This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Algebraic Approximation of Cohen-Macaulay Algebras

Aftab Patel Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7 [email protected]
Abstract.

This paper shows that Cohen-Macaulay algebras can be algebraically approximated in such a way that their Cohen-Macaulayness and minimal Betti numbers are preserved. This is achieved by showing that finitely generated modules over power series rings can be algebraically approximated in a manner that preserves their diagrams of initial exponents and their minimal Betti numbers. These results are also applied to obtain an approximation result for flat homomorphisms from rings of power series to Cohen-Macaulay algebras.

Key words and phrases:
Cohen-Macaulay, Gorenstein, algebraic power series, Hilbert-Samuel function, flatness, special fibre, free resolution, approximation, Betti number
2010 Mathematics Subject Classification:
32S05, 32S10, 32B99, 32C07, 13H10, 13C14, 13J05

1. Introduction

Throughout what follows 𝕂\mathbb{K} will denote an arbitrary field, unless specified otherwise. Also for a fixed integer nn, xx will denote the nn-tuple of variables (x1,…,xn)(x_{1},\dots,x_{n}). The ring of formal power series in variables xx with coefficients in 𝕂\mathbb{K} will be denoted by 𝕂​[[x]]\mathbb{K}[[x]]. A formal power series Fβˆˆπ•‚β€‹[[x]]F\in\mathbb{K}[[x]] is called algebraic if it satisfies a non-trivial polynomial relation. The set of all such power series forms a ring that is called the ring of algebraic power series and is denoted by π•‚β€‹βŸ¨x⟩\mathbb{K}\langle x\rangle. In the case when 𝕂\mathbb{K} is a complete real valued field, the notation 𝕂​{x}\mathbb{K}\{x\} is used for the ring of convergent power series in variables xx. Further, throughout this paper, for a 𝕂​[[x]]\mathbb{K}[[x]]-module MM, the notation dimM\dim M will be used for Krull dimension of MM.

Let MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p} be a module generated by F1,…,Fsβˆˆπ•‚β€‹[[x]]pF_{1},\dots,F_{s}\in\mathbb{K}[[x]]^{p}. A module MΞΌM_{\mu} is called an algebraic approximation of MM of order ΞΌ\mu if MΞΌM_{\mu} is generated by power series vectors whose entries are algebraic power series, and that agree with the generators F1,…,FsF_{1},\dots,F_{s} up to order ΞΌ\mu. The main result proved in this paper, Theorem 4.1, establishes the existence of algebraic approximations of arbitrarily high order to modules MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p}, that share specified algebraic properties with MM. These algebraic properties are Hironaka’s Diagram of Initial exponents (see Section 2.2 for a precise definition), and the minimal Betti numbers of MM. (Recall that the minimal Betti numbers are the ranks of the free modules appearing in a minimal free resolution of MM.) Aside from standard facts in commutative algebra, the two main tools used to prove this theorem are Artin’s Approximation Theorem [2, Theorem 1.10], and the theory of standard bases of modules MβŠ†π•‚β€‹[[x]]M\subseteq\mathbb{K}[[x]], which is analogous to the theory of GrΓΆbner bases of modules over polynomial rings and was developed by T. Becker in [3].

The motivation for the choice of the particular algebraic properties above is the generalization to arbitrary fields of the result [1, Theorem 8.1], proved by J. Adamus and the author, on the existence of arbitrarily high order algebraic approximations of Cohen-Macaulay local analytic algebras over ℝ\mathbb{R} or β„‚\mathbb{C} that preserve the Hilbert-Samuel function. The diagram of initial exponents of an ideal completely determines its Hilbert-Samuel function (see Theorem 2.1). Recall that for an ideal IβŠ†π•‚β€‹[[x]]I\subseteq\mathbb{K}[[x]] the Hilbert-Samuel function of it is defined as

HI​(Ξ·)=dim𝕂​[[x]]/I+π”ͺΞ·+1,Β forΒ β€‹Ξ·βˆˆβ„•,H_{I}(\eta)=\dim\mathbb{K}[[x]]/I+\mathfrak{m}^{\eta+1},\text{ for }\eta\in\mathbb{N},

where π”ͺ\mathfrak{m} is the maximal ideal of 𝕂​[[x]]\mathbb{K}[[x]]. Also, recall that for 𝕂=ℝ\mathbb{K}=\mathbb{R} or β„‚\mathbb{C} a local analytic algebra is a quotient of the form 𝕂​{x}/I\mathbb{K}\{x\}/I where IβŠ†π•‚β€‹{x}I\subseteq\mathbb{K}\{x\} is an ideal. The property of Cohen-Macaulayness is related to the minimal Betti numbers of 𝕂​{x}/I\mathbb{K}\{x\}/I; specifically, it can be determined by the number of non-zero Betti numbers (see Theorem 3.2). The result proved in this paper, that achieves the generalization of [1, Theorem 8.1], is Theorem 6.1, and follows directly from Theorem 4.1. In fact, Theorem 6.1 achieves more than just the generalization of [1, Theorem 8.1] to arbitrarily fields, as the minimal Betti numbers are a finer grained property than Cohen-Macaulayness. As a consequence of this, an approximation result analogous to [1, Theorem 8.1] for Gorenstein local algebras is obtained as a corollary to Theorem 6.1. This is Corollary 6.2. It should be noted here that generalization of the finite determinacy result proved by J. Adamus and the author in [1] for algebras 𝕂​{x}/I\mathbb{K}\{x\}/I that are complete intersections, [1, Theorem 7.3], to arbitrary fields, already exists and was proved by Srinivas and Trivedi in [11] using techniques different from those used in [1]. In fact, an even stronger result exists in the special case of isolated complete intersection singularities, due to Greuel and Pham [9, Theorem 1.5].

A generalization of the algebraic counterpart of the result on flat maps from [10, Theorem 1.2] is also obtained as a by-product of the proofs of Theorem 4.1 and Theorem 6.1 (Theorem 6.4). Briefly, [10, Theorem 1.2] states that given a flat analytic map from a real or complex analytic germ whose local ring is Cohen-Macaulay into a germ of euclidean space, one can find arbitrarily high order algebraic approximations to the domain that are Cohen-Macaulay, and to the map that are flat, which preserve the Hilbert-Samuel function of the special fibre. In this paper a homomorphism of rings Ο•:Aβ†’B\phi:A\rightarrow B will be called flat if it makes BB into a flat AA-module, and in the case when AA and BB are local rings with maximal ideals π”ͺA\mathfrak{m}_{A} and π”ͺB\mathfrak{m}_{B} respectively, the ring B/ϕ​(π”ͺA)​BB/\phi(\mathfrak{m}_{A})B will be called the special fibre of Ο•\phi. With these definitions Theorem 6.4 can be stated as follows: Let yy denote the mm-tuple of variables (y1,…,ym)(y_{1},\dots,y_{m}). If one has a flat homomorphism from 𝕂​[[y]]\mathbb{K}[[y]] to 𝕂​[[x]]/I\mathbb{K}[[x]]/I, and if 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Cohen-Macaulay, then there exist arbitrarily high order algebraic approximations to the homomorphism and 𝕂​[[x]]/I\mathbb{K}[[x]]/I such that the Hilbert-Samuel function and minimal Betti numbers of the special fibre of the approximants is the same as those of the special fibre of the original homomorphism and such that the approximating homomorphisms are flat. The precise notion of algebraic approximation in the context of homomorphisms of rings is defined in a manner analogous to that for modules (see the statement of Theorem 6.4). The result [10, Theorem 1.2] is a direct consequence of Theorem 6.4, and remarkably, its proof via Theorem 4.1 and Theorem 6.1 has fewer dependencies and is conceptually simpler than that of [10, Theorem 1.2].

The structure of this paper is as follows: Section 2 presents relevant definitions and theorems used in the proofs of the main theorems of the paper. Section 4 presents the proof of Theorem 4.1. Section 5 provides justification for the validity of the results of this paper for rings of convergent power series in the case when the field 𝕂\mathbb{K} is a complete real valued field. Section 6 presents the applications of Theorem 4.1, specifically the proof of Theorem 6.1 in Subsection 6.1, and the proof of Theorem 6.4 in Subsection 6.2.

Acknowledgements

The author would like to thank Toshizumi Fukui whose comments helped in the conception of the main idea of the proof of Theorem 4.1. The author would also like to thank Gert-Martin Greuel, for pointing out the result referenced in the paper [9] and also, suggesting that the author attempt to generalize the results in [10] to the case of arbitrary fields. This work was done while the author was employed as a Research Associate at the University of Western Ontario under the supervision of Janusz Adamus. The author’s salary was paid out of funds associated with NSERC (Natural Sciences and Engineering Research Council of Canada) grant no. RGPIN-2018-04239 awarded to Janusz Adamus.

2. Background

2.1. Power series vectors

For Ξ±=(Ξ±1,…,Ξ±n)βˆˆβ„•n\alpha=(\alpha_{1},\dots,\alpha_{n})\in\mathbb{N}^{n}, the monomial x1Ξ±1​⋯​xnΞ±nx_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}} will be denoted by xΞ±x^{\alpha}. For an integer pβˆˆβ„•p\in\mathbb{N}, let e1,…,epβˆˆπ•‚β€‹[[x]]pe_{1},\dots,e_{p}\in\mathbb{K}[[x]]^{p} denote column vectors with 11 in the iith entry and zeros everywhere else, these are called the standard basis vectors of 𝕂​[[x]]p\mathbb{K}[[x]]^{p}. An element of 𝕂​[[x]]p\mathbb{K}[[x]]^{p} of the form xα​eix^{\alpha}e_{i} for (Ξ±,i)βˆˆβ„•nΓ—{1,…,p}(\alpha,i)\in\mathbb{N}^{n}\times\{1,\dots,p\} is called a monomial term and (Ξ±,i)(\alpha,i) is called its exponent. Let Fβˆˆπ•‚β€‹[[x]]pF\in\mathbb{K}[[x]]^{p} be a power series vector. With the above notation FF can be expressed as a sum of monomial terms as follows

F=βˆ‘(Ξ±,i)βˆˆβ„•nΓ—{1,…,p}fΞ±,i​xα​ei.F=\sum_{(\alpha,i)\in\mathbb{N}^{n}\times\{1,\dots,p\}}f_{\alpha,i}x^{\alpha}e_{i}.

The support of FF is supp​(F)={(Ξ±,i)βˆˆβ„•nΓ—{1,…,p}:fΞ±,iβ‰ 0}\mathrm{supp}(F)=\{(\alpha,i)\in\mathbb{N}^{n}\times\{1,\dots,p\}:f_{\alpha,i}\neq 0\}. If ΞΌβˆˆβ„•\mu\in\mathbb{N} then

jμ​F=βˆ‘(Ξ±,i)∈NnΓ—{1,…,p},|Ξ±|≀μfΞ±,i​xα​ei.j^{\mu}F=\sum_{(\alpha,i)\in N^{n}\times\{1,\dots,p\},\\ |\alpha|\leq\mu}f_{\alpha,i}x^{\alpha}e_{i}.

where |Ξ±|=Ξ±1+β‹―+Ξ±n|\alpha|=\alpha_{1}+\dots+\alpha_{n}, is called the ΞΌ\mu-jet of FF.

2.2. The diagram of initial exponents

For Ξ±=(Ξ±1,…,Ξ±n)βˆˆβ„•n\alpha=(\alpha_{1},\dots,\alpha_{n})\in\mathbb{N}^{n}, let |Ξ±|=βˆ‘i=1nΞ±i|\alpha|=\sum_{i=1}^{n}\alpha_{i}. Then, the lexicographic ordering of the n+2n+2-tuples (|Ξ±|,j,Ξ±1,…,Ξ±n)(|\alpha|,j,\alpha_{1},\dots,\alpha_{n}), where 1≀j≀p1\leq j\leq p, defines a total ordering on β„•nΓ—{1,…,p}\mathbb{N}^{n}\times\{1,\dots,p\}. The initial exponent of Fβˆˆπ•‚β€‹[[x]]pF\in\mathbb{K}[[x]]^{p} is exp​(F)=min⁑{(Ξ±,i):(Ξ±,i)∈supp​(F)}\mathrm{exp}(F)=\min\{(\alpha,i):(\alpha,i)\in\mathrm{supp}(F)\}, where the minimum is taken with respect to the total ordering just defined. If MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p} is a finitely generated module then the diagram of initial exponents of MM is 𝔑​(M)={exp​(F):F∈M}\mathfrak{N}(M)=\{\mathrm{exp}(F):F\in M\}. There exists a unique smallest (finite) set 𝒱​(M)βŠ†π”‘β€‹(M)\mathcal{V}(M)\subseteq\mathfrak{N}(M) such that 𝔑​(M)=𝒱​(M)+β„•n={(Ξ±+Ξ²,i):(Ξ±,i)βˆˆπ’±β€‹(M),Ξ²βˆˆβ„•n}\mathfrak{N}(M)=\mathcal{V}(M)+\mathbb{N}^{n}=\{(\alpha+\beta,i):(\alpha,i)\in\mathcal{V}(M),\beta\in\mathbb{N}^{n}\} ([5, Lemma 3.8]). The elements of 𝒱​(M)\mathcal{V}(M) are called the vertices of the diagram 𝔑​(M)\mathfrak{N}(M).

In the case when the module under consideration is an ideal IβŠ†π•‚β€‹[[x]]I\subseteq\mathbb{K}[[x]], the diagram of initial exponents is related to the Hilbert-Samuel function of the ideal II as follows:

Lemma 2.1 ([1, Lemma 6.2]).

Let Iβˆˆπ•‚β€‹[[x]]I\in\mathbb{K}[[x]] be an ideal. Then,

HI​(Ξ·)=#​{Ξ²βˆˆβ„•nβˆ–π”‘β€‹(I):|Ξ²|≀η},for​all​ηβ‰₯1.H_{I}(\eta)=\#\{\beta\in\mathbb{N}^{n}\setminus\mathfrak{N}(I):|\beta|\leq\eta\},\quad\mathrm{for\ all\ }\eta\geq 1\,.
Remark 2.2.
  • (i)

    For large values of Ξ·βˆˆβ„•\eta\in\mathbb{N}, the Hilbert-Samuel function HI​(Ξ·)H_{I}(\eta) coincides with a polynomial called the Hilbert-Samuel polynomial.

  • (ii)

    The degree of the Hilbert-Samuel polynomial of an ideal IβŠ†π•‚β€‹[[x]]I\subseteq\mathbb{K}[[x]] is equal to dim𝕂​[[x]]/I\dim\mathbb{K}[[x]]/I.

2.3. Standard bases and standard representations

In what follows a module in 𝕂​[[x]]p\mathbb{K}[[x]]^{p} generated by F1,…,Fsβˆˆπ•‚β€‹[[x]]pF_{1},\dots,F_{s}\in\mathbb{K}[[x]]^{p}, will be denoted by (F1,…,Fs)(F_{1},\dots,F_{s}). Let M=(F1,…,Fs)βŠ†π•‚β€‹[[x]]pM=(F_{1},\dots,F_{s})\subseteq\mathbb{K}[[x]]^{p} be a finitely generated module. A set {G1,…,Gt}βŠ†M\{G_{1},\dots,G_{t}\}\subseteq M is called a standard basis for MM if 𝒱​(M)βŠ†{exp​(G1),…,exp​(Gt)}\mathcal{V}(M)\subseteq\{\mathrm{exp}(G_{1}),\dots,\mathrm{exp}(G_{t})\}. It is a consequence of Hironaka’s Division Theorem [5, Theorems 3.1, 3.4] and [4] that a standard basis for MM generates it.

If F,H1,…,Hrβˆˆπ•‚β€‹[[x]]pF,H_{1},\dots,H_{r}\in\mathbb{K}[[x]]^{p}, then FF has a standard representation in terms of H1,…,HrH_{1},\dots,H_{r} if there exist Q1,…,Qrβˆˆπ•‚β€‹[[x]]Q_{1},\dots,Q_{r}\in\mathbb{K}[[x]] such that,

F=βˆ‘i=1rQi​Hi​ and ​exp​(F)=min⁑{exp​(Qi​Hi):i=1,…,r}.F=\sum_{i=1}^{r}Q_{i}H_{i}\text{ and }\mathrm{exp}(F)=\min\{\mathrm{exp}(Q_{i}H_{i}):i=1,\dots,r\}.

In the above, by convention, it is assumed that exp​(F)<exp​(0)\mathrm{exp}(F)<\mathrm{exp}(0) for all Fβ‰ 0F\neq 0.

Suppose now that F=βˆ‘(Ξ±,i)βˆˆβ„•nΓ—{1,…,p}fΞ±,i​xα​eiF=\sum_{(\alpha,i)\in\mathbb{N}^{n}\times\{1,\dots,p\}}f_{\alpha,i}x^{\alpha}e_{i}, and that
G=βˆ‘(Ξ±,i)βˆˆβ„•nΓ—{1,…,p}gΞ±,i​xα​eiG=\sum_{(\alpha,i)\in\mathbb{N}^{n}\times\{1,\dots,p\}}g_{\alpha,i}x^{\alpha}e_{i}. Let (Ξ±F,iF)=exp​(F)(\alpha_{F},i_{F})=\mathrm{exp}(F), (Ξ±G,iG)=exp​(G)(\alpha_{G},i_{G})=\mathrm{exp}(G), and xΞ³=lcm​(xΞ±F,xΞ±G)x^{\gamma}=\mathrm{lcm}(x^{\alpha_{F}},x^{\alpha_{G}}). Define,

PF,G={fΞ±F,iF​xΞ³βˆ’Ξ±G​ if ​iF=iG,0,Β otherwise,Β P_{F,G}=\begin{cases}f_{\alpha_{F},i_{F}}x^{\gamma-\alpha_{G}}\text{ if }i_{F}=i_{G},\\ 0,\text{ otherwise, }\end{cases}
PG,F={gΞ±G,iG​xΞ³βˆ’Ξ±F​ if ​iF=iG,0,Β otherwiseΒ P_{G,F}=\begin{cases}g_{\alpha_{G},i_{G}}x^{\gamma-\alpha_{F}}\text{ if }i_{F}=i_{G},\\ 0,\text{ otherwise }\end{cases}

With the above, the s-series vector of FF and GG is S​(F,G)=PF,G​Fβˆ’PG,F​GS(F,G)=P_{F,G}F-P_{G,F}G. The following theorem, which follows directly from the corresponding result for ideals in power series rings [3, Theorem 4.1], gives a criterion for determining when a collection of power series vectors in 𝕂​[[x]]p\mathbb{K}[[x]]^{p} forms a standard basis for the module generated by it.

Theorem 2.3 (cf. [3, Theorem 4.1]).

If SS is a finite subset of 𝕂​[[x]]p\mathbb{K}[[x]]^{p} then the elements of SS form a standard basis for the module generated by them if and only if for each pair G1,G2∈SG_{1},G_{2}\in S, the s-series vector S​(G1,G2)S(G_{1},G_{2}) has a standard representation in terms of elements of SS.

Remark 2.4.
  • (i)

    This is a power series analogue of the corresponding result for submodules of free modules over 𝕂​[x]\mathbb{K}[x] called Buchberger’s criterion [7].

  • (ii)

    The result [3, Theorem 4.1], is for the case of ideals generated by collections of power series in 𝕂​[[x]]\mathbb{K}[[x]], however, the proof of the corresponding result, Theorem 2.3 above, for modules follows by arguments that are almost identical to those used in the proof of [3, Theorem 4.1].

  • (iii)

    The theory of standard basis and the diagram of initial exponents in Sections 2.3 and 2.2 can be developed for orderings other than the one used here, however, this will not be used in this paper.

  • (iv)

    Suppose that F1,…,FsF_{1},\dots,F_{s} is a standard basis for a module MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p} and that G1,…,GsG_{1},\dots,G_{s} is a standard basis for a module NβŠ†π•‚β€‹[[x]]pN\subseteq\mathbb{K}[[x]]^{p}, then {exp​(G1),…,exp​(Gs)}={exp​(F1),…,exp​(Fs)}\{\mathrm{exp}(G_{1}),\dots,\mathrm{exp}(G_{s})\}=\{\mathrm{exp}(F_{1}),\dots,\mathrm{exp}(F_{s})\} implies that 𝔑​(M)=𝔑​(N)\mathfrak{N}(M)=\mathfrak{N}(N). This follows directly from Hironaka’s Division Theorem [5, Theorem 3.1], [4].

2.4. Facts on homomorphisms between free modules over 𝕂​[[x]]\mathbb{K}[[x]]

By choosing a suitable basis of 𝕂​[[x]]m,𝕂​[[x]]n\mathbb{K}[[x]]^{m},\mathbb{K}[[x]]^{n} for n,mβˆˆβ„•n,m\in\mathbb{N}, a homomorphism Ο•:𝕂​[[x]]m→𝕂​[[x]]n\phi:\mathbb{K}[[x]]^{m}\rightarrow\mathbb{K}[[x]]^{n} can be represented by a matrix of dimension nΓ—mn\times m with entries in 𝕂​[[x]]\mathbb{K}[[x]]. A homomorphism Ο•:𝕂​[[x]]m→𝕂​[[x]]n\phi:\mathbb{K}[[x]]^{m}\rightarrow\mathbb{K}[[x]]^{n} is called algebraic if the matrix of Ο•\phi has entries in π•‚β€‹βŸ¨x⟩\mathbb{K}\langle x\rangle. The following condition for the injectivity of Ο•\phi follows immediately from [6, Proposition I.2.9],

Lemma 2.5.

A homomorphism Ο•:𝕂​[[x]]m→𝕂​[[x]]n\phi:\mathbb{K}[[x]]^{m}\rightarrow\mathbb{K}[[x]]^{n} is injective if and only if none of the the mΓ—mm\times m minors of a matrix representation of Ο•\phi is 0.

If Ο•:𝕂​[[x]]m→𝕂​[[x]]n\phi:\mathbb{K}[[x]]^{m}\rightarrow\mathbb{K}[[x]]^{n} is given by the following matrix,

Ο•=(||S1β‹―Sm||)\phi=\begin{pmatrix}|&&|\\ S_{1}&\cdots&S_{m}\\ |&&|\end{pmatrix}

where S1,…,Smβˆˆπ•‚β€‹[[x]]nS_{1},\dots,S_{m}\in\mathbb{K}[[x]]^{n} then the ΞΌ\mu-jet of Ο•\phi is,

jμ​ϕ=(||jμ​S1β‹―jμ​Sm||.)j^{\mu}\phi=\begin{pmatrix}|&&|\\ j^{\mu}S_{1}&\cdots&j^{\mu}S_{m}\\ |&&|.\end{pmatrix}

3. Free resolutions

Throughout this section let MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p} be a finitely generated module. For some integer cc, and integers n0,…,ncn_{0},\dots,n_{c} an exact sequence of the form

(3.1) β„±M:0→𝕂​[[x]]ncβ†’Ο•c𝕂​[[x]]ncβˆ’1β†’Ο•cβˆ’1β‹―β†’Ο•1𝕂​[[x]]n0β†’Ο•0Mβ†’0\mathcal{F}_{M}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi_{c}}\mathbb{K}[[x]]^{n_{c-1}}\xrightarrow{\phi_{c-1}}\cdots\xrightarrow{\phi_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi_{0}}M\xrightarrow{}0

is called a finite free resolution of MM. By [7, Corollary 19.6], all finitely generated 𝕂​[[x]]\mathbb{K}[[x]]-modules have a finite free resolution. The number cc in the above is called the length of the free resolution β„±M\mathcal{F}_{M}. If the homomorphisms Ο•i\phi_{i} for 1≀i≀c1\leq i\leq c in a finite free resolution β„±M\mathcal{F}_{M} have the property that im​(Ο•i)βŠ†π”ͺ​𝕂​[[x]]niβˆ’1\mathrm{im}(\phi_{i})\subseteq\mathfrak{m}\mathbb{K}[[x]]^{n_{i-1}}, then β„±M\mathcal{F}_{M} is called a minimal free resolution of MM. By [7, Lemma 19.4] the minimality of β„±M\mathcal{F}_{M} is equivalent to the condition that for each 1≀i≀c1\leq i\leq c, a basis for 𝕂​[[x]]niβˆ’1\mathbb{K}[[x]]^{n_{i-1}} maps onto a minimal set of generators (i.e., a set of generators with minimal cardinality) of coker​(Ο•i)\mathrm{coker}(\phi_{i}). Further, by [7, Theorem 20.2], all minimal free resolutions of MM have the same length, which is called the projective dimension of MM, and denoted by pd𝕂​[[x]]​(M)\mathrm{pd}_{\mathbb{K}[[x]]}(M). The numbers n0,n1,…,ncn_{0},n_{1},\dots,n_{c} in the minimal free resolution β„±M\mathcal{F}_{M} of a finitely generated module MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p} are called the minimal Betti numbers of MM and are denoted by Ξ²0M,…,Ξ²cM\beta^{M}_{0},\dots,\beta^{M}_{c}.

Remark 3.1.

Suppose that IβŠ†π•‚β€‹[[x]]I\subseteq\mathbb{K}[[x]] is an ideal. Then there exists an exact sequence 0β†’Iβ†ͺπœ„π•‚β€‹[[x]]β†’πœ‹π•‚β€‹[[x]]/Iβ†’00\rightarrow I\xhookrightarrow{\iota}\mathbb{K}[[x]]\xrightarrow{\pi}\mathbb{K}[[x]]/I\rightarrow 0, where ΞΉ\iota is the canonical inclusion of II in 𝕂​[[x]]\mathbb{K}[[x]] and Ο€\pi is the canonical homomorphism from 𝕂​[[x]]\mathbb{K}[[x]] to coker​(ΞΉ)=𝕂​[[x]]/I\mathrm{coker}(\iota)=\mathbb{K}[[x]]/I. Consequently, if

β„±I:0→𝕂​[[x]]ncβ†’Ο•c𝕂​[[x]]ncβˆ’1β†’Ο•cβˆ’1β‹―β†’Ο•1𝕂​[[x]]n0β†’Ο•0Iβ†’0\mathcal{F}_{I}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi_{c}}\mathbb{K}[[x]]^{n_{c-1}}\xrightarrow{\phi_{c-1}}\cdots\xrightarrow{\phi_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi_{0}}I\xrightarrow{}0

is a minimal free resolution of II, then

ℱ𝕂​[[x]]/I:0→𝕂​[[x]]ncβ†’Ο•cβ‹―β†’Ο•1𝕂​[[x]]n0β†’Ο•0𝕂​[[x]]β†’πœ‹π•‚β€‹[[x]]/Iβ†’0\mathcal{F}_{\mathbb{K}[[x]]/I}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi_{c}}\cdots\xrightarrow{\phi_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi_{0}}\mathbb{K}[[x]]\xrightarrow{\pi}\mathbb{K}[[x]]/I\rightarrow 0

is a minimal free resolution of 𝕂​[[x]]/I\mathbb{K}[[x]]/I. Note that in the above, by abuse of notation, Ο•0\phi_{0} is used to denote both the homomorphism Ο•0:𝕂​[[x]]n0β†’I\phi_{0}:\mathbb{K}[[x]]^{n_{0}}\rightarrow I and the composition ΞΉβˆ˜Ο•0:𝕂​[[x]]n0→𝕂​[[x]]\iota\circ\phi_{0}:\mathbb{K}[[x]]^{n_{0}}\rightarrow\mathbb{K}[[x]].

The following characterization of Cohen-Macaulay rings of the form 𝕂​[[x]]/I\mathbb{K}[[x]]/I follows directly from [7, Corollary 19.15] and the fact that 𝕂​[[x]]\mathbb{K}[[x]] is a regular local ring.

Theorem 3.2 (cf. [7, Corollary 19.15]).

If IβŠ†π•‚β€‹[[x]]I\subseteq\mathbb{K}[[x]] is an ideal, then 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Cohen-Macaulay if and only if

pd𝕂​[[x]]​(𝕂​[[x]]/I)=dim𝕂​[[x]]βˆ’dim𝕂​[[x]]/I.\mathrm{pd}_{\mathbb{K}[[x]]}(\mathbb{K}[[x]]/I)=\dim\mathbb{K}[[x]]-\dim\mathbb{K}[[x]]/I.

If 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Cohen-Macaulay, and has a minimal free resolution, such as ℱ𝕂​[[x]]/I\mathcal{F}_{\mathbb{K}[[x]]/I} above, then the last minimal Betti number Ξ²c+1𝕂​[[x]]/I=nc\beta^{\mathbb{K}[[x]]/I}_{c+1}=n_{c} of 𝕂​[[x]]/I\mathbb{K}[[x]]/I is called the Cohen-Macaulay type of 𝕂​[[x]]/I\mathbb{K}[[x]]/I.

Given F1,…,Fsβˆˆπ•‚β€‹[[x]]pF_{1},\dots,F_{s}\in\mathbb{K}[[x]]^{p}, the module generated by all H=(H1,…,Hs)Tβˆˆπ•‚β€‹[[x]]sH=(H_{1},\dots,H_{s})^{T}\in\mathbb{K}[[x]]^{s} such that βˆ‘i=1sHi​Fi=0\sum_{i=1}^{s}H_{i}F_{i}=0 is called the module of syzygies on F1,…,FsF_{1},\dots,F_{s} and is denoted by S​y​z​(F1,…,Fs)Syz(F_{1},\dots,F_{s}). The specification of a minimal free resolution such as (3.1) for a module MβŠ†π•‚β€‹[[x]]pM\subseteq\mathbb{K}[[x]]^{p} is equivalent to the specification of certain syzygy modules as follows: If the homomorphism Ο•0\phi_{0} is given by,

Ο•0=(||S1,0β‹―Sn0,0||),\phi_{0}=\begin{pmatrix}|&&|\\ S_{1,0}&\cdots&S_{n_{0},0}\\ |&&|\end{pmatrix},

then S1,0,…,Sn0,0βˆˆπ•‚β€‹[[x]]pS_{1,0},\dots,S_{n_{0},0}\in\mathbb{K}[[x]]^{p} are a minimal basis of generators of the module MM. For 1≀k≀c1\leq k\leq c, if the homomorphism Ο•k\phi_{k} is given by the matrix,

Ο•k=(||S1,kβ‹―Snk,k||),\phi_{k}=\begin{pmatrix}|&&|\\ S_{1,k}&\cdots&S_{n_{k},k}\\ |&&|\end{pmatrix},

then S1,k,…,Snk,kβˆˆπ•‚β€‹[[x]]nkβˆ’1S_{1,k},\dots,S_{n_{k},k}\in\mathbb{K}[[x]]^{n_{k-1}} are a minimal basis of generators of the module S​y​z​(S1,kβˆ’1,…,Snkβˆ’1,kβˆ’1)Syz(S_{1,k-1},\dots,S_{n_{k-1},k-1}). If M=(F1,…,Fs)M=(F_{1},\dots,F_{s}) and F1,…,FsF_{1},\dots,F_{s} form a standard basis, the following theorem gives us a basis of generators for S​y​z​(F1,…,Fs)Syz(F_{1},\dots,F_{s}).

Theorem 3.3 (cf. [7, Theorem 15.10], [5, Theorem 6.2]).

Suppose that F1,…,Fsβˆˆπ•‚β€‹[[x]]pF_{1},\dots,F_{s}\in\mathbb{K}[[x]]^{p} form a standard basis of the module they generate. Further, suppose that the s-series vectors of pairs Fi,FjF_{i},F_{j} for 1≀i<j≀s1\leq i<j\leq s are S​(Fi,Fj)=Pi,j​Fiβˆ’Pj,i​FjS(F_{i},F_{j})=P_{i,j}F_{i}-P_{j,i}F_{j} and that Qmi,jβˆˆπ•‚β€‹[[x]]Q_{m}^{i,j}\in\mathbb{K}[[x]], for 1≀m≀s1\leq m\leq s and 1≀i<j≀s1\leq i<j\leq s, are such that the following are standard representations of the s-series vectors of pairs in F1,…,FsF_{1},\dots,F_{s}:

Pi,j​Fiβˆ’Fj,i​Fj=βˆ‘m=1sQmi,j​Fm​ for ​1≀i<j≀sP_{i,j}F_{i}-F_{j,i}F_{j}=\sum_{m=1}^{s}Q_{m}^{i,j}F_{m}\text{ for }1\leq i<j\leq s

Then,

Ξi,j=Pi,j​eiβˆ’Pj,i​ejβˆ’βˆ‘m=1sQmi,j​em​ for ​1≀i<j≀s\Xi_{i,j}=P_{i,j}e_{i}-P_{j,i}e_{j}-\sum_{m=1}^{s}Q_{m}^{i,j}e_{m}\text{ for }1\leq i<j\leq s

form a basis of generators of the module S​y​z​(F1,…,Fs)Syz(F_{1},\dots,F_{s}), where the eie_{i} for 1≀i≀s1\leq i\leq s are the standard basis vectors of 𝕂​[[x]]s\mathbb{K}[[x]]^{s}.

Remark 3.4.
  • (i)

    In fact, [7, Theorem 15.10] and [5, Theorem 6.2] also provide an ordering with respect to which the Ξi,j\Xi_{i,j} form a standard basis for S​y​z​(F1,…​Fs)Syz(F_{1},\dots F_{s}), however this fact is not used in this paper.

4. Approximation of Modules

Theorem 4.1.

Let M=(F1,…,Fs)βŠ†π•‚β€‹[[x]]pM=(F_{1},\dots,F_{s})\subseteq\mathbb{K}[[x]]^{p} be a finitely generated module. Further, let

β„±M:0→𝕂​[[x]]ncβ†’Ο•c𝕂​[[x]]ncβˆ’1β†’Ο•cβˆ’1β‹―β†’Ο•1𝕂​[[x]]n0β†’Ο•0Mβ†’0\mathcal{F}_{M}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi_{c}}\mathbb{K}[[x]]^{n_{c-1}}\xrightarrow{\phi_{c-1}}\cdots\xrightarrow{\phi_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi_{0}}M\xrightarrow{}0

be a minimal free resolution of MM. Then there is an integer ΞΌ0βˆˆβ„•\mu_{0}\in\mathbb{N} such that for each ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} there exist F1(ΞΌ),…,Fs(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩pF^{(\mu)}_{1},\dots,F^{(\mu)}_{s}\in\mathbb{K}\langle x\rangle^{p}, which generate a module MΞΌβŠ†π•‚β€‹[[x]]pM_{\mu}\subseteq\mathbb{K}[[x]]^{p}, and algebraic homomorphisms Ο•j(ΞΌ):π•‚β€‹βŸ¨x⟩njβ†’π•‚β€‹βŸ¨x⟩njβˆ’1\phi^{(\mu)}_{j}:\mathbb{K}\langle x\rangle^{n_{j}}\rightarrow\mathbb{K}\langle x\rangle^{n_{j-1}} for 1≀j≀c1\leq j\leq c, Ο•0(ΞΌ):π•‚β€‹βŸ¨x⟩n0β†’MΞΌ\phi_{0}^{(\mu)}:\mathbb{K}\langle x\rangle^{n_{0}}\rightarrow M_{\mu} such that,

  • (i)

    jμ​Fi=jμ​Fi(ΞΌ)j^{\mu}F_{i}=j^{\mu}F^{(\mu)}_{i} for 1≀i≀s1\leq i\leq s.

  • (ii)

    jμ​ϕi=jμ​ϕi(ΞΌ)j^{\mu}\phi_{i}=j^{\mu}\phi^{(\mu)}_{i} for 0≀i≀c0\leq i\leq c.

  • (iii)

    𝔑​(M)=𝔑​(MΞΌ)\mathfrak{N}(M)=\mathfrak{N}(M_{\mu}).

  • (iv)

    The following is a minimal free resolution of MΞΌM_{\mu}

    β„±MΞΌ:0→𝕂​[[x]]ncβ†’Ο•c(ΞΌ)𝕂​[[x]]ncβˆ’1β†’Ο•cβˆ’1(ΞΌ)β‹―β†’Ο•1(ΞΌ)𝕂​[[x]]n0β†’Ο•0(ΞΌ)MΞΌβ†’0\mathcal{F}_{M_{\mu}}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi^{(\mu)}_{c}}\mathbb{K}[[x]]^{n_{c-1}}\xrightarrow{\phi^{(\mu)}_{c-1}}\cdots\xrightarrow{\phi^{(\mu)}_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi^{(\mu)}_{0}}M_{\mu}\xrightarrow{}0
Proof.

Suppose that Ο•0\phi_{0} is given by the following pΓ—n0p\times n_{0} matrix,

Ο•0=(||S1,0β‹―Sn0,0||)\phi_{0}=\begin{pmatrix}|&&|\\ S_{1,0}&\cdots&S_{n_{0},0}\\ |&&|\end{pmatrix}

then S1,0,…,Sn0,0βˆˆπ•‚β€‹[[x]]pS_{1,0},\dots,S_{n_{0},0}\in\mathbb{K}[[x]]^{p} form a minimal basis for MM. Similarly for 1≀i≀c1\leq i\leq c, if Ο•i:𝕂​[[x]]ni→𝕂​[[x]]niβˆ’1\phi_{i}:\mathbb{K}[[x]]^{n_{i}}\rightarrow\mathbb{K}[[x]]^{n_{i-1}} is given by the niβˆ’1Γ—nin_{i-1}\times n_{i} matrix,

Ο•0=(||S1,iβ‹―Sni,i||),\phi_{0}=\begin{pmatrix}|&&|\\ S_{1,i}&\cdots&S_{n_{i},i}\\ |&&|\end{pmatrix},

then S1,i,…,Sni,iβˆˆπ•‚β€‹[[x]]niβˆ’1S_{1,i},\dots,S_{n_{i},i}\in\mathbb{K}[[x]]^{n_{i-1}} form a minimal basis for the module
S​y​z​(S1,iβˆ’1,…,Sniβˆ’1,iβˆ’1)Syz(S_{1,i-1},\dots,S_{n_{i-1},i-1}). Further, let G1,0,…,Gr0,0βˆˆπ•‚β€‹[[x]]pG_{1,0},\dots,G_{r_{0},0}\in\mathbb{K}[[x]]^{p} be a standard basis for MM, and for 1≀i≀cβˆ’11\leq i\leq c-1, let G1,i​…,Gri,iβˆˆπ•‚β€‹[[x]]niβˆ’1G_{1,i}\dots,G_{r_{i},i}\in\mathbb{K}[[x]]^{n_{i-1}} be a standard basis for S​y​z​(S1,iβˆ’1,…,Sniβˆ’1,iβˆ’1)Syz(S_{1,i-1},\dots,S_{n_{i-1},i-1}). Then, there exist Hi​k,jβˆˆπ•‚β€‹[[x]]H_{ik,j}\in\mathbb{K}[[x]] for 0≀j≀cβˆ’10\leq j\leq c-1, 1≀k≀nj1\leq k\leq n_{j}, 1≀i≀rj1\leq i\leq r_{j} such that,

(4.1) Gi,j=βˆ‘k=1njHi​k,j​Sk,j​ for ​0≀j≀cβˆ’1,1≀i≀rjG_{i,j}=\sum_{k=1}^{n_{j}}H_{ik,j}S_{k,j}\text{ for }0\leq j\leq c-1,1\leq i\leq r_{j}

Further, there exist Li​k,0βˆˆπ•‚β€‹[[x]]L_{ik,0}\in\mathbb{K}[[x]] for 1≀i≀n01\leq i\leq n_{0} and 1≀k≀s1\leq k\leq s, such that

(4.2) Si,0=βˆ‘k=1sLi​k,0​Fk.S_{i,0}=\sum_{k=1}^{s}L_{ik,0}F_{k}.

For 0≀k≀cβˆ’10\leq k\leq c-1, Theorem 2.3 implies that there exist monomials Pi​j,k​(x),Pj​i,k​(x)βˆˆπ•‚β€‹[x]P_{ij,k}(x),P_{ji,k}(x)\in\mathbb{K}[x] for 1≀i<j≀nk1\leq i<j\leq n_{k} such that the following is a standard representation,

(4.3) Pi​j,k​(x)​Gi,kβˆ’Pj​i,k​(x)​Gj,k=βˆ‘l=1rkQi​j​l,k​Gl,k​ for ​0≀k≀cβˆ’1,1≀i<j≀nk.P_{ij,k}(x)G_{i,k}-P_{ji,k}(x)G_{j,k}=\sum_{l=1}^{r_{k}}Q_{ijl,k}G_{l,k}\text{ for }0\leq k\leq c-1,1\leq i<j\leq n_{k}.

Explicitly, the condition on the initial exponents for the above to be a standard basis is,

(4.4) exp​(Pi​j,k​(x)​Gi,kβˆ’Pj​i,k​(x)​Gj,k)=min⁑{exp​(Qi​j​l,k​Gl,k):1≀l≀rk}\mathrm{exp}(P_{ij,k}(x)G_{i,k}-P_{ji,k}(x)G_{j,k})=\min\{\mathrm{exp}(Q_{ijl,k}G_{l,k}):1\leq l\leq r_{k}\}

Let e1,k,…,enk,ke_{1,k},\dots,e_{n_{k},k} be the standard basis vectors of 𝕂​[[x]]nk\mathbb{K}[[x]]^{n_{k}} for 0≀k≀cβˆ’10\leq k\leq c-1. By Theorem 3.3, and (4.1), the following are a basis of generators of S​y​z​(S1,k,…​Snk,k)Syz(S_{1,k},\dots S_{n_{k},k})

(4.5) Ξi​j,k=Pi​j,k​(x)​(βˆ‘l=1nkHi​l,k​el,k)βˆ’Pj​i,k​(x)​(βˆ‘l=1nkHj​l,k​el,k)βˆ’βˆ‘l=1nkQi​j​l,k​(βˆ‘q=1nkHl​q,k​eq,k)​ for ​0≀k≀cβˆ’1,1≀i<j≀rk.\begin{split}\Xi_{ij,k}=&P_{ij,k}(x)(\sum_{l=1}^{n_{k}}H_{il,k}e_{l,k})-P_{ji,k}(x)(\sum_{l=1}^{n_{k}}H_{jl,k}e_{l,k})\\ &-\sum_{l=1}^{n_{k}}Q_{ijl,k}(\sum_{q=1}^{n_{k}}H_{lq,k}e_{q,k})\text{ for }0\leq k\leq c-1,1\leq i<j\leq r_{k}.\end{split}

Since, S1,k+1,…,Snk+1,kS_{1,k+1},\dots,S_{n_{k+1},k} are a minimal basis of generators of S​y​z​(S1,k,…,Snk,k)Syz(S_{1,k},\dots,S_{n_{k},k}), there exist Ri​j​l,kβˆˆπ•‚β€‹[[x]]R_{ijl,k}\in\mathbb{K}[[x]] such that the following relation holds,

(4.6) Sl,k+1=βˆ‘1≀i<j≀rkΞi​j,k​Ri​j​l,k​ for ​0≀k≀cβˆ’1,1≀i≀nk+1S_{l,k+1}=\sum_{1\leq i<j\leq r_{k}}\Xi_{ij,k}R_{ijl,k}\text{ for }0\leq k\leq c-1,1\leq i\leq n_{k+1}

Now treating the equations (4.1), (4.2), (4.3), (4.5), and (4.6) as a system of polynomial equations with polynomial coefficients in variables Si,kS_{i,k}, Gi,kG_{i,k}, Hi​j,kH_{ij,k}, Qi​j​l,kQ_{ijl,k}, and Li​j,0L_{ij,0}, Ξi​j,k\Xi_{ij,k} and Ri​j​l,kR_{ijl,k} with coefficients in 𝕂​[x]\mathbb{K}[x] (for allowable values of the indices), the above argument establishes the existence of a formal power series solution. In what follows let nβˆ’1=pn_{-1}=p for simplicity. Therefore, for any integer ΞΌβˆˆβ„•\mu\in\mathbb{N}, by Artin’s Approximation Theorem [2, Theorem 1.10] there exist

  • (1)

    Fi(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩pF_{i}^{(\mu)}\in\mathbb{K}\langle x\rangle^{p} such that jμ​Fi(ΞΌ)=jμ​Fij^{\mu}F_{i}^{(\mu)}=j^{\mu}F_{i} for 1≀i≀s1\leq i\leq s,

  • (2)

    Si,k(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩nkβˆ’1S^{(\mu)}_{i,k}\in\mathbb{K}\langle x\rangle^{n_{k-1}} such that jμ​Si,k(ΞΌ)=jμ​Si,k​ij^{\mu}S_{i,k}^{(\mu)}=j^{\mu}S_{i,k}i for 0≀k≀c0\leq k\leq c and 1≀i≀nk1\leq i\leq n_{k},

  • (3)

    Gi,k(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩nkβˆ’1G^{(\mu)}_{i,k}\in\mathbb{K}\langle x\rangle^{n_{k-1}} such that jμ​Gi,k(ΞΌ)=jμ​Gi,k​ij^{\mu}G_{i,k}^{(\mu)}=j^{\mu}G_{i,k}i for 0≀k≀cβˆ’10\leq k\leq c-1 and 1≀i≀rk1\leq i\leq r_{k},

  • (4)

    Hi​j,k(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩H^{(\mu)}_{ij,k}\in\mathbb{K}\langle x\rangle such that jμ​Hi​j,k(ΞΌ)=jμ​Hi​j,k​ij^{\mu}H_{ij,k}^{(\mu)}=j^{\mu}H_{ij,k}i for 0≀k≀cβˆ’10\leq k\leq c-1, 1≀i≀rk1\leq i\leq r_{k}, and 1≀j≀nk1\leq j\leq n_{k},

  • (5)

    Qi​j​l,k(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩Q^{(\mu)}_{ijl,k}\in\mathbb{K}\langle x\rangle such that jμ​Qi​j​l,k(ΞΌ)=jμ​Qi​j​l,k​ij^{\mu}Q_{ijl,k}^{(\mu)}=j^{\mu}Q_{ijl,k}i for 0≀k≀cβˆ’10\leq k\leq c-1, 1≀l≀rk1\leq l\leq r_{k} and 1≀i<j≀rk1\leq i<j\leq r_{k},

  • (6)

    Li​j,0(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩L_{ij,0}^{(\mu)}\in\mathbb{K}\langle x\rangle such that jμ​Li​j,0(ΞΌ)=jμ​Li​j,0j^{\mu}L_{ij,0}^{(\mu)}=j^{\mu}L_{ij,0} for 1≀i≀n01\leq i\leq n_{0} and 1≀j≀s1\leq j\leq s,

  • (7)

    Ξi​j,k(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩nk\Xi_{ij,k}^{(\mu)}\in\mathbb{K}\langle x\rangle^{n_{k}} such that jΞΌβ€‹Ξži​j,k(ΞΌ)=jΞΌβ€‹Ξži​j,kj^{\mu}\Xi_{ij,k}^{(\mu)}=j^{\mu}\Xi_{ij,k} for 0≀k≀cβˆ’10\leq k\leq c-1 and 1≀i<j≀rk1\leq i<j\leq r_{k}, and

  • (8)

    Ri​j​l,k(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩R_{ijl,k}^{(\mu)}\in\mathbb{K}\langle x\rangle such that jμ​Ri​j​l,k(ΞΌ)=jμ​Ri​j​l,kj^{\mu}R_{ijl,k}^{(\mu)}=j^{\mu}R_{ijl,k} for 0≀k≀cβˆ’10\leq k\leq c-1, 1≀i<j≀rk1\leq i<j\leq r_{k}, and 1≀l≀nk+11\leq l\leq n_{k+1},

that also solve the system of equations given by (4.1), (4.2), (4.3), (4.5) and (4.6). Let (Ξ±~k,ik)=max⁑{exp​(G1,k),…,exp​(Grk,k)}(\tilde{\alpha}_{k},i_{k})=\max\{\mathrm{exp}(G_{1,k}),\dots,\mathrm{exp}(G_{r_{k},k})\} for 0≀k≀c0\leq k\leq c, and let ΞΌ0=max⁑{|Ξ±~0|,…,|Ξ±~c|}\mu_{0}=\max\{|\tilde{\alpha}_{0}|,\dots,|\tilde{\alpha}_{c}|\}. Taking ΞΌ>ΞΌ0\mu>\mu_{0}, will ensure that the approximants in item (3) above will satisfy the criterion (4.4), which will, in turn, ensure that the corresponding approximants Ξi​j,k(ΞΌ)\Xi^{(\mu)}_{ij,k} for 1≀i<j≀rk1\leq i<j\leq r_{k} in item (7) from a basis of generators of S​y​z​(S1,k(ΞΌ),…,Snk,k(ΞΌ))Syz(S^{(\mu)}_{1,k},\dots,S^{(\mu)}_{n_{k},k}), for 0≀k≀cβˆ’10\leq k\leq c-1. Let MΞΌ=(F1(ΞΌ),…,Fs(ΞΌ))M_{\mu}=(F_{1}^{(\mu)},\dots,F_{s}^{(\mu)}). Now, for 0≀k≀c0\leq k\leq c, define Ο•k(ΞΌ):𝕂​[[x]]nk→𝕂​[[x]]nkβˆ’1\phi_{k}^{(\mu)}:\mathbb{K}[[x]]^{n_{k}}\rightarrow\mathbb{K}[[x]]^{n_{k-1}} to be the algebraic homomorphism given by the matrix

Ο•k(ΞΌ)=(||S1,k(ΞΌ)…Snk,k(ΞΌ)||)\phi_{k}^{(\mu)}=\begin{pmatrix}|&&|\\ S_{1,k}^{(\mu)}&\dots&S_{n_{k},k}^{(\mu)}\\ |&&|\end{pmatrix}

Then, for ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} one has the following

  • (1)

    G1,0(ΞΌ),…,Gr0,0(ΞΌ)G_{1,0}^{(\mu)},\dots,G_{r_{0},0}^{(\mu)} are a standard basis for MΞΌM_{\mu}. Also, the choice of ΞΌ0\mu_{0} implies that {exp​(G1,0),…,exp​(Gr0,0)}={exp​(G1,0(ΞΌ)),…,exp​(Gr0,0(ΞΌ))}\{\mathrm{exp}(G_{1,0}),\dots,\mathrm{exp}(G_{r_{0},0})\}=\{\mathrm{exp}(G_{1,0}^{(\mu)}),\dots,\mathrm{exp}(G_{r_{0},0}^{(\mu)})\}, which implies that 𝔑​(M)=𝔑​(MΞΌ)\mathfrak{N}(M)=\mathfrak{N}(M_{\mu}), by point (iv) of Remark 2.4.

  • (2)

    The condition for minimality of the resolution β„±M\mathcal{F}_{M}, Ο•i​(𝕂​[[x]]ni)βŠ†π”ͺ​𝕂​[[x]]niβˆ’1\phi_{i}(\mathbb{K}[[x]]^{n_{i}})\subseteq\mathfrak{m}\mathbb{K}[[x]]^{n_{i-1}} for 1≀i≀c1\leq i\leq c, implies that, Ο•k(ΞΌ)​(𝕂​[[x]]ni)βŠ†π”ͺ​𝕂​[[x]]niβˆ’1\phi_{k}^{(\mu)}(\mathbb{K}[[x]]^{n_{i}})\subseteq\mathfrak{m}\mathbb{K}[[x]]^{n_{i-1}}.

  • (3)

    The injectivity of Ο•c\phi_{c} implies that the determinants of the ncΓ—ncn_{c}\times n_{c} minors of the matrix of Ο•c\phi_{c} are non-zero (Lemma 2.5), which implies that the determinants of the ncΓ—ncn_{c}\times n_{c} minors of the matrix of Ο•c(ΞΌ)\phi_{c}^{(\mu)} are non-zero, (because the determinant is just a polynomial function of the entries of a matrix), which implies that Ο•c(ΞΌ)\phi_{c}^{(\mu)} is injective.

  • (4)

    Items (2), and (3) above imply that the following is a minimal free resolution of the module MΞΌM_{\mu}:

    β„±MΞΌ:0→𝕂​[[x]]ncβ†’Ο•c(ΞΌ)𝕂​[[x]]ncβˆ’1β†’Ο•cβˆ’1(ΞΌ)β‹―β†’Ο•1(ΞΌ)𝕂​[[x]]n0β†’Ο•0(ΞΌ)MΞΌβ†’0.\mathcal{F}_{M_{\mu}}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi^{(\mu)}_{c}}\mathbb{K}[[x]]^{n_{c-1}}\xrightarrow{\phi^{(\mu)}_{c-1}}\cdots\xrightarrow{\phi^{(\mu)}_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi^{(\mu)}_{0}}M_{\mu}\xrightarrow{}0.

∎

5. Regarding convergence

In the case when 𝕂\mathbb{K} is a complete real valued field, it is possible to define the ring of convergent power series 𝕂​{x}\mathbb{K}\{x\}. Theorem 4.1 remains valid if 𝕂​[[x]]\mathbb{K}[[x]] is replaced by 𝕂​{x}\mathbb{K}\{x\}. Specifically,

Remark 5.1.
  • (i)

    Theorem 2.3 depends on Hironaka’s Division Theorem, which is valid for 𝕂​{x}\mathbb{K}\{x\} by [5, Theorem 3.4].

  • (ii)

    Theorem 3.3 is also only dependent on [5, Theorem 3.4], and is proved in this context as [5, Theorem 6.2].

  • (iii)

    All the theory in Section 3 is valid for 𝕂​[[x]]\mathbb{K}[[x]] replaced by any regular local ring, in particular, 𝕂​{x}\mathbb{K}\{x\}.

  • (iv)

    Artin’s Approximation Theorem [2, Theorem 1.10] used in the proof of Theorem 4.1 is also valid for approximations of solutions in 𝕂​{x}\mathbb{K}\{x\} of polynomial systems of equations.

6. Applications

6.1. Approximation of Cohen-Macaulay algebras

Theorem 6.1.

Let I=(F1,…,Fs)I=(F_{1},\dots,F_{s}) be an ideal in 𝕂​[[x]]\mathbb{K}[[x]] such that 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Cohen-Macaulay, has dimension dim𝕂​[[x]]/I=nβˆ’k\dim\mathbb{K}[[x]]/I=n-k and has minimal Betti numbers Ξ²0𝕂​[[x]]/I,…,Ξ²k𝕂​[[x]]/I\beta_{0}^{\mathbb{K}[[x]]/I},\dots,\beta_{k}^{\mathbb{K}[[x]]/I}. Then, there exists an integer ΞΌ0\mu_{0} such that for each ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} there exist, F1(ΞΌ),…,Fs(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩F^{(\mu)}_{1},\dots,F_{s}^{(\mu)}\in\mathbb{K}\langle x\rangle which generate an ideal IΞΌβŠ†π•‚β€‹[[x]]I_{\mu}\subseteq\mathbb{K}[[x]] such that,

  • (i)

    jμ​Fi(ΞΌ)=jμ​Fij^{\mu}F^{(\mu)}_{i}=j^{\mu}F_{i} for 1≀i≀s1\leq i\leq s.

  • (ii)

    The ring 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} is Cohen-Macaulay with dim𝕂​[[x]]/IΞΌ=dim𝕂​[[x]]/I\dim\mathbb{K}[[x]]/I_{\mu}=\dim\mathbb{K}[[x]]/I.

  • (iii)

    The minimal Betti numbers of 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} satisfy Ξ²i𝕂​[[x]]/IΞΌ=Ξ²i𝕂​[[x]]/I\beta_{i}^{\mathbb{K}[[x]]/I_{\mu}}=\beta_{i}^{\mathbb{K}[[x]]/I} for 0≀i≀k0\leq i\leq k.

  • (iv)

    HIΞΌ=HIH_{I_{\mu}}=H_{I}.

Proof.

Let the following be a minimal free resolution of II

β„±I:0→𝕂​[[x]]ncβ†’Ο•c𝕂​[[x]]ncβˆ’1β†’Ο•cβˆ’1β‹―β†’Ο•1𝕂​[[x]]n0β†’Ο•0Iβ†’0.\mathcal{F}_{I}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{c}}\xrightarrow{\phi_{c}}\mathbb{K}[[x]]^{n_{c-1}}\xrightarrow{\phi_{c-1}}\cdots\xrightarrow{\phi_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi_{0}}I\xrightarrow{}0.

Then by Remark 3.1, and Theorem 3.2, c=kβˆ’1c=k-1 and the following is a minimal free resolution of 𝕂​[[x]]/I\mathbb{K}[[x]]/I

ℱ𝕂​[[x]]/I:0→𝕂​[[x]]nkβˆ’1β†’Ο•kβˆ’1β‹―β†’Ο•1𝕂​[[x]]n0β†’Ο•0𝕂​[[x]]β†’πœ‹π•‚β€‹[[x]]/Iβ†’0.\mathcal{F}_{\mathbb{K}[[x]]/I}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{k-1}}\xrightarrow{\phi_{k-1}}\cdots\xrightarrow{\phi_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi_{0}}\mathbb{K}[[x]]\xrightarrow{\pi}\mathbb{K}[[x]]/I\rightarrow 0.

Now, by Theorem 4.1, there exists ΞΌ0βˆˆβ„•\mu_{0}\in\mathbb{N}, such that for each ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} there exist, F1(ΞΌ),…,Fs(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩F_{1}^{(\mu)},\dots,F_{s}^{(\mu)}\in\mathbb{K}\langle x\rangle, generating IΞΌβŠ†π•‚β€‹[[x]]I_{\mu}\subseteq\mathbb{K}[[x]] such that jμ​Fi(ΞΌ)=jμ​Fij^{\mu}F_{i}^{(\mu)}=j^{\mu}F_{i}, 𝔑​(I)=𝔑​(IΞΌ)\mathfrak{N}(I)=\mathfrak{N}(I_{\mu}), and the following is a minimal free resolution of IΞΌI_{\mu}

β„±IΞΌ:0→𝕂​[[x]]nkβˆ’1β†’Ο•kβˆ’1(ΞΌ)𝕂​[[x]]nkβˆ’2β†’Ο•kβˆ’2(ΞΌ)β‹―β†’Ο•1(ΞΌ)𝕂​[[x]]n0β†’Ο•0(ΞΌ)IΞΌβ†’0,\mathcal{F}_{I_{\mu}}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{k-1}}\xrightarrow{\phi^{(\mu)}_{k-1}}\mathbb{K}[[x]]^{n_{k-2}}\xrightarrow{\phi^{(\mu)}_{k-2}}\cdots\xrightarrow{\phi^{(\mu)}_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi^{(\mu)}_{0}}I_{\mu}\xrightarrow{}0,

where Ο•i(ΞΌ)\phi_{i}^{(\mu)} are algebraic homomorphisms for 0≀i≀kβˆ’10\leq i\leq k-1. This implies that

  • (1)

    The following is a minimal free resolution of 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu}

    ℱ𝕂​[[x]]/IΞΌ:0→𝕂​[[x]]nkβˆ’1β†’Ο•kβˆ’1(ΞΌ)β‹―β†’Ο•1(ΞΌ)𝕂​[[x]]n0β†’Ο•0(ΞΌ)𝕂​[[x]]β†’πœ‹π•‚β€‹[[x]]/IΞΌβ†’0.\mathcal{F}_{\mathbb{K}[[x]]/I_{\mu}}:0\xrightarrow{}\mathbb{K}[[x]]^{n_{k-1}}\xrightarrow{\phi^{(\mu)}_{k-1}}\cdots\xrightarrow{\phi^{(\mu)}_{1}}\mathbb{K}[[x]]^{n_{0}}\xrightarrow{\phi^{(\mu)}_{0}}\mathbb{K}[[x]]\xrightarrow{\pi}\mathbb{K}[[x]]/I_{\mu}\rightarrow 0.
  • (2)

    HIΞΌ=HIH_{I_{\mu}}=H_{I}, by Lemma 2.1.

Item (2) above implies that the Hilbert-Samuel polynomials of II and IΞΌI_{\mu} and the same which by Remark 2.2 implies that dim𝕂​[[x]]/I=dim𝕂​[[x]]/IΞΌ=nβˆ’k\dim\mathbb{K}[[x]]/I=\dim\mathbb{K}[[x]]/I_{\mu}=n-k. Now, because of item (1) above, Theorem 3.2 implies that 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} is Cohen-Macaulay, Item (1) also implies that Ξ²i𝕂​[[x]]/IΞΌ=Ξ²i𝕂​[[x]]/I\beta_{i}^{\mathbb{K}[[x]]/I_{\mu}}=\beta_{i}^{\mathbb{K}[[x]]/I}, for all 0≀i≀k0\leq i\leq k. ∎

The above implies in particular that the Cohen-Macaulay type of 𝕂​[[x]]/I\mathbb{K}[[x]]/I and 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} are the same for all ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0}. By [7, Corollary 21.16], 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Gorenstein if and only if the Cohen-Macaulay type of 𝕂​[[x]]/I\mathbb{K}[[x]]/I is one. Therefore, an immediate corollary of the above is

Corollary 6.2.

Let I=(F1,…,Fs)I=(F_{1},\dots,F_{s}) be an ideal in 𝕂​[[x]]\mathbb{K}[[x]] such that 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Gorenstein, and has dimension dim𝕂​[[x]]/I=nβˆ’k\dim\mathbb{K}[[x]]/I=n-k. Then, there exists an integer ΞΌ0\mu_{0} such that for each ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} there exist, F1(ΞΌ),…,F(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩F^{(\mu)}_{1},\dots,F^{(\mu)}\in\mathbb{K}\langle x\rangle which generate an ideal IΞΌβˆˆπ•‚β€‹[[x]]I_{\mu}\in\mathbb{K}[[x]] such that,

  • (i)

    jμ​Fi(ΞΌ)=jμ​Fij^{\mu}F^{(\mu)}_{i}=j^{\mu}F_{i} for 1≀i≀s1\leq i\leq s.

  • (ii)

    The ring 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} is Gorenstein with dim𝕂​[[x]]/IΞΌ=dim𝕂​[[x]]/I\dim\mathbb{K}[[x]]/I_{\mu}=\dim\mathbb{K}[[x]]/I.

  • (iv)

    HIΞΌ=HIH_{I_{\mu}}=H_{I}.

Remark 6.3.
  • (i)

    In the case where 𝕂\mathbb{K} is a complete real-valued field, by the remarks in Section 5, Theorem 6.1 and Theorem 6.2 remain true when 𝕂​[[x]]\mathbb{K}[[x]] is replaced by 𝕂​{x}\mathbb{K}\{x\}.

  • (ii)

    The result [1, Theorem 8.1] follows immediately from Theorem 6.1.

6.2. Approximation of flat maps

Throughout this section mm will be a fixed integer and yy will denote the mm-tuple of variables (y1,…,ym)(y_{1},\dots,y_{m}). Consider a homomorphism rings Ο•:𝕂​[[y]]→𝕂​[[x]]/I\phi:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]]/I, for some ideal IβŠ†π•‚β€‹[[x]]I\subseteq\mathbb{K}[[x]]. Such a map can be completely specified by specifying the images of y1,…,ymy_{1},\dots,y_{m}. The images of y1,…,ymy_{1},\dots,y_{m} under Ο•\phi can belong to 𝕂​[[x]]/I\mathbb{K}[[x]]/I. Let Ο€:𝕂​[[x]]→𝕂​[[x]]/I\pi:\mathbb{K}[[x]]\rightarrow\mathbb{K}[[x]]/I be the canonical projection. A homomorphism Ο•:𝕂​[[y]]→𝕂​[[x]]/I\phi:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]]/I can be completely specified by giving Ο•~​(yi)=Ο•i​(x)βˆˆπ•‚β€‹[[x]]\tilde{\phi}(y_{i})=\phi_{i}(x)\in\mathbb{K}[[x]], for 1≀i≀m1\leq i\leq m, for some Ο•~:𝕂​[[y]]→𝕂​[[x]]\tilde{\phi}:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]] such that Ο•=Ο€βˆ˜Ο•~\phi=\pi\circ\tilde{\phi}. In such a case the homomorphism Ο•\phi is said to be defined by Ο•i​(x)βˆˆπ•‚β€‹[[x]]\phi_{i}(x)\in\mathbb{K}[[x]] for 1≀i≀m1\leq i\leq m. The homomorphism Ο•\phi is called algebraic if it is defined by Ο•i​(x)βˆˆπ•‚β€‹βŸ¨x⟩\phi_{i}(x)\in\mathbb{K}\langle x\rangle for 1≀i≀m1\leq i\leq m. Note that the special fibre of a homomorphism Ο•:𝕂​[[y]]→𝕂​[[x]]/I\phi:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]]/I is isomorphic to 𝕂​[[x]]/(I+J)\mathbb{K}[[x]]/(I+J) where, JJ is the ideal generated by any set of power series Ο•i​(x)βˆˆπ•‚β€‹[[x]]\phi_{i}(x)\in\mathbb{K}[[x]] defining Ο•\phi.

Theorem 6.4.

Suppose that I=(F1,…,Fs)βŠ†π•‚β€‹[[x]]I=(F_{1},\dots,F_{s})\subseteq\mathbb{K}[[x]] is an ideal, 𝕂​[[x]]/I\mathbb{K}[[x]]/I is Cohen-Macaulay and that Ο•:𝕂​[[y]]→𝕂​[[x]]/I\phi:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]]/I is flat homomorphism of rings, defined by Ο•i​(x)βˆˆπ•‚β€‹[[x]]\phi_{i}(x)\in\mathbb{K}[[x]] for 1≀i≀m1\leq i\leq m. Then there exists a ΞΌ0βˆˆβ„•\mu_{0}\in\mathbb{N} such that for each ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} there exist F1(ΞΌ),…,Fs(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩F^{(\mu)}_{1},\dots,F^{(\mu)}_{s}\in\mathbb{K}\langle x\rangle which generate an ideal IΞΌβŠ†π•‚β€‹[[x]]I_{\mu}\subseteq\mathbb{K}[[x]] and an algebraic homomorphism ϕμ:𝕂​[[y]]→𝕂​[[x]]\phi_{\mu}:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]] defined by Ο•i(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩\phi_{i}^{(\mu)}\in\mathbb{K}\langle x\rangle, 1≀i≀m1\leq i\leq m, such that,

  • (i)

    jμ​Fi(ΞΌ)=jμ​Fij^{\mu}F_{i}^{(\mu)}=j^{\mu}F_{i} for 1≀i≀s1\leq i\leq s.

  • (ii)

    jμ​ϕi(ΞΌ)=jμ​ϕij^{\mu}\phi_{i}^{(\mu)}=j^{\mu}\phi_{i} for 1≀i≀m1\leq i\leq m.

  • (iii)

    ϕμ\phi_{\mu} is a flat homomorphism.

  • (iv)

    If J=(F1,…,Fs,Ο•1,…,Ο•m)J=(F_{1},\dots,F_{s},\phi_{1},\dots,\phi_{m}) and JΞΌ=(F1(ΞΌ),…,Fs(ΞΌ),Ο•1(ΞΌ),…,Ο•m(ΞΌ))J_{\mu}=(F_{1}^{(\mu)},\dots,F_{s}^{(\mu)},\phi_{1}^{(\mu)},\dots,\phi_{m}^{(\mu)}), then HJ=HJΞΌH_{J}=H_{J_{\mu}} and the minimal Betti numbers of 𝕂​[[x]]/J\mathbb{K}[[x]]/J and 𝕂​[[x]]/JΞΌ\mathbb{K}[[x]]/J_{\mu} are the same.

  • (v)

    HI=HIΞΌH_{I}=H_{I_{\mu}} and the minimal Betti numbers of 𝕂​[[x]]/I\mathbb{K}[[x]]/I and 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} are the same.

Proof.

By the flatness criterion, [8, Theorem B.8.11], the flatness of Ο•\phi, and the Cohen-Macaulayness of 𝕂​[[x]]/I\mathbb{K}[[x]]/I imply that,

dim𝕂​[[x]]/I=dim𝕂​[[y]]+dim𝕂​[[x]]/J,\dim\mathbb{K}[[x]]/I=\dim\mathbb{K}[[y]]+\dim\mathbb{K}[[x]]/J,

where JJ is defined as in point (iv) in the statement of the theorem. Further, by [8, Theorem B.8.15], the flatness of Ο•\phi, and the Cohen-Macaulayness of 𝕂​[[x]]/I\mathbb{K}[[x]]/I imply that 𝕂​[[x]]/J\mathbb{K}[[x]]/J is also Cohen-Macaulay. Now, in the proofs of Theorem 4.1 and Theorem 6.1, the systems of equations corresponding to the approximations of I=(F1,…,Fs)I=(F_{1},\dots,F_{s}) and J=(F1,…,Fs,Ο•1,…,Ο•m)J=(F_{1},\dots,F_{s},\phi_{1},\dots,\phi_{m}) can be solved simultaneously, and thus, there exists ΞΌ0βˆˆβ„•\mu_{0}\in\mathbb{N}, such that for each ΞΌβ‰₯ΞΌ0\mu\geq\mu_{0} there exist F1(ΞΌ),…,Fs(ΞΌ),Ο•1(ΞΌ),…,Ο•m(ΞΌ)βˆˆπ•‚β€‹βŸ¨x⟩F^{(\mu)}_{1},\dots,F^{(\mu)}_{s},\phi^{(\mu)}_{1},\dots,\phi^{(\mu)}_{m}\in\mathbb{K}\langle x\rangle such that if IΞΌ=(F1(ΞΌ),…,Fs(ΞΌ))I_{\mu}=(F^{(\mu)}_{1},\dots,F^{(\mu)}_{s}) and JΞΌ=(F1(ΞΌ),…,Fs(ΞΌ),Ο•1(ΞΌ),…,Ο•m(ΞΌ))J_{\mu}=(F^{(\mu)}_{1},\dots,F^{(\mu)}_{s},\phi^{(\mu)}_{1},\dots,\phi^{(\mu)}_{m}), then HI=HIΞΌH_{I}=H_{I_{\mu}} and HJ=HJΞΌH_{J}=H_{J_{\mu}}, dim𝕂​[[x]]/I=dim𝕂​[[x]]/IΞΌ\dim\mathbb{K}[[x]]/I=\dim\mathbb{K}[[x]]/I_{\mu}, dim𝕂​[[x]]/J=dim𝕂​[[x]]/JΞΌ\dim\mathbb{K}[[x]]/J=\dim\mathbb{K}[[x]]/J_{\mu}, and 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} and 𝕂​[[x]]/JΞΌ\mathbb{K}[[x]]/J_{\mu} are both Cohen-Macaulay. Also, the minimal Betti numbers of 𝕂​[[x]]/I\mathbb{K}[[x]]/I and 𝕂​[[x]]/J\mathbb{K}[[x]]/J are the same as those of 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} and 𝕂​[[x]]/JΞΌ\mathbb{K}[[x]]/J_{\mu} respectively. By [8, Theorem B.8.11] again, the Cohen-Macaulayness of 𝕂​[[x]]/IΞΌ\mathbb{K}[[x]]/I_{\mu} and the relationship between the dimensions above, imply that the homomorphism ϕμ:𝕂​[[y]]→𝕂​[[x]]/IΞΌ\phi_{\mu}:\mathbb{K}[[y]]\rightarrow\mathbb{K}[[x]]/I_{\mu} defined by Ο•i(ΞΌ)\phi_{i}^{(\mu)} for 1≀i≀m1\leq i\leq m is flat. ∎

Remark 6.5.
  • (i)

    When 𝕂\mathbb{K} is a complete real valued field, by the comments in Section 5, Theorem 6.4 remains valid if 𝕂​[[y]]\mathbb{K}[[y]] and 𝕂​[[x]]\mathbb{K}[[x]] are replaced by 𝕂​{y}\mathbb{K}\{y\} and 𝕂​{x}\mathbb{K}\{x\} respectively.

  • (ii)

    The result [10, Theorem 1.2] follows from Theorem 6.4 above immediately.

References

  • [1] J.Β Adamus and A.Β Patel, Equisingular algebraic approximation of real and complex analytic germs, J. Singul. 20 (2020), 289–310. MR 4187048
  • [2] M.Β Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Γ‰tudes Sci. Publ. Math. (1969), no.Β 36, 23–58. MR 268188
  • [3] T.Β Becker, Stability and Buchberger criterion for standard bases in power series rings, J. Pure Appl. Algebra 66 (1990), no.Β 3, 219–227. MR 1075338
  • [4] Thomas Becker, Standard bases and some computations in rings of power series, J. Symbolic Comput. 10 (1990), no.Β 2, 165–178. MR 1080671
  • [5] E.Β Bierstone and P.Β D. Milman, The local geometry of analytic mappings, Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1988. MR 971251
  • [6] G.Β Boffi and D.Β A. Buchsbaum, Threading homology through algebra: selected patterns, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006, Oxford Science Publications. MR 2247272
  • [7] D.Β Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960
  • [8] G.-M. Greuel, C.Β Lossen, and E.Β Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2290112
  • [9] Gert-Martin Greuel and ThuyΒ Huong Pham, Finite determinacy of matrices and ideals, J. Algebra 530 (2019), 195–214. MR 3942718
  • [10] A.Β Patel, Finite determinacy and approximation of flat maps, arXiv preprint arXiv:2109.06821v2 (2021).
  • [11] V.Β Srinivas and V.Β Trivedi, The invariance of Hilbert functions of quotients under small perturbations, J. Algebra 186 (1996), no.Β 1, 1–19. MR 1418035