This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An adaptive BDF2 implicit time-stepping method
for the phase field crystal model

Hong-lin Liao  Bingquan Ji  Luming Zhang ORCID 0000-0003-0777-6832; Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China. Hong-lin Liao ([email protected], [email protected]) is supported by a grant 1008-56SYAH18037 from NUAA Scientific Research Starting Fund of Introduced Talent.Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 211101, P. R. China. Bingquan Ji ([email protected]).Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 211101, P. R. China. Luming Zhang ([email protected]) is supported by the NSFC grant No. 11571181.
Abstract

An adaptive BDF2 implicit time-stepping method is analyzed for the phase field crystal model. The suggested method is proved to preserve a modified energy dissipation law at the discrete levels if the time-step ratios rk:=τk/τk1<3.561r_{k}:=\tau_{k}/\tau_{k-1}<3.561, a recent zero-stability restriction of variable-step BDF2 scheme for ordinary differential problems. By using the discrete orthogonal convolution kernels and the corresponding convolution inequalities, an optimal L2L^{2} norm error estimate is established under the weak step-ratio restriction 0<rk<3.5610<r_{k}<3.561 ensuring the energy stability. This is the first time such error estimate is theoretically proved for a nonlinear parabolic equation. On the basis of ample tests on random time meshes, a useful adaptive time-stepping strategy is suggested to efficiently capture the multi-scale behaviors and to accelerate the numerical simulations.
Keywords:   phase field crystal model; adaptive BDF2 method; discrete energy dissipation law; discrete orthogonal convolution kernels; L2L^{2} norm error estimate
AMS subject classiffications.   35Q99, 65M06, 65M12, 74A50

1 Introduction

The phase field crystal (PFC) growth model [1] is an efficient approach to simulate crystal dynamics at the atomic scale in space while on diffusive scales in time. This model has been successfully applied to a wide variety of simulations in the microstructure evolution [1], epitaxial thin film growth [2] and materials science across different time scales [3, 4]. The phase variable of PFC model describes a coarse-grained temporal average of the number density of atoms, and the model is thermodynamically consistent in that the free energy of the thermodynamic model is dissipative. Consider a free energy functional of Swift-Hohenberg type [1, 2],

E[Φ]=Ω(14Φ4+12Φ(ϵ+(1+Δ)2)Φ)d𝐱,\displaystyle E[\Phi]=\int_{\Omega}\left(\frac{1}{4}\Phi^{4}+\frac{1}{2}\Phi\left(-\epsilon+(1+\Delta)^{2}\right)\Phi\right)\,\mathrm{d}\mathbf{x}, (1.1)

where 𝐱Ωd\mathbf{x}\in\Omega\subseteq\mathbb{R}^{d} (d=1,2,3d=1,2,3), Φ\Phi represents the atomistic density field and ϵ(0,1)\epsilon\in(0,1) is a parameter related to the temperature. Then the phase field crystal equation is given by the H1H^{-1} gradient flow associated with the free energy functional E[ϕ]E[\phi],

tΦ=Δμwithμ=δEδΦ=Φ3ϵΦ+(1+Δ)2Φ,\displaystyle\partial_{t}\Phi=\Delta\mu\quad\text{with}\quad\mu=\tfrac{\delta E}{\delta\Phi}=\Phi^{3}-\epsilon\Phi+(1+\Delta)^{2}\Phi, (1.2)

where μ\mu is called the chemical potential. We assume that Φ\Phi is periodic over the domain Ω\Omega. By applying the integration by parts, one can find the volume conservation, (Φ(t),1)=(Φ(t0),1)\big{(}\Phi(t),1\big{)}=\big{(}\Phi(t_{0}),1\big{)}, and the following energy dissipation law,

dEdt=(δEδΦ,tΦ)=(μ,Δμ)=μ20,\displaystyle\frac{\,\mathrm{d}{E}}{\,\mathrm{d}{t}}=\big{(}\tfrac{\delta E}{\delta\Phi},\partial_{t}\Phi\big{)}=\left(\mu,\Delta\mu\right)=-\left\|\nabla\mu\right\|^{2}\leq 0, (1.3)

where the L2L^{2} inner product (f,g):=Ωfgd𝐱\left(f,g\right):=\int_{\Omega}fg\,\mathrm{d}{\mathbf{x}}, and the associated L2L^{2} norm f:=(f,f)\left\|f\right\|:=\sqrt{\left(f,f\right)} for all f,gL2(Ω)f,g\in L^{2}(\Omega).

The PFC equation is a sixth-order nonlinear partial differential equation and it may be challenging to design efficient and stable numerical algorithms. As for the time integration approaches, Crank-Nicolson (CN) schemes [5, 6, 7, 8, 9, 10, 11] and backward differentiation formulas (BDF) [12, 13, 7, 8, 14, 11, 15, 16, 17] are wide-spread in the literatures. Due to the energy dissipation property (1.3), BDF1 and BDF2 methods seem to be more suitable than CN type schemes in resolving this stiff problem. Actually, the BDF1 and BDF2 methods both are A-stable and L-stable, while the trapezoidal formula is only A-stable. Moreover, the preservation of (1.3) at the discrete time levels, called energy stability, has been regarded as a basic requirement of numerical methods to be effective in simulating the long-time coarsening dynamics.

The main goal of the existing techniques is to guarantee the energy stability, including linearized treatments [18, 19, 20, 21, 7, 8] and the nonlinear progressing [12, 13, 5, 10, 14]. The linearized treatments always lead to a linear system of algebraic equations, which improve the computational efficiency since they avoid an inner iteration. There are many linearized strategies, such as the stabilized methods [18, 19, 20], the invariant energy quadratization (IEQ) method [21, 7, 8], and the scalar auxiliary variable (SAV) approach [21, 7, 8]. Precisely, the stabilized semi-implicit methods use some appropriate high-order linear terms to construct linearly energy stable schemes. The common goal of IEQ and SAV methods is to transform the original system into a new equivalent system with a quadratic energy functional preserving the corresponding modified energy dissipation property. We note that SAV approach usually leads to numerical schemes involving only the decoupled equations with constant coefficients. As is known to all, the linearized treatments require small time steps to control the linearization error or ensure the stability. However, large time steps are necessary to accelerate the numerical simulations, especially in the coarsening process of phase field models.

In recent years, the nonlinear treatments, mainly involving the convex splitting techniques [12, 6, 13, 5] and fully implicit methods [10, 14], have also received extensive attentions. In the framework of convex splitting strategy, the convex and concave parts of chemical potential are treated implicity and explicitly, respectively. It results in a nonlinear scheme having the unique solvability and unconditionally energy stability. As pointed out by Xu et al. [22], a major advantage of convex splitting implicit schemes is that a relatively large time-step size can be used; but such schemes with large time-step sizes may have time delays and hence may be inaccurate. Actually, the convex splitting scheme can be mathematically interpreted as a full implicit scheme of a convexified model with a time-delay regularized term of the original equation, see more details in [22]. Numerical evidences indicate that the convex splitting techniques usually lead to approximation of the solution of the original model at a delayed time, especially when large time-steps are used. So the fully implicit schemes are recommended by Xu et al. [22] since they are workable for large time-step sizes, and avoid the potential time-delays in the long-time numerical simulations.

As a remarkable feature of phase field problems including the PFC equation, they always permit multiple time scales in approaching the steady state. Therefore, the adaptive time-stepping strategy would be much more preferred to resolve varying time scales efficiently and to reduce the computational cost significantly. In the literature, some commonly used adaptive time-stepping strategies consist of utilizing the accuracy criterion [23] and the time derivative of the total energy [24, 10]. More precisely, the adaptive time step method reported in [23] permits large time steps when the solution is smooth, and uses small time steps when the solution is less regular. The adaptive technique used in [24] produces small time steps when the energy decays rapidly, and permits large time steps when the energy decays slowly. Considerable numerical evidences showed that both of them can greatly save the computational cost.

This paper considers an adaptive BDF2 implicit time-stepping method for the PFC equation. Consider the nonuniform time levels 0=t0<t1<<tN=T0=t_{0}<t_{1}<\cdots<t_{N}=T with the time-step sizes τk:=tktk1\tau_{k}:=t_{k}-t_{k-1} for 1kN1\leq k\leq N, and denote the maximum time-step size τ:=max1kNτk\tau:=\max_{1\leq k\leq N}\tau_{k}. Let the local time-step ratio rk:=τk/τk1r_{k}:=\tau_{k}/\tau_{k-1} for 2kN2\leq k\leq N, and let r10r_{1}\equiv 0 when it appears. Given a grid function {vk}k=0N\{v^{k}\}_{k=0}^{N}, put τvk:=vkvk1\triangledown_{\tau}v^{k}:=v^{k}-v^{k-1}, τvk:=τvk/τk\partial_{\tau}v^{k}:=\triangledown_{\tau}v^{k}/\tau_{k} for k1k\geq{1}. Taking vn=v(tn)v^{n}=v(t_{n}), we always view the variable-step BDF2 formula as a discrete convolution summation

D2vn:=k=1nbnk(n)τvkfor n1,\displaystyle D_{2}v^{n}:=\sum_{k=1}^{n}b_{n-k}^{(n)}\triangledown_{\tau}v^{k}\quad\text{for $n\geq 1$}, (1.4)

in which the discrete convolution kernels bnk(n)b_{n-k}^{(n)} are defined by, for n2n\geq 2,

b0(n):=1+2rnτn(1+rn),b1(n):=rn2τn(1+rn)andbj(n):=0,for2jn1,\displaystyle b_{0}^{(n)}:=\frac{1+2r_{n}}{\tau_{n}(1+r_{n})},\quad b_{1}^{(n)}:=-\frac{r_{n}^{2}}{\tau_{n}(1+r_{n})}\quad\text{and}\quad b_{j}^{(n)}:=0,\quad\mathrm{for}\quad 2\leq j\leq n-1, (1.5)

and b0(1):=1/τ1b_{0}^{(1)}:=1/\tau_{1} when n=1n=1. Obviously, by taking r1=0r_{1}=0, the BDF2 scheme (1.4) reduces to the BDF1 method for n=1n=1. Here we will use the BDF1 scheme to compute the first-level numerical solution having the second-order temporal accuracy.

It is known that the rigorous numerical analysis of nonuniform one-step approaches might be relatively easy since they contain only one degree of freedom, i.e., the current time step size. By contrast, the numerical analysis of multi-step methods involving multiple degrees of freedom (the current and previous time step sizes) seems rather difficult, especially on a general class of time meshes. For the underlaying variable-step BDF2 method for ordinary initial-value problems, Grigorieff [25] proved almost forty years ago that it is zero-stable only if the adjacent time-step ratios rk<1+2r_{k}<1+\sqrt{2}. Twenty years ago, Becker [26] applied the variable-step BDF2 formula to a linear parabolic equation and established a second-order temporal convergence only if rk(2+13)/31.868r_{k}\leq(2+\sqrt{13})/3\approx 1.868. However, the resulting error estimate is far from sharp because it involves an undesired prefactor exp(CΓn)\exp(C\Gamma_{n}) where Γn\Gamma_{n} may be unbounded as the time step sizes vanish. Recently, Chen et al. [27] analyzed a variable-step stabilized BDF2 scheme for the Cahn-Hilliard equation. This work replaced the undesirable prefactor exp(CΓn)\exp(C\Gamma_{n}) by a bounded exponential prefactor exp(Ctn)\exp(Ct_{n}) with the help of a generalized Grönwall inequality. Nonetheless, it seems that the somewhat rigid restriction rk1.53r_{k}\leq 1.53 in [27] may be hard to weaken due to the combined technique using the H1H^{1} norm error to control the L2L^{2} norm error.

Recently, the variable-step BDF2 method was revisited in our previous report [28] from a new point of view by making use of the positive semi-definiteness of BDF2 kernels bnk(n)b_{n-k}^{(n)}. As a result, a concise L2L^{2} norm convergence theory of adaptive BDF2 scheme for linear diffusion equation was established provided the adjacent time-step ratios rk(3+17)/23.561r_{k}\leq(3+\sqrt{17})/2\approx 3.561. The main discrete tool used in [28] is the discrete orthogonal convolution (DOC) kernels, that is,

θ0(n):=1b0(n)andθnk(n):=1b0(k)j=k+1nθnj(n)bjk(j)for 1kn1.\displaystyle\theta_{0}^{(n)}:=\frac{1}{b_{0}^{(n)}}\quad\mathrm{and}\quad\theta_{n-k}^{(n)}:=-\frac{1}{b_{0}^{(k)}}\sum_{j=k+1}^{n}\theta_{n-j}^{(n)}b_{j-k}^{(j)}\quad\text{for $1\leq k\leq n-1$}. (1.6)

One has the following discrete orthogonal identity

j=knθnj(n)bjk(j)δnkfor 1kn,\displaystyle\sum_{j=k}^{n}\theta_{n-j}^{(n)}b_{j-k}^{(j)}\equiv\delta_{nk}\quad\text{for $1\leq k\leq n$,} (1.7)

where δnk\delta_{nk} is the Kronecker delta symbol. By exchanging the summation order and using the identity (1.7), it is not difficult to check that

j=1nθnj(n)D2vj=τvnfor any sequence {vj| 0jn}.\displaystyle\sum_{j=1}^{n}\theta_{n-j}^{(n)}D_{2}v^{j}=\triangledown_{\tau}v^{n}\quad\text{for any sequence $\{v^{j}\,|\,0\leq j\leq n\}$.} (1.8)

The equality (1.8) will play an important role in the subsequent analysis. More properties of the DOC kernels θnk(n)\theta_{n-k}^{(n)} are referred to Lemma 3.1 below.

In this paper, we continue to develop the recent technique in [28] and derive some novel discrete convolution inequalities with respect to the DOC kernels θnk(n)\theta_{n-k}^{(n)}. An optimal L2L^{2} error estimate of the fully implicit BDF2 scheme with unequal time-step sizes is achieved for solving the PFC equation (1.2),

D2ϕn=Δhμnwithμn=(1+Δh)2ϕn+(ϕn)3ϵϕnfor 1nN,\displaystyle D_{2}\phi^{n}=\Delta_{h}\mu^{n}\quad\text{with}\quad\mu^{n}=(1+\Delta_{h})^{2}\phi^{n}+(\phi^{n})^{3}-\epsilon\phi^{n}\quad\text{for $1\leq n\leq N$,} (1.9)

subject to the periodic boundary conditions and a proper initial data ϕ0Φ0\phi^{0}\approx\Phi^{0}. The spatial operators are approximated by the Fourier pseudo-spectral method, as described in the next section. Firstly, the unique solvability is established in Theorem 2.1 by using the fact that the solution of nonlinear scheme (1.9) is equivalent to the minimization of a convex functional. Lemma 2.2 shows that the BDF2 convolution kernels bnk(n)b_{n-k}^{(n)} are positive definite provided the adjacent time-step ratios rkr_{k} satisfy a sufficient condition

  1. S1.

    0<rk<rsup:=(3+17)/23.5610<r_{k}<r_{\mathrm{sup}}:=\left(3+\sqrt{17}\right)/2\approx 3.561 for 2kN2\leq k\leq N.

We then verify in Theorem 2.2 that the adaptive BDF2 time-stepping method (1.9) preserves a modified energy dissipation law at the discrete time levels under a proper step-size restriction. The maximum norm bound of solution is obtained in Lemma 2.3 so that the subsequent error estimate can be derived without assuming the Lipschitz continuity of nonlinear bulk force.

Section 3 focuses on the L2L^{2} norm convergence of the suggested adaptive BDF2 method (1.9). The main tools are the above DOC kernels θnk(n)\theta_{n-k}^{(n)} defined in (1.6) and the corresponding discrete convolution inequalities, see Lemmas 3.2 and 3.3. Although the condition S1 permits us to use a series of increasing time-steps with the amplification factors up to 3.561, very large time-steps always result in a loss of numerical accuracy. So large amplification factors would be rarely appeared continuously in practice and it is reasonable to assume that

  1. S2.

    The time-step ratios rkr_{k} are contained in S1, but almost all of them less than 1+21+\sqrt{2}, or ||=N0N\left|\mathfrak{R}\right|=N_{0}\ll N, where \mathfrak{R} is an index set :={k| 1+2rk<(3+17)/2}.\mathfrak{R}:=\{k\,|\,1+\sqrt{2}\leq r_{k}<(3+\sqrt{17})/2\}.

Potential users would be recommended to take rk(0,1+2)r_{k}\in(0,1+\sqrt{2}) with N0=0N_{0}=0 in practical numerical simulations. Also, as shown in Theorem 3.1 and Remark 2, this restriction S2 ensures the second-order convergence in time. Several numerical examples are presented in Section 4 to validate the accuracy and effectiveness of our method (1.9).

In summary, our contributions in this paper are three folds:

  1. 1.

    An energy dissipation law at the discrete time level with a modified energy form is established for the BDF2 implicit method (1.9) if the adjacent step ratios rkr_{k} satisfy S1. It leads to the stability in the maximum norm.

  2. 2.

    The BDF2 implicit method (1.9) is shown to be convergent in the L2L^{2} norm under the condition S1, and the second-order accuracy is achieved if S2 holds. To the best of our knowledge, this is the first time such an optimal L2L^{2} norm error estimate of variable-step BDF2 method is proved for a nonlinear sixth-order parabolic problem.

  3. 3.

    Extensive numerical experiments and comparisons to the Crank-Nicolson scheme are performed to show the effectiveness of BDF2 time-stepping approach, especially when coupled with an adaptive time-stepping strategy.

Throughout this paper, any subscripted CC, such as CuC_{u} and CϕC_{\phi}, denotes a generic positive constant, not necessarily the same at different occurrences; while, any subscripted cc, such as cΩ,c0,c1c_{\Omega},c_{0},c_{1} and c2c_{2}, denotes a fixed constant. Always, the appeared constants are dependent on the given data and the solution but independent of the time steps and spatial lengths.

2 Energy dissipation law and solvability

2.1 Spatial discretization and preliminary results

For simplicity of presentation, set the spatial domain Ω=(0,L)3\Omega=(0,L)^{3} and consider the uniform length hx=hy=hz=h:=L/Mh_{x}=h_{y}=h_{z}=h:=L/M in three spatial directions for an even positive integer MM. We define the discrete grid Ωh:={𝐱h=(ih,jh,kh)| 1i,j,kM}\Omega_{h}:=\big{\{}\mathbf{x}_{h}=(ih,jh,kh)\,|\,1\leq i,j,k\leq M\big{\}} and put Ω¯h:=ΩhΩ\bar{\Omega}_{h}:=\Omega_{h}\cup\partial\Omega. Denote the space of LL-periodic grid functions 𝕍h:={v|v=(vh)is L-periodic for𝐱hΩ¯h}.\mathbb{V}_{h}:=\{v\,|\,v=\left(v_{h}\right)\;\text{is $L$-periodic for}\;\mathbf{x}_{h}\in\bar{\Omega}_{h}\}. For any grid functions v,w𝕍hv,w\in\mathbb{V}_{h}, define the discrete inner product v,w:=h3𝐱hΩhvhwh\left\langle v,w\right\rangle:=h^{3}\sum_{\mathbf{x}_{h}\in\Omega_{h}}v_{h}w_{h}, the associated L2L^{2} norm v:=v,v\left\|v\right\|:=\sqrt{\left\langle v,v\right\rangle}. Also, we will use the discrete L4L^{4} norm vl4=h3𝐱hΩh|vh|44\left\|v\right\|_{l^{4}}=\sqrt[4]{h^{3}\sum_{\mathbf{x}_{h}\in\Omega_{h}}|v_{h}|^{4}} and the maximum norm v:=max𝐱hΩh|vh|\left\|v\right\|_{\infty}:=\max_{\mathbf{x}_{h}\in\Omega_{h}}|v_{h}|.

For a periodic function v(𝐱)v(\mathbf{x}) on Ω¯\bar{\Omega}, let PM:L2(Ω)MP_{M}:L^{2}(\Omega)\rightarrow\mathscr{F}_{M} be the standard L2L^{2} projection operator onto the space M\mathscr{F}_{M}, consisting of all trigonometric polynomials of degree up to M/2M/2, and IM:L2(Ω)MI_{M}:L^{2}(\Omega)\rightarrow\mathscr{F}_{M} be the trigonometric interpolation operator [29], that is,

(PMv)(𝐱)=,m,n=M/2M/21v^,m,ne,m,n(𝐱),(IMv)(𝐱)=,m,n=M/2M/21v~,m,ne,m,n(𝐱),\left(P_{M}v\right)(\mathbf{x})=\sum_{\ell,m,n=-M/2}^{M/2-1}\widehat{v}_{\ell,m,n}e_{\ell,m,n}(\mathbf{x}),\quad\left(I_{M}v\right)(\mathbf{x})=\sum_{\ell,m,n=-M/2}^{M/2-1}\widetilde{v}_{\ell,m,n}e_{\ell,m,n}(\mathbf{x}),

where the complex exponential basis functions e,m,n(𝐱):=eiν(x+my+nz)e_{\ell,m,n}(\mathbf{x}):=e^{\mathrm{i}\nu\left(\ell x+my+nz\right)} with ν=2π/L\nu=2\pi/L. The coefficients v^,m,n\widehat{v}_{\ell,m,n} refer to the standard Fourier coefficients of function v(𝐱)v(\mathbf{x}), and the pseudo-spectral coefficients v~,m,n\widetilde{v}_{\ell,m,n} are determined such that (IMv)(𝐱h)=vh\left(I_{M}v\right)(\mathbf{x}_{h})=v_{h}.

The Fourier pseudo-spectral first and second order derivatives of vhv_{h} are given by

𝒟xvh:=,m,n=M/2M/21(iν)v~,m,ne,m,n(𝐱h),𝒟x2vh:=,m,n=M/2M/21(iν)2v~,m,ne,m,n(𝐱h).\mathcal{D}_{x}v_{h}:=\sum_{\ell,m,n=-M/2}^{M/2-1}\left(\mathrm{i}\nu\ell\right)\widetilde{v}_{\ell,m,n}e_{\ell,m,n}(\mathbf{x}_{h}),\quad\mathcal{D}_{x}^{2}v_{h}:=\sum_{\ell,m,n=-M/2}^{M/2-1}\left(\mathrm{i}\nu\ell\right)^{2}\widetilde{v}_{\ell,m,n}e_{\ell,m,n}(\mathbf{x}_{h}).

The differentiation operators 𝒟y,𝒟y2,𝒟z\mathcal{D}_{y},\mathcal{D}_{y}^{2},\mathcal{D}_{z} and 𝒟z2\mathcal{D}_{z}^{2} can be defined in the similar fashion. In turn, we can define the discrete gradient h\nabla_{h} and Laplacian Δh\Delta_{h} in the point-wise sense, by

hvh:=(𝒟xvh,𝒟yvh,𝒟zvh)TandΔhvh:=h(hvh)=(𝒟x2+𝒟y2+𝒟z2)vh.\nabla_{h}v_{h}:=\left(\mathcal{D}_{x}v_{h},\mathcal{D}_{y}v_{h},\mathcal{D}_{z}v_{h}\right)^{T}\quad\text{and}\quad\Delta_{h}v_{h}:=\nabla_{h}\cdot\left(\nabla_{h}v_{h}\right)=\left(\mathcal{D}_{x}^{2}+\mathcal{D}_{y}^{2}+\mathcal{D}_{z}^{2}\right)v_{h}.

For any periodic grid functions v,w𝕍hv,w\in\mathbb{V}_{h}, it is easy to check the following discrete Green’s formulas, see [30, 31] for more details, Δhv,w=hv,hw\left\langle-\Delta_{h}v,w\right\rangle=\left\langle\nabla_{h}v,\nabla_{h}w\right\rangle, Δh2v,w=Δhv,Δhw\left\langle\Delta_{h}^{2}v,w\right\rangle=\left\langle\Delta_{h}v,\Delta_{h}w\right\rangle, and Δh3v,w=hΔhv,hΔhw\left\langle\Delta_{h}^{3}v,w\right\rangle=-\left\langle\nabla_{h}\Delta_{h}v,\nabla_{h}\Delta_{h}w\right\rangle. Also we have the following embedding inequality

vcΩ(v+Δhv)for any v𝕍h.\displaystyle\big{\|}v\big{\|}_{\infty}\leq c_{\Omega}\left(\big{\|}v\big{\|}+\big{\|}\Delta_{h}v\big{\|}\right)\quad\text{for any $v\in\mathbb{V}_{h}$.} (2.1)

For the underlying volume-conservative problem, it is convenient to define a mean-zero space

𝕍̊h:={v𝕍h|v,1=0}𝕍h.\mathbb{\mathring{V}}_{h}:=\big{\{}v\in\mathbb{V}_{h}\,|\,\left\langle v,1\right\rangle=0\big{\}}\subset\mathbb{V}_{h}.

As usual, one can introduce a discrete version of inverse Laplacian operator (Δh)γ\left(-\Delta_{h}\right)^{-\gamma} by following the arguments in [31]. For a grid function v𝕍̊hv\in\mathbb{\mathring{V}}_{h}, define

(Δh)γvh:=,m,n=M/2(,m,n)𝟎M/21(ν2(2+m2+n2))γv~,m,ne,m,n(𝐱h),\left(-\Delta_{h}\right)^{-\gamma}v_{h}:=\sum_{\mbox{\tiny$\begin{array}[]{c}\ell,m,n=-M/2\\ \left(\ell,m,n\right)\neq\mathbf{0}\end{array}$}}^{M/2-1}\left(\nu^{2}\left(\ell^{2}+m^{2}+n^{2}\right)\right)^{-\gamma}\widetilde{v}_{\ell,m,n}e_{\ell,m,n}(\mathbf{x}_{h}),

and an H1H^{-1} inner product

v,w1:=(Δh)1v,w.\left\langle v,w\right\rangle_{-1}:=\big{\langle}\left(-\Delta_{h}\right)^{-1}v,w\big{\rangle}.

The associated H1H^{-1} norm 1\left\|\cdot\right\|_{-1} can be defined by v1:=v,v1.\left\|v\right\|_{-1}:=\sqrt{\left\langle v,v\right\rangle_{-1}}\,. We have the following generalized Hölder inequality,

v2hvv1for any v𝕍̊h.\displaystyle\big{\|}v\big{\|}^{2}\leq\big{\|}\nabla_{h}v\big{\|}\big{\|}v\big{\|}_{-1}\quad\text{for any $v\in\mathbb{\mathring{V}}_{h}$.} (2.2)

2.2 Unique solvability

Lemma 2.1

For any v𝕍̊hv\in\mathbb{\mathring{V}}_{h}, it holds that v213(1+Δh)v2+32v12\big{\|}v\big{\|}^{2}\leq\frac{1}{3}\big{\|}(1+\Delta_{h})v\big{\|}^{2}+\frac{3}{2}\big{\|}v\big{\|}_{-1}^{2}.

Proof  The generalized Hölder inequality (2.2) and the Young’s inequality lead to

v2hvv1ε12hv2+12ε1v12for ε1>0.\big{\|}v\big{\|}^{2}\leq\big{\|}\nabla_{h}v\big{\|}\big{\|}v\big{\|}_{-1}\leq\frac{\varepsilon_{1}}{2}\big{\|}\nabla_{h}v\big{\|}^{2}+\frac{1}{2\varepsilon_{1}}\big{\|}v\big{\|}_{-1}^{2}\quad\text{for $\varepsilon_{1}>0$}.

Also, by using the discrete Green’s formula and Cauchy-Schwarz inequality, one has

hv2=v2(1+Δh)v,v(1+ε22)v2+12ε2(1+Δh)v2for ε2>0.\displaystyle\big{\|}\nabla_{h}v\big{\|}^{2}=\big{\|}v\big{\|}^{2}-\big{\langle}(1+\Delta_{h})v,v\big{\rangle}\leq\left(1+\frac{\varepsilon_{2}}{2}\right)\big{\|}v\big{\|}^{2}+\frac{1}{2\varepsilon_{2}}\big{\|}(1+\Delta_{h})v\big{\|}^{2}\quad\text{for $\varepsilon_{2}>0$}.

The above two inequalities with ε1=23\varepsilon_{1}=\frac{2}{3} and ε2=1\varepsilon_{2}=1 yields the claimed result.   

Note that, the solution ϕn\phi^{n} of BDF2 scheme (1.9) preserves the volume, ϕn,1=ϕ0,1\big{\langle}\phi^{n},1\big{\rangle}=\big{\langle}\phi^{0},1\big{\rangle}, for n1n\geq 1. Actually, taking the inner product of (1.9) by 1 and applying the summation by parts, one has D2ϕj,1=Δhμj,1=0\big{\langle}D_{2}\phi^{j},1\big{\rangle}=\big{\langle}\Delta_{h}\mu^{j},1\big{\rangle}=0 for j1j\geq 1. Multiplying both sides of this equality by the DOC kernels θnj(n)\theta_{n-j}^{(n)} and summing the index jj from j=1j=1 to nn, we get

j=1nθnj(n)D2ϕj,1=0for n1.\sum_{j=1}^{n}\theta_{n-j}^{(n)}\big{\langle}D_{2}\phi^{j},1\big{\rangle}=0\quad\text{for $n\geq 1$}.

It leads to τϕn,1=0\big{\langle}\triangledown_{\tau}\phi^{n},1\big{\rangle}=0 directly by taking vj=ϕjv^{j}=\phi^{j} in the equality (1.8). Simple induction yields the volume conversation law, ϕn,1=ϕn1,1==ϕ0,1\big{\langle}\phi^{n},1\big{\rangle}=\big{\langle}\phi^{n-1},1\big{\rangle}=\cdots=\big{\langle}\phi^{0},1\big{\rangle} for n1n\geq 1.

Theorem 2.1

If the step size τn2+4rn3ϵ(1+rn)\tau_{n}\leq\frac{2+4r_{n}}{3\epsilon(1+r_{n})}, the BDF2 scheme (1.9) is uniquely solvable.

Proof  For any fixed time-level indexes n1n\geq 1, we consider the following energy functional GG on the space 𝕍h:={z𝕍h|z,1=ϕn1,1},\mathbb{V}_{h}^{*}:=\big{\{}z\in\mathbb{V}_{h}\,|\,\big{\langle}z,1\big{\rangle}=\big{\langle}\phi^{n-1},1\big{\rangle}\big{\}},

G[z]:=12b0(n)zϕn112+b1(n)τϕn1,z1+12(1+Δh)z2+14zl44ϵ2z2.\displaystyle G[z]:=\frac{1}{2}b_{0}^{(n)}\big{\|}z-\phi^{n-1}\big{\|}_{-1}^{2}+b_{1}^{(n)}\big{\langle}\triangledown_{\tau}\phi^{n-1},z\big{\rangle}_{-1}+\frac{1}{2}\big{\|}(1+\Delta_{h})z\big{\|}^{2}+\frac{1}{4}\big{\|}z\big{\|}_{l^{4}}^{4}-\frac{\epsilon}{2}\big{\|}z\big{\|}^{2}.

Under the time-step size condition τn2+4rn3ϵ(1+rn)\tau_{n}\leq\frac{2+4r_{n}}{3\epsilon(1+r_{n})} or b0(n)3ϵ/2b_{0}^{(n)}\geq 3\epsilon/2, the functional GG is strictly convex since, for any λ\lambda\in\mathbb{R} and any ψ𝕍̊h\psi\in\mathbb{\mathring{V}}_{h},

d2Gdλ2[z+λψ]|λ=0=\displaystyle\frac{\,\mathrm{d}^{2}G}{\,\mathrm{d}\lambda^{2}}[z+\lambda\psi]\Big{|}_{\lambda=0}= b0(n)ψ12+(1+Δh)ψ2+3zψ2ϵψ2\displaystyle\,b_{0}^{(n)}\big{\|}\psi\big{\|}_{-1}^{2}+\big{\|}(1+\Delta_{h})\psi\big{\|}^{2}+3\big{\|}z\psi\big{\|}^{2}-\epsilon\big{\|}\psi\big{\|}^{2}
\displaystyle\geq (b0(n)3ϵ2)ψ12+23(1+Δh)ψ2+3zψ2>0,\displaystyle\,\big{(}b_{0}^{(n)}-\frac{3\epsilon}{2}\big{)}\big{\|}\psi\big{\|}_{-1}^{2}+\frac{2}{3}\big{\|}(1+\Delta_{h})\psi\big{\|}^{2}+3\big{\|}z\psi\big{\|}^{2}>0,

where Lemma 2.1 has been applied with the setting 0<ϵ<10<\epsilon<1. Thus the functional GG has a unique minimizer, denoted by ϕn\phi^{n}, if and only if it solves the equation

0=dGdλ[z+λψ]|λ=0=\displaystyle 0=\frac{\,\mathrm{d}G}{\,\mathrm{d}\lambda}[z+\lambda\psi]\Big{|}_{\lambda=0}= b0(n)(zϕn1)+b1(n)τϕn1,ψ1+(1+Δh)2z+z3ϵz,ψ\displaystyle\,\big{\langle}b_{0}^{(n)}(z-\phi^{n-1})+b_{1}^{(n)}\triangledown_{\tau}\phi^{n-1},\psi\big{\rangle}_{-1}+\big{\langle}(1+\Delta_{h})^{2}z+z^{3}-\epsilon z,\psi\big{\rangle}
=\displaystyle= b0(n)(zϕn1)+b1(n)τϕn1Δh((1+Δh)2z+z3ϵz),ψ1.\displaystyle\,\Big{\langle}b_{0}^{(n)}(z-\phi^{n-1})+b_{1}^{(n)}\triangledown_{\tau}\phi^{n-1}-\Delta_{h}\left((1+\Delta_{h})^{2}z+z^{3}-\epsilon z\right),\psi\Big{\rangle}_{-1}.

This equation holds for any ψ𝕍̊h\psi\in\mathbb{\mathring{V}}_{h} if and only if the unique minimizer ϕn𝕍h\phi^{n}\in\mathbb{V}_{h}^{*} solves

b0(n)(ϕnϕn1)+b1(n)τϕn1Δh((1+Δh)2ϕn+(ϕn)3ϵϕn)=0,\displaystyle b_{0}^{(n)}(\phi^{n}-\phi^{n-1})+b_{1}^{(n)}\triangledown_{\tau}\phi^{n-1}-\Delta_{h}\left((1+\Delta_{h})^{2}\phi^{n}+(\phi^{n})^{3}-\epsilon\phi^{n}\right)=0,

which is just the BDF2 scheme (1.9). It verifies the claimed result and completes the proof.   

The proof of Theorem 2.1 also says that the BDF2 scheme (1.9) is equivalent to the minimization of a convex functional G[z]G[z] under the condition τn2+4rn3ϵ(1+rn)\tau_{n}\leq\frac{2+4r_{n}}{3\epsilon(1+r_{n})}. We see that the BDF2 implicit time-stepping scheme is also convex according to Xu et al. [22].

2.3 Energy dissipation law

The following result, cf. [28, Lemma 2.1], shows that the BDF2 convolution kernels bnk(n)b_{n-k}^{(n)} are positive definite provided the adjacent time-step ratios rkr_{k} satisfy S1, or 0<rk<rsup0<r_{k}<r_{\mathrm{sup}}, where rsup=3+172r_{\mathrm{sup}}=\frac{3+\sqrt{17}}{2} is the positive root of the equation 2+3rsuprsup2=02+3r_{\mathrm{sup}}-r_{\mathrm{sup}}^{2}=0. Consider the function

R(z,s):=2+4zz21+zs1+sfor 0z,s<rsup.\displaystyle R(z,s):=\frac{2+4z-z^{2}}{1+z}-\frac{s}{1+s}\quad\text{for $0\leq z,s<r_{\mathrm{sup}}.$} (2.3)

It is easy to check that R(z,s)R(z,s) is increasing in (0,31)(0,\sqrt{3}-1) and decreasing in (31,rsup)(\sqrt{3}-1,r_{\mathrm{sup}}) with respect to zz, and decreasing with respect to ss. So the condition S1 ensures

2+4rkrk21+rkrk+11+rk+1=R(rk,rk+1)>R(rk,rsup)>0for k1.\displaystyle\frac{2+4r_{k}-r_{k}^{2}}{1+r_{k}}-\frac{r_{k+1}}{1+r_{k+1}}=R(r_{k},r_{k+1})>R(r_{k},r_{\mathrm{sup}})>0\quad\text{for $k\geq 1$.}
Lemma 2.2

Let S1 holds. For any real sequence {wk}k=1n\{w_{k}\}_{k=1}^{n} with n entries, it holds that

2wkj=1kbkj(k)wj\displaystyle 2w_{k}\sum_{j=1}^{k}b_{k-j}^{(k)}w_{j} rk+11+rk+1wk2τkrk1+rkwk12τk1+R(rk,rk+1)wk2τk\displaystyle\geq\frac{r_{k+1}}{1+r_{k+1}}\frac{w_{k}^{2}}{\tau_{k}}-\frac{r_{k}}{1+r_{k}}\frac{w_{k-1}^{2}}{\tau_{k-1}}+R(r_{k},r_{k+1})\frac{w_{k}^{2}}{\tau_{k}}

for k2k\geq 2. So the discrete convolution kernels bnk(n)b_{n-k}^{(n)} are positive definite,

k=1nwkj=1kbkj(k)wj12k=1nR(rk,rk+1)wk2τkfor n1.\sum_{k=1}^{n}w_{k}\sum_{j=1}^{k}b_{k-j}^{(k)}w_{j}\geq\frac{1}{2}\sum_{k=1}^{n}R(r_{k},r_{k+1})\frac{w_{k}^{2}}{\tau_{k}}\quad\text{for $n\geq 1$}.

Now we prove the energy stability of BDF2 scheme (1.9). Let E[ϕk]E[\phi^{k}] be the discrete version of free energy functional (1.1), given by

E[ϕk]:=12(1+Δh)ϕk2+14(ϕk)2ϵ214ϵ2for k0.\displaystyle E[\phi^{k}]:=\frac{1}{2}\big{\|}(1+\Delta_{h})\phi^{k}\big{\|}^{2}+\frac{1}{4}\big{\|}(\phi^{k})^{2}-\epsilon\big{\|}^{2}-\frac{1}{4}\big{\|}\epsilon\big{\|}^{2}\quad\text{for $k\geq 0$.} (2.4)

Since the BDF2 formula (1.4) is naturally self-dissipative, we define a modified discrete energy,

[ϕk]:=E[ϕk]+rk+12(1+rk+1)τkτϕk12for k0\displaystyle\mathcal{E}[\phi^{k}]:=E[\phi^{k}]+\frac{r_{k+1}}{2(1+r_{k+1})\tau_{k}}\big{\|}\triangledown_{\tau}\phi^{k}\big{\|}_{-1}^{2}\quad\text{for $k\geq 0$}

where [ϕ0]=E[ϕ0]\mathcal{E}[\phi^{0}]=E[\phi^{0}] due to the setting r10r_{1}\equiv 0.

Theorem 2.2

Assume that S1 holds and the time-step sizes are properly small such that

τn23ϵmin{1+2rn1+rn,R(rn,rn+1)}for n1,\displaystyle\tau_{n}\leq\frac{2}{3\epsilon}\min\Big{\{}\frac{1+2r_{n}}{1+r_{n}},R(r_{n},r_{n+1})\Big{\}}\quad\text{for $n\geq 1$,} (2.5)

the variable-step BDF2 scheme (1.9) preserves the following energy dissipation law

[ϕn][ϕn1][ϕ0]=E[ϕ0]for n1.\displaystyle\mathcal{E}[\phi^{n}]\leq\mathcal{E}[\phi^{n-1}]\leq\mathcal{E}[\phi^{0}]=E[\phi^{0}]\quad\text{for $n\geq 1$.}

Proof  The first condition of (2.5) ensures the unique solvability in Theorem 2.1. We will establish the energy dissipation law under the second condition of (2.5). The volume conversation law implies τϕn𝕍̊h\triangledown_{\tau}\phi^{n}\in\mathbb{\mathring{V}}_{h} for n1n\geq 1. Then we make the inner product of (1.9) by (Δh)1τϕn(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{n} and obtain

D2ϕn,(Δh)1τϕn+(1+Δh)2ϕn,τϕn+(ϕn)3ϵϕn,τϕn=0.\displaystyle\big{\langle}D_{2}\phi^{n},(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{n}\big{\rangle}+\big{\langle}(1+\Delta_{h})^{2}\phi^{n},\triangledown_{\tau}\phi^{n}\big{\rangle}+\big{\langle}(\phi^{n})^{3}-\epsilon\phi^{n},\triangledown_{\tau}\phi^{n}\big{\rangle}=0. (2.6)

With the help of the summation by parts and 2a(ab)=a2b2+(ab)22a(a-b)=a^{2}-b^{2}+(a-b)^{2}, the second term at the left hand side of (2.6) gives

(1+Δh)2ϕn,τϕn=12(1+Δh)ϕn212(1+Δh)ϕn12+12(1+Δh)τϕn2.\displaystyle\big{\langle}(1+\Delta_{h})^{2}\phi^{n},\triangledown_{\tau}\phi^{n}\big{\rangle}=\frac{1}{2}\big{\|}(1+\Delta_{h})\phi^{n}\big{\|}^{2}-\frac{1}{2}\big{\|}(1+\Delta_{h})\phi^{n-1}\big{\|}^{2}+\frac{1}{2}\big{\|}(1+\Delta_{h})\triangledown_{\tau}\phi^{n}\big{\|}^{2}.

It is easy to check the following identity

4(a3ϵa)(ab)=(a2ϵ)2(b2ϵ)22(ϵa2)(ab)2+(a2b2)2.\displaystyle 4\big{(}a^{3}-\epsilon a\big{)}\left(a-b\right)=\left(a^{2}-\epsilon\right)^{2}-\left(b^{2}-\epsilon\right)^{2}-2\left(\epsilon-a^{2}\right)\left(a-b\right)^{2}+\left(a^{2}-b^{2}\right)^{2}.

Then the third term in (2.6) can be bounded by

(ϕn)3ϵϕn,τϕn\displaystyle\big{\langle}(\phi^{n})^{3}-\epsilon\phi^{n},\triangledown_{\tau}\phi^{n}\big{\rangle} 14(ϕn)2ϵ214(ϕn1)2ϵ212(ϵ(ϕn)2)(τϕn)2,1\displaystyle\geq\frac{1}{4}\big{\|}(\phi^{n})^{2}-\epsilon\big{\|}^{2}-\frac{1}{4}\big{\|}(\phi^{n-1})^{2}-\epsilon\big{\|}^{2}-\frac{1}{2}\big{\langle}(\epsilon-(\phi^{n})^{2})\left(\triangledown_{\tau}\phi^{n}\right)^{2},1\big{\rangle}
14(ϕn)2ϵ214(ϕn1)2ϵ2ϵ2τϕn2.\displaystyle\geq\frac{1}{4}\big{\|}(\phi^{n})^{2}-\epsilon\big{\|}^{2}-\frac{1}{4}\big{\|}(\phi^{n-1})^{2}-\epsilon\big{\|}^{2}-\frac{\epsilon}{2}\big{\|}\triangledown_{\tau}\phi^{n}\big{\|}^{2}.

Thus it follows from (2.6) that

D2ϕn,(Δh)1τϕn+12(1+Δh)τϕn2ϵ2τϕn2+E[ϕn]E[ϕn1].\displaystyle\big{\langle}D_{2}\phi^{n},(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{n}\big{\rangle}+\frac{1}{2}\big{\|}(1+\Delta_{h})\triangledown_{\tau}\phi^{n}\big{\|}^{2}-\frac{\epsilon}{2}\big{\|}\triangledown_{\tau}\phi^{n}\big{\|}^{2}+E[\phi^{n}]\leq E[\phi^{n-1}].

Applying Lemma 2.1, one has

ϵ2τϕn216(1+Δh)τϕn2+3ϵ4τϕn12,\frac{\epsilon}{2}\big{\|}\triangledown_{\tau}\phi^{n}\big{\|}^{2}\leq\frac{1}{6}\big{\|}(1+\Delta_{h})\triangledown_{\tau}\phi^{n}\big{\|}^{2}+\frac{3\epsilon}{4}\big{\|}\triangledown_{\tau}\phi^{n}\big{\|}_{-1}^{2},

where 0<ϵ<10<\epsilon<1 has been used. Thus we can obtain that

D2ϕn,(Δh)1τϕn3ϵ4τϕn12+E[ϕn]E[ϕn1]for n1.\displaystyle\big{\langle}D_{2}\phi^{n},(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{n}\big{\rangle}-\frac{3\epsilon}{4}\big{\|}\triangledown_{\tau}\phi^{n}\big{\|}_{-1}^{2}+E[\phi^{n}]\leq E[\phi^{n-1}]\quad\text{for $n\geq 1$.} (2.7)

For the general cases n2n\geq 2, we take wj=τϕjw_{j}=\triangledown_{\tau}\phi^{j} in the first inequality of Lemma 2.2 and apply the condition 12τnR(rn,rn+1)34ϵ\frac{1}{2\tau_{n}}R(r_{n},r_{n+1})\geq\frac{3}{4}\epsilon to obtain

D2ϕn,(Δh)1τϕn\displaystyle\big{\langle}D_{2}\phi^{n},(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{n}\big{\rangle}\geq rn+1τn2(1+rn+1)τϕn12rnτn12(1+rn)τϕn112+3ϵ4τϕn12.\displaystyle\,\frac{r_{n+1}\tau_{n}}{2(1+r_{n+1})}\big{\|}\partial_{\tau}\phi^{n}\big{\|}_{-1}^{2}-\frac{r_{n}\tau_{n-1}}{2(1+r_{n})}\big{\|}\partial_{\tau}\phi^{n-1}\big{\|}_{-1}^{2}+\frac{3\epsilon}{4}\big{\|}\triangledown_{\tau}\phi^{n}\big{\|}_{-1}^{2}.

Combining the above inequality with (2.7) yields [ϕn][ϕn1]\mathcal{E}[\phi^{n}]\leq\mathcal{E}[\phi^{n-1}] for n2n\geq 2. It remains to consider n=1n=1. Recalling b0(1)=1/τ1b_{0}^{(1)}=1/\tau_{1}, we use 12τ1R(r1,r2)=2+r22τ1(1+r2)34ϵ\frac{1}{2\tau_{1}}R(r_{1},r_{2})=\frac{2+r_{2}}{2\tau_{1}(1+r_{2})}\geq\frac{3}{4}\epsilon to derive that

D2ϕ1,(Δh)1τϕ1=\displaystyle\big{\langle}D_{2}\phi^{1},(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{1}\big{\rangle}= D1ϕ1,(Δh)1τϕ1=(r2τ12(1+r2)+(2+r2)τ12(1+r2))τϕ112\displaystyle\,\big{\langle}D_{1}\phi^{1},(-\Delta_{h})^{-1}\triangledown_{\tau}\phi^{1}\big{\rangle}=\Big{(}\frac{r_{2}\tau_{1}}{2(1+r_{2})}+\frac{(2+r_{2})\tau_{1}}{2(1+r_{2})}\Big{)}\big{\|}\partial_{\tau}\phi^{1}\big{\|}_{-1}^{2}
\displaystyle\geq r2τ12(1+r2)τϕ112+3ϵ4τϕ112.\displaystyle\,\frac{r_{2}\tau_{1}}{2(1+r_{2})}\big{\|}\partial_{\tau}\phi^{1}\big{\|}_{-1}^{2}+\frac{3\epsilon}{4}\big{\|}\triangledown_{\tau}\phi^{1}\big{\|}_{-1}^{2}.

We combine this inequality with (2.7) to find [ϕ1][ϕ0]=E[ϕ0]\mathcal{E}[\phi^{1}]\leq\mathcal{E}[\phi^{0}]=E[\phi^{0}], and complete the proof.   

Remark 1

Some remarks on the time-step size constraint (2.5) are listed here under the step-ratio condition S1, that is, 0<rk<rsup0<r_{k}<r_{\mathrm{sup}} for k2k\geq 2. For n=1n=1, it gives ϵτ123min{1,2+r21+r2}=23\epsilon\tau_{1}\leq\frac{2}{3}\min\{1,\frac{2+r_{2}}{1+r_{2}}\}=\frac{2}{3} and one can choose τn\tau_{n} such that ϵτ123\epsilon\tau_{1}\leq\frac{2}{3}. Recalling the monotonicity of R(z,s)R(z,s), we consider the following three cases for n2n\geq 2:

  • (i)

    If 0<rn,rn+1310<r_{n},r_{n+1}\leq\sqrt{3}-1, R(rn,rn+1)R(0,31)R(r_{n},r_{n+1})\geq R(0,\sqrt{3}-1) and then ϵτn23min{1,3+33}=23\epsilon\tau_{n}\leq\frac{2}{3}\min\big{\{}1,\frac{3+\sqrt{3}}{3}\big{\}}=\frac{2}{3}. One can choose the step size τn23ϵ\tau_{n}\leq\frac{2}{3\epsilon};

  • (ii)

    If 31<rn,rn+12\sqrt{3}-1<r_{n},r_{n+1}\leq 2, R(rn,rn+1)R(2,2)R(r_{n},r_{n+1})\geq R(2,2) and then ϵτn23min{633,43}=89\epsilon\tau_{n}\leq\frac{2}{3}\min\big{\{}\frac{6-\sqrt{3}}{3},\frac{4}{3}\big{\}}=\frac{8}{9}. One can choose the step size τn89ϵ\tau_{n}\leq\frac{8}{9\epsilon};

  • (iii)

    If 2<rn<rsup2<r_{n}<r_{\mathrm{sup}}, one can choose a small step size τn+1\tau_{n+1} or step ratio rn+1r_{n+1} to ensure the step size restriction (2.5) in adaptive computations, especially when the current step-ratio rnrsupr_{n}\rightarrow r_{\mathrm{sup}}. For an example, the choice τn14ϵ\tau_{n}\leq\frac{1}{4\epsilon} is sufficient if one choose R(rsup,rn+1)38R(r_{\mathrm{sup}},r_{n+1})\geq\frac{3}{8}, i.e., the next time-step ratio rn+1(3+1617)/1010.68r_{n+1}\leq(3+16\sqrt{17})/101\approx 0.68.

In summary, the time-step size constraint (2.5) is always mild in practical computations.

Lemma 2.3

Assume that S1 holds and the time–step sizes fulfill (2.5). The solution of BDF2 scheme (1.9) is stable in the LL^{\infty} norm,

ϕnc0:=cΩ8E[ϕ0]+2(2+ϵ)2|Ωh|for n1,\big{\|}\phi^{n}\big{\|}_{\infty}\leq c_{0}:=c_{\Omega}\sqrt{8E[\phi^{0}]+2\big{(}2+\epsilon\big{)}^{2}\left|\Omega_{h}\right|}\quad\text{for $n\geq 1$},

where c0c_{0} is dependent on the domain Ω\Omega and the initial value ϕ0\phi^{0}, but independent of the time tnt_{n}, step sizes τn\tau_{n} and step ratios rnr_{n}.

Proof  Since (a22ϵ)20(a^{2}-2-\epsilon)^{2}\geq 0, one has ϕnl44(4+2ϵ)ϕn2(2+ϵ)2|Ωh|\left\|\phi^{n}\right\|_{l^{4}}^{4}\geq\big{(}4+2\epsilon\big{)}\big{\|}\phi^{n}\big{\|}^{2}-\big{(}2+\epsilon\big{)}^{2}\big{|}\Omega_{h}\big{|}. The energy dissipation law in Theorem 2.2 shows that E[ϕ0][ϕn]E[ϕn]E[\phi^{0}]\geq\mathcal{E}[\phi^{n}]\geq E[\phi^{n}]. Then we have

8E[ϕ0]8E[ϕn]=\displaystyle 8E[\phi^{0}]\geq 8E[\phi^{n}]=  4(1+Δh)ϕn2+2ϕnl444ϵϕn2\displaystyle\,4\big{\|}(1+\Delta_{h})\phi^{n}\big{\|}^{2}+2\big{\|}\phi^{n}\big{\|}_{l^{4}}^{4}-4\epsilon\big{\|}\phi^{n}\big{\|}^{2}
\displaystyle\geq  4(1+Δh)ϕn2+8ϕn22(2+ϵ)2|Ωh|\displaystyle\,4\big{\|}(1+\Delta_{h})\phi^{n}\big{\|}^{2}+8\big{\|}\phi^{n}\big{\|}^{2}-2\big{(}2+\epsilon\big{)}^{2}\big{|}\Omega_{h}\big{|}
\displaystyle\geq  2Δhϕn2+4ϕn22(2+ϵ)2|Ωh|\displaystyle\,2\big{\|}\Delta_{h}\phi^{n}\big{\|}^{2}+4\big{\|}\phi^{n}\big{\|}^{2}-2\big{(}2+\epsilon\big{)}^{2}\big{|}\Omega_{h}\big{|}
\displaystyle\geq (Δhϕn+ϕn)22(2+ϵ)2|Ωh|for n1,\displaystyle\,\left(\big{\|}\Delta_{h}\phi^{n}\big{\|}+\big{\|}\phi^{n}\big{\|}\right)^{2}-2\big{(}2+\epsilon\big{)}^{2}\big{|}\Omega_{h}\big{|}\quad\text{for $n\geq 1$,}

where the inequality, Δhϕn2=(1+Δh)ϕnϕn22(1+Δh)ϕn2+2ϕn2\big{\|}\Delta_{h}\phi^{n}\big{\|}^{2}=\big{\|}(1+\Delta_{h})\phi^{n}-\phi^{n}\big{\|}^{2}\leq 2\big{\|}(1+\Delta_{h})\phi^{n}\big{\|}^{2}+2\big{\|}\phi^{n}\big{\|}^{2}, was used in the second inequality. Then one can apply the Sobolev embedding inequality (2.1) to obtain

ϕn2cΩ2(ϕn+Δhϕn)2cΩ2(8E[ϕ0]+2(2+ϵ)2|Ωh|)=c02,\displaystyle\big{\|}\phi^{n}\big{\|}_{\infty}^{2}\leq c_{\Omega}^{2}\big{(}\big{\|}\phi^{n}\big{\|}+\big{\|}\Delta_{h}\phi^{n}\big{\|}\big{)}^{2}\leq c_{\Omega}^{2}\big{(}8E[\phi^{0}]+2\big{(}2+\epsilon\big{)}^{2}\left|\Omega_{h}\right|\big{)}=c_{0}^{2},

which leads to the claimed bound and completes the proof.   

3 L2L^{2} norm error estimate

3.1 Some properties of DOC kernels

The following lemma gathers the results of Lemma 2.2, Corollary 2.1 and Lemma 2.3 in [28].

Lemma 3.1

If the discrete convolution kernels bnk(n)b^{(n)}_{n-k} defined in (1.5) are positive semi-definite (the restriction S1 is sufficient), then the DOC kernels θnj(n)\theta_{n-j}^{(n)} defined in (1.6) satisfy:

  • (I)

    The discrete kernels θnj(n)\theta_{n-j}^{(n)} are positive definite;

  • (II)

    The discrete kernels θnj(n)\theta_{n-j}^{(n)} are positive and

    θnj(n)=1b0(j)i=j+1nri21+2ri for 1jn;\displaystyle\theta_{n-j}^{(n)}=\frac{1}{b^{(j)}_{0}}\prod_{i=j+1}^{n}\frac{r_{i}^{2}}{1+2r_{i}}\quad\text{ for $1\leq j\leq n$;}
  • (III)

    j=1nθnj(n)=τn\displaystyle\sum_{j=1}^{n}\theta_{n-j}^{(n)}=\tau_{n} such that k=1nj=1kθkj(k)=tn\displaystyle\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}=t_{n} for n1n\geq 1.

To facilitate the convergence analysis, we present a discrete convolution inequality with respect to the DOC kernels θnj(n)\theta_{n-j}^{(n)}, but leave the proof to Appendix A.

Lemma 3.2

If S1 holds, then for any real sequences {wk}k=1n\{w_{k}\}_{k=1}^{n} and {vk}k=1n\{v_{k}\}_{k=1}^{n},

k=1nj=1kθkj(k)wkvjεk=1nj=1kθkj(k)vkvj+rεk=1nj=1kθkj(k)wkwjε>0,\displaystyle\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}v_{j}\leq\varepsilon\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}v_{k}v_{j}+\frac{\mathcal{M}_{r}}{\varepsilon}\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}w_{j}\quad\text{$\forall\;\varepsilon>0$},

where r>0\mathcal{M}_{r}>0 is a constant independent of the time tnt_{n}, time-step sizes τn\tau_{n} and step ratios rnr_{n}.

Lemma 3.2 yields the following discrete embedding-like inequality in the quadratic form. Here and hereafter, we use the notation k,jn,kk=1nj=1k\sum_{k,j}^{n,k}\triangleq\sum_{k=1}^{n}\sum_{j=1}^{k} for the sake of brevity.

Lemma 3.3

If S1 holds, then for any grid function vn𝕍hv^{n}\in\mathbb{V}_{h} and any constant ε>0\varepsilon>0,

k,jn,kθkj(k)Δhvj,Δhvk\displaystyle\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\Delta_{h}v^{j},\Delta_{h}v^{k}\big{\rangle}\leq 16r3ε2k,jn,kθkj(k)vj,vk+εk,jn,kθkj(k)hΔhvj,hΔhvk.\displaystyle\,\frac{16\mathcal{M}_{r}^{3}}{\varepsilon^{2}}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}v^{j},v^{k}\big{\rangle}+\varepsilon\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\nabla_{h}\Delta_{h}v^{j},\nabla_{h}\Delta_{h}v^{k}\big{\rangle}.

Proof  For any constant ε3>0\varepsilon_{3}>0, we can take wk:=hΔhvkw_{k}:=-\nabla_{h}\Delta_{h}v^{k}, vj:=hvjv_{j}:=-\nabla_{h}v^{j} and ε:=r/ε3\varepsilon:=\mathcal{M}_{r}/\varepsilon_{3} in Lemma 3.2 and derive that

2k,jn,kθkj(k)Δhvj,Δhvk\displaystyle 2\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\Delta_{h}v^{j},\Delta_{h}v^{k}\big{\rangle}\leq 2rε3k,jn,kθkj(k)hvj,hvk+2ε3k,jn,kθkj(k)hΔhvj,hΔhvk\displaystyle\,\frac{2\mathcal{M}_{r}}{\varepsilon_{3}}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\nabla_{h}v^{j},\nabla_{h}v^{k}\big{\rangle}+2\varepsilon_{3}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\nabla_{h}\Delta_{h}v^{j},\nabla_{h}\Delta_{h}v^{k}\big{\rangle}

Similarly, Lemma 3.2 with vj:=Δhvjv_{j}:=-\Delta_{h}v^{j}, wk:=vkw_{k}:=v^{k} and ε:=ε3/(2r)\varepsilon:=\varepsilon_{3}/(2\mathcal{M}_{r}) yields

2rε3k,jn,kθkj(k)hvj,hvk\displaystyle\frac{2\mathcal{M}_{r}}{\varepsilon_{3}}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\nabla_{h}v^{j},\nabla_{h}v^{k}\big{\rangle}\leq k,jn,kθkj(k)Δhvj,Δhvk+4r3ε32k,jn,kθkj(k)vj,vk.\displaystyle\,\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\Delta_{h}v^{j},\Delta_{h}v^{k}\big{\rangle}+\frac{4\mathcal{M}_{r}^{3}}{\varepsilon_{3}^{2}}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}v^{j},v^{k}\big{\rangle}.

We complete the proof by summing up the above two inequalities and taking ε3=ε/2\varepsilon_{3}=\varepsilon/2.   

3.2 Convolutional consistency in time

Now consider the error behavior of BDF2 time-stepping with respect to the variation of time-step sizes. Let ξΦj:=D2Φ(tj)tΦ(tj)\xi_{\Phi}^{j}:=D_{2}\Phi(t_{j})-\partial_{t}\Phi(t_{j}) be the local consistency error of BDF2 formula at the time t=tjt=t_{j}. We will consider a convolutional consistency error ΞΦk\Xi_{\Phi}^{k} defined by

ΞΦk:=j=1kθkj(k)ξΦj=j=1kθkj(k)(D2Φ(tj)tΦ(tj))for k1.\displaystyle\Xi_{\Phi}^{k}:=\sum_{j=1}^{k}\theta_{k-j}^{(k)}\xi_{\Phi}^{j}=\sum_{j=1}^{k}\theta_{k-j}^{(k)}\left(D_{2}\Phi(t_{j})-\partial_{t}\Phi(t_{j})\right)\quad\text{for $k\geq 1$.} (3.1)
Lemma 3.4

If S1 holds, the convolutional consistency error ΞΦk\Xi_{\Phi}^{k} in (3.1) satisfies

|ΞΦk|\displaystyle\big{|}\Xi_{\Phi}^{k}\big{|}\leq θk1(k)0t1|Φ′′(s)|ds+3j=1kθkj(k)τjtj1tj|Φ′′′(s)|dsfor k1\displaystyle\,\theta_{k-1}^{(k)}\int_{0}^{t_{1}}\big{|}\Phi^{\prime\prime}(s)\big{|}\,\mathrm{d}{s}+3\sum_{j=1}^{k}\theta_{k-j}^{(k)}\tau_{j}\int_{t_{j-1}}^{t_{j}}\big{|}\Phi^{\prime\prime\prime}(s)\big{|}\,\mathrm{d}{s}\quad\text{for $k\geq 1$}

such that

k=1n|ΞΦk|\displaystyle\sum_{k=1}^{n}\big{|}\Xi_{\Phi}^{k}\big{|}\leq τ10t1|Φ′′(s)|dsk=1ni=2kri21+2ri+3tnmax1jn(τjtj1tj|Φ′′′(s)|ds)for n1.\displaystyle\,\tau_{1}\int_{0}^{t_{1}}\big{|}\Phi^{\prime\prime}(s)\big{|}\,\mathrm{d}{s}\,\sum_{k=1}^{n}\prod_{i=2}^{k}\frac{r_{i}^{2}}{1+2r_{i}}+3t_{n}\max_{1\leq j\leq n}\Big{(}\tau_{j}\int_{t_{j-1}}^{t_{j}}\big{|}\Phi^{\prime\prime\prime}(s)\big{|}\,\mathrm{d}{s}\Big{)}\quad\text{for $n\geq 1$.}

Proof  We use the notations Gt2j=tj1tj|Φ′′(s)|dsG_{t2}^{j}=\int_{t_{j-1}}^{t_{j}}\big{|}\Phi^{\prime\prime}(s)\big{|}\,\mathrm{d}{s} and Gt3j=tj1tj|Φ′′′(s)|dsG_{t3}^{j}=\int_{t_{j-1}}^{t_{j}}\big{|}\Phi^{\prime\prime\prime}(s)\big{|}\,\mathrm{d}{s} for j1j\geq 1. The proof of [28, Lemma 3.2] gives

|ξΦ1|b0(1)τ1Gt21and|ξΦj|b0(j)τj2Gt3j+rj22(1+2rj)b0(j)τj12Gt3j1for j2.\displaystyle\big{|}\xi_{\Phi}^{1}\big{|}\leq b_{0}^{(1)}\tau_{1}G_{t2}^{1}\quad\text{and}\quad\big{|}\xi_{\Phi}^{j}\big{|}\leq b_{0}^{(j)}\tau_{j}^{2}G_{t3}^{j}+\frac{r_{j}^{2}}{2(1+2r_{j})}b_{0}^{(j)}\tau_{j-1}^{2}G_{t3}^{j-1}\quad\text{for $j\geq 2$}.

Recalling the definitions of BDF2 kernels (1.5) and DOC kernels (1.6), we find that

θkj(k)b0(j)=θkj1(k)b1(j+1)=rj+121+2rj+1θkj1(k)b0(j+1)for 1jk1.\displaystyle\theta_{k-j}^{(k)}b_{0}^{(j)}=-\theta_{k-j-1}^{(k)}b_{1}^{(j+1)}=\frac{r_{j+1}^{2}}{1+2r_{j+1}}\theta_{k-j-1}^{(k)}b_{0}^{(j+1)}\quad\text{for $1\leq j\leq k-1$}.

Lemma 3.1(II) shows θkj(k)>0\theta_{k-j}^{(k)}>0. Thus we apply the triangle inequality to derive that

|ΞΦk|\displaystyle\big{|}\Xi_{\Phi}^{k}\big{|}\leq j=1kθkj(k)|ξΦk|=θk1(k)|ξΦ1|+j=2kθkj(k)|ξΦk|\displaystyle\,\sum_{j=1}^{k}\theta_{k-j}^{(k)}\big{|}\xi_{\Phi}^{k}\big{|}=\theta_{k-1}^{(k)}\big{|}\xi_{\Phi}^{1}\big{|}+\sum_{j=2}^{k}\theta_{k-j}^{(k)}\big{|}\xi_{\Phi}^{k}\big{|}
\displaystyle\leq θk1(k)b0(1)τ1Gt21+j=2kθkj(k)b0(j)τj2Gt3j+12j=1k1θkj1(k)b0(j+1)rj+121+2rj+1τj2Gt3j\displaystyle\,\theta_{k-1}^{(k)}b_{0}^{(1)}\tau_{1}G_{t2}^{1}+\sum_{j=2}^{k}\theta_{k-j}^{(k)}b_{0}^{(j)}\tau_{j}^{2}G_{t3}^{j}+\frac{1}{2}\sum_{j=1}^{k-1}\theta_{k-j-1}^{(k)}b_{0}^{(j+1)}\frac{r_{j+1}^{2}}{1+2r_{j+1}}\tau_{j}^{2}G_{t3}^{j}
=\displaystyle= θk1(k)b0(1)τ1Gt21+j=2kθkj(k)b0(j)τj2Gt3j+12j=1k1θkj(k)b0(j)τj2Gt3j\displaystyle\,\theta_{k-1}^{(k)}b_{0}^{(1)}\tau_{1}G_{t2}^{1}+\sum_{j=2}^{k}\theta_{k-j}^{(k)}b_{0}^{(j)}\tau_{j}^{2}G_{t3}^{j}+\frac{1}{2}\sum_{j=1}^{k-1}\theta_{k-j}^{(k)}b_{0}^{(j)}\tau_{j}^{2}G_{t3}^{j}
\displaystyle\leq θk1(k)b0(1)τ1Gt21+32j=1kθkj(k)b0(j)τj2Gt3jfor k1.\displaystyle\,\theta_{k-1}^{(k)}b_{0}^{(1)}\tau_{1}G_{t2}^{1}+\frac{3}{2}\sum_{j=1}^{k}\theta_{k-j}^{(k)}b_{0}^{(j)}\tau_{j}^{2}G_{t3}^{j}\quad\text{for $k\geq 1$}.

Moreover, the definition (1.5) of BDF2 kernels yields that b0(1)τ1=1b_{0}^{(1)}\tau_{1}=1 and b0(j)τj=1+2rj1+rj2b_{0}^{(j)}\tau_{j}=\frac{1+2r_{j}}{1+r_{j}}\leq 2, and the claimed first inequality follows immediately. Then the second estimation can be derived by using Lemma 3.1 (II)-(III). It completes the proof.   

Remark 2

Under the mild condition S1, Lemma 3.1 (III) shows θk1(k)τk\theta_{k-1}^{(k)}\leq\tau_{k} such that

k=1n|ΞΦk|\displaystyle\sum_{k=1}^{n}\big{|}\Xi_{\Phi}^{k}\big{|}\leq tn0t1|Φ′′(s)|ds+3tnmax1jn(τjtj1tj|Φ′′′(s)|ds)for n1.\displaystyle\,t_{n}\int_{0}^{t_{1}}\big{|}\Phi^{\prime\prime}(s)\big{|}\,\mathrm{d}{s}+3t_{n}\max_{1\leq j\leq n}\Big{(}\tau_{j}\int_{t_{j-1}}^{t_{j}}\big{|}\Phi^{\prime\prime\prime}(s)\big{|}\,\mathrm{d}{s}\Big{)}\quad\text{for $n\geq 1$.}

It will arrive at first-order convergence. The degraded accuracy is mainly attributed to the convolutional accumulation, from the irregular variation of time-step sizes, onto the first-level solution. If S2 holds, there exists a bounded quantity cr=cr(N0,rc,r^c)c_{r}=c_{r}(N_{0},r_{c},\hat{r}_{c}) such that

k=1ni=2kri21+2ricr(N0,rc,r^c):=(r^c21+2r^c)N01+2rc1+2rcrc2,\displaystyle\sum_{k=1}^{n}\prod_{i=2}^{k}\frac{r_{i}^{2}}{1+2r_{i}}\leq c_{r}(N_{0},r_{c},\hat{r}_{c}):=\Big{(}\frac{\hat{r}_{c}^{2}}{1+2\hat{r}_{c}}\Big{)}^{N_{0}}\frac{1+2r_{c}}{1+2r_{c}-r_{c}^{2}}\,,

where rcr_{c} takes the maximum value of all step ratios rk(0,1+2)r_{k}\in(0,1+\sqrt{2}) and r^c\hat{r}_{c} takes the maximum value of those step ratios rk[1+2,3+172)r_{k}\in\big{[}1+\sqrt{2},\frac{3+\sqrt{17}}{2}\big{)} for 2kN2\leq k\leq N. Then Lemma 3.4 shows

k=1n|ΞΦk|\displaystyle\sum_{k=1}^{n}\big{|}\Xi_{\Phi}^{k}\big{|}\leq cr(N0,rc,r^c)τ10t1|Φ′′(s)|ds+3tnmax1jn(τjtj1tj|Φ′′′(s)|ds)for n1,\displaystyle\,c_{r}(N_{0},r_{c},\hat{r}_{c})\tau_{1}\int_{0}^{t_{1}}\big{|}\Phi^{\prime\prime}(s)\big{|}\,\mathrm{d}{s}+3t_{n}\max_{1\leq j\leq n}\Big{(}\tau_{j}\int_{t_{j-1}}^{t_{j}}\big{|}\Phi^{\prime\prime\prime}(s)\big{|}\,\mathrm{d}{s}\Big{)}\quad\text{for $n\geq 1$,}

which will yield the desired second-order convergence.

3.3 Convergence analysis

We use the standard semi-norms and norms in the Sobolev space Hm(Ω)H^{m}(\Omega) for m0m\geq 0. Let Cper(Ω)C_{per}^{\infty}(\Omega) be a set of infinitely differentiable LL-periodic functions defined on Ω\Omega, and Hperm(Ω)H_{per}^{m}(\Omega) be the closure of Cper(Ω)C_{per}^{\infty}(\Omega) in Hm(Ω)H^{m}(\Omega), endowed with the semi-norm ||Hperm|\cdot|_{H_{per}^{m}} and the norm Hperm\left\|\cdot\right\|_{H_{per}^{m}}.

For simplicity, denote ||Hm:=||Hperm|\cdot|_{H^{m}}:=|\cdot|_{H_{per}^{m}}, Hm:=Hperm\left\|\cdot\right\|_{H^{m}}:=\left\|\cdot\right\|_{H_{per}^{m}}, and L2:=H0\left\|\cdot\right\|_{L^{2}}:=\left\|\cdot\right\|_{H^{0}}. We denote the maximum norm by L\left\|\cdot\right\|_{L^{\infty}} and have the Sobolev embedding inequality uLCΩuH2\left\|u\right\|_{L^{\infty}}\leq C_{\Omega}\left\|u\right\|_{H^{2}} for uCper(Ω)Hperm(Ω)u\in C_{per}^{\infty}(\Omega)\cap H_{per}^{m}(\Omega). Next lemma lists some approximations, see [29], of the L2L^{2}-projection operator PMP_{M} and trigonometric interpolation operator IMI_{M} defined in subsection 2.1.

Lemma 3.5

For any uHperq(Ω)u\in{H_{per}^{q}}(\Omega) and 0sq0\leq{s}\leq{q}, it holds that

PMuuHsCuhqs|u|Hq,PMuHsCuuHs;\displaystyle\left\|P_{M}u-u\right\|_{H^{s}}\leq C_{u}h^{q-s}|u|_{H^{q}},\quad\left\|P_{M}u\right\|_{H^{s}}\leq C_{u}\left\|u\right\|_{H^{s}}; (3.2)

and, in addition if q>3/2q>3/2,

IMuuHsCuhqs|u|Hq,IMuHsCuuHs.\displaystyle\left\|I_{M}u-u\right\|_{H^{s}}\leq C_{u}h^{q-s}|u|_{H^{q}},\quad\left\|I_{M}u\right\|_{H^{s}}\leq C_{u}\left\|u\right\|_{H^{s}}. (3.3)

Note that, the energy dissipation law (1.3) of PFC model (1.2) shows that E[Φn]E[Φ(t0)]E[\Phi^{n}]\leq E[\Phi(t_{0})]. From the formulation (1.1), it is not difficult to see that ΦnH2\big{\|}\Phi^{n}\big{\|}_{H^{2}} can be bounded by a time-independent constant. By the projection estimate (3.2) in Lemma 3.5 and the Sobolev inequality, one has PMΦnLc1\big{\|}P_{M}\Phi^{n}\big{\|}_{L^{\infty}}\leq c_{1} and then

PMΦnPMΦnLc1for 1nN,\displaystyle\big{\|}P_{M}\Phi^{n}\big{\|}_{\infty}\leq\big{\|}P_{M}\Phi^{n}\big{\|}_{L^{\infty}}\leq c_{1}\quad\text{for $1\leq n\leq N$,} (3.4)

where c1c_{1} is dependent on the domain Ω\Omega and initial data Φ(t0)\Phi(t_{0}), but independent of the time tnt_{n}. We are in the position to prove the L2L^{2} norm convergence of the adaptive BDF2 scheme (1.9) by choosing an initial value ϕ0=IMΦ(t0)\phi^{0}=I_{M}\Phi(t_{0}).

Theorem 3.1

Assume that the PFC problem (1.2) has a solution ΦC3([0,T];Hperm+6)\Phi\in C^{3}\big{(}[0,T];{H}_{per}^{m+6}\big{)} for some integer m0m\geq 0. Suppose further that the step-ratios condition S1 and the time-step size restriction (2.5) hold such that the adaptive BDF2 implicit scheme (1.9) is unique solvable and energy stable. If the maximum time-step size τ\tau is sufficiently small such that τ1/(2c2)\tau\leq 1/\left(2c_{2}\right), then the solution ϕn\phi^{n} is (at least, first-order) convergent in the L2L^{2} norm,

ΦnϕnCϕexp(2c2tn1)\displaystyle\left\|\Phi^{n}-\phi^{n}\right\|\leq C_{\phi}\exp\left(2c_{2}t_{n-1}\right) [(1+tn)hm+τ10t1Φ′′(s)L2dsk=1ni=2kri21+2ri\displaystyle\,\bigg{[}(1+t_{n})h^{m}+\tau_{1}\int_{0}^{t_{1}}\big{\|}\Phi^{\prime\prime}(s)\big{\|}_{L^{2}}\,\mathrm{d}{s}\,\sum_{k=1}^{n}\prod_{i=2}^{k}\frac{r_{i}^{2}}{1+2r_{i}}
+3tnmax1jn(τjtj1tjΦ′′′(s)L2ds)]for 1nN,\displaystyle\,+3t_{n}\max_{1\leq j\leq n}\Big{(}\tau_{j}\int_{t_{j-1}}^{t_{j}}\big{\|}\Phi^{\prime\prime\prime}(s)\big{\|}_{L^{2}}\,\mathrm{d}{s}\Big{)}\bigg{]}\quad\text{for $1\leq n\leq N$,}

where the positive constant c2:=250r3+4r(c12+c0c1+c02+ϵ)2c_{2}:=250\mathcal{M}_{r}^{3}+4\mathcal{M}_{r}(c_{1}^{2}+c_{0}c_{1}+c_{0}^{2}+\epsilon)^{2} is always dependent on the domain Ω\Omega and the initial values Φ0\Phi^{0} and ϕ0\phi^{0}, but independent of the time tnt_{n}, step sizes τn\tau_{n} and step ratios rnr_{n}. Remark 2 shows that the second-order time accuracy will be recovered by replacing the weak step-ratio condition S1 with a mild one S2.

Proof  We evaluate the L2L^{2} norm error Φnϕn\left\|\Phi^{n}-\phi^{n}\right\| by a usual splitting,

Φnϕn=ΦnΦMn+en,\Phi^{n}-\phi^{n}=\Phi^{n}-\Phi_{M}^{n}+e^{n},

where ΦMn:=PMΦn\Phi_{M}^{n}:=P_{M}\Phi^{n} is the L2L^{2}-projection of exact solution at time t=tnt=t_{n} and en:=ΦMnϕne^{n}:=\Phi_{M}^{n}-\phi^{n} is the difference between the projection ΦMn\Phi_{M}^{n} and the numerical solution ϕn\phi^{n} of the BDF2 implicit scheme (1.9). Applying Lemma 3.5, one has

ΦnΦMn=IM(ΦnΦMn)L2CϕIMΦnΦMnL2Cϕhm|Φn|Hm.\left\|\Phi^{n}-\Phi_{M}^{n}\right\|=\left\|I_{M}(\Phi^{n}-\Phi_{M}^{n})\right\|_{L^{2}}\leq C_{\phi}\left\|I_{M}\Phi^{n}-\Phi_{M}^{n}\right\|_{L^{2}}\leq C_{\phi}h^{m}\big{|}\Phi^{n}\big{|}_{H^{m}}.

Once an upper bound of en\left\|e^{n}\right\| is available, the claimed error estimate follows immediately,

ΦnϕnΦnΦMn+enCϕhm|Φn|Hm+enfor 1nN.\displaystyle\left\|\Phi^{n}-\phi^{n}\right\|\leq\left\|\Phi^{n}-\Phi_{M}^{n}\right\|+\left\|e^{n}\right\|\leq C_{\phi}h^{m}\big{|}\Phi^{n}\big{|}_{H^{m}}+\left\|e^{n}\right\|\quad\text{for $1\leq n\leq N$}. (3.5)

To bound en\left\|e^{n}\right\|, we consider two stages: Stage 1 analyzes the space consistency error for a semi-discrete system having a projected solution ΦM\Phi_{M}; With the help of the DOC kernels θkj(k)\theta_{k-j}^{(k)} and the maximum norm solution estimates in Lemma 2.3 and (3.4), Stage 2 derives the error estimate from a fully discrete error system by the standard L2L^{2} norm analysis.

Stage 1: Consistency analysis of semi-discrete projection

A substitution of the projection solution ΦM\Phi_{M} and differentiation operator Δh\Delta_{h} into the original equation (1.2) yields the semi-discrete system

tΦM=ΔhμM+ζPwithμM=(1+Δh)2ΦM+(ΦM)3ϵΦM,\displaystyle\partial_{t}\Phi_{M}=\Delta_{h}\mu_{M}+\zeta_{P}\quad\text{with}\quad\mu_{M}=(1+\Delta_{h})^{2}\Phi_{M}+\big{(}\Phi_{M}\big{)}^{3}-\epsilon\Phi_{M}, (3.6)

where ζP(𝐱h,t)\zeta_{P}(\mathbf{x}_{h},t) represents the spatial consistency error arising from the projection of exact solution, that is,

ζP:=tΦMtΦ+ΔμΔhμMfor 𝐱hΩh.\displaystyle\zeta_{P}:=\partial_{t}\Phi_{M}-\partial_{t}\Phi+\Delta\mu-\Delta_{h}\mu_{M}\quad\text{for $\mathbf{x}_{h}\in\Omega_{h}$.} (3.7)

We will bound ζP\left\|\zeta_{P}\right\| by applying the triangle inequality,

ζPtΦMtΦ+ΔμΔhμM𝕀1+𝕀2.\displaystyle\left\|\zeta_{P}\right\|\leq\left\|\partial_{t}\Phi_{M}-\partial_{t}\Phi\right\|+\left\|\Delta\mu-\Delta_{h}\mu_{M}\right\|\triangleq\mathbb{I}_{1}+\mathbb{I}_{2}.

It is easy to check that IMtΦM=tΦMI_{M}\partial_{t}\Phi_{M}=\partial_{t}\Phi_{M} since tΦMM\partial_{t}\Phi_{M}\in\mathscr{F}_{M}, so one has

𝕀1=\displaystyle\mathbb{I}_{1}= t(ΦMΦ)=IM[t(ΦMΦ)]L2\displaystyle\,\left\|\partial_{t}\left(\Phi_{M}-\Phi\right)\right\|=\big{\|}I_{M}\left[\partial_{t}\left(\Phi_{M}-\Phi\right)\right]\big{\|}_{L^{2}}
\displaystyle\leq t(ΦMΦ)L2+IMtΦtΦL2CϕhmtΦHm,\displaystyle\,\left\|\partial_{t}\left(\Phi_{M}-\Phi\right)\right\|_{L^{2}}+\left\|I_{M}\partial_{t}\Phi-\partial_{t}\Phi\right\|_{L^{2}}\leq C_{\phi}h^{m}\left\|\partial_{t}\Phi\right\|_{H^{m}}, (3.8)

where Lemma 3.5 was used in the second inequality. It remains to bound the term 𝕀2\mathbb{I}_{2}. Noticing that ΔhΦM=ΔΦM\Delta_{h}\Phi_{M}=\Delta\Phi_{M} at the discrete level for ΦMM\Phi_{M}\in\mathscr{F}_{M}, we use Lemma 3.5 to derive that

Δhs(ΦMΦ)\displaystyle\left\|\Delta_{h}^{s}\left(\Phi_{M}-\Phi\right)\right\| =IM[Δs(ΦMΦ)]L2CϕhmΦHm+2sfor s=1,2,3.\displaystyle=\big{\|}I_{M}\left[\Delta^{s}\left(\Phi_{M}-\Phi\right)\right]\big{\|}_{L^{2}}\leq C_{\phi}h^{m}\left\|\Phi\right\|_{H^{m+2s}}\quad\text{for $s=1,2,3$.} (3.9)

For the nonlinear term of 𝕀2\mathbb{I}_{2}, an application of the triangle inequality leads to

ΔΦ3ΔhΦM3Δ(Φ3ΦM3)+ΔΦM3ΔhΦM3𝕀21+𝕀22.\displaystyle\left\|\Delta\Phi^{3}-\Delta_{h}\Phi_{M}^{3}\right\|\leq\left\|\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right\|+\left\|\Delta\Phi_{M}^{3}-\Delta_{h}\Phi_{M}^{3}\right\|\triangleq\mathbb{I}_{21}+\mathbb{I}_{22}. (3.10)

For the term 𝕀21\mathbb{I}_{21}, the triangle inequality yields

𝕀21\displaystyle\mathbb{I}_{21} =Δ(Φ3ΦM3)=IM(Δ(Φ3ΦM3))L2\displaystyle=\left\|\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right\|=\left\|I_{M}\left(\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right)\right\|_{L^{2}}
IM(ΔΦ3)ΔΦ3L2+Δ(Φ3ΦM3)L2+ΔΦM3IM(ΔΦM3)L2\displaystyle\leq\left\|I_{M}\left(\Delta\Phi^{3}\right)-\Delta\Phi^{3}\right\|_{L^{2}}+\left\|\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right\|_{L^{2}}+\left\|\Delta\Phi_{M}^{3}-I_{M}\left(\Delta\Phi_{M}^{3}\right)\right\|_{L^{2}}
CϕhmΦ3Hm+2+CϕhmΦM3Hm+2+Δ(Φ3ΦM3)L2\displaystyle\leq C_{\phi}h^{m}\left\|\Phi^{3}\right\|_{H^{m+2}}+C_{\phi}h^{m}\left\|\Phi_{M}^{3}\right\|_{H^{m+2}}+\left\|\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right\|_{L^{2}}
CϕhmΦHm+23+CϕhmΦMHm+23+Δ(Φ3ΦM3)L2,\displaystyle\leq C_{\phi}h^{m}\left\|\Phi\right\|_{H^{m+2}}^{3}+C_{\phi}h^{m}\left\|\Phi_{M}\right\|_{H^{m+2}}^{3}+\left\|\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right\|_{L^{2}}, (3.11)

in which Lemma 3.5 and the Sobolev embedding inequality have been used in the second and third inequalities, respectively. For the remainder term in the above inequality (3.11), we have the following estimate

Δ(Φ3ΦM3)L2\displaystyle\left\|\Delta\left(\Phi^{3}-\Phi_{M}^{3}\right)\right\|_{L^{2}} (Φ2+ΦΦM+ΦM2)(ΦΦM)H2CϕhmΦH42ΦHm+2,\displaystyle\leq\left\|\left(\Phi^{2}+\Phi\Phi_{M}+\Phi_{M}^{2}\right)\left(\Phi-\Phi_{M}\right)\right\|_{H^{2}}\leq C_{\phi}h^{m}\left\|\Phi\right\|_{H^{4}}^{2}\left\|\Phi\right\|_{H^{m+2}},

where the estimation (3.2) and the Sobolev embedding inequality were used in the second inequality. Inserting it into (3.11) yields 𝕀21Cϕhm\mathbb{I}_{21}\leq C_{\phi}h^{m}. In a similar manner, one can find that 𝕀22=ΔΦM3ΔhΦM3Cϕhm\mathbb{I}_{22}=\left\|\Delta\Phi_{M}^{3}-\Delta_{h}\Phi_{M}^{3}\right\|\leq C_{\phi}h^{m}. Thus, going back to (3.10) gives ΔΦ3ΔhΦM3Cϕhm\left\|\Delta\Phi^{3}-\Delta_{h}\Phi_{M}^{3}\right\|\leq C_{\phi}h^{m}. The estimations (3.9) and (3.10) yield that 𝕀2=ΔμΔhμMCϕhm\mathbb{I}_{2}=\left\|\Delta\mu-\Delta_{h}\mu_{M}\right\|\leq C_{\phi}h^{m}.

As a consequence, one has ζPCϕhm\left\|\zeta_{P}\right\|\leq C_{\phi}h^{m} and ζP(tj)Cϕhm\left\|\zeta_{P}(t_{j})\right\|\leq C_{\phi}h^{m} for j1j\geq 1. We now apply Lemma 3.1(III) to obtain that

k=1nΥPkCϕhmk=1nj=1kθkj(k)CϕtnhmwhereΥPk:=j=1kθkj(k)ζP(tj)for k1.\displaystyle\sum_{k=1}^{n}\big{\|}\Upsilon_{P}^{k}\big{\|}\leq C_{\phi}h^{m}\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}\leq C_{\phi}t_{n}h^{m}\quad\text{where}\;\;\Upsilon_{P}^{k}:=\sum_{j=1}^{k}\theta_{k-j}^{(k)}\zeta_{P}(t_{j})\;\;\text{for $k\geq 1$.} (3.12)

Stage 2: L2L^{2} norm error of fully discrete system

From the projection equation (3.6), one can apply the BDF2 formula to obtain the following approximation equation

D2ΦMn=ΔhμMn+ζPn+ξΦnwithμMn=(1+Δh)2ΦMn+(ΦMn)3ϵΦMn,\displaystyle D_{2}\Phi_{M}^{n}=\Delta_{h}\mu_{M}^{n}+\zeta_{P}^{n}+\xi_{\Phi}^{n}\quad\text{with}\quad\mu_{M}^{n}=(1+\Delta_{h})^{2}\Phi_{M}^{n}+(\Phi_{M}^{n})^{3}-\epsilon\Phi_{M}^{n}, (3.13)

where ξΦn\xi_{\Phi}^{n} is the local consistency error of BDF2 formula, and ζPn:=ζP(tn)\zeta_{P}^{n}:=\zeta_{P}(t_{n}) is defined by (3.7). Subtracting the full discrete scheme (1.9) from the approximation equation (3.13), we have the following error system

D2en\displaystyle D_{2}e^{n} =Δh[(1+Δh)2en+fϕnen]+ζPn+ξΦnfor 1nN,\displaystyle=\Delta_{h}\big{[}(1+\Delta_{h})^{2}e^{n}+f_{\phi}^{n}e^{n}\big{]}+\zeta_{P}^{n}+\xi_{\Phi}^{n}\quad\text{for $1\leq n\leq N$,} (3.14)

where fϕn:=(ΦMn)2+ΦMnϕn+(ϕn)2ϵf_{\phi}^{n}:=(\Phi_{M}^{n})^{2}+\Phi_{M}^{n}\phi^{n}+(\phi^{n})^{2}-\epsilon. Thanks to the maximum norm solution estimates in Lemma 2.3 and (3.4), one has

fϕnc12+c0c1+c02+ϵ.\displaystyle\big{\|}f_{\phi}^{n}\big{\|}_{\infty}\leq c_{1}^{2}+c_{0}c_{1}+c_{0}^{2}+\epsilon. (3.15)

Multiplying both sides of equation (3.14) by the DOC kernels θkn(k)\theta_{k-n}^{(k)}, and summing up nn from n=1n=1 to kk, we apply the equality (1.8) with vj=ejv^{j}=e^{j} to obtain

τek\displaystyle\triangledown_{\tau}e^{k} =j=1kθkj(k)Δh[(1+Δh)2ej+fϕjej]+ΥPk+ΞΦkfor 1nN,\displaystyle=\sum_{j=1}^{k}\theta_{k-j}^{(k)}\Delta_{h}\big{[}(1+\Delta_{h})^{2}e^{j}+f_{\phi}^{j}e^{j}\big{]}+\Upsilon_{P}^{k}+\Xi_{\Phi}^{k}\quad\text{for $1\leq n\leq N$,} (3.16)

where ΞΦk\Xi_{\Phi}^{k} and ΥPk\Upsilon_{P}^{k} are defined by (3.1) and (3.12), respectively. Making the inner product of (3.16) with 2ek2e^{k}, and summing up the superscript from 1 to nn, we have the following equality

en2e02+k=1nτek2\displaystyle\big{\|}e^{n}\big{\|}^{2}-\big{\|}e^{0}\big{\|}^{2}+\sum_{k=1}^{n}\big{\|}\triangledown_{\tau}e^{k}\big{\|}^{2} =Jn+2k=1nΥPk+ΞΦk,ekfor 1nN,\displaystyle=J^{n}+2\sum_{k=1}^{n}\big{\langle}\Upsilon_{P}^{k}+\Xi_{\Phi}^{k},e^{k}\big{\rangle}\quad\text{for $1\leq n\leq N$,} (3.17)

where JnJ^{n} is defined by

Jn:=\displaystyle J^{n}:=  2k,jn,kθkj(k)ej+2Δhej+Δh2ej+fϕjej,Δhek\displaystyle\,2\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}e^{j}+2\Delta_{h}e^{j}+\Delta_{h}^{2}e^{j}+f_{\phi}^{j}e^{j},\Delta_{h}e^{k}\big{\rangle}
=\displaystyle=  2k,jn,kθkj(k)[fϕjej+2Δhej,Δhekhej,hekhΔhej,hΔhek].\displaystyle\,2\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\left[\big{\langle}f_{\phi}^{j}e^{j}+2\Delta_{h}e^{j},\Delta_{h}e^{k}\big{\rangle}-\big{\langle}\nabla_{h}e^{j},\nabla_{h}e^{k}\big{\rangle}-\big{\langle}\nabla_{h}\Delta_{h}e^{j},\nabla_{h}\Delta_{h}e^{k}\big{\rangle}\right]. (3.18)

We are to handle the quadratic form JnJ^{n}. By applying Lemma 3.2 with vj:=fϕjejv^{j}:=f_{\phi}^{j}e^{j}, wk:=Δhekw^{k}:=\Delta_{h}e^{k} and ε=2r\varepsilon=2\mathcal{M}_{r}, one derives that

2k,jn,kθkj(k)\displaystyle 2\sum_{k,j}^{n,k}\theta_{k-j}^{(k)} fϕjej+2Δhej,Δhek=2k,jn,kθkj(k)fϕjej,Δhek+4k,jn,kθkj(k)Δhej,Δhek\displaystyle\,\big{\langle}f_{\phi}^{j}e^{j}+2\Delta_{h}e^{j},\Delta_{h}e^{k}\big{\rangle}=2\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}f_{\phi}^{j}e^{j},\Delta_{h}e^{k}\big{\rangle}+4\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\Delta_{h}e^{j},\Delta_{h}e^{k}\big{\rangle}
\displaystyle\leq  4rk,jn,kθkj(k)fϕjej,fϕkek+5k,jn,kθkj(k)Δhej,Δhek\displaystyle\,4\mathcal{M}_{r}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}f_{\phi}^{j}e^{j},f_{\phi}^{k}e^{k}\big{\rangle}+5\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\Delta_{h}e^{j},\Delta_{h}e^{k}\big{\rangle}
\displaystyle\leq k,jn,kθkj(k)[4rfϕjej,fϕkek+250r3ej,ek+2hΔhej,hΔhek],\displaystyle\,\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\left[4\mathcal{M}_{r}\big{\langle}f_{\phi}^{j}e^{j},f_{\phi}^{k}e^{k}\big{\rangle}+250\mathcal{M}_{r}^{3}\big{\langle}e^{j},e^{k}\big{\rangle}+2\big{\langle}\nabla_{h}\Delta_{h}e^{j},\nabla_{h}\Delta_{h}e^{k}\big{\rangle}\right],

where the second inequality was obtained by Lemma 3.3 with vj:=ejv^{j}:=e^{j} and ε=2/5\varepsilon=2/5. Also, Lemma 3.1 (I) implies that k,jn,kθkj(k)hej,hek0-\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\langle}\nabla_{h}e^{j},\nabla_{h}e^{k}\big{\rangle}\leq 0. Then, by applying the Cauchy-Schwarz inequality and the maximum norm estimate (3.15), we obtain from (3.3) that

Jn\displaystyle J^{n}\leq k,jn,kθkj(k)[4rfϕjej,fϕkek+250r3ej,ek]c2k,jn,kθkj(k)ejek.\displaystyle\,\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\left[4\mathcal{M}_{r}\big{\langle}f_{\phi}^{j}e^{j},f_{\phi}^{k}e^{k}\big{\rangle}+250\mathcal{M}_{r}^{3}\big{\langle}e^{j},e^{k}\big{\rangle}\right]\leq c_{2}\sum_{k,j}^{n,k}\theta_{k-j}^{(k)}\big{\|}e^{j}\big{\|}\big{\|}e^{k}\big{\|}.

Therefore, it follows from (3.17) that

en2e02+c2k=1nekj=1kθkj(k)ej+2k=1nekΥPk+ΞΦkfor 1nN.\displaystyle\big{\|}e^{n}\big{\|}^{2}\leq\big{\|}e^{0}\big{\|}^{2}+c_{2}\sum_{k=1}^{n}\big{\|}e^{k}\big{\|}\sum_{j=1}^{k}\theta_{k-j}^{(k)}\big{\|}e^{j}\big{\|}+2\sum_{k=1}^{n}\big{\|}e^{k}\big{\|}\big{\|}\Upsilon_{P}^{k}+\Xi_{\Phi}^{k}\big{\|}\quad\text{for $1\leq n\leq N$.}

Choosing some integer n0n_{0} (0n0n0\leq n_{0}\leq n) such that en0=max0knek\big{\|}e^{n_{0}}\big{\|}=\max_{0\leq k\leq n}\big{\|}e^{k}\big{\|}. Then, taking n:=n0n:=n_{0} in the above inequality, one can obtain

en0e0+c2k=1n0ekj=1kθkj(k)+2k=1n0ΥPk+ΞΦk.\displaystyle\big{\|}e^{n_{0}}\big{\|}\leq\big{\|}e^{0}\big{\|}+c_{2}\sum_{k=1}^{n_{0}}\big{\|}e^{k}\big{\|}\sum_{j=1}^{k}\theta_{k-j}^{(k)}+2\sum_{k=1}^{n_{0}}\big{\|}\Upsilon_{P}^{k}+\Xi_{\Phi}^{k}\big{\|}.

We know that j=1kθkj(k)=τk\sum_{j=1}^{k}\theta_{k-j}^{(k)}=\tau_{k} due to Lemma 3.1(III). Thus one gets

enen0\displaystyle\big{\|}e^{n}\big{\|}\leq\big{\|}e^{n_{0}}\big{\|} e0+c2k=1nτkek+2k=1nΥPk+ΞΦk.\displaystyle\leq\big{\|}e^{0}\big{\|}+c_{2}\sum_{k=1}^{n}\tau_{k}\big{\|}e^{k}\big{\|}+2\sum_{k=1}^{n}\big{\|}\Upsilon_{P}^{k}+\Xi_{\Phi}^{k}\big{\|}.

Under the time-step size restriction τ1/(2c2)\tau\leq 1/\left(2c_{2}\right), we have

en2e0+2c2k=1n1τkek+4k=1nΥPk+ΞΦk.\displaystyle\big{\|}e^{n}\big{\|}\leq 2\big{\|}e^{0}\big{\|}+2c_{2}\sum_{k=1}^{n-1}\tau_{k}\big{\|}e^{k}\big{\|}+4\sum_{k=1}^{n}\big{\|}\Upsilon_{P}^{k}+\Xi_{\Phi}^{k}\big{\|}.

The discrete Grönwall inequality [28, Lemma 3.1] yields the following estimate

en\displaystyle\big{\|}e^{n}\big{\|} 2exp(2c2tn1)(e0+2k=1nΥPk+2k=1nΞΦk)\displaystyle\leq 2\exp\left(2c_{2}t_{n-1}\right)\Big{(}\big{\|}e^{0}\big{\|}+2\sum_{k=1}^{n}\big{\|}\Upsilon_{P}^{k}\big{\|}+2\sum_{k=1}^{n}\big{\|}\Xi_{\Phi}^{k}\big{\|}\Big{)}
2exp(2c2tn1)(Cϕhm+Cϕtnhm+2k=1nΞΦk)for 1nN,\displaystyle\leq 2\exp\left(2c_{2}t_{n-1}\right)\Big{(}C_{\phi}h^{m}+C_{\phi}t_{n}h^{m}+2\sum_{k=1}^{n}\big{\|}\Xi_{\Phi}^{k}\big{\|}\Big{)}\quad\text{for $1\leq n\leq N$,}

in which the estimate (3.12) and the initial error e0=ΦM0ϕ0Cϕhm\big{\|}e^{0}\big{\|}=\big{\|}\Phi_{M}^{0}-\phi^{0}\big{\|}\leq C_{\phi}h^{m} have been used. Moreover, Lemma 3.4 together with tsΦ=IMtsΦL2CϕtsΦL2\big{\|}\partial_{t}^{s}\Phi\big{\|}=\big{\|}I_{M}\partial_{t}^{s}\Phi\big{\|}_{L^{2}}\leq C_{\phi}\big{\|}\partial_{t}^{s}\Phi\big{\|}_{L^{2}} (s=2,3)(s=2,3), due to Lemma 3.5, gives the bound of temporal error term k=1nΞΦk\sum_{k=1}^{n}\big{\|}\Xi_{\Phi}^{k}\big{\|}. Therefore, one obtains the desired estimate from the triangle inequality (3.5) and completes the proof.   

4 Numerical experiments

In this section, we apply the variable-step BDF2 scheme (1.9) to simulate the PFC equation (1.2) numerically. Always, a simple iteration is employed to solve the nonlinear algebra equations at each time level with the termination error 101210^{-12}.

4.1 Tests on random time meshes

Example 4.1

We take ϵ=0.02\epsilon=0.02 and consider the exterior-forced PFC model tΦ=Δμ+g(𝐱,t)\partial_{t}\Phi=\Delta\mu+g(\mathbf{x},t) in the domain Ω=(0,8)2\Omega=(0,8)^{2} such that it has a solution Φ=cos(t)sin(π2x)sin(π2y)\Phi=\cos(t)\sin(\frac{\pi}{2}x)\sin(\frac{\pi}{2}y).

Table 1: Accuracy of BDF2 scheme (1.9) on random time mesh.

  NN τ\tau e(N)e(N) Order maxrk\max r_{k} N1N_{1} 20 8.45e-02 1.97e-04 5.84 1 40 4.80e-02 7.73e-05 1.65 12.22 6 80 2.41e-02 1.23e-05 2.66 746.55 11 160 1.27e-02 2.94e-06 2.24 90.35 18 320 6.51e-03 5.97e-07 2.39 79.85 55  

The time accuracy of variable-step BDF2 method (1.9) is examined via random time meshes. Let the step sizes τk:=Tσk/S\tau_{k}:=T\sigma_{k}/S for 1kN1\leqslant k\leqslant N, where σk(0,1)\sigma_{k}\in(0,1) is the uniformly distributed random number and S=k=1NσkS=\sum_{k=1}^{N}\sigma_{k}. The discrete L2L^{2} norm error e(N):=Φ(T)ϕNe(N):=\|\Phi(T)-\phi^{N}\| is recorded in each run and the experimental order of convergence is computed by Orderlog(e(N)/e(2N))/log(τ(N)/τ(2N))\text{Order}\approx\log\left(e(N)/e(2N)\right)/\log\left(\tau(N)/\tau(2N)\right), where τ(N)\tau(N) denotes the maximum time-step size.

The domain Ω=(0,8)2\Omega=(0,8)^{2} is discretized by using 128×128128\times 128 mesh such that the temporal error dominates the spatial error in each run. We solve the problem until time T=1T=1. The numerical results are tabulated in Table 1, in which we also record the maximum time-step size τ\tau, the maximum step ratio and the number (denote by N1N_{1} in Table 1) of time levels with the step ratio rk(3+17)/2.r_{k}\geq(3+\sqrt{17})/2. From these data, we observe that the BDF2 scheme is robustly stable and second-order accuracy on nonuniform time meshes.

4.2 Numerical comparisons

Example 4.2

We take the temperature parameter ϵ=0.2\epsilon=0.2 and consider a randomly initial value Φ0=0.1+0.02×rand(𝐱)\Phi^{0}=0.1+0.02\times\mathrm{rand}(\mathbf{x}) for the PFC model (1.2) in Ω=(0,64)2\Omega=(0,64)^{2}, where rand()\mathrm{rand}(\cdot) is the uniformly distributed random number in (1,1)(-1,1). The square Ω\Omega is discretized by a 128×128128\times 128 uniform mesh.

To begin with, we examine the numerical behaviors near the initial time by comparing the BDF2 method (1.9) with the unconditionally energy stable Crank-Nicoslon (CN) method [10],

τϕn\displaystyle\partial_{\tau}\phi^{n} =Δhμn12,μn12=(1+Δh)2ϕn12+12[(ϕn)2+(ϕn1)2]ϕn12ϵϕn12,\displaystyle=\Delta_{h}\mu^{n-\frac{1}{2}},\quad\mu^{n-\frac{1}{2}}=(1+\Delta_{h})^{2}\phi^{n-\frac{1}{2}}+\frac{1}{2}\big{[}(\phi^{n})^{2}+(\phi^{n-1})^{2}\big{]}\phi^{n-\frac{1}{2}}-\epsilon\phi^{n-\frac{1}{2}},

and the Crank-Nicoslon convex-splitting (CNCS) scheme [12, 6],

τϕn\displaystyle\partial_{\tau}\phi^{n} =Δhμ^n12,μ^n12=Δh2ϕn12+Δhϕ^n12+12[(ϕn)2+(ϕn1)2]ϕn12+(1ϵ)ϕn12,\displaystyle=\Delta_{h}\hat{\mu}^{n-\frac{1}{2}},\quad\hat{\mu}^{n-\frac{1}{2}}=\Delta_{h}^{2}\phi^{n-\frac{1}{2}}+\Delta_{h}\hat{\phi}^{n-\frac{1}{2}}+\frac{1}{2}\big{[}(\phi^{n})^{2}+(\phi^{n-1})^{2}\big{]}\phi^{n-\frac{1}{2}}+\left(1-\epsilon\right)\phi^{n-\frac{1}{2}},

where ϕn12:=(ϕn+ϕn1)/2\phi^{n-\frac{1}{2}}:=(\phi^{n}+\phi^{n-1})/2 and ϕ^n12:=3ϕn1ϕn2\hat{\phi}^{n-\frac{1}{2}}:=3\phi^{n-1}-\phi^{n-2}. We note that the first-order convex-splitting scheme [12] is employed to start the CNCS scheme. Our computations use a small T=0.01T=0.01 and the reference solution is computed by the uniform BDF2 method with a vary small time-step size τ=104\tau=10^{-4}. The solutions with different time-step sizes are plotted in Figure 1. In subplot (a), after one step using τ=T=102\tau=T=10^{-2}, the BDF2 solution is in good with the reference solution, and the CNCS solution is slightly different from the reference solution, while the CN solution is completely different from the reference solution. Subplot (b) depicts the approximations of 10 steps using τ=T/10=103\tau=T/10=10^{-3}. We observe that the CN solutions have non-physical oscillations. The subplots (c)-(d) show the numerical results after 20 and 40 steps, respectively. It is seen that the numerical oscillations in the CN solutions are gradually dissipated by very small time-steps.

Refer to caption
(a) time-step size τ=102\tau=10^{-2}
Refer to caption
(b) time-step size τ=103\tau=10^{-3}
Refer to caption
(c) time-step size τ=5×104\tau=5\times 10^{-4}
Refer to caption
(d) time-step size τ=2.5×104\tau=2.5\times 10^{-4}
Figure 1: Solution curves of BDF2, CN and CNCS methods at the final time T=0.01T=0.01.
Table 2: Average iteration numbers and average CPU time (in seconds) at each time level in BDF2, CN and CNCS methods until T=5T=5.

  τ\tau BDF2 CNCS CN Iter CPU Iter CPU Iter CPU 10110^{-1} 5.1224 0.0122 4.3265 0.0090 5.1020 0.0086 10210^{-2} 3.9479 0.0110 3.2365 0.0072 4.0100 0.0072 10310^{-3} 3.0064 0.0095 3.0044 0.0070 3.0146 0.0061  

Refer to caption
(a) time-step size τ=101\tau=10^{-1}
Refer to caption
(b) time-step size τ=102\tau=10^{-2}
Refer to caption
(c) time-step size τ=103\tau=10^{-3}
Figure 2: Original energy curves of BDF2, CN and CNCS methods until T=5T=5.

In order to see the numerical performance, we use the same initial data to compute the original energy (En=E[ϕn]E^{n}=E[\phi^{n}], similarly hereinafter) curves by different time steps until time T=5T=5, see Figure 2. The corresponding average iteration numbers (denoted by “Iter”) and average CPU time (denoted by “CPU”, in seconds) for each time step are listed in Table 2. The reference original energy curve is obtained by the uniform BDF2 method with a small time-step τ=104\tau=10^{-4}. Table 2 shows that the computational cost of BDF2 method is comparable to those of CN and CNCS methods. However, as seen in Figure 2, the original energy curve generated by the CN method deviates from the reference one and the energy decay property of the CNCS method is numerically destroyed when some large time-steps are used, while the BDF2 method generates faithful (original) energy curves for these time-step sizes.

Numerical results indicate that the CN method tends to generate non-physical oscillations near initial time, and the BDF2 and CNCS methods can suppress the initial oscillations, and the former may be a better choice when some large time-step sizes are applied.

4.3 Adaptive time-stepping strategy

Algorithm 1 Adaptive time-stepping strategy
1:Given ϕn\phi^{n} and time step τn\tau_{n}
2:Compute ϕn+1\phi^{n+1} by using second-order scheme with time step τn\tau_{n}.
3:Calculate en+1=ϕn+1ϕn/ϕn+1e_{n+1}=\|\phi^{n+1}-\phi^{n}\|/\|\phi^{n+1}\|.
4:if en+1<tole_{n+1}<tol or τnτmin\tau_{n}\leq\tau_{\min} then
5:     if en+1<tole_{n+1}<tol then
6:         Update time-step size τn+1min{max{τmin,τada},τmax}\tau_{n+1}\leftarrow\min\{\max\{\tau_{\min},\tau_{ada}\},\tau_{\max}\}.
7:     else
8:         Update time-step size τn+1τmin\tau_{n+1}\leftarrow\tau_{\min}.
9:     end if
10:else
11:     Recalculate with time-step size τnmax{τmin,τada}\tau_{n}\leftarrow\max\{\tau_{\min},\tau_{ada}\}.
12:     Goto 1
13:end if

In simulating the phase field problems, the temporal evolution of phase variables involve multiple time scales, such as the growth of a polycrystal discussed in Example 4.3, an initial random perturbation evolves on a fast time scale, while the later dynamic coarsening evolves on a very slow time scale. In the following computations, we shall adopt a variant time adaptive strategy of [23, Algorithm 1] to choose the time step sizes.

The second-order scheme used in Algorithm 1 refers to the nonuniform BDF2 scheme in this article. The adaptive time step τada\tau_{ada} is given by τada(e,τcur)=min{3.561,ρtol/e}τcur,\tau_{ada}\left(e,\tau_{cur}\right)=\min\{3.561,\rho\sqrt{{tol}/{e}}\}\tau_{cur}, where ρ\rho is a default safety coefficient, toltol is a reference tolerance, ee is the relative error at each time level, and τcur\tau_{cur} is the current time step. In addition, τmax\tau_{\max} and τmin\tau_{\min} are the predetermined maximum and minimum time steps. In our computations, if not explicitly specified, we choose the safety coefficient ρ=0.9\rho=0.9, the reference tolerance tol=103tol=10^{-3}, the maximum time step τmax=0.5\tau_{\max}=0.5 and the minimum time step τmin=104\tau_{\min}=10^{-4}, respectively.

4.4 Growth of a polycrystal

Example 4.3

We take the parameter ϵ=0.25\epsilon=0.25 and use a 256×256256\times 256 uniform mesh to discrete the spatial domain Ω=(0,256)2\Omega=(0,256)^{2}. As seeds for nucleation, three random perturbations on the three small square patches are taken as Φ0(𝐱)=Φ¯+A×rand(𝐱),\Phi_{0}(\mathbf{x})=\bar{\Phi}+A\times\mathrm{rand}(\mathbf{x}), where the constant density Φ¯=0.285\bar{\Phi}=0.285, AA is amplitude and the random numbers rand()\mathrm{rand}(\cdot) are uniformly distributed in (1,1)(-1,1). The centers of three pathes locate at (128,64),(64,196)(128,64),(64,196) and (196,196)(196,196), with the corresponding amplitudes A=0.2A=0.2, 0.30.3 and 0.90.9, respectively. The length of each small square is set to 1010.

Refer to caption
Refer to caption
Figure 3: Evolutions of original energy (left) and time step sizes (right) of the PFC equation using different time strategies until time T=50T=50.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Solution snapshots of the crystal growth for the PFC equation using adaptive time strategy at t=1,100,150,400,800,1000t=1,100,150,400,800,1000, respectively.
Refer to caption
Refer to caption
Refer to caption
Figure 5: Evolutions of original energy (left), mass difference (middle) and adaptive time steps (right) of the crystal growth of PFC equation using adaptive time strategy.

We simulate the growth of a polycrystal in a supercooled liquid with the above random initial liquid density in this example. We begin with examining the efficiency of adaptive time-stepping Algorithm 1 by using different time strategies, i.e., the uniform and adaptive time approaches. At first, the solution is computed until the time T=50T=50 with a constant time step τ=0.05\tau=0.05. We then implement the adaptive strategy described in Algorithm 1 to simulate the dynamical process by using the same initial data. The time evolutions of discrete energies and the corresponding time-step sizes are plotted in Figure 3. As can be seen, the adaptive energy curve is practically indistinguishable from that generated by using a small constant step size, and the former exhibits more details owing to the smaller step sizes are used. We note that this simulation takes 1000 uniform time steps with τ=0.05\tau=0.05, while the total number of adaptive time steps is 393. Thus the above numerical results show that the time-stepping adaptive strategy is computationally efficient.

We now use the BDF2 scheme coupled with Algorithm 1 to simulate the growth of a polycrystal in a supercooled liquid. In the second set of simulations, we take the time T=1000T=1000 and the other parameters are the same as given earlier. The time evolutions of the phase variable are depicted in Figure 4. We see that, the speed of moving interfaces is deeply affected by the initial amplitude, that is, the larger the amplitude AA, the faster the polycrystal grows. Also, three different crystal grains grow and become large enough to form grain boundaries eventually. The observed phenomena are in good agreement with the published results [14, 11]. The original energy, mass, and adaptive time steps are shown in Figure 5. As predicted by our theory, the discrete mass is conservative up to a tolerance of 101010^{-10}. It is seen that the energy has large variations when the time t[0,200]t\in[0,200], but it dissipates very slowly when the time escapes. The right subplot of Figure 4 shows that small time step sizes are adopted when the energy dissipates fast, and large step sizes are utilized when the energy decreases slowly.

5 Concluding remarks

Under the step ratio constraint S1, we proved the variable-step BDF2 method (1.9) for the PFC model preserves a discrete modified energy dissipation law, which implies the maximum norm bound of numerical solution. The DOC technique was then improved to establish a concise convergence analysis of the variable-step BDF2 method. We proved at the first time that the BDF2 method is convergent in the L2L^{2} norm under the weak step ratio restriction S1.

In our recent work [32], the DOC technique will be further developed to establish a sharp L2L^{2} error estimate on the variable-step BDF2 scheme for the molecular beam epitaxial growth model without slope selection. It is expected that the DOC technique would be a useful analysis tool for other variable-step BDF type methods, especially when they are combined with the convex splitting technique or stabilized strategies to achieve unconditionally energy stable in simulating gradient flow problems. We plan to address these issues in further studies.

Acknowledgements

The authors would like to thank Prof. Xiuling Hu, Prof. Yuezheng Gong, and Dr. Lin Wang for their valuable discussions and fruitful suggestions. We also thank the editor and the anonymous referees for their valuable comments and suggestions, which are very helpful for improving the quality of the article.

Appendix A The proof of Lemma 3.2

To facilitate the proof in what follows, we introduce the following matrices

𝐁2:=(b0(1)b1(2)b0(2)b1(n)b0(n))n×nand𝚯2:=(θ0(1)θ1(2)θ0(2)θn1(n)θn2(n)θ0(n))n×n,\mathbf{B}_{2}:=\left(\begin{array}[]{cccc}b_{0}^{(1)}&&&\\ b_{1}^{(2)}&b_{0}^{(2)}&&\\ &\ddots&\ddots&\\ &&b_{1}^{(n)}&b_{0}^{(n)}\\ \end{array}\right)_{n\times n}\quad\text{and}\quad\mathbf{\Theta}_{2}:=\left(\begin{array}[]{cccc}\theta_{0}^{(1)}&&&\\ \theta_{1}^{(2)}&\theta_{0}^{(2)}&&\\ \vdots&\vdots&\ddots&\\ \theta_{n-1}^{(n)}&\theta_{n-2}^{(n)}&\cdots&\theta_{0}^{(n)}\\ \end{array}\right)_{n\times n},

where the discrete kernels bnk(n)b_{n-k}^{(n)} and θnk(n)\theta_{n-k}^{(n)} are defined by (1.5) and (1.6), respectively. It follows from the discrete orthogonal identity (1.7) that

𝚯2=𝐁21.\displaystyle\mathbf{\Theta}_{2}=\mathbf{B}_{2}^{-1}. (A.1)

If the step ratios condition S1 holds, Lemma 2.2 shows that the real symmetric matrix

𝐁:=𝐁2+𝐁2Tis positive definite,\displaystyle\mathbf{B}:=\mathbf{B}_{2}+\mathbf{B}_{2}^{T}\quad\text{is positive definite,} (A.2)

that is, 𝒘T𝐁𝒘=2k=1nwkj=1kbkj(k)wjk=1nR(rk,rk+1)wk2/τk\boldsymbol{w}^{T}\mathbf{B}\boldsymbol{w}=2\sum_{k=1}^{n}w_{k}\sum_{j=1}^{k}b_{k-j}^{(k)}w_{j}\geq\sum_{k=1}^{n}R(r_{k},r_{k+1})w_{k}^{2}/\tau_{k}, where R(z,s)R(z,s) is defined by (2.3) and 𝒘:=(w1,w2,,wn)T\boldsymbol{w}:=\left(w_{1},w_{2},\cdots,w_{n}\right)^{T}. According to Lemma 3.1 (I), the real symmetric matrix

𝚯:=𝚯2+𝚯2Tis positive definite,\displaystyle\mathbf{\Theta}:=\mathbf{\Theta}_{2}+\mathbf{\Theta}_{2}^{T}\quad\text{is positive definite,} (A.3)

in the sense of 𝒘T𝚯𝒘=2k=1nwkj=1kθkj(k)wj>0\boldsymbol{w}^{T}\mathbf{\Theta}\boldsymbol{w}=2\sum_{k=1}^{n}w_{k}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{j}>0.

Moreover, we define a diagonal matrix Λτ:=diag(τ1,τ2,,τn)\Lambda_{\tau}:=\text{diag}\left(\sqrt{\tau_{1}},\sqrt{\tau_{2}},\cdots,\sqrt{\tau_{n}}\right) and

𝐁~2:=Λτ𝐁2Λτ=(b~0(1)b~1(2)b~0(2)b~1(n)b~0(n))n×n,\displaystyle\widetilde{\mathbf{B}}_{2}:=\Lambda_{\tau}\mathbf{B}_{2}\Lambda_{\tau}=\left(\begin{array}[]{cccc}\tilde{b}_{0}^{(1)}&&&\\ \tilde{b}_{1}^{(2)}&\tilde{b}_{0}^{(2)}&&\\ &\ddots&\ddots&\\ &&\tilde{b}_{1}^{(n)}&\tilde{b}_{0}^{(n)}\\ \end{array}\right)_{n\times n}, (A.8)

where the discrete kernels b~0(k)\tilde{b}_{0}^{(k)} and b~1(k)\tilde{b}_{1}^{(k)} are given by (r10r_{1}\equiv 0)

b~0(k)=1+2rk1+rkandb~1(k)=rk3/21+rkfor 1kn.\tilde{b}_{0}^{(k)}=\frac{1+2r_{k}}{1+r_{k}}\quad\text{and}\quad\tilde{b}_{1}^{(k)}=-\frac{r_{k}^{3/2}}{1+r_{k}}\quad\text{for $1\leqslant k\leqslant n$}.

Some results on the matrix 𝐁~2\widetilde{\mathbf{B}}_{2} are presented as follows.

Lemma A.1

If the step ratios condition S1 holds, then the minimum eigenvalue of the real symmetric matrix

𝐁~:=𝐁~2+𝐁~2T\displaystyle\widetilde{\mathbf{B}}:=\widetilde{\mathbf{B}}_{2}+\widetilde{\mathbf{B}}_{2}^{T} (A.9)

can be bounded by

λmin(𝐁~)min1knRL(rk,rk+1)21/40,\lambda_{\min}\big{(}\widetilde{\mathbf{B}}\big{)}\geq\min_{1\leq k\leq n}R_{L}\left(r_{k},r_{k+1}\right)\geq 21/40,

where RL(z,s)R_{L}\left(z,s\right) is defined by

RL(z,s):=2+4zz3/21+zs3/21+sfor 0z,s<rsup=3+172.\displaystyle R_{L}\left(z,s\right):=\frac{2+4z-z^{3/2}}{1+z}-\frac{s^{3/2}}{1+s}\quad\text{for $0\leq z,s<r_{\mathrm{sup}}=\tfrac{3+\sqrt{17}}{2}.$} (A.10)

Thus 𝐁~\widetilde{\mathbf{B}} is positive definite and there exists a non-singular upper triangular matrix 𝐋\mathbf{L} such that

𝐁~=Λτ𝐁Λτ=𝐋T𝐋or𝐁=(𝐋Λτ1)T𝐋Λτ1.\widetilde{\mathbf{B}}=\Lambda_{\tau}\mathbf{B}\Lambda_{\tau}=\mathbf{L}^{T}\mathbf{L}\quad\text{or}\quad\mathbf{B}=\left(\mathbf{L}\Lambda_{\tau}^{-1}\right)^{T}\mathbf{L}\Lambda_{\tau}^{-1}.

Proof  Note that, RL/z=(1z)(z+z+4)2(1+z)2\partial R_{L}/\partial z=\frac{(1-\sqrt{z})(z+\sqrt{z}+4)}{2(1+z)^{2}}. Thus RL(z,s)R_{L}\left(z,s\right) is increasing in (0,1)(0,1) and decreasing in (1,rsup)(1,r_{\mathrm{sup}}) with respect to zz. Also, RL(z,s)R_{L}\left(z,s\right) is decreasing with respect to ss such that RL(z,s)<RL(z,0)R_{L}\left(z,s\right)<R_{L}\left(z,0\right) for any s(0,rsup)s\in(0,r_{\mathrm{sup}}). Simple calculations show that

RL(z,s)min{RL(0,rsup),RL(rsup,rsup)}>21/40for 0z,s<rsup.\displaystyle R_{L}\left(z,s\right)\geq\min\big{\{}R_{L}\left(0,r_{\mathrm{sup}}\right),R_{L}\left(r_{\mathrm{sup}},r_{\mathrm{sup}}\right)\big{\}}>21/40\quad\text{for $0\leq z,s<r_{\mathrm{sup}}.$} (A.11)

For any fixed index nn, by using the definition (A.8) of 𝐁~2\widetilde{\mathbf{B}}_{2} and the well–known Gerschgorin’s circle theorem, we find that the minimum eigenvalue of 𝐁~\widetilde{\mathbf{B}} can be bounded by

λmin(𝐁~)\displaystyle\lambda_{\min}\big{(}\widetilde{\mathbf{B}}\big{)}\geq min1kn1{2b~0(k)|b~1(k)||b~1(k+1)|,2b~0(n)|b~1(n)|}\displaystyle\,\min_{1\leq k\leq n-1}\Big{\{}2\tilde{b}_{0}^{(k)}-\big{|}\tilde{b}_{1}^{(k)}\big{|}-\big{|}\tilde{b}_{1}^{(k+1)}\big{|},2\tilde{b}_{0}^{(n)}-\big{|}\tilde{b}_{1}^{(n)}\big{|}\Big{\}}
=\displaystyle= min1kn1{2b~0(k)+b~1(k)+b~1(k+1),2b~0(n)+b~1(n)}\displaystyle\,\min_{1\leq k\leq n-1}\Big{\{}2\tilde{b}_{0}^{(k)}+\tilde{b}_{1}^{(k)}+\tilde{b}_{1}^{(k+1)},2\tilde{b}_{0}^{(n)}+\tilde{b}_{1}^{(n)}\Big{\}}
=\displaystyle= min1kn1{RL(rk,rk+1),RL(rn,0)}min1knRL(rk,rk+1)>21/40,\displaystyle\,\min_{1\leq k\leq n-1}\Big{\{}R_{L}\left(r_{k},r_{k+1}\right),R_{L}\left(r_{n},0\right)\Big{\}}\geq\min_{1\leq k\leq n}R_{L}\left(r_{k},r_{k+1}\right)>21/40,

where the last estimate follows from (A.11). It also says that the real symmetric matrix 𝐁~\widetilde{\mathbf{B}} is positive definite. Then we complete the proof by noticing the definition (A.2) and applying the standard Cholesky decomposition of 𝐁~\widetilde{\mathbf{B}}.   

Lemma A.2

If the step ratios condition S1 holds, the maximum eigenvalue of the real symmetric matrix 𝐁~2T𝐁~2\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2} can be bounded by

λmax(𝐁~2T𝐁~2)max1knRU(rk,rk+1)<RU(rsup,rsup)<53/5,\lambda_{\max}\big{(}\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}\big{)}\leqslant\max_{1\leq k\leq n}R_{U}\left(r_{k},r_{k+1}\right)<R_{U}\left(r_{\mathrm{sup}},r_{\mathrm{sup}}\right)<53/5,

where 𝐁~2\widetilde{\mathbf{B}}_{2} is defined in (A.8) and RU(z,s)R_{U}\left(z,s\right) is defined by

RU(z,s):=(1+2z)(1+2z+z3/2)(1+z)2+s3/2(1+2s+s3/2)(1+s)2for 0z,s<rsup.\displaystyle R_{U}\left(z,s\right):=\frac{(1+2z)(1+2z+z^{3/2})}{\left(1+z\right)^{2}}+\frac{s^{3/2}(1+2s+s^{3/2})}{\left(1+s\right)^{2}}\quad\text{for $0\leq z,s<r_{\mathrm{sup}}.$} (A.12)

Proof  Obviously, RU(z,s)R_{U}\left(z,s\right) is increasing with respect to the two variables zz and ss. We have RU(z,s)<RU(rsup,rsup)<53/5R_{U}\left(z,s\right)<R_{U}\left(r_{\mathrm{sup}},r_{\mathrm{sup}}\right)<53/5. From the definition (A.8) of 𝐁~2\widetilde{\mathbf{B}}_{2}, one has

𝐁~2T𝐁~2=(d0(1)d1(2)d1(2)d0(2)d1(3)d1(n1)d0(n1)d1(n)d1(n)d0(n))n×n,\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}=\left(\begin{array}[]{ccccc}d_{0}^{(1)}&d_{1}^{(2)}&&&\\ d_{1}^{(2)}&d_{0}^{(2)}&d_{1}^{(3)}&&\\ &\ddots&\ddots&\ddots&\\ &&d_{1}^{(n-1)}&d_{0}^{(n-1)}&d_{1}^{(n)}\\ &&&d_{1}^{(n)}&d_{0}^{(n)}\\ \end{array}\right)_{n\times n},

where the discrete kernels d0(k)d_{0}^{(k)} and d1(k)d_{1}^{(k)} are given by (r10r_{1}\equiv 0)

d0(k)=(1+2rk1+rk)2+rk+13(1+rk+1)2andd1(k)=rk3/2(1+2rk)(1+rk)2for 1kn.d_{0}^{(k)}=\Big{(}\frac{1+2r_{k}}{1+r_{k}}\Big{)}^{2}+\frac{r_{k+1}^{3}}{(1+r_{k+1})^{2}}\quad\text{and}\quad d_{1}^{(k)}=-\frac{r_{k}^{3/2}\left(1+2r_{k}\right)}{\left(1+r_{k}\right)^{2}}\quad\text{for $1\leqslant k\leqslant n$}.

For any fixed index nn, the Gerschgorin circle theorem gives an upper bound of the maximum eigenvalue of the real symmetric matrix 𝐁~2T𝐁~2\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}, that is,

λmax(𝐁~2T𝐁~2)\displaystyle\lambda_{\max}\big{(}\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}\big{)}\leq max1kn1{d0(k)d1(k)d1(k+1),d0(n)d1(n)}\displaystyle\,\max_{1\leq k\leq n-1}\Big{\{}d_{0}^{(k)}-d_{1}^{(k)}-d_{1}^{(k+1)},d_{0}^{(n)}-d_{1}^{(n)}\Big{\}}
=\displaystyle= max1kn1{RU(rk,rk+1),RU(rn,0)}max1knRU(rk,rk+1).\displaystyle\,\max_{1\leq k\leq n-1}\Big{\{}R_{U}\left(r_{k},r_{k+1}\right),R_{U}\left(r_{n},0\right)\Big{\}}\leq\max_{1\leq k\leq n}R_{U}\left(r_{k},r_{k+1}\right).

It completes the proof.   

Lemma A.3

If S1 holds, then the positive definite matrix 𝚯=(𝐁21)T𝐁𝐁21\mathbf{\Theta}=(\mathbf{B}_{2}^{-1})^{T}\mathbf{B}\mathbf{B}_{2}^{-1} and

k=1nj=1kθkj(k)wkvjε2𝒗T𝚯𝒗+12ε𝒘T𝐁1𝒘for ε>0\displaystyle\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}v_{j}\leq\frac{\varepsilon}{2}\boldsymbol{v}^{T}\mathbf{\Theta}\boldsymbol{v}+\frac{1}{2\varepsilon}\boldsymbol{w}^{T}\mathbf{B}^{-1}\boldsymbol{w}\quad\text{for $\varepsilon>0$}

for any real vectors 𝐯:=(v1,v2,,vn)T\boldsymbol{v}:=\left(v_{1},v_{2},\cdots,v_{n}\right)^{T} and 𝐰:=(w1,w2,,wn)T\boldsymbol{w}:=\left(w_{1},w_{2},\cdots,w_{n}\right)^{T}.

Proof  For any fixed index nn, let 𝒖:=𝚯2𝒗\boldsymbol{u}:=\mathbf{\Theta}_{2}\boldsymbol{v}. The equality (A.1) gives 𝒗=𝐁2𝒖\boldsymbol{v}=\mathbf{B}_{2}\boldsymbol{u}. In the element-wise sense, one has uk=j=1kθkj(k)vju_{k}=\sum_{j=1}^{k}\theta_{k-j}^{(k)}v_{j} and vk=j=1kbkj(k)ujv_{k}=\sum_{j=1}^{k}b_{k-j}^{(k)}u_{j}. Then we have

𝒗T𝚯𝒗=2k=1nj=1kθkj(k)vkvj=2k=1nj=1kbkj(k)ukuj=𝒖T𝐁𝒖,\displaystyle\boldsymbol{v}^{T}\mathbf{\Theta}\boldsymbol{v}=2\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}v_{k}v_{j}=2\sum_{k=1}^{n}\sum_{j=1}^{k}b_{k-j}^{(k)}u_{k}u_{j}=\boldsymbol{u}^{T}\mathbf{B}\boldsymbol{u}, (A.13)

and then, by taking 𝒖:=𝐁21𝒗\boldsymbol{u}:=\mathbf{B}_{2}^{-1}\boldsymbol{v},

𝒗T[𝚯(𝐁21)T𝐁𝐁21]𝒗0or𝚯=(𝐁21)T𝐁𝐁21.\displaystyle\boldsymbol{v}^{T}\left[\mathbf{\Theta}-(\mathbf{B}_{2}^{-1})^{T}\mathbf{B}\mathbf{B}_{2}^{-1}\right]\boldsymbol{v}\equiv 0\quad\text{or}\quad\mathbf{\Theta}=(\mathbf{B}_{2}^{-1})^{T}\mathbf{B}\mathbf{B}_{2}^{-1}. (A.14)

By virtue of the decomposition 𝐁=(𝐋Λτ1)T𝐋Λτ1\mathbf{B}=\left(\mathbf{L}\Lambda_{\tau}^{-1}\right)^{T}\mathbf{L}\Lambda_{\tau}^{-1} in Lemma A.1, we have

k=1nj=1kθkj(k)wkvj=\displaystyle\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}v_{j}= k=1nwkuk=𝒖T𝒘=(𝐋Λτ1𝒖)T(Λτ𝐋1)T𝒘\displaystyle\,\sum_{k=1}^{n}w_{k}u_{k}=\boldsymbol{u}^{T}\boldsymbol{w}=\big{(}\mathbf{L}\Lambda_{\tau}^{-1}\boldsymbol{u}\big{)}^{T}\big{(}\Lambda_{\tau}\mathbf{L}^{-1}\big{)}^{T}\boldsymbol{w}
\displaystyle\leq ε2𝒖T(𝐋Λτ1)T𝐋Λτ1𝒖+12ε𝒘T(Λτ𝐋1)(Λτ𝐋1)T𝒘\displaystyle\,\frac{\varepsilon}{2}\boldsymbol{u}^{T}\big{(}\mathbf{L}\Lambda_{\tau}^{-1}\big{)}^{T}\mathbf{L}\Lambda_{\tau}^{-1}\boldsymbol{u}+\frac{1}{2\varepsilon}\boldsymbol{w}^{T}\big{(}\Lambda_{\tau}\mathbf{L}^{-1}\big{)}\big{(}\Lambda_{\tau}\mathbf{L}^{-1}\big{)}^{T}\boldsymbol{w}
=\displaystyle= ε2𝒖T𝐁𝒖+12ε𝒘TΛτ𝐋1(𝐋1)TΛτ𝒘\displaystyle\,\frac{\varepsilon}{2}\boldsymbol{u}^{T}\mathbf{B}\boldsymbol{u}+\frac{1}{2\varepsilon}\boldsymbol{w}^{T}\Lambda_{\tau}\mathbf{L}^{-1}\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}\boldsymbol{w}
=\displaystyle= ε2𝒗T𝚯𝒗+12ε𝒘T𝐁1𝒘for any ε>0,\displaystyle\,\frac{\varepsilon}{2}\boldsymbol{v}^{T}\mathbf{\Theta}\boldsymbol{v}+\frac{1}{2\varepsilon}\boldsymbol{w}^{T}\mathbf{B}^{-1}\boldsymbol{w}\quad\text{for any $\varepsilon>0$,}

where the Young’s inequality was used in the inequality and the identity (A.13) was applied in the last equality. This completes the proof.   

Now we are in position to present the proof of Lemma 3.2.

Proof  ​​of Lemma 3.2 To avoid possible confusions, we define the vector norm ||||||\big{|}\!\big{|}\!\big{|}\cdot\big{|}\!\big{|}\!\big{|} by |𝒖|:=𝒖T𝒖\big{|}\!\big{|}\!\big{|}\boldsymbol{u}\big{|}\!\big{|}\!\big{|}:=\sqrt{\boldsymbol{u}^{T}\boldsymbol{u}} and the associated matrix norm |A|:=ρ(ATA)\big{|}\!\big{|}\!\big{|}\textbf{A}\big{|}\!\big{|}\!\big{|}:=\sqrt{\rho\big{(}\textbf{A}^{T}\textbf{A}\big{)}}. Lemma A.3 gives

k=1nj=1kθkj(k)wkvjεk=1nj=1kθkj(k)vkvj+12ε𝒘T𝐁1𝒘for ε>0.\displaystyle\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}v_{j}\leq\varepsilon\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}v_{k}v_{j}+\frac{1}{2\varepsilon}\boldsymbol{w}^{T}\mathbf{B}^{-1}\boldsymbol{w}\quad\text{for $\varepsilon>0$}. (A.15)

We will handle the second term at the right side of (A.15). Lemma A.1 shows 𝐁~=𝐋T𝐋\widetilde{\mathbf{B}}=\mathbf{L}^{T}\mathbf{L} and 𝐁1=Λτ𝐋1(𝐋1)TΛτ\mathbf{B}^{-1}=\Lambda_{\tau}\mathbf{L}^{-1}\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}. Moreover, Lemma A.3 gives

𝚯=\displaystyle\mathbf{\Theta}= (𝐁21)T𝐁𝐁21=(𝐁21)T(𝐋Λτ1)T𝐋Λτ1𝐁21=(𝐋Λτ1𝐁21)T𝐋Λτ1𝐁21\displaystyle\,(\mathbf{B}_{2}^{-1})^{T}\mathbf{B}\mathbf{B}_{2}^{-1}=(\mathbf{B}_{2}^{-1})^{T}\left(\mathbf{L}\Lambda_{\tau}^{-1}\right)^{T}\mathbf{L}\Lambda_{\tau}^{-1}\mathbf{B}_{2}^{-1}=\left(\mathbf{L}\Lambda_{\tau}^{-1}\mathbf{B}_{2}^{-1}\right)^{T}\mathbf{L}\Lambda_{\tau}^{-1}\mathbf{B}_{2}^{-1}

such that 𝒘T𝚯𝒘=|𝐋Λτ1𝐁21𝒘|2\boldsymbol{w}^{T}\mathbf{\Theta}\boldsymbol{w}=\big{|}\!\big{|}\!\big{|}\mathbf{L}\Lambda_{\tau}^{-1}\mathbf{B}_{2}^{-1}\boldsymbol{w}\big{|}\!\big{|}\!\big{|}^{2}. We apply the definition (A.8) to derive that

𝒘T𝐁1𝒘=\displaystyle\boldsymbol{w}^{T}\mathbf{B}^{-1}\boldsymbol{w}= ((𝐋1)TΛτ𝒘)T(𝐋1)TΛτ𝒘=|(𝐋1)TΛτ𝒘|2\displaystyle\,\left(\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}\boldsymbol{w}\right)^{T}\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}\boldsymbol{w}=\big{|}\!\big{|}\!\big{|}\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}\boldsymbol{w}\big{|}\!\big{|}\!\big{|}^{2}
=\displaystyle= |(𝐋1)TΛτ𝐁2Λτ𝐋1𝐋Λτ1𝐁21𝒘|2\displaystyle\,\big{|}\!\big{|}\!\big{|}\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}\mathbf{B}_{2}\Lambda_{\tau}\mathbf{L}^{-1}\mathbf{L}\Lambda_{\tau}^{-1}\mathbf{B}_{2}^{-1}\boldsymbol{w}\big{|}\!\big{|}\!\big{|}^{2}
\displaystyle\leq |(𝐋1)TΛτ𝐁2Λτ𝐋1|2|𝐋Λτ1𝐁21𝒘|2\displaystyle\,\big{|}\!\big{|}\!\big{|}\big{(}\mathbf{L}^{-1}\big{)}^{T}\Lambda_{\tau}\mathbf{B}_{2}\Lambda_{\tau}\mathbf{L}^{-1}\big{|}\!\big{|}\!\big{|}^{2}\big{|}\!\big{|}\!\big{|}\mathbf{L}\Lambda_{\tau}^{-1}\mathbf{B}_{2}^{-1}\boldsymbol{w}\big{|}\!\big{|}\!\big{|}^{2}
=\displaystyle= |(𝐋1)T𝐁~2𝐋1|2𝒘T𝚯𝒘r(n)𝒘T𝚯𝒘,\displaystyle\,\big{|}\!\big{|}\!\big{|}\big{(}\mathbf{L}^{-1}\big{)}^{T}\widetilde{\mathbf{B}}_{2}\mathbf{L}^{-1}\big{|}\!\big{|}\!\big{|}^{2}\cdot\boldsymbol{w}^{T}\mathbf{\Theta}\boldsymbol{w}\leq\mathcal{M}_{r}^{(n)}\cdot\boldsymbol{w}^{T}\mathbf{\Theta}\boldsymbol{w},

where we denote

r(n):=\displaystyle\mathcal{M}_{r}^{(n)}:= |𝐋1|4|𝐁~2|2=λmax2((𝐁~T)1)λmax(𝐁~2T𝐁~2)=λmax(𝐁~2T𝐁~2)λmin2(𝐁~).\displaystyle\,\big{|}\!\big{|}\!\big{|}\mathbf{L}^{-1}\big{|}\!\big{|}\!\big{|}^{4}\big{|}\!\big{|}\!\big{|}\widetilde{\mathbf{B}}_{2}\big{|}\!\big{|}\!\big{|}^{2}=\lambda_{\max}^{2}\big{(}\big{(}\widetilde{\mathbf{B}}^{T}\big{)}^{-1}\big{)}\lambda_{\max}\big{(}\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}\big{)}=\frac{\lambda_{\max}\big{(}\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}\big{)}}{\lambda_{\min}^{2}\big{(}\widetilde{\mathbf{B}}\big{)}}. (A.16)

Therefore it follows from (A.15) that

k=1nj=1kθkj(k)wkvjεk=1nj=1kθkj(k)vkvj+r(n)εk=1nj=1kθkj(k)wkwjfor ε>0.\displaystyle\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}v_{j}\leq\varepsilon\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}v_{k}v_{j}+\frac{\mathcal{M}_{r}^{(n)}}{\varepsilon}\sum_{k=1}^{n}\sum_{j=1}^{k}\theta_{k-j}^{(k)}w_{k}w_{j}\quad\text{for $\varepsilon>0$}.

To complete the proof, it remains to show that r(n)\mathcal{M}_{r}^{(n)} is uniformly bounded with respect to the level index nn. Fortunately, Lemmas A.1 and A.2 confirm that there exists an nn-independent constant r:=maxn1r(n)<39\mathcal{M}_{r}:=\max_{n\geq 1}\mathcal{M}_{r}^{(n)}<39. Actually, under the weak step-ratio condition S1, one has a rough estimate

r=maxn1λmax(𝐁~2T𝐁~2)λmin2(𝐁~)maxn1max1knRU(rk,rk+1)min1knRL2(rk,rk+1)<39.\displaystyle\mathcal{M}_{r}=\max_{n\geq 1}\frac{\lambda_{\max}\big{(}\widetilde{\mathbf{B}}_{2}^{T}\widetilde{\mathbf{B}}_{2}\big{)}}{\lambda_{\min}^{2}\big{(}\widetilde{\mathbf{B}}\big{)}}\leq\max_{n\geq 1}\frac{\max_{1\leq k\leq n}R_{U}\left(r_{k},r_{k+1}\right)}{\min_{1\leq k\leq n}R_{L}^{2}\left(r_{k},r_{k+1}\right)}<39.

It completes the proof.   

Remark 3 (Improved estimate on the constant r\mathcal{M}_{r})

As noted in [28], the adjacent step ratios take rn1r_{n}\approx 1 when the solution varies slowly, and the restriction S1 only takes its effect inside the fast-varying (high gradient) time domains (rn<1r_{n}<1), in the transition regions from the slow-varying to fast-varying domains (rn<1r_{n}<1), and in the “fast-to-slow” transition regions (rn>1r_{n}>1). Then the positive constant r\mathcal{M}_{r} in the proof of Lemma 3.2 can be refined by considering three different cases, cf. Remark 1,

  • (a)

    If 0<rn310<r_{n}\leq\sqrt{3}-1, one can choose r=RU(31,31)/RL2(0,31)<1.19;\mathcal{M}_{r}=R_{U}(\sqrt{3}-1,\sqrt{3}-1)/R_{L}^{2}\big{(}0,\sqrt{3}-1\big{)}<1.19;

  • (b)

    If 31<rn2\sqrt{3}-1<r_{n}\leq 2, then one has r=RU(2,2)/RL2(2,2)<3.25;\mathcal{M}_{r}=R_{U}(2,2)/R_{L}^{2}\big{(}2,2\big{)}<3.25;

  • (c)

    If 2<rn<rsup2<r_{n}<r_{\mathrm{sup}}, one can choose the next step-ratio 0<rn+11.450<r_{n+1}\leq 1.45 (to reduce or slightly enlarge the step size) such that r=RU(rsup,1.45)/RL2(rsup,1.45)<3.94.\mathcal{M}_{r}=R_{U}(r_{\mathrm{sup}},1.45)/R_{L}^{2}\left(r_{\mathrm{sup}},1.45\right)<3.94.

Always, one can take r=4\mathcal{M}_{r}=4 in the adaptive computations.

References

  • [1] K. Elder, M. Katakowski, M. Haataja, and M. Grant. Modeling elasticity in crystal growth. Phys. Rev. Lett., 88:245701, 2002.
  • [2] K. Elder and M. Grant. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Physical Review E, 70:051605, 2004.
  • [3] N. Provatas, J. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, and K. Elder. Using the phase-field crystal method in the multi-scale modeling of microstructure evolution. JOM, 59:83–90, 2007.
  • [4] E. Asadi and M. Zaeem. A review of quantitative phase-field crystal modeling of solid-liquid structures. JOM, 67:186–201, 2015.
  • [5] A. Baskaran, J. Lowengrub, C. Wang, and S. Wise. Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal., 51:2851–2873, 2013.
  • [6] L. Dong, W. Feng, C. Wang, S. Wise, and Z. Zhang. Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation. Comput. Math. Appl., 75:1912–1928, 2018.
  • [7] Q. Li, L. Mei, X. Yang, and Y. Li. Efficient numerical schemes with unconditional energy stabilities for the modified phase field crystal equation. Adv. Comput. Math., 45:1551–1580, 2019.
  • [8] Z. Liu and X. Li. Efficient modified stabilized invariant energy quadratization approaches for phase-field crystal equation. Numer. Algo., 2019. Doi:10.1007/s11075-019-00804-9.
  • [9] X. Jing and Q. Wang. Linear second order energy stable schemes for phase field crystal growth models with nonlocal constraints. Comput. Math. Appl., 79:764–788, 2020.
  • [10] Z. Zhang, Y. Ma, and Z. Qiao. An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys., 249:204–215, 2013.
  • [11] X. Yang and D. Han. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys., 330:1116–1134, 2017.
  • [12] S. Wise, C. Wang, and J. Lowengrub. An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal., 47:2269–2288, 2009.
  • [13] C. Wang and S. Wise. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal., 49:945–969, 2011.
  • [14] Y. Li and J. Kim. An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation. Comput. Methods Appl. Mech. Eng., 319:194–216, 2017.
  • [15] Y. Yan, W. Chen, C. Wang, and S. Wise. A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Comm. Comput. Phys., 23:572–602, 2018.
  • [16] K. Cheng, W. Feng, C. Wang, and S. Wise. An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math., 362:574–595, 2019.
  • [17] K. Cheng, C. Wang, and S. Wise. An energy stable BDF2 Fourier pseudo-spectral numerical scheme for the square phase field crystal equation. Comm. Comput. Phys., 26:1335–1364, 2019.
  • [18] C. Xu and T. T. Tang. Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal., 44:1759–1779, 2006.
  • [19] J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete. Contin. Dyn. Sys., 28:1669–1691, 2010.
  • [20] J. Shen, T. Tang, and J. Yang. On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commu. Math. Sci., 14:1517–1534, 2016.
  • [21] Gong. Y. and J. Zhao. Energy-stable Runge-Kutta schemes for gradient flow models uing the energy quadratization approach. Appl. Math. Lett., 94:224–231, 2019.
  • [22] J. Xu, Y. Li, S. Wu, and A. Bousquet. On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng., 345:826–853, 2019.
  • [23] H. Gomez and T. Hughes. Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys., 230:5310–5327, 2011.
  • [24] Z. Qiao, Z. Zheng, and T. Tang. An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput., 22:1395–1414, 2011.
  • [25] R. D. Grigorieff. Stability of multistep-methods on variable grids. Numer. Math., 42:359–377, 1983.
  • [26] J. Becker. A second order backward difference method with variable steps for a parabolic problem. BIT Numerical Mathematics, 38:644–662, 1998.
  • [27] W. Chen, X. Wang, Y. Yan, and Z. Zhang. A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation. SIAM J. Numer. Anal., 57:495–525, 2019.
  • [28] H.-L. Liao and Z. Zhang. Analysis of adaptive BDF2 scheme for diffusion equations. Math. Comp., 2020, to appear.
  • [29] J. Shen, T. Tang, and L. Wang. Spectral methods: Algorithms, analysis and applications. Springer-Verlag, Berlin Heidelberg, 2011.
  • [30] S. Gottlieb and C. Wang. Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation. J. Sci. Comput., 53:102–128, 2012.
  • [31] K. Cheng, C. Wang, S. Wise, and X. Yue. A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput., 69:1083–1114, 2016.
  • [32] H-L. Liao, X. Song, T. Tang, and T. Zhou. Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. preprint, 2019. submitted to pubilication.