This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

ALMA High-resolution Spectral Survey of Thioformaldehyde (H2CS) Towards Massive Protoclusters

Li Chen School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China Li Chen [email protected] Sheng-Li Qin School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China Tie Liu Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, People’s Republic of China Hong-Li Liu School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China Sheng-Yuan Liu Academia Sinica Institute of Astronomy and Astrophysics, 11F AS/NTU Astronomy-Mathematics Building, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan Meizhu Liu School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China Hongqiong Shi School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China Chuanshou Li School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China Mengyao Tang Institute of Astrophysics, School of Physics and Electronic Science, Chuxiong Normal University, Chuxiong 675000, People’s Republic of China Tianwei Zhang Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, Hangzhou 311100, P.R.China I. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany Ken’ichi Tatematsu National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan Xiaohu Li Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, China Fengwei Xu Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People’s Republic of China Department of Astronomy, School of Physics, Peking University, Beijing 100871, People’s Republic of China Yuefang Wu Department of Astronomy, School of Physics, Peking University, Beijing 100871, People’s Republic of China Dongting Yang School of Physics and Astronomy, Yunnan University, Kunming 650091, People’s Republic of China
Abstract

Investigating the temperature and density structures of gas in massive protoclusters is crucial for understanding the chemical properties therein. In this study, we present observations of the continuum and thioformaldehyde (H2CS) lines at 345 GHz of 11 massive protoclusters using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. High spatial resolution and sensitivity observations have detected 145 continuum cores from the 11 sources. H2CS line transitions are observed in 72 out of 145 cores, including line-rich cores, warm cores and cold cores. The H2 column densities of the 72 cores are estimated from the continuum emission which are larger than the density threshold value for star formation, suggesting that H2CS can be widely distributed in star-forming cores with different physical environments. Rotation temperature and column density of H2CS are derived by use of the XCLASS software. The results show the H2CS abundances increase as temperature rises and higher gas temperatures are usually associated with higher H2CS column densities. The abundances of H2CS are positively correlated with its column density, suggesting that the H2CS abundances are enhanced from cold cores, warm cores to line-rich cores in star forming regions.

Astrochemistry — Line identification — Temperature — Abundance — Thioformaldehyde
software: astropy (Astropy Collaboration et al., 2013, 2018, 2022), CASA (McMullin et al., 2007; CASA Team et al., 2022), XCLASS (Möller et al., 2017), MAGIX (Möller et al., 2013).

1 Introduction

The origin and evolution of life in the universe is one of the most fascinating and challenging questions in science. To address this question, astronomers have been searching for and studying the molecules that contain basic elements essential for life, such as hydrogen, carbon, nitrogen, oxygen, and sulfur. These elements form a variety of complex organic molecules in interstellar space, some of which may be precursors or building blocks of life (Irvine et al., 1987).

As of September 2023, more than 300 interstellar or circumstellar species have been discovered in space and their information is collected in the Cologne Database for Molecular Spectroscopy (CDMS, Müller et al. 2001, 2005; Endres et al. 2016). Surprisingly, even though sulfur is the tenth most abundant element in the universe (Yamamoto, 2017), there is a significant number (35) of sulfur-bearing molecules. The observations highlight the active role that sulfur plays in various interstellar environments, as sulfur plays a crucial role in the synthesis and evolution of macromolecules such as amino acids, proteins, and nucleic acids (Rimmer et al., 2018). One of the simplest and most abundant sulfur-containing molecules in space is thioformaldehyde (H2CS), which has been detected in out Galaxy and in various environments in our Galaxy, ranging from massive star-forming regions to low-mass protostars to comets (Sinclair et al., 1973; Woodney et al., 2000; Minh et al., 2011; Le Roy et al., 2015; Oya et al., 2016; Shimonishi et al., 2016; Oya, 2018; Shimajiri et al., 2019; Sewiło et al., 2022). These observations suggest that H2CS may be involved in prebiotic chemistry and may provide clues about the origin of life in the universe (Hasegawa et al., 1992; Holdship et al., 2019).

Like its oxygen-substituted analog H2CO, the structure of H2CS is a nearly elongated and slightly asymmetrical rotor that exhibits a wealth of transitions in the millimeter and submillimeter bands (Barnett et al., 2005; Tercero et al., 2010; Öberg et al., 2013; Neill et al., 2014; Agúndez et al., 2019; Spezzano et al., 2022), and these spectral lines correspond to different energy levels. Due to the fact that its transitions between multiple levels at Kp ladders can be captured within a single sideband spectrum (Blake et al., 1994), the physical parameters of celestial environments can be easily and accurately determined by fitting multiple lines of multiple species within a single spectral band. The transitions of H2CS molecule are affected by the excitation of collisions with other molecules (Mangum & Wootten, 1993; Wootten & Mangum, 2009; Chandra, 2012; Oya et al., 2016; Sharma et al., 2017). In high-density environments, the impact of collision excitation on energy-level transitions is more significant, so the spectral lines of H2CS can be used to study the physical conditions in dense molecular clouds. Because the emission of H2CS at millimeter and submillimeter wavebands is optically thin (Luo et al., 2019; Li et al., 2020), H2CS is a better tracer than H2CO for identifying the kinetic temperature and density of dense gases (Tang et al., 2017; van ’t Hoff et al., 2020).

In this paper, we present the first systematical analysis of H2CS molecule in 11 massive protoclusters using Band-7 data from cycle 5 of the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. We aim to investigate the physical and chemical properties of H2CS in these protoclusters and to explore its potential as a tracer of dense gas. We used multiple transitions of H2CS at different energy levels to derive the kinetic temperature, density, column density, and abundance of H2CS in our sample. The paper is organized as follows: In Section 2, we describe our observations and data reduction. In Section 3, we present our results on the detection and distribution of H2CS. In Section 4, we analyze the physical and chemical parameters of H2CS. In Section 5, we summarize our main conclusions.

2 Observations

2.1 Sample Selection

The targeted 11 IRAS sources are a subsample of the ATOMS survey toward 146 massive protoclusters by Liu et al. (2016). The 146 massive protoclusters are very diverse that are suitable for statistics studies for the physical and chemical processes of star formation with different physical conditions. Among them, 30 sources are identified with ”blue profiles” which indicate infall emotions (Chira et al., 2014). Further more, 18 out of the 30 sources are found to be featured by HCN(3-2) and CO(4-3) lines and have virial parameters less than 2 (Yue et al., 2021), suggesting that the 18 sources are experiencing global collapse and undergoing star formation. Finally, 11 massive and luminous sources with collapsing signature were observed with the ALMA.

Table 1 shows key parameters of our sample, such as J2000.0 positions, systemic velocities, distances from the sun and Galactic center, source radius, averaged dust temperatures, bolometric luminosity, and clump mass. Our sources are high-mass star forming regions with bright CS J=21\rm J=2-1 emission (Tb >> 2 K) indicating dense gas (Bronfman et al., 1996), and bolometric luminosities above 104 L implying at least a B0.5 type star (Faúndez et al., 2004). The gas mass of all sources exceeds 103 M. The clump-averaged temperatures range from 23 to 32 K with a median of 28 K.

2.2 ALMA Observations and data reduction

We observed 11 massive protocluster clumps with ALMA cycle 5 Band-7 from May 18 to May 20, 2018 (UTC) using 43 12-meter antennas in the C43-1 configuration (Project ID: 2017.1.00545.S; PI: Tie Liu). The observations covered four spectral windows (SPWs 31, 29, 27 and 25) with increasing spectral frequency ranges: (i) 342.36-344.24 GHz, (ii) 344.25-346.09 GHz, (iii) 354.27-354.74 GHz, and (iv) 356.60-357.07 GHz. Each window has 1920 channels with a bandwidth of 1875.00 MHz for SPW 31 and SPW 29, and 468.75 MHz for SPW 27 and SPW 25. The integrate on-source time was \sim 3.7 minutes per source. J1650-5044 and J1924-2914 were used as atmosphere, flux and phase calibrators, while J1924-2914 as a bandpass calibrator. We calibrated the visibility data set using CASA software version 5.1.15 with the standard pipeline provided by the ALMA Observatory and imaged it with the TCLEAN task in CASA 5.3.

ALMA Band-7 is ideal for studying interstellar molecules, especially organic and inorganic ones, at high resolution and sensitivity (Jacobsen et al., 2019; Manigand et al., 2021; Lee et al., 2023). We analyzed the spectral lines in two spectral windows (SPW 31 and SPW 29) because of their wide frequency band, which contain a rich molecular line transitions. With a spatial resolution of \sim 0.8–1.2\arcsec, and a high sensitivity of \sim 1.2 mJy beam-1 for continuum and \sim 4.7 mJy per channel for lines, we could easily observe molecular emission lines that could not be found in previous lower resolution observations (Shimonishi et al., 2023).

Table 1: Physics parameters of the targets in the observations.
ID IRAS RA DEC Vlsr Distance RGC\rm R_{\rm GC} Radius Tdust\rm T_{\rm dust} log(Lbol\rm L_{\rm bol}) log(Mclump\rm M_{\rm clump})
(km s-1) (kpc) (kpc) (pc) (K) (L) (M)
1 I14382-6017 14:42:02.76 -60:30:35.1 -60.7 7.7 6.0 1.68 28.0 5.2 3.6
2 I14498-5856 14:53:42.81 -59:08:56.5 -49.3 3.2 6.4 0.74 26.7 4.4 3.0
3 I15520-5234 15:55:48.84 -52:43:06.2 -41.3 2.7 6.2 0.67 32.2 5.1 3.2
4 I15596-5301 16:03:32.29 -53:09:28.1 -72.1 10.1 5.2 1.81 28.5 5.5 3.9
5 I16060-5146 16:09:52.85 -51:54:54.7 -91.6 5.3 4.5 1.24 32.2 5.8 3.9
6 I16071-5142 16:11:00.01 -51:50:21.6 -87.0 5.3 4.5 1.21 23.9 4.8 3.7
7 I16076-5134 16:11:27.12 -51:41:56.9 -87.7 5.3 4.5 1.57 30.1 5.3 3.6
8 I16272-4837 16:30:59.08 -48:43:53.3 -46.6 2.9 5.8 0.84 23.1 4.3 3.2
9 I16351-4722 16:38:50.98 -47:27:57.8 -41.4 3.0 5.7 0.69 30.4 4.9 3.2
10 I17204-3636 17:23:50.32 -36:38:58.1 -18.2 3.3 5.1 0.60 25.8 4.2 2.9
11 I17220-3609 17:25:24.99 -36:12:45.1 -93.7 8.0 1.3 2.41 25.4 5.7 4.3

Note. — The 11 IRAS sources are list in the table with detailed physical parameters (Urquhart et al., 2018; Liu et al., 2020b). The system velocities of the sources in column (5) are measured from molecular line observations (e.g. CO, NH3, CS, etc.). The distances to all of the sources in column (6) and (7) are determined using a combination HI analysis, maser parallax and spectroscopic measurements. The radii of the sources in column (8) are calculated using their effective angular radii and the distances. The averaged dust temperatures in column (9) and bolometric luminosities in column (10) are derived from the SED fits. The clump masses in column (11) are estimated using the Hildebrand (1983) method.

3 RESULTS and analysis

3.1 Continuum

3.1.1 Core Identification

We analyzed the flux density in continuum maps to establish appropriate contours that minimize noise effects on dust core identification, such as spurious voids in continuum emission that would be treated as closed contours for dense cores. In addition, the dust cores are required to have at least two closed contours above a 8 rms level. Following this, we identified 145 dust cores across 11 sources.

We take the source IRAS 14382-6017 (hereafter I14382, as with other sources for the alias naming rule) as an example, which is shown in Figure 1. The rms noise level is 0.8 mJy beam-1 for continuum emission. To avoid noise effects, we set the contours to start at 8 rms with a 4 rms step. This results in clean contours around compact dust cores, allowing to locate them. As a result, 11 cores were identified in this source, as marked in the figure. Their peak intensities range from 13 to 142 mJy beam-1. The core identification results of other 10 sources are shown in Figure A1 of the appendix.

Refer to caption
Figure 1: 345 GHz continuum maps of I14382 overlaid with the flux contours start with 8 rms and increase with the following power-law function D=4×Np+8D=4\times N^{p}+8, where DD is the dynamical range of the intensity map, NN is the number of contours used (15 in this case) and p=Log(Vmax/(4×rms))/Log(N1)p=Log(V_{max}/(4\times rms))/Log(N-1) (where VmaxV_{max} is the peak intensity of the continuum) is the power index. The magnitude of the noise level of the continuum map is 0.8 mJy beam-1. The cores is labeled roughly from top to bottom and from left to right. The corresponding beam size is in the bottom left corner and the scalebar is in the bottom right corner.

3.1.2 Core Parameters

The deconvolved parameters of these dust cores were obtained using the 2D Gaussian fitting tool in CASA, including the full width at half maximum (FWHM) of the major and minor axes, denoted as θmaj\rm\theta_{maj} and θmin\rm\theta_{min} respectively, along with the position angle (PA), integrated flux density, and peak intensity. These values are displayed in columns (6), (7), (9), and (10) of Table A1. In regions with crowded cores, the CASA-IMFIT program separated them and made the accurate measurements for the parameters mentioned above.

The mass of each core can be calculated as follows (Hildebrand, 1983; Liu et al., 2021):

M\textcore=D2SνηκνBν(Td),M_{\text{core}}=\frac{D^{2}S_{\nu}\eta}{\kappa_{\nu}B_{\nu}(T_{d})}, (1)

where D is the distance to the source, SνS\rm_{\nu} is the integrated flux of the continuum, η=100\eta=100 is a generic gas-to-dust ratio for interstellar matter with solar metallicity (Lis et al., 1991; Hasegawa et al., 1992), κν=\kappa_{\nu}= 1.89 cm2 g-1 is the dust absorption coefficient of molecular cloud cores at 870 μ\mum (Ossenkopf & Henning, 1994), and Bν(Td)\rm B_{\nu}(T_{d}) is the Planck function at the dust temperature Td\rm T_{d}. The method for selecting the dust temperature Td\rm T_{d} is described in Section 3.4 in this article. The core with a larger distance tends to have a larger mass at the same integrated flux.

We list the core masses in Table A1 column (8). They range from 0.3 to 263.1 M{\sun}. We find 75 massive cores (>> 8 M{\sun}), 57 intermediate-mass cores (2-8 M{\sun}), and 13 low-mass cores (<< 2 M{\sun}). I17220 and I16060 have only massive cores, and I15596 has 21 massive cores. These are the three most massive sources of the 11 targets. No massive core is detected in I17204 and it is the lowest-mass source in the sample investigated here.

The mean optical depth of the continuum can be derived by the following equation (Frau et al., 2010; Gieser et al., 2021):

τν=ln[1SνΩBν(Td)]\textit{$\tau_{\nu}$}=-ln[1-\frac{{S_{\nu}}}{\Omega B_{\nu}(T_{d})}] (2)

where Ω\Omega is the solid angle subtended by the source. The derived τν\tau_{\nu} toward the 145 cores are on the order of 10-3 to 10-2, guaranteeing that optically thin assumption of dust continuum at 870 μ\mum is reasonable. Then the source-averaged column density of H2 (NH2\rm N_{H_{2}}) can be derived as below (Frau et al., 2010; Bonfand et al., 2019):

N\textH2=M\textcoreμmHΩD2=SνημmHΩκνBν(Td),N_{\text{H_{2}}}=\frac{M_{\text{core}}}{\mu m_{H}\Omega D^{2}}=\frac{S_{\nu}\eta}{\mu m_{H}\Omega\kappa_{\nu}B_{\nu}(T_{d})}, (3)

where μ2.8\mu\approx 2.8 is the mean particle weight per H2\rm H_{2} molecule (Kauffmann et al., 2008) and mH\rm m_{H} is the hydrogen atom mass. Note that H2CS abundances are not affected by distance which are derived from the ratios of source-averaged column densities of H2CS and H2.

We calculate NH2\rm N_{H_{2}} for the cores with H2CS detected. They range from 3.1×10223.1\times 10^{22} to 4.1×10244.1\times 10^{24} cm2\rm cm^{-2}, with a two orders of magnitude difference. Overall, massive cores have higher NH2\rm N_{H_{2}}. All of the cores have column densities much above a threshold of 7×1021\sim 7\times 10^{21} cm2\rm cm^{-2} for NH2\rm N_{H_{2}} suggestive of initial density conditions of star formation (André et al., 2014; Tang et al., 2018), confirming that the protocluster sources investigated here are actively forming stars (Baug et al., 2020).

3.2 H2CS Line Emission

Refer to caption
Figure 2: The relationship between peak flux and mass of 145 cores, where red dots indicate cores where H2CS is detected and blue dots indicate cores where H2CS is not detected. The black slash marks a sharp distinction between the two types of cores.

Molecular lines are powerful tools for revealing the physical state of gas density structures and for exploring various astrochemical processes therein. As mentioned earlier, a total of 145 dense cores have been identified in 11 massive protocluster sources. We extracted the molecular lines from the continuum peak position of each core. Nine transitions of H2CS are tuned in SPWs 29 and 31 (Maeda et al., 2008; Müller et al., 2019), and their corresponding parameters are summarized in Table A2. The Eu of H2CS covers a wide range of energy levels from 91 to 419 K, allowing accurately determine the rotation temperature and column density. Therefore, two isolated H2CS lines with Eu of 90.59 and 143.37 K and two mutually blended H2CS lines with Eu of 209.09 K were selected for a reliable parameters fitting, as they are separated from other molecular lines and spectrally resolved with higher signal to noise ratios.

By inputting presupposed parameters (the deconvolved size of the continuum core, rotation temperature, source-averaged column density, FWHM, and Voff\rm V_{off}), we utilized the XCLASS (Möller et al., 2017) software to obtain the best-fit parameters for rotation temperature, source-averaged H2CS column density, FWHM, and Voff\rm V_{off} for cores with \geq 3 H2CS lines. The Voff\rm V_{off} range was approximately determined relative to the systemic velocity Vlsr\rm V_{lsr} of each source, while the range of the other three parameters was constrained through manual matching. For cores with two velocity components, we set two H2CS components with different parameters for simultaneous fitting, the final column density is the sum of the two components, and the temperature of the velocity component with higher temperature is used to calculate the column density of H2. And for the cores with only one JKa,Kc=100,1090,9\rm J_{K_{a},K_{c}}=10_{0,10}-9_{0,9} line, the temperature was set to the same as that of the natal clump (with an error of 20%), and subsequently the column density parameter was fitted separately.

We also calculated the optimal outcomes using two algorithm namely Genetic algorithm (GA) and Levenberg-Marquardt algorithm (LM) and determined the errors of temperatures and column densities using the Markov chain Monte Carlo algorithm (MCMC). All fitted H2CS parameters are summarized in columns (5) to (8) of Table 2.

Here we define line-rich cores as those with abundant molecular spectral lines (at least 50 lines) and potential CH3OCHO detection (Kurtz et al., 2000; Ceccarelli, 2004; Jørgensen et al., 2020). Warm cores have H2CS detection but no CH3OCHO detection. Cold cores have only one or no H2CS line. Among the 145 cores, 28 cores are considered line-rich with at least 50 lines detected in SPWs 29 and 31 (Liu et al., 2023). Additionally, 25 less-line-rich cores (warm cores) and 92 cores with several molecular lines (cold cores) are also found. We used the XCLASS (Möller et al., 2017) software for H2CS line identification. Among the 145 cores, 72 have H2CS line emission. Multiple H2CS lines can be detected in all line-rich and warm cores, and 19 out of 92 cold cores only have single H2CS line transition. The reason whether a core has H2CS transition detected may be attributed to the relationship between the continuum peak flux (FP) and mass of the core (Mcore). Figure 2 illustrates 145 cores that the peak flux of 84.7% (61 out of 72) cores containing H2CS meets Log FP >> 0.3 Log Mcore + 1.2 and the peak flux of 84.9% (62 out of 73) cores without H2CS has Log FP << 0.3 Log Mcore + 1.2.

Figure 3 shows typical H2CS lines in I16076 for ”line-rich core”, ”warm core”, and ”cold core”. These three types of cores show different number and emission intensity of molecular lines. The fitting results of the other cores are shown in Figure A2.

\startlongtable
Table 2: Parameters of fitted H2CS molecules among detected cores
ID IRAS Core θdeconv\rm\theta_{\rm deconv} TH2CS\rm T_{\rm H_{2}CS} NH2CS\rm N_{H_{2}CS} FWHM Voff\rm V_{\rm off} TypeaaColumn (9) presents the type of each core: G means neither H2CS nor CH3OCHO is detected; H means H2CS is detected but CH3OCHO is not detected; C means both H2CS and CH3OCHO are detected. TCH3OCHO\rm T_{\rm CH_{3}OCHO} NH2\rm N_{H_{2}} fH2CS\rm f_{H_{2}CS}
(″) (K) (cm2\rm cm^{\rm-2}) (km s1\rm s^{\rm-1}) (km s1\rm s^{\rm-1}) (K) (×1023\times 10^{23}cm2\rm cm^{-2})
1 I14382-6017 5 1.13 47±14 (6.8±3.5)×1013\times 10^{13} 2.0 -59.8 H 0.1±0.0 (6.2±3.2)×1010\times 10^{-10}
2 I14382-6017 6 1.22 56±16 (1.6±0.3)×1014\times 10^{14} 2.6 -59.2 H 2.2±0.7 (7.3±2.5)×1010\times 10^{-10}
3 I14382-6017 7 1.34 50±17 (7.1±0.2)×1013\times 10^{13} 1.4 -59.2 H 1.2±0.4 (6.1±2.1)×1010\times 10^{-10}
4 I14382-6017 8 1.48 50±15 (5.5±1.1)×1013\times 10^{13} 3.0 -59.7 H 0.7±0.2 (7.6±2.8)×1010\times 10^{-10}
5 I14382-6017 11 1.37 51±5 (4.1±2.6)×1013\times 10^{13} 3.0 -59.2 H 1.8±0.2 (2.3±1.5)×1010\times 10^{-10}
6 I14498-5856 2 2.47 109±4 (7.0±0.1)×1015\times 10^{15} 6.1 -51.3 C 102±6 2.1±0.2 (3.4±0.3)×108\times 10^{-8}
7 I14498-5856 4 1.55 26±5 (1.1±0.2)×1014\times 10^{14} 3.3 -48.8 G 2.5±0.5 (4.5±1.2)×1010\times 10^{-10}
8 I14498-5856 5 1.63 26±5 (6.0±1.5)×1013\times 10^{13} 2.0 -47.5 G 1.9±0.4 (3.2±1.0)×1010\times 10^{-10}
9 I15520-5234 1 2.22 60±16 (1.0±0.2)×1014\times 10^{14} 2.4 -40.3 H 0.7±0.2 (4.4±1.1)×109\times 10^{-9}
55±11 (2.1±0.2)×1014\times 10^{14} 2.5 -44.7
10 I15520-5234 2 0.75 60±14 (1.3±0.2)×1014\times 10^{14} 2.5 -46.2 H 1.5±0.4 (1.7±0.6)×109\times 10^{-9}
43±13 (1.2±0.4)×1014\times 10^{14} 2.3 -43.1
11 I15520-5234 3 1.61 50±8 (1.1±0.2)×1014\times 10^{14} 3.0 -43.7 H 0.5±0.1 (2.3±1.1)×109\times 10^{-9}
12 I15520-5234 4 3.04 78±7 (2.7±0.1)×1015\times 10^{15} 3.5 -43.5 C 77±11 2.7±0.3 (1.5±0.1)×108\times 10^{-8}
64±8 (1.3±0.1)×1015\times 10^{15} 3.2 -39.7
13 I15520-5234 5 1.21 42±10 (3.1±1.5)×1014\times 10^{14} 2.3 -42.0 H 1.0±0.2 (3.2±1.8)×109\times 10^{-9}
14 I15520-5234 6 2.41 70±3 (3.6±0.1)×1015\times 10^{15} 3.4 -40.5 C 80±10 1.6±0.1 (2.3±0.2)×108\times 10^{-8}
15 I15520-5234 7 1.45 79±3 (4.1±0.1)×1015\times 10^{15} 3.8 -39.6 C 78±10 2.8±0.4 (1.5±0.2)×108\times 10^{-8}
16 I15520-5234 8 1.39 100±4 (2.2±0.3)×1015\times 10^{15} 3.8 -44.2 C 104±6 1.9±0.3 (1.2±0.3)×108\times 10^{-8}
17 I15520-5234 9 1.67 107±4 (5.6±0.1)×1015\times 10^{15} 1.8 -44.3 C 102±4 1.8±0.1 (3.1±0.2)×108\times 10^{-8}
18 I15520-5234 10 1.63 74±18 (1.9±0.1)×1015\times 10^{15} 2.6 -39.1 C 70±36 1.1±0.2 (3.5±0.4)×108\times 10^{-8}
63±11 (1.8±0.2)×1015\times 10^{15} 1.6 -42.8
19 I15520-5234 11 2.43 75±12 (1.6±0.2)×1015\times 10^{15} 2.7 -42.9 C 105±37 1.1±0.2 (1.4±0.3)×108\times 10^{-8}
20 I15520-5234 12 1.91 62±14 (3.0±1.3)×1014\times 10^{14} 2.4 -42.5 H 0.4±0.1 (1.7±0.4)×108\times 10^{-8}
46±13 (3.8±1.0)×1014\times 10^{14} 2.7 -46.1
21 I15520-5234 13 2.20 60±16 (2.3±0.5)×1014\times 10^{14} 3.0 -41.0 H 0.5±0.1 (4.9±1.8)×109\times 10^{-9}
22 I15520-5234 15 1.04 50±9 (8.2±4.0)×1013\times 10^{13} 2.7 -42.7 H 0.8±0.2 (1.1±0.6)×109\times 10^{-9}
23 I15596-5301 11 1.19 28±5 (8.4±1.8)×1013\times 10^{13} 2.8 -72.9 G 2.4±0.4 (3.4±1.0)×1010\times 10^{-10}
24 I15596-5301 12 1.09 28±5 (5.6±1.2)×1013\times 10^{13} 0.7 -72.5 G 2.5±0.5 (2.2±0.6)×1010\times 10^{-10}
25 I15596-5301 13 1.02 80±8 (1.7±0.2)×1015\times 10^{15} 4.5 -73.0 C 100±23 0.7±0.1 (2.4±0.5)×108\times 10^{-8}
26 I15596-5301 15 1.17 28±5 (1.7±0.4)×1014\times 10^{14} 1.2 -71.6 G 1.9±0.3 (8.8±2.6)×1010\times 10^{-10}
27 I15596-5301 16 1.50 28±5 (9.5±2.1)×1013\times 10^{13} 2.3 -71.2 G 0.9±0.2 (1.0±0.3)×109\times 10^{-9}
28 I15596-5301 17 1.73 85±8 (1.5±0.1)×1015\times 10^{15} 3.0 -77.7 H 0.5±0.1 (3.8±0.9)×108\times 10^{-8}
66±13 (3.2±0.2)×1014\times 10^{14} 2.4 -73.0
29 I15596-5301 18 1.41 99±3 (4.7±0.5)×1015\times 10^{15} 5.2 -71.3 C 110±39 1.7±0.1 (2.8±0.4)×108\times 10^{-8}
30 I15596-5301 20 0.70 50±18 (5.0±0.1)×1014\times 10^{14} 4.5 -74.9 H 3.7±1.5 (1.4±0.6)×109\times 10^{-9}
31 I15596-5301 21 1.66 28±5 (1.9±0.4)×1014\times 10^{14} 2.8 -74.9 G 0.8±0.1 (2.5±0.7)×109\times 10^{-9}
32 I16060-5146 2 1.33 32±6 (5.8±1.0)×1013\times 10^{13} 1.5 -93.4 G 2.8±0.5 (2.1±0.6)×1010\times 10^{-10}
33 I16060-5146 4 1.33 110±13 (4.7±0.1)×1015\times 10^{15} 4.7 -96.5 C 136±4 12.1±2.1 (3.9±0.7)×109\times 10^{-9}
34 I16060-5146 5 1.62 110±6 (5.6±0.1)×1015\times 10^{15} 3.0 -84.8 C 112±7 7.6±0.7 (7.3±0.6)×109\times 10^{-9}
35 I16060-5146 7 1.44 121±4 (1.2±0.3)×1015\times 10^{15} 6.4 -95.8 H 12.5±1.6 (9.6±2.7)×1010\times 10^{-10}
36 I16060-5146 8 1.39 93±4 (1.6±0.1)×1015\times 10^{15} 6.4 -86.3 C 110±2 11.8±1.3 (1.4±0.2)×109\times 10^{-9}
37 I16060-5146 9 0.92 86±11 (2.0±0.1)×1015\times 10^{15} 4.4 -92.9 H 3.3±0.5 (1.1±0.1)×108\times 10^{-8}
81±9 (1.7±0.1)×1015\times 10^{15} 5.2 -86.9
38 I16060-5146 10 0.94 32±6 (9.8±1.7)×1013\times 10^{13} 1.5 -87.8 G 2.3±0.4 (4.3±1.1)×1010\times 10^{-10}
39 I16060-5146 11 1.43 40±3 (1.3±0.1)×1014\times 10^{14} 2.7 -97.4 H 2.5±0.2 (5.3±0.7)×1010\times 10^{-10}
40 I16060-5146 12 1.10 32±6 (2.7±0.5)×1014\times 10^{14} 2.5 -94.3 G 3.3±0.6 (8.1±2.2)×1010\times 10^{-10}
41 I16060-5146 13 1.55 46±7 (2.7±1.0)×1014\times 10^{14} 2.2 -92.4 H 0.9±0.2 (2.9±1.2)×109\times 10^{-9}
42 I16071-5142 5 0.59 23±4 (4.5±1.3)×1014\times 10^{14} 3.5 -84.4 G 7.8±1.4 (5.8±2.0)×1010\times 10^{-10}
43 I16071-5142 6 1.34 95±4 (2.6±0.1)×1016\times 10^{16} 8.7 -87.2 C 127±10 7.5±1.2 (3.5±0.6)×108\times 10^{-8}
44 I16076-5134 8 1.98 30±6 (1.2±0.3)×1014\times 10^{14} 2.4 -86.1 G 2.1±0.5 (5.6±1.8)×1010\times 10^{-10}
45 I16076-5134 9 0.94 81±18 (4.5±1.5)×1014\times 10^{14} 3.2 -89.5 C 87±11 1.9±0.4 (2.4±1.0)×109\times 10^{-9}
46 I16076-5134 10 2.30 81±8 (8.9±1.0)×1014\times 10^{14} 5.6 -86.4 H 0.2±0.0 (3.9±0.7)×108\times 10^{-8}
47 I16076-5134 11 1.86 98±3 (7.1±0.1)×1014\times 10^{14} 8.5 -87.2 C 98±10 1.9±0.2 (3.7±0.3)×109\times 10^{-9}
48 I16076-5134 12 1.20 42±12 (1.4±0.6)×1014\times 10^{14} 1.3 -89.9 H 0.7±0.2 (1.9±1.0)×109\times 10^{-9}
49 I16076-5134 14 0.92 30±6 (2.8±0.6)×1014\times 10^{14} 3.5 -87.2 G 1.0±0.3 (2.7±1.0)×109\times 10^{-9}
50 I16076-5134 15 1.28 68±5 (8.4±1.2)×1014\times 10^{14} 3.0 -87.4 H 1.3±0.1 (6.4±1.1)×109\times 10^{-9}
51 I16272-4837 4 0.89 89±3 (1.5±0.1)×1016\times 10^{16} 3.2 -46.6 C 106±3 3.0±0.2 (5.1±0.5)×108\times 10^{-8}
52 I16272-4837 5 1.16 23±4 (8.5±2.5)×1013\times 10^{13} 2.0 -45.5 G 2.5±0.5 (3.5±1.2)×1010\times 10^{-10}
53 I16272-4837 6 0.85 90±9 (6.8±0.2)×1015\times 10^{15} 8.0 -48.4 C 102±17 4.0±0.5 (1.7±0.2)×108\times 10^{-8}
54 I16272-4837 7 0.81 71±5 (1.4±0.1)×1015\times 10^{15} 2.4 -46.4 C 82±27 5.7±0.4 (2.5±0.3)×109\times 10^{-9}
55 I16272-4837 8 0.80 112±6 (3.6±0.1)×1016\times 10^{16} 3.1 -46.4 C 115±4 15.7±1.3 (2.3±0.2)×108\times 10^{-8}
56 I16351-4722 4 0.69 70±5 (8.4±0.3)×1014\times 10^{14} 1.8 -42.0 C 90±9 2.4±0.2 (3.5±0.3)×109\times 10^{-9}
57 I16351-4722 5 1.25 30±6 (9.8±2.0)×1013\times 10^{13} 1.5 -42.4 G 1.8±0.4 (5.5±1.6)×1010\times 10^{-10}
58 I16351-4722 6 1.74 87±12 (3.0±0.2)×1015\times 10^{15} 4.8 -43.3 C 70±4 1.8±0.3 (2.0±0.3)×108\times 10^{-8}
76±18 (5.3±0.2)×1014\times 10^{14} 2.2 -38.1
59 I16351-4722 7 2.04 101±1 (3.0±0.1)×1016\times 10^{16} 5.5 -39.6 C 170±10 1.9±0.3 (1.6±0.3)×107\times 10^{-7}
60 I16351-4722 8 1.83 81±10 (5.6±0.3)×1015\times 10^{15} 4.8 -39.0 C 91±4 2.3±0.3 (2.5±0.3)×108\times 10^{-8}
61 I16351-4722 9 1.76 56±4 (4.8±0.2)×1014\times 10^{14} 1.0 -37.7 H 1.6±0.1 (3.0±0.3)×109\times 10^{-9}
62 I16351-4722 10 1.33 58±7 (4.2±0.8)×1014\times 10^{14} 4.0 -38.1 H 1.8±0.2 (2.4±0.6)×109\times 10^{-9}
63 I16351-4722 11 0.70 78±5 (4.7±0.1)×1014\times 10^{14} 3.0 -37.6 H 0.4±0.0 (1.1±0.1)×108\times 10^{-8}
64 I16351-4722 12 1.10 51±12 (3.4±1.1)×1014\times 10^{14} 3.9 -40.1 H 1.4±0.3 (2.4±1.0)×109\times 10^{-9}
65 I17204-3636 4 0.98 25±5 (1.8±0.5)×1014\times 10^{14} 3.0 -16.9 G 0.8±0.2 (2.2±0.8)×109\times 10^{-9}
66 I17204-3636 5 1.28 25±5 (7.0±2.0)×1013\times 10^{13} 2.0 -16.9 G 1.0±0.2 (6.9±2.5)×1010\times 10^{-10}
67 I17204-3636 9 1.55 88±7 (3.0±0.2)×1014\times 10^{14} 3.0 -17.5 H 1.5±0.1 (2.0±0.2)×109\times 10^{-9}
68 I17220-3609 3 1.48 25±5 (2.4±0.7)×1014\times 10^{14} 2.5 -94.1 G 4.1±0.9 (5.8±2.1)×1010\times 10^{-10}
69 I17220-3609 7 1.70 68±5 (3.8±0.6)×1014\times 10^{14} 5.0 -94.6 H 4.8±0.5 (8.0±1.5)×1010\times 10^{-10}
70 I17220-3609 9 2.24 100±9 (2.5±0.1)×1016\times 10^{16} 7.2 -96.1 C 107±13 4.9±0.5 (5.1±0.5)×108\times 10^{-8}
71 I17220-3609 10 1.84 117±6 (2.4±1.2)×1016\times 10^{16} 7.4 -96.7 C 94±3 6.6±0.5 (3.7±1.8)×108\times 10^{-8}
72 I17220-3609 14 1.91 25±5 (1.5±0.4)×1014\times 10^{14} 3.0 -95.1 G 1.8±0.4 (8.2±2.7)×1010\times 10^{-10}

Note. — IRAS sources and extracted cores ID are listed in column (2) and (3). The calculated deconvolved source sizes θ\theta are listed in column (4). The fitted rotational temperatures, column densities, FWHM, and velocity offset (Voff\rm V_{off}) of H2CS are listed in column (5)–(8), for 8 cores with two velocity components, the parameters are listed simultaneously. The fitted rotational temperatures of CH3OCHO are list in column (10) (C. Li et al. 2023, submitted to ApJ). The peak column densities of H2 are shown in column (11) and the abundances of H2CS relative to H2 are shown in column (12).

Refer to caption
Figure 3: Example of I16076 spectra encountered from the ALMA Band-7 survey. The black lines are observed spectra at sky frequencies and the red lines are synthetic spectra of the best fitting parameters for H2CS lines. The three typical spectra of “line-rich core”, “warm core” and “cold core” are characterized by evidently rich, modest, and scarce of molecular lines. Compared with these three cores, owing to more molecular emission lines and wider line widths, core 11 has enhanced line confusion. Since the rms noise level in the spectrum is about 4.7 mJy per channel, most of the features seen are unambiguous line emission.

3.3 H2CS Spatial Distribution

Refer to caption
Figure 4: 345GHz continuum maps of the 11 sources overlaid with the Moment 0 contours of H2CS JKa,Kc=100,1090,9\rm J_{K_{a},K_{c}}=10_{0,10}-9_{0,9} transition. The contours start with 4 rms and increase with the following power-law function D=3×Np+2D=3\times N^{p}+2 where DD is the dynamical range of the Moment 0 map, NN is the number of contours used (11 in this case) and p=Log(Vmax/(4×rms))/Log(N1)p=Log(V_{max}/(4\times rms))/Log(N-1) (where VmaxV_{max} is the peak intensity of the Moment 0 map) is the power index. The magnitude of the noise level of the Moment 0 maps associated with each source is as follows: 17, 37, 55, 40, 60, 55, 35, 80, 40, 36 and 70 mJy/beam.km/s. The corresponding beam sizes are in the bottom left corner and the scalebars are in the bottom right corner.

Figure 4 shows the 870 μ\mum continuum maps of the 11 protocluster clumps, overlaid with contours of the H2CS JKa,Kc=100,1090,9\rm J_{K_{a},K_{c}}=10_{0,10}-9_{0,9} Moment 0 (integrated intensity) maps. For the continuum maps, we zoom in on the central regions of the protoclusters to see the intensities of H2CS emissions in detail. The moment 0 maps demonstrate that H2CS is widely distributed throughout the clumps.

Among our targeted 11 sources, I14382 and I17204 are 2 sources with a few molecular emission lines and only contain warm cores and cold cores, and H2CS is distributed within very small areas around warm cores. For the two sources I14498 and I15596, the emissions of H2CS molecule are mainly around the compact regions of the line-rich cores. And for the remaining 7 sources, the spatial distribution of H2CS emission is similar with the dust emission. The observations revealed that the emission of H2CS is originated from extended regions surrounding both compact line-rich cores and warm cores and also can cover plenty of regions of the cold cores.

3.4 Temperature Structure

Temperature is an indicator of the interstellar chemical complexity and star formation process (Sánchez-Monge et al., 2017; Gorai et al., 2020; Liu et al., 2020a; Peng et al., 2022). It affects the mass estimation of dense gas. It also provides the main thermal pressure source within molecular gas (Rosen et al., 2020; Rosen, 2022), which counteracts gravity in the early stages of star formation. Thus, accurate temperature measurements enable an appropriate understanding of star formation mechanism. H2CS can provide such an useful tracer of gas temperature.

Table 3 lists the number of these three-type cores. The H2CS temperature ranges from 23 to 121 K for all cores. The range is 68 to 121 K for line-rich cores and 40 to 88 K for warm cores. The temperatures for cold cores range from 23 to 32 K, which are equal to the clump temperatures. Compared to the temperatures of CH3OCHO of line-rich cores, H2CS shows no significant temperature differences within uncertainties, because the molecule is thermalized in line-rich core regions. Therefore, we choose the higher gas temperature of H2CS and CH3OCHO as Td\rm T_{d}. In addition, H2CS is more widely distributed than CH3OCHO in protoclusters and can applicably determine the temperature of cold cores, warm cores and line-rich cores, indicating that H2CS is a more efficient temperature tracer as it can trace more extended regions than CH3OCHO.

Table 3: Numbers of three-type cores
Sources Cores Total
Line-rich Warm Cold
IRAS 14382-6017 0 5 6 11
IRAS 14498-5856 1 0 6 7
IRAS 15520-5234 7 7 1 15
IRAS 15596-5301 2 2 23 27
IRAS 16060-5146 4 3 6 13
IRAS 16071-5142 1 0 6 7
IRAS 16076-5134 2 3 10 15
IRAS 16272-4837 4 0 5 9
IRAS 16351-4722 4 4 4 12
IRAS 17204-3636 0 1 11 12
IRAS 17220-3609 3 0 14 17
Total 28 25 92 145

4 Discussion

4.1 H2CS Column Densities and Abundances

Based on Table 2 and Figure 5, several significant characteristics can be found among line-rich, warm, and cold cores by comparing NH2\rm N_{H_{2}} and NH2CS\rm N_{H_{2}CS} parameters. For line-rich cores, NH2CS\rm N_{H_{2}CS} ranges from 3.8×10143.8\times 10^{14} to 3.6×10163.6\times 10^{16} cm2\rm cm^{-2}, with a mean of 8.0×10158.0\times 10^{15} cm2\rm cm^{-2}. For warm and cold cores, NH2CS\rm N_{H_{2}CS} ranges from 2.1×10132.1\times 10^{13} to 1.9×10151.9\times 10^{15} cm2\rm cm^{-2} and 5.6×10135.6\times 10^{13} to 4.5×10144.5\times 10^{14} cm2\rm cm^{-2}, with means of 4.0×10144.0\times 10^{14} and 1.5×10141.5\times 10^{14} cm2\rm cm^{-2}, respectively. The line-rich cores have higher NH2CS\rm N_{H_{2}CS} values than the other two types of cores. The warm cores have a wider range of NH2CS\rm N_{H_{2}CS} than the cold ones, but the values overlap, despite the mean NH2CS\rm N_{H_{2}CS} of warm cores being much higher (about twice) than that of cold cores.

The abundance of H2CS versus H2 (fH2CS\rm f_{H_{2}CS}) is calculated via NH2CS\rm N_{H_{2}CS}/NH2\rm N_{H_{2}}. Apparently, fH2CS\rm f_{H_{2}CS} varies similarly to NH2CS\rm N_{H_{2}CS}. Numerous studies have analyzed NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} in diverse massive star formation regions. Table A3 lists the results of previous studies on H2CS in line-rich cores of massive star formation regions. We combine these 7 line-rich cores with our 28 line-rich core samples, resulting in 35 line-rich core samples. Among the line-rich cores, Mon R 2 IRS 3 A (Fuente et al., 2021) and Sgr B2 (Möller et al., 2021) have lower NH2CS\rm N_{H_{2}CS} than the line-rich cores studied here. Except for these 2 line-rich cores, the other 33 have similar NH2CS\rm N_{H_{2}CS} ranges from 4.5×10144.5\times 10^{14} to 3.6×10163.6\times 10^{16} cm2\rm cm^{-2}. These results indicate that NH2CS\rm N_{H_{2}CS} varies greatly among different line-rich cores within and outside the Galaxy.

Similarly, due to physical differences, NH2\rm N_{H_{2}} can vary greatly among different interstellar environments, leading to variation in fH2CS\rm f_{H_{2}CS}. It is worth noting that I16351 core7 has a very high fH2CS\rm f_{H_{2}CS} of 1.6×1071.6\times 10^{-7}. The reason for this large value is its high NH2CS\rm N_{H_{2}CS} and low NH2\rm N_{H_{2}}. Except for this line-rich core, the abundance values of the other 34 are within the same range, from 1.7×10101.7\times 10^{-10} to 5.1×1085.1\times 10^{-8}.

4.2 Temperature-Abundance Relation

Through the results collated in Table 2, we can clearly find that temperature has a significant effect on the value of H2CS abundance. Considering two variables X and Y, the formula for Pearson’s correlation coefficient r can be expressed as:

r=i=1n(XiX¯)(YiY¯)(i=1n(XiX¯)2)1/2(i=1n(YiY¯)2)1/2,r=\frac{\sum^{n}_{i=1}(X_{i}-\bar{X})(Y_{i}-\bar{Y})}{(\sum^{n}_{i=1}(X_{i}-\bar{X})^{2})^{1/2}(\sum^{n}_{i=1}(Y_{i}-\bar{Y})^{2})^{1/2}}, (4)

where X¯\rm\bar{X} and Y¯\rm\bar{Y} are the mean values of X and Y. The value of Pearson’s correlation coefficient for temperature and fH2CS\rm f_{H_{2}CS} is 0.71. The value of fH2CS\rm f_{H_{2}CS} relies on temperature, and the corresponding trend line shown in left panel of Figure 5 is fitted as,

Log(f\textH2CS)=0.02×T9.76,Log(f_{\text{H_{2}CS}})=0.02\times T-9.76, (5)

with uncertainties of 9.4% and 1.3% for slope and intercept. We find the abundance tends to increase with increasing temperature. H2CS molecule is thought to be trapped on icy dust grains and principally form on dust grain surface at low temperatures (Jørgensen et al., 2020), and is generally desorbed from the grain surface into gas-phase as the temperature increases (Vidal & Wakelam, 2018; Vidal et al., 2019). The chemical property of H2CS in the hot regions is to a high degree inherited from the surrounding cold dust regions (el Akel et al., 2022). Therefore fH2CS\rm f_{H_{2}CS} would be a good tracer of gas temperature.

4.3 Column Density-Abundance Relation

Refer to caption
Refer to caption
Figure 5: The left panel shows the correlation between temperature and fH2CS\rm f_{H_{2}CS} and the right panel shows the correlation between NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS}, which are examined in this study. The data points are represented by different colored dots: red dots represent line-rich cores, blue dots represent warm cores and green dots represent cold cores. The best fitted line is shown by a black slash. The dashed lines are the fitted lines at maximum uncertainties.

Since NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} show the same trend in all types of cores, it would be pertinent to discuss the relationship of NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS}. The value of Pearson’s correlation coefficient for NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} is 0.88, indicating a high correlation between H2CS and H2.

The correlation between NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} is shown in right panel of Figure 5. We can see that NH2CS\rm N_{H_{2}CS} is sensitive to changes in fH2CS\rm f_{H_{2}CS}. Thus, the trend line of NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} can be expressed using the following equation,

Log(f\textH2CS)=0.80×Log(N\textH2CS)20.39,Log(f_{\text{H_{2}CS}})=0.80\times Log(N_{\text{H_{2}CS}})-20.39, (6)

with uncertainties of 5.3% and 3.1% for slope and intercepts. The red dots represent line-rich cores that have abundant organic molecules and high temperatures, column densities, and abundances of H2CS. The line-rich cores have higher NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} than warm cores and cold cores. Additionally, warm cores are largely scattered above the line, while cold cores are below the line. This indicates that warm cores have higher fH2CS\rm f_{H_{2}CS} than cold cores at same NH2CS\rm N_{H_{2}CS}.

This trend suggests that different regions have varying chemical characteristics and that the H2CS abundances are enhanced from cold cores, warm cores to line-rich cores. Additionally, this proportional relationship can provide insights into the distribution and formation of H2CS in interstellar space. Further observations and studies are still needed to better understand the physical and chemical properties of H2CS in space.

5 Conclusions

We have presented the continuum and H2CS line observations using the ALMA Band-7 survey toward 11 massive protocluster sources. The observations have detected a total of 145 continuum dense cores. Of these, 72 have H2CS emission, including 28 line-rich cores, 25 warm cores, and 19 cold cores. The major results are summarized as follows:

(1) 72 cores with H2CS in our sample have column densities exceed a threshold value for star formation, stating that H2CS can be widely distributed in star-forming regions with different physical environments.

(2) Spatial distribution of H2CS are revealed among the 11 sources. H2CS emissions come from extended areas around dense rich-line cores and warm cores, and can also cover large areas of cold cores.

(3) H2CS is found extensively distributed in protoclusters and fH2CS\rm f_{H_{2}CS} increases with temperature from cold cores, warm cores to line-rich cores, indicating that H2CS is a good tracer for temperature in a variety of complex physical environments.

(4) NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} are found tightly correlated among different types of cores, showing that the H2CS abundances are enhanced from cold cores, warm cores to line-rich cores in star forming regions.

Our ALMA observations of the H2CS line provide a substantial dataset of massive protoclusters with high angular resolution, which plays a crucial role in studying the formation mechanism and spatial distribution of H2CS in interstellar space. Further observations and studies will definitely enhance our understanding of the H2CS formation network and contribute to advancements in astrochemistry.

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2017.1.00545.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work has been supported by National Key R&D Program of China (No.2022YFA1603101), and by NSFC through the grants No.12033005, No.12073061, No.12122307, and No.12103045. S.-L. Qin thanks the Xinjiang Uygur Autonomous Region of China for their support through the Tianchi Program. MYT acknowledges the support by NSFC through grants No.12203011, and Yunnan provincial Department of Science and Technology through grant No.202101BA070001-261. T. Zhang thanks the student’s exchange program of the Collaborative Research Centre 956, funded by the Deutsche Forschungsgemeinschaft (DFG). ALMA

Appendix A Cores identification and 2D Gaussian fitting

The complete results of cores identification of the 11 IRAS sources are shown in Figure 1 and Figure A1. The background color maps show the ALMA 345 GHz continuum flux in J2000.0 coordinates. The overlaid black contours of flux start from 8 rms and increase with power-law function. Each central location of identified cloud core is marked with yellow cross and the corresponding ID number is labeled beside the cross. The deconvolved parameters of each core was obtained from 2D Gaussian fitting tool in CASA and the whole parameters of the 145 cores are list in Table A2.

Appendix B The fitted H2CS spectral lines

Figure A2 illustrates the 72 observed molecular lines and the synthetic spectra of the best fitting parameters for H2CS lines. All the nine transitions of H2CS surveyed in ALMA Band-7, which are summarized in Table A2, are only tuned in SPW 31 and so here we present frequency range from roughly 342.95 GHz to 344.00 GHz.

Refer to caption
Figure A1: The same as Figure 1 but for the other researched 10 sources. The magnitude of the noise level of the continuum maps associated with each source is as follows: 1.0, 1.8, 0.5, 2.5, 1.3, 0.6, 1.5, 1.3, 0.6 and 1.7 mJy beam-1.
Refer to caption
Figure A1: (continued)
Refer to caption
Figure A2: The black lines are observed molecular lines and the red lines are synthetic spectra of the best fitting parameters for H2CS lines.
Refer to caption
Figure A2: (continued)
Refer to caption
Figure A2: (continued)
\startlongtable
Table A1: 2D Gaussian Fit Results
ID IRAS Core RA DEC Source size PA Mass Integrated flux Peak intensity Note
(×\arcsec\times\arcsec) () (M\rm M_{\odot}) (mJy) (mJy beam-1)
1 I14382-6017 1 14:42:03.6 -60:30:10.4 1.5×\times1.3 51 25.4±5.0 127±11 42±3
2 I14382-6017 2 14:42:02.5 -60:30:10.2 2.4×\times1.1 100 26.6±5.0 133±7 33±1
3 I14382-6017 3 14:42:01.9 -60:30:09.6 1.2×\times0.6 68 4.6±1.1 23±4 13±1
4 I14382-6017 4 14:42:02.9 -60:30:22.8 1.0×\times0.6 90 7.8±1.4 39±2 24±1
5 I14382-6017 5 14:42:03.1 -60:30:26.1 1.6×\times0.8 69 1.4±0.5 13±3 52±1
6 I14382-6017 6 14:42:02.8 -60:30:27.3 1.5×\times1.0 33 32.4±9.6 380±30 142±9
7 I14382-6017 7 14:42:02.6 -60:30:29.5 1.5×\times1.2 43 20.5±7.0 210±8 71±2
8 I14382-6017 8 14:42:02.4 -60:30:31.3 2.2×\times1.0 10 15.6±4.7 160±6 42±1
9 I14382-6017 9 14:42:02.1 -60:30:34.8 2.8×\times1.3 65 41.8±8.8 209±23 44±4
10 I14382-6017 10 14:42:02.0 -60:30:36.8 1.9×\times0.9 18 14.6±2.6 73±2 23±1
11 I14382-6017 11 14:42:02.1 -60:30:44.5 1.7×\times1.1 174 32.6±4.0 343±26 104±6
12 I14498-5859 1 14:53:42:4 -59:08:46.1 3.6×\times1.3 144 4.1±0.8 108±8 15±1
13 I14498-5859 2 14:53:42.7 -59:08:52:8 3.2×\times1.9 65 21.4±1.7 2830±200 340±22 *
14 I14498-5859 3 14:53:42.8 -59:08:57.7 1.6×\times1.5 40 3.3±0.9 87±17 23±4
15 I14498-5859 4 14:53:42.2 -59:08:57.2 4.1×\times1.6 57 27.3±5.7 716±60 80±6
16 I14498-5859 5 14:53:42.9 -59:09:00.6 1.9×\times1.4 148 8.4±1.7 219±15 50±3
17 I14498-5859 6 14:53:41.6 -59:09:00.2 3.0×\times1.5 50 7.4±1.5 193±14 30±2
18 I14498-5859 7 14:53:40.3 -59:09:06.0 2.8×\times1.6 121 4.0±0.9 104±11 16±2
19 I15520-5234 1 15:55:49.1 -52:42:59.2 2.9×\times1.7 40 3.9±1.1 399±31 42±3
20 I15520-5234 2 15:55:48.8 -52:43:01.7 1.4×\times0.4 16 1.0±0.2 99±4 41±1
21 I15520-5234 3 15:55:49.3 -52:43:02.9 2.0×\times1.3 115 1.5±0.3 128±13 23±2
22 I15520-5234 4 15:55:48.4 -52:43:04.2 3.7×\times2.5 19 30.2±3.2 4130±230 250±13 *
23 I15520-5234 5 15:55:49.3 -52:43:05.7 2.1×\times0.7 87 1.7±0.4 115±7 32±2
24 I15520-5234 6 15:55:48.9 -52:43:06.1 2.9×\times2.0 158 11.2±1.0 1600±120 149±11 *
25 I15520-5234 7 15:55:48.7 -52:43:06.1 1.9×\times1.1 76 7.0±1.0 968±137 217±26 *
26 I15520-5234 8 15:55:48.5 -52:43:06.8 1.6×\times1.2 60 4.3±0.7 819±133 197±26 *
27 I15520-5234 9 15:55:48.4 -52:43:06.5 2.0×\times1.4 119 6.1±0.3 1128±35 200±5 *
28 I15520-5234 10 15:55:48.1 -52:43:06.5 1.9×\times1.4 85 3.4±0.8 440±18 80±3 *
29 I15520-5234 11 15:55:48.6 -52:43:08.5 3.1×\times1.9 63 7.9±1.6 1510±190 142±17 *
30 I15520-5234 12 15:55:47.8 -52:43:09.7 2.8×\times1.3 23 1.8±0.4 190±19 26±2
31 I15520-5234 13 15:55:48.3 -52:43:18.6 3.4×\times1.2 80 2.3±0.7 234±27 29±3
32 I15520-5234 14 15:55:47.8 -52:43:18.3 2.6×\times0.8 0 2.6±0.7 125±21 24±3
33 I15520-5234 15 15:55:47.5 -52:43:17.1 1.2×\times0.9 88 1.0±0.2 81±8 29±2
34 I15596-5301 1 16:03:32.7 -53:09:08.2 2.0×\times1.1 117 11.7±2.3 34±3 7±1
35 I15596-5301 2 16:03:33.3 -53:09:10.2 1.2×\times0.9 167 7.6±1.5 22±2 8±1
36 I15596-5301 3 16:03:33.1 -53:09:12.6 1.9×\times0.7 62 14.1±2.7 41±3 11±1
37 I15596-5301 4 16:03:32.4 -53:09:13.0 1.7×\times0.8 145 7.9±1.5 23±1 6±1
38 I15596-5301 5 16:03:32.4 -53:09:14.1 1.6×\times0.8 55 9.3±1.8 27±2 8±1
39 I15596-5301 6 16:03:29.9 -53:09:15.2 0.7×\times0.3 116 8.9±1.7 26±2 18±1
40 I15596-5301 7 16:03:32.9 -53:09:19.5 1.6×\times0.7 111 28.2±5.1 82±2 25±1
41 I15596-5301 8 16:03:33.2 -53:09:21.1 1.9×\times1.0 12 22.0±4.2 64±4 14±1
42 I15596-5301 9 16:03:33.2 -53:09:22.2 2.0×\times1.0 115 16.9±3.1 49±2 10±1
43 I15596-5301 10 16:03:31.8 -53:09:18.8 1.0×\times0.7 24 6.5±1.2 19±1 9±1
44 I15596-5301 11 16:03:32.6 -53:09:26.7 1.5×\times1.0 76 61.6±11.1 179±4 51±5
45 I15596-5301 12 16:03:31.9 -53:09:22.8 1.4×\times0.9 139 53.7±10.4 156±12 49±3
46 I15596-5301 13 16:03:32.6 -53:09:26.6 1.3×\times0.8 67 12.3±1.7 160±16 100±23 *
47 I15596-5301 14 16:03:32.8 -53:09:27.5 1.6×\times0.6 16 20.0±3.7 58±3 19±1
48 I15596-5301 15 16:03:32.7 -53:09:29.3 1.5×\times0.9 177 44.1±7.9 128±3 36±1
49 I15596-5301 16 16:03:32.9 -53:09:31.1 1.8×\times1.3 101 35.8±6.5 104±4 21±1
50 I15596-5301 17 16:03:32.4 -53:09:29.1 2.3×\times1.3 60 24.1±6.9 263±71 42±10
51 I15596-5301 18 16:03:32.1 -53:09:30.3 2.2×\times0.9 66 55.4±4.1 799±54 110±39 *
52 I15596-5301 19 16:03:31.7 -53:09:28.3 0.7×\times0.3 24 6.9±1.4 20±2 14±1
53 I15596-5301 20 16:03:31.7 -53:09:32.1 0.8×\times0.6 63 29.5±11.9 176±32 95±12
54 I15596-5301 21 16:03:32.1 -53:09:33.7 2.0×\times1.4 12 35.8±6.5 104±4 18±1
55 I15596-5301 22 16:03:31.4 -53:09:33.1 1.4×\times1.1 91 16.5±3.1 48±3 13±1
56 I15596-5301 23 16:03:31.3 -53:09:32.9 1.9×\times1.3 65 22.0±4.0 64±2 12±1
57 I15596-5301 24 16:03:30.7 -53:09:33.8 1.2×\times0.7 70 12.7±2.8 37±5 15±1
58 I15596-5301 25 16:03:30.5 -53:09:35.6 1.0×\times0.5 75 5.9±1.1 17±1 9±1
59 I15596-5301 26 16:03:30.2 -53:09:34.3 2.1×\times0.4 79 7.9±1.5 23±1 7±1
60 I15596-5301 27 16:03:32.4 -53:09:41.9 2.3×\times1.0 7 16.2±3.1 47±3 8±1
61 I16060-5146 1 16:09:53.1 -51:54:43.7 2.3×\times1.7 114 17.8±3.9 223±26 28±3
62 I16060-5146 2 16:09:53.1 -51:54:53.2 1.6×\times1.1 119 22.5±4.4 282±16 66±3
63 I16060-5146 3 16:09:53.2 -51:54:55.0 1.5×\times0.7 72 8.4±1.6 105±5 36±1
64 I16060-5146 4 16:09:52.7 -51:54:53.9 1.6×\times1.1 11 99.2±17.0 6520±810 1530±160 *
65 I16060-5146 5 16:09:52.4 -51:54:53.8 2.2×\times1.2 34 93.6±8.0 5000±330 843±48 *
66 I16060-5146 6 16:09:51.9 -51:54:53.7 1.5×\times0.7 58 16.7±3.3 210±11 70±3
67 I16060-5146 7 16:09:52.6 -51:54:55.2 1.6×\times1.3 177 120.5±15.7 6990±880 1460±150 *
68 I16060-5146 8 16:09:52.4 -51:54:55.6 1.6×\times1.2 142 105.0±11.4 5500±550 1220±100 *
69 I16060-5146 9 16:09:53.0 -51:54:57.4 1.4×\times0.6 83 12.7±1.6 507±8 188±2
70 I16060-5146 10 16:09:53.7 -51:55:00.7 1.1×\times0.8 13 9.3±1.8 117±6 45±2
71 I16060-5146 11 16:09:53.5 -51:54:59.0 1.7×\times1.2 80 23.4±2.3 389±25 85±5
72 I16060-5146 12 16:09:53.2 -51:54:59.6 1.5×\times0.8 58 18.6±3.6 234±11 68±3
73 I16060-5146 13 16:09:52.6 -51:55:02.4 2.0×\times1.2 137 10.3±1.7 203±12 37±2
74 I16071-5142 1 16:10:59.0 -51:50:03.2 0.9×\times0.7 45 7.7±1.7 62±8 29±3
75 I16071-5142 2 16:10:59.4 -51:50:06.9 1.5×\times0.4 50 5.9±1.2 48±5 20±1
76 I16071-5142 3 16:10:59.2 -51:50:07.7 0.9×\times0.7 54 5.9±1.1 48±2 23±1
77 I16071-5142 4 16:10:59.3 -51:50:10.5 2.1×\times0.6 180 28.7±5.5 232±18 56±4
78 I16071-5142 5 16:10:59.4 -51:50:16.6 0.7×\times0.5 0 12.6±2.3 102±6 60±2
79 I16071-5142 6 16:10:59.8 -51:50:23.1 1.8×\times1.0 164 62.9±9.9 3840±580 849±107 *
80 I16071-5142 7 16:10:59.4 -51:50:34.5 1.5×\times0.6 139 8.9±1.8 72±7 24±2
81 I16076-5134 1 16:11:28.6 -51:41:44.9 2.0×\times1.4 57 5.4±1.3 62±9 9±1
82 I16076-5134 2 16:11:26.7 -51:41:44.6 3.2×\times1.0 33 5.0±1.3 58±9 7±1
83 I16076-5134 3 16:11:25.8 -51:41:44.9 1.2×\times0.6 149 2.1±0.5 24±4 8±1
84 I16076-5134 4 16:11:29.1 -51:41:50.0 1.5×\times0.9 86 3.5±0.8 40±5 10±1
85 I16076-5134 5 16:11:26.8 -51:41:50.7 2.0×\times0.8 69 0.9±0.3 10±2 2±1
86 I16076-5134 6 16:11:26.6 -51:41:50.2 2.9×\times1.9 39 12.7±3.0 147±19 11±1
87 I16076-5134 7 16:11:26.4 -51:41:50.2 2.2×\times1.2 161 4.8±1.0 55±1 8±1
88 I16076-5134 8 16:11:26.5 -51:41:52.7 2.3×\times1.7 71 38.9±8.3 449±32 49±3
89 I16076-5134 9 16:11:27.7 -51:41:55.6 0.9×\times0.7 69 5.4±1.2 218±5 93±1 *
90 I16076-5134 10 16:11:26.9 -51:41:56.7 3.1×\times1.7 18 5.7±0.8 214±21 17±2
91 I16076-5134 11 16:11:26.5 -51:41:57.4 2.3×\times1.5 16 30.5±2.6 1410±110 160±11 *
92 I16076-5134 12 16:11:26.2 -51:41:57.3 1.8×\times0.8 70 4.9±1.5 86±10 20±2
93 I16076-5134 13 16:11:25.9 -51:41:57.1 1.6×\times0.6 55 3.8±0.9 44±6 13±1
94 I16076-5134 14 16:11:25.9 -51:41:58.3 1.4×\times0.6 151 4.0±1.1 46±9 15±1
95 I16076-5134 15 16:11:26.6 -51:41:59.5 1.5×\times1.1 113 10.0±0.8 310±11 67±2
96 I16272-4837 1 16:30:57.9 -48:43:40.4 2.6×\times0.9 125 5.2±1.0 139±8 23±1
97 I16272-4837 2 16:30:57.7 -48:43:37.5 1.8×\times0.6 51 3.5±0.7 95±7 28±2
98 I16272-4837 3 16:30:57.6 -48:43:38.3 1.4×\times0.8 110 2.5±0.5 67±4 21±1
99 I16272-4837 4 16:30:57.3 -48:43:40.1 1.0×\times0.8 77 3.3±0.2 549±27 212±8 *
100 I16272-4837 5 16:30:58.4 -48:43:50.9 1.5×\times0.9 173 4.6±0.9 123±10 32±2
101 I16272-4837 6 16:30:58.6 -48:43:51.4 1.2×\times0.6 146 4.0±0.5 638±49 252±14 *
102 I16272-4837 7 16:30:58.7 -48:43:52.6 1.1×\times0.6 128 5.2±0.4 658±19 280±6 *
103 I16272-4837 8 16:30:58.8 -48:43:54.0 0.8×\times0.8 161 14.0±1.2 2560±160 1144±51 *
104 I16272-4837 9 16:30:58.4 -48:43:56.7 1.8×\times0.5 35 3.3±0.6 88±4 27±1
105 I16351-4722 1 16:38:51.2 -47:27:46.2 2.4×\times1.1 112 3.1±0.7 111±12 18±2
106 I16351-4722 2 16:38:50.3 -47:27:47.1 1.1×\times0.8 167 2.6±0.6 95±10 34±3
107 I16351-4722 3 16:38:51.5 -47:27:55.2 1.4×\times0.9 62 1.8±0.4 65±4 18±4
108 I16351-4722 4 16:38:50.8 -47:27:54.1 0.8×\times0.6 52 1.7±0.1 220±9 113±3 *
109 I16351-4722 5 16:38:50.4 -47:27:54.7 1.5×\times1.0 118 4.0±0.8 146±4 35±1
110 I16351-4722 6 16:38:50.6 -47:27:58.1 1.9×\times1.6 8 8.1±1.3 1024±79 144±10 *
111 I16351-4722 7 16:38:50.5 -47:28:00.8 2.2×\times1.9 180 11.6±1.8 3010±470 320±45 *
112 I16351-4722 8 16:38:50.5 -47:28:02.8 2.1×\times1.6 159 11.4±1.4 1511±36 199±4 *
113 I16351-4722 9 16:38:50.6 -47:28:05.3 2.7×\times1.2 119 7.7±0.6 597±10 79±1
114 I16351-4722 10 16:38:50.0 -47:28:02.8 2.0×\times0.9 21 4.7±0.6 378±23 63±4
115 I16351-4722 11 16:38:49.9 -47:28:06.2 0.8×\times0.6 22 0.3±0.1 33±1 17±1
116 I16351-4722 12 16:38:50.1 -47:28:07.7 1.3×\times0.9 174 2.5±0.6 170±9 49±4
117 I17204-3636 1 17:23:51.0 -36:38:55.0 1.7×\times0.9 71 3.4±0.8 80±8 20±2
118 I17204-3636 2 17:23:50.8 -36:38:54.6 2.1×\times1.0 45 5.8±1.3 136±12 25±2
119 I17204-3636 3 17:23:50.3 -36:38:54.1 0.8×\times0.7 88 0.5±0.1 11±2 13±1
120 I17204-3636 4 17:23:50.2 -36:38:55.1 1.2×\times0.8 6 1.4±0.3 32±4 11±1
121 I17204-3636 5 17:23:50.1 -36:38:56.0 1.5×\times1.1 8 3.0±0.7 70±6 17±1
122 I17204-3636 6 17:23:50.8 -36:38:56.6 1.3×\times0.6 6 2.0±0.4 46±2 17±1
123 I17204-3636 7 17:23:50.7 -36:38:58.4 1.7×\times1.1 20 3.4±0.8 79±10 17±2
124 I17204-3636 8 17:23:50.6 -36:38:58.0 2.2×\times0.9 164 2.9±0.6 67±4 13±1
125 I17204-3636 9 17:23:50.2 -36:38:59.9 2.0×\times1.2 74 6.4±0.6 680±38 123±6
126 I17204-3636 10 17:23:50.0 -36:39:01.9 2.4×\times0.9 43 1.7±0.5 39±7 7±1
127 I17204-3636 11 17:23:50.8 -36:39:01.9 2.0×\times1.0 73 5.0±1.0 117±4 24±1
128 I17204-3636 12 17:23:50.6 -36:39:02.5 2.3×\times0.9 75 7.7±1.7 181±16 36±3
129 I17220-3609 1 17:25:23.9 -36:12:30.4 2.0×\times0.9 176 102.4±23.5 407±46 85±8
130 I17220-3609 2 17:25:24.1 -36:12:31.2 1.9×\times1.0 165 40.0±9.6 159±21 33±4
131 I17220-3609 3 17:25:25.6 -36:12:35.0 2.0×\times1.1 134 96.3±20.2 383±24 75±4
132 I17220-3609 4 17:25:24.8 -36:12:35.6 3.7×\times0.8 158 41.3±10.2 164±24 21±3
133 I17220-3609 5 17:25:24.5 -36:12:39.3 1.6×\times0.4 158 21.9±4.6 87±5 32±1
134 I17220-3609 6 17:25:25.7 -36:12:39.5 2.7×\times1.0 85 112.4±25.6 447±49 69±7
135 I17220-3609 7 17:25:25.4 -36:12:42.6 1.8×\times1.6 105 144.7±13.8 1960±120 295±16 *
136 I17220-3609 8 17:25:25.8 -36:12:46.1 1.7×\times0.6 135 21.6±4.8 86±8 25±2
137 I17220-3609 9 17:25:25.3 -36:12:44.1 3.6×\times1.4 83 263.1±25.7 5870±220 554±19 *
138 I17220-3609 10 17:25:25.3 -36:12:45.4 2.6×\times1.3 84 235.2±16.6 4560±220 595±26 *
139 I17220-3609 11 17:25:24.8 -36:12:42.8 2.4×\times0.8 111 54.1±11.1 215±9 43±2
140 I17220-3609 12 17:25:25.2 -36:12:49.6 1.7×\times1.2 96 30.2±9.1 120±27 24±5
141 I17220-3609 13 17:25:25.0 -36:12:49.1 2.4×\times1.5 89 82.8±17.7 329±25 43±3
142 I17220-3609 14 17:25:24.7 -36:12:47.3 2.8×\times1.3 62 70.9±14.4 282±9 36±1
143 I17220-3609 15 17:25:24.5 -36:12:46.4 1.3×\times0.5 123 16.6±3.8 66±7 28±2
144 I17220-3609 16 17:25:24.3 -36:12:45.8 1.2×\times0.7 79 13.8±3.0 55±5 22±1
145 I17220-3609 17 17:25:24.4 -36:12:47.8 1.4×\times0.6 46 15.6±3.7 62±8 23±2

Note. — The rows marked with * indicate that the molecular cloud cores are recognized as line-rich cores.

Table A2: H2CS transitions in ALMA Band-7 survey
Frequency Uncertainty JKa,KcJKa,KcJ^{\prime}_{K^{\prime}_{a},K^{\prime}_{c}}-J^{\prime}_{K^{\prime}_{a},K^{\prime}_{c}} Sij\rm S_{\rm ij}μ2\rm\mu^{2} Log10(Aij)\rm Log_{\rm 10}(A_{\rm ij}) EU
(MHz) (MHz) (D2) (s1\rm s^{-1}) (K)
342946.4239 0.0500 100,1090,9\rm 10_{0,10}-9_{0,9} 27.19603 -3.21610 90.59115
343203.2392 0.0500 105,695,5\rm 10_{5,6}-9_{5,5} 61.19507 -3.34004 419.17248
343203.2392 0.0500 105,595,4\rm 10_{5,5}-9_{5,4} 61.19507 -3.34004 419.17248
343309.8296 0.0500 104,794,6\rm 10_{4,7}-9_{4,6} 22.84414 -3.29045 301.07181
343309.8296 0.0500 104,694,5\rm 10_{4,6}-9_{4,5} 22.84414 -3.29045 301.07181
343322.0819 0.0500 102,992,8\rm 10_{2,9}-9_{2,8} 26.10686 -3.23243 143.30653
343409.9625 0.0500 103,893,7\rm 10_{3,8}-9_{3,7} 74.24497 -3.25530 209.09441
343414.1463 0.0500 103,793,6\rm 10_{3,7}-9_{3,6} 74.24322 -3.25530 209.09476
343813.1683 0.0500 102,892,7\rm 10_{2,8}-9_{2,7} 26.10949 -3.23052 143.37729

Note. — Data source: CDMS. The rest frequencies are listed with an uncertainty of 0.05 MHz. The 100,1090,9\rm 10_{0,10}-9_{0,9}, 103,893,7\rm 10_{3,8}-9_{3,7}, 103,793,6\rm 10_{3,7}-9_{3,6} and 102,892,7\rm 10_{2,8}-9_{2,7} lines are not affected by other molecular lines and can be used for precise parameter estimation. In cold cores, only 100,1090,9\rm 10_{0,10}-9_{0,9} lines are detected. The 105,695,5\rm 10_{5,6}-9_{5,5} and 105,595,4\rm 10_{5,5}-9_{5,4} lines are blended with C2H5CN and NH2CHO molecular lines in most line-rich cores but are not blended in warm cores. The 104,794,6\rm 10_{4,7}-9_{4,6} and 104,694,5\rm 10_{4,6}-9_{4,5} lines are blended with unidentified molecular lines in all line-rich cores and a few warm cores, and may also be blended with (CH2OH)2 molecular lines in some line-rich cores. The 102,992,8\rm 10_{2,9}-9_{2,8} lines are blended with H213CO\rm H_{2}^{13}CO in both line-rich cores and warm cores.

Table A3: The column densities and abundances of H2CS
Sources Cores NH2CSN_{H_{2}CS} fH2CSf_{H_{2}CS} Ref.
(cm2cm^{\rm-2})
Mon R 2 IRS 3 A 8.0×1013\times 10^{13} 3.1×1010\times 10^{-10} Fuente et al. (2021)
Sgr B2 M 2.5×1014\times 10^{14} 2.3×1010\times 10^{-10} Möller et al. (2021)
Orion KL MM1 8.0×1015\times 10^{15} 4.0×109\times 10^{-9} Luo et al. (2019)
G33.92+0.11 A5(1) 7.2×1014\times 10^{14} 1.8×108\times 10^{-8} Minh et al. (2018)
OMC 2 FIR 4 6.7×1014\times 10^{14} 6.7×109\times 10^{-9} Shimajiri et al. (2015)
G9.62+0.19 F 2.6×1015\times 10^{15} 1.2×109\times 10^{-9} Liu et al. (2011)
DR21(OH) MM1a 3.3×1015\times 10^{15} 4.0×109\times 10^{-9} Minh et al. (2011)

Note. — The column densities and abundances of H2CS towards other 7 line-rich cores in 7 different massive star formation regions. The samples cover a variety of massive star-forming regions in the Galaxy, and the rich sample types facilitate our comparison. The shown NH2CS\rm N_{H_{2}CS} and fH2CS\rm f_{H_{2}CS} values are calculated from the peak center of all targets.

References

  • Agúndez et al. (2019) Agúndez, M., Marcelino, N., Cernicharo, J., Roueff, E., & Tafalla, M. 2019, A&A, 625, A147, doi: 10.1051/0004-6361/201935164
  • André et al. (2014) André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and Planets VI, ed. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 27–51, doi: 10.2458/azu_uapress_9780816531240-ch002
  • Astropy Collaboration et al. (2013) Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068
  • Astropy Collaboration et al. (2018) Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
  • Astropy Collaboration et al. (2022) Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74
  • Barnett et al. (2005) Barnett, M., Ramsay, D. A., & Zhu, Q. 2005, J. Chem. Phys., 123, 154310, doi: 10.1063/1.2060708
  • Baug et al. (2020) Baug, T., Wang, K., Liu, T., et al. 2020, ApJ, 890, 44, doi: 10.3847/1538-4357/ab66b6
  • Blake et al. (1994) Blake, G. A., van Dishoeck, E. F., Jansen, D. J., Groesbeck, T. D., & Mundy, L. G. 1994, ApJ, 428, 680, doi: 10.1086/174278
  • Bonfand et al. (2019) Bonfand, M., Belloche, A., Garrod, R. T., et al. 2019, A&A, 628, A27, doi: 10.1051/0004-6361/201935523
  • Bronfman et al. (1996) Bronfman, L., Nyman, L. A., & May, J. 1996, A&AS, 115, 81
  • CASA Team et al. (2022) CASA Team, Bean, B., Bhatnagar, S., et al. 2022, PASP, 134, 114501, doi: 10.1088/1538-3873/ac9642
  • Ceccarelli (2004) Ceccarelli, C. 2004, in Astronomical Society of the Pacific Conference Series, Vol. 323, Star Formation in the Interstellar Medium: In Honor of David Hollenbach, ed. D. Johnstone, F. C. Adams, D. N. C. Lin, D. A. Neufeeld, & E. C. Ostriker, 195
  • Chandra (2012) Chandra, S. 2012, in 39th COSPAR Scientific Assembly, Vol. 39, 305
  • Chira et al. (2014) Chira, R.-A., Smith, R. J., Klessen, R. S., Stutz, A. M., & Shetty, R. 2014, MNRAS, 444, 874, doi: 10.1093/mnras/stu1497
  • el Akel et al. (2022) el Akel, M., Kristensen, L. E., Le Gal, R., et al. 2022, A&A, 659, A100, doi: 10.1051/0004-6361/202141810
  • Endres et al. (2016) Endres, C. P., Schlemmer, S., Schilke, P., Stutzki, J., & Müller, H. S. P. 2016, Journal of Molecular Spectroscopy, 327, 95, doi: 10.1016/j.jms.2016.03.005
  • Faúndez et al. (2004) Faúndez, S., Bronfman, L., Garay, G., et al. 2004, A&A, 426, 97, doi: 10.1051/0004-6361:20035755
  • Frau et al. (2010) Frau, P., Girart, J. M., Beltrán, M. T., et al. 2010, ApJ, 723, 1665, doi: 10.1088/0004-637X/723/2/1665
  • Fuente et al. (2021) Fuente, A., Treviño-Morales, S. P., Alonso-Albi, T., et al. 2021, MNRAS, 507, 1886, doi: 10.1093/mnras/stab2216
  • Gieser et al. (2021) Gieser, C., Beuther, H., Semenov, D., et al. 2021, A&A, 648, A66, doi: 10.1051/0004-6361/202039670
  • Gorai et al. (2020) Gorai, P., Bhat, B., Sil, M., et al. 2020, ApJ, 895, 86, doi: 10.3847/1538-4357/ab8871
  • Hasegawa et al. (1992) Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167, doi: 10.1086/191713
  • Hildebrand (1983) Hildebrand, R. H. 1983, QJRAS, 24, 267
  • Holdship et al. (2019) Holdship, J., Jimenez-Serra, I., Viti, S., et al. 2019, ApJ, 878, 64, doi: 10.3847/1538-4357/ab1cb5
  • Irvine et al. (1987) Irvine, W. M., Goldsmith, P. F., & Hjalmarson, A. 1987, in Interstellar Processes, ed. D. J. Hollenbach & J. Thronson, Harley A., Vol. 134, 561, doi: 10.1007/978-94-009-3861-8_21
  • Jacobsen et al. (2019) Jacobsen, S. K., Jørgensen, J. K., Di Francesco, J., et al. 2019, A&A, 629, A29, doi: 10.1051/0004-6361/201833214
  • Jørgensen et al. (2020) Jørgensen, J. K., Belloche, A., & Garrod, R. T. 2020, ARA&A, 58, 727, doi: 10.1146/annurev-astro-032620-021927
  • Kauffmann et al. (2008) Kauffmann, J., Bertoldi, F., Bourke, T. L., Evans, N. J., I., & Lee, C. W. 2008, A&A, 487, 993, doi: 10.1051/0004-6361:200809481
  • Kurtz et al. (2000) Kurtz, S., Cesaroni, R., Churchwell, E., Hofner, P., & Walmsley, C. M. 2000, in Protostars and Planets IV, ed. V. Mannings, A. P. Boss, & S. S. Russell, 299–326
  • Le Roy et al. (2015) Le Roy, L., Altwegg, K., Balsiger, H., et al. 2015, A&A, 583, A1, doi: 10.1051/0004-6361/201526450
  • Lee et al. (2023) Lee, J.-E., Baek, G., Lee, S., et al. 2023, arXiv e-prints, arXiv:2306.16959, doi: 10.48550/arXiv.2306.16959
  • Li et al. (2020) Li, D., Tang, X., Henkel, C., et al. 2020, ApJ, 901, 62, doi: 10.3847/1538-4357/abae60
  • Lis et al. (1991) Lis, D. C., Carlstrom, J. E., & Keene, J. 1991, ApJ, 380, 429, doi: 10.1086/170601
  • Liu et al. (2020a) Liu, H.-L., Sanhueza, P., Liu, T., et al. 2020a, ApJ, 901, 31, doi: 10.3847/1538-4357/abadfe
  • Liu et al. (2021) Liu, H.-L., Liu, T., Evans, Neal J., I., et al. 2021, MNRAS, 505, 2801, doi: 10.1093/mnras/stab1352
  • Liu et al. (2023) Liu, M., Qin, S.-L., Liu, T., et al. 2023, ApJ, 958, 174, doi: 10.3847/1538-4357/ad00aa
  • Liu et al. (2011) Liu, T., Wu, Y., Liu, S.-Y., et al. 2011, ApJ, 730, 102, doi: 10.1088/0004-637X/730/2/102
  • Liu et al. (2016) Liu, T., Kim, K.-T., Yoo, H., et al. 2016, ApJ, 829, 59, doi: 10.3847/0004-637X/829/2/59
  • Liu et al. (2020b) Liu, T., Evans, N. J., Kim, K.-T., et al. 2020b, MNRAS, 496, 2790, doi: 10.1093/mnras/staa1577
  • Luo et al. (2019) Luo, G., Feng, S., Li, D., et al. 2019, ApJ, 885, 82, doi: 10.3847/1538-4357/ab45ef
  • Maeda et al. (2008) Maeda, A., Medvedev, I. R., Winnewisser, M., et al. 2008, ApJS, 176, 543, doi: 10.1086/528684
  • Mangum & Wootten (1993) Mangum, J. G., & Wootten, A. 1993, ApJS, 89, 123, doi: 10.1086/191841
  • Manigand et al. (2021) Manigand, S., Coutens, A., Loison, J. C., et al. 2021, A&A, 645, A53, doi: 10.1051/0004-6361/202038113
  • McMullin et al. (2007) McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
  • Minh et al. (2018) Minh, Y. C., Liu, H. B., Galvań-Madrid, R., et al. 2018, ApJ, 864, 102, doi: 10.3847/1538-4357/aad909
  • Minh et al. (2011) Minh, Y. C., Liu, S. Y., Chen, H. R., & Su, Y. N. 2011, ApJ, 737, L25, doi: 10.1088/2041-8205/737/1/L25
  • Möller et al. (2013) Möller, T., Bernst, I., Panoglou, D., et al. 2013, A&A, 549, A21, doi: 10.1051/0004-6361/201220063
  • Möller et al. (2017) Möller, T., Endres, C., & Schilke, P. 2017, A&A, 598, A7, doi: 10.1051/0004-6361/201527203
  • Möller et al. (2021) Möller, T., Schilke, P., Schmiedeke, A., et al. 2021, A&A, 651, A9, doi: 10.1051/0004-6361/202040203
  • Müller et al. (2005) Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, Journal of Molecular Structure, 742, 215, doi: 10.1016/j.molstruc.2005.01.027
  • Müller et al. (2001) Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49, doi: 10.1051/0004-6361:20010367
  • Müller et al. (2019) Müller, H. S. P., Maeda, A., Thorwirth, S., et al. 2019, A&A, 621, A143, doi: 10.1051/0004-6361/201834517
  • Neill et al. (2014) Neill, J. L., Bergin, E. A., Lis, D. C., et al. 2014, ApJ, 789, 8, doi: 10.1088/0004-637X/789/1/8
  • Öberg et al. (2013) Öberg, K. I., Boamah, M. D., Fayolle, E. C., et al. 2013, ApJ, 771, 95, doi: 10.1088/0004-637X/771/2/95
  • Ossenkopf & Henning (1994) Ossenkopf, V., & Henning, T. 1994, A&A, 291, 943
  • Oya (2018) Oya, Y. 2018, IAU Symposium, 332, 73, doi: 10.1017/S1743921317007591
  • Oya et al. (2016) Oya, Y., Sakai, N., López-Sepulcre, A., et al. 2016, ApJ, 824, 88, doi: 10.3847/0004-637X/824/2/88
  • Peng et al. (2022) Peng, Y., Liu, T., Qin, S.-L., et al. 2022, MNRAS, 512, 4419, doi: 10.1093/mnras/stac624
  • Rimmer et al. (2018) Rimmer, P. B., Xu, J., Thompson, S. J., et al. 2018, Science Advances, 4, eaar3302, doi: 10.1126/sciadv.aar3302
  • Rosen (2022) Rosen, A. L. 2022, ApJ, 941, 202, doi: 10.3847/1538-4357/ac9f3d
  • Rosen et al. (2020) Rosen, A. L., Offner, S. S. R., Sadavoy, S. I., et al. 2020, Space Sci. Rev., 216, 62, doi: 10.1007/s11214-020-00688-5
  • Sánchez-Monge et al. (2017) Sánchez-Monge, Á., Schilke, P., Schmiedeke, A., et al. 2017, A&A, 604, A6, doi: 10.1051/0004-6361/201730426
  • Sewiło et al. (2022) Sewiło, M., Cordiner, M., Charnley, S. B., et al. 2022, ApJ, 931, 102, doi: 10.3847/1538-4357/ac4e8f
  • Sharma et al. (2017) Sharma, M. K., Sharma, M., & Chandra, S. 2017, New A, 52, 48, doi: 10.1016/j.newast.2016.10.006
  • Shimajiri et al. (2019) Shimajiri, Y., André, P., Ntormousi, E., et al. 2019, A&A, 632, A83, doi: 10.1051/0004-6361/201935689
  • Shimajiri et al. (2015) Shimajiri, Y., Sakai, T., Kitamura, Y., et al. 2015, ApJS, 221, 31, doi: 10.1088/0067-0049/221/2/31
  • Shimonishi et al. (2016) Shimonishi, T., Onaka, T., Kawamura, A., & Aikawa, Y. 2016, ApJ, 827, 72, doi: 10.3847/0004-637X/827/1/72
  • Shimonishi et al. (2023) Shimonishi, T., Tanaka, K. E. I., Zhang, Y., & Furuya, K. 2023, ApJ, 946, L41, doi: 10.3847/2041-8213/acc031
  • Sinclair et al. (1973) Sinclair, M. W., Fourikis, N., Ribes, J. C., et al. 1973, Australian Journal of Physics, 26, 85, doi: 10.1071/PH730085
  • Spezzano et al. (2022) Spezzano, S., Sipilä, O., Caselli, P., et al. 2022, A&A, 661, A111, doi: 10.1051/0004-6361/202243073
  • Tang et al. (2018) Tang, M., Liu, T., Qin, S.-L., et al. 2018, ApJ, 856, 141, doi: 10.3847/1538-4357/aaadad
  • Tang et al. (2017) Tang, X. D., Henkel, C., Menten, K. M., et al. 2017, A&A, 598, A30, doi: 10.1051/0004-6361/201629694
  • Tercero et al. (2010) Tercero, B., Cernicharo, J., Pardo, J. R., & Goicoechea, J. R. 2010, A&A, 517, A96, doi: 10.1051/0004-6361/200913501
  • Urquhart et al. (2018) Urquhart, J. S., König, C., Giannetti, A., et al. 2018, MNRAS, 473, 1059, doi: 10.1093/mnras/stx2258
  • van ’t Hoff et al. (2020) van ’t Hoff, M. L. R., van Dishoeck, E. F., Jørgensen, J. K., & Calcutt, H. 2020, A&A, 633, A7, doi: 10.1051/0004-6361/201936839
  • Vidal et al. (2019) Vidal, T. H. G., Gratier, P., Vaytet, N., Coutens, A., & Wakelam, V. 2019, MNRAS, 486, 5197, doi: 10.1093/mnras/stz1214
  • Vidal & Wakelam (2018) Vidal, T. H. G., & Wakelam, V. 2018, MNRAS, 474, 5575, doi: 10.1093/mnras/stx3113
  • Woodney et al. (2000) Woodney, L. M., A’Hearn, M. F., & Meier, R. 2000, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 32, AAS/Division for Planetary Sciences Meeting Abstracts #32, 44.02
  • Wootten & Mangum (2009) Wootten, A., & Mangum, J. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 417, Submillimeter Astrophysics and Technology: a Symposium Honoring Thomas G. Phillips, ed. D. C. Lis, J. E. Vaillancourt, P. F. Goldsmith, T. A. Bell, N. Z. Scoville, & J. Zmuidzinas, 219, doi: 10.48550/arXiv.0907.4088
  • Yamamoto (2017) Yamamoto, S. 2017, Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation (Springer Nature), doi: 10.1007/978-4-431-54171-4
  • Yue et al. (2021) Yue, Y.-H., Qin, S.-L., Liu, T., et al. 2021, Research in Astronomy and Astrophysics, 21, 014, doi: 10.1088/1674-4527/21/1/14