0}\check{P}(\tau-\tau_{1})}\Phi(S)&\tau_{1}<\tau<\tau_{2}\\ e^{\check{H}_{0}\tau}e^{v_{0}\check{P}(\tau_{2}-\tau_{1})}\Phi(S)&\tau_{2}<\tau<T\end{array}\right. (59)

Due to the fact that Hˇ0\check{H}_{0} commutes with Pˇ\check{P} for the square bubble,

π(S,τ)={eHˇ0τΦ(S)0<τ<τ1eHˇ0τ+v0Pˇ(ττ1)Φ(S)τ1<τ<τ2eHˇ0τ+v0Pˇ(τ2τ1)Φ(S)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}e^{\check{H}_{0}\tau}\Phi(S)&0<\tau<\tau_{1}\\ e^{\check{H}_{0}\tau+v_{0}\check{P}(\tau-\tau_{1})}\Phi(S)&\tau_{1}<\tau<\tau_{2}\\ e^{\check{H}_{0}\tau+v_{0}\check{P}(\tau_{2}-\tau_{1})}\Phi(S)&\tau_{2}<\tau<T\end{array}\right. (60)

which is the same as

π(S,τ)={eHˇ0τΦ(S)0<τ<τ1e[Hˇ0+v0Pˇ](ττ1)eHˇ0τ1Φ(S)τ1<τ<τ2eHˇ0(ττ2)e[Hˇ0+v0Pˇ](τ2τ1)eHˇ0τ1Φ(S)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}e^{\check{H}_{0}\tau}\Phi(S)&0<\tau<\tau_{1}\\ e^{\left[\check{H}_{0}+v_{0}\check{P}\right](\tau-\tau_{1})}e^{\check{H}_{0}\tau_{1}}\Phi(S)&\tau_{1}<\tau<\tau_{2}\\ e^{\check{H}_{0}(\tau-\tau_{2})}e^{\left[\check{H}_{0}+v_{0}\check{P}\right](\tau_{2}-\tau_{1})}e^{\check{H}_{0}\tau_{1}}\Phi(S)&\tau_{2}<\tau<T\end{array}\right. (61)

Now

Hˇ0+v0Pˇ=12σ2Tˇ+rPˇ+v0Pˇ=12σ2Tˇ+(r+v0)Pˇ=12σ2Tˇ+r¯Pˇ,\check{H}_{0}+v_{0}\check{P}=\frac{1}{2}\sigma^{2}\check{T}+r\check{P}+v_{0}\check{P}=\frac{1}{2}\sigma^{2}\check{T}+(r+v_{0})\check{P}=\frac{1}{2}\sigma^{2}\check{T}+\bar{r}\check{P}, (62)

where r¯=r+v0\bar{r}=r+v_{0} is a ‘dressed’ interest rate. One can see that the total Hamiltonian is the same as the free Balck–Scholes Hamiltonian but with the ‘bare’ interest rate rr replaced by the effective one r¯\bar{r}. If one defines the free Hamiltonian as Hˇ0r¯=12σ2Tˇ+r¯Pˇ\check{H}_{0}^{\bar{r}}=\frac{1}{2}\sigma^{2}\check{T}+\bar{r}\check{P}, then

π(S,τ)={eHˇ0τΦ(S)0<τ<τ1eHˇ0r¯(ττ1)eHˇ0τ1Φ(S)τ1<τ<τ2eHˇ0(ττ2)eHˇ0r¯(τ2τ1)eHˇ0τ1Φ(S)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}e^{\check{H}_{0}\tau}\Phi(S)&0<\tau<\tau_{1}\\ e^{\check{H}_{0}^{\bar{r}}(\tau-\tau_{1})}e^{\check{H}_{0}\tau_{1}}\Phi(S)&\tau_{1}<\tau<\tau_{2}\\ e^{\check{H}_{0}(\tau-\tau_{2})}e^{\check{H}_{0}^{\bar{r}}(\tau_{2}-\tau_{1})}e^{\check{H}_{0}\tau_{1}}\Phi(S)&\tau_{2}<\tau<T\end{array}\right. (63)

In this way, by using the interaction picture one can obtain a formal solution of the problem. For example, for a European call Φ(S)=max{SK,0}\Phi(S)=max\{S-K,0\}, the first part 0<τ<τ10<\tau<\tau_{1} of the solution given by

π(S,τ)=eHˇ0τΦ(S)\pi(S,\tau)=e^{\check{H}_{0}\tau}\Phi(S) (64)

corresponds to the usual closed form Black–Scholes solution. However, for τ1<τ<τ2\tau_{1}<\tau<\tau_{2} or τ2<τ<T\tau_{2}<\tau<T, though the evolution is given by a free Black–Scholes Hamiltonian, the solution is not given by a usual solution to the Black–Scholes equation. This is because the initial conditions are not given by Φ(S)=max{SK,0}\Phi(S)=max\{S-K,0\} but instead by Φ1(S)=eHˇ0τ1Φ(S)\Phi_{1}(S)=e^{\check{H}_{0}\tau_{1}}\Phi(S) and Φ2(S)=eHˇ0r¯(τ2τ1)eHˇ0τ1Φ(S)\Phi_{2}(S)=e^{\check{H}_{0}^{\bar{r}}(\tau_{2}-\tau_{1})}e^{\check{H}_{0}\tau_{1}}\Phi(S) respectively. For this reason, obtaining an explicit formula for the solution in these time intervals is a non trivial task. It can only be accomplished numerically.

4 The first terms of the perturbation solution

Consider equation (53) for the intermediate region of time τ1<τ<τ2\tau_{1}<\tau<\tau_{2}:

πI(S,τ)=Φ(S)+v0τ1τPˇπI(S,τ)𝑑τ.\pi_{I}(S,\tau)=\Phi(S)+v_{0}\int_{\tau_{1}}^{\tau}\check{P}\ \pi_{I}(S,\tau^{\prime})\ d\tau^{\prime}. (65)

By iterating this equation one obtains

πI(S,τ)=Φ(S)+v0τ1τPˇΦ(S)𝑑τ+v0τ1τPˇ(v0τ1τPˇΦ(S)𝑑τ′′)𝑑τ+v0τ1τPˇ(v0τ1τPˇ(v0τ1τ′′PˇΦ(S)𝑑τ′′′)𝑑τ′′)𝑑τ+,\begin{array}[]{ll}\pi_{I}(S,\tau)=&\Phi(S)+v_{0}\int_{\tau_{1}}^{\tau}\check{P}\ \Phi(S)\ d\tau^{\prime}+\\ &v_{0}\int_{\tau_{1}}^{\tau}\check{P}\ \left(v_{0}\int_{\tau_{1}}^{\tau^{\prime}}\check{P}\ \Phi(S)\ d\tau^{\prime\prime}\right)\ d\tau^{\prime}+\\ &v_{0}\int_{\tau_{1}}^{\tau}\check{P}\ \left(v_{0}\int_{\tau_{1}}^{\tau^{\prime}}\check{P}\ \left(v_{0}\int_{\tau_{1}}^{\tau^{\prime\prime}}\check{P}\ \Phi(S)\ d\tau^{\prime\prime\prime}\right)\ d\tau^{\prime\prime}\right)\ d\tau^{\prime}+\cdots,\end{array} (66)

that is,

πI(S,τ)=Φ(S)+v0PˇΦ(S)(τ1τ𝑑τ)+v02PˇPˇΦ(S)(τ1ττ1τ𝑑τ′′𝑑τ)+v03PˇPˇPˇΦ(S)(τ1ττ1ττ1τ′′𝑑τ′′′𝑑τ′′𝑑τ)+.\begin{array}[]{ll}\pi_{I}(S,\tau)=&\Phi(S)+v_{0}\ \check{P}\ \Phi(S)\ \left(\int_{\tau_{1}}^{\tau}d\tau^{\prime}\right)+\\ &v_{0}^{2}\ \check{P}\ \check{P}\ \Phi(S)\ \left(\int_{\tau_{1}}^{\tau}\int_{\tau_{1}}^{\tau^{\prime}}d\tau^{\prime\prime}\ d\tau^{\prime}\right)+\\ &v_{0}^{3}\ \check{P}\ \check{P}\ \check{P}\ \Phi(S)\left(\int_{\tau_{1}}^{\tau}\int_{\tau_{1}}^{\tau^{\prime}}\int_{\tau_{1}}^{\tau^{\prime\prime}}\ d\tau^{\prime\prime\prime}\ d\tau^{\prime\prime}\ d\tau^{\prime}\right)+\cdots.\end{array} (67)

Integrating with respect to time gives

τ1τ𝑑τ=ττ1\int_{\tau_{1}}^{\tau}d\tau^{\prime}=\tau-\tau_{1} (68)
τ1ττ1τ𝑑τ′′𝑑τ=τ1τ(ττ1)𝑑τ=12(ττ1)2\int_{\tau_{1}}^{\tau}\int_{\tau_{1}}^{\tau^{\prime}}d\tau^{\prime\prime}\ d\tau^{\prime}=\int_{\tau_{1}}^{\tau}\left(\tau^{\prime}-\tau_{1}\right)\ d\tau^{\prime}=\frac{1}{2}\left(\tau-\tau_{1}\right)^{2} (69)
τ1ττ1ττ1τ′′𝑑τ′′′𝑑τ′′𝑑τ=τ1τ12(ττ1)2𝑑τ=13!(ττ1)3\int_{\tau_{1}}^{\tau}\int_{\tau_{1}}^{\tau^{\prime}}\int_{\tau_{1}}^{\tau^{\prime\prime}}\ d\tau^{\prime\prime\prime}\ d\tau^{\prime\prime}\ d\tau^{\prime}=\int_{\tau_{1}}^{\tau}\frac{1}{2}\left(\tau^{\prime}-\tau_{1}\right)^{2}\ d\tau^{\prime}=\frac{1}{3!}\left(\tau-\tau_{1}\right)^{3} (70)
\vdots

and so

πI(S,τ)=\displaystyle\pi_{I}(S,\tau)= Φ(S)+v0PˇΦ(S)11!(ττ1)+\displaystyle\Phi(S)+v_{0}\ \check{P}\ \Phi(S)\ \frac{1}{1!}\left(\tau-\tau_{1}\right)+
v02PˇPˇΦ(S)12!(ττ1)2+\displaystyle v_{0}^{2}\ \check{P}\ \check{P}\ \Phi(S)\ \frac{1}{2!}\left(\tau-\tau_{1}\right)^{2}+
v03PˇPˇPˇΦ(S)13!(ττ1)3+\displaystyle v_{0}^{3}\ \check{P}\ \check{P}\ \check{P}\ \Phi(S)\frac{1}{3!}\left(\tau-\tau_{1}\right)^{3}+\cdots

or

πI(S,τ)=\displaystyle\pi_{I}(S,\tau)= (Iˇ+11!v0Pˇ(ττ1)+\displaystyle\Big{(}\check{I}+\frac{1}{1!}v_{0}\ \check{P}\left(\tau-\tau_{1}\right)+
12!v02Pˇ2(ττ1)2+\displaystyle\frac{1}{2!}v_{0}^{2}\ \check{P}^{2}\left(\tau-\tau_{1}\right)^{2}+
13!v03Pˇ3(ττ1)3+)Φ(S)\displaystyle\frac{1}{3!}v_{0}^{3}\ \check{P}^{3}\left(\tau-\tau_{1}\right)^{3}+\cdots\Big{)}\Phi(S)

Now by kipping only the first four terms in (4) one has

πI(S,τ)(Iˇ+11!v0(ττ1)Pˇ+12!v02(ττ1)2Pˇ2+13!v03(ττ1)3Pˇ3)Φ(S).\pi_{I}(S,\tau)\approx\Big{(}\check{I}+\frac{1}{1!}v_{0}\left(\tau-\tau_{1}\right)\ \check{P}+\frac{1}{2!}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}\ \check{P}^{2}+\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\ \check{P}^{3}\Big{)}\Phi(S). (71)

Then the option price in the Schrödinger picture is

π(S,τ)eHˇ0τ(Iˇ+11!v0(ττ1)Pˇ+12!v02(ττ1)2Pˇ2+13!v03(ττ1)3Pˇ3)Φ(S),\pi(S,\tau)\approx e^{\check{H}_{0}\tau}\Big{(}\check{I}+\frac{1}{1!}v_{0}\left(\tau-\tau_{1}\right)\ \check{P}+\\ \frac{1}{2!}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}\ \check{P}^{2}+\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\ \check{P}^{3}\Big{)}\Phi(S), (72)

but as Hˇ0\check{H}_{0} commutes with Pˇ\check{P} one has that

π(S,τ)(Iˇ+11!v0(ττ1)Pˇ+12!v02(ττ1)2Pˇ2+13!v03(ττ1)3Pˇ3)eHˇ0τΦ(S).\pi(S,\tau)\approx\Big{(}\check{I}+\frac{1}{1!}v_{0}\left(\tau-\tau_{1}\right)\ \check{P}+\frac{1}{2!}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}\ \check{P}^{2}+\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\ \check{P}^{3}\Big{)}e^{\check{H}_{0}\tau}\Phi(S). (73)

But eHˇ0τΦ(S)e^{\check{H}_{0}\tau}\Phi(S) is just the Call C(S,t)C(S,t) solution at time τ\tau so

C(S,τ)=eHˇ0τΦ(S)C(S,\tau)=e^{\check{H}_{0}\tau}\Phi(S) (74)

and then

π(S,τ)C(S,τ)+v0(ττ1)PˇC(S,τ)+12v02(ττ1)2Pˇ2C(S,τ)+13!v03(ττ1)3Pˇ3C(S,τ).\pi(S,\tau)\approx C(S,\tau)+v_{0}\left(\tau-\tau_{1}\right)\ \check{P}\ C(S,\tau)+\frac{1}{2}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}\ \check{P}^{2}\ C(S,\tau)+\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\ \check{P}^{3}\ C(S,\tau). (75)

Now

PˇC(S,τ)=(SSIˇ)C(S,τ)=SC(S,τ)SC(S,τ).\check{P}\ C(S,\tau)=\left(S\frac{\partial}{\partial S}-\check{I}\right)C(S,\tau)=S\frac{\partial C(S,\tau)}{\partial S}-C(S,\tau). (76)

The derivative of a Call is called Delta

Δ(S,τ)=C(S,τ)S\Delta(S,\tau)=\frac{\partial C(S,\tau)}{\partial S} (77)

so

PˇC(S,τ)=SΔ(S,τ)C(S,τ).\check{P}\ C(S,\tau)=S\ \Delta(S,\tau)-C(S,\tau). (78)

For Pˇ2\check{P}^{2} one has

Pˇ2=\displaystyle\check{P}^{2}= (SSIˇ)(SSIˇ)\displaystyle\left(S\frac{\partial}{\partial S}-\check{I}\right)\left(S\frac{\partial}{\partial S}-\check{I}\right) (79)
=\displaystyle= SS(SSIˇ)(SSIˇ)\displaystyle S\frac{\partial}{\partial S}\left(S\frac{\partial}{\partial S}-\check{I}\right)-\left(S\frac{\partial}{\partial S}-\check{I}\right) (80)
=\displaystyle= SS(SS)SS(SSIˇ)\displaystyle S\frac{\partial}{\partial S}\left(S\frac{\partial}{\partial S}\right)-S\frac{\partial}{\partial S}-\left(S\frac{\partial}{\partial S}-\check{I}\right) (81)
=\displaystyle= S(S+S2S2)2SS+Iˇ\displaystyle S\left(\frac{\partial}{\partial S}+S\frac{\partial^{2}}{\partial S^{2}}\right)-2S\frac{\partial}{\partial S}+\check{I} (82)
=\displaystyle= S22S2SS+Iˇ\displaystyle S^{2}\frac{\partial^{2}}{\partial S^{2}}-S\frac{\partial}{\partial S}+\check{I} (83)

and so

Pˇ2C(S,τ)=S22C(S,τ)S2SC(S,τ)S+C(S,τ).\check{P}^{2}\ C(S,\tau)=S^{2}\ \frac{\partial^{2}C(S,\tau)}{\partial S^{2}}-S\ \frac{\partial C(S,\tau)}{\partial S}+C(S,\tau). (84)

The second derivative of a Call is called Gamma:

Γ(S,τ)=2C(S,τ)S2,\Gamma(S,\tau)=\frac{\partial^{2}C(S,\tau)}{\partial S^{2}}, (85)

so

Pˇ2C(S,τ)=S2Γ(S,τ)SΔ(S,τ)+C(S,τ).\check{P}^{2}C(S,\tau)=S^{2}\ \Gamma(S,\tau)-S\ \Delta(S,\tau)+C(S,\tau). (86)

Lastly, for Pˇ3\check{P}^{3} one has

Pˇ3=\displaystyle\check{P}^{3}= (SSIˇ)(SSIˇ)2\displaystyle\left(S\frac{\partial}{\partial S}-\check{I}\right)\left(S\frac{\partial}{\partial S}-\check{I}\right)^{2} (87)
=\displaystyle= (SSIˇ)(S22S2SS+Iˇ)\displaystyle\left(S\frac{\partial}{\partial S}-\check{I}\right)\left(S^{2}\frac{\partial^{2}}{\partial S^{2}}-S\frac{\partial}{\partial S}+\check{I}\right) (88)
=\displaystyle= SS(S22S2SS)+SS(S22S2SS+Iˇ)\displaystyle S\frac{\partial}{\partial S}\left(S^{2}\frac{\partial^{2}}{\partial S^{2}}-S\frac{\partial}{\partial S}\right)+S\frac{\partial}{\partial S}-\left(S^{2}\frac{\partial^{2}}{\partial S^{2}}-S\frac{\partial}{\partial S}+\check{I}\right) (89)
=\displaystyle= S(2S2S2+S23S3SS2S2)+SSS22S2+SSIˇ\displaystyle S\left(2S\frac{\partial^{2}}{\partial S^{2}}+S^{2}\frac{\partial^{3}}{\partial S^{3}}-\frac{\partial}{\partial S}-S\frac{\partial^{2}}{\partial S^{2}}\right)+S\frac{\partial}{\partial S}-S^{2}\frac{\partial^{2}}{\partial S^{2}}+S\frac{\partial}{\partial S}-\check{I} (90)
=\displaystyle= S33S3+SSIˇ,\displaystyle S^{3}\frac{\partial^{3}}{\partial S^{3}}+S\frac{\partial}{\partial S}-\check{I}, (91)

and so

Pˇ3C(S,τ)=S33C(S,τ)S3+SC(S,τ)SC(S,τ).\check{P}^{3}\ C(S,\tau)=S^{3}\ \frac{\partial^{3}C(S,\tau)}{\partial S^{3}}+S\ \frac{\partial C(S,\tau)}{\partial S}-C(S,\tau). (92)

The third derivative of a Call is called the Speed:

Spd(S,τ)=3C(S,τ)S3,Spd(S,\tau)=\frac{\partial^{3}C(S,\tau)}{\partial S^{3}}, (93)

thus

Pˇ3C(S,τ)=S3Spd(S,τ)+SΔ(S,τ)C(S,τ).\check{P}^{3}\ C(S,\tau)=S^{3}\ Spd(S,\tau)+S\ \Delta(S,\tau)-C(S,\tau). (94)

By substituting (78), (86) and (94) in (75) we obtain

π(S,τ)C(S,τ)+v0(ττ1)(SΔ(S,τ)C(S,τ))+12v02(ττ1)2(S2Γ(S,τ)SΔ(S,τ)+C(S,τ))+13!v03(ττ1)3(S3Spd(S,τ)+SΔ(S,τ)C(S,τ)),\begin{array}[]{lll}\pi(S,\tau)\approx&C(S,\tau)+v_{0}\left(\tau-\tau_{1}\right)\left(S\ \Delta(S,\tau)-C(S,\tau)\right)+\\ &\frac{1}{2}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}\left(S^{2}\ \Gamma(S,\tau)-S\ \Delta(S,\tau)+C(S,\tau)\right)+\\ &\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\left(S^{3}\ Spd(S,\tau)+S\ \Delta(S,\tau)-C(S,\tau)\right),\end{array} (95)

or

π(S,τ)(1v0(ττ1)+12v02(ττ1)213!v03(ττ1)3)C(S,τ)+(v0(ττ1)12v02(ττ1)2+13!v03(ττ1)3)SΔ(S,τ)+12v02(ττ1)2S2Γ(S,τ)+13!v03(ττ1)3S3Spd(S,τ).\begin{array}[]{lll}\pi(S,\tau)\approx&\left(1-v_{0}\left(\tau-\tau_{1}\right)+\frac{1}{2}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}-\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\right)C(S,\tau)+\\ &\left(v_{0}\left(\tau-\tau_{1}\right)-\frac{1}{2}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}+\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}\right)S\ \Delta(S,\tau)+\\ &\frac{1}{2}v_{0}^{2}\left(\tau-\tau_{1}\right)^{2}S^{2}\ \Gamma(S,\tau)+\\ &\frac{1}{3!}v_{0}^{3}\left(\tau-\tau_{1}\right)^{3}S^{3}\ Spd(S,\tau).\end{array} (96)


Figure 1 shows the behaviour of the approximate perturbation solution (96) for several values of f0/σf_{0}/\sigma. Note that near f0σ1\frac{f_{0}}{\sigma}\approx 1, the approximate solution gives a good qualitative description of the resonance reported in [33].

Refer to caption
Figure 1: from left to right and from top to the bottom, approximate Call solution (96) for f0σ\frac{f_{0}}{\sigma} = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.10, 1.20, 1.40, 1.80 respectively.

5 The exact π(S,τ)\pi(S,\tau) solution for the square bubble.

In this section we compute the exact solution for the option price for the square bubble in terms of the Greeks. For this, consider equation (59). Now, since Hˇ0\check{H}_{0} commutes with Pˇ\check{P} one has that

π(S,τ)={eHˇ0τΦ(S)0<τ<τ1ev0Pˇ(ττ1)eHˇ0τΦ(S)τ1<τ<τ2ev0Pˇ(τ2τ1)eHˇ0τΦ(S)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}e^{\check{H}_{0}\tau}\Phi(S)&0<\tau<\tau_{1}\\ e^{v_{0}\check{P}(\tau-\tau_{1})}e^{\check{H}_{0}\tau}\Phi(S)&\tau_{1}<\tau<\tau_{2}\\ e^{v_{0}\check{P}(\tau_{2}-\tau_{1})}e^{\check{H}_{0}\tau}\Phi(S)&\tau_{2}<\tau<T\end{array}\right. (97)

But as C(S,t)=eHˇ0τΦ(S)C(S,t)=e^{\check{H}_{0}\tau}\Phi(S), it follows that

π(S,τ)={C(S,τ)0<τ<τ1ev0(ττ1)PˇC(S,τ)τ1<τ<τ2ev0(τ2τ1)PˇC(S,τ)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}C(S,\tau)&0<\tau<\tau_{1}\\ e^{v_{0}(\tau-\tau_{1})\check{P}}\ C(S,\tau)&\tau_{1}<\tau<\tau_{2}\\ e^{v_{0}(\tau_{2}-\tau_{1})\check{P}}\ C(S,\tau)&\tau_{2}<\tau<T\end{array}\right. (98)

Now we write the operator Pˇ\check{P} as

Pˇ=KˇIˇ\check{P}=\check{K}-\check{I} (99)

with Kˇ=SS\check{K}=S\frac{\partial}{\partial S}. Again, since Kˇ\check{K} commutes with the identity,

exPˇ=ex(KˇIˇ)=exKˇexIˇ,e^{x\check{P}}=e^{x\left(\check{K}-\check{I}\right)}=e^{x\check{K}}e^{-x\check{I}}, (100)

and so

ev0(ττ1)PˇC(S,τ)=ev0(ττ1)ev0(ττ1)KˇC(S,τ).e^{v_{0}(\tau-\tau_{1})\check{P}}\ C(S,\tau)=e^{-v_{0}(\tau-\tau_{1})}e^{v_{0}(\tau-\tau_{1})\check{K}}\ C(S,\tau). (101)

In this way the exact solution is

π(S,τ)={C(S,τ)0<τ<τ1ev0(ττ1)ev0(ττ1)KˇC(S,τ)τ1<τ<τ2ev0(τ2τ1)ev0(τ2τ1)KˇC(S,τ)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}C(S,\tau)&0<\tau<\tau_{1}\\ e^{-v_{0}(\tau-\tau_{1})}e^{v_{0}(\tau-\tau_{1})\check{K}}\ C(S,\tau)&\tau_{1}<\tau<\tau_{2}\\ e^{-v_{0}(\tau_{2}-\tau_{1})}e^{v_{0}(\tau_{2}-\tau_{1})\check{K}}\ C(S,\tau)&\tau_{2}<\tau<T\end{array}\right. (102)

Now

exKˇ=Iˇ+11!xKˇ+12!x2Kˇ2+,e^{x\check{K}}=\check{I}+\frac{1}{1!}x\check{K}+\frac{1}{2!}x^{2}\check{K}^{2}+\cdots, (103)

so to compute the solution one needs all the powers of the Kˇ\check{K} operator.

6 The powers of Kˇ\check{K}

If Dˇ\check{D} denotes the differentiation operator S\frac{\partial}{\partial S}, then

Kˇ=SDˇ.\check{K}=S\check{D}. (104)

Now, one has that

Kˇ(SnDˇn)=\displaystyle\check{K}\left(S^{n}\check{D}^{n}\right)= SS(SnnSn)\displaystyle S\frac{\partial}{\partial S}\left(S^{n}\frac{\partial^{n}}{\partial S^{n}}\right) (105)
=\displaystyle= S(nSn1nSn+Snn+1Sn+1)\displaystyle S\left(nS^{n-1}\cdot\frac{\partial^{n}}{\partial S^{n}}+S^{n}\frac{\partial^{n+1}}{\partial S^{n+1}}\right) (106)
=\displaystyle= nSnnSn+Sn+1n+1Sn+1,\displaystyle nS^{n}\frac{\partial^{n}}{\partial S^{n}}+S^{n+1}\frac{\partial^{n+1}}{\partial S^{n+1}}, (107)

that is,

Kˇ(SnDˇn)=nSnDˇn+Sn+1Dˇn+1.\check{K}\left(S^{n}\check{D}^{n}\right)=n\ S^{n}\check{D}^{n}+S^{n+1}\check{D}^{n+1}. (108)

One can use (108) to evaluate all the powers of Kˇ\check{K}. For example,

Kˇ2=KˇKˇ=Kˇ(SDˇ)=SDˇ+S2Dˇ2=Kˇ+S2Dˇ2.\check{K}^{2}=\check{K}\check{K}=\check{K}\left(S\check{D}\right)=S\check{D}+S^{2}\check{D}^{2}=\check{K}+S^{2}\check{D}^{2}. (109)

Also,

Kˇ3\displaystyle\check{K}^{3} =KˇKˇ2=Kˇ(Kˇ+S2Dˇ2)=Kˇ2+Kˇ(S2Dˇ2)\displaystyle=\check{K}\check{K}^{2}=\check{K}\left(\check{K}+S^{2}\check{D}^{2}\right)=\check{K}^{2}+\check{K}\left(S^{2}\check{D}^{2}\right) (110)
=(Kˇ+S2Dˇ2)+(2S2Dˇ2+S3Dˇ3).\displaystyle=\left(\check{K}+S^{2}\check{D}^{2}\right)+\left(2S^{2}\check{D}^{2}+S^{3}\check{D}^{3}\right). (111)
Kˇ3=Kˇ+3S2Dˇ2+S3Dˇ3.\check{K}^{3}=\check{K}+3S^{2}\check{D}^{2}+S^{3}\check{D}^{3}. (112)

In the same way, one has

Kˇ4=Kˇ+7S2Dˇ2+6S3Dˇ3+S4Dˇ4,\check{K}^{4}=\check{K}+7S^{2}\check{D}^{2}+6S^{3}\check{D}^{3}+S^{4}\check{D}^{4}, (113)
Kˇ5=Kˇ+15S2Dˇ2+25S3Dˇ3+10S4Dˇ4+S5Dˇ5,\check{K}^{5}=\check{K}+15S^{2}\check{D}^{2}+25S^{3}\check{D}^{3}+10S^{4}\check{D}^{4}+S^{5}\check{D}^{5}, (114)
Kˇ6=Kˇ+31S2Dˇ2+90S3Dˇ3+65S4Dˇ4+15S5Dˇ5+S6Dˇ6\check{K}^{6}=\check{K}+31S^{2}\check{D}^{2}+90S^{3}\check{D}^{3}+65S^{4}\check{D}^{4}+15S^{5}\check{D}^{5}+S^{6}\check{D}^{6} (115)

and so on. One can arrange the coefficients of expansion of Kˇn\check{K}^{n} in terms of Kˇ\check{K} and Dˇ\check{D} in a Pascal-like triangle in the following form.


n=1n=1 1 n=2n=2 1 1 n=3n=3 1 3 1 n=4n=4 1 7 6 1 n=5n=5 1 15 25 10 1 n=6n=6 1 31 90 65 15 1 n=7n=7 1 63 301 350 140 21 1


Let αn,m(n,m=1,2,3,)\alpha_{n,m}\ \ (n,m=1,2,3,...) be the coefficients in this triangle. Here nn indicates the vertical position (from top to bottom) and mm indicates the horizontal position (from left to the right). For example α3,2=3\ \alpha_{3,2}=3, α5,3=25\ \alpha_{5,3}=25, α6,6=1\ \alpha_{6,6}=1, etc. The coefficients in the triangle can be determined recursively by the following relations: αn,1=1\alpha_{n,1}=1, αn,n=1\alpha_{n,n}=1 and

αnm=mαn1,m+αn1,m1.\alpha_{nm}=m\alpha_{n-1,m}+\alpha_{n-1,m-1}. (116)

For example, α3,2=2α2,2+α2,1=21+1=3\alpha_{3,2}=2\ \alpha_{2,2}+\alpha_{2,1}=2\cdot 1+1=3.

In this way, the powers of the operator Kˇ\check{K} can be calculated as

Kˇn=Kˇ+j=2nαn,jSjDˇj.\check{K}^{n}=\check{K}+\sum_{j=2}^{n}\alpha_{n,j}\ S^{j}\check{D}^{j}. (117)

For example,

Kˇ2=Kˇ+α2,2S2Dˇ2\check{K}^{2}=\check{K}+\alpha_{2,2}\ S^{2}\check{D}^{2} (118)
Kˇ3=Kˇ+α3,2S2Dˇ2+α3,3S3Dˇ3\check{K}^{3}=\check{K}+\alpha_{3,2}\ S^{2}\check{D}^{2}+\alpha_{3,3}\ S^{3}\check{D}^{3} (119)
Kˇ4=Kˇ+α4,2S2Dˇ2+α4,3S3Dˇ3+α4,4S4Dˇ4\check{K}^{4}=\check{K}+\alpha_{4,2}\ S^{2}\check{D}^{2}+\alpha_{4,3}\ S^{3}\check{D}^{3}+\alpha_{4,4}\ S^{4}\check{D}^{4} (120)
Kˇ5=Kˇ+α5,2S2Dˇ2+α5,3S3Dˇ3+α5,4S4Dˇ4+α5,5S5Dˇ5.\check{K}^{5}=\check{K}+\alpha_{5,2}\ S^{2}\check{D}^{2}+\alpha_{5,3}\ S^{3}\check{D}^{3}+\alpha_{5,4}\ S^{4}\check{D}^{4}+\alpha_{5,5}\ S^{5}\check{D}^{5}. (121)

Thus, the operator

exKˇ=Iˇ+11!xKˇ+12!x2Kˇ2+13!x3Kˇ3+14!x4Kˇ4+14!x4Kˇ4+e^{x\check{K}}=\check{I}+\frac{1}{1!}x\check{K}+\frac{1}{2!}x^{2}\check{K}^{2}+\frac{1}{3!}x^{3}\check{K}^{3}+\frac{1}{4!}x^{4}\check{K}^{4}+\frac{1}{4!}x^{4}\check{K}^{4}+\cdots (122)

is then equal to

exKˇ=\displaystyle e^{x\check{K}}= Iˇ+\displaystyle\check{I}+ (123)
11!xKˇ+\displaystyle\frac{1}{1!}x\check{K}+ (124)
12!x2(Kˇ+α2,2S2Dˇ2)+\displaystyle\frac{1}{2!}x^{2}\left(\check{K}+\alpha_{2,2}\ S^{2}\check{D}^{2}\right)+ (125)
13!x3(Kˇ+α3,2S2Dˇ2+α3,3S3Dˇ3)+\displaystyle\frac{1}{3!}x^{3}\left(\check{K}+\alpha_{3,2}\ S^{2}\check{D}^{2}+\alpha_{3,3}\ S^{3}\check{D}^{3}\right)+ (126)
14!x4(Kˇ+α4,2S2Dˇ2+α4,3S3Dˇ3+α4,4S4Dˇ4)+\displaystyle\frac{1}{4!}x^{4}\left(\check{K}+\alpha_{4,2}\ S^{2}\check{D}^{2}+\alpha_{4,3}\ S^{3}\check{D}^{3}+\alpha_{4,4}\ S^{4}\check{D}^{4}\right)+ (127)
15!x5(Kˇ+α5,2S2Dˇ2+α5,3S3Dˇ3+α5,4S4Dˇ4+α5,5S5Dˇ5)+\displaystyle\frac{1}{5!}x^{5}\left(\check{K}+\alpha_{5,2}\ S^{2}\check{D}^{2}+\alpha_{5,3}\ S^{3}\check{D}^{3}+\alpha_{5,4}\ S^{4}\check{D}^{4}+\alpha_{5,5}\ S^{5}\check{D}^{5}\right)+\cdots (128)

or

exKˇ=\displaystyle e^{x\check{K}}= Iˇ+\displaystyle\check{I}+ (130)
(11!x+12!x2+13!x3+14!x4+15!x5+)Kˇ+\displaystyle\left(\frac{1}{1!}x+\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}+\frac{1}{4!}x^{4}+\frac{1}{5!}x^{5}+\cdots\right)\check{K}+ (131)
(12!x2α2,2+13!x3α3,2+14!x4α4,2+15!x5α5,2+)S2Dˇ2+\displaystyle\left(\frac{1}{2!}x^{2}\alpha_{2,2}+\frac{1}{3!}x^{3}\alpha_{3,2}+\frac{1}{4!}x^{4}\alpha_{4,2}+\frac{1}{5!}x^{5}\alpha_{5,2}+\cdots\right)S^{2}\check{D}^{2}+ (132)
(13!x3α3,3+14!x4α4,3+15!x5α5,3+)S3Dˇ3+\displaystyle\left(\frac{1}{3!}x^{3}\alpha_{3,3}+\frac{1}{4!}x^{4}\alpha_{4,3}+\frac{1}{5!}x^{5}\alpha_{5,3}+\cdots\right)S^{3}\check{D}^{3}+ (133)
(14!x4α4,4+15!x5α5,4+)S4Dˇ4+\displaystyle\left(\frac{1}{4!}x^{4}\alpha_{4,4}+\frac{1}{5!}x^{5}\alpha_{5,4}+\cdots\right)S^{4}\check{D}^{4}+ (134)
(15!x5α5,5+)S5Dˇ5+.\displaystyle\left(\frac{1}{5!}x^{5}\alpha_{5,5}+\cdots\right)S^{5}\check{D}^{5}+\cdots. (135)

But

11!x+12!x2+13!x3+14!x4+15!x5+=ex1,\frac{1}{1!}x+\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}+\frac{1}{4!}x^{4}+\frac{1}{5!}x^{5}+\cdots=e^{x}-1, (137)

and if one define the functions

Q0(x)=1,Q_{0}(x)=1, (138)
Q1(x)=ex1,Q_{1}(x)=e^{x}-1, (139)

and

Qj(x)=m=jαm,jxmm!j=2,3,4,Q_{j}(x)=\sum_{m=j}^{\infty}\alpha_{m,j}\frac{x^{m}}{m!}\ \ \ j=2,3,4,\cdots (140)

then the exponential of Kˇ\check{K} is

exKˇ=\displaystyle e^{x\check{K}}= Iˇ+(ex1)Kˇ+Q2(x)S2Dˇ2+\displaystyle\check{I}+\left(e^{x}-1\right)\check{K}+Q_{2}(x)S^{2}\check{D}^{2}+
Q3(x)S3Dˇ3+Q4(x)S4Dˇ4+Q5(x)S5Dˇ5+\displaystyle Q_{3}(x)S^{3}\check{D}^{3}+Q_{4}(x)S^{4}\check{D}^{4}+Q_{5}(x)S^{5}\check{D}^{5}+\cdots

or

exKˇ=n=0Qn(x)SnDˇne^{x\check{K}}=\sum_{n=0}^{\infty}Q_{n}(x)S^{n}\check{D}^{n} (141)

where Dˇ0=Iˇ\check{D}^{0}=\check{I} and

Q2(x)=12!x2+13!x3α3,2+14!x4α4,2+15!x5α5,2+,Q_{2}(x)=\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}\alpha_{3,2}+\frac{1}{4!}x^{4}\alpha_{4,2}+\frac{1}{5!}x^{5}\alpha_{5,2}+\cdots, (142)
Q3(x)=13!x3+14!x4α4,3+15!x5α5,3+Q_{3}(x)=\frac{1}{3!}x^{3}+\frac{1}{4!}x^{4}\alpha_{4,3}+\frac{1}{5!}x^{5}\alpha_{5,3}+\cdots (143)
Q4(x)=14!x4+15!x5α5,4+,Q_{4}(x)=\frac{1}{4!}x^{4}+\frac{1}{5!}x^{5}\alpha_{5,4}+\cdots, (144)
Q5(x)=15!x5+.Q_{5}(x)=\frac{1}{5!}x^{5}+\cdots. (145)
\vdots

Now, one can use (6) to compute the exact solution in terms of the Greeks.

7 The exact solution in terms of the Greeks

Substituting (6) in the exact solution (102) gives

π(S,τ)={C(S,τ)0<τ<τ1n=0ev0(ττ1)Qn(v0(ττ1))SnDˇnC(S,τ)τ1<τ<τ2n=0ev0(τ2τ1)Qn(v0(τ2τ1))SnDˇnC(S,τ)τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}C(S,\tau)&0<\tau<\tau_{1}\\ \sum_{n=0}^{\infty}e^{-v_{0}(\tau-\tau_{1})}Q_{n}(v_{0}(\tau-\tau_{1}))S^{n}\check{D}^{n}\ C(S,\tau)&\tau_{1}<\tau<\tau_{2}\\ \sum_{n=0}^{\infty}e^{-v_{0}(\tau_{2}-\tau_{1})}Q_{n}(v_{0}(\tau_{2}-\tau_{1}))S^{n}\check{D}^{n}\ C(S,\tau)&\tau_{2}<\tau<T\end{array}\right. (146)

Now

n=0ev0(ττ1)Qn(v0(ττ1))SnDˇnC(S,τ)=ev0(ττ1)C(S,τ)+ev0(ττ1)(ev0(ττ1)1)SC(S,τ)S+ev0(ττ1)Q2(v0(ττ1))S22C(S,τ)S2+ev0(ττ1)Q3(v0(ττ1))S33C(S,τ)S3+\begin{array}[]{ll}\sum_{n=0}^{\infty}e^{-v_{0}(\tau-\tau_{1})}Q_{n}(v_{0}(\tau-\tau_{1}))S^{n}\check{D}^{n}\ C(S,\tau)=&e^{-v_{0}(\tau-\tau_{1})}C(S,\tau)+\\ &e^{-v_{0}(\tau-\tau_{1})}\left(e^{v_{0}(\tau-\tau_{1})}-1\right)S\frac{\partial C(S,\tau)}{\partial S}+\\ &e^{-v_{0}(\tau-\tau_{1})}Q_{2}(v_{0}(\tau-\tau_{1}))S^{2}\frac{\partial^{2}C(S,\tau)}{\partial S^{2}}+\\ &e^{-v_{0}(\tau-\tau_{1})}Q_{3}(v_{0}(\tau-\tau_{1}))S^{3}\frac{\partial^{3}C(S,\tau)}{\partial S^{3}}+\cdots\end{array} (147)

that is

n=0ev0(ττ1)Qn(v0(ττ1))SnDˇnC(S,τ)=ev0(ττ1)C(S,τ)+(1ev0(ττ1))SΔ(S,τ)+ev0(ττ1)Q2(v0(ττ1))S2Γ(S,τ)+ev0(ττ1)Q3(v0(ττ1))S3Spd(S,τ)+\begin{array}[]{ll}\sum_{n=0}^{\infty}e^{-v_{0}(\tau-\tau_{1})}Q_{n}(v_{0}(\tau-\tau_{1}))S^{n}\check{D}^{n}\ C(S,\tau)=&e^{-v_{0}(\tau-\tau_{1})}C(S,\tau)+\\ &\left(1-e^{-v_{0}(\tau-\tau_{1})}\right)S\ \Delta(S,\tau)+\\ &e^{-v_{0}(\tau-\tau_{1})}Q_{2}(v_{0}(\tau-\tau_{1}))\ S^{2}\ \Gamma(S,\tau)+\\ &e^{-v_{0}(\tau-\tau_{1})}Q_{3}(v_{0}(\tau-\tau_{1}))\ S^{3}\ Spd(S,\tau)+\cdots\end{array} (148)

So finally, the exact solution for the square bubble can be written as

π(S,τ)={C(S,τ)0<τ<τ1ev0(ττ1)C(S,τ)+(1ev0(ττ1))SΔ(S,τ)+ev0(ττ1)Q2(v0(ττ1))S2Γ(S,τ)+ev0(ττ1)Q3(v0(ττ1))S3Spd(S,τ)+τ1<τ<τ2ev0(τ2τ1)C(S,τ)+(1ev0(τ2τ1))SΔ(S,τ)+ev0(τ2τ1)Q2(v0(τ2τ1))S2Γ(S,τ)+ev0(τ2τ1)Q3(v0(τ2τ1))S3Spd(S,τ)+τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}C(S,\tau)&0<\tau<\tau_{1}\\ &\\ e^{-v_{0}(\tau-\tau_{1})}C(S,\tau)+\left(1-e^{-v_{0}(\tau-\tau_{1})}\right)S\ \Delta(S,\tau)+&\\ e^{-v_{0}(\tau-\tau_{1})}Q_{2}(v_{0}(\tau-\tau_{1}))\ S^{2}\ \Gamma(S,\tau)+&\\ e^{-v_{0}(\tau-\tau_{1})}Q_{3}(v_{0}(\tau-\tau_{1}))\ S^{3}\ Spd(S,\tau)+\cdots&\tau_{1}<\tau<\tau_{2}\\ &\\ e^{-v_{0}(\tau_{2}-\tau_{1})}C(S,\tau)+\left(1-e^{-v_{0}(\tau_{2}-\tau_{1})}\right)S\ \Delta(S,\tau)+&\\ e^{-v_{0}(\tau_{2}-\tau_{1})}Q_{2}(v_{0}(\tau_{2}-\tau_{1}))\ S^{2}\ \Gamma(S,\tau)+&\\ e^{-v_{0}(\tau_{2}-\tau_{1})}Q_{3}(v_{0}(\tau_{2}-\tau_{1}))\ S^{3}\ Spd(S,\tau)+\cdots&\tau_{2}<\tau<T\\ \end{array}\right. (149)

One can use the above expression to find an approximation for π(S,t)\pi(S,t). To do this, one can proceed in the following way: as the exponential ev0(ττ1)e^{-v_{0}(\tau-\tau_{1})} is easy to compute, one can maintain it without any change (that is, one can consider it to all orders in perturbation theory). Instead, the the functions QjQ_{j} will be truncated at some order. For example, if one cuts the series in (149) at order three in SS, the function Q3Q_{3} will be truncated at third order too. The same will be valid for Q2Q_{2}. Thus

Q3(x)13!x3,Q_{3}(x)\approx\frac{1}{3!}x^{3}, (150)
Q2(x)12!x2+13!x3α3,2.Q_{2}(x)\approx\frac{1}{2!}x^{2}+\frac{1}{3!}x^{3}\alpha_{3,2}. (151)

Note that the QjQ_{j} for j>3j>3 will not appear in this approximation, because they all started with powers in v0v_{0} of order four and higher. Thus, we consider the following approximation for the option price in the presence of a square bubble.

π(S,τ){C(S,τ)0<τ<τ1ev0(ττ1)C(S,τ)+(1ev0(ττ1))SΔ(S,τ)+ev0(ττ1)(12!v02(ττ1)2+13!v03(ττ1)3α3,2)S2Γ(S,τ)+ev0(ττ1)(13!v03(ττ1)3)S3Spd(S,τ)τ1<τ<τ2ev0(τ2τ1)C(S,τ)+(1ev0(τ2τ1))SΔ(S,τ)+ev0(τ2τ1)(12!v02(τ2τ1)2+13!v03(τ2τ1)3α3,2)S2Γ(S,τ)+ev0(τ2τ1)(13!v03(τ2τ1)3)S3Spd(S,τ)τ2<τ<T\pi(S,\tau)\approx\left\{\begin{array}[]{ll}C(S,\tau)&0<\tau<\tau_{1}\\ &\\ e^{-v_{0}(\tau-\tau_{1})}C(S,\tau)+\left(1-e^{-v_{0}(\tau-\tau_{1})}\right)S\ \Delta(S,\tau)+&\\ e^{-v_{0}(\tau-\tau_{1})}\Big{(}\frac{1}{2!}v_{0}^{2}(\tau-\tau_{1})^{2}+\frac{1}{3!}v_{0}^{3}(\tau-\tau_{1})^{3}\alpha_{3,2}\Big{)}\ S^{2}\ \Gamma(S,\tau)+&\\ e^{-v_{0}(\tau-\tau_{1})}\Big{(}\frac{1}{3!}v_{0}^{3}(\tau-\tau_{1})^{3}\Big{)}\ S^{3}\ Spd(S,\tau)&\tau_{1}<\tau<\tau_{2}\\ &\\ e^{-v_{0}(\tau_{2}-\tau_{1})}C(S,\tau)+\left(1-e^{-v_{0}(\tau_{2}-\tau_{1})}\right)S\ \Delta(S,\tau)+&\\ e^{-v_{0}(\tau_{2}-\tau_{1})}\Big{(}\frac{1}{2!}v_{0}^{2}(\tau_{2}-\tau_{1})^{2}+\frac{1}{3!}v_{0}^{3}(\tau_{2}-\tau_{1})^{3}\alpha_{3,2}\Big{)}\ S^{2}\ \Gamma(S,\tau)+&\\ e^{-v_{0}(\tau_{2}-\tau_{1})}\Big{(}\frac{1}{3!}v_{0}^{3}(\tau_{2}-\tau_{1})^{3}\Big{)}\ S^{3}\ Spd(S,\tau)&\tau_{2}<\tau<T\\ \end{array}\right. (152)

Figure 2 shows this last approximation for the same values of f0/σf_{0}/\sigma as in Figure 1.

Refer to caption
Figure 2: from left to right and from top to the bottom, approximate (152) Call solution for f0σ\frac{f_{0}}{\sigma} = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.10, 1.20, 1.40, 1.80 respectively.

8 The higher interaction limit ff\rightarrow\infty

In this section the limit ff\rightarrow\infty for the arbitrage bubble will be considered. Note that from equation (3),

limfv(S,t)=limf(rα)f(S,t)σf(S,t)=(rα),\lim_{f\rightarrow\infty}v(S,t)=\lim_{f\rightarrow\infty}\frac{(r-\alpha)f(S,t)}{\sigma-f(S,t)}=-(r-\alpha), (153)

so the Black–Scholes equation (2) in this limit is

πt+12σ2S22πS2+r(SπSπ)(rα)(SπSπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+r\left(S\frac{\partial\pi}{\partial S}-\pi\right)-(r-\alpha)\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0, (154)

that is

πt+12σ2S22πS2+α(SπSπ)=0.\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+\alpha\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0. (155)

This is a free Black–Scholes equation with an interest rate equal to α\alpha instead of rr. Thus, the higher interaction limit of this theory is free theory again. For the case of a call, Figure 3 shows the free solutions for r=0.2r=0.2 and r=α=0.8r=\alpha=0.8. Note that both surfaces are smooth. The approximate solutions for higher values of f=hf=h in Figures 1 or 2 do not recover this smooth behaviour. This is because it requires the limit hh\rightarrow\infty, where the approximate solution is not longer valid. So, how can achieve the limit hh\rightarrow\infty using Dirac’s picture?

Refer to caption
Figure 3: Free Black–Scholes solutions for a call with r=0.2r=0.2 (left) and r=α=0.8r=\alpha=0.8 (right).

First, one notes that the interacting Black–Scholes (2) equation can be written as

πt+12σ2S22πS2+(α+rα)(SπSπ)+v(S,t)(SπSπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+(\alpha+r-\alpha)\left(S\frac{\partial\pi}{\partial S}-\pi\right)+v(S,t)\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0, (156)

or

πt+12σ2S22πS2+α(SπSπ)+((rα)+v(S,t))(SπSπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+\alpha\left(S\frac{\partial\pi}{\partial S}-\pi\right)+\Big{(}(r-\alpha)+v(S,t)\Big{)}\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0, (157)

by defining the potential v(S,t)v^{*}(S,t) by

v(S,t)=(rα)+v(S,t)=(rα)+(rα)f(S,t)σf(S,t)=(rα)σσf(S,t)v^{*}(S,t)=(r-\alpha)+v(S,t)=(r-\alpha)+\frac{(r-\alpha)f(S,t)}{\sigma-f(S,t)}=\frac{(r-\alpha)\sigma}{\sigma-f(S,t)} (158)

so the Black–Scholes equation becomes

πt+12σ2S22πS2+α(SπSπ)+v(S,t)(SπSπ)=0.\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+\alpha\left(S\frac{\partial\pi}{\partial S}-\pi\right)+v^{*}(S,t)\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0. (159)

Note that the potentials vv and vv^{*} can be written as

v(S,t)=(rα)h(S,t)1h(S,t)v(S,t)=\frac{(r-\alpha)h(S,t)}{1-h(S,t)} (160)
v(S,t)=(αr)h(S,t)1h(S,t)v^{*}(S,t)=\frac{(\alpha-r)h^{*}(S,t)}{1-h^{*}(S,t)} (161)

with

h(S,t)=f(S,t)σ=1σf(S,t)=1h(S,t)h(S,t)=\frac{f(S,t)}{\sigma}=\frac{1}{\frac{\sigma}{f(S,t)}}=\frac{1}{h^{*}(S,t)} (162)

where h(S,t)h(S,t) gives the amplitude of the bubble as a fraction of the volatility parameter. Note that lower values of h(S,t)h(S,t) imply higher values of h(S,t)h^{*}(S,t) and vice versa.

In this way, one can write the interacting Black–Scholes equation explicitly as

πt+12σ2S22πS2+r(SπSπ)+(rα)h(S,t)1h(S,t)(SπSπ)=0,\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+r\left(S\frac{\partial\pi}{\partial S}-\pi\right)+\frac{(r-\alpha)h(S,t)}{1-h(S,t)}\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0, (163)

as well as

πt+12σ2S22πS2+α(SπSπ)+(αr)h(S,t)1h(S,t)(SπSπ)=0.\frac{\partial\pi}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}\pi}{\partial S^{2}}+\alpha\left(S\frac{\partial\pi}{\partial S}-\pi\right)+\frac{(\alpha-r)h^{*}(S,t)}{1-h^{*}(S,t)}\left(S\frac{\partial\pi}{\partial S}-\pi\right)=0. (164)

One can think of equation (163) as representing a ‘low-energy’ form of the interacting Black–Scholes equation and (164) as its ‘high-energy’ form. Note that (163) and (164) are the same equation, so the interacting Black–Scholes equation is invariant under the discrete transformation

rα,hhr\leftrightarrows\alpha,\ \ \ \ \ \ \ h\leftrightarrows h^{*} (165)

and this transformations maps vv in vv* and vice-versa. This implies that the set of all solutions of the interacting Black–Scholes equation is preserved under this transformation. Thus, solutions of (163) can be obtained from solutions of (164) using transformation (165) and vice versa.

Also, due to the fact that h=1hh^{*}=\frac{1}{h}, the low coupled limit h<<1h<<1 of the ‘low-energy’ form corresponds to the high coupled limit h>>1h^{*}>>1 of the ‘high-energy’ form. In the same way, the higher coupled limit h>>1h>>1 of the ‘low-energy’ form correspond to the low coupled limit h<<1h^{*}<<1 of the ‘high-energy’ form.

Thus, one can study the higher interacting limit near h=h=\infty of the ‘low-energy’ form, by analysing (via Dirac’s picture) the low interacting limit h<<1h^{*}<<1 of the ‘high-energy’ form.
To do that, one can use the invariance of the solutions of B–S under the transformation (165). In fact, for the square bubble, the exact solution (149) is the ‘low-energy’ form. To find its ‘high-energy’ form, one perform the transformation (165) on (149), that is vvv\rightarrow v^{*}, to give

π(S,τ)={C(S,τ)0<τ<τ1ev0(ττ1)C(S,τ)+(1ev0(ττ1))SΔ(S,τ)+ev0(ττ1)Q2(v0(ττ1))S2Γ(S,τ)+ev0(ττ1)Q3(v0(ττ1))S3Spd(S,τ)+τ1<τ<τ2ev0(τ2τ1)C(S,τ)+(1ev0(τ2τ1))SΔ(S,τ)+ev0(τ2τ1)Q2(v0(τ2τ1))S2Γ(S,τ)+ev0(τ2τ1)Q3(v0(τ2τ1))S3Spd(S,τ)+τ2<τ<T\pi(S,\tau)=\left\{\begin{array}[]{ll}C^{*}(S,\tau)&0<\tau<\tau_{1}\\ &\\ e^{-v^{*}_{0}(\tau-\tau_{1})}C^{*}(S,\tau)+\left(1-e^{-v^{*}_{0}(\tau-\tau_{1})}\right)S\ \Delta^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau-\tau_{1})}Q_{2}(v^{*}_{0}(\tau-\tau_{1}))\ S^{2}\ \Gamma^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau-\tau_{1})}Q_{3}(v^{*}_{0}(\tau-\tau_{1}))\ S^{3}\ Spd^{*}(S,\tau)+\cdots&\tau_{1}<\tau<\tau_{2}\\ &\\ e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}C^{*}(S,\tau)+\left(1-e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}\right)S\ \Delta^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}Q_{2}(v^{*}_{0}(\tau_{2}-\tau_{1}))\ S^{2}\ \Gamma^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}Q_{3}(v^{*}_{0}(\tau_{2}-\tau_{1}))\ S^{3}\ Spd^{*}(S,\tau)+\cdots&\tau_{2}<\tau<T\\ \end{array}\right. (166)

where one changed

v0=(rα)f0σf0=(rα)h01h0,h0=f0σv_{0}=\frac{(r-\alpha)f_{0}}{\sigma-f_{0}}=\frac{(r-\alpha)h_{0}}{1-h_{0}},\ \ \ \ \ h_{0}=\frac{f_{0}}{\sigma} (167)

in (149) by

v0=(αr)h01h0h0=σf0v^{*}_{0}=\frac{(\alpha-r)h^{*}_{0}}{1-h^{*}_{0}}\ \ \ \ h^{*}_{0}=\frac{\sigma}{f_{0}} (168)

and CC^{*}, Δ\Delta^{*}, Γ\Gamma^{*}, SpdSpd^{*}\cdots are the same CC, Δ\Delta, Γ\Gamma, SpdSpd\cdots in which one replaces rr by α\alpha. By keeping terms up S3S^{3} in (166) one has the approximate solution

π(S,τ){C(S,τ)0<τ<τ1ev0(ττ1)C(S,τ)+(1ev0(ττ1))SΔ(S,τ)+ev0(ττ1)(12!(v0)2(ττ1)2+13!(v0)3(ττ1)3α3,2)S2Γ(S,τ)+ev0(ττ1)(13!(v0)3(ττ1)3)S3Spd(S,τ)τ1<τ<τ2ev0(τ2τ1)C(S,τ)+(1ev0(τ2τ1))SΔ(S,τ)+ev0(τ2τ1)(12!(v0)2(τ2τ1)2+13!(v0)3(τ2τ1)3α3,2)S2Γ(S,τ)+ev0(τ2τ1)(13!(v0)3(τ2τ1)3)S3Spd(S,τ)τ2<τ<T\pi(S,\tau)\approx\left\{\begin{array}[]{ll}C^{*}(S,\tau)&0<\tau<\tau_{1}\\ &\\ e^{-v^{*}_{0}(\tau-\tau_{1})}C^{*}(S,\tau)+\left(1-e^{-v^{*}_{0}(\tau-\tau_{1})}\right)S\ \Delta^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau-\tau_{1})}\Big{(}\frac{1}{2!}(v^{*}_{0})^{2}(\tau-\tau_{1})^{2}+\frac{1}{3!}(v^{*}_{0})^{3}(\tau-\tau_{1})^{3}\alpha_{3,2}\Big{)}\ S^{2}\ \Gamma^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau-\tau_{1})}\Big{(}\frac{1}{3!}(v^{*}_{0})^{3}(\tau-\tau_{1})^{3}\Big{)}\ S^{3}\ Spd^{*}(S,\tau)&\tau_{1}<\tau<\tau_{2}\\ &\\ e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}C^{*}(S,\tau)+\left(1-e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}\right)S\ \Delta^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}\Big{(}\frac{1}{2!}(v^{*}_{0})^{2}(\tau_{2}-\tau_{1})^{2}+\frac{1}{3!}(v_{0})^{3}(\tau_{2}-\tau_{1})^{3}\alpha_{3,2}\Big{)}\ S^{2}\ \Gamma^{*}(S,\tau)+&\\ e^{-v^{*}_{0}(\tau_{2}-\tau_{1})}\Big{(}\frac{1}{3!}(v^{*}_{0})^{3}(\tau_{2}-\tau_{1})^{3}\Big{)}\ S^{3}\ Spd^{*}(S,\tau)&\tau_{2}<\tau<T\\ \end{array}\right. (169)

which is valid in the the high interaction limit f0,v0f_{0}\rightarrow\infty,\ \ v_{0}\rightarrow\infty. Figure 4 shows the approximate solution for several values of hh^{*}.

Refer to caption
Figure 4: from left to right and from top to the bottom, the approximate high energy form (169) of the call solution for hh^{*} = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 1.10, 1.20, 1.40, 1.80 respectively.

9 Conclusions

In this article, Dirac’s interaction picture of quantum mechanics is applied to obtain an approximate solution of the interacting Black–Scholes equation in the presence of arbitrage bubbles. For a square bubble, an initial naive approximate solution is presented in terms of the first three Greeks.

After that, an exact solution is found in terms of all high-order Greeks. By truncating this solution, a more exact approximation is obtained that includes some terms at all orders in perturbation theory.

Also, some properties of the interacting Black–Scholes are analysed. It is found that this model is invariant under a discrete transformation that interchanges the interest rate with the mean of the asset price. This implies that the interacting Black–Scholes equation can be written in two different ways: low energy and high energy forms.

For the low energy form, the analysis is done by perturbing the free solution of with the value of the interest rate being rr, which is valid for v0=(rα)h(1h)<<1v_{0}=\frac{(r-\alpha)h}{(1-h)}<<1 where h=f0σ<<1h=\frac{f_{0}}{\sigma}<<1 and f0f_{0} is the height of the square bubble.
For the opposite case h=f0σ>>1h=\frac{f_{0}}{\sigma}>>1, that is, the high interaction limit, one can use the dual high energy description in terms of the parameter v0=(αr)h(1h)<<1v^{*}_{0}=\frac{(\alpha-r)h^{*}}{(1-h^{*})}<<1 with h=1h<<1h^{*}=\frac{1}{h}<<1 by perturbing the free B–S solution for the interest rate α\alpha.

In a later article, I will provide a detailed study and comparison of the approximate solution (152) and the exact numerical solution of (17) to establish a relation between the error given by the difference of both solutions and the order of the truncated perturbation series in some order nn.

References

  • [1] E. Merzbacher, Quantum Mechanics (3rd Edition), Wiley, 1997.
  • [2] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics (2nd Edition), Cambridge University Press, 2017.
  • [3] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, Dover Publications, 2003.
  • [4] A. A. Abrikosov, Methods of Quantum Field Theory in Statistical Physics, Dover Publications, 1975.
  • [5] A. Altland and B. D. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010.
  • [6] Alexei M. Tsvelik, Quantum Field Theory in Condensed Matter Physics (2nd Edition), Cambridge University Press, 2007.
  • [7] P. Roman, Introduction to Quantum Field Theory, Wiley, 1969.
  • [8] C. Itzykson and J. B. Zuber, Quantum Field Theory, Dover Publications, 2006.
  • [9] D. Bailin and A. Love, Introduction to Gauge Field Theory, Routledge, 2019.
  • [10] S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, 2005.
  • [11] G. Karakatsanisa, Exergy and the economic process, Energy Procedia 97 (2016) 51–58
  • [12] R. Zhou, R. Cai and G. Tong, Applications of entropy in finance: A review, Entropy 15 (2013) 4909–4931. doi:10.3390/e15114909
  • [13] B. E. Baaquie, Statistical microeconomics, Physica A 392 19 (2013) 4400–4416
  • [14] B. E.Baaquie, X. Du and W. Tanputraman, Empirical microeconomics action functionals, Physica A 428 (2015) 19–37
  • [15] E. Haven, A discussion on embedding the Black–Scholes option price model in a quantum physics setting, Physica A 304 (3) (2002) 507–524.
  • [16] B. E. Baaquie, Quantum Finance: Path Integrals and Hamiltonians for Option and Interest Rates, Cambridge University Press, 2007.
  • [17] M. Contreras, R. Pellicer, M. Villena and A. Ruiz, A quantum model for option pricing: When Black–Scholes meets Schrödinger and its semi-classic limit, Physica A 329 (23) (2010) 5447–5459.
  • [18] B. E. Baaquie, Quantum field theory of treasury bonds, Phys. Rev. E 64 (2001) 016121.
  • [19] B. E. Baaquie, Quantum finance Hamiltonian for coupon bond European and barrier options, Phys. Rev. E 77 (2008) 036106.
  • [20] B. E. Baaquie, Interest rates in quantum finance: The Wilson expansion and Hamiltonian, Phys. Rev. E 80 (2009) 046119.
  • [21] P. Henry-labordère, Solvable local and stochastic volatility models: Supersymmetric methods in option pricing, Quantitative Finance 7 (5) (2007) 525–535.
  • [22] P. Henry-Labordère, Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing, Chapman and Hall/CRC, 2008.
  • [23] T.K.Janaa and P.Royb, Supersymmetry in option pricing, Physica A 390 (12) (2011) 2350-2355.
  • [24] M. Contreras, R. Pellicer and M. Villena, Dynamic optimization and its relation to classical and quantum constrained systems, Physica A 479 (2017) 12–25.
  • [25] S. A. Hojman, Optimal Control and Dirac’s Theory of Singular Hamiltonian Systems, unpublished.
  • [26] T. Itami, Quantum Mechanical Theory of Nonlinear Control (in IFAC Nonlinear Control Systems), IFAC Publications, St. Petersburg, Russia, 2001, p. 1411.
  • [27] M. Contreras and J. P. Peña, The quantum dark side of the optimal control theory, Physica A 515 (2019) 450–473.
  • [28] M. Contreras, J. P. Peña and R. Aros, Second class constraints and the consistency of optimal control theory in phase space, Physica A, https://doi.org/10.1016/j.physa.2020.125335
  • [29] M. Contreras, Stochastic volatility models at ρ=±1\rho=\pm 1 as a second-class constrained Hamiltonian systems, Physica A 405 (2015) 289–302.
  • [30] M. Contreras and M. Bustamante, Multi-asset Black–Scholes model as a variable second-class constrained dynamical system, Physica A 457 (2016) 540–572.
  • [31] K. Ilinski, Physics of Finance: Gauge modelling in non–equilibrium Pricing, Wiley, 2001.
  • [32] M. Contreras, R. Montalva, R. Pellicer and M. Villena, Dynamic option pricing with endogenous stochastic arbitrage, Physica A 389 (2010) 3552–3564
  • [33] M. Contreras, J. Echeverría, J.P. Peña and M. Villena, Resonance phenomena in option pricingwith arbitrage, Physica A 540 (2020) 123238