This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

α\alpha-cluster structures above double shell closures via double-folding potentials from chiral effective field theory

Dong Bai [email protected] School of Physics Science and Engineering, Tongji University, Shanghai 200092, China    Zhongzhou Ren [email protected] School of Physics Science and Engineering, Tongji University, Shanghai 200092, China Key Laboratory of Advanced Micro-Structure Materials, Ministry of Education, Shanghai 200092, China
Abstract

α\alpha-cluster structures above double shell closures are among the cornerstones for nuclear α\alpha-cluster physics. Semi-microscopic cluster models (SMCMs) are important theoretical models to study their properties. A crucial ingredient of SMCM is the effective potential between the alpha cluster and the doubly magic nucleus. We derive new double-folding potentials between α\alpha clusters and doubly magic nuclei from soft local chiral nucleon-nucleon potentials given by chiral effective field theory (χ\chiEFT) at the next-to-next-to-leading order. The α\alpha-cluster structures in Be8{}^{8}\text{Be}, Ne20{}^{20}\text{Ne}, Ti44,52{}^{44,52}\text{Ti}, and Po212{}^{212}\text{Po} are explored to validate these new double-folding potentials. The α\alpha decay of Te104{}^{104}\text{Te} is also studied in the light of recent experimental results. Our study shows that double-folding potentials from χ\chiEFT are the new reliable effective potentials for the SMCM approach to α\alpha-cluster structures above double shell closures, with both conceptual and phenomenological merits.

I Introduction

α\alpha-cluster structures in nuclei with two valence protons and two valence neutrons outside double shell closures are among the cornerstones for nuclear α\alpha-cluster physics. The simplest example is Be8{}^{8}\text{Be}, which has been studied by different methods. For instance, it is studied by a new hybrid microscopic model based on nonlocalized clustering and the calculable RR-matrix theory in Ref. [1], which provides an exact treatment to the asymptotic boundary conditions in the α+α\alpha+\alpha system. The next example is Ne20{}^{20}\text{Ne}. Horiuchi and Ikeda pointed out in 1968 that its K=0+K=0^{+} ground-state band and K=0K=0^{-} band just above the α\alpha threshold could be viewed as the “parity doublets” produced by the α+O16\alpha+{}^{16}\text{O} structure [2]. Later, this picture was generalized to Ti44,52{}^{44,52}\text{Ti}, where the α+Ca40,48\alpha+{}^{40,48}\text{Ca} structures are studied [3, 4, 5, 6, 7, 8, 9, 10, 12, 11]. α\alpha-cluster structures in Po212{}^{212}\text{Po} also attract much attention. It is widely accepted that the α+Pb208\alpha+{}^{208}\text{Pb} configuration is crucial for explaining the decay properties of 212Po [13, 14, 15, 16]. Recently, new experimental results have been reported on α\alpha decay of 104Te [17, 18], making α\alpha-cluster structures above 100Sn a new frontier [21, 19, 22, 23, 24, 25, 20].

Semi-microscopic cluster models (SMCMs) are important theoretical models to study α\alpha-cluster structures above double shell closures [26], where these α\alpha-cluster states are modeled by two-body systems of α\alpha clusters and doubly magic nuclei, e.g., Be8=α+α{}^{8}\text{Be}=\alpha+\alpha, Ne20=α+O16{}^{20}\text{Ne}=\alpha+{}^{16}\text{O}, Ti44,52=α+Ca40,48{}^{44,52}\text{Ti}=\alpha+{}^{40,48}\text{Ca}, Te104=α+Sn100{}^{104}\text{Te}=\alpha+{}^{100}\text{Sn}, and Po212=α+Pb208{}^{212}\text{Po}=\alpha+{}^{208}\text{Pb}. The two constituents are bound together via effective potentials, which are often deep and support not only physical states but also spurious states. These spurious states are closely related to (almost) Pauli forbidden states in microscopic cluster models. In SMCMs, the spurious states are identified by the Wildermuth conditions via counting the numbers of nodes in the radial wave functions [27] (see Section III). The Wildermuth conditions reflect some composite features of α\alpha clusters and doubly magic nuclei. They are adopted in literature to study α\alpha-cluster structures across the nuclide chart. In principle, some more sophisticated microscopic models could also be used to study α\alpha-cluster structures above double shell closures, such as antisymmetrized molecular dynamics (AMD) [28, 29, 30], quantum Monte Carlo method (QMC) [31], lattice effective field theory [32], configuration interaction method [33], symmetry-adapted no-core shell model [34], etc. However, due to heavy computational load, their applications are mainly restricted to light nuclei. On the contrary, SMCMs can be applied across the nuclide chart, which is an important advantage. In SMCMs, pure α\alpha-cluster configurations are assumed from the beginning. Therefore, they cannot be used to study the emergence of α\alpha clusters from nucleon degrees of freedom by themselves. However, when combined with experimental data, SMCMs could also provide important information on α\alpha-cluster formation. For example, α\alpha-formation probabilities could be extracted by computing the ratios between experimental and SMCM α\alpha-decay widths. The SMCM results are important complements to microscopic calculations.

Effective potentials between α\alpha clusters and doubly magic nuclei are crucial for SMCMs. Several effective potentials have been proposed, including double-folding potentials [35, 6, 36, 37], phenomenological potentials in special forms [39, 40, 41, 22], and hybrids between double-folding and phenomenological potentials [21]. Compared to phenomenological potentials, double-folding potentials have closer connections to microscopic models and thus are more favored from the theoretical viewpoint. The Schmid-Wildermuth force [42], the Hasegawa-Nagata-Yamamoto force [43, 44], and the density-independent/dependent Michigan-3-Yukawa (M3Y) interactions [45, 47, 46] are often adopted in literature as the nucleon-nucleon interactions to calculate the double-folding potentials. Despite some phenomenological success, many of these effective nucleon-nucleon interactions were derived more than forty years ago, by which time our understanding of nucleon interactions was limited. In the past two decades, tremendous progress has been made in understanding nucleon interactions within the framework of chiral effective field theory (χ\chiEFT), which is a low-energy effective field theory of quantum chromodynamics (QCD) and respects the QCD symmetries (e.g., broken chiral symmetry) [48, 49, 50]. χ\chiEFT and the resultant chiral potentials, especially the realistic chiral potentials at the next-to-next-to-next-to-leading order (N3LO\text{N}^{3}\text{LO}) and beyond, have become the standard inputs for the modern ab initio nuclear physics. On the other hand, it is fair to say that SMCMs have not benefited much from the recent developments of χ\chiEFT. It is tempting to break this isolation. Such an attempt will broaden the applicable scope of χ\chiEFT. The χ\chiEFT-motivated new effective potentials may also improve the phenomenological agreement between theoretical and experimental results and enhance our confidence in theoretical predictions.

In this work, we derive new double-folding potentials for SMCMs, which are inspired by χ\chiEFT and act as a bridge between SMCMs and χ\chiEFT. Recently, some encouraging results on double-folding potentials from χ\chiEFT (abbreviated as DFχ\text{DF}_{\!\chi}s in the following) have been reported and benchmarked explicitly in O16+O16{}^{16}\text{O}+{}^{16}\text{O}, C12+C12{}^{12}\text{C}+{}^{12}\text{C}, and C12+O16{}^{12}\text{C}+{}^{16}\text{O} elastic scatterings and fusion reactions [51, 52]. It is widely accepted that α\alpha clustering is a surface phenomenon in the low-density regions of finite nuclei [53, 54]. As a result, the overlap between the α\alpha cluster and the core nucleus is not overlarge in α\alpha-cluster states. It is thus reasonable to expect that DFχ\text{DF}_{\!\chi}s are also applicable to α\alpha-cluster structures above double shell closures. In this work, we adopt the natural units =c=1\hbar=c=1.

II Theoretical Framework

In practice, χ\chiEFT gives different realizations of chiral potentials. Many of them are nonlocal in the coordinate space and thus are unfriendly to double-folding calculations. Exceptionally, Refs. [55, 56] construct the local chiral potentials consistently up to the next-to-next-to-leading order (N2LO\text{N}^{2}\text{LO}) by exploiting the Fierz rearrangement freedom and local regularization schemes. At the N2LO\text{N}^{2}\text{LO}, the local chiral nucleon-nucleon potentials are given by

Vchiral(𝒓)=VL(𝒓){1exp[(r/R0)4]}+VS(𝒓),\displaystyle V_{\text{chiral}}(\bm{r})=V_{\text{L}}(\bm{r})\left\{1-\exp[-(r/R_{0})^{4}]\right\}+V_{\text{S}}(\bm{r}), (1)
VL(𝒓)=VC(r)+WC(r)𝝉1𝝉2+[VS(r)+WS(r)𝝉1𝝉2]𝝈1𝝈2+[VT(r)+WT(r)𝝉1𝝉2]S12,\displaystyle V_{\text{L}}(\bm{r})=V_{\text{C}}(r)+W_{\text{C}}(r)\bm{\tau}_{1}\!\cdot\!\bm{\tau}_{2}+[V_{\text{S}}(r)+W_{\text{S}}(r)\bm{\tau}_{1}\!\cdot\!\bm{\tau}_{2}]\bm{\sigma}_{1}\!\cdot\!\bm{\sigma}_{2}+[V_{\text{T}}(r)+W_{\text{T}}(r)\bm{\tau}_{1}\!\cdot\!\bm{\tau}_{2}]S_{12}, (2)
VS(𝒓)=(CS+CT𝝈1𝝈2)δR0(𝒓)(C1+C2𝝉1𝝉2)ΔδR0(𝒓)(C3+C4𝝉1𝝉2)𝝈1𝝈2ΔδR0(𝒓)\displaystyle V_{\text{S}}(\bm{r})=(C_{\text{S}}+C_{\text{T}}\bm{\sigma}_{1}\!\cdot\!\bm{\sigma}_{2})\,\delta_{R_{0}}(\bm{r})-(C_{1}+C_{2}\bm{\tau}_{1}\!\cdot\!\bm{\tau}_{2})\Delta\delta_{R_{0}}(\bm{r})-(C_{3}+C_{4}\bm{\tau}_{1}\!\cdot\!\bm{\tau}_{2})\,\bm{\sigma}_{1}\!\cdot\!\bm{\sigma}_{2}\Delta\delta_{R_{0}}(\bm{r})
+C52rδR0(𝒓)r𝑳𝑺+(C6+C7𝝉1𝝉2){(𝝈1𝒓^)(𝝈2𝒓^)[rδR0(𝒓)rr2δR0(𝒓)]𝝈1𝝈2rδR0(𝒓)r},\displaystyle\qquad\ \,+\frac{C_{5}}{2}\frac{\partial_{r}\delta_{R_{0}}(\bm{r})}{r}\bm{L}\!\cdot\!\bm{S}+(C_{6}+C_{7}\bm{\tau}_{1}\!\cdot\!\bm{\tau}_{2})\Bigg{\{}(\bm{\sigma}_{1}\!\cdot\!\widehat{\bm{r}})(\bm{\sigma}_{2}\!\cdot\!\widehat{\bm{r}})\left[\frac{\partial_{r}\delta_{R_{0}}(\bm{r})}{r}\!-\!\partial_{r}^{2}\delta_{R_{0}}(\bm{r})\right]-\!\bm{\sigma}_{1}\!\cdot\!\bm{\sigma}_{2}\frac{\partial_{r}\delta_{R_{0}}(\bm{r})}{r}\Bigg{\}}, (3)

with 𝝈i\bm{\sigma}_{i} and 𝝉i\bm{\tau}_{i} being the Pauli matrices in spin and isospin space, Sij=3(𝝈i𝒓^)(𝝈j𝒓^)𝝈i𝝈jS_{ij}=3(\bm{\sigma}_{i}\!\cdot\widehat{\bm{r}})(\bm{\sigma}_{j}\!\cdot\widehat{\bm{r}})-\bm{\sigma}_{i}\!\cdot\!\bm{\sigma}_{j} being the tensor operator, and 𝑳𝑺\bm{L}\!\cdot\!\bm{S} being the spin-orbit operator. δR0(𝒓)=1πΓ(3/4)R03exp[(r/R0)4]\delta_{R_{0}}(\bm{r})=\frac{1}{\pi\Gamma(3/4)R_{0}^{3}}\exp[-(r/R_{0})^{4}] is the regularized delta function, with R0R_{0} being the regularization scale in the coordinate space. The expressions for VC,S,T(r)V_{\text{C,S,T}}(r) and WC,S,T(r)W_{\text{C,S,T}}(r) are given in Ref. [56]. CS,T,1,,7C_{\text{S},\text{T},1,\cdots,7} are the low-energy constants (LECs) in the contact sector of χ\chiEFT. They generally determine the short-range behavior of chiral nucleon-nucleon potentials. For the proton-proton pairs, the Coulomb potentials should also be included.

The double-folding potential between the α\alpha cluster and the core nucleus is given by [57]

UDF(𝑹)=UD(𝑹)+UEx(𝑹),\displaystyle U_{\text{DF}}(\bm{R})=U_{\text{D}}(\bm{R})+U_{\text{Ex}}(\bm{R}), (4)
UD(𝑹)=i,j=p,nd3rαd3rCραi(𝒓α)VDij(𝒔)ρCj(𝒓C),\displaystyle U_{\text{D}}(\bm{R})=\!\!\sum_{i,j=p,n}\!\int\!\mathrm{d}^{3}{r}_{\alpha}\!\!\int\!\mathrm{d}^{3}{r}_{C}\,\rho_{\alpha}^{i}(\bm{r}_{\alpha})V_{\text{D}}^{ij}(\bm{s})\rho_{C}^{j}(\bm{r}_{C}), (5)
UEx(𝑹)=i,j=p,nd3rαd3rCραi(𝒓α,𝒓α+𝒔)VExij(𝒔)ρCj(𝒓C,𝒓C𝒔)exp(i𝒌rel𝒔/Ared),\displaystyle U_{\text{Ex}}(\bm{R})=\!\!\sum_{i,j=p,n}\!\int\!\mathrm{d}^{3}r_{\alpha}\!\!\int\!\mathrm{d}^{3}r_{C}\,\rho^{i}_{\alpha}(\bm{r}_{\alpha},\bm{r}_{\alpha}+\bm{s})V_{\text{Ex}}^{ij}(\bm{s})\rho^{j}_{C}(\bm{r}_{C},\bm{r}_{C}-\bm{s})\exp(i\bm{k}_{\text{rel}}\!\cdot\!\bm{s}/A_{\text{red}}), (6)

with 𝒔=𝑹+𝒓C𝒓α\bm{s}=\bm{R}+\bm{r}_{C}-\bm{r}_{\alpha} being the relative coordinate between two nucleons in the α\alpha cluster and the core nucleus, ρα(C)p,n(𝒓α(C))\rho^{p,n}_{\alpha{(C)}}(\bm{r}_{\alpha{(C)}}) being the proton and neutron density distributions of the α\alpha cluster (core nucleus), mred=mαmC/(mα+mC)m_{\text{red}}=m_{\alpha}m_{C}/(m_{\alpha}+m_{C}) and Ared=mred/mNA_{\text{red}}=m_{\text{red}}/m_{N} being the reduced mass and the reduced mass number, and mNm_{N} being the average nucleon mass. krel(R)=2AredmN(ECMUDF(R))k_{\text{rel}}(R)=\sqrt{2A_{\text{red}}m_{N}(E_{\text{CM}}-U_{\text{DF}}(R))} is the relative momentum, with ECME_{\text{CM}} being the energy in the center-of-mass (CM) frame. ρα(C)p,n(𝒓α(C),𝒓α(C)±𝒔)\rho^{p,n}_{\alpha(C)}(\bm{r}_{\alpha(C)},\bm{r}_{\alpha(C)}\pm\bm{s}) are the density matrix elements estimated by the realistic localization approximations [57]. VD(Ex)ij(𝒔)V_{\text{D(Ex)}}^{ij}(\bm{s}) is the nucleon-nucleon interaction in the direct (exchange) channel. For the α\alpha + doubly magic nucleus systems, only the central parts of local chiral nucleon-nucleon potentials make contributions. Both the α\alpha particle and the heavier doubly magic nucleus have saturated spin-isospin configurations, which suppress the contributions from spin-orbit and tensor forces. Thus, we have [51]

VD,Expp,nn(s)=14[V01(s)±3V11(s)],\displaystyle V_{\text{D,Ex}}^{pp,nn}(s)=\frac{1}{4}\left[V^{01}(s)\pm 3V^{11}(s)\right], (7)
VD,Expn,np(s)=18[±V00(s)+V01(s)+3V10(s)±3V11(s)],\displaystyle V_{\text{D,Ex}}^{pn,np}(s)=\frac{1}{8}\left[\pm V^{00}(s)+V^{01}(s)+3V^{10}(s)\pm 3V^{11}(s)\right], (8)

with VST(s)SMSTMT|Vchiral(s)|SMSTMTV^{ST}(s)\equiv\braket{SM_{S}TM_{T}}{V_{\text{chiral}}(s)}{SM_{S}TM_{T}}. The local chiral nucleon-nucleon potentials in Eqs. (1)-(3) respect Galileon and isospin symmetry. As a result, VST(s)V^{ST}(s) does not depend on MSM_{S} and MTM_{T}.

III Numerical Results

Refer to caption
Figure 1: The double-folding potentials UDF(R)U_{\text{DF}}(R) for various α+doubly magic nucleus\alpha+\text{doubly magic nucleus} systems from soft local chiral nucleon-nucleon potentials at the N2LO\text{N}^{2}\text{LO}. See text for details.
Table 1: Theoretical and experimental results for the 01+0^{+}_{1}, 21+2^{+}_{1}, and 41+4^{+}_{1} states of 8Be. The experimental α\alpha-decay widths Γαexp\Gamma_{\alpha}^{\text{exp}} are taken from Ref. [75]. Γαχ\Gamma_{\alpha}^{\chi} is the α\alpha-decay width given by SMCM ++ DFχ\text{DF}_{\!\chi}. RrelχR2R_{\text{rel}}^{\chi}\equiv\sqrt{\braket{R^{2}}} is the root-mean-square (RMS) relative distance between two α\alpha clusters. The 01+0^{+}_{1} state is studied by using MTPA, while the 21+2^{+}_{1} and 41+4^{+}_{1} states are studied by using CSM.
Nucleus GG LπL^{\pi} λNL\lambda_{NL} Γαexp\Gamma^{\text{exp}}_{\alpha} Γαχ\Gamma^{\chi}_{\alpha} RrelχR^{\chi}_{\text{rel}}
[MeV] [MeV] [fm]
Be8{}^{8}\text{Be} 4 01+0^{+}_{1} 1.4340275 (5.57±0.25)×106(5.57\pm 0.25)\!\times\!10^{-6} 6.09×1066.09\!\times\!10^{-6} 5.33
21+2^{+}_{1} 1.402429 1.513±0.0151.513\pm 0.015 1.72 2.59+0.31i2.59+0.31i
41+4^{+}_{1} 1.46325 3.5\approx 3.5 3.18 2.90+0.80i2.90+0.80i
Table 2: Theoretical and experimental results for the Kπ=0+K^{\pi}=0^{+} and Kπ=0K^{\pi}=0^{-} bands of 20Ne. Γαexp\Gamma_{\alpha}^{\text{exp}} and B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} are the α\alpha-decay width and reduced electric quadrupole transition strength from Ref. [76]. Γαχ\Gamma_{\alpha}^{\chi}, B(E2)χB(\text{E2}\!\downarrow)_{\chi}, PαχΓαexp/ΓαχP_{\alpha}^{\chi}\equiv\Gamma_{\alpha}^{\text{exp}}/\Gamma_{\alpha}^{\chi}, and RrelχR_{\text{rel}}^{\chi} are the theoretical results of the α\alpha-decay width, the B(E2)B(\text{E2}\!\downarrow) value, the α\alpha-formation probability, and the RMS relative distance between the α\alpha cluster and 16O given by SMCM ++ DFχ\text{DF}_{\!\chi}. PαAMDP_{\alpha}^{\text{AMD}} is the theoretical α\alpha-formation probability from AMD [29]. PαhP_{\alpha}^{\text{h}} and B(E2)hB(\text{E2}\!\downarrow)_{\text{h}} are the α\alpha-formation probability and the B(E2)B(\text{E2}\!\downarrow) value given by the hybrid potentials in Ref. [21]. The Kπ=0+K^{\pi}=0^{+} band and the 111^{-}_{1}, 323^{-}_{2} states in the Kπ=0K^{\pi}=0^{-} band are studied by using MTPA, while the other states are studied by using CSM.
Nucleus GG LπL^{\pi} λNL\lambda_{NL} Γαexp\Gamma^{\text{exp}}_{\alpha} Γαχ\Gamma^{\chi}_{\alpha} PαAMDP_{\alpha}^{\text{AMD}} Pαχ{P}^{\chi}_{\alpha} PαhP^{\text{h}}_{\alpha} B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} B(E2)χB(\text{E2}\!\downarrow)_{\chi} B(E2)hB(\text{E2}\!\downarrow)_{\text{h}} RrelχR^{\chi}_{\text{rel}}
[MeV] [MeV] [W.u.] [W.u.] [W.u.] [fm]
Ne20{}^{20}\text{Ne} 8 01+0^{+}_{1} 1.1518273 0.70 3.79
21+2^{+}_{1} 1.1370375 0.68 20.3±1.020.3\pm 1.0 13.0 14.3 3.80
41+4^{+}_{1} 1.13190728 0.54 22±222\pm 2 17.1 18.5 3.73
61+6^{+}_{1} 1.1172209 (1.1±0.2)×104(1.1\pm 0.2)\!\times\!10^{-4} 3.64×1043.64\!\times\!10^{-4} 0.34 0.30±0.050.30\pm 0.05 0.19±0.040.19\pm 0.04 20±320\pm 3 15.215.2 15.2 3.62
81+8^{+}_{1} 1.1674842 (3.5±1.0)×105(3.5\pm 1.0)\!\times\!10^{-5} 1.98×1041.98\!\times\!10^{-4} 0.28 0.18±0.050.18\pm 0.05 0.095±0.0270.095\pm 0.027 9.0±1.39.0\pm 1.3 7.0 7.9 3.21
9 111^{-}_{1} 1.1919326 (2.8±0.3)×105(2.8\pm 0.3)\!\times\!10^{-5} 2.72×1052.72\!\times\!10^{-5} 0.95 1.03±0.111.03\pm 0.11 0.82±0.090.82\pm 0.09 4.78
323^{-}_{2} 1.2043384 (8.2±0.3)×103(8.2\pm 0.3)\!\times\!10^{-3} 7.95×1037.95\!\times\!10^{-3} 0.93 1.03±0.041.03\pm 0.04 0.67±0.020.67\pm 0.02 50±850\pm 8 41.641.6 77.0 4.844.84
535^{-}_{3} 1.2074985 0.145±0.400.145\pm 0.40 0.114 0.88 1.27±0.351.27\pm 0.35 0.73±0.200.73\pm 0.20 40.0+9.6i40.0+9.6i 126.9 4.52+0.30i4.52+0.30i
737^{-}_{3} 1.202514 0.110±0.0100.110\pm 0.010 0.314 0.71 0.35±0.030.35\pm 0.03 0.20±0.020.20\pm 0.02 27.8+10.7i27.8+10.7i 154.9 4.09+0.32i4.09+0.32i
959^{-}_{5} 1.18843 0.225±0.0400.225\pm 0.040 0.354 0.70 0.64±0.110.64\pm 0.11 0.38±0.070.38\pm 0.07 14.7+6.5i14.7+6.5i 36.6 3.69+0.23i3.69+0.23i
Table 3: Theoretical and experimental results for the observed states in the Kπ=0+K^{\pi}=0^{+} and Kπ=0K^{\pi}=0^{-} bands of 44Ti. The experimental B(E2)expB(\text{E2}\!\!\downarrow)_{\text{exp}}s are taken from Ref. [77].
Nucleus GG LπL^{\pi} λNL\lambda_{NL} B(E2)χB(\text{E2}\!\downarrow)_{\chi} B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} RrelχR^{\chi}_{\text{rel}}
[W.u.] [W.u.] [fm]
Ti44{}^{44}\text{Ti} 12 01+0^{+}_{1} 1.1019607 4.32
21+2^{+}_{1} 1.0915923 9.9 13±413\pm 4 4.33
41+4^{+}_{1} 1.0853305 13.4 30±530\pm 5 4.28
61+6^{+}_{1} 1.08476 12.7 17.0±2.417.0\pm 2.4 4.18
81+8^{+}_{1} 1.078867 10.5 4.06
101+10^{+}_{1} 1.0990893 6.7 3.85
121+12^{+}_{1} 1.1338819 3.0 3.63
13 121^{-}_{2} 1.1232387 4.86
363^{-}_{6} 1.116978 20.0 4.83
535^{-}_{3} 1.1053947 22.1 4.78
727^{-}_{2} 1.0972716 20.7 4.67
Table 4: Theoretical and experimental results for the Kπ=0+K^{\pi}=0^{+} band of 52Ti. The experimental B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}}s are taken from Ref. [11]. B(E2)WS2B(\text{E2}\!\downarrow)_{\text{WS}^{2}}s are the theoretical results given by the phenomenological WS2\text{WS}^{2} potential in Ref. [12].
Nucleus LπL^{\pi} λNL\lambda_{NL} B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} B(E2)χB(\text{E2}\!\downarrow)_{\chi} B(E2)WS2B(\text{E2}\!\downarrow)_{\text{WS}^{2}} RrelχR^{\chi}_{\text{rel}}
[W.u.] [W.u.] [W.u.] [fm]
Ti52{}^{52}\text{Ti} 01+0^{+}_{1} 0.9656424 4.20
21+2^{+}_{1} 0.9564093 7.50.3+0.47.5^{+0.4}_{-0.3} 7.1 9.4 4.20
41+4^{+}_{1} 0.9497294 9.51.1+1.49.5^{+1.4}_{-1.1} 9.6 12.3 4.16
61+6^{+}_{1} 0.9550252 8.70.5+0.68.7^{+0.6}_{-0.5} 8.8 11.6 4.05
81+8^{+}_{1} 0.9584199 0.76±0.090.76\pm 0.09 7.1 9.5 3.93
101+10^{+}_{1} 0.95336506 5.0 6.6 3.80
Table 5: Theoretical and experimental results for the ground-state band of 212Po. The experimental B(E2)expB(\text{E2})_{\text{exp}}s and α\alpha-decay widths of the 01+0^{+}_{1} and 181+18^{+}_{1} states are taken from Ref. [78]. The experimental α\alpha-decay widths of the 61+6^{+}_{1} and 81+8^{+}_{1} states are taken from Refs. [79, 80]. PαLA=1.16066+0.20035RrelχP_{\alpha}^{\text{LA}}=-1.16066+0.20035R_{\text{rel}}^{\chi} is the α\alpha-formation probability given by the linear approximation in Refs. [81, 82]. Γαχ,refined=PαLAΓαχ\Gamma_{\alpha}^{\chi,\text{refined}}=P_{\alpha}^{\text{LA}}\Gamma_{\alpha}^{\chi} is the refined theoretical α\alpha-decay width. ΓαCDM3Y6\Gamma_{\alpha}^{\text{CDM3Y6}} is the α\alpha-decay width given by the double-folding potential from the CDM3Y6 effective nucleon-nucleon interaction with a constant α\alpha-formation probability PαCDM3Y6=0.3P^{\text{CDM3Y6}}_{\alpha}=0.3 and the renormalization factors λNLCDM3Y60.5\lambda_{NL}^{\text{CDM3Y6}}\sim 0.5 [37].
Nucleus GG LπL^{\pi} λNL\lambda_{NL} λNLCDM3Y6\lambda_{NL}^{\text{CDM3Y6}} PαLAP_{\alpha}^{\text{LA}} Γαexp\Gamma^{\text{exp}}_{\alpha} Γαχ\Gamma^{\chi}_{\alpha} Γαχ,refined\Gamma^{\chi,\text{refined}}_{\alpha} ΓαCDM3Y6\Gamma^{\text{CDM3Y6}}_{\alpha} B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} B(E2)χB(\text{E2}\!\downarrow)_{\chi} RrelχR_{\text{rel}}^{\chi}
[MeV] [MeV] [MeV] [MeV] [W.u.] [W.u.] [fm]
Po212{}^{212}\text{Po} 22 01+0^{+}_{1} 1.0459895 0.576 0.094 (1.53±0.01)×1015(1.53\pm 0.01)\!\times\!10^{-15} 1.62×10141.62\!\times\!10^{-14} 1.53×10151.53\!\times\!10^{-15} 2.85×10152.85\!\times\!10^{-15} 6.26
21+2^{+}_{1} 1.0376702 0.572 0.099 4.18×10134.18\!\times\!10^{-13} 4.12×10144.12\!\times\!10^{-14} 7.31×10147.31\!\times\!10^{-14} 6.3 6.29
41+4^{+}_{1} 1.031552 0.569 0.095 8.13×10138.13\!\times\!10^{-13} 7.72×10147.72\!\times\!10^{-14} 1.43×10131.43\!\times\!10^{-13} 8.8 6.27
61+6^{+}_{1} 1.02607 0.565 0.085 (1.80.5+1.2)×1014\left(1.8_{-0.5}^{+1.2}\right)\!\times\!10^{-14} 3.19×10133.19\!\times\!10^{-13} 2.72×10142.72\!\times\!10^{-14} 5.52×10145.52\!\times\!10^{-14} 3.9±1.13.9\pm 1.1 9.1 6.22
81+8^{+}_{1} 1.020155 0.562 0.072 (1.90.3+0.4)×1015\left(1.9_{-0.3}^{+0.4}\right)\!\times\!10^{-15} 3.97×10143.97\!\times\!10^{-14} 2.85×10152.85\!\times\!10^{-15} 6.81×10156.81\!\times\!10^{-15} 2.30±0.092.30\pm 0.09 8.7 6.15
101+10^{+}_{1} 1.010274 0.556 0.059 7.28×10157.28\!\times\!10^{-15} 4.30×10164.30\!\times\!10^{-16} 1.23×10151.23\!\times\!10^{-15} 2.2±0.62.2\pm 0.6 7.9 6.09
121+12^{+}_{1} 0.993857 0.547 0.048 5.57×10155.57\!\times\!10^{-15} 2.69×10162.69\!\times\!10^{-16} 9.39×10169.39\!\times\!10^{-16} 7.1 6.03
141+14^{+}_{1} 0.982049 0.540 0.033 1.34×10161.34\!\times\!10^{-16} 4.40×10184.40\!\times\!10^{-18} 2.21×10172.21\!\times\!10^{-17} 5.8 5.96
181+18^{+}_{1} 0.95507 0.524 0.0034 (1.010.01+0.02)×1023\left(1.01^{+0.02}_{-0.01}\right)\!\times\!10^{-23} 3.01×10213.01\!\times\!10^{-21} 1.01×10231.01\!\times\!10^{-23} 4.60×10224.60\!\times\!10^{-22} 5.81

In numerical calculations, we take the regularization scale R0=1.6 fmR_{0}=1.6\text{ fm}. The corresponding LECs are given in Ref. [51]. They are determined by fitting the Nijmegen neutron-proton phase shifts in the S01{}^{1}\text{S}_{0}, S13{}^{3}\text{S}_{1}, P11{}^{1}\text{P}_{1}, P13{}^{3}\text{P}_{1}, P23{}^{3}\text{P}_{2}, and S13{}^{3}\text{S}_{1}-D13{}^{3}\text{D}_{1} channels at 1, 5, 10, 25, 50, 100, and 150 MeV. The resultant local chiral nucleon-nucleon potentials are known as soft local chiral nucleon-nucleon potentials, as they have soft cores at the short distance, crucial for the double-folding calculations. LECs at smaller regularization scales may not be suitable for our current purposes, as they generally give much stronger repulsive cores and may break the mean-field picture behind the double-folding calculations. We would like to stress that the soft local chiral nucleon-nucleon potentials do not mean to be the realistic nucleon-nucleon potentials fitting the world nucleon scattering data up to 290 MeV at the level of χ2/datum1\chi^{2}/\text{datum}\approx 1. One has to go to the next-to-next-to-next-to-leading order (N3LO)(\text{N}^{3}\text{LO}) and beyond to meet that requirement. On the contrary, the soft local chiral nucleon-nucleon potentials are formulated up to the N2LO\text{N}^{2}\text{LO} only and are aimed at fitting selected nucleon scattering data at low energies. The proton density distributions for α\alpha particle, 16O, 40,48Ca, and 208Pb are taken to be the realistic sums of Gaussians determined by the elastic electron scattering experiments [58], while the neutron density distributions are assumed to be proportional to the proton density distributions for simplicity. For 100Sn, no elastic electron scattering data are available, and we take the Sa~\tilde{\text{a}}o Paulo distributions ρp,n(r)=ρ0p,n/[1+exp(rRp,nap,n)]\rho^{p,n}(r)\!=\!{\rho_{0}^{p,n}}\!\Big{/}\!\left[{1+\exp\left(\frac{r-R_{p,n}}{a_{p,n}}\right)}\right], with Rp=1.81Z1/31.12fmR_{p}=1.81Z^{1/3}-1.12\ \text{fm}, Rn=1.49N1/30.79fmR_{n}=1.49N^{1/3}-0.79\ \text{fm}, ap=0.470.00083Zfma_{p}=0.47-0.00083Z\ \text{fm}, an=0.47+0.00046Nfma_{n}=0.47+0.00046N\ \text{fm} [59]. ρ0p,n\rho_{0}^{p,n} are determined by d3rρp,n(r)=Z,N\int\!\mathrm{d}^{3}r\rho^{p,n}(r)=Z,N. The charge radius of 100Sn is found to be 4.58 fm, in good agreement with 4.5254.525-4.7074.707 fm found by ab initio self-consistent Green’s function theory [60]. ECME_{\text{CM}} in Eq. (6) is taken to be ECM=ZαZC/(Aα1/3+AC1/3)E_{\text{CM}}=Z_{\alpha}Z_{C}/(A_{\alpha}^{1/3}+A_{C}^{1/3}) MeV, which provides a convenient estimation of the height of the Coulomb barrier between the α\alpha cluster and the core nucleus ZαZCe2/(Rα+RC)=ZαZCe2/[r0(Aα1/3+AC1/3)]ZαZC/(Aα1/3+AC1/3)MeV\sim{Z_{\alpha}Z_{C}\,e^{2}}/{(R_{\alpha}+R_{C})}=Z_{\alpha}Z_{C}\,e^{2}/[r_{0}(A_{\alpha}^{1/3}+A_{C}^{1/3})]\sim{Z_{\alpha}Z_{C}}/(A_{\alpha}^{1/3}+A_{C}^{1/3})\ \text{MeV}, with r0=1.31fmr_{0}=1.31\ \text{fm} [61]. This is widely used in nuclear reaction studies. In the last step of the derivation, we use the approximation e2/r01e^{2}/r_{0}\approx 1 MeV.

DFχ\text{DF}_{\!\chi}s are shown for several α+doubly magic nucleus\alpha+\text{doubly magic nucleus} systems in Fig. 1. The physical properties of α\alpha-cluster states are obtained by solving the Schrödinger equation [22mred+U(𝑹)]ΨNLM(𝑹)=ENLΨNLM(𝑹)\left[-\frac{\nabla^{2}}{2m_{\text{red}}}+U({\bm{R}})\right]\Psi_{NLM}({\bm{R}})=E_{NL}\Psi_{NLM}({\bm{R}}), with U(𝑹)=λNLUDF,N(𝑹)+UDF,C(𝑹)U({\bm{R}})=\lambda_{NL}U_{\text{DF,N}}({\bm{R}})+U_{\text{DF,C}}({\bm{R}}). Here, UDF,N(𝑹)U_{\text{DF,N}}(\bm{R}) and UDF,C(𝑹)U_{\text{DF,C}}(\bm{R}) are the nuclear and Coulomb parts of the double-folding potential UDF(𝑹)U_{\text{DF}}({\bm{R}}). λNL\lambda_{NL} is the renormalization factor introduced for phenomenological reasons. It is determined by reproducing the experimental energy level exactly. DFχ\text{DF}_{\!\chi}s are deep potentials in the sense that they support not only physical states but also spurious states. These spurious states are closely related to the (almost) Pauli forbidden states in microscopic cluster models. The Pauli forbidden states are null eigenstates of norm operators in resonating group method (RGM) with identical oscillator parameters. In SMCMs, the spurious states are identified by the Wildermuth conditions [27] as α\alpha-cluster states with G2N+L<4G\equiv 2N+L<4 for Be8{}^{8}\text{Be}, G<8G<8 for 20Ne, G<12G<12 for 44Ti, G<12G<12 and (G,L)=(12,12)(G,L)=(12,12) for 52Ti, G<16G<16 and (G,L)=(16,14),(16,16)(G,L)=(16,14),(16,16) for 104Te, and G<22G<22 and (G,L)=(22,20),(22,22)(G,L)=(22,20),(22,22) for 212Po. Here, NN is the number of nodes in the α\alpha-cluster radial wave function (excluding the origin), and LL is the orbital angular momentum. We take into account the extra constraints from the occupied proton orbits 0g9/20g_{9/2}, 0h11/20h_{11/2} in Sn100{}^{100}\text{Sn}, Pb208{}^{208}\text{Pb} and the occupied neutron orbits 0f7/20f_{7/2}, 0g9/20g_{9/2}, 0i13/20i_{13/2} in Ca48{}^{48}\text{Ca}, Sn100{}^{100}\text{Sn}, Pb208{}^{208}\text{Pb}. For light nuclei, the Wildermuth conditions could be verified explicitly by solving the eigenvalue problems of the RGM norm operators. For example, the eigenvalues of the RGM norm operator have been worked out to be μG=122G+3δG,0\mu_{G}=1-2^{2-G}+3\delta_{G,0} for the α+α\alpha+\alpha system [62]. It is straightforward to see that the Pauli forbidden states with μG=0\mu_{G}=0 satisfy the condition G=0,2<4G=0,2<4, which is exactly the same as the Wildermuth condition mentioned before. The problem becomes complicated for heavy nuclei. Rigorously speaking, for the applications of the Wildermuth conditions to α+heavy-core\alpha+\text{heavy-core} models, the Pauli-forbidden states are not defined clearly, as the oscillator parameters of the α\alpha cluster and the heavy core nucleus are largely different. Even if the oscillator parameters of the same size are used, the eigenvalues of the norm kernel for the Pauli-allowed states could be very small due to a large number of nucleons in the core nucleus. Compared with light nuclear systems such as α+α\alpha+\alpha, heavy nuclear systems also have a much larger configuration space, and the spin-orbit interactions become important. The α\alpha-formation probabilities in heavy nuclei are generally smaller than light nuclei. Therefore, it is less straightforward to see whether the Wildermuth conditions could simulate the antisymmetrization in realistic heavy nuclei to good accuracy. In the case of different oscillator parameters, the first eigenstates of the RGM norm operator with small but nonzero eigenvalues are called the almost Pauli forbidden states, which, by definition, should become the Pauli forbidden states in the limit of identical oscillator parameters. It is known for light nuclear systems that the almost Pauli forbidden states correspond to high-lying states with large energy expectation values (i.e., the Pauli resonances) [62, 64, 66, 63, 65]. As a result, they are weakly coupled to the low-lying shell-model and cluster states due to the large energy difference. This explains the availability of the Wildermuth condition in the presence of the almost Pauli forbidden states for some light nuclear systems. Similar results may hold for heavy nuclear systems as well. It might be helpful and illuminative if the energy expectation values of the almost Pauli forbidden states were worked out for these systems. At present, such calculations are not available yet. Nevertheless, it is important to continue to examine the Wildermuth conditions in heavy nuclei. They provide useful references for future microscopic calculations, as well as theoretical motivations to develop better semi-microscopic approximations for antisymmetrization. We encounter both bound and resonant states in calculations. For the resonant states with α\alpha-decay widths Γα0.01\Gamma_{\alpha}\geq 0.01 MeV, we obtain their physical properties by using the complex scaling method (CSM) [67]. Applying bound-state concepts (e.g., the relative distance between the α\alpha cluster and the doubly magic nucleus, the electric quadrupole transition, etc) to resonant states leads to imaginary parts in theoretical results, which are interpreted as theoretical uncertainties by Berggren [68]. In principle, CSM could also be used to study resonant states with narrow α\alpha-decay widths <0.01<0.01 MeV. However, we find that for these states the α\alpha-decay widths given by CSM become unstable for different complex scaling angles in numerical calculations. Thus, we adopt the modified two-potential approach (MTPA) [69] to study the long-lived resonant states with Γα<0.01\Gamma_{\alpha}<0.01 MeV. In MTPA, the tunneling potential is divided into the inner and outer parts by a separation radius. The long-lived resonant states are then approximated by bound states supported by the inner part of the tunneling potential, from whose wave functions the decay widths of the long-lived resonant states are computed. The RR-matrix theory [70, 71, 72, 73] is also commonly used to study long-lived resonant states. In Ref. [69], the similarities and differences between MTPA and the RR-matrix theory are discussed in detail. We try to do the calculation with the RR-matrix theory as well. The theoretical results agree well with MTPA. For example, our RR-matrix calculation gives the α\alpha-decay width Γαχ=6.055×106\Gamma_{\alpha}^{\chi}=6.055\times 10^{-6} MeV for the 8Be ground state, which is almost identical to the MTPA result in Table 1 with negligible difference \sim 0.6% [74]. At last, we would like to mention that we assume pure α\alpha-cluster configurations in calculating the theoretical α\alpha-decay widths unless otherwise mentioned.

Refer to caption
Figure 2: The joint experimental and theoretical analysis on α\alpha-decay properties of 104Te. The red solid line shows the relation between the α\alpha-decay half-life and QαQ_{\alpha} given by SMCM ++ DFχ\text{DF}_{\!\chi} with the α\alpha-formation probability Pα=1P_{\alpha}=1. The light green and light yellow regions are the 1σ1\sigma and 2σ2\sigma bands from Ref. [17]. The light orange region is the parameter space allowed by Ref. [18]. The light red region estimates the SMCM ++ DFχ\text{DF}_{\!\chi}-allowed parameter space from the condition Pα1P_{\alpha}\leq 1. The green, yellow, and orange regions are the overlaps of these four regions.

The numerical results for 8Be are given in Table 1. We calculate the α\alpha-decay widths Γαχ\Gamma_{\alpha}^{\chi} and the root-mean-square (RMS) relative distances between two α\alpha clusters RrelχR2R^{\chi}_{\text{rel}}\equiv\sqrt{\braket{R^{2}}} for the 01+0_{1}^{+}, 21+2_{1}^{+}, 41+4_{1}^{+} states. The experimental α\alpha-decay widths Γαexp\Gamma_{\alpha}^{\text{exp}} are listed for comparison. The α\alpha-decay widths given by SMCM ++ DFχ\text{DF}_{\!\chi} are in good agreement with the experimental data, compatible with the dominance of the α\alpha-cluster configurations in the 01+0_{1}^{+}, 21+2_{1}^{+}, and 41+4_{1}^{+} states suggested by microscopic models [1].

The numerical results for 20Ne are given in Table 2. We also include the experimental results [76], the AMD results [29], and the phenomenological results from the hybrid potentials [21] in the same table for comparison. The AMD calculations show that the 111^{-}_{1}, 323^{-}_{2}, and 535^{-}_{3} states have the α\alpha-formation probabilities PαAMD1P_{\alpha}^{\text{AMD}}\sim 1. In other words, these states have almost the pure α\alpha-cluster structures. They can be used as the additional benchmarks besides the 01+0^{+}_{1}, 21+2^{+}_{1}, and 41+4^{+}_{1} states in 8Be to compare different effective potentials in SMCM without worrying too much about α\alpha-formation probabilities. The α\alpha-decay widths Γαχ\Gamma_{\alpha}^{\chi} given by SMCM ++ DFχ\text{DF}_{\!\chi} agree well with the experimental data for the 111^{-}_{1}, 323^{-}_{2}, and 535^{-}_{3} states. Also, the experimental result of the enhanced B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} from the 323^{-}_{2} state to the 111^{-}_{1} state is nicely reproduced by our model as shown in Column Eleven. In Column Eight are the α\alpha-formation probabilities PαχΓαexp/ΓαχP_{\alpha}^{\chi}\equiv\Gamma^{\text{exp}}_{\alpha}/\Gamma^{\chi}_{\alpha} extracted by SMCM ++ DFχ\text{DF}_{\!\chi}, which generally agree well with the AMD results. Here, we estimate the α\alpha-formation probability as the ratio between the experimental and SMCM α\alpha-decay widths. This estimation could be understood as follows. The α\alpha-formation probability measures the amount of α\alpha clustering. Let’s take the α\alpha-cluster state with L=0L=0 as an example. The discussions could be easily generalized to α\alpha-cluster states with L0L\neq 0. When L=0L=0, the α\alpha-formation probability is given by Pαd3r|G(𝒓)|2P_{\alpha}\equiv\int\mathrm{d}^{3}r|G(\bm{r})|^{2} in microscopic models, with G(𝒓)=Φ~𝒓|ΨG(\bm{r})=\braket{\widetilde{\Phi}_{\bm{r}}}{\Psi} being the α\alpha-formation amplitude. Ψ{\Psi} is the normalized realistic many-body wave function for the target nucleus. It could be given by a combination of cluster and shell-model components. Φ~𝒓=𝒩1/2Φ𝒓\widetilde{\Phi}_{\bm{r}}=\mathcal{N}^{-1/2}\Phi_{\bm{r}} is the normalized wave function for the pure α\alpha-cluster configuration, with Φ𝒓=𝒜Aa{Φ(A)(𝝃A)Φ(a)(𝝃a)δ3(𝒓𝒓Aa)}\Phi_{\bm{r}}=\mathscr{A}_{Aa}\{\Phi^{(A)}(\bm{\xi}_{A})\Phi^{(a)}(\bm{\xi}_{a})\delta^{3}(\bm{r}-\bm{r}_{Aa})\} and 𝒩\mathcal{N} being the RGM norm operator with the kernel N(𝒓,𝒓)=Φ𝒓|Φ𝒓N(\bm{r},\bm{r}^{\prime})=\braket{\Phi_{\bm{r}}}{\Phi_{\bm{r}^{\prime}}}. Φ(A)(𝝃A)\Phi^{(A)}(\bm{\xi}_{A}) and Φ(a)(𝝃a)\Phi^{(a)}(\bm{\xi}_{a}) are the normalized intrinsic wave functions of the core nucleus and the α\alpha particle. The α\alpha-formation probability satisfies Pα=d3r|Φ~𝒓|Ψ|2d3rΦ~𝒓|Φ~𝒓Ψ|Ψ=1P_{\alpha}=\int\mathrm{d}^{3}r|\braket{\widetilde{\Phi}_{\bm{r}}}{\Psi}|^{2}\leq\!\int\!\mathrm{d}^{3}r\braket{\widetilde{\Phi}_{\bm{r}}}{\widetilde{\Phi}_{\bm{r}}}\braket{\Psi}{\Psi}=1 thanks to the Cauchy inequality. Let’s assume that the experimental α\alpha-decay width could be reproduced by microscopic models, where the α\alpha-decay width is written as Γαexp=2P0(Qα,a)γ02(Qα,a)\Gamma_{\alpha}^{\text{exp}}=2P_{0}(Q_{\alpha},a)\gamma_{0}^{2}(Q_{\alpha},a), with P0(Qα,a)=ka/|0(+)(η,ka)|2P_{0}(Q_{\alpha},a)=ka/\left|\mathcal{H}^{(+)}_{0}(\eta,ka)\right|^{2} and γ02(Qα,a)=2πaG(a)2/mred\gamma_{0}^{2}(Q_{\alpha},a)=2\pi aG(a)^{2}/m_{\text{red}}. Here, aa is the channel radius in the RR-matrix calculation, k=2mredQαk=\sqrt{2m_{\text{red}}Q_{\alpha}} is the wave number of the α\alpha cluster in the infinity, η\eta is the Coulomb-Sommerfeld parameter, and 0(+)(η,ka)\mathcal{H}^{(+)}_{0}(\eta,ka) is the SS-wave outgoing Coulomb-Hankel function. Although P0(Qα,a)P_{0}(Q_{\alpha},a) and γ02(Qα,a)\gamma_{0}^{2}(Q_{\alpha},a) depend on the channel radius aa separately, in principle, their product Γαexp\Gamma_{\alpha}^{\text{exp}} should not depend on aa according to the RR-matrix theory [70, 71, 72, 73]. In practice, due to limited model space and finite numerical precision, some residual dependence on the channel radius could appear in numerical calculations. In that case, it is important to choose the channel radius in an appropriate way. We would like to stress again that the α\alpha-formation amplitude G(𝒓)G(\bm{r}) is normalized to the α\alpha-formation probability Pα1P_{\alpha}\leq 1. On the other hand, if it is the pure α\alpha-cluster configurations that are assumed in theoretical calculations, the α\alpha-formation amplitudes (aka the α\alpha-cluster wave functions) are normalized to unity instead of the α\alpha-formation probability Pα1P_{\alpha}\leq 1. Then, the theoretical α\alpha-decay width should satisfy ΓαthΓαexp/Pα\Gamma_{\alpha}^{\text{th}}\approx\Gamma_{\alpha}^{\text{exp}}/P_{\alpha}. As mentioned before, SMCMs assume pure α\alpha-cluster configurations when calculating the theoretical α\alpha-decay width Γαχ\Gamma_{\alpha}^{\chi}. Therefore, we can use Pαχ=Γαexp/ΓαχP_{\alpha}^{\chi}=\Gamma_{\alpha}^{\text{exp}}/\Gamma_{\alpha}^{\chi} to estimate the α\alpha-formation probability of the target state. In Columns Nine and Twelve, we list the α\alpha-formation probabilities PαhP_{\alpha}^{\text{h}}s and the B(E2)B(\text{E2}\!\downarrow) values B(E2)hB(\text{E2}\!\downarrow)_{\text{h}}s extracted from Ref. [21] based on the hybrid potentials for comparison. Last but not least, we would like to mention that the RMS relative distances between the α\alpha cluster and 16O in Column Thirteen are found to decrease along the Kπ=0+K^{\pi}=0^{+} and Kπ=0K^{\pi}=0^{-} bands in general. This is also observed in previous studies based on other effective potentials. It is sometimes referred to as the antistretching effect [26].

The numerical results for 44Ti are given in Table 3. The experimental data on the α\alpha-cluster states in 44Ti are limited compared to 20Ne. Especially, the α\alpha-decay data are not available from the experimental side, which forbids the extraction of α\alpha-formation probabilities in SMCM. Nevertheless, it is found that, similar to 20Ne, B(E2)B(\text{E2}\!\downarrow)s in the Kπ=0K^{\pi}=0^{-} band are about two times those in the Kπ=0+K^{\pi}=0^{+} band, which might be the hints for prominent α\alpha-cluster structures in the Kπ=0K^{\pi}=0^{-} band. Moreover, the antistretching effect is also observed in 44Ti.

The numerical results for 52Ti are given in Table 4. The global quantum number is taken to be G=12G=12. Unlike 44Ti, the neutron orbit 0f7/20f_{7/2} has been occupied by the core nucleus 48Ca. Therefore, the α\alpha-cluster state with (G,L)=(12,12)(G,L)=(12,12) is unfavored by the Wildermuth condition, and the Kπ=0+K^{\pi}=0^{+} band gets terminated at L=10L=10 automatically, which is consistent with experimental data. B(E2)χB(\text{E2}\!\downarrow)_{\chi}s from SMCM are given in Column Five. They agree well with the experimental data in Column Four, except for the 81+8^{+}_{1} state. The 81+8^{+}_{1} state has its B(E2)expB(\text{E2}\!\downarrow)_{\text{exp}} be one order of magnitude smaller than B(E2)χB(\text{E2}\!\downarrow)_{\chi}, indicating that this state is more likely to be a shell-model state. In Column Six are B(E2)WS2B(\text{E2}\!\downarrow)_{\text{WS}^{2}}s from the phenomenological WS2\text{WS}^{2} potential [12]. In comparison, our DFχ\text{DF}_{\!\chi}s are in better agreement with the experimental data.

The numerical results for 212Po are given in Table 5. The global quantum number is taken to be G=22G=22. The proton orbit 0h11/20h_{11/2} and the neutron orbit 0i13/20i_{13/2} have been occupied by the core nucleus 208Pb. As a result, the α\alpha-cluster states with (G,L)=(22,20),(22,22)(G,L)=(22,20),(22,22) are unfavored by the Wildermuth condition, and the ground-state band gets terminated automatically at L=18L=18, consistent with the experimental observation. The theoretical α\alpha-decay widths from SMCM with Pα=1P_{\alpha}=1 are given in Column Eight. The α\alpha-formation probability of the 01+0^{+}_{1} state is extracted to be Pαχ=Γαexp/Γαχ=0.094P^{\chi}_{\alpha}=\Gamma_{\alpha}^{\text{exp}}/\Gamma_{\alpha}^{\chi}=0.094, compatible with PαQWFA=0.1045P_{\alpha}^{\text{QWFA}}=0.1045 from quartetting wave function approach [23]. On the other hand, the α\alpha-formation probability of the 18+18^{+} state is found to be as tiny as Pαχ=0.0034P^{\chi}_{\alpha}=0.0034, suggesting that the shell-model configuration is more important in this state. Refs. [81, 82] propose an approximately linear relation between the α\alpha-formation probability and the RMS relative distance RrelχR_{\text{rel}}^{\chi} along the band. Therefore, the α\alpha-formation probabilities along the ground-state band of 212Po could be estimated by the linear relation PαLA=1.16066+0.20035RrelχP_{\alpha}^{\text{LA}}=-1.16066+0.20035R_{\text{rel}}^{\chi}. The refined α\alpha-decay widths Γαχ,refinedPαLAΓαχ\Gamma_{\alpha}^{\chi,\text{refined}}\equiv P_{\alpha}^{\text{LA}}\Gamma_{\alpha}^{\chi} are given in Column Nine, agreeing well with the experimental results. The theoretical results given by the CDM3Y6 double-folding potentials from Ref. [37] are given in Columns Five and Ten. In Ref. [37], a constant α\alpha-formation probability PαCDM3Y6=0.3P^{\text{CDM3Y6}}_{\alpha}=0.3 is used to calculate the theoretical α\alpha-decay widths. Such a choice is motivated by a previous microscopic result on the α\alpha-formation probability in the ground state of 212Po [83]. In this work, we give an improved treatment on the α\alpha-formation probabilities by taking into consideration the evolution of α\alpha-cluster formation along the ground-state band [81, 82] under the guidance of the latest microscopic result from Ref. [23]. In order to reproduce the experimental energy levels, the renormalization factors λNLCDM3Y60.5\lambda_{NL}^{\text{CDM3Y6}}\sim 0.5 are needed in Ref. [37], which deviate sizeably from 1 and deform the potentials in a significant way. In comparison, in SMCM ++ DFχ\text{DF}_{\!\chi} the renormalization factors λNL\lambda_{NL} deviate only slightly from 1. The theoretical α\alpha-decay widths in Table 5 are tiny compared to those in Tables 1 and 2. They are calculated by MTPA. MTPA has also been used successfully to calculate α\alpha-decay widths of other heavy and superheavy nuclei (see, e.g., Ref. [84]), where the α\alpha-decay widths can be even smaller than those listed in Table 5.

At last, we study the α\alpha decay of 104Te. Auranen et al. report that Qα(Te104)=5.1(2)Q_{\alpha}({}^{104}\text{Te})=5.1(2) MeV, T1/2,α(Te104)<18T_{1/2,\alpha}({}^{104}\text{Te})<18 ns [17]. Later on, Xiao et al. observe two new events compatible with Ref. [17] in an independent experiment and give the constraint T1/2,α(Te104)<4T_{1/2,\alpha}({}^{104}\text{Te})<4 ns [18]. But, they cannot fully exclude the possible impacts from β\beta decay. We carry out a joint experimental and theoretical analysis based on these two experimental results and SMCM ++ DFχ\text{DF}_{\!\chi}. The results are given in Fig. 2. It is found that most parts of the parameter space allowed by experiments are actually disfavored by SMCM, except the upper right corner. If Ref. [17] is considered only, it is the triangular regions colored in green and yellow (overlapping partially with the green and orange triangular regions) that are favored by the joint analysis with the confidence levels of 68% and 95%, respectively. If both experiments are considered, then the triangular region colored in orange is most favored by the joint analysis.

IV Conclusions

In summary, we derive new reliable double-folding potentials for the α+doubly magic nucleus\alpha+\text{doubly magic nucleus} systems from χ\chiEFT and use them to study the α\alpha-cluster structures in 8Be, 20Ne, 44,52Ti, and 212Po within the framework of SMCM. Compared with the existing effective potentials, DFχ\text{DF}_{\!\chi}s have better connections to QCD via χ\chiEFT. Besides, they give theoretical results in good agreement with experimental data. α\alpha-decay properties of 104Te are also studied in the light of two recent experimental results. Our study shows that DFχ\text{DF}_{\!\chi}s are new reliable effective potentials for the SMCM approach to α\alpha-cluster structures above double shell closures.

Acknowledgements.
We thank Gerd Röpke and Peter Schuck for useful discussions. We thank Peter Mohr for helpful communications on 104Te. Also, we thank the anonymous referee for helpful guidance. This work is supported by the National Natural Science Foundation of China (Grants No. 11947211, No. 11905103, No. 12035011, No. 11535004, No. 11975167, No. 11761161001, No. 11565010, No. 11961141003, and No. 12022517), by the National Key R&D Program of China (Contracts No. 2018YFA0404403 and No. 2016YFE0129300), by the Science and Technology Development Fund of Macau (Grants No. 0048/2020/A1 and No. 008/2017/AFJ), by the Fundamental Research Funds for the Central Universities (Grant No. 22120200101), and by the China Postdoctoral Science Foundation (Grants No. 2020T130478 and No. 2019M660095).

References

  • [1] D. Bai and Z. Ren, Phys. Rev. C 101, 034311 (2020).
  • [2] H. Horiuchi and K. Ikeda, Prog. Theor. Phys. 40, 277 (1968).
  • [3] F. Michel, G. Reidemeister, and S. Ohkubo, Phys. Rev. Lett. 57, 1215 (1986).
  • [4] F. Michel, G. Reidemeister, and S. Ohkubo, Phys. Rev. C 37, 292 (1988).
  • [5] T. Wada and H. Horiuchi, Phys. Rev. C 38, 2063 (1988).
  • [6] S. Ohkubo, Phys. Rev. C 38, 2377 (1988).
  • [7] T. Yamaya, S. Oh-ami, M. Fujiwara, T. Itahashi, K. Katori, M. Tosaki, S. Kato, S. Hatori, and S. Ohkubo, Phys. Rev. C 42, 1935 (1990).
  • [8] P. Guazzoni, M. Jaskola, L. Zetta, K. Chong-Yeal, T. Udagawa, and G. Bohlen, Nucl. Phys. A 564, 425 (1993).
  • [9] M. Fukada, M. K. Takimoto, K. Ogino, and S. Ohkubo, Phys. Rev. C 80, 064613 (2009).
  • [10] S. Bailey, T. Kokalova, M. Freer, C. Wheldon, R. Smith, J. Walshe, N. Curtis, N. Soic´\acute{\text{c}}, L. Prepolec, V. Tokic´\acute{\text{c}}, F. M. Marque´\acute{\text{e}}s, L. Achouri, F. Delaunay, Q. Deshayes, M. Parlog, B. Ferna´\acute{\text{a}}ndez-Dominguez, B. Jacquot, and A. Soylu, Phys. Rev. C 100, 051302(R) (2019).
  • [11] A. Goldkuhle et al. [AGATA], Phys. Rev. C 100, 054317 (2019).
  • [12] S. Ohkubo, Phys. Rev. C 101, 041301(R) (2020).
  • [13] R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion, Phys. Rept. 294, 265 (1998).
  • [14] A. Astier, P. Petkov, M. G. Porquet, D. S. Delion, and P. Schuck, Phys. Rev. Lett. 104, 042701 (2010).
  • [15] Y. Suzuki and S. Ohkubo, Phys. Rev. C 82, 041303(R) (2010).
  • [16] D. S. Delion, R. J. Liotta, P. Schuck, A. Astier, and M.-G. Porquet, Phys. Rev. C 85, 064306 (2012).
  • [17] K. Auranen, D. Seweryniak, M. Albers, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, C. J. Chiara, P. Copp, H. M. David, D. T. Doherty, J. Harker, C. R. Hoffman, R. V. F. Janssens, T. L. Khoo, S. A. Kuvin, T. Lauritsen, G. Lotay, A. M. Rogers, J. Sethi, C. Scholey, R. Talwar, W. B. Walters, P. J. Woods, and S. Zhu, Phys. Rev. Lett. 121, 182501 (2018).
  • [18] Y. Xiao, S. Go, R. Grzywacz, R. Orlandi, A. N. Andreyev, M. Asai, M. A. Bentley, G. de Angelis, C. J. Gross, P. Hausladen, K. Hirose, S. Hofmann, H. Ikezoe, D. G. Jenkins, B. Kindler, R. Le´\acute{\text{e}}guillon, B. Lommel, H. Makii, C. Mazzocchi, K. Nishio, P. Parkhurst, S. V. Paulauskas, C. M. Petrache, K. P. Rykaczewski, T. K. Sato, J. Smallcombe, A. Toyoshima, K. Tsukada, K. Vaigneur, and R. Wadsworth, Phys. Rev. C 100, 034315 (2019).
  • [19] D. Bai and Z. Ren, Eur. Phys. J. A 54, 220 (2018).
  • [20] V. V. Baran and D. S. Delion, Phys. Rev. C 99, 064311 (2019).
  • [21] T. T. Ibrahim, A. C. Merchant, S. M. Perez, and B. Buck, Phys. Rev. C 99, 064332 (2019).
  • [22] M. Souza, H. Miyake, T. Borello-Lewin, C. da Rocha, and C. Frajuca, Phys. Lett. B 793, 8 (2019).
  • [23] S. Yang, C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki, H. Horiuchi, A. Tohsaki, T. Yamada, and B. Zhou, Phys. Rev. C 101, 024316 (2020).
  • [24] F. Mercier, J. Zhao, R. D. Lasseri, J. P. Ebran, E. Khan, T. Nikšíc, and D. Vretenar, Phys. Rev. C 102, 011301(R) (2020).
  • [25] R. M. Clark, A. O. Macchiavelli, H. L. Crawford, P. Fallon, D. Rudolph, A. Såmark-Roth, C. M. Campbell, M. Cromaz, C. Morse, and C. Santamaria, Phys. Rev. C 101, 034313 (2020).
  • [26] F. Michel, S. Ohkubo, and G. Reidemeister, Prog. Theor. Phys. Suppl. 132, 7 (1998).
  • [27] K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus (Academic Press, New York, 1977).
  • [28] Y. Kanada-Enyo, H. Horiuchi, and A. Ono, Phys. Rev. C 52, 628 (1995).
  • [29] M. Kimura, Phys. Rev. C 69, 044319 (2004).
  • [30] M. Kimura and H. Horiuchi, Nucl. Phys. A 767, 58 (2006).
  • [31] S. Pastore, R. B. Wiringa, S. C. Pieper, and R. Schiavilla, Phys. Rev. C 90, 024321 (2014).
  • [32] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. Lähde, T. Luu, and U. G. Meißner, Nature 528, 111 (2015).
  • [33] K. Kravvaris and A. Volya, Phys. Rev. Lett. 119, 062501 (2017).
  • [34] A. C. Dreyfuss, K. D. Launey, J. E. Escher, G. H. Sargsyan, R. B. Baker, T. Dytrych, and J. P. Draayer, Phys. Rev. C 102, 044608 (2020).
  • [35] S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995).
  • [36] P. Mohr, Eur. Phys. J. A 31, 23 (2007).
  • [37] D. Ni and Z. Ren, Phys. Rev. C 83, 014310 (2011).
  • [38] P. Mohr, Eur. Phys. J. A 56, 127 (2020).
  • [39] B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 51, 559 (1995).
  • [40] S. M. Wang, J. C. Pei, and F. R. Xu, Phys. Rev. C 87, 014311 (2013).
  • [41] D. Bai and Z. Ren, Chin. Phys. C 42, 124102 (2018).
  • [42] E. W. Schmid and K. Wildermuth, Nucl. Phys. 26, 463 (1961).
  • [43] A. Hasegawa and S. Nagata, Prog. Theor. Phys. 45, 241 (1972).
  • [44] Y. Yamamoto, Prog. Theor. Phys. 52, 471 (1974).
  • [45] G. Satchler and W. Love, Phys. Rept. 55, 183 (1979).
  • [46] A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A. Budzanowski, Nucl. Phys. A 384, 65 (1982).
  • [47] D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).
  • [48] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).
  • [49] R. Machleidt and D. R. Entem, Phys. Rept. 503, 1 (2011).
  • [50] H. W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020).
  • [51] V. Durant, P. Capel, L. Huth, A. B. Balantekin, and A. Schwenk, Phys. Lett. B 782, 668 (2018).
  • [52] V. Durant, P. Capel, and A. Schwenk, Phys. Rev. C 102, 014622 (2020).
  • [53] D. M. Brink and J. J. Castro, Nucl. Phys. A 216, 109 (1973).
  • [54] M. Girod and P. Schuck, Phys. Rev. Lett. 111, 132503 (2013).
  • [55] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501 (2013).
  • [56] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90, 054323 (2014).
  • [57] D. T. Khoa, W. von Oertzen, and H. G. Bohlen, Phys. Rev. C 49, 1652 (1994).
  • [58] H. De Vries, C. W. De Jager, and C. De Vries, Atom. Data Nucl. Data Tabl. 36, 495 (1987).
  • [59] L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C. De Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Candido Ribeiro, E. S. Rossi, Jr., and C. P. Silva, Phys. Rev. C 66, 014610 (2002).
  • [60] P. Arthuis, C. Barbieri, M. Vorabbi, and P. Finelli, Phys. Rev. Lett. 125, 182501 (2020).
  • [61] N. K. Glendenning, Direct Nuclear Reactions (World Scientific Publishing, Singapore, 2004)
  • [62] H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977).
  • [63] S. Saito, S. Okai, R. Tamagaki, and M. Yasuno, Prog. Theor. Phys. 50, 1561 (1973).
  • [64] S. Saito, Prog. Theor. Phys. Suppl. 62, 11 (1977).
  • [65] M. Kruglanski and D. Baye, Nucl. Phys. A 548, 39 (1992).
  • [66] D. Baye and M. Kruglanski, Phys. Rev. C 45, 1321 (1992).
  • [67] N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University Press, Cambridge, 2011).
  • [68] T. Berggren, Phys. Lett. B 373, 1 (1996).
  • [69] S. A. Gurvitz, P. B. Semmes, W. Nazarewicz, and T. Vertse, Phys. Rev. A 69, 042705 (2004).
  • [70] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
  • [71] I. J. Thompson and F. M. Nunes, Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, Cambridge, 2009).
  • [72] P. Descouvemont and D. Baye, Rept. Prog. Phys. 73, 036301 (2010).
  • [73] P. G. Burke, RR-Matrix Theory of Atomic Collisions: Application to Atomic, Molecular and Optical Processes (Springer-Verlag, Berlin, Heidelberg, 2011).
  • [74] D. Bai and Z. Ren, “Three-body cluster structures in the heaviest α\alpha-conjugate nucleus 108Xe” (2021).
  • [75] D. R. Tilley, J. H. Kelley, J. L. Godwin, D. J. Millener, J. E. Purcell, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 745, 155 (2004).
  • [76] D. R. Tilley, C. M. Cheves, J. H. Kelley, S. Raman, and H. R. Weller, Nucl. Phys. A 636, 249 (1998).
  • [77] J. Chen, B. Singh, and J. A. Cameron, Nucl. Data Sheets 112, 2357 (2011).
  • [78] E. Browne, Nucl. Data Sheets 104, 427 (2005).
  • [79] A. Astier, P. Petkov, M.-G. Porquet, D. S. Delion, and P. Schuck, Eur. Phys. J. A 46, 165 (2010).
  • [80] R. M. Lieder, J. P. Didelez, H. Beuscher, D. R. Haenni, M. Müller-Veggian, A. Neskakis, and C. Mayer-Böricke, Phys. Rev. Lett. 41, 742 (1978).
  • [81] D. Bai and Z. Ren, Phys. Lett. B 786, 5 (2018).
  • [82] D. Bai, Z. Ren, and G. Röpke, Phys. Rev. C 99, 034305 (2019).
  • [83] K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69, 37 (1992).
  • [84] Y. Qian and Z. Ren, Phys. Lett. B 738, 87 (2014).