This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ambarzumyan-type theorem for the Sturm-Liouville operator on the lasso graph

Feng Wang School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China [email protected]  and  CHUAN-FU Yang Department of Mathematics, School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People’s Republic of China [email protected]
Abstract.

We consider the Sturm-Liouville operator on the lasso graph with a segment and a loop joined at one point, which has arbitrary length. The Ambarzumyan’s theorem for the operator is proved, which says that if the eigenvalues of the operator coincide with those of the zero potential, then the potential is zero.

Key words and phrases:
Sturm-Liouville operator, Ambarzumyan-type theorem, Lasso graph.
2000 Mathematics Subject Classification:
34A55; 34B24; 47E05

1. introduction

Inverse spectral problems consist in recovering the coefficients of an operator from their spectral characteristics. The first inverse spectral result on Sturm-Liouville operators is given by Ambarzumyan [1], which describes the following theorem:

If qq is a continuous real-valued function on [0,1][0,1], and {n2π2:n=0,1,2,}\{n^{2}\pi^{2}:n=0,1,2,\ldots\} is the set of eigenvalues of the boundary value problem

y′′+q(x)y=λy,x(0,1),y(0)=y(1)=0,\displaystyle-y^{\prime\prime}+q(x)y=\lambda y,\;x\in(0,1),\quad y^{\prime}(0)=y^{\prime}(1)=0,

then q(x)0q(x)\equiv 0 on [0,1][0,1].

This theorem is called Ambarzumyan,{}^{\textbf{,}}s theorem, and has been generalized in many directions (see [4-6, 9-16, 18-19] and other papers). Here we mention Ambarzumyan-type theorems on star graphs [13, 14], Ambarzumyan-type theorems on trees [4, 12], and Ambarzumyan-type theorems on graphs with cycles [11, 15].

Differential operators on graphs often appear in natural sciences and engineering (see [2, 3] and the references therein). Such operators can be used to model the motion of quantum particles confined to certain low dimensional structures. In recent years, Ambarzumyan-type theorems on graphs have attracted the attention of many researchers. Some Ambarzumyan-type theorems for the Sturm-Liouville operator on graphs have been achieved in the literatures mentioned above and other works. Most of the works in this direction are devoted to the graphs with equal length edges. It is more difficult to study the Ambarzumyan-type theorems on graphs with unequal length edges. Nevertheless, it is worth noting that C. K. Law and E. Yanagida [12] studied the Ambarzumyan-type theorems on trees with unequal length edges.

In addition, we have also noticed that an Ambarzumian-type theorem for the Sturm-Liouville operator with a bounded real potential on arbitrary compact graphs is found by Davies [6]. In this paper, using the method different from [6], we obtain an Ambarzumian-type theorem for the Sturm-Liouville operator with a square integrable real potential on the lasso graph with arbitrary edge lengths. Our approach is based on the Hadamard’s factorization theorem and the variational principle, which is simpler and can be applied to arbitrary compact graphs.

In this paper we consider the lasso graph GG (see Figure 1). The edge e1e_{1} is a boundary edge of length l1l_{1}, the edge e2e_{2} is a loop of length l2l_{2}. Each edge eje_{j} is parameterized by the parameter xj[0,lj]x_{j}\in[0,l_{j}]. The value x1=0x_{1}=0 corresponds to the boundary vertex, and x1=l1x_{1}=l_{1} corresponds to the internal vertex. For the loop e2e_{2}, both ends x2=0x_{2}=0 and x2=l2x_{2}=l_{2} correspond to the internal vertex.

Refer to caption
Figure 1. Lasso graph G

A function yy on GG may be represented as a vector function y={yj}j=1,2y=\{y_{j}\}_{j=1,2}, where the function yj(xj)y_{j}(x_{j}), xj[0,lj]x_{j}\in[0,l_{j}], is defined on the edge eje_{j}. Consider the following Sturm-Liouville equations on GG:

φ(yj):=yj′′(xj)+qj(xj)yj(xj)=λyj(xj),xj[0,lj],j=1,2,\varphi(y_{j}):=-y^{\prime\prime}_{j}(x_{j})+q_{j}(x_{j})y_{j}(x_{j})=\lambda y_{j}(x_{j}),\quad x_{j}\in[0,l_{j}],\quad j=1,2, (1.1)

where qjq_{j}, j=1,2j=1,2, are real-valued functions from L2[0,lj]L^{2}[0,l_{j}], λ\lambda is the spectral parameter, the functions yjy_{j}, yjy^{\prime}_{j}, j=1,2j=1,2, are absolutely continuous on [0,lj][0,l_{j}] and satisfy the following matching conditions in the internal vertex:

y1(l1)=y2(l2)=y2(0),y1(l1)+y2(l2)y2(0)=0.y_{1}(l_{1})=y_{2}(l_{2})=y_{2}(0),\qquad y^{\prime}_{1}(l_{1})+y^{\prime}_{2}(l_{2})-y^{\prime}_{2}(0)=0. (1.2)

Matching conditions (1.2) are called the standard conditions. In electrical circuits, (1.2) expresses Kirchhoff’s law; in elastic string network, it expresses the balance of tension, and so on.

Denote q={qj}j=1,2q=\{q_{j}\}_{j=1,2} called the potential on GG. Let us consider the boundary value problem L(q)L(q) on GG for equation (1.1) with the standard matching conditions (1.2) and with Neumann boundary condition in the boundary vertex:

y1(0)=0.y^{\prime}_{1}(0)=0. (1.3)

It is obvious that the spectrum σ(L(q)\sigma(L(q) of the boundary value problem L(q)L(q) is a discrete real sequence, bounded from below, diverging to ++\infty. Let σ(L(q))={λn(q)}n=0\sigma(L(q))=\{\lambda_{n}(q)\}_{n=0}^{\infty}, which can be arranged in an ascending order as (counting with their multiplicities)

λ0(q)λ1(q)λn(q)+.\displaystyle\lambda_{0}(q)\leq\lambda_{1}(q)\leq\cdots\leq\lambda_{n}(q)\leq\cdots\longrightarrow+\infty.

The main result in this paper is as follows.

Theorem 1.1.

If λn(q)=λn(0)\lambda_{n}(q)=\lambda_{n}(0) for all n=0,1,2n=0,1,2\cdots, then qj(xj)=0q_{j}(x_{j})=0 a.e. on [0,lj][0,l_{j}], j=1,2j=1,2.

2. Analysis of the characteristic function

In this section we analyze the characteristic function of the boundary value problem L(q)L(q), which plays a key role in the proof of Theorem 1.1.

Let Cj(xj,λ)C_{j}(x_{j},\lambda), Sj(xj,λ)S_{j}(x_{j},\lambda), j=1,2j=1,2, be the solutions of equation (1.1) on the edge eje_{j} with the initial conditions

Cj(0,λ)=Sj(0,λ)=1,Cj(0,λ)=Sj(0,λ)=0.C_{j}(0,\lambda)=S^{\prime}_{j}(0,\lambda)=1,\qquad C^{\prime}_{j}(0,\lambda)=S_{j}(0,\lambda)=0.

For each fixed xj[0,lj]x_{j}\in[0,l_{j}], the functions Cj(ν)(xj,λ)C_{j}^{(\nu)}(x_{j},\lambda), Sj(ν)(xj,λ)S_{j}^{(\nu)}(x_{j},\lambda), j=1,2j=1,2, ν=0,1\nu=0,1, are entire in λ\lambda of order 12\frac{1}{2}.

Then the solutions of equation (1.1) which satisfy condition (1.3) are represented as

{y1(x1,λ)=A1(λ)C1(x1,λ),y2(x2,λ)=A2(λ)C2(x2,λ)+B2(λ)S2(x2,λ),\displaystyle\begin{cases}y_{1}(x_{1},\lambda)=A_{1}(\lambda)C_{1}(x_{1},\lambda),\\ y_{2}(x_{2},\lambda)=A_{2}(\lambda)C_{2}(x_{2},\lambda)+B_{2}(\lambda)S_{2}(x_{2},\lambda),\end{cases} (2.1)

where A1(λ)A_{1}(\lambda), A2(λ)A_{2}(\lambda) and B2(λ)B_{2}(\lambda) are only dependent on λ\lambda. Substituting (2.1) into matching conditions (1.2) we obtain a linear algebraic system ss with respect to A1(λ)A_{1}(\lambda), A2(λ)A_{2}(\lambda) and B2(λ)B_{2}(\lambda). The determinant Δ(λ)\Delta(\lambda) of ss has the form

Δ(λ)=C1(l1,λ)(C2(l2,λ)+S2(l2,λ)2)+C1(l1,λ)S2(l2,λ).\Delta(\lambda)=C_{1}(l_{1},\lambda)\Big{(}C_{2}(l_{2},\lambda)+S^{\prime}_{2}(l_{2},\lambda)-2\Big{)}+C^{\prime}_{1}(l_{1},\lambda)S_{2}(l_{2},\lambda). (2.2)

The function Δ(λ)\Delta(\lambda) is entire in λ\lambda of order 12\frac{1}{2} , and its zeros coincide with the eigenvalues of the boundary value problem L(q)L(q). The function Δ(λ)\Delta(\lambda) is called the characteristic function for the boundary value problems L(q)L(q).

Let λ=ρ2\lambda=\rho^{2}, τ=Imρ\tau=Im\rho, then it follows from [7] that the following asymptotic formulas hold uniformly in xj[0,lj]x_{j}\in[0,l_{j}]:

{Sj(xj,λ)=sinρxjρcosρxj2ρ20xjqj(t)𝑑t+o(e|τ|xjρ2),Sj(xj,λ)=cosρxj+sinρxj2ρ0xjqj(t)𝑑t+o(e|τ|xjρ),Cj(xj,λ)=cosρxj+sinρxj2ρ0xjqj(t)𝑑t+o(e|τ|xjρ),Cj(xj,λ)=ρsinρxj+cosρxj20xjqj(t)𝑑t+o(e|τ|xj),\displaystyle\begin{cases}S_{j}(x_{j},\lambda)=\frac{\sin\rho x_{j}}{\rho}-\frac{\cos\rho x_{j}}{2\rho^{2}}\int_{0}^{x_{j}}q_{j}(t)dt+o\left(\frac{e^{|\tau|x_{j}}}{\rho^{2}}\right),\\ S^{\prime}_{j}(x_{j},\lambda)=\cos\rho x_{j}+\frac{\sin\rho x_{j}}{2\rho}\int_{0}^{x_{j}}q_{j}(t)dt+o\left(\frac{e^{|\tau|x_{j}}}{\rho}\right),\\ C_{j}(x_{j},\lambda)=\cos\rho x_{j}+\frac{\sin\rho x_{j}}{2\rho}\int_{0}^{x_{j}}q_{j}(t)dt+o\left(\frac{e^{|\tau|x_{j}}}{\rho}\right),\\ C^{\prime}_{j}(x_{j},\lambda)=-\rho\sin\rho x_{j}+\frac{\cos\rho x_{j}}{2}\int_{0}^{x_{j}}q_{j}(t)dt+o\left(e^{|\tau|x_{j}}\right),\end{cases} (2.3)

as |ρ||\rho|\rightarrow\infty. According to (2.2) and (2.3) we have

Δ(λ)=Δ0(λ)+2(sinρl1)(cosρl21)+(cosρl1)(sinρl2)2ρ[q1]\displaystyle\Delta(\lambda)=\Delta_{0}(\lambda)+\frac{2(\sin\rho l_{1})(\cos\rho l_{2}-1)+(\cos\rho l_{1})(\sin\rho l_{2})}{2\rho}[q_{1}]
+2(cosρl1)(sinρl2)+(sinρl1)(cosρl2)2ρ[q2]\displaystyle+\frac{2(\cos\rho l_{1})(\sin\rho l_{2})+(\sin\rho l_{1})(\cos\rho l_{2})}{2\rho}[q_{2}]\qquad
+o(e|τ|(l1+l2)ρ),|ρ|,\displaystyle+o\left(\frac{e^{|\tau|(l_{1}+l_{2})}}{\rho}\right),\qquad|\rho|\rightarrow\infty,\qquad\qquad\qquad\;\; (2.4)

where

Δ0(λ)=2(cosρl1)(cosρl21)(sinρl1)(sinρl2),\displaystyle\Delta_{0}(\lambda)=2(\cos\rho l_{1})(\cos\rho l_{2}-1)-(\sin\rho l_{1})(\sin\rho l_{2}), (2.5)
[qj]=0ljqj(t)𝑑t,j=1,2.\displaystyle[q_{j}]=\int_{0}^{l_{j}}q_{j}(t)dt,\qquad j=1,2.\qquad\qquad\qquad\qquad (2.6)

The function Δ0(λ)\Delta_{0}(\lambda) is entire in λ\lambda of order 12\frac{1}{2}, and the characteristic function for the boundary value problems L(0)L(0) with zero potential.

Let us show that the specification of the spectrum σ(L(q))={λn(q)}n=0\sigma(L(q))=\{\lambda_{n}(q)\}_{n=0}^{\infty} uniquely determines the characteristic function Δ(λ)\Delta(\lambda). To this end, we consider together with L(q)L(q) the boundary value problems L(q~)L(\widetilde{q}) of the same form but with different q~={q~j}j=1,2\widetilde{q}=\{\widetilde{q}_{j}\}_{j=1,2}. We agree that if a certain symbol β\beta denotes an object related to L(q)L(q), then β~\widetilde{\beta} will denote the analogous object related to L(q~)L(\widetilde{q}).

Lemma 2.1.

If λn(q)=λn(q~)\lambda_{n}(q)=\lambda_{n}(\widetilde{q}) for all n=0,1,2n=0,1,2\cdots, then Δ(λ)=Δ~(λ)\Delta(\lambda)=\widetilde{\Delta}(\lambda).

Proof.

Denote

λn1(0)={λn(0)ifλn(0)0,1ifλn(0)=0,\displaystyle\lambda_{n}^{1}(0)=\begin{cases}\lambda_{n}(0)\qquad if\;\;\lambda_{n}(0)\neq 0,\\ 1\qquad\quad\;\;\;if\;\;\lambda_{n}(0)=0,\end{cases}

where λn(0)\lambda_{n}(0), n=0,1,2n=0,1,2\cdots, are eigenvalues of the boundary value problems L(0)L(0). By Hadamard’s factorization theorem, we have

Δ0(λ)=C0n=0λn(0)λλn1(0),\Delta_{0}(\lambda)=C_{0}\prod_{n=0}^{\infty}\frac{\lambda_{n}(0)-\lambda}{\lambda_{n}^{1}(0)}, (2.7)

where

C0=(1)mm!(mλmΔ0(λ))|λ=0,C_{0}=\frac{(-1)^{m}}{m!}\left(\frac{\partial^{m}}{\partial\lambda^{m}}\Delta_{0}(\lambda)\right)|_{\lambda=0},

and m0m\geq 0 is the multiplicity of the zero eigenvalue of L(0)L(0). Note that the infinite product in (2.7) is absolutely convergent (e.g. see Theorem B.2 in [8]).

Denote

λn1(q)={λn(q)ifλn(q)0,1ifλn(q)=0.\displaystyle\lambda_{n}^{1}(q)=\begin{cases}\lambda_{n}(q)\qquad if\;\;\lambda_{n}(q)\neq 0,\\ 1\qquad\quad\;\;\;if\;\;\lambda_{n}(q)=0.\end{cases} (2.8)

Using Hadamard’s factorization theorem again, we get

Δ(λ)=Cn=0λn(q)λλn1(q),\Delta(\lambda)=C\prod_{n=0}^{\infty}\frac{\lambda_{n}(q)-\lambda}{\lambda_{n}^{1}(q)}, (2.9)

where C0C\neq 0 is a constant. Combining the equations (2.7) and (2.9) yields

Δ(λ)Δ0(λ)=CC0n=0λn1(0)λn1(q)n=0(1+λn(q)λn(0)λn(0)λ).\frac{\Delta(\lambda)}{\Delta_{0}(\lambda)}=\frac{C}{C_{0}}\prod_{n=0}^{\infty}\frac{\lambda_{n}^{1}(0)}{\lambda_{n}^{1}(q)}\prod_{n=0}^{\infty}\left(1+\frac{\lambda_{n}(q)-\lambda_{n}(0)}{\lambda_{n}(0)-\lambda}\right). (2.10)

Using properties of the characteristic functions and the eigenvalues one gets for large negative λ\lambda (see [17], Sec. 2.3 and 2.4):

limλΔ(λ)Δ0(λ)=1.\lim_{\lambda\rightarrow-\infty}\frac{\Delta(\lambda)}{\Delta_{0}(\lambda)}=1.

Consequently by (2.10), we obtain

C=C0[limλn=0λn1(0)λn1(q)n=0(1+λn(q)λn(0)λn(0)λ)]1.C=C_{0}\left[\lim_{\lambda\rightarrow-\infty}\prod_{n=0}^{\infty}\frac{\lambda_{n}^{1}(0)}{\lambda_{n}^{1}(q)}\prod_{n=0}^{\infty}\left(1+\frac{\lambda_{n}(q)-\lambda_{n}(0)}{\lambda_{n}(0)-\lambda}\right)\right]^{-1}. (2.11)

Similarly,

Δ~(λ)=C~n=0λn(q~)λλn1(q~),\widetilde{\Delta}(\lambda)=\widetilde{C}\prod_{n=0}^{\infty}\frac{\lambda_{n}(\widetilde{q})-\lambda}{\lambda_{n}^{1}(\widetilde{q})}, (2.12)

where

C~=C0[limλn=0λn1(0)λn1(q~)n=0(1+λn(q~)λn(0)λn(0)λ)]1,\widetilde{C}=C_{0}\left[\lim_{\lambda\rightarrow-\infty}\prod_{n=0}^{\infty}\frac{\lambda_{n}^{1}(0)}{\lambda_{n}^{1}(\widetilde{q})}\prod_{n=0}^{\infty}\left(1+\frac{\lambda_{n}(\widetilde{q})-\lambda_{n}(0)}{\lambda_{n}(0)-\lambda}\right)\right]^{-1}, (2.13)

and

λn1(q~)={λn(q~)ifλn(q~)0,1ifλn(q~)=0.\displaystyle\lambda_{n}^{1}(\widetilde{q})=\begin{cases}\lambda_{n}(\widetilde{q})\qquad if\;\;\lambda_{n}(\widetilde{q})\neq 0,\\ 1\qquad\quad\;\;\;if\;\;\lambda_{n}(\widetilde{q})=0.\end{cases} (2.14)

According to (2.8), (2.11), (2.13) and (2.14), together with assumptions of the lemma, we have λn1(q)=λn1(q~)\lambda_{n}^{1}(q)=\lambda_{n}^{1}(\widetilde{q}) and C=C~C=\widetilde{C}. Thus, it follows from (2.9) and (2.12) that Δ(λ)=Δ~(λ)\Delta(\lambda)=\widetilde{\Delta}(\lambda). ∎

From Lemma 2.1, we can immediately get the following corollary.

Corollary 2.2.

If λn(q)=λn(0)\lambda_{n}(q)=\lambda_{n}(0) for all n=0,1,2n=0,1,2\cdots, then Δ(λ)=Δ0(λ)\Delta(\lambda)=\Delta_{0}(\lambda).

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The following lemma plays an important role in the proof of Theorem 1.1.

Lemma 3.1.

If Δ(λ)=Δ0(λ)\Delta(\lambda)=\Delta_{0}(\lambda), then [q1]=[q2]=0[q_{1}]=[q_{2}]=0.

Proof.

(1) When l1=l2=ll_{1}=l_{2}=l, from (2), together with Δ(λ)=Δ0(λ)\Delta(\lambda)=\Delta_{0}(\lambda), we have

(sinρl)(3cosρl2)2ρ[q1]+3(sinρl)(cosρl)2ρ[q2]=o(e2|τ|lρ),|ρ|.\displaystyle\frac{(\sin\rho l)(3\cos\rho l-2)}{2\rho}[q_{1}]+\frac{3(\sin\rho l)(\cos\rho l)}{2\rho}[q_{2}]=o\left(\frac{e^{2|\tau|l}}{\rho}\right),\quad|\rho|\rightarrow\infty.

In the above estimate, taking ρ=(n+12)πl\rho=\frac{(n+\frac{1}{2})\pi}{l} to get [q1]=0[q_{1}]=0 and ρ=2nπ+arccos23l\rho=\frac{2n\pi+\arccos\frac{2}{3}}{l} to get [q2]=0[q_{2}]=0.

(2) When l1l2l_{1}\neq l_{2}, it can be proved in two cases.

(i) Let l2l1\frac{l_{2}}{l_{1}} be an irrational number. From (2), together with Δ(λ)=Δ0(λ)\Delta(\lambda)=\Delta_{0}(\lambda), we have

2(sinρl1)(cosρl21)+(cosρl1)(sinρl2)2ρ[q1]\displaystyle\frac{2(\sin\rho l_{1})(\cos\rho l_{2}-1)+(\cos\rho l_{1})(\sin\rho l_{2})}{2\rho}[q_{1}]
+2(cosρl1)(sinρl2)+(sinρl1)(cosρl2)2ρ[q2]\displaystyle+\frac{2(\cos\rho l_{1})(\sin\rho l_{2})+(\sin\rho l_{1})(\cos\rho l_{2})}{2\rho}[q_{2}]\quad
=o(e|τ|(l1+l2)ρ),|ρ|.\displaystyle=o\left(\frac{e^{|\tau|(l_{1}+l_{2})}}{\rho}\right),\quad|\rho|\rightarrow\infty.\qquad\qquad\qquad\; (3.1)

Taking ρ=2nπl1\rho=\frac{2n\pi}{l_{1}} in the estimate (3), we obtain

sin(l2l12nπ)[q1]+2sin(l2l12nπ)[q2]=o(1),n.\displaystyle\sin\left(\frac{l_{2}}{l_{1}}2n\pi\right)[q_{1}]+2\sin\left(\frac{l_{2}}{l_{1}}2n\pi\right)[q_{2}]=o(1),\qquad n\rightarrow\infty. (3.2)

Note that

(sin(l2l12nπ))1=O(1),n,\displaystyle\left(\sin\left(\frac{l_{2}}{l_{1}}2n\pi\right)\right)^{-1}=O(1),\qquad n\rightarrow\infty, (3.3)

since l2l1\frac{l_{2}}{l_{1}} is an irrational number. Combining (3.2) and (3.3) yields

[q1]+2[q2]=o(1),n,\displaystyle[q_{1}]+2[q_{2}]=o(1),\qquad n\rightarrow\infty,

which follows

[q1]+2[q2]=0.\displaystyle[q_{1}]+2[q_{2}]=0. (3.4)

Taking ρ=(2n+1)πl2\rho=\frac{(2n+1)\pi}{l_{2}} in the estimate (3), we obtain

2sin(l1l2(2n+1)π)[q1]+sin(l1l2(2n+1)π)[q2]=o(1),n.\displaystyle 2\sin\left(\frac{l_{1}}{l_{2}}(2n+1)\pi\right)[q_{1}]+\sin\left(\frac{l_{1}}{l_{2}}(2n+1)\pi\right)[q_{2}]=o(1),\qquad n\rightarrow\infty. (3.5)

Note that

(sin(l1l2(2n+1)π))1=O(1),n,\displaystyle\left(\sin\left(\frac{l_{1}}{l_{2}}(2n+1)\pi\right)\right)^{-1}=O(1),\qquad n\rightarrow\infty, (3.6)

since l1l2\frac{l_{1}}{l_{2}} is an irrational number. Combining (3.5) and (3.6) yields

2[q1]+[q2]=o(1),n,\displaystyle 2[q_{1}]+[q_{2}]=o(1),\qquad n\rightarrow\infty,

which follows

2[q1]+[q2]=0.\displaystyle 2[q_{1}]+[q_{2}]=0. (3.7)

It is easy to see that equations (3.4) and (3.7) imply [q1]=[q2]=0[q_{1}]=[q_{2}]=0.

(ii) Let l2l1\frac{l_{2}}{l_{1}} be a rational number. Without losing generality, we assume l1=k1ll_{1}=k_{1}l, l2=k2ll_{2}=k_{2}l, where k1k_{1}, k2k_{2} are two positive integers and relatively prime. From (2), together with Δ(λ)=Δ0(λ)\Delta(\lambda)=\Delta_{0}(\lambda), we have

2(sinρk1l)(cosρk2l1)+(cosρk1l)(sinρk2l)2ρ[q1]\displaystyle\frac{2(\sin\rho k_{1}l)(\cos\rho k_{2}l-1)+(\cos\rho k_{1}l)(\sin\rho k_{2}l)}{2\rho}[q_{1}]\!\!\!\!\!
+2(cosρk1l)(sinρk2k)+(sinρk1l)(cosρk2l)2ρ[q2]\displaystyle+\frac{2(\cos\rho k_{1}l)(\sin\rho k_{2}k)+(\sin\rho k_{1}l)(\cos\rho k_{2}l)}{2\rho}[q_{2}]
=o(e|τ|(k1+k2)lρ),|ρ|.\displaystyle=o\left(\frac{e^{|\tau|(k_{1}+k_{2})l}}{\rho}\right),\quad|\rho|\rightarrow\infty.\qquad\qquad\qquad\;\;\;\> (3.8)

When k1=k2k_{1}=k_{2} then [q1]=[q2]=0[q_{1}]=[q_{2}]=0 is obvious from Case (1). The following is divided into cases k2<k1k_{2}<k_{1} and k2>k1k_{2}>k_{1}.

a) Case k2<k1k_{2}<k_{1}. In the estimate (3), taking ρ=(2k1n+1)πk1l\rho=\frac{(2k_{1}n+1)\pi}{k_{1}l} and let nn\rightarrow\infty, one can get

sin(k2πk1)[q1]+2sin(k2πk1)[q2]=0,\displaystyle\sin\left(\frac{k_{2}\pi}{k_{1}}\right)[q_{1}]+2\sin\left(\frac{k_{2}\pi}{k_{1}}\right)[q_{2}]=0, (3.9)

which follows

[q1]=2[q2],[q_{1}]=-2[q_{2}], (3.10)

since 0<sin(k2πk1)<10<\sin\left(\frac{k_{2}\pi}{k_{1}}\right)<1. In the estimate (3), taking ρ=(2k1n+12)πk1l\rho=\frac{(2k_{1}n+\frac{1}{2})\pi}{k_{1}l} and let nn\rightarrow\infty, one can get

2(cos(k2π2k1)1)[q1]+cos(k2π2k1)[q2]=0.\displaystyle 2\left(\cos\left(\frac{k_{2}\pi}{2k_{1}}\right)-1\right)[q_{1}]+\cos\left(\frac{k_{2}\pi}{2k_{1}}\right)[q_{2}]=0. (3.11)

Substituting (3.10) into (3.11), we have

(43cos(k2π2k1))[q2]=0.\displaystyle\left(4-3\cos\left(\frac{k_{2}\pi}{2k_{1}}\right)\right)[q_{2}]=0.

Since 43cos(k2π2k1)04-3\cos\left(\frac{k_{2}\pi}{2k_{1}}\right)\neq 0, this yields [q2]=0[q_{2}]=0. Thus [q1]=0[q_{1}]=0 from (3.10).

b) Case k2>k1k_{2}>k_{1}. In the estimate (3), taking ρ=(2k2n+1)πk2l\rho=\frac{(2k_{2}n+1)\pi}{k_{2}l} and let nn\rightarrow\infty, one can get

4sin(k1πk2)[q1]sin(k1πk2)[q2]=0,\displaystyle-4\sin\left(\frac{k_{1}\pi}{k_{2}}\right)[q_{1}]-\sin\left(\frac{k_{1}\pi}{k_{2}}\right)[q_{2}]=0, (3.12)

which follows

[q2]=4[q1],[q_{2}]=-4[q_{1}], (3.13)

since 0<sin(k1πk2)<10<\sin\left(\frac{k_{1}\pi}{k_{2}}\right)<1. In the estimate (3), taking ρ=(2k2n+12)πk2l\rho=\frac{(2k_{2}n+\frac{1}{2})\pi}{k_{2}l} and let nn\rightarrow\infty, one can get

(2sin(k1π2k2)+cos(k1π2k2))[q1]+2cos(k1π2k2)[q2]=0.\displaystyle\left(-2\sin\left(\frac{k_{1}\pi}{2k_{2}}\right)+\cos\left(\frac{k_{1}\pi}{2k_{2}}\right)\right)[q_{1}]+2\cos\left(\frac{k_{1}\pi}{2k_{2}}\right)[q_{2}]=0. (3.14)

Substituting (3.13) into (3.14), we have

(2sin(k1π2k2)+7cos(k1π2k2))[q1]=0.\displaystyle\left(2\sin\left(\frac{k_{1}\pi}{2k_{2}}\right)+7\cos\left(\frac{k_{1}\pi}{2k_{2}}\right)\right)[q_{1}]=0.

Since 2sin(k1π2k2)+7cos(k1π2k2)02\sin\left(\frac{k_{1}\pi}{2k_{2}}\right)+7\cos\left(\frac{k_{1}\pi}{2k_{2}}\right)\neq 0, this yields [q1]=0[q_{1}]=0. Thus [q2]=0[q_{2}]=0 from (3.13). The proof of Lemma 3.1 is complete. ∎

Let us introduce the Hilbert space H:=L2(0,l1)L2(0,l2)H:=L^{2}(0,l_{1})\oplus L^{2}(0,l_{2}) with the inner product

(f,g)=j=120ljfj(x)gj(x)¯𝑑x,\displaystyle(f,g)=\sum_{j=1}^{2}\int_{0}^{l_{j}}f_{j}(x)\overline{g_{j}(x)}dx,

where f=(f1,,f2)THf=(f_{1},,f_{2})^{T}\in H, g=(g1,g2)THg=(g_{1},g_{2})^{T}\in H, and gTg^{T} denotes the transpose of the vector gg. The domain of self-adjoint operator L(q)L(q) is

D(L(q))={y=(y1,y2)TH|yjAC(0,lj),yjAC[0,lj],j=1,2,\displaystyle D(L(q))=\Big{\{}y=(y_{1},y_{2})^{T}\in H\>|\>y_{j}\in AC(0,l_{j}),\;y^{\prime}_{j}\in AC[0,l_{j}],\;j=1,2,\quad\quad
satisfying(1.2)and(1.3),φ(y):=(φ(y1),φ(y2))TH},\displaystyle\;satisfying\;(\ref{2})\;and\;(\ref{3}),\;\varphi(y):=(\varphi(y_{1}),\varphi(y_{2}))^{T}\in H\Big{\}},\!\!\!

where AC[0,lj]AC[0,l_{j}] represents a set of all absolutely continuous functions on [0,lj][0,l_{j}].

Proof of Theorem 1.1. It is readily verified that the operator L(0)L(0) is non-negative and 0σ(L(0))0\in\sigma(L(0)), so zero is its smallest eigenvalue, namely λ0(0)=0\lambda_{0}(0)=0.

Next we show that y0=(1,1)Ty_{0}=(1,1)^{T} is an eigenfunction of L(q)L(q) corresponding to the eigenvalue zero. By the variational principle, we obtain

0=λ0(0)=λ0(q)=inf0yD(L(q))(φ(y),y)(y,y)\displaystyle 0=\lambda_{0}(0)=\lambda_{0}(q)=\inf_{0\neq y\in D(L(q))}\frac{(\varphi(y),y)}{(y,y)}\qquad\qquad\qquad\qquad\quad
=inf0yD(L(q))j=12(0ljyj′′(x)yj(x)¯𝑑x+0ljqj(x)|yj(x)|2𝑑x)j=120lj|yj(x)|2𝑑x.\displaystyle=\inf_{0\neq y\in D(L(q))}\frac{\sum\limits_{j=1}^{2}\Big{(}-\int_{0}^{l_{j}}y^{\prime\prime}_{j}(x)\overline{y_{j}(x)}dx+\int_{0}^{l_{j}}q_{j}(x)|y_{j}(x)|^{2}dx\Big{)}}{\sum\limits_{j=1}^{2}\int_{0}^{l_{j}}|y_{j}(x)|^{2}dx}.\!\!\!\!\!

Now y0D(L(q))y_{0}\in D(L(q)) is obvious, and so

0(φ(y0),y0)(y0,y0)=j=120ljqj(x)𝑑xj=12lj=[q1]+[q2]l1+l2,\displaystyle 0\leq\frac{(\varphi(y_{0}),y_{0})}{(y_{0},y_{0})}=\frac{\sum\limits_{j=1}^{2}\int_{0}^{l_{j}}q_{j}(x)dx}{\sum\limits_{j=1}^{2}l_{j}}=\frac{[q_{1}]+[q_{2}]}{l_{1}+l_{2}},

by Corollary 2.2 and Lemma 3.1, the right hand side is exactly zero, which implies that the test function y0y_{0} is an eigenfunction of L(q)L(q) corresponding to the eigenvalue zero. Substituting y0y_{0}, which is the eigenfunction of eigenvalue zero, into equations (1.1), we obtain qj=0q_{j}=0 in L2[0,lj]L^{2}[0,l_{j}], j=1,2j=1,2. The proof is finished. \square

Acknowledgments. This work was supported in part by the National Natural Science Foundation of China (11871031) and the National Natural Science Foundation of Jiang Su (BK20201303).

References

  • [1] V. A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. , 53 (1929), 690-695.
  • [2] G. Berkolaiko, R. Carlson, S. Fulling and P. Kuchment, Quantum Graphs and Their Applications, Amer. Math. Soc., Providence, RI: Contemp. Math. 415 (2006).
  • [3] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer. Math. Soc., Providence, RI (2013).
  • [4] R. Carlson and V. N. Pivovarchik, Ambarzumyan,{}^{\textbf{,}}s theorem for the trees. Electronic J. Diff. Equa., 2007 (2007), 142, 1-9.
  • [5] H. H. Chern and C. L. Shen, On the n-dimensional Ambarzumyan,{}^{\textbf{,}}s theorem, Inverse Problems, 13 (1997), 15-18.
  • [6] E.B. Davies, An inverse spectral theorem, J. Oper. Theory., 69 (1)(2013), 195-208.
  • [7] G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and their Applications, Nova Science Publishers, New York, (2001).
  • [8] F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. the case of discrete spectrum, Trans. Amer. Math. Soc., 352, No.6 (1999), 2765-2787.
  • [9] M. Horváth, On the stability in Ambarzumian theorems, Inverse Problems, 31 (2015), 025008, 9pp.
  • [10] A. A. Kirac, On the Ambarzumyan,{}^{\textbf{,}}s theorem for the quasi-periodic boundary conditions, Anal. Math. Phys., 6 (2016), 297-300.
  • [11] M. Kiss, Spectral determinants and Ambarzumian type theorem on graphs, Integr. Equ. Oper. Theory, 92 (2020), 24.
  • [12] C. K. Law and E. Yanagida, A solution to an Ambarzumyan problem on trees, Kodai J. Math., 35 (2012), 358-373.
  • [13] V. N. Pivovarchik, Ambarzumyan,{}^{\textbf{,}}s theorem for for a Sturm-Liouville boundary value problem on a star-shaped graph, Funct. Anal. Appl., 39 (2005), 148-151.
  • [14] C. F. Yang, Z. Y. Huang and X. P. Yang, Ambarzumyan-type theorems for the Sturm-Liouville equation on a graph, Rocky Mountain J. Math., 39 (2009), 1353-1372.
  • [15] C. F. Yang and X. C. Xu, Ambarzumyan-type theorems on graphs with loops and double edges, J. Math. Anal. Appl., 444 (2016), 1348-1358.
  • [16] C. F. Yang, F. Wang and Z. Y. Huang, Ambarzumyan theorems for Dirac operators, Acta Mathematicae Applicatae Sinica-English Series, 37 (2) 2021, 287-298.
  • [17] V. A. Yurko, Inverse problems for Sturm-Liouville operators on graphs wiyh a cycle, Operators and Matrices, 2(4) (2008), 543-553.
  • [18] V. A. Yurko, On Ambarzumyan-type theorems, Appl. Math. Lett., 26 (2013), 506-509.
  • [19] R. Zhang and C. F. Yang, Ambarzumyan-type theorem for the impulsive Sturm-Liouville operator, J. Inv. Ill-Posed Problems, 29 (2021), 21-25.