This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An algebra over the operad of posets and structural binomial identities

José Antonio Arciniega-Nevárez1 [email protected] 1División de Ingenierías, Universidad de Guanajuato, Guanajuato, México Marko Berghoff2 [email protected] 2Mathematical Institute, University of Oxford, Oxford, UK  and  Eric Rubiel Dolores-Cuenca3 [email protected] 3 Department of mathematics, Yonsei University, Seoul, Korea
Abstract.

We study generating functions of strict and non-strict order polynomials of series-parallel posets, called order series. These order series are closely related to Ehrhart series and hh^{*}-polynomials of the associated order polytopes. We explain how they can be understood as algebras over a certain operad of posets. Our main results are based on the fact that the order series of chains form a basis in the space of order series. This allows to reduce the search space of an algorithm that finds for a given power series f(x)f(x), if possible, a poset PP such that f(x)f(x) is the generating function of the order polynomial of PP. In terms of Ehrhart theory of order polytopes, the coordinates with respect to this basis describe the number of (internal) simplices in the canonical triangulation of the order polytope of PP. Furthermore, we derive a new proof of the reciprocity theorem of Stanley. As an application, we find new identities for binomial coefficients and for finite partitions that allow for empty sets, and we describe properties of the negative hypergeometric distribution.

Keywords— Binomial Coefficient, Ehrhart series, Generating function, Negative Hypergeometric Distribution, Order Polynomial, Order Series, Partitions, Series Parallel Poset, Vandermonde Identity

1. Introduction

For every poset P{P}, Stanley [24] considered the problem of counting the numbers Ω(P,n)\Omega^{\circ}(P,n) and Ω(P,n)\Omega(P,n) of strict and non-strict order preserving maps from PP to the nn–chain n={1<<n}\langle n\rangle=\{1<\ldots<n\}. In this paper we study the generating functions

(P)=n=1Ω(P,n)xn and +(P)=n=1Ω(P,n)xn.\mathfrak{Z}\left(P\right)=\sum_{n=1}^{\infty}\Omega^{\circ}(P,n)x^{n}\quad\text{ and }\quad\mathfrak{Z}^{+}\left(P\right)=\sum_{n=1}^{\infty}\Omega(P,n)x^{n}.

We call them the strict and non-strict order series of the poset PP.

These series are not completely new: Let Poly(P)Poly(P) denote the order polytope of PP and EPoly(P)E_{Poly(P)} its Ehrhart polynomial. Using results of Stanley [25] and Macdonald [21] we find

+(P)\displaystyle\mathfrak{Z}^{+}\left(P\right) =n=1Ω(P,n)xn=x+n=2EPoly(P)(n1)xn=xh(x)(1x)|P|+1.\displaystyle=\sum_{n=1}^{\infty}\Omega(P,n)x^{n}=x+\sum_{n=2}^{\infty}E_{Poly(P)}(n-1)x^{n}=x\frac{h^{*}(x)}{(1-x)^{|P|+1}}.

In other words, up to a degree shift we work with the Ehrhart series of Poly(P)Poly(P), or its hh^{*}-polynomial (aka hh^{*}-vector) if we use the basis {1(1x)i+1}0i|P|\{\frac{1}{(1-x)^{i+1}}\}_{0\leq i\leq|P|} on the Ehrhart series of Poly(P)Poly(P).

For a nn–chain we write (n)=(n)\mathfrak{Z}\left(\langle n\rangle\right)=\mathfrak{Z}\left(n\right) and +(n)=+(n)\mathfrak{Z}^{+}\left(\langle n\rangle\right)=\mathfrak{Z}^{+}\left(n\right). One finds (see Section 2)

(n)=xn(1x)n+1and+(n)=x(1x)n+1.\mathfrak{Z}\left(n\right)=\frac{x^{n}}{(1-x)^{n+1}}\quad\text{and}\quad\mathfrak{Z}^{+}\left(n\right)=\frac{x}{(1-x)^{n+1}}.

Computing the order series or, equivalently, the order polynomial of a poset is difficult in general. However, for certain families of posets, for instance series-parallel posets, it can be done algorithmically in polynomial time [11]. Note that it suffices to know one of the two order series, as this determines the other by a version of combinatorial reciprocity (see [24] for order polynomials, Theorem 2.14 and Proposition 2.16 for order series, and [4] in general). In the following we focus therefore on the strict order series (P)\mathfrak{Z}\left(P\right).

Posets have an operad structure, see [12, 16]. Here we consider an operad 𝒮𝒫\mathcal{SP} generated by concatenation and disjoint union of posets. Recall that series-parallel posets are built out of the singleton poset by iterating these two operations. Thus, series-parallel posets form an algebra over the operad 𝒮𝒫\mathcal{SP}. We show below that the same holds for their order series (see Proposition 2.3, Proposition 2.6 and Proposition 2.13). Furthermore, we demonstrate how chains are the basic building blocks not only for the set of series-parallel posets, but also for their order series (Section 2) as well as their order polytopes (Section 3.2).

The map that assigns to a poset its order series is not injective, that is, several posets can have the same order series. However, for some families of posets we can compute the preimages: Given a power series f(x)f(x) we describe in Section 3.1 an algorithm to search for the posets PP that satisfy f=(P)f=\mathfrak{Z}\left(P\right).

Our main result is based on the observation that the (strict) order series of chains form a basis {xi(1x)i+1}i\left\{\frac{x^{i}}{(1-x)^{i+1}}\right\}_{i\in\mathbb{N}} for the space of (strict) order series of series-parallel posets (Proposition 2.7, see also Remark 2.17). This allows us to prove that

  • The order series of every series-parallel poset PP is a finite sum of order series of chains, (P)=ci(i)\mathfrak{Z}\left(P\right)=\sum c_{i}\mathfrak{Z}\left(i\right). See Corollary 2.8.

  • The coefficients cic_{i} are non-negative integers. The indices ii, such that ci0c_{i}\neq 0, encode topological information of (the Hasse diagram of) PP. See Proposition 3.1.

  • The coefficients cic_{i} encode combinatorial information about the canonical triangulation of the order polytope of PP. See Lemma 3.6. In Section 3.2, we compare our results with Ehrhart theory.

  • The existence of the operadic action on order series implies new binomial identities. See Section 4.

In [10] Drinfeld describes a power series that corrects the notion of associativity. Motivated by the construction of Drinfeld, this paper started by the observation that order series can distinguish certain posets. For example, the two posets {a<b}\{a<b\} and {a,b}\{a,b\} differ by their order and their order series differ as well: x2(1x)3x(1x)2+2x2(1x)3\frac{x^{2}}{(1-x)^{3}}\neq\frac{x}{(1-x)^{2}}+2\frac{x^{2}}{(1-x)^{3}}.

1.1. Related work

We give a (short) account of closely related work.

Consider the category of finite sets, and let B be the skeleton of the category whose objects are finite sets but the only morphisms are isomorphisms. The theory of B-species studies functors from B to finite sets and power series associated to them [5, 32]. A Möbius-species [22] is a functor from B to the category of finite posets. In comparison, we study an operadic homomorphism from the algebra of series-parallel posets to power series. For example, the poset {a<b<c,a<b<c}\{a<b<c,a<b^{\prime}<c\} has the associated power series

x3(1x)4+2x4(1x)5=x3+6x4+.\frac{x^{3}}{(1-x)^{4}}+2\frac{x^{4}}{(1-x)^{5}}=x^{3}+6x^{4}+\cdots.

There is no B-species or Möbius-species with the corresponding generating function, because a species only depends on the number of elements of the input set. We believe our series are a topological version of species.

The book [23] introduces generating functions of order polynomials of posets to study partitions, Ehrhart polynomials and descent statistics. In contrast, we focus on the problem of computing the order series of a given poset. Moreover, we restrict our analysis to series-parallel posets since they have a rich algebraic structure (i.e., the operad structure referred to above, and explained below). In particular, all posets considered here are finite.

A binomial poset PP is a locally finite poset with an element 0^\hat{0} so that 0^a\hat{0}\leq a for all aPa\in P, contains an infinite chain, every interval [s,t][s,t] is graded, and any two nn-intervals contain the same number of maximal chains for any nn (see [28]). For instance, the set \mathbb{N} with the usual linear order is a binomial poset. To each binomial poset PP we can associate a subalgebra R(P)R(P) of the incidence algebra of PP: It consists of all functions ff such that f(x,y)f(x,y) only depends on the length of the interval [x,y][x,y]. The algebra R(P)R(P) is isomorphic to an algebra of generating functions with the usual product of functions. Stanley’s construction can be used to study properties of invertible elements. In comparison, we study an algebra over the set-operad of series parallel posets. This formalism does not require an underlying vector space, and it is constructed from two operations that differ from the product of functions, the Hadamard product and the ordinal sum of power series which is a deformation of the usual product of functions. The generating functions that we study are algebraic of degree 1 according to [29].

In this article, a nn-labeling of a poset PP is a map to n\langle n\rangle that preserves the order. This is a different notion to [18] in which a nn-labeling on a poset is defined as a poset PP and a map of sets.

In regard to labelings of Hasse diagrams, there are many different variations of labelings of (directed) graphs. See for instance [13]. However, we could not find a notion that is related to ours.

In regard to binomial identities, note that if we let t=0t=0 in Proposition 4.1 we recover the Chu-Vandermonde identity. Most identities in [14] fix the top part of the combinatorial expression and vary the bottom part. For example, consider the generalized Vandermonde identity,

(1) (q1++qpn)=n1+np=ni=1p(qini).{q_{1}+\cdots+q_{p}\choose n}=\sum_{n_{1}+\cdots n_{p}=n}\prod_{i=1}^{p}{q_{i}\choose n_{i}}.

Fixing a partition q1++qpq_{1}+\cdots+q_{p}, the formula relates the binomial coefficient (q1++qpn){q_{1}+\cdots+q_{p}\choose n} with the product of binomial coefficients (qini){q_{i}\choose n_{i}} over all possible pp-partitions n=nin=\sum n_{i}. In comparison, in Proposition 4.2 we fix a partition n1++npn_{1}+\cdots+n_{p} and relate the binomial coefficient (qn1++np){q\choose n_{1}+\cdots+n_{p}} with the product of binomial coefficients (qini){q_{i}\choose n_{i}} where the terms qiq_{i} depend on qq and the length pp of the partition.

While the multivariate negative hypergeometric distribution is a well known topic in probability theory, as far as we are aware, the proofs in Section 4.3 are new.

2. Order series

Let 𝐏𝐨𝐬𝐞𝐭\mathbf{Poset} denote the category of finite partially ordered sets whose morphisms are the strict order preserving maps. Let 𝐏𝐨𝐬𝐞𝐭+\mathbf{Poset}+ denote the category with the same objects, but whose morphisms are non-strict order preserving (i.e., they satisfy x<yf(x)f(y)x<y\Rightarrow f(x)\leq f(y)).

Definition 2.1.

Define hom𝐏𝐨𝐬𝐞𝐭+(P,n)\hom_{\mathbf{Poset}+}(P,n) as the set of (non-strict) order preserving maps from PP to n\langle n\rangle and hom𝐏𝐨𝐬𝐞𝐭(P,n)\hom_{\mathbf{Poset}}(P,n) as the set of strict order preserving maps from PP to n\langle n\rangle. Define the order polynomials Ω(P,n)\Omega(P,n) and Ω(P,n)\Omega^{\circ}(P,n) as the cardinality |hom𝐏𝐨𝐬𝐞𝐭+(P,n)||\hom_{\mathbf{Poset}+}(P,n)| and |hom𝐏𝐨𝐬𝐞𝐭(P,n)||\hom_{\mathbf{Poset}}(P,n)|, respectively.

For example Ω(m,n)=(nm)\Omega^{\circ}(\langle m\rangle,n)={n\choose m}, while Ω(m,n)=((nm))=(n+m1m)\Omega(\langle m\rangle,n)=\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n}{m}\right)\kern-3.00003pt\right)={n+m-1\choose m}.

Definition 2.2.

For a poset QQ we define a formal power series, called its order series, by

(Q)=(Q,x)=n=1Ω(Q,n)xn.\mathfrak{Z}\left(Q\right)=\mathfrak{Z}\left(Q,x\right)=\sum_{n=1}^{\infty}\Omega^{\circ}(Q,n)x^{n}.

We have

(2) (m)=n=m(nm)xn=xm(1x)m+1.\displaystyle\mathfrak{Z}\left(m\right)=\sum_{n=m}^{\infty}{n\choose m}x^{n}=\frac{x^{m}}{(1-x)^{m+1}}.

For a proof of the second equality see [31, Equation (1.5.5)], [14, Equation (1.3)] or [23, Equation (1.3)].

If xx is the common variable for the power series (Q)\mathfrak{Z}\left(Q\right) and (W)\mathfrak{Z}\left(W\right), we define

(3) (Q)(W)=(Q)(1x)(W).\mathfrak{Z}\left(Q\right)*\mathfrak{Z}\left(W\right)=\mathfrak{Z}\left(Q\right)(1-x)\mathfrak{Z}\left(W\right).

Note that here we are using the Cauchy product of power series.

We denote the Hadamard product of power series by

n=1anxnn=1bnxn=n=1anbnxn.\sum_{n=1}^{\infty}a_{n}x^{n}\sqcup\sum_{n=1}^{\infty}b_{n}x^{n}=\sum_{n=1}^{\infty}a_{n}b_{n}x^{n}.

We interpret the Hadamard product as disjoint union of power series.

The reason to work with power series instead of polynomials is that it highlights the structure of an underlying operad of posets (for an introduction to operads we refer to [20]). Consider the operad 𝒮𝒫\mathcal{SP} generated by a binary associative and commutative operation \sqcup and a binary associative operation *. The only unary operation is the identity. The action of SnS_{n} is given by permutations on the inputs of the operations.

Proposition 2.3.

Order series are an algebra over the operad 𝒮𝒫\mathcal{SP}. The above defined operations on power series * and \sqcup are both associative, and \sqcup is commutative.

The set of series-parallel posets SPSP is itself an algebra over the operad 𝒮𝒫\mathcal{SP}. Here the action of * is the ordinal sum (or concatenation) of posets, and the action of \sqcup is the disjoint union of posets.

For a finit posets QQ and WW, the inclusions of QQ and WW in QWQ*W allow us to see QQ and WW as a subposets of the concatenation. There is thus a function

(4) Gn:l=1n1hom𝐏𝐨𝐬𝐞𝐭(Q,l)×hom𝐏𝐨𝐬𝐞𝐭(W,nl)hom𝐏𝐨𝐬𝐞𝐭(QW,n).G_{n}:\bigcup_{l=1}^{n-1}\hom_{\mathbf{Poset}}(Q,\langle l\rangle)\times\hom_{\mathbf{Poset}}(W,\langle n-l\rangle)\to\hom_{\mathbf{Poset}}(Q*W,\langle n\rangle).

On the term hom𝐏𝐨𝐬𝐞𝐭(Q,l)×hom𝐏𝐨𝐬𝐞𝐭(W,nl)\hom_{\mathbf{Poset}}(Q,\langle l\rangle)\times\hom_{\mathbf{Poset}}(W,\langle n-l\rangle) the function is given by Gn(h,k)(v)=h(v)G_{n}(h,k)(v)=h(v), if vQv\in Q, and Gn(h,k)(v)=k(v)+lG_{n}(h,k)(v)=k(v)+l, if vWv\in W. This function is surjective. Furthermore, for any element f:QWnf:Q*W\rightarrow\langle n\rangle let MM be the maximum of f|Qf|_{Q} and mm the minimum of f|Wf|_{W} (actually m=M+im=M+i for some integer i0i\geq 0). If j{0,1,,i1}j\in\{0,1,\cdots,i-1\}, we can partition n\langle n\rangle in M+j\langle M+j\rangle and nMj\langle n-M-j\rangle in order to define hj=f|Q:QM+jh_{j}=f|_{Q}:Q\to\langle M+j\rangle, and kj:WnMjk_{j}:W\to\langle n-M-j\rangle, given by kj(v)=f|W(v)Mjk_{j}(v)=f|_{W}(v)-M-j. See Figure 1 for an example.

{}{}{}{}{}{}{}{}{}{}{}{}
Figure 1. The function from 2\langle 2\rangle to 4\langle 4\rangle that sends 11,1\mapsto 1, and 242\mapsto 4 can be split in 3 different ways: {11}×{13},{12}×{12}\{\langle 1\rangle\rightarrow\langle 1\rangle\}\times\{\langle 1\rangle\rightarrow\langle 3\rangle\},\{\langle 1\rangle\rightarrow\langle 2\rangle\}\times\{\langle 1\rangle\rightarrow\langle 2\rangle\} and {13}×{11\{\langle 1\rangle\rightarrow\langle 3\rangle\}\times\{\langle 1\rangle\rightarrow\langle 1\rangle}.

For an integer n>1n>1 define

n=i=1n(i,ni).\triangle\langle n\rangle=\bigsqcup_{i=1}^{n}(\langle i\rangle,\langle n-i\rangle).

Also define hom𝐏𝐨𝐬𝐞𝐭+((X,Y),n)\hom_{\mathbf{Poset}+}((X,Y),\triangle\langle n\rangle) as the set of pairs of non strict order preserving maps (k:Xi,h:Yni),1in(k:X\to\langle i\rangle,h:Y\to\langle n-i\rangle),1\leq i\leq n. Furthermore, a computation shows

(5) i=1Ω(X,i)xij=1Ω(Y,j)xj=n=2Ω((X,Y),n)xn.\sum_{i=1}\Omega^{\circ}(X,i)x^{i}\sum_{j=1}\Omega^{\circ}(Y,j)x^{j}=\sum_{n=2}\Omega^{\circ}((X,Y),\triangle\langle n\rangle)x^{n}.

We will need the following auxiliary lemma.

Lemma 2.4.

Assume that there is a sequence of sets

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}C,\textstyle{C\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces,}s\scriptstyle{s}

where

  • i:ABi:A\rightarrow B is injective,

  • p:BCp:B\rightarrow C is surjective,

  • there is a split s:CBs:C\to B, such that ps=idp\circ s=id and s(C)i(A)=s(C)\cap i(A)=\varnothing, and

  • for every point cC,s(c)(i(A)p1(c))=p1(c)c\in C,s(c)\sqcup(i(A)\cap p^{-1}(c))=p^{-1}(c).

Then s(C)i(A)=Bs(C)\sqcup i(A)=B.

A sequence satisfying the previous lemma is called a splitting sequence of sets.

Proposition 2.5.

Let QQ and WW be finite posets. Then

hom𝐏𝐨𝐬𝐞𝐭((Q,W),n1)\textstyle{\hom_{\mathbf{Poset}}((Q,W),\triangle\langle n-1\rangle)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hom𝐏𝐨𝐬𝐞𝐭((Q,W),n)\textstyle{\hom_{\mathbf{Poset}}((Q,W),\triangle\langle n\rangle)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hom𝐏𝐨𝐬𝐞𝐭(QW,n)\textstyle{\hom_{\mathbf{Poset}}(Q*W,\langle n\rangle)}

is a splitting sequence of sets.

Proof.

For khom𝐏𝐨𝐬𝐞𝐭(W,n1)k\in\hom_{\mathbf{Poset}}(W,\langle n-1\rangle) define (k+1)hom𝐏𝐨𝐬𝐞𝐭(W,n)(k+1)\in\hom_{\mathbf{Poset}}(W,\langle n\rangle) by (k+1)(v)=k(v)+1(k+1)(v)=k(v)+1. The shifting function

Sh:a+b=n1hom𝐏𝐨𝐬𝐞𝐭(Q,a)×hom𝐏𝐨𝐬𝐞𝐭(W,b)a+(b+1)=nhom𝐏𝐨𝐬𝐞𝐭(Q,a)×hom𝐏𝐨𝐬𝐞𝐭(W,b+1),Sh\colon\bigcup_{a+b=n-1}\hom_{\mathbf{Poset}}(Q,\langle a\rangle)\times\hom_{\mathbf{Poset}}(W,\langle b\rangle)\to\bigcup_{a+(b+1)=n}\hom_{\mathbf{Poset}}(Q,\langle a\rangle)\times\hom_{\mathbf{Poset}}(W,\langle b+1\rangle),

given by sending (h,k)(h,k) into (h,k+1)(h,k+1) is injective. Let GnG_{n} be the function defined in (4), and let Gn1(f)G_{n}^{-1}(f) be the preimage of fhom𝐏𝐨𝐬𝐞𝐭(QW,n)f\in\hom_{\mathbf{Poset}}(Q*W,\langle n\rangle). Then

Gn1(f)Sh(a+b=n1hom𝐏𝐨𝐬𝐞𝐭(Q,a)×hom𝐏𝐨𝐬𝐞𝐭(W,b))G_{n}^{-1}(f)-Sh\left(\bigcup_{a+b=n-1}\hom_{\mathbf{Poset}}(Q,\langle a\rangle)\times\hom_{\mathbf{Poset}}(W,\langle b\rangle)\right)

has only one element, namely the pair (h,k)(h,k) where h=f|Q:Qmh=f|_{Q}:Q\rightarrow\langle m\rangle and k:Wnm+1k:W\rightarrow\langle n-m+1\rangle is given by k(v)=f|W(v)m+1k(v)=f|_{W}(v)-m+1 (again, mm is the minimum of f|Wf|_{W}).

Choosing this unique point we define a section

s:hom𝐏𝐨𝐬𝐞𝐭(QW,n)c+d=nhom𝐏𝐨𝐬𝐞𝐭(Q,c)×hom𝐏𝐨𝐬𝐞𝐭(W,d),s:\hom_{\mathbf{Poset}}(Q*W,\langle n\rangle)\to\bigcup_{c+d=n}\hom_{\mathbf{Poset}}(Q,\langle c\rangle)\times\hom_{\mathbf{Poset}}(W,\langle d\rangle),

whose image is disjoint from the image of the shifting function ShSh. This holds because k(m)=1k(m)=1 but no function of the form g+1g+1 has 11 in the codomain. Then the hypothesis of Lemma 2.4 holds. ∎

Suppose that there is a short splitting sequence of finite sets

(6) O(X,Y),ni2\textstyle{O_{(X,Y),\triangle\langle n-i_{2}\rangle}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ι\scriptstyle{\iota}O(X,Y),ni1\textstyle{O_{(X,Y),\triangle\langle n-i_{1}\rangle}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}OXY,n\textstyle{O_{X*Y,n}}

with i1i_{1} and i2i_{2} non-negative integers and nn\in\mathbb{N}, then

(7) n=2Ω(μ(Y,W),n)xn=\displaystyle\sum_{n=2}\Omega^{\circ}(\mu(Y,W),n)x^{n}= xi1n=2Ω((Y,W),ni1)xni1\displaystyle x^{i_{1}}\sum_{n=2}\Omega^{\circ}((Y,W),\triangle{\langle n-i_{1}\rangle})x^{n-i_{1}}-
xi2n=2Ω((Y,W),ni2)xni2\displaystyle-x^{i_{2}}\sum_{n=2}\Omega^{\circ}((Y,W),\triangle{\langle n-i_{2}\rangle})x^{n-i_{2}}
=\displaystyle= xi1j=1Ω(Y,j)xjk=1Ω(W,k)xk\displaystyle x^{i_{1}}\sum_{j=1}\Omega^{\circ}(Y,j)x^{j}\sum_{k=1}\Omega^{\circ}(W,k)x^{k}
xi2j=1Ω(Y,j)xjk=1Ω(W,k)xk.\displaystyle-x^{i_{2}}\sum_{j=1}\Omega^{\circ}(Y,j)x^{j}\sum_{k=1}\Omega^{\circ}(W,k)x^{k}.
Proposition 2.6.

There is a homomorphism SP{order series}SP\to\{\text{order series}\} of algebras over the operad 𝒮𝒫\mathcal{SP}. It maps a poset PP to the series (P)\mathfrak{Z}\left(P\right) and satisfies

(8) (QW)=(Q)(W),\mathfrak{Z}\left(Q*W\right)=\mathfrak{Z}\left(Q\right)*\mathfrak{Z}\left(W\right),
(9) (QW)=(Q)(W).\mathfrak{Z}\left(Q\sqcup W\right)=\mathfrak{Z}\left(Q\right)\sqcup\mathfrak{Z}\left(W\right).
Proof.

Equation (9) follows by counting elements in hom𝐏𝐨𝐬𝐞𝐭(PQ,n)\hom_{\mathbf{Poset}}(P\sqcup Q,n). Equation (8) follows by Equation 7 with i2=1,i1=0i_{2}=1,i_{1}=0. ∎

Both relations are well-known at the level of order polynomials, (see for example [11]).

The following statement allows to make explicit computations.

Proposition 2.7.

For 0m,k:0\leq m,k:

(k)(m)=xkk!dkdxk(m)=n=0k(m+nk)(kn)(m+n).\mathfrak{Z}\left(k\right)\sqcup\mathfrak{Z}\left(m\right)=\frac{x^{k}}{k!}\frac{d^{k}}{dx^{k}}\mathfrak{Z}\left(m\right)=\sum_{n=0}^{k}{m+n\choose k}{k\choose n}\mathfrak{Z}\left(m+n\right).
Proof.

First note that

(10) (m)=n(nm)xn=nxmm!dmdxmxn.\mathfrak{Z}\left(m\right)=\sum_{n}^{\infty}{n\choose m}x^{n}=\sum_{n}^{\infty}\frac{x^{m}}{m!}\frac{d^{m}}{dx^{m}}x^{n}.

From (10) we obtain

(k)(m)\displaystyle\mathfrak{Z}\left(k\right)\sqcup\mathfrak{Z}\left(m\right) =n(nk)(nm)xn\displaystyle=\sum_{n}^{\infty}{n\choose k}{n\choose m}x^{n}
=nxkk!dkdxk(nm)xn\displaystyle=\sum_{n}^{\infty}\frac{x^{k}}{k!}\frac{d^{k}}{dx^{k}}{n\choose m}x^{n}
=xkk!dkdxk(m),\displaystyle=\frac{x^{k}}{k!}\frac{d^{k}}{dx^{k}}\mathfrak{Z}\left(m\right),

and therefore

(k)(m)\displaystyle\mathfrak{Z}\left(k\right)\sqcup\mathfrak{Z}\left(m\right) =xkk!dkdxk(m)\displaystyle=\frac{x^{k}}{k!}\frac{d^{k}}{dx^{k}}\mathfrak{Z}\left(m\right)
=xkk!dkdxkxm(1x)m+1\displaystyle=\frac{x^{k}}{k!}\frac{d^{k}}{dx^{k}}\frac{x^{m}}{(1-x)^{m+1}}
=xkk!n=0k(kn)(dkndxknxm)(dndxn(1x)m1)\displaystyle=\frac{x^{k}}{k!}\sum_{n=0}^{k}{k\choose n}\left(\frac{d^{k-n}}{dx^{k-n}}x^{m}\right)\left(\frac{d^{n}}{dx^{n}}(1-x)^{-m-1}\right)
=n=0k(kn)m!(m+nk)!k!(m+n)!m!xm+n(1x)mn1\displaystyle=\sum_{n=0}^{k}{k\choose n}\frac{m!}{(m+n-k)!k!}\frac{(m+n)!}{m!}x^{m+n}(1-x)^{-m-n-1}
=n=0k(m+nk)(kn)(m+n).\displaystyle=\sum_{n=0}^{k}{m+n\choose k}{k\choose n}\mathfrak{Z}\left(m+n\right).

Another proof of Proposition 2.7, can be deduced from [14, (6.44)].

Corollary 2.8.

The strict order series of any series-parallel poset is a linear combination of order series of chains.

Proof.

Series-parallel posets are generated by the singleton poset under the operations * and \sqcup. Therefore their order series are generated by the chain (1)=x(1x)2\mathfrak{Z}\left(1\right)=\frac{x}{(1-x)^{2}} under the operations * and \sqcup. These operations are linear on power series and send chains into linear combinations of chains. ∎

Example 2.9.

Let DD be the unary operation on posets defined by

D(P)=1(1P)1.D(P)=\langle 1\rangle*\big{(}\langle 1\rangle\sqcup P\big{)}*\langle 1\rangle.

If the input of DD is an nn-chain, we compute:

(D(n))\displaystyle\mathfrak{Z}\left(D({\langle n\rangle})\right) =\displaystyle= (1)((1n))(1)\displaystyle\mathfrak{Z}\left(1\right)*(\mathfrak{Z}\left(\langle 1\rangle\sqcup\langle n\rangle\right))*\mathfrak{Z}\left(1\right)
=\displaystyle= x(1x)2(nxn(1x)n+1+(n+1)xn+1(1x)n+2)x(1x)2\displaystyle\frac{x}{(1-x)^{2}}*(n\frac{x^{n}}{(1-x)^{n+1}}+(n+1)\frac{x^{n+1}}{(1-x)^{n+2}})*\frac{x}{(1-x)^{2}}
=\displaystyle= nxn+2(1x)n+3+(n+1)xn+3(1x)n+4\displaystyle n\frac{x^{n+2}}{(1-x)^{n+3}}+(n+1)\frac{x^{n+3}}{(1-x)^{n+4}}
=\displaystyle= n(n+2)+(n+1)(n+3).\displaystyle n\mathfrak{Z}\left(n+2\right)+(n+1)\mathfrak{Z}\left(n+3\right).
Remark 2.10.

From the explicit description as a finite sum (P)=ai(i)\mathfrak{Z}\left(P\right)=\sum a_{i}\mathfrak{Z}\left(i\right) the nn-order polynomial can be extracted as Ω(P,n)=ai(in)\Omega^{\circ}(P,n)=\sum a_{i}{i\choose n}.

Definition 2.11.

Recall the definition of non-strict order series,

+(Q)=n=1Ω(Q,n)xn.\mathfrak{Z}^{+}\left(Q\right)=\sum_{n=1}^{\infty}\Omega(Q,n)x^{n}.

Define the concatenation by

+(Q)++(W)=+(Q)1xx+(W).\mathfrak{Z}^{+}\left(Q\right)*^{+}\mathfrak{Z}^{+}\left(W\right)=\mathfrak{Z}^{+}\left(Q\right)\frac{1-x}{x}\mathfrak{Z}^{+}\left(W\right).

and note that the non-strict order series of a disjoint union of posets is still given by the Hadamard product of their respective non-strict order series.

Example 2.12.

We have +(i)=x(1x)i+1=((ni))xn\mathfrak{Z}^{+}\left(i\right)=\frac{x}{(1-x)^{i+1}}=\sum{\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n}{i}\right)\kern-3.00003pt\right)}x^{n} where the last equality follows from Equation (2). Now consider the poset D(n)D(\langle n\rangle) for the operation DD defined in Example 2.9 above. Then

+(D(n))=\displaystyle\mathfrak{Z}^{+}\left(D(\langle n\rangle)\right)= +(1)+(+(n)+(1))++(1)\displaystyle\mathfrak{Z}^{+}\left(1\right)*^{+}\left(\mathfrak{Z}^{+}\left(n\right)\sqcup\mathfrak{Z}^{+}\left(1\right)\right)*^{+}\mathfrak{Z}^{+}\left(1\right)
=\displaystyle= x(1x)2d+(n)dx=nx2+x(1x)n+4,\displaystyle\frac{x}{(1-x)^{2}}\frac{d\mathfrak{Z}^{+}\left(n\right)}{dx}=\frac{nx^{2}+x}{(1-x)^{n+4}},

which can be calculated by hand, but also follows from the result in Example 2.9 by Theorem 2.14 below.

Proposition 2.13.

Non-strict order series with +,*^{+},\sqcup are an algebra over the operad 𝒮𝒫\mathcal{SP}, and there is a 𝒮𝒫\mathcal{SP} homomorphism SP{non strict order series}SP\rightarrow\{\text{non strict order series}\}, that is,

(11) +(QW)=+(Q)++(W),\mathfrak{Z}^{+}\left(Q*W\right)=\mathfrak{Z}^{+}\left(Q\right)*^{+}\mathfrak{Z}^{+}\left(W\right),
(12) +(QW)=+(Q)+(W).\mathfrak{Z}^{+}\left(Q\sqcup W\right)=\mathfrak{Z}^{+}\left(Q\right)\sqcup\mathfrak{Z}^{+}\left(W\right).
Proof.

Given a pair (i,j)(i,j), if n=i+jn=i+j, then there is a function

hom𝐏𝐨𝐬𝐞𝐭+((X,Y),(i,j))hom𝐏𝐨𝐬𝐞𝐭+(XY,n1)\hom_{\mathbf{Poset}+}((X,Y),(\langle i\rangle,\langle j\rangle))\to\hom_{\mathbf{Poset}+}({X*Y,\langle n-1\rangle})

that takes the pair of order preserving maps h:Xih:X\mapsto\langle i\rangle and k:Yjk:Y\mapsto\langle j\rangle and defines F:XYn1F:X*Y\to\langle n-1\rangle by F(v)=h(v)F(v)=h(v) if vXv\in X and F(v)=k(v)+i1F(v)=k(v)+i-1 if vYv\in Y. The sequence

hom𝐏𝐨𝐬𝐞𝐭+((X,Y),n1)hom𝐏𝐨𝐬𝐞𝐭+((X,Y),n)hom𝐏𝐨𝐬𝐞𝐭+(XY,n1)\textstyle{\hom_{\mathbf{Poset}+}((X,Y),\triangle\langle n-1\rangle)\to\hom_{\mathbf{Poset}+}((X,Y),\triangle\langle n\rangle)\to\hom_{\mathbf{Poset}+}({X*Y,\langle n-1\rangle})}

satisfies Lemma 2.4. The relation (11) then follows by Equation (7) with i2=0,i1=1i_{2}=0,i_{1}=-1. Equation (12) follows by the same arguments as in the 𝐏𝐨𝐬𝐞𝐭\mathbf{Poset} case. ∎

At the level of posets, we have a faithful functor between the categories 𝐏𝐨𝐬𝐞𝐭𝐏𝐨𝐬𝐞𝐭+\mathbf{Poset}\rightarrow\mathbf{Poset}+ that fixes the objects and for each P,QP,Q injects hom𝐏𝐨𝐬𝐞𝐭(P,Q)\hom_{\mathbf{Poset}}(P,Q) into hom𝐏𝐨𝐬𝐞𝐭+(P,Q)\hom_{\mathbf{Poset}+}(P,Q). At the level of order series, there is an operadic isomorphism between strict and non-strict order series.

Let ii denote the map xx1x\mapsto x^{-1} and define a map ι\iota, the reciprocity morphism, as follows. If ff is the analytic continuation of a strict or non-strict order series of a poset PP, then

ι(f):=(1)|P|+1(fi).\iota(f):=(-1)^{|P|+1}\big{(}f\circ i\big{)}.
Theorem 2.14.

For any series-parallel poset PP we have

ι((P))=+(P)andι2=id.\iota(\mathfrak{Z}\left(P\right))=\mathfrak{Z}^{+}\left(P\right)\quad\text{and}\quad\iota^{2}=\mathrm{id}.

In other words, (P)\mathfrak{Z}\left(P\right) is the expansion of its analytic continuation at 0, while +(P)\mathfrak{Z}^{+}\left(P\right) is the expansion at \infty of the same function (up to a sign).

Proof.

By definition it follows that ι2=id\iota^{2}=\mathrm{id}. We will show that ι\iota commutes with concatenation and disjoint union of chains, that is, it is a morphism between two 𝒮𝒫\mathcal{SP}-algebras. Since these operations generate every series-parallel poset, this proves the theorem.

Since (1x1)=(1x)x(1-x^{-1})=-\frac{(1-x)}{x}, we see that ι\iota commutes with concatenation,

ι((n)(m))\displaystyle\iota(\mathfrak{Z}\left(n\right)*\mathfrak{Z}\left(m\right)) =\displaystyle= ι(xn(1x)n+1(1x)xm(1x)m+1)\displaystyle\iota(\frac{x^{n}}{(1-x)^{n+1}}(1-x)\frac{x^{m}}{(1-x)^{m+1}})
=\displaystyle= (1)n+m+1(1)n+1x(1x)n+1(1)(1x)x(1)m+1x(1x)m+1\displaystyle(-1)^{n+m+1}(-1)^{n+1}\frac{x}{(1-x)^{n+1}}(-1)\frac{(1-x)}{x}(-1)^{m+1}\frac{x}{(1-x)^{m+1}}
=\displaystyle= ι(n)+ι(m).\displaystyle\iota\mathfrak{Z}\left(n\right)*^{+}\iota\mathfrak{Z}\left(m\right).

We claim

ι+(n)ι+(m)=ι(+(n)+(m)).\iota\mathfrak{Z}^{+}\left(n\right)\sqcup\iota\mathfrak{Z}^{+}\left(m\right)=\iota\big{(}\mathfrak{Z}^{+}\left(n\right)\sqcup\mathfrak{Z}^{+}\left(m\right)\big{)}.

Since ι2=id\iota^{2}=\mathrm{id} this readily also implies

ι((n)(m))=ι2(+(n)+(m))=ι(n)ι(m).\iota\big{(}\mathfrak{Z}\left(n\right)\sqcup\mathfrak{Z}\left(m\right)\big{)}=\iota^{2}\left(\mathfrak{Z}^{+}\left(n\right)\sqcup\mathfrak{Z}^{+}\left(m\right)\right)=\iota\mathfrak{Z}\left(n\right)\sqcup\iota\mathfrak{Z}\left(m\right).

Abbreviate +(m)\mathfrak{Z}^{+}\left(m\right) by ff. Using Lemma 2.15 below we calculate

ι+(n)ι(f)\displaystyle\iota\mathfrak{Z}^{+}\left(n\right)\sqcup\iota(f) =(n)ι(f)=(1)m+1xnn!dn(fi)\displaystyle=\mathfrak{Z}\left(n\right)\sqcup\iota(f)=(-1)^{m+1}\frac{x^{n}}{n!}d_{n}(f\circ i)
=(1)m+n+1k=1n(n1k1)xkk!dkf(x1)=ι((n)f).\displaystyle=(-1)^{m+n+1}\sum_{k=1}^{n}\binom{n-1}{k-1}\frac{x^{-k}}{k!}d_{k}f({x}^{-1})=\iota\left(\mathfrak{Z}\left(n\right)\sqcup f\right).

Lemma 2.15.

Let ff be nn-times differentiable and x0x\neq 0. Then

xnn!dndxn(fi)=(1)nk=1n(n1k1)xkk!dkfdxk(x1).\frac{x^{n}}{n!}\frac{d^{n}}{dx^{n}}(f\circ i)=(-1)^{n}\sum_{k=1}^{n}\binom{n-1}{k-1}\frac{x^{-k}}{k!}\frac{d^{k}f}{dx^{k}}({x}^{-1}).
Proof.

Let us abbreviate dndxn\frac{d^{n}}{dx^{n}} by dnd_{n}. Applying the Faà di Bruno formula for the chain rule of higher derivatives we get

dn(fi)=k=1ndkf(x1)Bnk(d1i,d2i,,dnk+1i).d_{n}(f\circ i)=\sum_{k=1}^{n}d_{k}f({x}^{-1})B_{nk}(d_{1}i,d_{2}i,\ldots,d_{n-k+1}i).

Here the (incomplete) Bell polynomials BnkB_{nk} are defined by

Bnk(x1,,xnk+1)=n!j1!j2!jnk+1!(x11!)j1(xnk+1(nk+1)!)jnk+1,B_{nk}(x_{1},\ldots,x_{n-k+1})=\sum\frac{n!}{j_{1}!j_{2}!\cdots j_{n-k+1}!}\left(\frac{x_{1}}{1!}\right)^{j_{1}}\cdots\left(\frac{x_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}},

where the sum is taken over all sequences j1,,jnk+1j_{1},\ldots,j_{n-k+1} of non-negative integers such that

j1+j2++jnk+1=k,j1+2j2+3j3++(nk+1)jnk+1=n.j_{1}+j_{2}+\cdots+j_{n-k+1}=k,\quad j_{1}+2j_{2}+3j_{3}+\cdots+(n-k+1)j_{n-k+1}=n.

Now we compute Bnk(d1i,d2i,,dnk+1i)B_{nk}(d_{1}i,d_{2}i,\ldots,d_{n-k+1}i) to be given by

n!j1!j2!jnk+1!(x21!)j1((1)nk+1(nk+1)!xn+k2(nk+1)!)jnk+1\displaystyle\sum\frac{n!}{j_{1}!j_{2}!\cdots j_{n-k+1}!}\left(\frac{-x^{-2}}{1!}\right)^{j_{1}}\cdots\left(\frac{(-1)^{n-k+1}(n-k+1)!x^{-n+k-2}}{(n-k+1)!}\right)^{j_{n-k+1}}
=\displaystyle= n!j1!j2!jnk+1!(1)i=1nk+1ijixi=1nk+1ijixi=1nk+1ji\displaystyle\sum\frac{n!}{j_{1}!j_{2}!\cdots j_{n-k+1}!}(-1)^{\sum_{i=1}^{n-k+1}ij_{i}}x^{-\sum_{i=1}^{n-k+1}ij_{i}}x^{-\sum_{i=1}^{n-k+1}j_{i}}
=\displaystyle= n!j1!j2!jnk+1!(1)nxnxk\displaystyle\sum\frac{n!}{j_{1}!j_{2}!\cdots j_{n-k+1}!}(-1)^{n}x^{-n}x^{-k}
=\displaystyle= (1)nxnxkBnk(1!,,(nk+1)!)\displaystyle(-1)^{n}x^{-n}x^{-k}B_{nk}(1!,\ldots,(n-k+1)!)
=\displaystyle= (1)nxnxk(n1k1)n!k!,\displaystyle(-1)^{n}x^{-n}x^{-k}\binom{n-1}{k-1}\frac{n!}{k!},

where the last identity is a well-known property of the incomplete Bell polynomials [9]. ∎

Our reciprocity theorem is equivalent to Stanley’s version [24].

Proposition 2.16.

For series-parallel posets Theorem 2.14 is equivalent to the reciprocity theorem of Stanley.

Proof.

See the proof of [28, Lemma 3.15.11]. ∎

Remark 2.17.

By reciprocity we have the following relation among the coefficients of order series

+(P)=i=j0n(1)niai+(i)(P)=i=j0nai(i).\mathfrak{Z}^{+}\left(P\right)=\sum_{i=j_{0}}^{n}(-1)^{n-i}a_{i}\mathfrak{Z}^{+}\left(i\right)\quad\Longleftrightarrow\quad\mathfrak{Z}\left(P\right)=\sum_{i=j_{0}}^{n}a_{i}\mathfrak{Z}\left(i\right).
Remark 2.18.

The singularities of (P)\mathfrak{Z}\left(P\right) and +(P)\mathfrak{Z}^{+}\left(P\right) at 1 are simple poles. It follows that the Moebius transformation x11xx\mapsto\frac{1}{1-x}, sending 1 to \infty, turns the analytic continuations of order series into polynomials. For example, for chains we obtain

(n)|y=11x=k=0n(nk)(1)kynk+1,+(n)|y=11x=yn+1yn.\mathfrak{Z}\left(n\right)|_{y=\frac{1}{1-x}}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}y^{n-k+1},\quad\mathfrak{Z}^{+}\left(n\right)|_{y=\frac{1}{1-x}}=y^{n+1}-y^{n}.

Since every order series of a series-parallel poset is a linear combination of order series of chains, there are new algebraic relations between order series that are not present on the level of posets. For example, the order series of the poset sn\langle s\rangle\sqcup\langle n\rangle becomes a linear combination of order series of chains while the poset is not a chain. The following lemma describes the interaction between concatenation and disjoint union of order series and implies a new binomial identity as explained in Proposition 4.1.

Lemma 2.19.

Let s>0s>0. The following relationship holds for power series ff and gg:

(13) (s)(fg)=a+c=s((a)f)((c)g)(a+c=s1((a)f)((c)g))(1).\mathfrak{Z}\left(s\right)\sqcup(f*g)=\sum_{a+c=s}(\mathfrak{Z}\left(a\right)\sqcup f)*(\mathfrak{Z}\left(c\right)\sqcup g)-\\ \left(\sum_{a+c=s-1}(\mathfrak{Z}\left(a\right)\sqcup f)*(\mathfrak{Z}\left(c\right)\sqcup g)\right)*\mathfrak{Z}\left(1\right).
Proof.

We use the notation of (sa,b,c)=s!a!b!c!{s\choose a,b,c}=\frac{s!}{a!b!c!} for the multinomial coefficient.

(s)(fg)\displaystyle\mathfrak{Z}\left(s\right)\sqcup(f*g) =xss!dsdxs(f(1x)g)\displaystyle=\frac{x^{s}}{s!}\frac{d^{s}}{dx^{s}}(f(1-x)g)
=xss!a+b+c=s(sa,b,c)dadxafdbdxb(1x)dcdxcg\displaystyle=\frac{x^{s}}{s!}\sum_{a+b+c=s}{s\choose a,b,c}\frac{d^{a}}{dx^{a}}f\frac{d^{b}}{dx^{b}}(1-x)\frac{d^{c}}{dx^{c}}g
=xss!(a+c=s(sa,0,c)dadxaf(1x)dcdxcg\displaystyle=\frac{x^{s}}{s!}(\sum_{a+c=s}{s\choose a,0,c}\frac{d^{a}}{dx^{a}}f(1-x)\frac{d^{c}}{dx^{c}}g
+a+c=s1(sa,1,c)dadxafddx(1x)dcdxcg)\displaystyle+\sum_{a+c=s-1}{s\choose a,1,c}\frac{d^{a}}{dx^{a}}f\frac{d}{dx}(1-x)\frac{d^{c}}{dx^{c}}g)
=a+c=s((a)f)((c)g)\displaystyle=\sum_{a+c=s}(\mathfrak{Z}\left(a\right)\sqcup f)*(\mathfrak{Z}\left(c\right)\sqcup g)
xs1s1!a+c=s1(s1a,c)dadxafdcdxcg(1x)2x(1x)2\displaystyle-\frac{x^{s-1}}{s-1!}\sum_{a+c=s-1}{s-1\choose a,c}\frac{d^{a}}{dx^{a}}f\frac{d^{c}}{dx^{c}}g(1-x)^{2}\frac{x}{(1-x)^{2}}
=a+c=s((a)f)((c)g)\displaystyle=\sum_{a+c=s}(\mathfrak{Z}\left(a\right)\sqcup f)*(\mathfrak{Z}\left(c\right)\sqcup g)
(a+c=s1((a)f)((c)g))(1).\displaystyle-\left(\sum_{a+c=s-1}(\mathfrak{Z}\left(a\right)\sqcup f)*(\mathfrak{Z}\left(c\right)\sqcup g)\right)*\mathfrak{Z}\left(1\right).

3. Representability of posets

In this section we introduce a family of posets in which the coefficients aia_{i} of the order series (P)=ai(i)\mathfrak{Z}\left(P\right)=\sum a_{i}\mathfrak{Z}\left(i\right) encode topological information. Our results allow to reduce the search space for an algorithm that, given a power series f(x)f(x), if possible, finds a poset PP such that f=(P)f=\mathfrak{Z}\left(P\right).

Consider the unary operation DD defined in Example 2.9,

D(P)=1(1P)1.D(P)=\langle 1\rangle*\big{(}\langle 1\rangle\sqcup P\big{)}*\langle 1\rangle.

This adds a new maximum x1x_{1} and a new minimum x0x_{0} to PP, and a third element yy with x0<y<x1x_{0}<y<x_{1}. Geometrically we are attaching a handle (with a point) to the Hasse diagram of PP.

Let 𝒲\mathcal{W} be the free operad generated by μ\mu and DD. We are interested in the 𝒲\mathcal{W}–algebra generated by the poset with a single element where μ\mu is concatenation and DD is attaching a handle. We call elements of this 𝒲\mathcal{W}–algebra Wixárika posets. For an example see Figure 2, which depicts the Hasse diagram of a Wixárika poset (ordered from left to right). The name is due to the resemblance of the Hasse diagrams of such posets to the intricate colorful necklaces crafted by the Wixárika community in North America.

Figure 2. Hasse diagram of a Wixarika poset.

We can describe elements in 𝒲\mathcal{W} by words in the letters μ\mu and DD. Let ww be such an element. By abuse of notation, we write w(1)w(\langle 1\rangle) to represent the substitution of the poset 1\langle 1\rangle on all leaves of the tree describing the word ww see Figure 3.

Figure 3. Left: The identity operation, the operation DD and the operation μ\mu. Right: A tree representing the element of 𝒲\mathcal{W} in Figure 2.

In [11], an algorithm is described to compute the order polynomials. The same algorithm can be adapted to our setting to compute order series, and in fact, from the point of view of operads, the algorithm amounts to evaluate the operations on the tree from top to bottom. Similarly, we write w((1))w(\mathfrak{Z}\left(1\right)) to represent the substitution of the corresponding elements in power series. For example, the tree of Figure 3 corresponds to w=D(_(_(_D(D(D(_)(_D(_)))))))w=D(\_*(\_*(\_*D(D(D(\_)*(\_*D(\_))))))). Thus, following Example 2.9, we compute w((1))=882(16)+7995(17)+27232(18)+43792(19)+33552(20)+9880(21)w(\mathfrak{Z}\left(1\right))=882\mathfrak{Z}\left(16\right)+7995\mathfrak{Z}\left(17\right)+27232\mathfrak{Z}\left(18\right)+43792\mathfrak{Z}\left(19\right)+33552\mathfrak{Z}\left(20\right)+9880\mathfrak{Z}\left(21\right).

We will say that a power series f(x)f(x) is represented if there is a series-parallel poset PP such that f=(P)f=\mathfrak{Z}\left(P\right). In order to determine which power series can be represented, we shall determine topological invariants of a poset PP from its associated power series (P)\mathfrak{Z}\left(P\right), such as the Betti number of PP (which is short for the first Betti number of the Hasse diagram of PP). With that information we describe an algorithm which determines if f(x)f(x) can be represented and if so, it explicitly constructs all possible series-parallel posets PP so that f=(P)f=\mathfrak{Z}\left(P\right). Posets that have the same order series are called Doppelgänger posets.

Proposition 3.1.

Consider w𝒲w\in\mathcal{W}, a word in the characters * and DD. Let f(x)=w((1))f(x)=w(\mathfrak{Z}\left(1\right)) and P=w(1)P=w(\langle 1\rangle).

  1. (1)

    The series f(x)f(x) admits a unique description

    f(x)=ai(i)+ai+1(i+1)++ak(k),f(x)=a_{i}\mathfrak{Z}\left(i\right)+a_{i+1}\mathfrak{Z}\left(i+1\right)+\cdots+a_{k}\mathfrak{Z}\left(k\right),

    where the coefficients aja_{j} are non-negative integers.

  2. (2)

    The number ii is the number of elements in a maximal chain in PP.

  3. (3)

    The number kk is the number of elements in PP.

  4. (4)

    The difference d=kid=k-i is the Betti number of PP, equal to the number of times the character DD occurs in ww.

  5. (5)

    The difference m=i2d1m=i-2d-1 is the number of times the character * occurs in ww.

  6. (6)

    The number m+1m+1 is the number of leaves in the tree ww.

  7. (7)

    u=1k(1)kuau=1\sum_{u=1}^{k}(-1)^{k-u}a_{u}=1.

  8. (8)

    The first coefficient aia_{i} admits a factorization ai=j=1dtja_{i}=\prod_{j=1}^{d}t_{j} with the following property. For any tj1t_{j}\geq 1 there are rtj,stj,r_{t_{j}},s_{t_{j}}, and utju_{t_{j}} with tj<utjt_{j}<u_{t_{j}}, so that when we evaluate the word ww on (1)\mathfrak{Z}\left(1\right) then rtj(tj)++stj(utj)r_{t_{j}}\mathfrak{Z}\left(t_{j}\right)+\cdots+s_{t_{j}}\mathfrak{Z}\left(u_{t_{j}}\right) is an input of some DD.

Proof.

We shall give a proof of each item.

  1. (1)

    Follows from Proposition 2.7 and Equation (3).

  2. (2)

    If * appears in ww, it concatenates subposets of any maximal chain. If DD appears in ww, it adds a maximum and a minimum point to the maximal chain in the input poset, which is a subposet of any maximal chain.

    We conclude from Proposition 2.7 and Equation (3) that when we evaluate ww, the lowest term counts the number of points in a maximal chain.

  3. (3)

    We prove this in Lemma 3.3 in a more general setting.

  4. (4)

    From Proposition 2.7 it follows that we can track the number of times DD acts by comparing the parameter of the monomial with lowest degree and the monomial of highest degree. Geometrically, DD modifies the Hasse diagram by increasing the number of holes.

  5. (5)

    If the word DD occurs dd times in ww, the only way to obtain the term (i)\mathfrak{Z}\left(i\right) is if the word * occurs i2d1i-2d-1 times in ww.

  6. (6)

    Consider the representation of ww as a binary tree with some marked edges. If the tree has mm binary branches, then it has m+1m+1 leaves.

  7. (7)

    Follows from Equation (3.2) and the fact that h0=1h_{0}^{*}=1

  8. (8)

    Follows from Proposition 2.7.

3.1. The inverse problem

In this section we study the following problem. When is a power series f(x)=i=i0ijfi(i),fi0,fij0f(x)=\sum_{i=i_{0}}^{i_{j}}f_{i}\mathfrak{Z}\left(i\right),f_{i_{0}},f_{i_{j}}\neq 0, represented as (P)\mathfrak{Z}\left(P\right) for some poset PP? Two posets are called Doppelgänger posets if they share the same order series, for example 1(111)\langle 1\rangle*(\langle 1\rangle\sqcup\langle 1\rangle\sqcup\langle 1\rangle) and 22\langle 2\rangle\sqcup\langle 2\rangle have the same order series: (2)+6(3)+6(4)\mathfrak{Z}\left(2\right)+6\mathfrak{Z}\left(3\right)+6\mathfrak{Z}\left(4\right) [16].

Note that if we order the chains in the decomposition (P)=a(i)++b(j),(Q)=a2(i2)++b2(j2)\mathfrak{Z}\left(P\right)=a\mathfrak{Z}\left(i\right)+\cdots+b\mathfrak{Z}\left(j\right),\mathfrak{Z}\left(Q\right)=a_{2}\mathfrak{Z}\left(i_{2}\right)+\cdots+b_{2}\mathfrak{Z}\left(j_{2}\right), the terms a,i,b,ja,i,b,j change under the rules:

(14) (P)(Q)=aa2(i+i2)++bb2(j+j2)\mathfrak{Z}\left(P\right)*\mathfrak{Z}\left(Q\right)=aa_{2}\mathfrak{Z}\left(i+i_{2}\right)+\cdots+bb_{2}\mathfrak{Z}\left(j+j_{2}\right)

and

(15) D((P))=ia(i+2)++(j+1)b(j+3).D(\mathfrak{Z}\left(P\right))=ia\mathfrak{Z}\left(i+2\right)+\cdots+(j+1)b\mathfrak{Z}\left(j+3\right).

If we have a candidate poset PP, to reduce the computational time, we first compute the lowest and highest order term of the factorization (P)=a(i)++b(j),\mathfrak{Z}\left(P\right)=a\mathfrak{Z}\left(i\right)+\cdots+b\mathfrak{Z}\left(j\right), and compare it with fi0,fijf_{i_{0}},f_{i_{j}}. To select candidate posets, we do not need to explore all possible words ww. Since * is associative, we can pick (_(_(__)))(\_*(\_*\cdots(\_*\_))\cdots\leavevmode\nobreak\ ) as a representative of every composition of nn operations *. We call this representative an nn-corolla. In other words, the 22–corolla is (__)(\_*\_), the 33–corolla is (_(__))(\_*(\_*\_)), and so on. If a word ww is a solution to our problem, then any permutation of the inputs of the corollas will also be a solution to our problem. In our setting, some of those Doppelgängers are explained because the poset concatenation is not commutative, but the power series concatenation is commutative.

The language of operads allows us to choose representatives from equivalence classes of trees. Consider the two-colored symmetric operad 2–𝒲\mathcal{W}. This operad has a binary operation DD, colored in red, and for every n>1n>1 an nn–ary operation, given by an nn-corolla *, colored in green. Red colored operations have no restrictions, but green ones can only be composed with red ones. In other words, a green corolla cannot be grafted into a green corolla.

Proposition 3.2.

Given a finite sum f(x)=i=i0ijfi(i),fi0,fij0f(x)=\sum_{i=i_{0}}^{i_{j}}f_{i}\mathfrak{Z}\left(i\right),f_{i_{0}},f_{i_{j}}\neq 0 where fik,0kjf_{i_{k}},{0\leq k\leq j} are non-negative integers, there is an algorithm to determine if f(x)=(P)f(x)=\mathfrak{Z}\left(P\right) for some Wixarika poset PP and, in the positive case, the algorithm returns all possible posets representing f(x)f(x).

Proof.

Let f(x)=i=i0ijfi(i),fi0,fij0f(x)=\sum_{i=i_{0}}^{i_{j}}f_{i}\mathfrak{Z}\left(i\right),f_{i_{0}},f_{i_{j}}\neq 0. We first restrict the space of posets that can represent ff. From Proposition 3.1, we know the number of times the characters ,D*,D occurs in the candidate words as well as the possible value of |P||P|.

Now, we verify that ff satisfy the restrictions from Ehrhart theory listed on [17].

The next step is to choose representatives of Doppelgängers. We restrict the number of candidate words by using the 2–𝒲\mathcal{W} structure under the rule: Any nn-corolla counts as n1n-1 uses of *.

After that, in a loop:

  • We evaluate a candidate word {w}\{w\} only on the terms (fi0,i0,fij,ij)(f_{i_{0}},i_{0},f_{i_{j}},i_{j}) of ff using Algorithm 1.

  • For ww that passed the algorithm we compute w((1))w(\mathfrak{Z}\left(1\right)). This can be done evaluating from top to bottom as in [11].

  • If any poset passes this step, we use [8] to find the remaining Doppelgänger posets and we stop the algorithm. Otherwise we continue the loop until there are no more posets candidates.

Input: A candidate 2-𝒲\mathcal{W} tree with ii leaves and dd red marks. A value (ai,i,ak,k)(a_{i},i,a_{k},k) ;
// The four numbers stand for ai(i)++ak(k),(1,1,1,1)=(1)a_{i}\mathfrak{Z}\left(i\right)+\cdots+a_{k}\mathfrak{Z}\left(k\right),(1,1,1,1)=\mathfrak{Z}\left(1\right)
// The nn-corollas represent the composition of nn copies of *, and the red marks represent DD
Put (1,1,1,1)(1,1,1,1) on the leaves;
Let BB be the set of red marks ordered by inverse Deep First Search on the tree;
for bBb\in B do
      compute the input of bb with Equation (14) and Equation (15). Lets say (rb,tb,sb,ub)(r_{b},t_{b},s_{b},u_{b});
      // only compute the lowest and highest term
       if tbt_{b} does not divide aia_{i} then
             return False;
       else
            store tbt_{b} in Cache; // Use Cache to find the root’s value
            
       end if
      
end for
if  the root has a value different to aia_{i}  then
      return False
else
      True.
end if
Algorithm 1 Is w(1,1,1,1)==(ai,i,ak,k)w(1,1,1,1)==(a_{i},i,a_{k},k)?

The algorithm has as input a description of f(x)f(x) as a finite combination of elements (i)\mathfrak{Z}\left(i\right) for some natural numbers ii. Note that every coefficient of i=1(i)=x+3x2+\sum_{i=1}^{\infty}\mathfrak{Z}\left(i\right)=x+3x^{2}+\ldots is finite. Because of this, we require the input to be written already as a finite sum of terms {xi/(1x)i+1}\{x^{i}/(1-x)^{i+1}\}. We do not have an algorithm to discover the factorization of an arbitrary power series ff that is guaranteed to finish in a finite time.

For arbitrary series-parallel posets we need to adapt Proposition 3.1 and increase the search space as now we are required to work with different connected components and attached handles (as in the operation DD) can consist of several elements.

Proposition 3.3.

Let QQ be a series-parallel poset. If (Q)=j=ikaj(j)\mathfrak{Z}\left(Q\right)=\sum_{j=i}^{k}a_{j}\mathfrak{Z}\left(j\right) is a finite sum, then

  1. (1)

    the Betti number of QQ is smaller or equal to kik-i,

  2. (2)

    the number ii is the length of any maximal chain of the largest connected component of the Hasse diagram of QQ,

  3. (3)

    the number kk is the total number of points in the poset,

  4. (4)

    aia_{i} and aka_{k} can be factored into a product of terms obtained by the application of disjoint union on the subposets of QQ,

  5. (5)

    u=1k(1)kuau=1\sum_{u=1}^{k}(-1)^{k-u}a_{u}=1.

Proof.
  1. (1)

    Geometrically, when we apply DD to a disjoint union of posets, we increase the Betti number of the Hasse diagram. But according to Proposition (2.7), the index kk reflects not only the number of handles in the Hasse diagram but also the number of points on those handles and the number of connected components on the Hasse diagram. If

    j1=i1k1aj1(j1)j2=i2k2aj2(j2)=j3=i3k3aj3(j3),\sum_{j_{1}=i_{1}}^{k_{1}}a_{j_{1}}\mathfrak{Z}\left(j_{1}\right)\sqcup\sum_{j_{2}=i_{2}}^{k_{2}}a_{j_{2}}\mathfrak{Z}\left(j_{2}\right)=\sum_{j_{3}=i_{3}}^{k_{3}}a_{j_{3}}\mathfrak{Z}\left(j_{3}\right),

    then we can verify that k3i3(k1i1)+(k2i2)k_{3}-i_{3}\geq(k_{1}-i_{1})+(k_{2}-i_{2}). Here (k1i1)(k_{1}-i_{1}) and (k2i2)(k_{2}-i_{2}) are bounds for the Betti numbers of each connected component, and (k3i3)(k_{3}-i_{3}) bounds the Betti number of the union. Hence the inequality.

  2. (2)

    We use the following observation: If mkm\geq k, then, by the definition of \sqcup (see also Proposition 2.7), we find that

    (k)(m)=(mk)(k0)(m)+.\mathfrak{Z}\left(k\right)\sqcup\mathfrak{Z}\left(m\right)={m\choose k}{k\choose 0}\mathfrak{Z}\left(m\right)+\cdots.

    The proof is similar to the proof of item (2) of Proposition 3.1.

  3. (3)

    If m>nm>n, then by Proposition 2.7 the last non-zero coefficient of mn\langle m\rangle\bigsqcup\langle n\rangle is (m+nn)(nn)(m+n){m+n\choose n}{n\choose n}\mathfrak{Z}\left(m+n\right). Concatenation also preserves the number of elements. These results imply that the term (k)\mathfrak{Z}\left(k\right) is obtained by adding all elements involved in all disjoint unions as well as those elements involved in concatenation.

  4. (4)

    It follows from Proposition 2.7.

  5. (5)

    Follows from Equation (3.2) and the fact that h0=1h_{0}^{*}=1.

The coefficients of the power series associated to a series-parallel poset are not topological invariants. For example the posets 1(11)1\langle 1\rangle*(\langle 1\rangle\sqcup\langle 1\rangle)*\langle 1\rangle and 2(11)\langle 2\rangle*(\langle 1\rangle\sqcup\langle 1\rangle) have the same number of labeling maps, but different Betti numbers.

To adapt Algorithm 1 for series-parallel posets we need to increase the search space to allow for disjoint union of posets. The algorithm depends on [8] which already works at the level of series-parallel posets.

3.2. Comparison with Ehrhart theory

Let Poly(P)Poly(P) denote the order polytope of a poset PP and EPoly(P)E_{Poly(P)} its Ehrhart polynomial [3]. Recall that by

+(P)=n=1ΩP,nxn=x+n=2EPoly(P)(n1)xn=xh(x)(1x)|P|+1\mathfrak{Z}^{+}\left(P\right)=\sum_{n=1}^{\infty}\Omega_{P,n}x^{n}=x+\sum_{n=2}^{\infty}E_{Poly(P)}(n-1)x^{n}=x\frac{h^{*}(x)}{(1-x)^{|P|+1}}

order series are related to the Ehrhart series of Poly(P)Poly(P), or its hh^{*}-vector, by a change of basis and a shift of degree. From the point of view of Ehrhart theory there are several works characterizing hh^{*}-vectors [2, 17, 27] and ff^{*}-vectors [7] of polytopes. We instead study Ehrhart series of order polytopes. This is the reason why we work with respect to a different basis.

Remark 3.4.

Note that

Poly(PQ)=Poly(P)×Poly(Q),Poly(PQ)=Poly(P)Poly(Q),Poly(P\sqcup Q)=Poly(P)\times Poly(Q),\quad Poly(P*Q)=Poly(P)\oplus Poly(Q),

where \oplus denotes the free sum of polytopes: If XdX\subset\mathbb{R}^{d} and YeY\subset\mathbb{R}^{e} are two polytopes of dimension dd and ee, then XY=conv{(0d×Y)(X×0e)}d+eX\oplus Y=\mathrm{conv}\{(0_{\mathbb{R}^{d}}\times Y)\cup(X\times 0_{\mathbb{R}^{e}})\}\subset\mathbb{R}^{d+e}.

This and the relation ΩP,n=EPoly(P)(n1)\Omega_{P,n}=E_{Poly(P)}(n-1) imply the form of the respective operations on order series, Equation (11) and Equation (12). See for instance [6].

We have shown above how to express +(P)\mathfrak{Z}^{+}\left(P\right) in the basis {+(i)}i\{\mathfrak{Z}^{+}\left(i\right)\}_{i\in\mathbb{N}}. In this section we relate the coordinates with respect to this basis to a certain triangulation of Poly(P)Poly(P).

Following Stanley [26], a lower set (order ideal) II is a subset of the poset PP so that if xIx\in I and yxy\leq x then yIy\in I. Lower sets form a poset J(P)J(P) ordered by inclusion. To any chain of strict inclusions of lower sets K:I1I2IkK:I_{1}\subset I_{2}\subset\cdots\subset I_{k} we assign

FK={f|P|:f is constant on the subsets I1,I2I1,IkIk1,PIk,0=f(I1)f(I2)f(Ik)f(PIk)=1.}.F_{K}=\left\{f\in\mathbb{R}^{|P|}:\begin{array}[]{l}f\hbox{ is constant on the subsets }I_{1},I_{2}\setminus I_{1},\cdots I_{k}\setminus I_{k-1},P\setminus I_{k},\\ 0=f(I_{1})\leq f(I_{2})\leq\cdots\leq f(I_{k})\leq f(P\setminus I_{k})=1.\end{array}\right\}.

The canonical triangulation of the order polytope of PP is given by the simplicial complex

{FKKJ(P)}.\{F_{K}\mid K\in J(P)\}.

In other words, it is the order complex of the poset J(P)J(P) (see [26]).

For an example consider the poset 23\langle 2\rangle\sqcup\langle 3\rangle. Its order polytope is

Poly(23)={x1x2,y1y2y3}[0,1]5.Poly(\langle 2\rangle\sqcup\langle 3\rangle)=\{x_{1}\leq x_{2},y_{1}\leq y_{2}\leq y_{3}\}\subset[0,1]^{5}.

Using coordinates (x1,x2,y1,y2,y3)(x_{1},x_{2},y_{1},y_{2},y_{3}) in 5\mathbb{R}^{5}. It contains various 5-dimensional simplices, for example {0x1x2y1y2y31}\{0\leq x_{1}\leq x_{2}\leq y_{1}\leq y_{2}\leq y_{3}\leq 1\}, or {0x1y1x2y2y31}\{0\leq x_{1}\leq y_{1}\leq x_{2}\leq y_{2}\leq y_{3}\leq 1\}. This fact can be expressed using a shuffle product (see e.g. [19]) on the order polytopes of two chains n\langle n\rangle and m\langle m\rangle. We define it as the sum of simplices that are formed by linear orders on x1,x2,,xn,y1,y2,,ymx_{1},x_{2},\ldots,x_{n},y_{1},y_{2},\ldots,y_{m} that preserve the original order on the xx- and the yy-variables. Note that this is just the usual shuffle product – we simply use words to encode linear orders, for example xyxy means xyx\leq y, and vice versa. It is known that the shuffle product of two words on nn and mm letters has (n+mn){n+m\choose n} summands. This implies that the number of maximal simplices in the canonical triangulation of Poly(nm)Poly(\langle n\rangle\sqcup\langle m\rangle) is (n+mn){n+m\choose n}. In the example 23\langle 2\rangle\sqcup\langle 3\rangle we find thus 10 simplices of dimension 5 in the canonical triangulation of Poly(23)Poly(\langle 2\rangle\sqcup\langle 3\rangle).

The set of simplices {FK}KJ(P)\{F_{K}\}_{K\in J(P)} is closed under taking intersections. In particular, every simplex not in the boundary of Poly(P)Poly(P) lies in the intersection of some maximal simplices of the canonical triangulation. Suppose P1,,PkP_{1},\ldots,P_{k} are the maximal simplices of {FK}KJ(P)\{F_{K}\}_{K\in J(P)}. Let 𝟙X:d{\mathbb{1}}_{X}\colon\mathbb{R}^{d}\to\mathbb{R} be the indicator function of polytope XdX\subset\mathbb{R}^{d}, defined by 𝟙X(x)=1{\mathbb{1}}_{X}(x)=1 if xXx\in X and 0 otherwise. We can determine all points on the canonical triangulation of Poly(P)Poly(P) by considering the union of simplices of maximal dimension, but then we are overcounting. For instance, we count twice the faces obtained as intersection of two simplices. We can express this fact as

𝟙Poly(P)=i𝟙Pii,j,ij𝟙PiPj++(1)k𝟙P1Pk,{\mathbb{1}}_{Poly(P)}=\sum_{i}{\mathbb{1}}_{P_{i}}-\sum_{i,j,i\neq j}{\mathbb{1}}_{P_{i}\cap P_{j}}+\cdots+(-1)^{k}{\mathbb{1}}_{P_{1}\cap\cdots\cap P_{k}},

which is an instance of the well-known inclusion-exclusion principle.

y1y_{1}xxy2y_{2}
Figure 4. The order polytope of the poset 12\langle 1\rangle\sqcup\langle 2\rangle. The canonical triangulation consists of three 3-simplices, indicated by the dashed lines. They intersect in two internal 2-simplices, depicted in red.
Lemma 3.5.

Let mkrm\geq k\geq r, P=kmP=\langle k\rangle\sqcup\langle m\rangle. Then the number of m+rm+r–dimensional simplices in the canonical triangulation of PP is (m+rk)(kr){m+r\choose k}{k\choose r}.

Proof.

Consider a (m+r)(m+r)–simplex TT in the canonical triangulation of Poly(P)Poly(P). We have already discussed above that in the case r=kr=k the simplex TT is represented by a linear order on the coordinates of |P|=k×m=span(x1,,xk,y1,,ym)\mathbb{R}^{|P|}=\mathbb{R}^{k}\times\mathbb{R}^{m}=\text{span}_{\mathbb{R}}(x_{1},\ldots,x_{k},y_{1},\ldots,y_{m}) that respects the individual orders x1xkx_{1}\leq\ldots\leq x_{k} and y1ymy_{1}\leq\ldots\leq y_{m}. If r<kr<k, then TT is obtained from one (or more) of these simplices by exchanging an inequality ``"``\leq" for an equality ``="``=". For instance, if k=m=1k=m=1, then the canonical triangulation of Poly(P)=[0,1]2Poly(P)=[0,1]^{2} has two 2-simplices {0xy1}\{0\leq x\leq y\leq 1\} and {0yx1}\{0\leq y\leq x\leq 1\} which intersect in the internal 1-simplex {0x=y1}\{0\leq x=y\leq 1\}. See also Example 3.7 below.

The general construction starts with a geometrical m+rm+r-simplex Δm+r={(z0,,zm+r1)|\Delta_{m+r}=\{(z_{0},\cdots,z_{m+r-1})| zi=1,zi0}\sum z_{i}=1,z_{i}\geq 0\}. We then change coordinates w1=z0,w2=z0+z1,,wm+r=ziw_{1}=z_{0},w_{2}=z_{0}+z_{1},\cdots,w_{m+r}=\sum z_{i}, to obtain Δm+r={0w1wm+r1}\Delta_{m+r}=\{0\leq w_{1}\leq\cdots\leq w_{m+r}\leq 1\}. The final step is to embed this simplex into the canonical triangulation by assigning coordinates xi,yjx_{i},y_{j} to the wkw_{k} place holders.

Choose kk different coordinates of Δm+r\Delta_{m+r}; this can be done in (m+rk){m+r\choose k} ways. Out of those kk coordinates choose krk-r coordinates in (kr){k\choose r} ways. Then label the (m+r)k+(kr)=m(m+r)-k+(k-r)=m coordinates from x1x_{1} to xmx_{m}. Add a second label y1,yky_{1},\cdots y_{k} to the kk chosen points. Those krk-r chosen points have now two labels xi,yjx_{i},y_{j} which represent the condition xi=yjx_{i}=y_{j}. Any other point has only a single label. The simplex TT is then defined by applying these labels to Δm+r\Delta_{m+r}. We can do this process in (m+rk)(kr){m+r\choose k}{k\choose r} ways, as claimed, and any simplex in the canonical triangulation is determined by such a process. ∎

Proposition 3.6 (+(P)\mathfrak{Z}^{+}\left(P\right) satisfies the inclusion-exclusion principle).

Let n=|P|n=|P|. Consider +(P)=i=j0n(1)niai+(i)\mathfrak{Z}^{+}\left(P\right)=\sum_{i=j_{0}}^{n}(-1)^{n-i}a_{i}\mathfrak{Z}^{+}\left(i\right). Then every aia_{i} is non-negative, the order polytope of P{P} is the union of ana_{n} copies of nn-simplices, and the remaining coefficients aia_{i} of +(P)=(1)niai+(i)\mathfrak{Z}^{+}\left(P\right)=\sum(-1)^{n-i}a_{i}\mathfrak{Z}^{+}\left(i\right) count the number of internal ii-faces that occur as intersections of the nn-simplices.

Proof.

Case P=kmP=\langle k\rangle*\langle m\rangle: A kk–chain concatenated with a mm–chain is a (m+k)(m+k)-chain, so the coefficient of +(m+k)\mathfrak{Z}^{+}\left(m+k\right) is 1, in accordance with the fact that Poly(m+k)Poly(\langle m+k\rangle) is a (m+k)(m+k)–dimensional simplex.

Case P=kmP=\langle k\rangle\sqcup\langle m\rangle: Assume mkm\geq k. Lemma 3.5 together with Proposition 2.7 and Remark 2.17, implies that the inclusion-exclusion principle is valid for this case.

Now, if (the non-strict order series of) a poset PP satisfies the inclusion-exclusion formula, so does P1P*\langle 1\rangle and P1P\sqcup\langle 1\rangle. The geometric reason is that both operations add new orthogonal directions to a unit cube. The action of 1*\langle 1\rangle is that of forming a cone while 1\sqcup\langle 1\rangle acts as the Minkowski sum; the order polytope Poly(PQ)Poly(P\sqcup Q) is constructed from the order polytopes Poly(P)Poly(P) and Poly(Q)Poly(Q) by choosing orthogonal dimensions with coordinates {xi}\{x_{i}\} and {yj}\{y_{j}\}, respectively. On each we draw one order polytope, and then we consider the space ax+ybax+yb, xPoly(P),yPoly(Q)x\in Poly(P),y\in Poly(Q) with 0a,b10\leq a,b\leq 1.

For any ss–simplex in Poly(Q)Poly(Q) there is a chain SS in J(P)J(P) so that the ss–simplex is the order polytope of SS.

Then Poly(PQ)=SPoly(Q)Poly(PS)Poly(P\sqcup Q)=\sqcup_{S\in Poly(Q)}Poly(P\sqcup S). Since ,*,\sqcup are distributive with respect to ++ on the vector space with basis {+(i)}\{\mathfrak{Z}^{+}\left(i\right)\}, assuming (Q)=ai(i)\mathfrak{Z}\left(Q\right)=\sum a_{i}\mathfrak{Z}\left(i\right), we obtain (PQ)=ai(P)(i)\mathfrak{Z}\left(P\sqcup Q\right)=\sum a_{i}\mathfrak{Z}\left(P\right)\sqcup\mathfrak{Z}\left(i\right). Since we proved that for chains the inclusion-exclusion formula holds, it is thus also true for series-parallel posets. ∎

Example 3.7.

Consider P=12P=\langle 1\rangle\sqcup\langle 2\rangle. Figure 4 depicts the order polytope of PP. The canonical triangulation has three 3-simplices, described by the linear extensions {xy1y2}\{x\leq y_{1}\leq y_{2}\} , {y1xy2}\{y_{1}\leq x\leq y_{2}\} and {y1y2x}\{y_{1}\leq y_{2}\leq x\}. If r=0r=0, then (m+rk)(kr)=2{m+r\choose k}{k\choose r}=2, so there are two internal 2-simplices which arise as intersections of the latter ones. The first two produce {x=y1y2}\{x=y_{1}\leq y_{2}\}, the last two produce {y1y2=x}\{y_{1}\leq y_{2}=x\}. Note that there are no internal 1-simplices; every 1-simplex of the canonical triangulation lies in the boundary of Poly(P)Poly(P).

It is known that Ehrhart polynomials satisfy the inclusion-exclusion principle since they count lattice points on integer polytopes. In [1, Proposition 9.5] the Hopf monoid structure of posets is studied. It is proved that posets are isomorphic, as Hopf monoids, to pointed conical generalized permutahedra. In this sense, the order polynomial is the associated polynomial to a character [1, Proposition 9.4]. It follows that the order polynomial satisfies an inclusion-exclusion formula for pointed conical generalized permutahedra. In our setting, we consider the action of an operad generated by concatenation and disjoint union. In that case Proposition 3.6 shows that the inclusion-exclusion principle is preserved by the action of these two operations.

4. Combinatorics

In the first subsection we apply our results to study binomial identities. We could not find the identities in Equation (18), Proposition 4.1 and Proposition 4.2 in the book [14]. We explore some corollaries of those identities, including an identity for finite partitions of fixed length that are allowed to contain empty sets (Subsection 4.2). In Section 4.3 we introduce a combinatorial approach to study the multivariate negative hypergeometric distribution.

4.1. Identities

The existence of the operad structure on order series implies Proposition 4.1. The associativity of the concatenation on order series implies Proposition 4.2. We call these two identities structural binomial identities. We also list several direct consequences of these structural identitites that we could not find in the literature.

Proposition 4.1.

Given p,q,sp+qp,q,s\leq p+q. Then for tst\leq s:

(p+q+ts)(st)=a+c=snarcn+r=t(p+na)(an)(q+rc)(cr)a+c=s1narcn+r=t1(p+na)(an)(q+rc)(cr).\displaystyle{p+q+t\choose s}{s\choose t}=\sum_{\begin{subarray}{c}a+c=s\\ n\leq a\\ r\leq c\\ n+r=t\end{subarray}}{p+n\choose a}{a\choose n}{q+r\choose c}{c\choose r}-\sum_{\begin{subarray}{c}a+c=s-1\\ n\leq a\\ r\leq c\\ n+r=t-1\end{subarray}}{p+n\choose a}{a\choose n}{q+r\choose c}{c\choose r}.
Proof.

Consider Equation (13) with f=(q),g=(p)f=\mathfrak{Z}\left(q\right),g=\mathfrak{Z}\left(p\right). Then

(s)((q)(p))\displaystyle\mathfrak{Z}\left(s\right)\sqcup(\mathfrak{Z}\left(q\right)*\mathfrak{Z}\left(p\right)) =(s)((q+p))\displaystyle=\mathfrak{Z}\left(s\right)\sqcup(\mathfrak{Z}\left(q+p\right))
=t=0s(p+q+ts)(st)(p+q+t),\displaystyle=\sum_{t=0}^{s}{p+q+t\choose s}{s\choose t}\mathfrak{Z}\left(p+q+t\right),

and

(s)((q)(p))=\displaystyle\mathfrak{Z}\left(s\right)\sqcup(\mathfrak{Z}\left(q\right)*\mathfrak{Z}\left(p\right))= a+c=s((a)(p))((c)(q))\displaystyle\sum_{a+c=s}(\mathfrak{Z}\left(a\right)\sqcup\mathfrak{Z}\left(p\right))*(\mathfrak{Z}\left(c\right)\sqcup\mathfrak{Z}\left(q\right))
(a+c=s1((a)(p))((c)(q)))(1)\displaystyle-\left(\sum_{a+c=s-1}(\mathfrak{Z}\left(a\right)\sqcup\mathfrak{Z}\left(p\right))*(\mathfrak{Z}\left(c\right)\sqcup\mathfrak{Z}\left(q\right))\right)*\mathfrak{Z}\left(1\right)
=\displaystyle= a+c=sn=0a(p+na)(an)(p+n)r=0c(q+rc)(cr)(q+r)\displaystyle\sum_{a+c=s}\sum_{n=0}^{a}{p+n\choose a}{a\choose n}\mathfrak{Z}\left(p+n\right)*\sum_{r=0}^{c}{q+r\choose c}{c\choose r}\mathfrak{Z}\left(q+r\right)
a+c=s1n=0a(p+na)(an)(p+n)r=0c(q+rc)(cr)(q+r)(1)\displaystyle-\sum_{a+c=s-1}\sum_{n=0}^{a}{p+n\choose a}{a\choose n}\mathfrak{Z}\left(p+n\right)*\sum_{r=0}^{c}{q+r\choose c}{c\choose r}\mathfrak{Z}\left(q+r\right)*\mathfrak{Z}\left(1\right)
=\displaystyle= a+c=sn=0ar=0c(p+na)(an)(q+rc)(cr)(p+n+q+r)\displaystyle\sum_{a+c=s}\sum_{n=0}^{a}\sum_{r=0}^{c}{p+n\choose a}{a\choose n}{q+r\choose c}{c\choose r}\mathfrak{Z}\left(p+n+q+r\right)
a+c=s1n=0ar=0c(p+na)(an)(q+rc)(cr)(p+n+q+r+1).\displaystyle-\sum_{a+c=s-1}\sum_{n=0}^{a}\sum_{r=0}^{c}{p+n\choose a}{a\choose n}{q+r\choose c}{c\choose r}\mathfrak{Z}\left(p+n+q+r+1\right).

The result follows by comparing the coefficients. ∎

Note that the previous proposition generalizes the Chu-Vandermonde identity. To see this, evaluate on t=0t=0.

Proposition 4.2.

Let nn be a non-negative integer and kk\in\mathbb{N}. For any kk-partition n=n1++nkn=n_{1}+\cdots+n_{k}, with ni0n_{i}\geq 0, and for mn+k1m\geq n+k-1 we have

(mn)=(k10)mi=mminii=1k(qini)(k11)mi=m1minii=1k(qini)±+(1)k2(k1k2)mi=m(k2)minii=1k(qini)+(1)k1(k1k1)mi=m(k1)minii=1k(qini).{m\choose n}={k-1\choose 0}\sum_{\begin{subarray}{c}\sum m_{i}=m\\ m_{i}\geq n_{i}\end{subarray}}\prod_{i=1}^{k}{q_{i}\choose n_{i}}-{k-1\choose 1}\sum_{\begin{subarray}{c}\sum m_{i}=m-1\\ m_{i}\geq n_{i}\end{subarray}}\prod_{i=1}^{k}{q_{i}\choose n_{i}}\pm\cdots\\ +(-1)^{k-2}{k-1\choose k-2}\sum_{\begin{subarray}{c}\sum m_{i}=m-(k-2)\\ m_{i}\geq n_{i}\end{subarray}}\prod_{i=1}^{k}{q_{i}\choose n_{i}}+(-1)^{k-1}{k-1\choose k-1}\sum_{\begin{subarray}{c}\sum m_{i}=m-(k-1)\\ m_{i}\geq n_{i}\end{subarray}}\prod_{i=1}^{k}{q_{i}\choose n_{i}}.
Proof.

Decompose n\langle n\rangle as n1n2nk\langle n_{1}\rangle*\langle n_{2}\rangle*\cdots*\langle n_{k}\rangle. Then the result is obtained by applying Equation (8) and computing the degree mm coefficient of the last row in the sequence of identities below:

q=n(qn)xm\displaystyle\sum_{q=n}^{\infty}{q\choose n}x^{m} =(n)\displaystyle=\mathfrak{Z}\left(n\right)
=(n1)(1x)(n2)(1x)(1x)(nk)\displaystyle=\mathfrak{Z}\left(n_{1}\right)(1-x)\mathfrak{Z}\left(n_{2}\right)(1-x)\cdots(1-x)\mathfrak{Z}\left(n_{k}\right)
=(n1)(n2)(nk)(1x)k1\displaystyle=\mathfrak{Z}\left(n_{1}\right)\mathfrak{Z}\left(n_{2}\right)\cdots\mathfrak{Z}\left(n_{k}\right)(1-x)^{k-1}
=q1=n1(q1n1)xq1qk=nk(qknk)xqkj=0k1(1)j(k1j)xj.\displaystyle=\sum_{q_{1}=n_{1}}^{\infty}{{q_{1}}\choose n_{1}}x^{q_{1}}\cdots\sum_{q_{k}=n_{k}}^{\infty}{{q_{k}}\choose n_{k}}x^{q_{k}}\sum_{j=0}^{k-1}(-1)^{j}{k-1\choose j}x^{j}.

Using +(n)\mathfrak{Z}^{+}\left(n\right) and +*^{+} we obtain the equivalent identity:

Proposition 4.3.

Let n=n1++nkn=n_{1}+\cdots+n_{k}. Then for vn+k1v\geq n+k-1

((vk+1n))=(k10)vi=vvi1i=1k((vini))(k11)vi=v1vi1i=1k((vini))++(1)k2(k1k2)vi=v(k2)vi1i=1k((vini))+(k1k1)vi=v(k1)vi1i=1k((vini)).\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-k+1}{n}\right)\kern-3.00003pt\right)={k-1\choose 0}\sum_{\begin{subarray}{c}\sum v_{i}=v\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{n_{i}}\right)\kern-3.00003pt\right)-{k-1\choose 1}\sum_{\begin{subarray}{c}\sum v_{i}=v-1\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{n_{i}}\right)\kern-3.00003pt\right)+\cdots\\ +(-1)^{k-2}{k-1\choose k-2}\sum_{\begin{subarray}{c}\sum v_{i}=v-(k-2)\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{n_{i}}\right)\kern-3.00003pt\right)+{k-1\choose k-1}\sum_{\begin{subarray}{c}\sum v_{i}=v-(k-1)\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{n_{i}}\right)\kern-3.00003pt\right).

Following the ideas of the previous section, we define f(x)g(x)=f(x)1xg(x)f(x)*^{-}g(x)=f(x)\frac{1}{x}g(x) and generate the monoid over x(1x)2\frac{x}{(1-x)^{2}}. In this case we study the combinatorics of the product of Ehrhart series (with respect to the basis formed by chains), see [15, Problem 6.3]. We associate the power series (1)=x(1x)2\mathfrak{Z}^{-}\left(1\right)=\frac{x}{(1-x)^{2}} to the chain 1\langle 1\rangle and extend by (n)=(n1)(1)\mathfrak{Z}^{-}\left(n\right)=\mathfrak{Z}^{-}\left(n-1\right)*^{-}\mathfrak{Z}^{-}\left(1\right) to get (n)=x(1x)2n\mathfrak{Z}^{-}\left(n\right)=\frac{x}{(1-x)^{2n}}. Applications of this structure to probability theory will be explained in Section 4.3.

Using the expansion of the Maclaurin series, we obtain the Vandermonde identity for negative integers:

Proposition 4.4.

Let n=n1++nkn=n_{1}+\cdots+n_{k}. Then for vkv\geq k :

(16) ((vk+12n1))=vi=vvi1i=1k((vi2ni1)).\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-k+1}{2n-1}\right)\kern-3.00003pt\right)=\sum_{\begin{subarray}{c}\sum v_{i}=v\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{2n_{i}-1}\right)\kern-3.00003pt\right).
Proof.

It follows from (n)=(n1)(n2)(nk)\mathfrak{Z}^{-}\left(n\right)=\mathfrak{Z}^{-}\left(n_{1}\right)*^{-}\mathfrak{Z}^{-}\left(n_{2}\right)\cdots\mathfrak{Z}^{-}\left(n_{k}\right). ∎

From Equation (16) and n=1++1n=1+\cdots+1 we obtain for vnv\geq n

(17) (v+n12n1)=vi=vvi1i=1nvi.{v+n-1\choose 2n-1}=\sum_{\begin{subarray}{c}\sum v_{i}=v\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{n}{v_{i}}.

This gives a formula to compute certain binomial coefficients without using any division.

Proposition 4.5.

Given qq\in\mathbb{N}, then for nm+12n\leq\frac{m+1}{2} we have

(18) (q2n1)=vi=q(n1)vi1i=1nvi.{q\choose 2n-1}=\sum_{\begin{subarray}{c}\sum v_{i}=q-(n-1)\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{n}{v_{i}}.
Proof.

It follows from Equation (17). ∎

The latter identity requires that the lower entry in the binomial coefficient must be odd. Consider instead n=1++1n=1+\cdots+1. Then using Proposition 4.2, for m2n1m\geq 2n-1,

(19) (mn)=(n10)mi=mmi1i=1nmi(n11)mi=m1mi1i=1nmi±+(1)n2(n1n2)mi=m(n2)mi1i=1nqi+(1)n1(n1n1)mi=m(n1)mi1i=1nqi.{m\choose n}={n-1\choose 0}\sum_{\begin{subarray}{c}\sum m_{i}=m\\ m_{i}\geq 1\end{subarray}}\prod_{i=1}^{n}m_{i}-{n-1\choose 1}\sum_{\begin{subarray}{c}\sum m_{i}=m-1\\ m_{i}\geq 1\end{subarray}}\prod_{i=1}^{n}m_{i}\pm\cdots\\ +(-1)^{n-2}{n-1\choose n-2}\sum_{\begin{subarray}{c}\sum m_{i}=m-(n-2)\\ m_{i}\geq 1\end{subarray}}\prod_{i=1}^{n}{q_{i}}+(-1)^{n-1}{n-1\choose n-1}\sum_{\begin{subarray}{c}\sum m_{i}=m-(n-1)\\ m_{i}\geq 1\end{subarray}}\prod_{i=1}^{n}{q_{i}}.

If we use n2=n++nn^{2}=n+\cdots+n, then using Proposition 4.2, for mn2+n1m\geq n^{2}+n-1,

(mn2)=(n10)mi=mmini=1n(qin)(n11)mi=m1mini=1n(qin)±{m\choose n^{2}}={n-1\choose 0}\sum_{\begin{subarray}{c}\sum m_{i}=m\\ m_{i}\geq n\end{subarray}}\prod_{i=1}^{n}{q_{i}\choose n}-{n-1\choose 1}\sum_{\begin{subarray}{c}\sum m_{i}=m-1\\ m_{i}\geq n\end{subarray}}\prod_{i=1}^{n}{q_{i}\choose n}\pm\cdots
(20) +(1)n2(n1n2)mi=m(n2)mini=1n(qin)+(1)n1(n1n1)mi=m(n1)mini=1n(qin).+(-1)^{n-2}{n-1\choose n-2}\sum_{\begin{subarray}{c}\sum m_{i}=m-(n-2)\\ m_{i}\geq n\end{subarray}}\prod_{i=1}^{n}{q_{i}\choose n}+(-1)^{n-1}{n-1\choose n-1}\sum_{\begin{subarray}{c}\sum m_{i}=m-(n-1)\\ m_{i}\geq n\end{subarray}}\prod_{i=1}^{n}{q_{i}\choose n}.

Similar identities allow us to compute (mnk){m\choose n^{k}} in terms of (mnr){m\choose n^{r}} for r<kr<k.

On Equation (17), for every partition vi=v\sum v_{i}=v, if viv_{i} appears sis_{i} times then the term ivi\prod_{i}v_{i} will appear as many times as the multinomial coefficient (ns1,,sj){n\choose s_{1},\cdots,s_{j}}. We compute

(21) (v+n12n1)=vi=v#vi=si(ns1,,sj)i=1nvi,{v+n-1\choose 2n-1}=\sum_{\begin{subarray}{c}\sum v_{i}=v\\ \#v_{i}=s_{i}\end{subarray}}{n\choose s_{1},\cdots,s_{j}}\prod_{i=1}^{n}{v_{i}},

where the sum is over different nn-partitions of vv, and each term viv_{i} appears sis_{i} times.

Finally, we apply Proposition 4.3 to the case 2nk=i=1k2ni1,v2n12n-k=\sum^{k}_{i=1}2n_{i}-1,v\geq 2n-1.

((vk+12nk))=(k10)vi=vvi1i=1k((vi2ni1))(k11)vi=v1vi1i=1k((vi2ni1))±+(1)k2(k1k2)vi=v(k2)vi1i=1k((vi2ni1))+(k1k1)vi=v(k1)vi1i=1k((vi2ni1)).\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-k+1}{2n-k}\right)\kern-3.00003pt\right)={k-1\choose 0}\sum_{\begin{subarray}{c}\sum v_{i}=v\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{2n_{i}-1}\right)\kern-3.00003pt\right)-{k-1\choose 1}\sum_{\begin{subarray}{c}\sum v_{i}=v-1\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{2n_{i}-1}\right)\kern-3.00003pt\right)\pm\\ \cdots+(-1)^{k-2}{k-1\choose k-2}\sum_{\begin{subarray}{c}\sum v_{i}=v-(k-2)\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{2n_{i}-1}\right)\kern-3.00003pt\right)+{k-1\choose k-1}\sum_{\begin{subarray}{c}\sum v_{i}=v-(k-1)\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{2n_{i}-1}\right)\kern-3.00003pt\right).

We then substitute Equation (16) to obtain, for v2n1+k1v\geq 2n-1+k-1,

((vk+12nk))=(k10)((vk+12n1))(k11)((vk2n1))±+(1)k2(k1k2)((v2k+32n1))+(1)k1(k1k1)((v2k+22n1)),\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-k+1}{2n-k}\right)\kern-3.00003pt\right)={k-1\choose 0}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-k+1}{2n-1}\right)\kern-3.00003pt\right)-{k-1\choose 1}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-k}{2n-1}\right)\kern-3.00003pt\right)\pm\cdots\\ +(-1)^{k-2}{k-1\choose k-2}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-2k+3}{2n-1}\right)\kern-3.00003pt\right)+(-1)^{k-1}{k-1\choose k-1}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v-2k+2}{2n-1}\right)\kern-3.00003pt\right),

or

(v2k+2n2nk)=(k10)(vk1+2n2n1)(k11)(vk2+2n2n1)±+(1)k2(k1k2)(v2k+1+2n2n1)+(1)k1(k1k1)(v2k+2n2n1).{v-2k+2n\choose 2n-k}={k-1\choose 0}{v-k-1+2n\choose 2n-1}-{k-1\choose 1}{v-k-2+2n\choose 2n-1}\pm\cdots\\ +(-1)^{k-2}{k-1\choose k-2}{v-2k+1+2n\choose 2n-1}+(-1)^{k-1}{k-1\choose k-1}{v-2k+2n\choose 2n-1}.

Our identities come from objects in which a notion of series-parallel order is defined. It is expected that new series-parallel algebras will imply new properties of binomial coefficients.

4.2. Finite partitions that allow empty sets

Define n~(m,k)=i=1kmi=m1\tilde{n}(m,k)=\sum_{\sum_{i=1}^{k}m_{i}=m}1. In words, n~(m,k)\tilde{n}(m,k) is the number of partitions of mm points into kk sets that can be empty. Let n=0n=0, kk\in\mathbb{N}, mk1m\geq k-1. From Proposition 4.2 we obtain the identity

(22) 1=(k10)n~(m,k)(k11)n~(m1,k)++(1)k2(k1k2)n~(m(k2),k)+(1)k1(k1k1)n~(m(k1),k).1={k-1\choose 0}\tilde{n}(m,k)-{k-1\choose 1}\tilde{n}(m-1,k)+\cdots\\ +(-1)^{k-2}{k-1\choose k-2}\tilde{n}(m-(k-2),k)+(-1)^{k-1}{k-1\choose k-1}\tilde{n}(m-(k-1),k).

The Stirling number of the second kind {mk}{m\brace k} is defined as the number of partitions of a set with mm elements into kk non-empty subsets. It follows that

n~(m,k)=(k0){mk}+(k1){mk1}++(kk1){m1}.\tilde{n}(m,k)={k\choose 0}{m\brace k}+{k\choose 1}{m\brace k-1}+\cdots+{k\choose k-1}{m\brace 1}.

4.3. Probability

Consider NN classes of objects. Take VV objects with repetition. Divide the NN classes into groups, the first with n1n_{1} classes, the next with n2n_{2} classes, and so on. We assume N=n1++nkN=n_{1}+\cdots+n_{k}. Let V=v1++vkV=v_{1}+\cdots+v_{k}. What is the probability that v1v_{1} objects belong to the group of n1n_{1} fixed classes, and v2v_{2} objects belong to the group of n2n_{2} fixed classes, and so on? The answer comes from the multivariate negative hypergeometric distribution,

P(X=(v1,,vk))=((n1v1))((nkvk))((NV)).P(X=(v_{1},\cdots,v_{k}))=\frac{\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n_{1}}{v_{1}}\right)\kern-3.00003pt\right)\dots\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n_{k}}{v_{k}}\right)\kern-3.00003pt\right)}{\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N}{V}\right)\kern-3.00003pt\right)}.

As an application of our methods we provide a direct proof that PP is a distribution.

Proposition 4.6.

The function PP is a distribution.

Proof.

From x(1x)N=x(1x)n11x1xx(1x)nk\frac{x}{(1-x)^{N}}=\frac{x}{(1-x)^{n_{1}}}\frac{1}{x}\cdots\frac{1}{x}\frac{x}{(1-x)^{n_{k}}} and Proposition 4.4 we obtain

((V(k1)N1))=vi=Vvi1i=1k((vini1)).\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{V-(k-1)}{N-1}\right)\kern-3.00003pt\right)=\sum_{\begin{subarray}{c}\sum v_{i}=V\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{v_{i}}{n_{i}-1}\right)\kern-3.00003pt\right).

Equivalently,

((NVk))=vi=Vvi1i=1k((nivi1)),\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N}{V-k}\right)\kern-3.00003pt\right)=\sum_{\begin{subarray}{c}\sum v_{i}=V\\ v_{i}\geq 1\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n_{i}}{v_{i}-1}\right)\kern-3.00003pt\right),

and by changing variables we have

((NW))=wi=Wwi0i=1k((niwi)) and  1=wi=Wwi0i=1k((niwi))((NW)).\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N}{W}\right)\kern-3.00003pt\right)=\sum_{\begin{subarray}{c}\sum w_{i}=W\\ w_{i}\geq 0\end{subarray}}\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n_{i}}{w_{i}}\right)\kern-3.00003pt\right)\ \text{ and }\ 1=\sum_{\begin{subarray}{c}\sum w_{i}=W\\ w_{i}\geq 0\end{subarray}}\frac{\prod_{i=1}^{k}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n_{i}}{w_{i}}\right)\kern-3.00003pt\right)}{\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N}{W}\right)\kern-3.00003pt\right)}.

We also provide a method to compute the expectation value of the negative hypergeometric distribution:

W=1xWw=1Ww((nw))((NnWw))\displaystyle\sum_{W=1}x^{W}\sum_{w=1}^{W}w\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n}{w}\right)\kern-3.00003pt\right)\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N-n}{W-w}\right)\kern-3.00003pt\right) =\displaystyle= (i=1i((ni))xi)(j=1((Nnj))xj)\displaystyle\left(\sum_{i=1}i\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n}{i}\right)\kern-3.00003pt\right)x^{i}\right)\left(\sum_{j=1}\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N-n}{j}\right)\kern-3.00003pt\right)x^{j}\right)
=\displaystyle= (xddx(1(1x)n))1(1x)Nn\displaystyle\left(x\frac{d}{dx}\left(\frac{1}{(1-x)^{n}}\right)\right)\frac{1}{(1-x)^{N-n}}
=\displaystyle= nx(1x)N+1\displaystyle\frac{nx}{(1-x)^{N+1}}
=\displaystyle= W=1n((N+1W1))xW.\displaystyle\sum_{W=1}n\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N+1}{W-1}\right)\kern-3.00003pt\right)x^{W}.

It follows that

𝔼(P)=w=0Ww((n2))((NnWw))((NW))=n((N+1W1))((NW)).\mathbb{E}(P)=\sum_{w=0}^{W}\frac{w\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{n}{2}\right)\kern-3.00003pt\right)\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N-n}{W-w}\right)\kern-3.00003pt\right)}{\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N}{W}\right)\kern-3.00003pt\right)}=\frac{n\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N+1}{W-1}\right)\kern-3.00003pt\right)}{\left(\kern-3.00003pt\left(\genfrac{}{}{0.0pt}{}{N}{W}\right)\kern-3.00003pt\right)}.

5. Open problems

We conclude with a list of open problems.

  • Do the polynomials in Remark 2.18 have a combinatorial interpretation?

  • Is there a combinatorial proof of Proposition 4.1?

  • Is there a proof of Proposition 4.2 by computing the Euler characteristic or using the inclusion-exclusion principle?

  • What is the topological story behind the *^{-} structure linked to the negative hypergeometric distribution?

  • What are the generators of the operad of finite posets?

Acknowledgements

We thank Elton P. Hsu for carefully reading the section on probability. We thank Max Hopkings, Isaias Marin Gaviria, and Mario Sanchez for several discussions. We thank John Baez for online discussions about binomial identities and Theo Johnson-Freyd for discussions about the units of the operad of series-parallel posets. Furthermore, we thank Raman Sanyal for suggesting the reference [4], and the anonymous referee(s) for many helpful comments and for pointing us to the papers [11], [24] and [30]. The second author was funded through the Royal Society grant URF\setminusR1\setminus20147. The third author was funded by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A0100826). This project started while the third author worked at NewSci Labs and he thanks them for their hospitality.

References

  • [1] Federico Ardila and Mario Sanchez. Valuations and the Hopf monoid of generalized permutahedra. 2010.
  • [2] M. Beck, J. A. De Loera, M. Develin, J. Pfeifle, and R. P. Stanley. Coefficients and roots of Ehrhart polynomials. In Integer points in Polyhedra-Geometry, Number Theory, Algebra, Optimization, volume 374, pages 15–36. Contemp. Math, 2005.
  • [3] Matthias Beck and Sinai Robins. Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Springer, New York, 2nd edition, 2007.
  • [4] Matthias Beck and Raman Sanyal. Combinatorial reciprocity theorems: An invitation to enumerative Geometric Combinatorics, volume 195. American Mathematical Society, Providence, Rhode Island, first edition, 2018.
  • [5] François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial species and tree-like structures. Encyclopedia of Mathematics and its applications. Cambridge University Press, 1997.
  • [6] Benjamin Braun. An Ehrhart series formula for reflexive polytopes. Electron. J. Comb., 13, 2006.
  • [7] F. Breuer. Ehrhart f⁢-coefficients of polytopal complexes are non-negative integers. Electron. J. Combin., 19(4):16, 2012.
  • [8] Thomas Browning, Max Hopkins, and Zander Kelley. Doppelgangers: The Ur-operation and posets of bounded height, 2018.
  • [9] Louis Comtet. Advanced Combinatorics: The art of finite and infinite expansions; Rev. version. Reidel, Dordrecht, 1974. Trans. of : Analyse combinatoire. Paris : Presses Univ. de France, 1970.
  • [10] V.G. Drinfeld. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(¯/\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}). Algebra i Analiz, page 149–181, 1990.
  • [11] U. Faigle and R. Schrader. On the computational complexity of the order polynomial. Discrete Appl. Math., 15:261–269, 1986.
  • [12] Frédéric Fauvet, Loïc Foissy, and Dominique Manchon. Operads of finite posets. Electronic Journal of Combinatorics, 25, 04 2016.
  • [13] Joseph Gallian. A dynamic survey of graph labeling. Electron J Combin DS6, 19:553, 11 2000.
  • [14] H.W. Gould. Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations. Gould, 1972.
  • [15] Christian Haase, Benjamin Nill, and Andreas Paffenholz. Lectures notes on lattice polytopes, 2012.
  • [16] Zachary Hamaker, Rebecca Patrias, Oliver Pechenik, and Nathan Williams. Doppelgängers: Bijections of plane partitions. International Mathematics Research Notices, 2020(2):487–540, 03 2018.
  • [17] Akihiro Higashitani. Classification of Ehrhart polynomials of integral simplices. 24th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2012) , Nagoya, Japan, pages 587–594, 2012.
  • [18] Erkko Lehtonen. Labeled posets are universal. European Journal of Combinatorics, 29(2):493–506, 2008.
  • [19] Zhonghua Li and Chen Qin. Shuffle product formulas of multiple zeta values. Journal of Number Theory, 171:79–111, 2017.
  • [20] Bruno Loday, Jean-Louis an Vallette. Algebraic Operads. Springer-Verlag Berlin Heidelberg, 1st edition, 2012.
  • [21] Ian G. MacDonald. Polynomials associated with finite cell-complexes. Journal of the London Mathematical Society, s2-4(1):181–192, 1971.
  • [22] M Mendez and J Yang. Möbius species. Advances in Mathematics, 85(1):83–128, 1991.
  • [23] T. Kyle Petersen. Eulerian Numbers. Birkhäuser advanced texts basler Lehrbücher series. Birkhäuser, New York, NY, 1 edition, 2015.
  • [24] Richard P. Stanley. A chromatic-like polynomial for ordered sets. In Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications, pages 421–427, May 1970.
  • [25] Richard P. Stanley. Decompositions of rational convex polytopes. Annals of Discrete Mathematics, 6:333–342, 1980.
  • [26] Richard P. Stanley. Two poset polytopes. Discrete & Computational Geometry, 1(1):9–23, 1986.
  • [27] Richard P. Stanley. A monotonicity property of h-vectors and h*-vectors. European Journal of Combinatorics, 14(3):251–258, 1993.
  • [28] Richard P. Stanley. Enumerative Combinatorics: Volume I. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997.
  • [29] Richard P. Stanley. Enumerative Combinatorics: Volume II. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2001.
  • [30] D. G. Wagner. Enumeration of functions from posets to chains. European Journal of Combinatorics, 13(4):313–324, 1992.
  • [31] Herbert S. Wilf. Generatingfunctionology. A K Peters Ltd., Wellesley, MA, third edition, 2006.
  • [32] Tomoyuki Yoshida. Categorical aspects of generating functions (I): Exponential formulas and Krull–Schmidt categories. Journal of Algebra, 240(1):40–82, 2001.