This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An Alternate proof for a case of a Malmsten integral

Abdulhafeez Ayinde Abdulsalam
Abstract

In this paper, a direct proof is presented for a case of a Malmsten integral. The method used in solving the integral is a direct one that the author has not come accross in any old or recent publication. Integration by parts, Laplace transform, an integral representation for the hyperbolic secant function, and the digamma representation for an alternating series are employed to derive the result.

AMS Subject Classification: 33-XX, 26A42.

Keywords: Laplace transform, logarithmic integrals, integration by parts, gamma function, digamma function, rediscovery, direct proof, Euler, Carl Malmsten, Vardi, Iaroslav Blagouchine, colleagues.

1 Introduction

The integral evaluated in this paper is a case of the logarithmic integrals recently treated in Mathematical literature. Iaroslav V. Blagouchine in 2014 argued that the problem to be presented in this article was actually more older than reported (see [1]). He further clarified with sufficient and very convincing evidences that the so-called Vardi’s integral (see [2]) was actually a particular case of the considered family of integrals, first evaluated by Carl Malmsten and colleagues in 1842 (see [3]). Blagouchine in his fascinating article on the rediscovery of Malmsten’s integrals presented several generalizations of the integral by contour integration method (see [1]). In this work, a direct proof is established while abstaining from methods used by Malmsten, Vardi, or Blagouchine. We hereby begin with the following proposition.

{proposition*}
  1. (a)

    For aa\in\mathbb{R}

    0ln(x2+a2)cosh(πx)=2ln(2Γ(|a|2+34)Γ(|a|2+14)).\int_{0}^{\infty}\frac{\ln\left(x^{2}+a^{2}\right)}{\cosh\left(\pi x\right)}=2\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{\left|a\right|}{2}+\frac{3}{4}\right)}{\Gamma\left(\frac{\left|a\right|}{2}+\frac{1}{4}\right)}\right).
  2. (b)
    0lnxsech(x)dx=πln(2πΓ(34)Γ(14))=πln(2π32Γ(14)2).\int_{0}^{\infty}\ln{x}\operatorname{sech}\left(x\right)\mathrm{d}x=\pi\ln\left(\frac{\sqrt{2\pi}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)=\pi\ln\left(\frac{2\pi^{\frac{3}{2}}}{\Gamma\left(\frac{1}{4}\right)^{2}}\right).
  3. (c)

    For a+a\in\mathbb{R}^{+}, (b)>0\Re(b)>0

    0ln(ax)sech(bx)dx=πbln(2aπ32bΓ(14)2).\int_{0}^{\infty}\ln\left(ax\right)\operatorname{sech}\left(bx\right)\,\mathrm{d}x=\frac{\pi}{b}\ln\left(\frac{2\sqrt{a}\pi^{\frac{3}{2}}}{\sqrt{b}\Gamma\left(\frac{1}{4}\right)^{2}}\right).
Proof.

Let Δ(a)=0ln(x2+a2)cosh(πx)dx\displaystyle\Delta\left(a\right)=\int_{0}^{\infty}\frac{\ln\left(x^{2}+a^{2}\right)}{\cosh\left(\pi x\right)}\,\mathrm{d}x.

Then

Δ(a)\displaystyle\Delta\left(a\right) =0ln(|a|ix)cosh(πx)dx+0ln(|a|+ix)cosh(πx)dx\displaystyle=\int_{0}^{\infty}\frac{\ln\left(\left|a\right|-ix\right)}{\cosh\left(\pi x\right)}\,\mathrm{d}x+\int_{0}^{\infty}\frac{\ln\left(\left|a\right|+ix\right)}{\cosh\left(\pi x\right)}\,\mathrm{d}x

where i=1i=\sqrt{-1}.

Δ(a)\displaystyle\Delta\left(a\right) =20ln(|a|ix)e2πx+1eπxdx+20ln(|a|+ix)e2πx+1eπxdx\displaystyle=2\int_{0}^{\infty}\frac{\ln\left(\left|a\right|-ix\right)}{e^{-2\pi x}+1}e^{-\pi x}\,\mathrm{d}x+2\int_{0}^{\infty}\frac{\ln\left(\left|a\right|+ix\right)}{e^{-2\pi x}+1}e^{-\pi x}\,\mathrm{d}x
=2π0ln(|a|ix)d(arctan(eπx))\displaystyle=-\frac{2}{\pi}\int_{0}^{\infty}\ln\left(\left|a\right|-ix\right)\,\,\mathrm{d}\left(\arctan\left(e^{-\pi x}\right)\right)
2π0ln(|a|+ix)d(arctan(eπx))\displaystyle\qquad\qquad-\frac{2}{\pi}\int_{0}^{\infty}\ln\left(\left|a\right|+ix\right)\,\,\mathrm{d}\left(\arctan\left(e^{-\pi x}\right)\right)
=2iπ0arctan(eπx)|a|ixdx+2iπ0arctan(eπx)|a|+ixdx+lna.\displaystyle=\frac{-2i}{\pi}\int_{0}^{\infty}\frac{\arctan\left(e^{-\pi x}\right)}{\left|a\right|-ix}\,\mathrm{d}x+\frac{2i}{\pi}\int_{0}^{\infty}\frac{\arctan\left(e^{-\pi x}\right)}{\left|a\right|+ix}\,\mathrm{d}x+\ln{a}.

It follows by Laplace transform that

Δ(a)lna\displaystyle\Delta\left(a\right)-\ln{a} =2iπ0arctan(eπx)0et(|a|ix)dtdx\displaystyle=\frac{-2i}{\pi}\int_{0}^{\infty}\arctan\left(e^{-\pi x}\right)\int_{0}^{\infty}e^{-t\left(\left|a\right|-ix\right)}\,\,\mathrm{d}t\,\mathrm{d}x
+2iπ0arctan(eπx)0et(|a|+ix)dtdx\displaystyle\qquad\qquad+\frac{2i}{\pi}\int_{0}^{\infty}\arctan\left(e^{-\pi x}\right)\int_{0}^{\infty}e^{-t\left(\left|a\right|+ix\right)}\,\,\mathrm{d}t\,\mathrm{d}x
=2iπ0e|a|t0eitxarctan(eπx)dxdt\displaystyle=\frac{-2i}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\int_{0}^{\infty}e^{itx}\arctan\left(e^{-\pi x}\right)\mathrm{d}x\,\,\mathrm{d}t
+2iπ0e|a|t0eitxarctan(eπx)dxdt.\displaystyle\qquad\qquad+\frac{2i}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\int_{0}^{\infty}e^{-itx}\arctan\left(e^{-\pi x}\right)\mathrm{d}x\,\,\mathrm{d}t.
Δ(a)lna=2iπ0e|a|t0(eitxeitx)arctan(eπx)dxdt.\displaystyle\Delta\left(a\right)-\ln{a}=\frac{-2i}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\int_{0}^{\infty}\left(e^{itx}-e^{-itx}\right)\arctan\left(e^{-\pi x}\right)\mathrm{d}x\,\,\mathrm{d}t.

By Euler’s formula,

eitxeitx=2isin(tx).e^{itx}-e^{-itx}=2i\sin{\left(tx\right)}.

Therefore

Δ(a)lna\displaystyle\Delta\left(a\right)-\ln{a} =4π0e|a|t0sin(tx)arctan(eπx)dxdt\displaystyle=\frac{4}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\int_{0}^{\infty}\sin{\left(tx\right)}\arctan\left(e^{-\pi x}\right)\mathrm{d}x\,\,\mathrm{d}t
=4π0e|a|t0d(cos(tx)t)arctan(eπx)dt\displaystyle=\frac{4}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\int_{0}^{\infty}\mathrm{d}\left(\frac{-\cos{\left(tx\right)}}{t}\right)\arctan\left(e^{-\pi x}\right)\,\,\mathrm{d}t
=4π0e|a|t(π4tπ2t0cos(tx)cosh(πx)dx)dt\displaystyle=\frac{4}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\left(\frac{\pi}{4t}-\frac{\pi}{2t}\int_{0}^{\infty}\frac{\cos{\left(tx\right)}}{\cosh\left(\pi x\right)}\,\mathrm{d}x\right)\,\,\mathrm{d}t
=4π0e|a|t(π4t12t0cos(txπ)cosh(x)dx)dt\displaystyle=\frac{4}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\left(\frac{\pi}{4t}-\frac{1}{2t}\int_{0}^{\infty}\frac{\cos{\left(\frac{tx}{\pi}\right)}}{\cosh\left(x\right)}\,\mathrm{d}x\right)\,\,\mathrm{d}t
=4π0e|a|t(π4tπ4tsech(t2))dt\displaystyle=\frac{4}{\pi}\int_{0}^{\infty}e^{-\left|a\right|t}\left(\frac{\pi}{4t}-\frac{\pi}{4t}\operatorname{sech}\left(\frac{t}{2}\right)\right)\,\,\mathrm{d}t
=0e|a|t(1t1tsech(t2))dt\displaystyle=\int_{0}^{\infty}e^{-\left|a\right|t}\left(\frac{1}{t}-\frac{1}{t}\operatorname{sech}\left(\frac{t}{2}\right)\right)\,\,\mathrm{d}t
=0(e|a|tt2e(|a|+12)tt(1+et))dt=t2t0(e2|a|tt2e(2|a|+1)tt(1+e2t))dt\displaystyle=\int_{0}^{\infty}\left(\frac{e^{-\left|a\right|t}}{t}-\frac{2e^{-\left(\left|a\right|+\frac{1}{2}\right)t}}{t\left(1+e^{-t}\right)}\right)\,\,\mathrm{d}t{\stackrel{{\scriptstyle\,\,t\rightarrow 2t}}{{=}}}\int_{0}^{\infty}\left(\frac{e^{-2\left|a\right|t}}{t}-\frac{2e^{-\left(2\left|a\right|+1\right)t}}{t\left(1+e^{-2t}\right)}\right)\,\,\mathrm{d}t
=zet01(z2|a|2z2|a|+11+z2)dzzlnz=01z2|a|lnz(1z21+z2)dz\displaystyle{\stackrel{{\scriptstyle z\rightarrow e^{-t}}}{{=}}}-\int_{0}^{1}\left(z^{2\left|a\right|}-\frac{2z^{2\left|a\right|+1}}{1+z^{2}}\right)\,\,\frac{\mathrm{d}z}{z\ln{z}}=-\int_{0}^{1}\frac{z^{2\left|a\right|}}{\ln{z}}\left(\frac{1}{z}-\frac{2}{1+z^{2}}\right)\,\,\mathrm{d}z
=01z2|a|lnz(1+z22zz(1+z2))dz=01z2|a|lnz((1z)2z(1+z2))dz\displaystyle=-\int_{0}^{1}\frac{z^{2\left|a\right|}}{\ln{z}}\left(\frac{1+z^{2}-2z}{z\left(1+z^{2}\right)}\right)\,\,\mathrm{d}z=-\int_{0}^{1}\frac{z^{2\left|a\right|}}{\ln{z}}\left(\frac{\left(1-z\right)^{2}}{z\left(1+z^{2}\right)}\right)\,\,\mathrm{d}z
=01z2|a|1(1z)1+z201zpdpdz=0101z2|a|+p1(1z)1+z2dpdz\displaystyle=\int_{0}^{1}\frac{z^{2\left|a\right|-1}\left(1-z\right)}{1+z^{2}}\int_{0}^{1}z^{p}\mathrm{d}p\,\,\mathrm{d}z=\int_{0}^{1}\int_{0}^{1}\frac{z^{2\left|a\right|+p-1}\left(1-z\right)}{1+z^{2}}\mathrm{d}p\,\,\mathrm{d}z
=0101k=0(1)kz2|a|+p+2k1(1z)dzdp\displaystyle=\int_{0}^{1}\int_{0}^{1}\sum_{k=0}^{\infty}\left(-1\right)^{k}z^{2\left|a\right|+p+2k-1}\left(1-z\right)\mathrm{d}z\,\,\mathrm{d}p
=01k=0(1)k01z2|a|+p+2k1(1z)dzdp\displaystyle=\int_{0}^{1}\sum_{k=0}^{\infty}\left(-1\right)^{k}\int_{0}^{1}z^{2\left|a\right|+p+2k-1}\left(1-z\right)\mathrm{d}z\,\,\mathrm{d}p
=01k=0(1)k(12|a|+p+2k12|a|+p+2k+1)dp\displaystyle=\int_{0}^{1}\sum_{k=0}^{\infty}\left(-1\right)^{k}\left(\frac{1}{2\left|a\right|+p+2k}-\frac{1}{2\left|a\right|+p+2k+1}\right)\,\mathrm{d}p
=1201k=0(1)k(1k+2|a|+p21k+2|a|+p+12)dp\displaystyle=\frac{1}{2}\int_{0}^{1}\sum_{k=0}^{\infty}\left(-1\right)^{k}\left(\frac{1}{k+\frac{2\left|a\right|+p}{2}}-\frac{1}{k+\frac{2\left|a\right|+p+1}{2}}\right)\,\mathrm{d}p
=1401(ψ0(2|a|+p4)ψ0(2|a|+p4+12)\displaystyle=-\frac{1}{4}\int_{0}^{1}\left(\psi_{0}\left(\frac{2\left|a\right|+p}{4}\right)-\psi_{0}\left(\frac{2\left|a\right|+p}{4}+\frac{1}{2}\right)\right.
ψ0(2|a|+p+14)+ψ0(2|a|+p+14+12))dp\displaystyle\qquad\qquad\qquad\left.-\psi_{0}\left(\frac{2\left|a\right|+p+1}{4}\right)+\psi_{0}\left(\frac{2\left|a\right|+p+1}{4}+\frac{1}{2}\right)\right)\mathrm{d}p
=ln(Γ(2|a|+p4)Γ(2|a|+p+14+12)Γ(2|a|+p4+12)Γ(2|a|+p+14))|01\displaystyle=-\ln\left(\frac{\Gamma\left(\frac{2\left|a\right|+p}{4}\right)\Gamma\left(\frac{2\left|a\right|+p+1}{4}+\frac{1}{2}\right)}{\Gamma\left(\frac{2\left|a\right|+p}{4}+\frac{1}{2}\right)\Gamma\left(\frac{2\left|a\right|+p+1}{4}\right)}\right)\biggr{|}_{0}^{1}
=ln(Γ(2|a|+14)Γ(2|a|+24+12)Γ(2|a|+14+12)Γ(2|a|+24))+ln(Γ(2|a|4)Γ(2|a|+14+12)Γ(2|a|4+12)Γ(2|a|+14))\displaystyle=-\ln\left(\frac{\Gamma\left(\frac{2\left|a\right|+1}{4}\right)\Gamma\left(\frac{2\left|a\right|+2}{4}+\frac{1}{2}\right)}{\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)\Gamma\left(\frac{2\left|a\right|+2}{4}\right)}\right)+\ln\left(\frac{\Gamma\left(\frac{2\left|a\right|}{4}\right)\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)}{\Gamma\left(\frac{2\left|a\right|}{4}+\frac{1}{2}\right)\Gamma\left(\frac{2\left|a\right|+1}{4}\right)}\right)
=ln(Γ(2|a|+14)2Γ(2|a|+24+12)Γ(2|a|+14+12)2Γ(2|a|+24))+ln(Γ(2|a|4)Γ(2|a|4+12))\displaystyle=-\ln\left(\frac{\Gamma\left(\frac{2\left|a\right|+1}{4}\right)^{2}\Gamma\left(\frac{2\left|a\right|+2}{4}+\frac{1}{2}\right)}{\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)^{2}\Gamma\left(\frac{2\left|a\right|+2}{4}\right)}\right)+\ln\left(\frac{\Gamma\left(\frac{2\left|a\right|}{4}\right)}{\Gamma\left(\frac{2\left|a\right|}{4}+\frac{1}{2}\right)}\right)
=ln(Γ(2|a|+14)2Γ(|a|2+1)Γ(2|a|+14+12)2Γ(2|a|+24))+ln(Γ(|a|2)Γ(2|a|+24))\displaystyle=-\ln\left(\frac{\Gamma\left(\frac{2\left|a\right|+1}{4}\right)^{2}\Gamma\left(\frac{\left|a\right|}{2}+1\right)}{\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)^{2}\Gamma\left(\frac{2\left|a\right|+2}{4}\right)}\right)+\ln\left(\frac{\Gamma\left(\frac{\left|a\right|}{2}\right)}{\Gamma\left(\frac{2\left|a\right|+2}{4}\right)}\right)
=ln(|a|Γ(2|a|+14)22Γ(2|a|+14+12)2)=2ln(2Γ(2|a|+14+12)|a|Γ(2|a|+14)).\displaystyle=-\ln\left(\frac{\left|a\right|\Gamma\left(\frac{2\left|a\right|+1}{4}\right)^{2}}{2\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)^{2}}\right)=2\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)}{\sqrt{\left|a\right|}\Gamma\left(\frac{2\left|a\right|+1}{4}\right)}\right).

Hence

Δ(a)\displaystyle\Delta\left(a\right) =2ln(2Γ(2|a|+14+12)|a|Γ(2|a|+14))+ln|a|=2ln(2Γ(|a|2+34)Γ(|a|2+14)),\displaystyle=2\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{2\left|a\right|+1}{4}+\frac{1}{2}\right)}{\sqrt{\left|a\right|}\Gamma\left(\frac{2\left|a\right|+1}{4}\right)}\right)+\ln{\left|a\right|}=2\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{\left|a\right|}{2}+\frac{3}{4}\right)}{\Gamma\left(\frac{\left|a\right|}{2}+\frac{1}{4}\right)}\right), (1)

thereby proving (a) in section 1. To prove (b) in section 1, take the limit of (1) as a0a\to 0.

Thus

0ln(x)cosh(πx)dx=ln(2Γ(34)Γ(14)),\int_{0}^{\infty}\frac{\ln\left(x\right)}{\cosh\left(\pi x\right)}\,\mathrm{d}x=\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right),

which implies

0lnxsech(πx)dx=ln(2Γ(34)Γ(14))\int_{0}^{\infty}\ln{x}\operatorname{sech}\left(\pi x\right)\mathrm{d}x=\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)
1π0ln(xπ)sech(x)dx=ln(2Γ(34)Γ(14))\frac{1}{\pi}\int_{0}^{\infty}\ln\left(\frac{x}{\pi}\right)\operatorname{sech}\left(x\right)\mathrm{d}x=\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)
0ln(xπ)sech(x)dx=πln(2Γ(34)Γ(14))\int_{0}^{\infty}\ln\left(\frac{x}{\pi}\right)\operatorname{sech}\left(x\right)\mathrm{d}x=\pi\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)
0lnxsech(x)dxlnπ0sech(x)dx=πln(2Γ(34)Γ(14))\int_{0}^{\infty}\ln{x}\operatorname{sech}\left(x\right)\mathrm{d}x-\ln{\pi}\int_{0}^{\infty}\operatorname{sech}\left(x\right)\mathrm{d}x=\pi\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)
0lnxsech(x)dxπ2lnπ=πln(2Γ(34)Γ(14))\int_{0}^{\infty}\ln{x}\operatorname{sech}\left(x\right)\mathrm{d}x-\frac{\pi}{2}\ln{\pi}=\pi\ln\left(\frac{\sqrt{2}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)
0lnxsech(x)dx=πln(2πΓ(34)Γ(14))=πln(2π32Γ(14)2).\int_{0}^{\infty}\ln{x}\operatorname{sech}\left(x\right)\mathrm{d}x=\pi\ln\left(\frac{\sqrt{2\pi}\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}\right)=\pi\ln\left(\frac{2\pi^{\frac{3}{2}}}{\Gamma\left(\frac{1}{4}\right)^{2}}\right).

To prove (c) in section 1,

0ln(ax)sech(bx)dx\displaystyle\int_{0}^{\infty}\ln\left(ax\right)\operatorname{sech}\left(bx\right)\,\mathrm{d}x =0ln(ax)sech(bx)dx\displaystyle=\int_{0}^{\infty}\ln\left(ax\right)\operatorname{sech}\left(bx\right)\,\mathrm{d}x
=1b0ln(aub)sech(u)dx\displaystyle=\frac{1}{b}\int_{0}^{\infty}\ln\left(\frac{au}{b}\right)\operatorname{sech}\left(u\right)\,\mathrm{d}x
=1b0ln(u)sech(u)dxln(ba)b0sech(u)dx\displaystyle=\frac{1}{b}\int_{0}^{\infty}\ln\left(u\right)\operatorname{sech}\left(u\right)\,\mathrm{d}x-\frac{\ln{\left(\frac{b}{a}\right)}}{b}\int_{0}^{\infty}\operatorname{sech}\left(u\right)\,\mathrm{d}x
=πbln(2π32Γ(14)2)ln(ba)bπ2\displaystyle=\frac{\pi}{b}\ln\left(\frac{2\pi^{\frac{3}{2}}}{\Gamma\left(\frac{1}{4}\right)^{2}}\right)-\frac{\ln{\left(\frac{b}{a}\right)}}{b}\cdot\frac{\pi}{2}
=πbln(2aπ32bΓ(14)2).\displaystyle=\frac{\pi}{b}\ln\left(\frac{2\sqrt{a}\pi^{\frac{3}{2}}}{\sqrt{b}\Gamma\left(\frac{1}{4}\right)^{2}}\right).

References

  • [1] Iaroslav V. Blagouchine. Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results. The Ramanujan Journal, 2014.
  • [2] Vardi, I. Integrals, an introduction to analytic number theory. Am. Math. Mon. 95, 308–315 (1988).
  • [3] Malmsten, C.J., Almgren, T.A., Camitz, G., Danelius, D., Moder, D.H., Selander, E., Grenander, J.M.A., Themptander, S., Trozelli, L.M., Föräldrar, Ä., Ossbahr, G.E., Föräldrar, D.H., Ossbahr, C.O.,Lindhagen, C.A., Moder, D.H., Syskon, Ä., Lemke, O.V., Fries, C., Laurenius, L., Leijer, E., Gyllenberg, G., Morfader, M.V., Linderoth, A. Specimen analyticum, theoremata quædam nova de integralibus definitis, summatione serierum earumque in alias series transformatione exhibens (Eng. trans.: “Some new theorems about the definite integral, summation of the series and their transformation into other series”) [Dissertation, in 8 parts]. Upsaliæ, excudebant Regiæ academiæ typographi. Uppsala, Sweden, April–June 1842.