This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Algebraic models for 1-dimensional categories of rational GG-spectra

J.P.C.Greenlees Mathematics Institute, Zeeman Building, Coventry CV4, 7AL, UK [email protected]
Abstract.

In this paper we give algebraic models for rational GG-spectra for a compact Lie group GG when the geometric isotropy is restricted to lie in a 1-dimensional block of conjugacy classes. This includes all blocks of all groups of dimension 1, semifree spectra, and 1-dimensional blocks for many other groups GG.

The author is grateful for comments, discussions and related collaborations with S.Balchin, D.Barnes, T.Barthel, M.Kedziorek, L.Pol, J.Williamson. The work is partially supported by EPSRC Grant EP/W036320/1. The author would also like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Equivariant homotopy theory in context, where later parts of work on this paper was undertaken. This work was supported by EPSRC grant EP/Z000580/1.

1. Introduction

If we pick a set ๐’ฑ\mathcal{V} of conjugacy classes of (closed) subgroups of a compact Lie group GG we can consider the category G-spectra|๐’ฑ\mbox{$G$-{\bf spectra}}|\mathcal{V} of GG-spectra whose geometric isotropy is contained in ๐’ฑ\mathcal{V}, and it is conjectured [9] that there is a small and calculable abelian model ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) so that the category DG-๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) of differential graded objects in ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) is a model for G-spectra|๐’ฑ\mbox{$G$-{\bf spectra}}|\mathcal{V} in the sense that there is a Quillen equivalence

G-spectra|๐’ฑโ‰ƒDโ€‹Gโˆ’๐’œโ€‹(G|๐’ฑ).\mbox{$G$-{\bf spectra}}|\mathcal{V}\simeq DG-\mathcal{A}(G|\mathcal{V}).

The purpose of the present paper is to verify the conjecture in a range of particularly simple cases.

The space ๐”›G=Subโ€‹(G)/G\mathfrak{X}_{G}=\mathrm{Sub}(G)/G of conjugacy classes of closed subgroups of GG has two topologies of interest. First of all, it has the h-topology, which is the quotient topology of the Hausdorff metric topology on Subโ€‹(G)\mathrm{Sub}(G). It also has the Zariski topology, whose closed sets are the h-closed sets which are also closed under passage to cotoral subgroups111LL is cotoral in KK if LL is normal in KK with quotient being a torus. For conjugacy classes (L)(L) is cotoral in (K)(K) if the relation holds for some representative subgroups.. Since ๐’ฑ\mathcal{V} is a subset of ๐”›G\mathfrak{X}_{G} it also acquires two topologies, though it will not necessarily be a spectral space.

The very simplest case is when ๐’ฑ\mathcal{V} is h-discrete and there are no non-trivial cotoral relations (we say ๐’ฑ\mathcal{V} is of Thomason height 0). In this case the conjecture is immediate from results of [21], and the model is described by

๐’œโ€‹(G|๐’ฑ)โ‰ƒโˆHโˆˆ๐’ฑ๐’œโ€‹(G|H)\mathcal{A}(G|\mathcal{V})\simeq\prod_{H\in\mathcal{V}}\mathcal{A}(G|H)

and

๐’œโ€‹(G|H)โ‰ƒtors-โ€‹Hโˆ—โ€‹(Bโ€‹WGeโ€‹(H))โ€‹[WGdโ€‹(H)]โ€‹-mod,\mathcal{A}(G|H)\simeq\mbox{tors-}H^{*}(BW_{G}^{e}(H))[W_{G}^{d}(H)]\mbox{-mod},

where WGโ€‹(H)=NGโ€‹(H)/HW_{G}(H)=N_{G}(H)/H has identity component WGeโ€‹(H)W_{G}^{e}(H) and component group WGdโ€‹(H)W_{G}^{d}(H).

It is the purpose of the present paper to prove the conjecture in a range of cases when ๐’ฑ\mathcal{V} is one step more complicated, so that it has a subspace ๐’ฆ\mathcal{K} of Thomason height 0 and one additional point Kโˆ—K^{*}. The symbol Kโˆ—K^{*} will be used for this point throughout this paper. Thus we either have a cotoral inclusion Kโ‰คcโ€‹tKโˆ—K\leq_{ct}K^{*} for some Kโˆˆ๐’ฆK\in\mathcal{K} or else Kโˆ—K^{*} is an h-limit of points of ๐’ฆ\mathcal{K}. We will also restrict the group theory by assuming ๐’ฆ\mathcal{K} consists of finite groups, and Kโˆ—K^{*} has finite index in its normalizer (most examples we make explicit also have Kโˆ—=GK^{*}=G). This is restrictive, but it permits a simple exposition and covers the cases of immediate interest. Section 10 describes some of the complications that arise as more cases are covered.

The method is closely based on that used for the circle group and for the two blocks of Oโ€‹(2)O(2), but it is more uniform and covers many other cases. The cases covered include all blocks of 1-dimensional groups and semi-free GG-spectra when GG is a torus. It also covers the block of full subgroups of a toral group (the identity component Ge=๐•‹G_{e}=\mathbb{T} is a torus) where the GdG_{d}-module H1โ€‹(T;โ„š)H_{1}(T;\mathbb{Q}) is simple. Already these cases display a range of different behaviour.

It is helpful to bear some examples in mind.

Example 1.1.
  1. (1)

    The space ๐’ฑ\mathcal{V} need not be irreducible. This means that Kโˆ—K^{*} is not necessarily a generic point.

    For example if ๐’ฑ\mathcal{V} in the h-topology is the one point compactification of a countable set and the cotoral relation is trivial. This is the case for the dihedral subgroups of Oโ€‹(2)O(2).

  2. (2)

    The space need not be compact in the h-topology. For example we may add infinitely many points to a compact example without adding the limit point. It is easy to construct such examples with GG the 2-torus (see (4)).

  3. (3)

    A more extreme form of this is when every neighbourhood of Kโˆ—K^{*} contains an infinite set of which it is not the limit. For example G=Kโˆ—=T2G=K^{*}=T^{2} is the 2-torus, and the other points are the finite subgroups of C1ร—T,C2ร—T,C3ร—T,โ€ฆC_{1}\times T,C_{2}\times T,C_{3}\times T,\ldots.

  4. (4)

    The space ๐’ฑ\mathcal{V} may be discrete in the h-topology. For example we may take G=Kโˆ—=T2G=K^{*}=T^{2} to be the 2-torus and ๐’ฆ\mathcal{K} to consist of the proper subgroups of Tร—1โІTร—T=GT\times 1\subseteq T\times T=G.

It is natural to want to generalize these results. The arguments presented here also prove the conjecture in many other 1-dimensional cases, and the natural level of generality is not yet clear; some cases may best be treated as subcategories of higher dimensional examples. In any case, our focus here will be on expository simplicity rather than greatest generality. Section 10 discusses ways to relax the restrictions.

1.A. Associated work in preparation

This paper is the second in a series of 5 constructing an algebraic category ๐’œโ€‹(Sโ€‹Uโ€‹(3))\mathcal{A}(SU(3)) and showing it gives an algebraic model for rational Sโ€‹Uโ€‹(3)SU(3)-spectra. This series gives a concrete illustrations of general results in small and accessible examples.

The first paper [13] describes the group theoretic data that feeds into the construction of an abelian category ๐’œโ€‹(G)\mathcal{A}(G) for all toral groups GG and makes them explicit for toral subgroups of rank 2 connected groups. The present paper (which does not logically depend on [13]) constructs algebraic models for all relevant 1-dimensional blocks. The paper [14] gives an algebraic model for the maximal torus normalizer in Uโ€‹(2)U(2).

The paper [15] assembles this information and that from [4] to give an abelian category ๐’œโ€‹(Uโ€‹(2))\mathcal{A}(U(2)) in 7 blocks and shows it is an algebraic model for rational Uโ€‹(2)U(2)-spectra. Finally, the paper [16] constructs ๐’œโ€‹(Sโ€‹Uโ€‹(3))\mathcal{A}(SU(3)) in 18 blocks and shows it is equivalent to the category of rational Sโ€‹Uโ€‹(3)SU(3)-spectra. The most complicated parts of the model for G=Uโ€‹(2)G=U(2) and G=Sโ€‹Uโ€‹(3)G=SU(3) are the toral blocks, which are based on the work in the present paper.

This series is part of a more general programme. Future installments will consider blocks with Noetherian Balmer spectra [19] and those with no cotoral inclusions [17]. An account of the general nature of the models is in preparation [18], and the author hopes that this will be the basis of the proof that the category of rational GG-spectra has an algebraic model in general.

1.B. Contents

The paper is divided into two parts. Part 1 is essentially algebraic and Part 2 shows that appropriate categories of rational GG-spectra are equivalent to the algebraic models.

The main part of the paper gives an algebraic model for a 1-dimensional block with a single dominant subgroup. To show that this is useful, we start in Section 2 by showing that for a 1-dimensional group, the space of subgroups can be decomposed into such blocks, and furthermore the auxiliary data can be describe in these terms. Thereafter we have in mind a single 1-dimensional block. In Section 3 we describe the data required to build the model, and in Section 4 we describe how this data can be obtained for compact Lie groups. In Section 5 we explain how to build the model from the data, and we show how to work with the category, inparticular proving it is of injective dimension 1.

We begin Part 2 in Section 6 by describing the general strategy for showing a 1-dimensional block has an algebraic model.

It is rather well known that for a connected compact Lie group GG, the category of cofree GG-spectra is a category of complete modules over Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG), and that this can easily be adapted to disconnected groups. In Section 7 we show that the category of modules over Dโ€‹Eโ€‹G+DEG_{+} is the corresponding category of modules over Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG) without any completeness condition, and that the model for cofree GG-spectra is obtained by completion. This gives the stalkwise model, and it is quite easy to assemble this algebraically over the height 0 subgroups. However for the splicing to the height 1 subgroup we need to have a common framework. The new complication here is having to deal with the varying component structure, and the method for doing that is described in Section 8. This completes the account of the model over height 0 subgroups, and finally in Section 9 we assemble the information over height 0 and height 1 groups to establish that 1-dimensional blocks are algebraic. In Section 10 we review the technical difficulties that need to be tackled to give further generalization.

Part I Algebra

2. Full subgroups

The purpose of this section is to show that for 1-dimensional groups GG the category of GG-spectra breaks into pieces each one of which is covered by our general analysis. This comes in two steps. Firstly, we establish a decomposition indexed by conjugacy classes of subgroups VV of the component group WW. Secondly, we show that it suffices to consider the case when V=WV=W, in the sense that the model in the general case can often be easily deduced from the full case.

For the purpose of this section, we suppose that GG has identity component Ge=๐•‹G_{e}=\mathbb{T} a torus and lives in an extension

1โŸถ๐•‹โŸถGโŸถฯ€WโŸถ1.1\longrightarrow\mathbb{T}\longrightarrow G\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}W\longrightarrow 1.

2.A. Partition by subgroups of the component group

For any compact Lie group GG, one may show that the space Subโ€‹(G)/G\mathrm{Sub}(G)/G can be partitioned into blocks dominated by a single group. When GG is a toral group there is a partition that takes a particularly simple form. Since any 1-dimensional group GG has identity component a circle, this case is covered automatically.

Lemma 2.1.

[13, 2.1] For a toral group GG as above, the space ๐”›G=Subโ€‹(G)/G\mathfrak{X}_{G}=\mathrm{Sub}(G)/G of conjugacy classes of subgroups of the toral group GG is partitioned into pieces, ๐’ฑHยฏG\mathcal{V}^{G}_{\overline{H}} one for each conjugacy class of subgroups Hยฏ\overline{H} of WW.

If HยฏโІW\overline{H}\subseteq W, the set

๐’ฑHยฏG={(K)|ฯ€โ€‹(K)=Hยฏ}\mathcal{V}_{\overline{H}}^{G}=\{(K)\;|\;\pi(K)=\overline{H}\}

is clopen in the Hausdorff metric topology and closed under passage to cotoral subgroups. Furthermore, ๐’ฑHยฏG\mathcal{V}^{G}_{\overline{H}} is dominated by ฯ€โˆ’1โ€‹(Hยฏ)\pi^{-1}(\overline{H}) in the sense that it consists of all subgroups cotoral in ฯ€โˆ’1โ€‹(Hยฏ)\pi^{-1}(\overline{H}).

Accordingly, the Balmer spectrum with its Zariski topology is a coproduct

๐”›G=โˆ(Hยฏ)๐’ฑHยฏG.\mathfrak{X}_{G}=\coprod_{(\overline{H})}\mathcal{V}_{\overline{H}}^{G}.
Remark 2.2.

(a) The partition is crude, in the sense that the sets ๐’ฑHยฏG\mathcal{V}^{G}_{\overline{H}} can often be decomposed further.

(b) Subgroups mapping onto WW are called full, and the component of full subgroups is ๐’ฑWG\mathcal{V}^{G}_{W}. Most of the rest of the paper will focus on full subgroups because the component of ๐’ฑVG\mathcal{V}^{G}_{V} can be studied in the group V~:=ฯ€โˆ’1โ€‹V\tilde{V}:=\pi^{-1}V as explained in Subsection 2.B below.

(c) Since subgroups of GG with image VV are by definition subgroups of V~\tilde{V}, the map ๐’ฑVV~โŸถ๐’ฑVG\mathcal{V}^{\tilde{V}}_{V}\longrightarrow\mathcal{V}^{G}_{V} is surjective, and the only effect is fusion of V~\tilde{V}-conjugacy classes to form GG-conjugacy classes. Fusion can nonetheless have significant effects (for example the map ๐”›๐•‹โŸถ๐”›G\mathfrak{X}_{\mathbb{T}}\longrightarrow\mathfrak{X}_{G} factors through ๐”›๐•‹โŸถ๐”›๐•‹/W\mathfrak{X}_{\mathbb{T}}\longrightarrow\mathfrak{X}_{\mathbb{T}}/W).

2.B. Reduction to full subgroups

Continuing with a toral group GG, in analysing ๐’ฑVG\mathcal{V}^{G}_{V}, we may reduce to the case that VV is normal in WW.

To see this, let N=NWโ€‹(V)N=N_{W}(V). The WW-conjugacy class (V)W(V)_{W} may split into several NN-conjugacy classes (V)W=โˆi(Vi)N(V)_{W}=\coprod_{i}(V_{i})_{N}. There is a corresponding splitting of the idempotent eVe_{V}: resNWโ€‹(eV)=โˆ‘ieVi\mathrm{res}^{W}_{N}(e_{V})=\sum_{i}e_{V_{i}}. These idempotents may be inflated to GG, and we see

N~โ€‹-spectra|๐’ฑVGโ‰ƒeVโ€‹N~โ€‹-spectraโ‰ƒโˆieViโ€‹N~โ€‹-spectraโ‰ƒโˆiN~โ€‹-spectra|๐’ฑViN~.\tilde{N}\mbox{-{\bf spectra}}|\mathcal{V}^{G}_{V}\simeq e_{V}\tilde{N}\mbox{-{\bf spectra}}\simeq\prod_{i}e_{V_{i}}\tilde{N}\mbox{-{\bf spectra}}\simeq\prod_{i}\tilde{N}\mbox{-{\bf spectra}}|\mathcal{V}^{\tilde{N}}_{V_{i}}.

Since the ViV_{i} are conjugate in GG, the factors are equivalent using conjugation by elements of GG. For subgroups HH with ฯ€โ€‹H=V\pi H=V, the relevant map of underlying spaces is

โˆi๐’ฑViN~โŸถ๐’ฑVG.\coprod_{i}\mathcal{V}^{\tilde{N}}_{V_{i}}\longrightarrow\mathcal{V}^{G}_{V}.
Lemma 2.3.

Suppose VโІWV\subseteq W and let N=NWโ€‹(V)N=N_{W}(V). Restriction induces a full and faithful functor

G-spectra|๐’ฑVGโŸถN~โ€‹-spectra|๐’ฑVN~.\mbox{$G$-{\bf spectra}}|\mathcal{V}^{G}_{V}\longrightarrow\tilde{N}\mbox{-{\bf spectra}}|\mathcal{V}^{\tilde{N}}_{V}.

The essential image consists of N~\tilde{N}-spectra which are constant on the factors N~โ€‹-spectra|๐’ฑViN~\tilde{N}\mbox{-{\bf spectra}}|\mathcal{V}^{\tilde{N}}_{V_{i}} in the sense that they correspond under conjugation by GG. Composing with restriction to one factor, we obtain an equivalence

G-spectra|๐’ฑVGโ‰ƒN~โ€‹-spectra|๐’ฑVN~.\mbox{$G$-{\bf spectra}}|\mathcal{V}^{G}_{V}\simeq\tilde{N}\mbox{-{\bf spectra}}|\mathcal{V}^{\tilde{N}}_{V}.
Remark 2.4.

This shows directly that the two categories should have equivalent models. In fact we observe that NGโ€‹(V)=NN~โ€‹(V)N_{G}(V)=N_{\tilde{N}}(V), so that the sheaf of rings and component structures also agree. Thus, corresponding to the equivalence of categories of GG-spectra we have an equivalence

๐’œโ€‹(G|๐’ฑVG)=๐’œโ€‹(N~|๐’ฑVN~).\mathcal{A}(G|\mathcal{V}^{G}_{V})=\mathcal{A}(\tilde{N}|\mathcal{V}^{\tilde{N}}_{V}).

Proof :โ€„We must show the map is full, faithful and essentially surjective.

The map

[X,Y]GโŸถ[G+โˆงNeโ€‹X,Y]G=[eโ€‹X,Y]N[X,Y]^{G}\longrightarrow[G_{+}\wedge_{N}eX,Y]^{G}=[eX,Y]^{N}

is induced by G+โˆงN~S0โˆงXโ‰ƒG+โˆงN~eโ€‹XโŸถXG_{+}\wedge_{\tilde{N}}S^{0}\wedge X\simeq G_{+}\wedge_{\tilde{N}}eX\longrightarrow X of GG-spectra. Now G/N~=W/NG/\tilde{N}=W/N, and the VV fixed points consist of cosets wโ€‹NwN so that VwโІNV^{w}\subseteq N. The fact that restriction is an isomorphism follows since the map W+โˆงVeโ€‹S0โŸถS0W_{+}\wedge_{V}eS^{0}\longrightarrow S^{0} is an equivalence in VV-fixed points. โˆŽ

Next, we may further reduce to working with ๐’ฑVV~\mathcal{V}^{\tilde{V}}_{V} if we take into account the action of the Weyl group NWโ€‹(V)/VN_{W}(V)/V.

Lemma 2.5.

If N=NWโ€‹(V)N=N_{W}(V), the geometric isotropy of XX consists of subgroups of V~\tilde{V} then restriction induces an isomorphism

[X,Y]N~โŸถโ‰…([X,Y]V~)N/V.[X,Y]^{\tilde{N}}\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}\left([X,Y]^{\tilde{V}}\right)^{N/V}.

Proof :โ€„We have an equivalence Eโ€‹N/V+โˆงXโ‰ƒXEN/V_{+}\wedge X\simeq X, and the spectral sequence of the skeletal filtration of Eโ€‹N/V+EN/V_{+} gives the isomorphism. โˆŽ

Remark 2.6.

This shows that to understand N~\tilde{N}-spectra we need only understand V~\tilde{V} spectra together with an action of the finite group N/VN/V. However one does need to bear in mind that N/VN/V acts on the space of subgroups as well as all other elements of the construction.

Combining this with Lemma 2.3, as in [10, 6.10], this shows we have a reduction to the case of full subgroups, and we may take

๐’œโ€‹(G|๐’ฑVG)โ‰ƒ๐’œโ€‹(N~|๐’ฑVN~)โ‰ƒ`โ€‹`โ€‹๐’œโ€‹(V~|๐’ฑVV~)โ€‹[N/V]โ€ฒโ€ฒ.\mathcal{A}(G|\mathcal{V}^{G}_{V})\simeq\mathcal{A}(\tilde{N}|\mathcal{V}^{\tilde{N}}_{V})\simeq``\mathcal{A}(\tilde{V}|\mathcal{V}^{\tilde{V}}_{V})[N/V]^{\prime\prime}.

Note that in this statement N/VN/V may act non-trivially on ๐’ฑVV~\mathcal{V}^{\tilde{V}}_{V}, so the right hand category is not simply ๐’œโ€‹(V~|๐’ฑVV~)\mathcal{A}(\tilde{V}|\mathcal{V}^{\tilde{V}}_{V}) with an action of N/VN/V, and considerable elucidation along the lines of [10] is necessary. With these caveats, we may reduce to the case of full subgroups.

This strategy is especially effective if GG is 1-dimensional since the action of N/VN/V on the identity component does not permute subgroups. In this case we find

๐’ฑVN~=๐’ฑVV~,\mathcal{V}^{\tilde{N}}_{V}=\mathcal{V}^{\tilde{V}}_{V},

and in fact the Weyl groups are of the same dimension so that the structure sheaves of rings will agree. The component groups will differ since the group N/VN/V certainly acts for N~\tilde{N}-spectra. Indeed, if ฯ€โ€‹(K)=V\pi(K)=V there is a map

NN~โ€‹(K)โŸถNNโ€‹(V)=N,N_{\tilde{N}}(K)\longrightarrow N_{N}(V)=N,

since KโˆฉTK\cap T is characteristic, and hence there is a map

WN~โ€‹(K)โŸถN/V,W_{\tilde{N}}(K)\longrightarrow N/V,

but this need not be an isomorphism for all KK.

3. Ingredients for the abelian models

The rest of our analysis supposes that we are considering GG-spectra with geometric isotropy in a 1-dimensional space ๐’ฑ\mathcal{V} of a special form. In fact we suppose given a countable set ๐’ฆ\mathcal{K} of conjugacy classes subgroups. As a subspace of ๐”›G\mathfrak{X}_{G} it is discrete and we assume ๐’ฑ=๐’ฆโˆ{Kโˆ—}\mathcal{V}=\mathcal{K}\amalg\{K^{*}\}.

For example if GG is a 1-dimensional group we may choose a subgroup VV of the component group and suppose ๐’ฆ\mathcal{K} consists of the finite subgroups HH of GG with ฯ€โ€‹(H)=V\pi(H)=V and Kโˆ—=ฯ€โˆ’1โ€‹(V)K^{*}=\pi^{-1}(V).

We discuss the form of the space ๐’ฑ\mathcal{V} in Subsection 3.A, and the auxiliary data in Subsection 3.B.

3.A. Decomposing ๐’ฑ\mathcal{V}

We start with a countable set ๐’ฆ\mathcal{K} of conjugacy classes of finite subgroups, and ๐’ฑ=๐’ฆโˆ{Kโˆ—}\mathcal{V}=\mathcal{K}\amalg\{K^{*}\}. It is convenient to partition ๐’ฆ\mathcal{K}.

Lemma 3.1.

There is a partition ๐’ฆ=๐’ฆ0โˆ๐’ฆ1โˆ๐’ฆโ€‹โ„›\mathcal{K}=\mathcal{K}_{0}\amalg\mathcal{K}_{1}\amalg\mathcal{K}\mathcal{R} into Zariski clopen sets where

  • โ€ข

    ๐’ฆ1\mathcal{K}_{1} consists of subgroups cotoral in Kโˆ—K^{*}.

  • โ€ข

    ๐’ฆ0\mathcal{K}_{0} consists of subgroups not cotoral in Kโˆ—K^{*} but ๐’ฆ0\mathcal{K}_{0} has Kโˆ—K^{*} as a limit point and

  • โ€ข

    the remainder ๐’ฆโ€‹โ„›\mathcal{K}\mathcal{R} has no limit points in ๐’ฑ\mathcal{V}.

Proof :โ€„If Kโˆ—K^{*} is not a limit point when we remove ๐’ฆ1\mathcal{K}_{1} we take ๐’ฆโ€‹โ„›=๐’ฆโˆ–๐’ฆ1\mathcal{K}\mathcal{R}=\mathcal{K}\setminus\mathcal{K}_{1} and ๐’ฆ0=โˆ…\mathcal{K}_{0}=\emptyset. Otherwise, we choose an h-neighbourhood UU of Kโˆ—K^{*}, and take ๐’ฆ0โ€ฒ:=(๐’ฆโˆ–๐’ฆ1)โˆฉU\mathcal{K}_{0}^{\prime}:=(\mathcal{K}\setminus\mathcal{K}_{1})\cap U and ๐’ฆโ€‹โ„›:=(๐’ฆโˆ–๐’ฆ1)โˆ–U\mathcal{K}\mathcal{R}:=(\mathcal{K}\setminus\mathcal{K}_{1})\setminus U. โˆŽ

Remark 3.2.

It is disappointing that we cannot generally give a canonical decomposition, and that the pieces cannot be simpler.

(i) Example 1.1 (3) shows that it may happen that every choice of ๐’ฆ0\mathcal{K}_{0} contains an infinite set ๐’ฆโ€‹โ„›โ€ฒ\mathcal{K}\mathcal{R}^{\prime} without Kโˆ—K^{*} as a limit point, so ๐’ฆโ€‹โ„›โ€ฒ\mathcal{K}\mathcal{R}^{\prime} could be moved into ๐’ฆโ€‹โ„›\mathcal{K}\mathcal{R}.

(ii) Even if Kโˆ—K^{*} is a limit point of every infinite subset of ๐’ฆ0\mathcal{K}_{0}, the partition is not canonical, since any finite set of points can be moved between ๐’ฆ0\mathcal{K}_{0} and ๐’ฆโ€‹โ„›\mathcal{K}\mathcal{R}.

Remark 3.3.

(i) If ๐’ฆโ€‹โ„›=โˆ…\mathcal{K}\mathcal{R}=\emptyset and Kโˆ—K^{*} is a limit point of every infinite subset of ๐’ฆ0\mathcal{K}_{0}, we say ๐’ฑ\mathcal{V} is almost irreducible.

(ii) The topology is determined by the closed subsets of ๐’ฑ\mathcal{V} not containing Kโˆ—K^{*}. This contains the finite subsets of ๐’ฆ\mathcal{K}, and if it contains no other subsets, ๐’ฆโˆช{Kโˆ—}\mathcal{K}\cup\{K^{*}\} is the one point compactification of ๐’ฆ\mathcal{K}.

We discuss some examples and then show that in many cases it suffices to deal with the special cases ๐’ฆ=๐’ฆ0\mathcal{K}=\mathcal{K}_{0} (Type 0) and ๐’ฆ=๐’ฆ1\mathcal{K}=\mathcal{K}_{1} (Type 1).

The models differ in character according to the sizes of ๐’ฆ0\mathcal{K}_{0} and ๐’ฆ1\mathcal{K}_{1}: even in this very special context, a wide variety of behaviours is possible.

Example 3.4.

Here is a small selection of almost irreducible examples with ๐’ฆ1\mathcal{K}_{1} infinite.

  1. (1)

    If G=T2G=T^{2} all subgroups are cotoral in GG, so in all cases ๐’ฆ=๐’ฆ1\mathcal{K}=\mathcal{K}_{1}. Nonetheless these cases can vary in character.

    1. (a)

      If ๐’ฆ\mathcal{K} consists of all subgroups T2โ€‹[n]T^{2}[n] then G=Kโˆ—G=K^{*} is the 1-point compactification.

    2. (b)

      If ๐’ฆ=๐’ฆ1={Tโ€‹[n]ร—T|nโ‰ฅ1}\mathcal{K}=\mathcal{K}_{1}=\{T[n]\times T\;|\;n\geq 1\} then the h-topology is discrete.

    3. (c)

      If ๐’ฆ=๐’ฆ1={T2โ€‹[n]|nโ‰ฅ1}โˆช{Cmร—1|mโ‰ฅ1}\mathcal{K}=\mathcal{K}_{1}=\{T^{2}[n]\;|\;n\geq 1\}\cup\{C_{m}\times 1\;|\;m\geq 1\} then there is an infinite subset of ๐’ฆ1\mathcal{K}_{1} without limit points.

    4. (d)

      If ๐’ฆ\mathcal{K} consists of all finite subgroups, then it has infinitely many limit points.

  2. (2)

    We may have both ๐’ฆ0\mathcal{K}_{0} and ๐’ฆ1\mathcal{K}_{1} infinite. For example G=Tร—Oโ€‹(2)G=T\times O(2) and then take Kโˆ—=GK^{*}=G with ๐’ฆ1={Cmร—Oโ€‹(2)|mโ‰ฅ1}\mathcal{K}_{1}=\{C_{m}\times O(2)\;|\;m\geq 1\}, and ๐’ฆ0={Tร—D2โ€‹n|nโ‰ฅ1}\mathcal{K}_{0}=\{T\times D_{2n}\;|\;n\geq 1\}.

A property holds almost everywhere in ๐’ฆ\mathcal{K} if it holds except for a closed subset of ๐’ฑ\mathcal{V} lying in ๐’ฆ0โˆ๐’ฆโ€‹โ„›\mathcal{K}_{0}\amalg\mathcal{K}\mathcal{R} (in the almost irreducible case, this means for all but a finite number of points of ๐’ฆ0\mathcal{K}_{0}).

Decompositions of ๐’ฑ\mathcal{V} lead to decompositions of the model. We illustrate with two special cases.

Example 3.5.

(i) We may always write ๐’ฑ=๐’ฑโ€ฒโˆ๐’ฆโ€‹โ„›\mathcal{V}=\mathcal{V}^{\prime}\amalg\mathcal{K}\mathcal{R} and then

๐’œโ€‹(G|๐’ฑ)=๐’œโ€‹(G|๐’ฑโ€ฒ)ร—๐’œโ€‹(G|๐’ฆโ€‹โ„›),\mathcal{A}(G|\mathcal{V})=\mathcal{A}(G|\mathcal{V}^{\prime})\times\mathcal{A}(G|\mathcal{K}\mathcal{R}),

where ๐’œโ€‹(G|๐’ฆโ€‹โ„›)\mathcal{A}(G|\mathcal{K}\mathcal{R}) is described in the introduction. The existence of idempotents in the Burnside ring Aโ€‹(G)A(G) shows there is a corresponding decomposition of spectra, so for most purposes we may assume ๐’ฆโ€‹โ„›=โˆ…\mathcal{K}\mathcal{R}=\emptyset.

(ii) If ๐’ฑ\mathcal{V} is almost irreducible then ๐’ฑ=๐’ฑ0โˆจ๐’ฑ1\mathcal{V}=\mathcal{V}_{0}\vee\mathcal{V}_{1} (with the wedge point being Kโˆ—K^{*}) where ๐’ฑ0=๐’ฆ0#\mathcal{V}_{0}=\mathcal{K}_{0}^{\#} (one point compactification) and ๐’ฑ1=๐’ฆ1โˆช{Kโˆ—}\mathcal{V}_{1}=\mathcal{K}_{1}\cup\{K^{*}\}. There is then a pullback square

๐’œโ€‹(G|๐’ฑ)\textstyle{\mathcal{A}(G|\mathcal{V})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’œโ€‹(G|๐’ฑ0)\textstyle{\mathcal{A}(G|\mathcal{V}_{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’œโ€‹(G|๐’ฑ1)\textstyle{\mathcal{A}(G|\mathcal{V}_{1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’œโ€‹(G|Kโˆ—)\textstyle{\mathcal{A}(G|K^{*})}

and similarly for spectra.

An important example example consists of subroups of G=NUโ€‹(2)โ€‹(T2)G=N_{U(2)}(T^{2}) of dimension โ‰ฅ1\geq 1 with Kโˆ—=GK^{*}=G, where ๐’ฆ0\mathcal{K}_{0} consists of 1-dimensional subgroups containing the central circle, and ๐’ฆ1\mathcal{K}_{1} consists of 1-dimensional subgroups containing all elements diagโ€‹(ฮป,ฮปโˆ’1)\mathrm{diag}(\lambda,\lambda^{-1}).

3.B. Auxiliary data

The model for GG-spectra with geometric isotropy in ๐’ฑ\mathcal{V} is a category whose objects are equivariant sheaves of modules over a sheaf of rings over ๐’ฑ\mathcal{V}. In the 1-dimensional case, rather than making explicit all of the adjectives to make this precise, we will give the data required directly. We require the additional data of a โ€˜sheaf of ringsโ€™ โ„›\mathcal{R} and a โ€˜component structureโ€™ ๐’ฒ\mathcal{W} which specifies the equivariance together with a โ€˜coordinate structureโ€™ ๐’ฎ\mathcal{S} linking the topology and algebra.

Definition 3.6.

(a) A sheaf of rings โ„›\mathcal{R} on ๐’ฑ\mathcal{V} consists of commutative polynomial rings โ„›โ€‹(F)\mathcal{R}(F) for Fโˆˆ๐’ฆF\in\mathcal{K} and โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*}), and a ring homomorphisms โ„›โ€‹(Kโˆ—)โŸถโ„›โ€‹(F)\mathcal{R}(K^{*})\longrightarrow\mathcal{R}(F) for almost all FF.

(b) A component structure on ๐’ฑ\mathcal{V} consists of finite groups ๐’ฒF\mathcal{W}_{F} for Fโˆˆ๐’ฆF\in\mathcal{K} and ๐’ฒKโˆ—\mathcal{W}_{K^{*}}, together with a homomorphism ๐’ฒFโŸถ๐’ฒKโˆ—\mathcal{W}_{F}\longrightarrow\mathcal{W}_{K^{*}} for almost all FF.

(c) The component structure ๐’ฒ\mathcal{W} has an action on โ„›\mathcal{R} if ๐’ฒF\mathcal{W}_{F} acts on โ„›โ€‹(F)\mathcal{R}(F) and ๐’ฒG\mathcal{W}_{G} acts on โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*}) so that โ„›โ€‹(G)โŸถโ„›โ€‹(F)\mathcal{R}(G)\longrightarrow\mathcal{R}(F) is ๐’ฒF\mathcal{W}_{F}-equivariant.

We also need to relate the topology on ๐’ฑ\mathcal{V} to the algebra of the sheaves. For this we need functions whose vanishing determines the topology.

Definition 3.7.

An coordinate structure on a sheaf of rings om ๐’ฑ\mathcal{V} is a collection of multiplicatively closed sets ๐’ฎKโˆ—/F\mathcal{S}_{K^{*}/F} in โ„›โ€‹(F)\mathcal{R}(F) for Fโˆˆ๐’ฆ1F\in\mathcal{K}_{1}. For Fโˆˆ๐’ฆ0F\in\mathcal{K}_{0}, we take ๐’ฎKโˆ—/F={0,1}\mathcal{S}_{K^{*}/F}=\{0,1\}, and for Fโˆˆ๐’ฆโ€‹โ„›F\in\mathcal{K}\mathcal{R} we take ๐’ฎKโˆ—/F={0}\mathcal{S}_{K^{*}/F}=\{0\}.

If there is a compatible component structure we say ๐’ฎKโˆ—/F\mathcal{S}_{K^{*}/F} is compatible if the elements of ๐’ฎKโˆ—/F\mathcal{S}_{K^{*}/F} are invariant under the action.

We will show in Section 4 below that there is a sheaf of rings and a compatible component structure arising in the Lie group context.

4. Equivariant sheaf data in the geometric context

In this section we explain describe the necessary auxiliary data (โ„›,๐’ฒ,๐’ฎ)(\mathcal{R},\mathcal{W},\mathcal{S}) from Subsection 3.B in the motivating example of a compact Lie group. It is notable that we need to use the fact we are working over the rationals to give a splitting principle to obtain the structure in full generality.

4.A. Sheaves and component structures

The simplest way to ensure a sheaf of rings with compatible component structure is to have a homomorphism NGโ€‹(K)โŸถNGโ€‹(Kโˆ—)N_{G}(K)\longrightarrow N_{G}(K^{*}) extending an inclusion KโІKโˆ—K\subseteq K^{*}. In this case it is straightforward since there is an induced map

WGโ€‹(K)=NGโ€‹(K)/KโŸถNGโ€‹(Kโˆ—)/Kโˆ—=WGโ€‹(Kโˆ—).W_{G}(K)=N_{G}(K)/K\longrightarrow N_{G}(K^{*})/K^{*}=W_{G}(K^{*}).

The map on identity components supplies a map ๐’ชKโŸต๐’ชKโˆ—\mathcal{O}_{K}\longleftarrow\mathcal{O}_{K^{*}}, and it is equivariant for the map WK=WGdโ€‹(K)โŸถWGeโ€‹(Kโˆ—)=WKโˆ—W_{K}=W_{G}^{d}(K)\longrightarrow W_{G}^{e}(K^{*})=W_{K^{*}}.

We may ensure this is the case for Kโˆˆ๐’ฆ0K\in\mathcal{K}_{0} since the normalizer construction is upper semi-continuous [1, 9.8] so that NGโ€‹(K)โІNGโ€‹(Kโˆ—)N_{G}(K)\subseteq N_{G}(K^{*}) for almost all Kโˆˆ๐’ฆK\in\mathcal{K}. It is often reasonable for cotoral inclusions too: for example we might suppose G=NGโ€‹(Kโˆ—)G=N_{G}(K^{*}) for all Hโˆˆ๐’ฑ1H\in\mathcal{V}_{1}. Often we may be able to reduce to this case. For example if ๐’ฑ1\mathcal{V}_{1} is a singleton (Kโˆ—)(K^{*}) we have the familiar question of how to allow for the restriction from GG to NGโ€‹(Kโˆ—)N_{G}(K^{*}).

However we want to cover the general case (for example if 1โˆˆ๐’ฆ1\in\mathcal{K}). For this we proceed as follows. After conjugation, we may suppose KโІKโˆ—K\subseteq K^{*} with Kโˆ—/KK^{*}/K is a torus. We may then choose a maximal torus of WGโ€‹(K)W_{G}(K) containing Kโˆ—/KK^{*}/K and write T~\tilde{T} for its inverse image in GG. We see (since the cotoral relation is transitive [6]) that both Kโˆ—K^{*} and KK are cotoral T~\tilde{T}. The image T~/Kโˆ—\tilde{T}/K^{*} of T~\tilde{T} in WGโ€‹(Kโˆ—)W_{G}(K^{*}) is a torus, so we can choose the maximal torus of WGโ€‹(Kโˆ—)W_{G}(K^{*}) to contain it. In fact T~/Kโˆ—\tilde{T}/K^{*} is itself a maximal torus, since otherwise its inverse image T~1\tilde{T}_{1} would have image T~1/K\tilde{T}_{1}/K in WGโ€‹(K)W_{G}(K) properly containing the maximal torus Tโ€‹WGโ€‹(K)TW_{G}(K). The situation is depicted below.

G\textstyle{G\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}WGโ€‹(K)\textstyle{W_{G}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NGโ€‹(K)\textstyle{N_{G}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}NGโ€‹(Kโˆ—)\textstyle{N_{G}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}WGโ€‹(Kโˆ—)\textstyle{W_{G}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tโ€‹WGโ€‹(K)\textstyle{TW_{G}(K)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}T~\textstyle{\tilde{T}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tโ€‹WGโ€‹(Kโˆ—)\textstyle{TW_{G}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Kโˆ—/K\textstyle{K^{*}/K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Kโˆ—\textstyle{K^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1}K\textstyle{K\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}

Now if gg is an element of GG whose image in WGโ€‹(K)W_{G}(K) normalizes Tโ€‹WGโ€‹(K)TW_{G}(K), gg normalizes T~\tilde{T}, and hence its image in WGโ€‹(Kโˆ—)W_{G}(K^{*}) normalizes Tโ€‹WGโ€‹(Kโˆ—)TW_{G}(K^{*}).

Writing โˆผ\sim for Borelโ€™s rational cohomology isomorphism NGโ€‹(T)โˆผGN_{G}(T)\sim G, we have a map ฮฑ\alpha

WGโ€‹(Kโˆ—)โˆผNWGโ€‹(Kโˆ—)โ€‹(Tโ€‹WGโ€‹(Kโˆ—))โŸตฮฑNWGโ€‹(K)โ€‹(Tโ€‹WGโ€‹(K))โˆผWGโ€‹(K).W_{G}(K^{*})\sim N_{W_{G}(K^{*})}(TW_{G}(K^{*}))\stackrel{{\scriptstyle\alpha}}{{\longleftarrow}}N_{W_{G}(K)}(TW_{G}(K))\sim W_{G}(K).
ฮฑโˆ—:Hโˆ—โ€‹(Bโ€‹WGโ€‹(Kโˆ—))โŸถHโˆ—โ€‹(Bโ€‹WGโ€‹(K))\alpha^{*}:H^{*}(BW_{G}(K^{*}))\longrightarrow H^{*}(BW_{G}(K))

as required.

4.B. Localization

In the geometric context we take

โ„ฐK={eโ€‹(W)|WโˆˆRepโ€‹(NGโ€‹(K)),WK=0}.\mathcal{E}_{K}=\{e(W)\;|\;W\in\mathrm{Rep}(N_{G}(K)),W^{K}=0\}.
โ„K={1,eK},\mathcal{I}_{K}=\{1,e_{K}\},

and on ๐’ฆโ€‹โ„›\mathcal{K}\mathcal{R} we take the trivial multiplicative set.

5. The abelian models

In Subsection 5.A we describe the standard model ๐’œโ€‹(๐’ฑ,โ„›,๐’ฒ,๐’ฎ)\mathcal{A}(\mathcal{V},\mathcal{R},\mathcal{W},\mathcal{S}) formed from the space ๐’ฑ=๐’ฆโˆช{Kโˆ—}\mathcal{V}=\mathcal{K}\cup\{K^{*}\} and its auxiliary data (โ„›,๐’ฒ,๐’ฎ)(\mathcal{R},\mathcal{W},\mathcal{S}). In Subsections 5.B and 5.C we describe a stalkwise construction and the relation to the standard model. In Subsection 5.D we name two cases of somewhat different characters, based on the dimension of the stalks of the sheaf โ„›\mathcal{R}. In Subsection 5.E we construct injective resolutions in the standard model, showing it is of injective dimension 1. Finally, in Subsection 5.F we make this explicit in some familiar examples (some readers may wish to flick forward to the examples as they read).

5.A. The standard model

Given ๐’ฑ\mathcal{V}, a sheaf of rings, with Euler classes and a compatible component structure we may describe the standard model ๐’œโ€‹(๐’ฑ,โ„›,๐’ฎ,๐’ฒ)\mathcal{A}(\mathcal{V},\mathcal{R},\mathcal{S},\mathcal{W}).

We take ๐’ช๐’ฆ=โˆFโˆˆ๐’ฆโ„›โ€‹(F)\mathcal{O}_{\mathcal{K}}=\prod_{F\in\mathcal{K}}\mathcal{R}(F), and we form the multiplicatively closed set

๐’ฎ:={(sF)|sFโˆˆ๐’ฎKโˆ—/Fโ€‹ย andย โ€‹sF=1โ€‹ย almost everywhereย }โІ๐’ช๐’ฆ.\mathcal{S}:=\{(s_{F})\;|\;s_{F}\in\mathcal{S}_{K^{*}/F}\mbox{ and }s_{F}=1\mbox{ almost everywhere }\}\subseteq\mathcal{O}_{\mathcal{K}}.

Now we consider the diagram of rings

๐’ชโŒŸ:=(โ„›โ€‹(Kโˆ—)๐’ช๐’ฆ๐’ฎโˆ’1โ€‹๐’ช๐’ฆ)\mathcal{O}^{\lrcorner}:=\left(\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.06668pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 33.06668pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{R}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 49.6403pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 49.6403pt\raise-28.95583pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-9.06668pt\raise-40.59358pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{O}_{\mathcal{K}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 9.06668pt\raise-40.59358pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 35.46251pt\raise-40.59358pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.46251pt\raise-40.59358pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}\right)

The standard model ๐’œ=๐’œโ€‹(๐”›,โ„›,๐’ฎ,๐’ฒ)\mathcal{A}=\mathcal{A}(\mathfrak{X},\mathcal{R},\mathcal{S},\mathcal{W}) consists of ๐’ชโŒŸ\mathcal{O}^{\lrcorner}-modules

V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N\textstyle{N\ignorespaces\ignorespaces\ignorespaces\ignorespaces}P\textstyle{P}

where (1) the โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*})-module VV is torsion, (2) (quasicoherence) the horizontal induces an isomorphism ๐’ฎโˆ’1โ€‹Nโ‰…P\mathcal{S}^{-1}N\cong P and (3) (extendedness) the vertical induces an isomorphism ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—Vโ‰…P\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V\cong P.

We refer to NN as the nub and VV as the vertex, and informally we write NโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—VN\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V for the above object.

There are compatible actions of the finite groups. Thus the FFth component of each element of ๐’ฎ\mathcal{S} is ๐’ฒF\mathcal{W}_{F} invariant, there is an action of ๐’ฒF\mathcal{W}_{F} on eFโ€‹Ne_{F}N, and of ๐’ฒKโˆ—\mathcal{W}_{K^{*}} on VV, and the map VโŸถ๐’ฎโˆ’1โ€‹NโŸถ๐’ฎโˆ’1โ€‹eFโ€‹NV\longrightarrow\mathcal{S}^{-1}N\longrightarrow\mathcal{S}^{-1}e_{F}N is ๐’ฒF\mathcal{W}_{F}-equivariant.

5.B. Separating subgroups

As described in [3] one expects two different models where the subgroups are considered separately (the โ€˜separated modelโ€™ where there is still a weak condition on the vertical map, and the โ€˜complete modelโ€™, where the ๐’ช๐’ฆ\mathcal{O}_{\mathcal{K}}-module is complete in a suitable sense but there is no condition on the vertical map). We begin by describing functors for separating and recombining the subgroups.

The pre-separated model ๐’œpโ€‹s=๐’œpโ€‹sโ€‹(๐”›,โ„›,๐’ฎ,๐’ฒ)\mathcal{A}_{ps}=\mathcal{A}_{ps}(\mathfrak{X},\mathcal{R},\mathcal{S},\mathcal{W}) consists of a torsion โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*})-module VV with an action of ๐’ฒKโˆ—\mathcal{W}_{K^{*}} and โ„›โ€‹(F)\mathcal{R}(F)-modules Nโ€‹(F)N(F) with an action of ๐’ฒF\mathcal{W}_{F} for each FF together with a spreading map

ฯƒ:VโŸถ๐’ฎโˆ’1โ€‹โˆFNโ€‹(F).\sigma:V\longrightarrow\mathcal{S}^{-1}\prod_{F}N(F).

We require that the map VโŸถ๐’ฎโˆ’1โ€‹โˆFNโ€‹(F)โŸถ๐’ฎโˆ’1โ€‹Nโ€‹(F)V\longrightarrow\mathcal{S}^{-1}\prod_{F}N(F)\longrightarrow\mathcal{S}^{-1}N(F) is WFW_{F}-equivariant.

5.C. Adjunction

There is an adjunction

e:๐’œ\textstyle{e:\mathcal{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’œpโ€‹s:p\textstyle{\mathcal{A}_{ps}\ignorespaces\ignorespaces\ignorespaces\ignorespaces:p}

relating the standard and preseparated models. The constructions we describe are all consistent with the actions of the component structure, so actions will not be mentioned explicitly.

If X=(NโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V)X=(N\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V) then eโ€‹XeX has the same vertex VV and the separated stalk at FF is Nโ€‹(F)=eFโ€‹NN(F)=e_{F}N where eFe_{F} is the idempotent supported at FF. The structure map is the composite

VโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V=๐’ฎโˆ’1โ€‹NโŸถ๐’ฎโˆ’1โ€‹โˆFNโ€‹(F).V\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V=\mathcal{S}^{-1}N\longrightarrow\mathcal{S}^{-1}\prod_{F}N(F).

If Y=({Nโ€‹(F)}F,V,ฯƒ)Y=(\{N(F)\}_{F},V,\sigma) then pโ€‹YpY has the same vertex VV and the nub NN is defined by the pullback square

N\textstyle{N\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V\textstyle{\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โˆFNโ€‹(F)\textstyle{\prod_{F}N(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎโˆ’1โ€‹โˆFNโ€‹(F)\textstyle{\mathcal{S}^{-1}\prod_{F}N(F)}

Since ฮ“๐’ฎโ€‹Mโ‰ƒโจFeFโ€‹ฮ“๐’ฎโ€‹M\Gamma_{\mathcal{S}}M\simeq\bigoplus_{F}e_{F}\Gamma_{\mathcal{S}}M, the unit gives an isomorphism XโŸถโ‰…pโ€‹eโ€‹XX\stackrel{{\scriptstyle\cong}}{{\longrightarrow}}peX.

On the other hand the counit need not be an isomorphism. For example, if YY has the property that Nโ€‹(F)=0N(F)=0 for all Fโˆˆ๐’ฆF\in\mathcal{K}, we find pโ€‹YpY has nub N=๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—VN=\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V, and eโ€‹pโ€‹YepY has stalk ๐’ฎโˆ’1โ€‹โ„›โ€‹(F)โŠ—V\mathcal{S}^{-1}\mathcal{R}(F)\otimes V at Fโˆˆ๐’ฆF\in\mathcal{K}, which need not be zero.

5.D. Two structure sheaves

Finally we consider two structure sheaves with somewhat different behaviours. These correspond to the two cases ๐’ฆ=๐’ฆ1\mathcal{K}=\mathcal{K}_{1} and ๐’ฆ=๐’ฆ0\mathcal{K}=\mathcal{K}_{0}. The present account focuses on a particularly simple choice of sheaf โ„›\mathcal{R} that covers examples of immediate interest.

Definition 5.1.

The Type 0 structure sheaf has โ„›โ€‹(Kโˆ—)=โ„š\mathcal{R}(K^{*})=\mathbb{Q} and โ„›โ€‹(F)=โ„š\mathcal{R}(F)=\mathbb{Q} for all Fโˆˆ๐’ฆF\in\mathcal{K} and ๐’ฎ\mathcal{S} is the multiplicatively closed set of functions ๐’ฆโŸถ{0,1}\mathcal{K}\longrightarrow\{0,1\} with finite support and ๐’ฆ\mathcal{K} is infinite.

The Type 1 structure sheaf has โ„›โ€‹(Kโˆ—)=โ„š\mathcal{R}(K^{*})=\mathbb{Q} and Rโ€‹(F)=โ„šโ€‹[c]R(F)=\mathbb{Q}[c] for all FF and ๐’ฎ\mathcal{S} is the multiplicatively closed set of functions e:๐’ฆโŸถโ„คโ‰ฅ0e:\mathcal{K}\longrightarrow\mathbb{Z}_{\geq 0} with finite support.

The crudest difference between the types is about whether the standard and separated models are essentially different.

Lemma 5.2.

For the Type 0 structure sheaf, the pโˆ’ep-e adjunction is an equivalence of categories.

Proof :โ€„The statement about Type 0 structure sheaves follows since ๐’ฎโˆ’1โ€‹Rโ€‹(F)=0\mathcal{S}^{-1}R(F)=0, so that applying eFe_{F} to the defining pullback for pp we recover (eโ€‹pโ€‹N)โ€‹(F)=Nโ€‹(F)(epN)(F)=N(F). โˆŽ

To explain the situation with Type 1 structure sheaf we need to recall the models of the generating basic cells

ฯƒG=(๐’ช๐’ฆโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—โ„š)โ€‹ย andย โ€‹ฯƒF=fFโ€‹(โ„š)=(โ„šFโŸถ0).\sigma_{G}=(\mathcal{O}_{\mathcal{K}}\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes\mathbb{Q})\mbox{ and }\sigma_{F}=f_{F}(\mathbb{Q})=(\mathbb{Q}_{F}\longrightarrow 0).
Lemma 5.3.

The Type 1 structure sheaf the counit of the adjunction is not an equivalence, but it is a cellular equivalence in the sense that it induces an isomorphism of Homโ€‹(ฯƒG,โ‹…)\mathrm{Hom}(\sigma_{G},\cdot) and Homโ€‹(ฯƒF,โ‹…)\mathrm{Hom}(\sigma_{F},\cdot)

Proof :โ€„With Type 1 structure sheaves, the counit is not an isomorphism in the given example of a skyscraper sheaf at GG.

For the cells ฯƒF\sigma_{F} the cellular equivalence is clear since Homโ€‹(ฯƒF,X)=ฮ“cโ€‹eFโ€‹N\mathrm{Hom}(\sigma_{F},X)=\Gamma_{c}e_{F}N, which does not change under the functor pp. For the cell ฯƒG\sigma_{G} we note that Homโ€‹(ฯƒG,X)\mathrm{Hom}(\sigma_{G},X) is calculated as a pullback square:

Homโ€‹(ฯƒG,X)Homโ€‹(โ„š,V)VHom๐’ช๐’ฆโ€‹(๐’ช๐’ฆ,N)Hom๐’ช๐’ฆโ€‹(๐’ช๐’ฆ,๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V)N๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 33.5792pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-29.12106pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}(\sigma_{G},X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.12108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 78.52367pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.3222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 78.52367pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}(\mathbb{Q},V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 105.96814pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 105.96814pt\raise-29.18445pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 0.0pt\raise 1.0pt\hbox{\lx@xy@droprule}}\hbox{\kern 0.0pt\raise-1.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern 194.53487pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 201.56264pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 201.56264pt\raise-70.2822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-33.5792pt\raise-40.8222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}_{\mathcal{O}_{\mathcal{K}}}(\mathcal{O}_{\mathcal{K}},N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 33.5792pt\raise-40.8222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 57.5792pt\raise-40.8222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\kern 57.5792pt\raise-40.8222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}_{\mathcal{O}_{\mathcal{K}}}(\mathcal{O}_{\mathcal{K}},\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.39479pt\raise 0.91878pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.39479pt\raise-0.91878pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.39479pt\raise 0.91878pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.39479pt\raise-0.91878pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.39479pt\raise 0.91878pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.39479pt\raise-0.91878pt\hbox{\lx@xy@drawline@}}}}{\hbox{\kern 198.56264pt\raise-40.8222pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-7.56248pt\raise-81.91995pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{N\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.56248pt\raise-81.91995pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 178.35709pt\raise-81.91995pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 102.96814pt\raise-81.91995pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 178.35709pt\raise-81.91995pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V}$}}}}}}}\ignorespaces}}}}\ignorespaces.

In other words the comparison map is the map relating to the inner and outer pullbacks in the diagram

V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}N\textstyle{N\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V\textstyle{\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โˆFNโ€‹(F)\textstyle{\prod_{F}N(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎโˆ’1โ€‹โˆFNโ€‹(F)\textstyle{\mathcal{S}^{-1}\prod_{F}N(F)}

Since the square is a pullback by definition, the map is an isomorphism. โˆŽ

5.E. Homological algebra of the standard model

It is an easy exercise to understand this abelian category, but it is useful to work it through for reference in higher dimensional contexts. By Maschkeโ€™s Theorem the actions of the component groups ๐’ฒK\mathcal{W}_{K} do not affect the homological dimension.

Lemma 5.4.

If the structure sheaf is of Type 0 or Type 1, the standard abelian category ๐’œ\mathcal{A} is of injective dimension 1.

Remark 5.5.

(a) One point of writing this down is to highlight the slightly different formal structure of the proof in Type 0 and Type 1.

(b) In Remark 5.8 below that the argument is easily adapted to give an estimate of the injective dimension when โ„›\mathcal{R} is a more general diagram of polynomial rings, but we take the opportunity to be a bit more precise in the present case.

Proof :โ€„We may write down enough injectives. Indeed, for any graded โ„š\mathbb{Q}-vector space WW with an action of ๐’ฒKโˆ—\mathcal{W}_{K^{*}}, the object

eโ€‹(W)=(W๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—W๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—W)e(W)=\left(\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 24.59445pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 64.77223pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 73.1889pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 73.1889pt\raise-27.05444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-24.59445pt\raise-38.6922pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 24.59445pt\raise-38.6922pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 48.59445pt\raise-38.6922pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 48.59445pt\raise-38.6922pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes W}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}\right)

has the property Homโ€‹(X,eโ€‹(W))=Homโ€‹(V,W)\mathrm{Hom}(X,e(W))=\mathrm{Hom}(V,W). It is therefore injective.

Similarly if TFT_{F} is a torsion Rโ€‹(F)R(F)-module, the object

fFโ€‹(TF)=(0TF0)f_{F}(T_{F})=\left(\begin{gathered}\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 8.80577pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 32.80577pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 38.30577pt\raise-3.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 38.30577pt\raise-28.1511pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-8.80577pt\raise-37.59554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{T_{F}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 8.80577pt\raise-37.59554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 32.80577pt\raise-37.59554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 32.80577pt\raise-37.59554pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0}$}}}}}}}\ignorespaces}}}}\ignorespaces\end{gathered}\right)

lies in the standard model and has the property

Homโ€‹(X,fFโ€‹(TF))=Homโ€‹(Vโ€‹(F),TF).\mathrm{Hom}(X,f_{F}(T_{F}))=\mathrm{Hom}(V(F),T_{F}).

It is therefore injective if TFT_{F} is an injective โ„šโ€‹[c]\mathbb{Q}[c]-module.

Now suppose X=(NโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V)X=(N\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V). For an arbitrary object XX we may take the map XโŸถeโ€‹(V)X\longrightarrow e(V) corresponding to the identity on VV; its kernel is at the nub, where it is a module TT with ๐’ฎโˆ’1โ€‹T=0\mathcal{S}^{-1}T=0. In either Type 0 or Type 1, this means that T=โจFeFโ€‹TT=\bigoplus_{F}e_{F}T (direct sum!). In Type 0, eFโ€‹T=IFe_{F}T=I_{F} is already injective, and in Type 1 we choose a resolution 0โŸถeFโ€‹TโŸถIFโŸถJFโŸถ00\longrightarrow e_{F}T\longrightarrow I_{F}\longrightarrow J_{F}\longrightarrow 0. In any case we may construct a monomorphism

ฮผ:XโŸถeโ€‹(V)โŠ•โˆFfFโ€‹(IF).\mu:X\longrightarrow e(V)\oplus\prod_{F}f_{F}(I_{F}).

It is at this point that the two cases differ.

In the Type 0 case, we consider the product โˆFfFโ€‹(IF)\prod_{F}f_{F}(I_{F}): the value at Kโˆ—K^{*} is ๐’ฎโˆ’1โ€‹โˆFIF\mathcal{S}^{-1}\prod_{F}I_{F}, which is non-zero if infinitely many terms IFI_{F} are nonzero. The cokernel of ฮผ\mu is thus eโ€‹(W)e(W) for some vector space WW, and we have found an injective resolution of length 1. We observe that not all objects are injective since Ext1โ€‹(eโ€‹(โ„š),โ„šยฏ)=๐’ฎโˆ’1โ€‹โˆFโ„šโ‰ 0\mathrm{Ext}^{1}(e(\mathbb{Q}),\underline{\mathbb{Q}})=\mathcal{S}^{-1}\prod_{F}\mathbb{Q}\neq 0.

In the Type 1 case, we may again proceed with the resolution, but as in Type 0, โˆFfFโ€‹(IF)\prod_{F}f_{F}(I_{F}) may be non-zero at Kโˆ—K^{*}. We may instead embed TT in the injective โ„ฐ\mathcal{E}-torsion module โจFfFโ€‹(IF)\bigoplus_{F}f_{F}(I_{F}). This sum of injectives is also injective, since Extโ€‹(A,โจFIF)=0\mathrm{Ext}(A,\bigoplus_{F}I_{F})=0 for all ๐’ช๐’ฆ\mathcal{O}_{\mathcal{K}}-modules AA which occur as a nub (as in [8, 5.3.1]). This is clear for torsion modules AA, and it is clear for A=๐’ช๐’ฆA=\mathcal{O}_{\mathcal{K}}, and follows in general from this.

Accordingly, we have found an injective resolution of length 1. It is easy to see that the are non-split extensions (for example the short exact sequence of torsion Rโ€‹(F)R(F)-modules 0โŸถโ„šโŸถโ„šโ€‹[c]โˆจโŸถฮฃโˆ’2โ€‹โ„šโ€‹[c]โˆจโŸถ00\longrightarrow\mathbb{Q}\longrightarrow\mathbb{Q}[c]^{\vee}\longrightarrow\Sigma^{-2}\mathbb{Q}[c]^{\vee}\longrightarrow 0 gives non-split extensions on applying fFโ€‹(โ‹…)f_{F}(\cdot) for any FF). โˆŽ

Remark 5.6.

We could have used the same argument for Type 0 as for Type 1, and we would still have reached the conclusion that the category is of injective dimension 1. The point is that to use that argument we need to think in terms of modules over the ring ๐’ช๐’ฆ\mathcal{O}_{\mathcal{K}} (rather than sheaves over ๐’ฆโˆ—\mathcal{K}^{*}), and the ring is not of injective dimension 0. The given argument relying on the fact that stalks are fields seemed more transparent.

It is useful to record the following criterion for injectivity for later reference.

Lemma 5.7.

In the Type 0 case, any object X=(NโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V)X=(N\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V) for which only finitely many of the modules TH=eHโ€‹(ฮ“๐’ฎโ€‹N)T_{H}=e_{H}(\Gamma_{\mathcal{S}}N) are non-zero is injective.

In the Type 1 case, a module X=(NโŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V)X=(N\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V) with the property that eFโ€‹Ne_{F}N is divisible for all Fโˆˆ๐’ฆF\in\mathcal{K} is injective.

Proof :โ€„In the Type 0 case, only finitely many of the terms fFโ€‹(TF)f_{F}(T_{F}) are non-zero, so the product of them has zero vertex.

In the Type 1 case, the map XโŸถeโ€‹(V)โŠ•โจFfFโ€‹(IF)X\longrightarrow e(V)\oplus\bigoplus_{F}f_{F}(I_{F}) constructed in the previous lemma is an isomorphism. The point is that the kernel TT is injective and so we can take IF=TFI_{F}=T_{F} and JF=0J_{F}=0. โˆŽ

Remark 5.8.

Essentially the same argument will show that the algebraic model is of finite injective dimension if the rings โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*}) and โ„›โ€‹(K)\mathcal{R}(K) are polynomial rings. Indeed, the full subcategory of objects eโ€‹(W)e(W) is equivalent to โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*}) modules. For an arbitrary object XX we consider the map XโŸถeโ€‹(W)X\longrightarrow e(W) where WW is the value of XX at Kโˆ—K^{*} and then obtain two exact sequences

0โŸถKโŸถXโŸถXยฏโŸถ0โ€‹ย andย โ€‹0โŸถXยฏโŸถeโ€‹(W)โŸถCโŸถ00\longrightarrow K\longrightarrow X\longrightarrow\overline{X}\longrightarrow 0\mbox{ and }0\longrightarrow\overline{X}\longrightarrow e(W)\longrightarrow C\longrightarrow 0

where K=fโ€‹(Kโ€ฒ)K=f(K^{\prime}) and C=fโ€‹(Cโ€ฒ)C=f(C^{\prime}) for torsion ๐’ช๐’ฆ\mathcal{O}_{\mathcal{K}}-modules Kโ€ฒ,Cโ€ฒK^{\prime},C^{\prime}.

If โ„›โ€‹(Kโˆ—)\mathcal{R}(K^{*}) is a polynomial ring on aa variables and โ„›โ€‹(K)\mathcal{R}(K) has at most bb variables for Kโˆˆ๐’ฆK\in\mathcal{K} then injdimโ€‹(fโ€‹(Cโ€ฒ)),injdimโ€‹(fโ€‹(Kโ€ฒ))โ‰คb\mathrm{injdim}(f(C^{\prime})),\mathrm{injdim}(f(K^{\prime}))\leq b and hence injdimโ€‹(Xยฏ)โ‰คmaxโก(a,b+1)\mathrm{injdim}(\overline{X})\leq\max(a,b+1), and therefore the same bound applies to injdimโ€‹(X)\mathrm{injdim}(X).

5.F. Examples

First, there are three examples where the answer is well known [8, 7].

Example 5.9.

(i) The very simplest case comes from the circle group G=TG=T. This has a single block, and we take ๐’ฆ=๐’ž\mathcal{K}=\mathcal{C} to be the set of finite cyclic subgroups (in bijection to the positive integers by order of subgroup).

Then ๐”›T=๐”›โ€‹(๐’ž)\mathfrak{X}_{T}=\mathfrak{X}(\mathcal{C}), we take the Type 1 structure sheaf โ„›โ€‹(F)=โ„šโ€‹[c]\mathcal{R}(F)=\mathbb{Q}[c] for all FF, and the component structure is trivial (WF=WG=1W_{F}=W_{G}=1). The set ๐’ฎ\mathcal{S} consists of Euler classes of representations VV with VT=0V^{T}=0, so that eโ€‹(V)โ€‹(F)=cdim(VF)e(V)(F)=c^{\dim(V^{F})}.

The model ๐’œ\mathcal{A} is the standard model ๐’œโ€‹(T)\mathcal{A}(T) for rational TT-spectra.

(ii) Next we may take G=Oโ€‹(2)G=O(2) and look at the toral block, again taking ๐’ฆ=๐’ž\mathcal{K}=\mathcal{C}. Now the compactification again consists of closed subgroups of the circle Sโ€‹Oโ€‹(2)SO(2). (The compactifying point Kโˆ—K^{*} in this example is Sโ€‹Oโ€‹(2)SO(2)). The rings are Type 1 as in the previous example, but we take each of the groups ๐’ฒF\mathcal{W}_{F} and ๐’ฒG\mathcal{W}_{G} to be of order 2 and the maps ๐’ฒFโŸถ๐’ฒG\mathcal{W}_{F}\longrightarrow\mathcal{W}_{G} to be isomorphisms. The action of ๐’ฒF\mathcal{W}_{F} on โ„šโ€‹[c]\mathbb{Q}[c] takes cc to โˆ’c-c.

The model ๐’œ\mathcal{A} is the model ๐’œ(O(2)|toral)=๐’œ(SO(2)][W]\mathcal{A}(O(2)|toral)=\mathcal{A}(SO(2)][W] for the toral block of rational Oโ€‹(2)O(2)-spectra.

(iii) The model for the toral block of G=Pโ€‹iโ€‹nโ€‹(2)G=Pin(2) is precisely the same as in Part (ii).

For the other cases we will consider only the full subgroups.

Example 5.10.

(i) For G=Tร—C2G=T\times C_{2}. This has two blocks. The first consists of subgroups of TT, and the second (considered here) consists of full subgroups. We take ๐’ฆ\mathcal{K} to consist of the full subgroups of Tร—C2T\times C_{2} and Kโˆ—=GK^{*}=G is the compactifying point. The subgroups in ๐’ฆ\mathcal{K} are either Cnร—C2C_{n}\times C_{2} or else the cyclic groups C2โ€‹nโ€ฒC_{2n}^{\prime} generated by (e2โ€‹ฯ€โ€‹i/2โ€‹n,โˆ’1)(e^{2\pi i/2n},-1).

This example is another Type 1 example, essentially like ๐’œโ€‹(T)\mathcal{A}(T) except that ๐’ž\mathcal{C} has been replaced by a different countable set.

(ii) For G=Oโ€‹(2)G=O(2) the space of subgroups again divides into two blocks. The first consists of subgroups of Sโ€‹Oโ€‹(2)SO(2), and the second (considered here) consists of full subgroups. We take ๐’ฆ=๐’Ÿ\mathcal{K}=\mathcal{D} to consist of the conjugacy classes of dihedral subgroups and Kโˆ—=GK^{*}=G. This time the ring is Type 0, with โ„›โ€‹(F)=โ„š\mathcal{R}(F)=\mathbb{Q} for all FF; the groups ๐’ฒF\mathcal{W}_{F} are all of order 2, and ๐’ฒG\mathcal{W}_{G} is trivial.

The multiplicatively closed set ๐’ฎ\mathcal{S} consists of the characteristic functions of the cofinite sets of ๐’Ÿ\mathcal{D}.

The model ๐’œ\mathcal{A} is the model ๐’œโ€‹(Oโ€‹(2)|full)\mathcal{A}(O(2)|\mathrm{full}) for the dihedral component of rational Oโ€‹(2)O(2)-spectra.

(iii) For G=Pโ€‹iโ€‹nโ€‹(2)G=Pin(2) the model is essentially the same as that for Oโ€‹(2)O(2). The toral block is identical to that of Oโ€‹(2)O(2) and the block of full subgroups is like that for except that ๐’ฆ=๐’ฌ\mathcal{K}=\mathcal{Q} consists of the quaternion subgroups.

Put together we have the following algebraic models for 1-dimensional groups.

๐’œโ€‹(Tร—W)โ‰ƒ๐’œโ€‹(T)โ€‹[W]ร—๐’œโ€‹(T)\mathcal{A}(T\times W)\simeq\mathcal{A}(T)[W]\times\mathcal{A}(T)
๐’œโ€‹(Oโ€‹(2))โ‰ƒ๐’œโ€‹(Sโ€‹Oโ€‹(2))โ€‹[W]ร—Wโ€‹-Sh/(๐’Ÿ#)\mathcal{A}(O(2))\simeq\mathcal{A}(SO(2))[W]\times W\mbox{-Sh}/(\mathcal{D}^{\#})
๐’œโ€‹(Pโ€‹iโ€‹nโ€‹(2))โ‰ƒ๐’œโ€‹(Sโ€‹pโ€‹iโ€‹nโ€‹(2))โ€‹[W]ร—Wโ€‹-Sh/(๐’ฌ#)\mathcal{A}(Pin(2))\simeq\mathcal{A}(Spin(2))[W]\times W\mbox{-Sh}/(\mathcal{Q}^{\#})

There is an equivalence ๐’œโ€‹(Oโ€‹(2))โ‰ƒ๐’œโ€‹(Pโ€‹iโ€‹nโ€‹(2))\mathcal{A}(O(2))\simeq\mathcal{A}(Pin(2)), but note this is given by different bijections on the two components (in the non-toral part it is natural to choose the bijection Q4โ€‹aโ†”D2โ€‹aQ_{4a}\leftrightarrow D_{2a} quotienting out the central subgroup of order 2, but in the toral part we must choose a bijection between cyclic subgroups of Sโ€‹Oโ€‹(2)SO(2) and those of Sโ€‹pโ€‹iโ€‹nโ€‹(2)Spin(2), so we cannot use the quotient map).

Example 5.11.

(i) We may consider the block corresponding to full subgroups of the normalizer in the maximal torus in Sโ€‹Uโ€‹(3)SU(3). This consists of ๐’ฒ\mathcal{W}-sheaves over ๐’ฆ#\mathcal{K}^{\#} where ๐’ฆ\mathcal{K} is the discrete space of conjugacy classes of finite subgroups and ๐’ฒF\mathcal{W}_{F} is a group of order 3 for all FF and ๐’ฒKโˆ—=1\mathcal{W}_{K^{*}}=1. In this case the full subgroups are T2โ€‹[n]โ‹Šฮฃ3T^{2}[n]\rtimes\Sigma_{3}, and therefore in bijection with the positive integers (see [13, Section 13] for more details).

(ii) We may consider the block corresponding to full subgroups of T2โ‹ŠC3T^{2}\rtimes C_{3} (a subgroup of T2โ‹Šฮฃ3T^{2}\rtimes\Sigma_{3}). Again ๐’ฒ\mathcal{W}-sheaves over ๐’ฆ3#\mathcal{K}_{3}^{\#} where ๐’ฆ3\mathcal{K}_{3} is the discrete space of conjugacy classes of finite subgroups and agan ๐’ฒF\mathcal{W}_{F} is of order 3 for all FF and ๐’ฒKโˆ—=1\mathcal{W}_{K^{*}}=1. The set ๐’ฆ3\mathcal{K}_{3} is described in [13, Section 12].

Part II Topology

6. The abelian models are Quillen models: general strategy

We will show that the abelian categories provide models in all the cases we study. The structure of the argument is the same as that for tori in [24]: we show that the sphere spectrum is the pullback of rings which are isotropically concentrated and formal in a strong sense.

6.A. Outline

The core of the proof is the fact that the sphere spectrum S0S^{0} is a pullback of an isotropic cube, using the general inductive argument of [2, 8.1], adapted to the non-Noetherian setting.

This allows us to outline the proof: we give a symbolic description and then explain the notation and discuss the ingredients in the argument. Details will be given in the rest of the paper.

G-spectra|๐’ฑโ‰ƒ0S0โ€‹-modโˆ’G-spectra|๐’ฑโ‰ƒ1Cellโ€‹((S0)โŒŸโ€‹-modโˆ’G-spectra)โ‰ƒ2Cellโ€‹(((S0)~โŒŸ)Gโ€‹-modโˆ’๐’ฒโˆ’spectra)โ‰ƒ3Cellโ€‹(Cโˆ—Gโ€‹((S0)~โŒŸ)โ€‹-modโˆ’โ„šโ€‹[๐’ฒ]โ€‹-mod)โ‰ƒ4Cellโ€‹(ฯ€โˆ—Gโ€‹((S0)~โŒŸ)โ€‹-modโˆ’โ„šโ€‹[๐’ฒ]โ€‹-mod)โ‰ƒ5Dโ€‹Gโˆ’๐’œโ€‹(G|๐’ฑ)\mbox{$G$-{\bf spectra}}|\mathcal{V}\stackrel{{\scriptstyle 0}}{{\simeq}}S^{0}\mbox{-mod}-\mbox{$G$-{\bf spectra}}|\mathcal{V}\stackrel{{\scriptstyle 1}}{{\simeq}}\mathrm{Cell}((S^{0})^{\lrcorner}\mbox{-mod}-\mbox{$G$-{\bf spectra}})\\ \stackrel{{\scriptstyle 2}}{{\simeq}}\mathrm{Cell}((\widetilde{(S^{0})}^{\lrcorner})^{G}\mbox{-mod}-\mathcal{W}-\mathrm{spectra})\stackrel{{\scriptstyle 3}}{{\simeq}}\mathrm{Cell}(C^{G}_{*}(\widetilde{(S^{0})}^{\lrcorner})\mbox{-mod}-\mathbb{Q}[\mathcal{W}]\mbox{-mod})\\ \stackrel{{\scriptstyle 4}}{{\simeq}}\mathrm{Cell}(\pi^{G}_{*}(\widetilde{(S^{0})}^{\lrcorner})\mbox{-mod}-\mathbb{Q}[\mathcal{W}]\mbox{-mod})\stackrel{{\scriptstyle 5}}{{\simeq}}DG-\mathcal{A}(G|\mathcal{V})

Equivalence 0 simply uses the fact that GG-spectra are modules over the sphere spectrum. Equivalence 1 uses the fact [23, 4.1] that the category of modules over a homotopy pullback ring is equivalent to the cellularization of the category of generalized diagrams over the individual modules, together with the fact that the localized sphere is the pullback.

From Equivalence 2 onwards, we introduce variants on the terms of the initial cube so as to keep track of the finite Weyl groups. The cospan (S0~)โŒŸ(\widetilde{S^{0}})^{\lrcorner} of GG-spectra replaces terms of (S0)โŒŸ(S^{0})^{\lrcorner} by coinductions which vary by subgroup. The new objects have the property that their GG-fixed point spectra are products of spectra with homology Hโˆ—โ€‹(Bโ€‹WGeโ€‹(K))H^{*}(BW_{G}^{e}(K)) for relevant subgroups KK and the category of modules take values in the corresponding product of categories with WGdโ€‹(K)W_{G}^{d}(K)-action. The cellularization will pick out the appropriate abelian category.

Equivalence 2 uses the results of [22]. To explain, for each subgroup KK we consider the normalizer N=NGโ€‹(K)N=N_{G}(K), the Weyl group W=NGโ€‹(K)/KW=N_{G}(K)/K with identity component WeW^{e} and discrete quotient WdW^{d}. Finally, we write NfN^{f} for the inverse image of WeW^{e} in NN. With this notation, there are equivalences

Dโ€‹Eโ€‹โŸจKโŸฉโ€‹-modโˆ’Gโˆ’sโ€‹pโ€‹eโ€‹cโ€‹tโ€‹rโ€‹aโ‰ƒDโ€‹Eโ€‹โŸจKโŸฉโ€‹-modโˆ’Nโˆ’sโ€‹pโ€‹eโ€‹cโ€‹tโ€‹rโ€‹aโ‰ƒDโ€‹Eโ€‹โŸจKโŸฉKโ€‹-modโˆ’Wโˆ’sโ€‹pโ€‹eโ€‹cโ€‹tโ€‹rโ€‹aโ‰ƒDโ€‹Eโ€‹โŸจKโŸฉNfโ€‹-modโˆ’Wdโˆ’sโ€‹pโ€‹eโ€‹cโ€‹tโ€‹rโ€‹aDE\langle K\rangle\mbox{-mod}-G-spectra\simeq DE\langle K\rangle\mbox{-mod}-N-spectra\simeq\\ DE\langle K\rangle^{K}\mbox{-mod}-W-spectra\simeq DE\langle K\rangle^{N^{f}}\mbox{-mod}-W^{d}-spectra

where the first is the forgetful map and the second is passage to KK fixed ponts (an equivalence because Dโ€‹Eโ€‹โŸจKโŸฉDE\langle K\rangle lies over KK) and the third is passage to NfN^{f}-fixed points under WeW^{e} (an equivalence by the Eilenberg-Moore theorem because WeW^{e} is connected). It requires some care to assemble these equivalences when ๐’ฆ\mathcal{K} is infinite, and we will explain in Section 8.

Equivalence 3 follows from Shipleyโ€™s Theorem [26], and is easily adapted to the type of diagram we have. Equivalence 4 is a formality statment. Finally, Equivalence 5 folows from the Cellular Skeleton Theorem, which will identify the cellularization of the algebraic category of modules with the derived category of an abelian category.

We will first expla The abelian models are Q models gen star in the argument for individual subgroups and then discuss how to assemble these for the whole category.

7. Modules over completions and completions of modules

In this section we consider the stalks over a single subgroup. We deal with two particular matters we address. The first is reflected in the title: the splicing data comes about because we have models for arbitrary modules over the completed rings, not just complete modules. The primitive example to bear in mind is that there many more modules over โ„คpโˆง\mathbb{Z}_{p}^{\wedge} than there are complete modules (for example โ„คpโˆงโ€‹[1/p]\mathbb{Z}_{p}^{\wedge}[1/p]) . Roughly speaking the complete modules are the ingredients but modules over the completed ring are used in the splicing. The second matter is that we clarify the necessary generators when the group is not connected in a way that will be important when we allow infinitely many subgroups.

7.A. Trivial coisotropy (connected)

Starting with the simplest case we consider a connected compact Lie group GG and focus on trivial isotropy or coisotropy. First of all, there is an equivalence

free-G-spectraโ‰ƒcofree-G-spectra\mbox{free-$G$-spectra}\simeq\mbox{cofree-$G$-spectra}

using the functors (โ‹…)โˆงEโ€‹G+(\cdot)\wedge EG_{+} and Fโ€‹(Eโ€‹G+,โ‹…)F(EG_{+},\cdot). Similarly in algebra

torsion-Hโˆ—โ€‹(Bโ€‹G)-modulesโ‰ƒcomplete-Hโˆ—โ€‹(Bโ€‹G)-modules\mbox{torsion-$H^{*}(BG)$-modules}\simeq\mbox{complete-$H^{*}(BG)$-modules}

using (derived) torsion and derived completion functors ฮ“Iโ€‹(โ‹…)\Gamma_{I}(\cdot) and ฮ›Iโ€‹(โ‹…)\Lambda_{I}(\cdot). (A model for torsion Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-modules is given by DG modules in the abelian category of torsion modules. In the complete case, the category of II-adically complete modules is not abelian, so one needs to use the abelian category of L0IL_{0}^{I}-complete modules [25].)

We have equivalences

free-GG-spectraโ‰ƒ\scriptstyle{\simeq}โ‰ƒ\scriptstyle{\simeq}cofree-GG-spectraโ‰ƒ\scriptstyle{\simeq}tors-Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-modโ‰ƒ\scriptstyle{\simeq}comp-Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-mod

We will focus on the right hand end (cofree spectra and complete modules).

One method of proving the vertical equivalences is to observe that S0โŸถDโ€‹Eโ€‹G+S^{0}\longrightarrow DEG_{+} is a non-equivariant equivalence, and hence

cofree-G-spectra=LEโ€‹G+โ€‹(S0โ€‹-mod-G-spectra)โ‰ƒLEโ€‹G+โ€‹(Dโ€‹Eโ€‹G+โ€‹-mod-G-spectra).\mbox{cofree-$G$-spectra}=L_{EG_{+}}(S^{0}\mbox{-mod-$G$-spectra})\simeq L_{EG_{+}}(DEG_{+}\mbox{-mod-$G$-spectra}).

We may then prove Dโ€‹Eโ€‹G+DEG_{+} is formal.

Proposition 7.1.

We have equivalences

Dโ€‹Eโ€‹G+โ€‹-mod-G-spectraโ‰ƒDโ€‹Bโ€‹G+โ€‹-mod-spectraโ‰ƒCโˆ—โ€‹(Bโ€‹G)โ€‹-modโ‰ƒHโˆ—โ€‹(Bโ€‹G)-modDEG_{+}\mbox{-mod-$G$-spectra}\simeq DBG_{+}\mbox{-mod-spectra}\simeq C^{*}(BG)\mbox{-mod}\simeq\mbox{$H^{*}(BG)$-mod}

Proof :โ€„Writing R=Dโ€‹Eโ€‹G+R=DEG_{+}, the first equivalence is in [22], using the fixed point functor Rโ€‹-mod-G-spectraโŸถRGโ€‹-mod-spectraR\mbox{-mod-$G$-spectra}\longrightarrow R^{G}\mbox{-mod-spectra} and its left adjoint. This is an equivalence by the Cellularization Principle [20] provided RR-modules are generated by RR.

This is true when GG is connected (there are various proofs, but one giving this generality is in [11]). โˆŽ

Theorem 7.2.

If GG is connected, we have a commutative square

Dโ€‹Eโ€‹G+โ€‹-mod-G-spectra\textstyle{DEG_{+}\mbox{-mod-$G$-spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}cofree-GG-spectraโ‰ƒ\scriptstyle{\simeq}Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-modcomp-Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-mod

Proof :โ€„In summary, we have the equivalences

Dโ€‹Eโ€‹G+โ€‹-mod-G-spectra\textstyle{DEG_{+}\mbox{-mod-$G$-spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}LEโ€‹G+โ€‹(Dโ€‹Eโ€‹G+โ€‹-mod-G-spectra)\textstyle{L_{EG_{+}}(DEG_{+}\mbox{-mod-$G$-spectra})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}cofree-GG-spectraโ‰ƒ\scriptstyle{\simeq}Dโ€‹Bโ€‹G+โ€‹-mod-G-spectra\textstyle{DBG_{+}\mbox{-mod-$G$-spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}LS0โ€‹(Dโ€‹Bโ€‹G+โ€‹-mod-G-spectra)\textstyle{L_{S^{0}}(DBG_{+}\mbox{-mod-$G$-spectra})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}(cofree-G-spectra)G\textstyle{(\mbox{cofree-$G$-spectra})^{G}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-modLโ„šโ€‹Hโˆ—โ€‹(Bโ€‹G)-mod\textstyle{L_{\mathbb{Q}}\mbox{$H^{*}(BG)$-mod}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}comp-Hโˆ—โ€‹(Bโ€‹G)H^{*}(BG)-mod

โˆŽ

7.B. Trivial coisotropy (disconnected)

We explain how to cover the case of disconnected groups.

Theorem 7.3.

For an arbitrary group GG we have a commutative square

Dโ€‹Eโ€‹G+โ€‹-mod-G-spectra\textstyle{DEG_{+}\mbox{-mod-$G$-spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰ƒ\scriptstyle{\simeq}cofree-GG-spectraโ‰ƒ\scriptstyle{\simeq}Hโˆ—โ€‹(Bโ€‹Ge)โ€‹[Gd]โ€‹-mod\textstyle{H^{*}(BG_{e})[G_{d}]\mbox{-mod}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}complete-โ€‹Hโˆ—โ€‹(Bโ€‹Ge)โ€‹[Gd]โ€‹-mod\textstyle{\mbox{complete-}H^{*}(BG_{e})[G_{d}]\mbox{-mod}}

Proof :โ€„From the Eilenberg-Moore spectral sequence Dโ€‹Eโ€‹G+DEG_{+}-modules are generated by Gd/F+G^{d}/F_{+}-modules where FF is a finite subgroup of GdG^{d}. The map of GdG_{d}-spectra S0โŸถeโ€‹S0S^{0}\longrightarrow eS^{0} is a non-equivariant equivalence where eโˆˆAโ€‹(Gd)e\in A(G_{d}) is the idempotent supported at 1. Thus S0โˆงDโ€‹Eโ€‹G+โŸถeโ€‹S0โˆงDโ€‹Eโ€‹G+S^{0}\wedge DEG_{+}\longrightarrow eS^{0}\wedge DEG_{+} is an equivalence. The result follows from the fact that free GdG^{d}-spectra are generated by G+dG^{d}_{+}. โˆŽ

8. Treating infinitely many subgroups at once

In the previous section, we argued that Dโ€‹Eโ€‹G+DEG_{+} is strongly isotropically formal in the sense that we could take fixed points for a single subgroup and obtain a formal ring spectrum. It is rather easy to adapt this to Dโ€‹Eโ€‹โŸจHโŸฉDE\langle H\rangle for any single subgroup HH, by the method of [12]. We recall this argument below, but the main point of the present section is to explain how to deal with infinite products of such spectra.

In the previous section we explained how to deal with a single subgroup, which we took to be the trivial group for convenience. The argument involved a subgroup KK and some associated subgroups. Principally this means its normalizer N=NGโ€‹(K)N=N_{G}(K), and its Weyl group W=N/KW=N/K, but we also need to mention the identity component WeW^{e} of WW, and its discrete quotient Wd=W/WeW^{d}=W/W^{e}, and finally NfN^{f}, which is the inverse image of WeW^{e} in NN, so that N/Nfโ‰…W/We=WdN/N^{f}\cong W/W^{e}=W^{d}.

The argument is that (for suitable ring spectra RR) we have equivalences

Rโ€‹-modโˆ’Gโˆ’spectraโ‰ƒ(1)Rโ€‹-modโˆ’Nโˆ’spectraโ‰ƒ(2)RKโ€‹-modโˆ’Wโˆ’spectraโ‰ƒ(3)RNfโ€‹-modโˆ’Wdโˆ’spectraR\mbox{-mod}-G-\mathrm{spectra}\stackrel{{\scriptstyle(1)}}{{\simeq}}R\mbox{-mod}-N-\mathrm{spectra}\stackrel{{\scriptstyle(2)}}{{\simeq}}R^{K}\mbox{-mod}-W-\mathrm{spectra}\stackrel{{\scriptstyle(3)}}{{\simeq}}R^{N^{f}}\mbox{-mod}-W^{d}-\mathrm{spectra}

Equivalence (1) is the forgetful map from GG-spectra to NN-spectra, and relies on fusion of NN-conjugacy classes being favourable.

Equivalence (2) is passage to KK-fixed points, and relies on RR having geometric isotropy consisting of subgroups containing KK. Equivalence (3) is passage to categorical fixed points, and uses the Eilenberg-Moore theorem for the connected group WeW^{e}.

We now wish to treat many subgroups KK at once, but the intermediate categories and functors in the above argument involve N=NGโ€‹(K)N=N_{G}(K) and therefore depend on KK . We explain here that we may instead factorize the composite so that the dependency on KK occurs in the ring and whilst the categories and functors are independent of KK.

The subtlety is that both NN and NfN^{f} play a role. In our examples Rโ‰ƒFNโ€‹(G+,R)R\simeq F_{N}(G_{+},R) but Rโ‰ƒฬธFNfโ€‹(G+,R)R\not\simeq F_{N^{f}}(G_{+},R) (consider K=D2โ€‹nK=D_{2n} insider G=Oโ€‹(2)G=O(2) (or even inside G=D4โ€‹nG=D_{4n})). Thus we need to use NN. On the other hand, taking NN-fixed points loses the action of the WdW^{d}. The solution is to reinsert the action of WdW^{d} as an endomorphism of the functor FNfโ€‹(G+,โ‹…)F_{N^{f}}(G_{+},\cdot).

Lemma 8.1.

The diagram

Rโ€‹-modโˆ’Gโˆ’spectraresNGFNโ€‹(G+,R)โ€‹-modโˆ’Gโˆ’spectraFNfโ€‹(G+,R)โ€‹-modโˆ’Gโˆ’spectraโ€‹[Wd]ฮจGRโ€‹-modโˆ’Nโˆ’spectraฮจKฮจNfRKโ€‹-modโˆ’Wโˆ’spectraฮจWeRNfโ€‹-modโˆ’Wdโˆ’spectraโ‰ƒRNfโ€‹-modโˆ’spectraโ€‹[Wd].\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 47.37173pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-43.30798pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{R\mbox{-mod}-G-\mathrm{spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 43.30798pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 71.37173pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-4.94444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-20.04166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\mathrm{res}^{G}_{N}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.13887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 71.37173pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{F_{N}(G_{+},R)\mbox{-mod}-G-\mathrm{spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 195.3574pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 219.35739pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 219.35739pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{F_{N^{f}}(G_{+},R)\mbox{-mod}-G-\mathrm{spectra}[W^{d}]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 291.9576pt\raise-5.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 291.9576pt\raise-40.21442pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.075pt\hbox{$\scriptstyle{\Psi^{G}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 291.9576pt\raise-68.12665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-43.93922pt\raise-40.08331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{R\mbox{-mod}-N-\mathrm{spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-45.02776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-15.12778pt\raise-60.25607pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.075pt\hbox{$\scriptstyle{\Psi^{K}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-68.6822pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.33983pt\raise-45.02776pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.7536pt\raise-53.9033pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.35277pt\hbox{$\scriptstyle{\Psi^{N^{f}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 92.70964pt\raise-68.12665pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}{\hbox{\kern 130.36456pt\raise-40.08331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 288.9576pt\raise-40.08331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-47.37173pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{R^{K}\mbox{-mod}-W-\mathrm{spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 47.37175pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 58.04839pt\raise-86.67606pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.24722pt\hbox{$\scriptstyle{\Psi^{W^{e}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 84.71434pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 84.71434pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{R^{N^{f}}\mbox{-mod}-W^{d}-\mathrm{spectra}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 182.0148pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{}}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 206.93884pt\raise-75.80573pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.62312pt\hbox{$\scriptstyle{\simeq}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 243.30733pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{$\textstyle{\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}$}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 243.30733pt\raise-80.42885pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{R^{N^{f}}\mbox{-mod}-\mathrm{spectra}[W^{d}]}$}}}}}}}\ignorespaces}}}}\ignorespaces.

commutes where the top horizontal is FNfโ€‹(G+,โˆ™)F_{N^{f}}(G_{+},\bullet). The composite is a right Quillen functor.

Proof :โ€„The commutativity is just the formula

FNfโ€‹(G+,X)Gโ‰ƒXNf.F_{N^{f}}(G_{+},X)^{G}\simeq X^{N^{f}}.

All functors in the diagram are right adjoints. โˆŽ

The maps in the diagram are equivalences under various circumstances.

Lemma 8.2.

(i) The restriction functor

Rโ€‹-mod-G-spectraโ€‹โŸจ๐’ฑโŸฉโŸถRโ€‹-mod-N-spectraโ€‹โŸจ๐’ฑโŸฉR\mbox{-mod-$G$-spectra}\langle\mathcal{V}\rangle\longrightarrow R\mbox{-mod-$N$-spectra}\langle\mathcal{V}\rangle

is an equivalence if, for all Kโˆˆ๐’ฑโˆฉsuppโ€‹(R)K\in\mathcal{V}\cap\mathrm{supp}(R) a containment KgโІN{}^{g}K\subseteq N implies gโˆˆNg\in N, so that (G/N)K(G/N)^{K} is a singleton.

(ii) The map

FNโ€‹(G+,R)โ€‹-modโˆ’Gโˆ’spectraโŸถFNfโ€‹(G+,R)โ€‹-modโˆ’Gโˆ’spectraโ€‹[Wd]F_{N}(G_{+},R)\mbox{-mod}-G-\mathrm{spectra}\longrightarrow F_{N^{f}}(G_{+},R)\mbox{-mod}-G-\mathrm{spectra}[W^{d}]

is an equivalence if RR is NfN^{f}-free.

(iii) The map

ฮจK:Rโ€‹-modโˆ’Nโˆ’spectraโ€‹โŸจ๐’ฑโŸฉโŸถRKโ€‹-modโˆ’Wโˆ’spectraโ€‹โŸจ๐’ฑโŸฉ\Psi^{K}:R\mbox{-mod}-N-\mathrm{spectra}\langle\mathcal{V}\rangle\longrightarrow R^{K}\mbox{-mod}-W-\mathrm{spectra}\langle\mathcal{V}\rangle

is an equivalence if every element of suppโ€‹(R)โˆฉ๐’ฑ\mathrm{supp}(R)\cap\mathcal{V} contains KK.

(iv) The map

ฮจWe:RKโ€‹-modโˆ’Wโˆ’spectraโ€‹โŸจ๐’ฑโŸฉโŸถRNfโ€‹-modโˆ’Wdโˆ’spectraโ€‹โŸจ๐’ฑโŸฉ\Psi^{W^{e}}:R^{K}\mbox{-mod}-W-\mathrm{spectra}\langle\mathcal{V}\rangle\longrightarrow R^{N^{f}}\mbox{-mod}-W^{d}-\mathrm{spectra}\langle\mathcal{V}\rangle

is an equivalence if RNfR^{N^{f}} is WeW^{e}-free and W+dโˆงRW^{d}_{+}\wedge R generates RKโ€‹-modโˆ’Wโˆ’spectraR^{K}\mbox{-mod}-W-\mathrm{spectra}.

Proof :โ€„Part (i) follows since G/N+โˆงMโ‰ƒG+โˆงNMโŸถMG/N_{+}\wedge M\simeq G_{+}\wedge_{N}M\longrightarrow M is an equivalence for all RR-modules MM.

Part (ii) is the fact that free WdW^{d}-spectra are generated by W+dW^{d}_{+} and hence by Morita theory equivalent to spectra with a WdW^{d}-action.

Part (iii) is [22, Theorem 7.1].

Part (iv) follows from [21]. โˆŽ

9. The abelian models are Quillen models in dimension 1

In this section we prove a general theorem. Amongst the small cases covered are the following familiar examples

  • โ€ข

    G=TG=T, the circle group

  • โ€ข

    G=Oโ€‹(2)G=O(2), toral subgroups ๐’ฑ1Oโ€‹(2)\mathcal{V}^{O(2)}_{1}

  • โ€ข

    G=Oโ€‹(2)G=O(2), full subgroups ๐’ฑWOโ€‹(2)\mathcal{V}^{O(2)}_{W}

  • โ€ข

    G=Pโ€‹iโ€‹nโ€‹(2)G=Pin(2), toral subgroups ๐’ฑ1Pโ€‹iโ€‹nโ€‹(2)\mathcal{V}^{Pin(2)}_{1}

  • โ€ข

    G=Pโ€‹iโ€‹nโ€‹(2)G=Pin(2), full subgroups ๐’ฑWPโ€‹iโ€‹nโ€‹(2)\mathcal{V}^{Pin(2)}_{W}

  • โ€ข

    G=Tร—C2G=T\times C_{2}, toral subgroups ๐’ฑ1Tร—C2\mathcal{V}^{T\times C_{2}}_{1}

  • โ€ข

    G=Tร—C2G=T\times C_{2}, full subgroups ๐’ฑWTร—C2\mathcal{V}^{T\times C_{2}}_{W}

  • โ€ข

    GG of rank 2 and W=C3W=C_{3} or ฮฃ3\Sigma_{3} and ฮ›0\Lambda_{0} non-trivial.

We saw in Lemma 5.4 that ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) is of finite injective dimension in these cases and hence Dโ€‹Gโˆ’๐’œโ€‹(G|๐’ฑ)DG-\mathcal{A}(G|\mathcal{V}) admits the injective model structure with homology isomorphisms as weak equivalences.

Theorem 9.1.

Suppose GG is a compact Lie group and ๐’ฑ\mathcal{V} is obtained from a set ๐’ฆ\mathcal{K} of conjugacy classes of finite subgroups of GG by adjoining the conjugacy class of a subgroup Kโˆ—K^{*} with finite Weyl group. Then there is a Quillen equivalence

G-spectra|๐’ฑโ‰ƒDโ€‹Gโˆ’๐’œโ€‹(G|๐’ฑ).\mbox{$G$-{\bf spectra}}|\mathcal{V}\simeq DG-\mathcal{A}(G|\mathcal{V}).

where

๐’œโ€‹(G|๐’ฑ)โ‰ƒ๐’œโ€‹(๐’ฆ,โ„›,๐’ฎ,๐’ฒ),\mathcal{A}(G|\mathcal{V})\simeq\mathcal{A}(\mathcal{K},\mathcal{R},\mathcal{S},\mathcal{W}),

where the data is as in Section 4

Since we know how to deal with 0-dimensional summands, we suppose ๐’ฆโ€‹โ„›=โˆ…\mathcal{K}\mathcal{R}=\emptyset. The first step is to express the category as a pullback, which we do by giving a pullback square of ring spectra. We will then calculate the homotopy of the ring spectra, and their strong isotropic formality. Finally we will prove the algebraic category has the model as a cellular skeleton.

9.A. The pullback square

Broadly speaking there are two ways of presenting the argument. (1) Giving a pullback square of rings in GG-spectra and then localizing to give a pullback square in GG-spectra with geometric isotropy ๐’ฑ\mathcal{V}. (2) Constructing the local objects directly and showing they form a pullback square. We will adopt the first option, since we quickly get a pullback square and stay with familiar objects as long as possible. When the filtration is more complicated, one can imagine that (2) may be more attractive.

For our present case, the pullback square is extremely familiar: we begin with the homotopy Tate square

S0\textstyle{S^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E~โ€‹โ„ฑ\textstyle{\widetilde{E}{\mathcal{F}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Dโ€‹Eโ€‹โ„ฑ+\textstyle{DE\mathcal{F}_{+}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E~โ€‹โ„ฑโˆงDโ€‹Eโ€‹โ„ฑ+\textstyle{\widetilde{E}{\mathcal{F}}\wedge DE\mathcal{F}_{+}}

where โ„ฑ\mathcal{F} is the family of all finite subgroups. This is a pullback square in GG-spectra, and hence also in the category of spectra over ๐’ฑ\mathcal{V}. Furthermore, the objects are all commutative rings.

In the present case it is very easy to find more economical representatives of the homotopy types in the category of spectra over ๐’ฑ\mathcal{V}.

Lemma 9.2.

In the category of GG-spectra over ๐’ฑ\mathcal{V} we have equivalences

(i) E~โ€‹โ„ฑโ‰ƒEโ€‹โŸจKโˆ—โŸฉ\widetilde{E}{\mathcal{F}}\simeq E\langle K^{*}\rangle and

(ii) Eโ€‹โ„ฑ+โ‰ƒโ‹Kโˆˆ๐’ฆEโ€‹โŸจKโŸฉ=Eโ€‹โŸจ๐’ฆโŸฉE\mathcal{F}_{+}\simeq\bigvee_{K\in\mathcal{K}}E\langle K\rangle=E\langle\mathcal{K}\rangle

Proof :โ€„By hypothesis, ๐’ฑ=๐’ฆโˆ{Kโˆ—}\mathcal{V}=\mathcal{K}\amalg\{K^{*}\} for a collection ๐’ฆ\mathcal{K} of finite subgroups, not usually a family.

Since, Kโˆ—K^{*} is the only infinite subgroup in ๐’ฑ\mathcal{V}, Part (i) is immediate.

By [5, Theorem 1.2], there is an equivalence Eโ€‹โ„ฑ+โ‰ƒโ‹Fโˆˆโ„ฑEโ€‹โŸจโ„ฑโŸฉE\mathcal{F}_{+}\simeq\bigvee_{F\in\mathcal{F}}E\langle\mathcal{F}\rangle. The inclusion of Eโ€‹โŸจ๐’ฆโŸฉE\langle\mathcal{K}\rangle is a ๐’ฑ\mathcal{V}-equivalence. โˆŽ

Remark 9.3.

Using the splitting cited in the lemma, there is an idempotent selfmap e๐’ฆe_{\mathcal{K}} of Eโ€‹โ„ฑ+E\mathcal{F}_{+}, with e๐’ฆโ€‹Eโ€‹โ„ฑ+โ‰ƒEโ€‹โŸจ๐’ฆโŸฉe_{\mathcal{K}}E\mathcal{F}_{+}\simeq E\langle\mathcal{K}\rangle. We then have e๐’ฆโ€‹Dโ€‹Eโ€‹โ„ฑ+โ‰ƒโˆKโˆˆ๐’ฆDโ€‹Eโ€‹โŸจKโŸฉโ‰ƒDโ€‹Eโ€‹โŸจ๐’ฆโŸฉe_{\mathcal{K}}DE\mathcal{F}_{+}\simeq\prod_{K\in\mathcal{K}}DE\langle K\rangle\simeq DE\langle\mathcal{K}\rangle.

The spectra Dโ€‹Eโ€‹โ„ฑ+DE\mathcal{F}_{+} and โˆKโˆˆ๐’ฆDโ€‹Eโ€‹โŸจKโŸฉ\prod_{K\in\mathcal{K}}DE\langle K\rangle are usually not equivalent in spectra over ๐’ฑ\mathcal{V}, but we show their difference is entirely concentrated at Kโˆ—K^{*}.

Corollary 9.4.

The square

S0\textstyle{S^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Eโ€‹โŸจKโˆ—โŸฉ\textstyle{E\langle K^{*}\rangle\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\textstyle{DE\langle\mathcal{K}\rangle\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Eโ€‹โŸจKโˆ—โŸฉโˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\textstyle{E\langle K^{*}\rangle\wedge DE\langle\mathcal{K}\rangle}

is a homotopy pullback in GG-spectra over ๐’ฑ\mathcal{V}.

Proof :โ€„This follows since the horizontal fibres of the original pullback are Eโ€‹โ„ฑ+E\mathcal{F}_{+} and in the second, the fibre of the lower horizontal is Eโ€‹โŸจ๐’ฆโŸฉE\langle\mathcal{K}\rangle. โˆŽ

9.B. Coefficient rings

It remains to study the categories of modules over each of the terms. For this we adapt the work Sections 7 and 8. For individual subgroups we have already seen modules over โ„›โ€‹(K)=Dโ€‹Eโ€‹โŸจKโŸฉ\mathcal{R}(K)=DE\langle K\rangle in GG-spectra are equivalent to modules over โ„›โ€‹(K)NGfโ€‹(K)โ‰ƒCโˆ—โ€‹(Bโ€‹WGeโ€‹(K))\mathcal{R}(K)^{N^{f}_{G}(K)}\simeq C^{*}(BW_{G}^{e}(K)), which is a non-equivariant spectrum with an action of WGdโ€‹(K)W_{G}^{d}(K).

For each Kโˆˆ๐’ฆK\in\mathcal{K} we consider the GG-spectrum โ„›~โ€‹(K)=FNGfโ€‹(K)โ€‹(G+,โ„›โ€‹(K))\tilde{\mathcal{R}}(K)=F_{N^{f}_{G}(K)}(G_{+},\mathcal{R}(K)) and then let R=โˆKโˆˆ๐’ฆโ„›~โ€‹(K)R=\prod_{K\in\mathcal{K}}\tilde{\mathcal{R}}(K). We have

RG=(โˆKFNGfโ€‹(K)(G+,โ„›(K)))Gโ‰ƒโˆKโ„›(K))NGfโ€‹(K)R^{G}=\left(\prod_{K}F_{N_{G}^{f}(K)}(G_{+},\mathcal{R}(K))\right)^{G}\simeq\prod_{K}\mathcal{R}(K))^{N_{G}^{f}(K)}

and

โ„›โ€‹(K)NGfโ€‹(K)=(โ„›โ€‹(K)K)WGeโ€‹(K)=(Dโ€‹Eโ€‹N/K+)WGeโ€‹(K)=Dโ€‹B~โ€‹WGeโ€‹(K).\mathcal{R}(K)^{N_{G}^{f}(K)}=(\mathcal{R}(K)^{K})^{W_{G}^{e}(K)}=(DEN/K_{+})^{W_{G}^{e}(K)}=D\tilde{B}W_{G}^{e}(K).

Stripping away specifics, we will argue that โ„›โ€‹(K)\mathcal{R}(K)-module GG-spectra are equivalent to modules over a commutative ring ฯ€โˆ—Nfโ€‹(โ„›โ€‹(K))\pi_{*}^{N^{f}}(\mathcal{R}(K)) for a subgroup NfN^{f} of GG in a category of representations of a finite group WdW^{d}. There are steps in equivariant homotopy, leading from โ„›โ€‹(K)\mathcal{R}(K)-modules in GG-spectra to โ„›โ€‹(K)Nf\mathcal{R}(K)^{N^{f}}-modules in spectra with an action of WdW^{d}. Shipleyโ€™s Theorem shows this is equivalent to โ„šโ€‹[Wd]\mathbb{Q}[W^{d}] modules over a DGA with homology ฯ€โˆ—โ€‹(RNf)\pi_{*}(R^{N^{f}}), and this is shown to be formal.

From an expository point of view, the first thing to identify is the target ring ฯ€โˆ—โ€‹(โ„›โ€‹(K)Nf)\pi_{*}(\mathcal{R}(K)^{N^{f}}), even though it doesnโ€™t play a role in the argument until the end.

Lemma 9.5.

We have

ฯ€โˆ—Gโ€‹(โ„›~โ€‹(1))=ฯ€โˆ—Gโ€‹(Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉ)=โˆKHโˆ—โ€‹(Bโ€‹WGeโ€‹(K))=๐’ช๐’ฆ\pi^{G}_{*}(\tilde{\mathcal{R}}(1))=\pi^{G}_{*}(DE\langle\mathcal{K}\rangle)=\prod_{K}H^{*}(BW_{G}^{e}(K))=\mathcal{O}_{\mathcal{K}}
ฯ€โˆ—Gโ€‹(โ„›~โ€‹(Kโˆ—))=ฯ€โˆ—Gโ€‹(โ„›โ€‹(Kโˆ—))=ฯ€โˆ—Gโ€‹(Eโ€‹โŸจKโˆ—โŸฉ)=Hโˆ—โ€‹(Bโ€‹WGeโ€‹(Kโˆ—))=๐’ชKโˆ—=โ„š\pi^{G}_{*}(\tilde{\mathcal{R}}(K^{*}))=\pi^{G}_{*}(\mathcal{R}(K^{*}))=\pi^{G}_{*}(E\langle K^{*}\rangle)=H^{*}(BW_{G}^{e}(K^{*}))=\mathcal{O}_{K^{*}}=\mathbb{Q}

Proof :โ€„The first part is straightforward from the isomorphisms

ฯ€โˆ—Gโ€‹(Dโ€‹Eโ€‹โŸจKโŸฉ)=[S0,Dโ€‹Eโ€‹โŸจKโŸฉ]โˆ—G=[Eโ€‹โŸจKโŸฉ,S0]G=[Eโ€‹โŸจKโŸฉ,S0]N=[Eโ€‹N/K+,S0]N/K=[Bโ€‹N/K+,S0]=Hโˆ—โ€‹(Bโ€‹N/K)\pi^{G}_{*}(DE\langle K\rangle)=[S^{0},DE\langle K\rangle]^{G}_{*}=[E\langle K\rangle,S^{0}]^{G}=[E\langle K\rangle,S^{0}]^{N}=\\ [EN/K_{+},S^{0}]^{N/K}=[BN/K_{+},S^{0}]=H^{*}(BN/K)

The second part is simple since Kโˆ—K^{*} has finite Weyl group (otherwise, we would need to take careful account of the fact the calculation is in the ๐’ฑ\mathcal{V}-local category). โˆŽ

Lemma 9.6.

There is a multiplicatively closed set ๐’ฎ\mathcal{S} so that

ฯ€โˆ—Gโ€‹(Eโ€‹โŸจKโˆ—โŸฉโˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉ)=๐’ฎโˆ’1โ€‹โˆKโˆˆ๐’ฆHโˆ—โ€‹(Bโ€‹WGeโ€‹(K))=๐’ฎโˆ’1โ€‹๐’ช๐’ฆ\pi^{G}_{*}(E\langle K^{*}\rangle\wedge DE\langle\mathcal{K}\rangle)=\mathcal{S}^{-1}\prod_{K\in\mathcal{K}}H^{*}(BW_{G}^{e}(K))=\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}

To describe the localization we split the product up into three factors

๐’ช๐’ฆ=๐’ช๐’ฆ1ร—๐’ช๐’ฆ0ร—๐’ช๐’ฆโ€‹โ„›\mathcal{O}_{\mathcal{K}}=\mathcal{O}_{\mathcal{K}_{1}}\times\mathcal{O}_{\mathcal{K}_{0}}\times\mathcal{O}_{\mathcal{K}\mathcal{R}}
  • โ€ข

    On ๐’ฆ1\mathcal{K}_{1} the multiplicatively closed set is โ„ฐ={eโ€‹(W)|WโˆˆRepโ€‹(NGโ€‹(Kโˆ—)),WKโˆ—=0}\mathcal{E}=\{e(W)\;|\;W\in\mathrm{Rep}(N_{G}(K^{*})),W^{K^{*}}=0\}

  • โ€ข

    On ๐’ฆ0\mathcal{K}_{0}, the multiplicatively closed set is โ„={iโ€‹(U)|UโІ๐’ฆ0โ€‹ย closed inย โ€‹๐’ฑ}\mathcal{I}=\{i(U)\;|\;U\subseteq\mathcal{K}_{0}\mbox{ closed in }\mathcal{V}\}.

  • โ€ข

    On ๐’ฆโ€‹โ„›\mathcal{K}\mathcal{R}, the multiplicatively closed set is {0}\{0\}.

Proof :โ€„The splitting and the ๐’ฆโ€‹โ„›\mathcal{K}\mathcal{R} part are clear.

We start with the ๐’ฆ0\mathcal{K}_{0} part. Since supports are closed under cotoral specialization, any idempotent nonzero on Kโˆ—K^{*} will be nonzero on ๐’ฆ1\mathcal{K}_{1}. Next we note that for any ๐’ฑ\mathcal{V}-closed subset UU of ๐’ฆ0\mathcal{K}_{0} there is an idempotent eUe_{U} with support Uโˆช{Kโˆ—}โˆช๐’ฆ1U\cup\{K^{*}\}\cup\mathcal{K}_{1} because the latter is open and closed in ๐’ฑ\mathcal{V}. We may then observe

Eโ€‹โŸจKโˆ—โŸฉโˆงEโ€‹โŸจ๐’ฆ0โŸฉ=limโ†’UeUโ€‹Eโ€‹โŸจ๐’ฆ0โŸฉ,E\langle K^{*}\rangle\wedge E\langle\mathcal{K}_{0}\rangle=\mathop{\mathop{\mathrm{lim}}\limits_{\rightarrow}}\nolimits_{U}e_{U}E\langle\mathcal{K}_{0}\rangle,

because eUโ€‹Eโ€‹โŸจKโŸฉโ‰ƒโˆ—e_{U}E\langle K\rangle\simeq* for Kโˆ‰VK\not\in V.

For the ๐’ฆ1\mathcal{K}_{1} part we will show directly that the algebraic localization

Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉโŸถโ„ฐโˆ’1โ€‹Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉDE\langle\mathcal{K}\rangle\longrightarrow\mathcal{E}^{-1}DE\langle\mathcal{K}\rangle

is the isotropic localization. For this we need to show that โ„ฐโˆ’1โ€‹Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\mathcal{E}^{-1}DE\langle\mathcal{K}\rangle is KK-equivariantly contractible for all Kโˆˆ๐’ฆK\in\mathcal{K} and that ฮ“โ„ฐโ€‹Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\Gamma_{\mathcal{E}}DE\langle\mathcal{K}\rangle has non-equivariantly contractible geometric Kโˆ—K^{*}-fixed points.

For the first statement, it suffices to say that for each Kโˆˆ๐’ฆK\in\mathcal{K} there is an element eโˆˆโ„ฐe\in\mathcal{E} so that ee is KK-equivariantly null. For this we choose eโ€‹(V)e(V) for a representation of the torus Kโˆ—/KK^{*}/K. For the second statement, we may work Kโˆ—K^{*}-equivariantly, and we note that inverting โ„ฐ\mathcal{E} commutes with restriction of subgroups. Thus we have a Kโˆ—K^{*}-equivariant equivalence โ„ฐโˆ’1โ€‹Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉโ‰ƒSโˆžโ€‹Vโ€‹(Kโˆ—)โˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\mathcal{E}^{-1}DE\langle\mathcal{K}\rangle\simeq S^{\infty V(K^{*})}\wedge DE\langle\mathcal{K}\rangle and ฮ“โ„ฐโ€‹Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉโ‰ƒEโ€‹๐’ซ+โˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\Gamma_{\mathcal{E}}DE\langle\mathcal{K}\rangle\simeq E\mathcal{P}_{+}\wedge DE\langle\mathcal{K}\rangle, which has not Kโˆ—K^{*}-fixed points as required.

โˆŽ

Remark 9.7.

In the ๐’ฆ1\mathcal{K}_{1} part one might hope to make an argument using representation theory to give a model of E~โ€‹โ„ฑโˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉ\widetilde{E}{\mathcal{F}}\wedge DE\langle\mathcal{K}\rangle of the form Sโˆžโ€‹Vโ€‹(Kโˆ—)S^{\infty V(K^{*})}. This will often work, for example when Kโˆ—=GK^{*}=G. However if G=Sโ€‹Oโ€‹(3)G=SO(3) and Kโˆ—=Sโ€‹Oโ€‹(2)K^{*}=SO(2), all representations of Sโ€‹Oโ€‹(3)SO(3) have fixed points under elements of order 2, so no such model exists.

Corollary 9.8.

(i) For any Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉDE\langle\mathcal{K}\rangle-module NN, the map

NโŸถEโ€‹โŸจKโˆ—โŸฉโˆงNN\longrightarrow E\langle K^{*}\rangle\wedge N

induces inversion of ๐’ฎ\mathcal{S}, so that

ฯ€โˆ—Gโ€‹(Eโ€‹โŸจKโˆ—โŸฉโˆงN)=๐’ฎโˆ’1โ€‹ฯ€โˆ—Gโ€‹(N).\pi^{G}_{*}(E\langle K^{*}\rangle\wedge N)=\mathcal{S}^{-1}\pi^{G}_{*}(N).

(ii) The map Eโ€‹โŸจKโˆ—โŸฉโˆงXโŸถDโ€‹Eโ€‹โŸจ๐’ฆโŸฉโˆงEโ€‹โŸจKโˆ—โŸฉโˆงXE\langle K^{*}\rangle\wedge X\longrightarrow DE\langle\mathcal{K}\rangle\wedge E\langle K^{*}\rangle\wedge X induces extension of scalars along โ„š=โ„›โ€‹(Kโˆ—)โŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆ\mathbb{Q}=\mathcal{R}(K^{*})\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}} so that

ฯ€โˆ—Gโ€‹(Eโ€‹โŸจKโˆ—โŸฉโˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉโˆงX)=๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—ฯ€โˆ—โ€‹(ฮฆKโˆ—โ€‹X)\pi^{G}_{*}(E\langle K^{*}\rangle\wedge DE\langle\mathcal{K}\rangle\wedge X)=\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes\pi_{*}(\Phi^{K^{*}}X)

Proof :โ€„(i) We note that ฯ€โˆ—G=ฯ€โˆ—N\pi^{G}_{*}=\pi^{N}_{*} for these spectra, and then the models of Eโ€‹โŸจKโˆ—โŸฉE\langle K^{*}\rangle given in the lemma give the result.

(ii) The map S0โŸถDโ€‹Eโ€‹โŸจ๐’ฆโŸฉS^{0}\longrightarrow DE\langle\mathcal{K}\rangle induces a map ฯ€โˆ—โ€‹(ฮฆKโˆ—โ€‹X)โŸถฯ€โˆ—Gโ€‹(Eโ€‹โŸจKโˆ—โŸฉโˆงDโ€‹Eโ€‹โŸจ๐’ฆโŸฉโˆงX)\pi_{*}(\Phi^{K^{*}}X)\longrightarrow\pi^{G}_{*}(E\langle K^{*}\rangle\wedge DE\langle\mathcal{K}\rangle\wedge X) which extends to a natural transformation. Since ๐’ฎโˆ’1โ€‹๐’ช๐’ฆ\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}} is flat it is a natural transformation of homology theories compatible with the action of ๐’ฒK\mathcal{W}_{K}. In checking it is an isomorphism we may ignore the action of ๐’ฒK\mathcal{W}_{K}. The result therefore follows from the case when XX is an NfN^{f}-equivariant sphere. โˆŽ

9.C. Uniformization and formality

There are two convenient facts about module categories that we now need to exploit. Firstly, for a finite group WW, the category of Aโ€‹[W]A[W]-modules is equivalent to the category of AA-modules with a WW-action: Aโ€‹[W]โ€‹-modโ‰ƒ(Aโ€‹-mod)โ€‹[W]A[W]\mbox{-mod}\simeq(A\mbox{-mod})[W] (requires WW to be finite). Secondly, the category of modules over a product A1ร—A2A_{1}\times A_{2} is equivalent to the product of the module categories: (A1ร—A2)โ€‹-modโ‰ƒ(A1โ€‹-mod)ร—(A2โ€‹-mod)(A_{1}\times A_{2})\mbox{-mod}\simeq(A_{1}\mbox{-mod})\times(A_{2}\mbox{-mod}) (requires that this is a finite product).

By tom Dieckโ€™s finiteness theorem [27], WGdโ€‹(K)W_{G}^{d}(K) takes only finitely many values, so there is a partition of ๐’ฆ=๐’ฆ1โˆโ‹ฏโˆ๐’ฆN\mathcal{K}=\mathcal{K}_{1}\amalg\cdots\amalg\mathcal{K}_{N} into finitely many pieces, each of which has a single value WiW_{i} of WGdโ€‹(K)W_{G}^{d}(K). For brevity we write

(โˆKRK)โ€‹-modโ€‹[๐’ฒ]:=(โˆKโˆˆ๐’ฆ1RKโ€‹-mod)โ€‹[W1]ร—โ‹ฏร—(โˆKโˆˆ๐’ฆNRKโ€‹-mod)โ€‹[WN](\prod_{K}R_{K})\mbox{-mod}[\mathcal{W}]:=(\prod_{K\in\mathcal{K}_{1}}R_{K}\mbox{-mod})[W_{1}]\times\cdots\times(\prod_{K\in\mathcal{K}_{N}}R_{K}\mbox{-mod})[W_{N}]
Lemma 9.9.

With R=Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉR=DE\langle\mathcal{K}\rangle, there is an equivalence

Rโ€‹-modโˆ’Gโˆ’spectraโ‰ƒ(โˆKโˆˆ๐’ฆDโ€‹B~โ€‹WGeโ€‹(K)+)โ€‹-modโˆ’spectraโ€‹[๐’ฒ].R\mbox{-mod}-G-\mathrm{spectra}\simeq\left(\prod_{K\in\mathcal{K}}D\tilde{B}W_{G}^{e}(K)_{+}\right)\mbox{-mod}-\mathrm{spectra}[\mathcal{W}].

Proof :โ€„Using Lemma 8.1, we have a right Quillen functor

Rโ€‹-modโˆ’Gโˆ’spectraโŸถ(RGโ€‹-modโˆ’spectra)โ€‹[๐’ฒ]R\mbox{-mod}-G-\mathrm{spectra}\longrightarrow(R^{G}\mbox{-mod}-\mathrm{spectra})[\mathcal{W}]

which is an equivalence on each individual factor.

Breaking the product up into finitely many parts we may assume that there is a single finite group WW associated to each factor RKR_{K}, so that each factor is generated by โ„›~โ€‹(K)=FNGfโ€‹(K)โ€‹(G+,โ„›โ€‹(K))\tilde{\mathcal{R}}(K)=F_{N_{G}^{f}(K)}(G_{+},\mathcal{R}(K)) corresponding to Dโ€‹B~โ€‹WGeโ€‹(K)+โˆงW+D\tilde{B}W_{G}^{e}(K)_{+}\wedge W_{+}. The product on the right is generated by (โˆKDโ€‹B~โ€‹WGeโ€‹(K)+)โˆงW+(\prod_{K}D\tilde{B}W_{G}^{e}(K)_{+})\wedge W_{+}.

Equivalences of cells are detected on the factors, so that the unit and counit are equivalences on generators. Hence by the Cellularization Principle [20], it is an equivalence as required. โˆŽ

Corollary 9.10.

(i) The category of Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉDE\langle\mathcal{K}\rangle-module G-spectraโ€‹โŸจ๐’ฑโŸฉ\mbox{$G$-{\bf spectra}}\langle\mathcal{V}\rangle is equivalent to the category of DG ๐’ฒ\mathcal{W}-equivariant objects in ๐’ช๐’ฆ\mathcal{O}_{\mathcal{K}}-modules.

(ii) The category of Dโ€‹Eโ€‹โŸจKโˆ—โŸฉDE\langle K^{*}\rangle-module G-spectraโ€‹โŸจ๐’ฑโŸฉ\mbox{$G$-{\bf spectra}}\langle\mathcal{V}\rangle is equivalent to the category of DG ๐’ฒKโˆ—\mathcal{W}_{K^{*}}-equivariant ๐’ชKโˆ—\mathcal{O}_{K^{*}}-modules.

Proof :โ€„Case (ii) is straightforward.

In Case (i) we have a Quillen pair showing that Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉDE\langle\mathcal{K}\rangle-module G-spectraโ€‹โŸจ๐’ฑโŸฉ\mbox{$G$-{\bf spectra}}\langle\mathcal{V}\rangle are equivalent to Dโ€‹E~โ€‹โŸจ๐’ฆโŸฉGD\tilde{E}\langle\mathcal{K}\rangle^{G}-module ๐’ฒ\mathcal{W}-spectra by Lemma 9.9. By Shipleyโ€™s Theorem this is equivalent to DG modules in ๐’ฒ\mathcal{W}-spectra over a DGA with homology ฯ€โˆ—โ€‹Dโ€‹E~โ€‹โŸจ๐’ฆโŸฉG=โˆKโˆˆ๐’ฆHโˆ—โ€‹(Bโ€‹WGeโ€‹(K))=๐’ช๐’ฆ\pi_{*}D\tilde{E}\langle\mathcal{K}\rangle^{G}=\prod_{K\in\mathcal{K}}H^{*}(BW_{G}^{e}(K))=\mathcal{O}_{\mathcal{K}} by Lemma 9.5.

To see that the DGA is formal, we argue as follows. For a single factor we have a CDGA ๐’ชKโ€ฒ\mathcal{O}_{K}^{\prime} with homology ๐’ชK\mathcal{O}_{K}. Thus Hโˆ—โ€‹(๐’ชKโˆ—โ€ฒ)=Zโ€‹(๐’ชKโˆ—โ€ฒ)/Bโ€‹(๐’ชKโˆ—โ€ฒ)H_{*}(\mathcal{O}_{K^{*}}^{\prime})=Z(\mathcal{O}_{K^{*}}^{\prime})/B(\mathcal{O}_{K^{*}}^{\prime}) is isomorphic to ๐’ชKโˆ—=โ„›โ€‹(Kโˆ—)\mathcal{O}_{K^{*}}=\mathcal{R}(K^{*}), which is the symmetic algebra on a finite dimensional vector space VV with an action of ๐’ฒKโˆ—\mathcal{W}_{K}^{*}. By Maschkeโ€™s Theorem we may find a submodule Vโ€ฒV^{\prime} of Zโ€‹(๐’ชKโ€ฒ)Z(\mathcal{O}_{K}^{\prime}) mapping to VV, and thus we may choose an equivariant homology isomorphism ๐’ฑ=Symmโ€‹(V)โŸถ๐’ชKโ€ฒ\mathcal{V}=\mathrm{Symm}(V)\longrightarrow\mathcal{O}_{K}^{\prime}. This covers the generic point Kโˆ—K^{*}. For ๐’ฆ\mathcal{K}, we then use the equivalence ๐’ช๐’ฆโ€ฒโŸถโˆKeKโ€‹๐’ช๐’ฆโ€ฒ\mathcal{O}_{\mathcal{K}}^{\prime}\longrightarrow\prod_{K}e_{K}\mathcal{O}_{\mathcal{K}}^{\prime} followed by the above maps on each factor. โˆŽ

We need to show that the objectwise equivalences may be assembled to an equivalence of cospans.

Lemma 9.11.

The diagram of GG-spectra is intrinsically formal.

Proof :โ€„The proof is essentially the same as for the circle. Let us suppose we have a cospan ๐’ชKโˆ—โ€ฒโŸถ๐’ฏโ€ฒโŸต๐’ชโ€ฒ\mathcal{O}^{\prime}_{K^{*}}\longrightarrow\mathcal{T}^{\prime}\longleftarrow\mathcal{O}^{\prime} with homology ๐’ชKโˆ—โŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŸต๐’ช๐’ฆ\mathcal{O}_{K^{*}}\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\longleftarrow\mathcal{O}_{\mathcal{K}}.

Starting at ๐’ชKโˆ—โ€ฒ\mathcal{O}_{K^{*}}^{\prime}, we know Hโˆ—โ€‹(๐’ชKโˆ—โ€ฒ)=Zโ€‹(๐’ชKโˆ—โ€ฒ)/Bโ€‹(๐’ชKโˆ—โ€ฒ)H_{*}(\mathcal{O}_{K^{*}}^{\prime})=Z(\mathcal{O}_{K^{*}}^{\prime})/B(\mathcal{O}_{K^{*}}^{\prime}) is isomorphic to ๐’ชKโˆ—=โ„›โ€‹(Kโˆ—)\mathcal{O}_{K^{*}}=\mathcal{R}(K^{*}), which is the symmetic algebra on a finite dimensional vector space VV with an action of ๐’ฒKโˆ—\mathcal{W}_{K}^{*}. By Maschkeโ€™s Theorem we may find a submodule Vโ€ฒV^{\prime} of Zโ€‹(๐’ชKโˆ—โ€ฒ)Z(\mathcal{O}_{K^{*}}^{\prime}) mapping to VV, and thus we may choose an equivariant homology ismorphism ๐’ฑ=Symmโ€‹(V)โŸถ๐’ชKโˆ—โ€ฒ\mathcal{V}=\mathrm{Symm}(V)\longrightarrow\mathcal{O}_{K^{*}}^{\prime}.

This gives an equivalence

๐’ชKโˆ—โ€ฒ\textstyle{\mathcal{O}_{K^{*}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hโˆ—โ€‹Bโ€‹WGeโ€‹(H)\textstyle{H^{*}BW_{G}^{e}(H)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฏโ€ฒ\textstyle{\mathcal{T}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฏโ€ฒโ€ฒ=๐’ชKโˆ—โ€ฒโŠ—๐’ฏโ€ฒ๐’ฏโ€ฒ\textstyle{\mathcal{T}^{\prime\prime}=\mathcal{O}_{K^{*}}^{\prime}\otimes_{\mathcal{T}^{\prime}}\mathcal{T}^{\prime}}๐’ฏโ€ฒโ€ฒ\textstyle{\mathcal{T}^{\prime\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}๐’ชโ€ฒ\textstyle{\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}๐’ชโ€ฒ\textstyle{\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ชโ€ฒ\textstyle{\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}

and we may suppose ๐’ชKโˆ—โ€ฒ\mathcal{O}_{K^{*}}^{\prime} is standard. Now proceed as in the diagram below.

The original diagram ๐’ชKโˆ—โŸถ๐’ฏโŸต๐’ช\mathcal{O}_{K^{*}}\longrightarrow\mathcal{T}\longleftarrow\mathcal{O} has homology โ„›โ€‹(Kโˆ—)โŸถ๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŸต๐’ช๐’ฆ\mathcal{R}(K^{*})\longrightarrow\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\longleftarrow\mathcal{O}_{\mathcal{K}}. In the following diagram, all horizontals are homology isomorphisms. Most maps are self explanatory, but we note that inverting additional classes already inverted in homology induces a weak equivalence. We therefore choose ๐’ฎ^\hat{\mathcal{S}} by adding representative cycles to ๐’ฎ\mathcal{S} so the the relevant DGA receives a map.

โ„›โ€‹(Kโˆ—)\textstyle{\mathcal{R}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ„›โ€‹(Kโˆ—)\textstyle{\mathcal{R}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ„›โ€‹(Kโˆ—)\textstyle{\mathcal{R}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ„›โ€‹(Kโˆ—)\textstyle{\mathcal{R}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ„›โ€‹(Kโˆ—)\textstyle{\mathcal{R}(K^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎโˆ’1โ€‹โˆKHโˆ—โ€‹(Bโ€‹WGโ€‹(K))\textstyle{\mathcal{S}^{-1}\prod_{K}H^{*}(BW_{G}(K))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎ^โˆ’1โ€‹โˆKeKโ€‹๐’ชโ€ฒ\textstyle{\hat{\mathcal{S}}^{-1}\prod_{K}e_{K}\mathcal{O}^{\prime}}๐’ฎ^โˆ’1โ€‹๐’ชโ€ฒ\textstyle{\hat{\mathcal{S}}^{-1}\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎ^โˆ’1โ€‹๐’ฏโ€ฒโ€ฒ\textstyle{\hat{\mathcal{S}}^{-1}\mathcal{T}^{\prime\prime}}๐’ฏโ€ฒโ€ฒ\textstyle{\mathcal{T}^{\prime\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โˆFHโˆ—โ€‹(Bโ€‹WGeโ€‹(K))\textstyle{\prod_{F}H^{*}(BW_{G}^{e}(K))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โˆKeKโ€‹๐’ชโ€ฒ\textstyle{\prod_{K}e_{K}\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ชโ€ฒ\textstyle{\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ชโ€ฒ\textstyle{\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ชโ€ฒ\textstyle{\mathcal{O}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

โˆŽ

9.D. The cellular skeleton theorem

We have shown that the category of GG-spectra over ๐’ฑ\mathcal{V} has a purely algebraic model, which is the cellularization of a category of modules. The cellularization means that the weak equivalences are not obvious. We complete the picture by showing that this algebraic cellularization is equivalent to DG objects in the abelian category ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) with the weak equivalences being homology isomorphisms.

More precisely, ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) is a coreflective subcategory of the category of modules with cellular equivalences of DG objects being homology isomorphisms, and the inclusion of abelian categories induces a Quillen equivalence.

Lemma 9.12.

The cellularization of the category of ฯ€โˆ—Gโ€‹((S0)โŒŸ)\pi^{G}_{*}((S^{0})^{\lrcorner})-modules has ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) as a cellular skeleton.

Proof :โ€„First we note that the images of any GG-spectrum lie in ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}). This is because the homotopy of the horizontal map is inverting the multiplicatively closed set ๐’ฎ\mathcal{S} by Corollary 9.8 (i), and the vertical map is extension of scalars along a flat map by Corollary 9.8 (ii). In particular, the cells are in ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}).

To see that any object of ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) is cellular, we use the injective resolutions from Subsection 5.E. The point is that any object of ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}) admits an embedding into an injective which is a sum of injectives eโ€‹(Hโˆ—โ€‹(Bโ€‹WGeโ€‹(Kโˆ—)))e(H_{*}(BW_{G}^{e}(K^{*}))) and fK(Hโˆ—(BWGe(K))f_{K}(H_{*}(BW_{G}^{e}(K)), whose cokernel is a sum of injectives of the second type. Each of these injectives are cellular because they are the images of GG-spectra. Indeed e(Hโˆ—(BWGe(Kโˆ—))e(H_{*}(BW_{G}^{e}(K^{*})) is the image of E~โ€‹โ„ฑ\widetilde{E}{\mathcal{F}}, and fK(Hโˆ—(BWGe(K))f_{K}(H_{*}(BW_{G}^{e}(K)) is the image of Dโ€‹Eโ€‹โŸจKโŸฉโˆงFNโ€‹(G+,Eโ€‹WGโ€‹(K)+)DE\langle K\rangle\wedge F_{N}(G_{+},EW_{G}(K)_{+}).

Finally, we argue that any object in the module category is cellularly equivalent to a an object of ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}). Suppose then that X=(VโŸถPโŸตN)X=(V\longrightarrow P\longleftarrow N) is an object of the module category. The functor ee is a right adjoint to evaluation so there is a map XโŸถeโ€‹(V)X\longrightarrow e(V) with fibre Xโ€ฒ=(0โŸถPโ€ฒโŸตNโ€ฒ)X^{\prime}=(0\longrightarrow P^{\prime}\longleftarrow N^{\prime}). Since eโ€‹(V)e(V) is a wedge of copies of eโ€‹(โ„š)e(\mathbb{Q}) it is cellular, so it suffices to show Xโ€ฒX^{\prime} is cellularly equivalent to an object of ๐’œโ€‹(G|๐’ฑ)\mathcal{A}(G|\mathcal{V}). Inverting ๐’ฎ\mathcal{S} gives a map (0โŸถPโ€ฒโŸตNโ€ฒ)โŸถ(0โŸถPโ€ฒโŸต๐’ฎโˆ’1โ€‹Nโ€ฒ)(0\longrightarrow P^{\prime}\longleftarrow N^{\prime})\longrightarrow(0\longrightarrow P^{\prime}\longleftarrow\mathcal{S}^{-1}N^{\prime}). The fibre Xโ€ฒโ€ฒX^{\prime\prime} is (0โŸถ0โŸตฮ“๐’ฎโ€‹Nโ€ฒ)(0\longrightarrow 0\longleftarrow\Gamma_{\mathcal{S}}N^{\prime}) with ฮ“๐’ฎโ€‹Nโ€ฒ\Gamma_{\mathcal{S}}N^{\prime} being ๐’ฎ\mathcal{S}-torsion and hence cellular. It remains to observe (0โŸถPโ€ฒโŸต๐’ฎโˆ’1โ€‹Nโ€ฒ)(0\longrightarrow P^{\prime}\longleftarrow\mathcal{S}^{-1}N^{\prime}) is cellularly trivial, since then we have Xโ€ฒโ€ฒโ‰ƒXโ€ฒX^{\prime\prime}\simeq X^{\prime} and a cofibre sequence Xโ€ฒโŸถXโŸถeโ€‹(V).X^{\prime}\longrightarrow X\longrightarrow e(V).

To show cellular triviality of (0โŸถPโ€ฒโŸต๐’ฎโˆ’1โ€‹Nโ€ฒ)(0\longrightarrow P^{\prime}\longleftarrow\mathcal{S}^{-1}N^{\prime}) we check maps out of cells. There are no maps from ฯƒK\sigma_{K} for Kโˆˆ๐’ฆK\in\mathcal{K} because ๐’ฎโˆ’1โ€‹Nโ€ฒ\mathcal{S}^{-1}N^{\prime} is torsion free. Finally maps from ฯƒKโˆ—\sigma_{K^{*}} are calculated from the pullback square

Homโ€‹(ฯƒKโˆ—,X)\textstyle{\mathrm{Hom}(\sigma_{K^{*}},X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Homโ€‹(โ„š,V)\textstyle{\mathrm{Hom}(\mathbb{Q},V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom๐’ช๐’ฆโ€‹(๐’ช๐’ฆ,N)\textstyle{\mathrm{Hom}_{\mathcal{O}_{\mathcal{K}}}(\mathcal{O}_{\mathcal{K}},N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Hom๐’ช๐’ฆโ€‹(๐’ช๐’ฆ,๐’ฎโˆ’1โ€‹๐’ช๐’ฆโŠ—V)\textstyle{\mathrm{Hom}_{\mathcal{O}_{\mathcal{K}}}(\mathcal{O}_{\mathcal{K}},\mathcal{S}^{-1}\mathcal{O}_{\mathcal{K}}\otimes V)}

which in our case is

Homโ€‹(ฯƒKโˆ—,Xโ€ฒโ€ฒ)\textstyle{\mathrm{Hom}(\sigma_{K^{*}},X^{\prime\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐’ฎโˆ’1โ€‹Nโ€ฒ\textstyle{\mathcal{S}^{-1}N^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pโ€ฒ\textstyle{P^{\prime}}

โˆŽ

10. Towards the general 1-dimensional case

We consider the restrictions currently imposed, and how they might be avoided.

drop the restriction that Kโˆ—K^{*} is of finite index in its normalizer:

The first issue is that Eโ€‹โŸจKโˆ—โŸฉE\langle K^{*}\rangle needs to be replaced by a different ring spectrum. If Kโˆ—K^{*} is normal in GG this means Sโˆžโ€‹Vโ€‹(Kโˆ—)โˆงDโ€‹Eโ€‹G/K+โˆ—S^{\infty V(K^{*})}\wedge DEG/K^{*}_{+}. Probably in general it should be the Kโˆ—K^{*}-localization of the Kโˆ—K^{*}-completion of the sphere. Adapting the proof of the pullback square should be a straightforward. Under appropriate group theoretic conditions there is a more explicit model of the ring GG-spectrum, and this will enable calculations of homotopy groups to link to algebra.

The effect on the algebraic model is that ๐’ชKโˆ—\mathcal{O}_{K^{*}} will be a more general polynomial ring, so the models will be of higher homological dimension. One also needs to discuss the relationships between normalizers of Kโˆ—K^{*} and subgroups in ๐’ฆ\mathcal{K}. If NGโ€‹(Kโˆ—)N_{G}(K^{*}) contains all subgroups NGโ€‹(F)N_{G}(F) it is straightforward, but this should be weakened, so that it covers cases like Kโˆ—=Sโ€‹Oโ€‹(2)K^{*}=SO(2) in G=Sโ€‹Oโ€‹(3)G=SO(3).

drop the restriction that the subgroups FF in ๐’ฆ\mathcal{K} are finite:

Our proof of the formality of Dโ€‹Eโ€‹โŸจ๐’ฆโŸฉDE\langle\mathcal{K}\rangle involves a certain uniformity of behaviour. It should be sufficient that all elements of ๐’ฆ\mathcal{K} have a common identity component. Since we may always use idempotents, it should suffice that ๐’ฆ\mathcal{K} can be broken into finitely many parts each of which consists of subgroups with a common identity component.

drop the restriction that ๐’ฑ\mathcal{V} has a single compactifying point:

The general case that ๐’ฑ\mathcal{V} is a 1-dimensional spectral space introduces significant complication. For example, even with only finitely many height 1 subgroups the model needs to incorporate the combinatorics of specialization and how it interacts with the containments of normalizers.

References

  • [1] S.ย Balchin, T.ย Barthel, and J.ย P.ย C. Greenlees. Prismatic decompositions and rational GG-spectra. Preprint, 59pp, arXiv 2311.18808, 2023.
  • [2] Scott Balchin and J.ย P.ย C. Greenlees. Adelic models for tensor triangulated categories. Advances in Mathematics, 375:30pp, 2020.
  • [3] Scott Balchin and J.ย P.ย C. Greenlees. Separated and complete adelic models for one-dimensional Noetherian tensor-triangulated categories. J. Pure Appl. Algebra, 226(12):Paper No. 107109, 42, 2022.
  • [4] David Barnes, J.P.C. Greenlees, and Magdalena Kศฉdziorek. An algebraic model for rational toral GG-spectra. Algebr. Geom. Topol., 19(7):3541โ€“3599, 2019.
  • [5] J.ย P.ย C. Greenlees. A rational splitting theorem for the universal space for almost free actions. Bull. London Math. Soc., 28(2):183โ€“189, 1996.
  • [6] J.ย P.ย C. Greenlees. Rational Mackey functors for compact Lie groups. I. Proc. London Math. Soc. (3), 76(3):549โ€“578, 1998.
  • [7] J.ย P.ย C. Greenlees. Rational O(2)-equivariant cohomology theories. In Stable and unstable homotopy (Toronto, ON, 1996), volumeย 19 of Fields Inst. Commun., pages 103โ€“110. Amer. Math. Soc., Providence, RI, 1998.
  • [8] J.ย P.ย C. Greenlees. Rational S1S^{1}-equivariant stable homotopy theory. Mem. Amer. Math. Soc., 138(661):xii+289, 1999.
  • [9] J.ย P.ย C. Greenlees. Triangulated categories of rational equivariant cohomology theories. Oberwolfach Reports, pages 480โ€“488, 2006. (cit. on p. 2), 2006.
  • [10] J.ย P.ย C. Greenlees. Rational equivariant cohomology theories with toral support. Algebr. Geom. Topol., 16(4):1953โ€“2019, 2016.
  • [11] J.ย P.ย C. Greenlees. Borel cohomology and the relative gorenstein condition for classifying spaces of compact lie groups. Preprint, pageย 10, 2018.
  • [12] J.ย P.ย C. Greenlees. The Balmer spectrum of rational equivariant cohomology theories. J. Pure Appl. Algebra, 223(7):2845โ€“2871, 2019.
  • [13] J.ย P.ย C. Greenlees. Spaces of subgroups of toral groups. Preprint, 38pp, arXiv:2501.06914, 2025.
  • [14] J.ย P.ย C. Greenlees. Rational GG-spectra for small toral groups. Preprint, 31pp, 2025.
  • [15] J.ย P.ย C. Greenlees. An algebraic model for rational Uโ€‹(2)U(2)-spectra. In preparation, 15pp, 2025.
  • [16] J.ย P.ย C. Greenlees. An algebraic model for rational Sโ€‹Uโ€‹(3)SU(3)-spectra. In preparation, 11pp, 2025.
  • [17] J.ย P.ย C. Greenlees. Rational GG-spectra for components with finite Weyl groups. In preparation, 4pp, 2025.
  • [18] J.ย P.ย C. Greenlees. An abelian model for rational GG-spectra for a compact Lie group GG. In preparation, 27pp.
  • [19] J.ย P.ย C. Greenlees. An algebraic model for rational GG-spectra for finite central extensions of a torus. In preparation, 18pp.
  • [20] J.ย P.ย C. Greenlees and B.ย Shipley. The cellularization principle for Quillen adjunctions. Homology Homotopy Appl., 15(2):173โ€“184, 2013.
  • [21] J.ย P.ย C. Greenlees and B.ย Shipley. An algebraic model for free rational GG-spectra. Bull. Lond. Math. Soc., 46(1):133โ€“142, 2014.
  • [22] J.ย P.ย C. Greenlees and B.ย Shipley. Fixed point adjunctions for equivariant module spectra. Algebr. Geom. Topol., 14(3):1779โ€“1799, 2014.
  • [23] J.ย P.ย C. Greenlees and B.ย Shipley. Homotopy theory of modules over diagrams of rings. Proc. Amer. Math. Soc. Ser. B, 1:89โ€“104, 2014.
  • [24] J.ย P.ย C. Greenlees and B.ย Shipley. An algebraic model for rational torus-equivariant spectra. J. Topol., 11(3):666โ€“719, 2018.
  • [25] Luca Pol and Jordan Williamson. The homotopy theory of complete modules. J. Algebra, 594:74โ€“100, 2022.
  • [26] Brooke Shipley. HZ-algebra spectra are differential graded algebras. American Journal of Mathematics, 129(2):351โ€“379, 2007.
  • [27] Tammo tom Dieck. Transformation groups and representation theory, volume 766 of Lecture Notes in Mathematics. Springer, Berlin, 1979.