This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

prop@alttheorem \newaliascntlem@alttheorem \newaliascntcoroll@alttheorem \newaliascntdefi@alttheorem \newaliascntquest@alttheorem \newaliascntfact@alttheorem \newaliascntrem@alttheorem \newaliascntexa@alttheorem

Ahlfors-David regularity of intrinsically quasi-symmetric sections in metric spaces

Daniela Di Donato
Abstract.

We introduce a definition of intrinsically quasi-symmetric sections in metric spaces and we prove the Ahlfors-David regularity for this class of sections. We follow a recent result by Le Donne and the author where we generalize the notion of intrinsically Lipschitz graphs in the sense of Franchi, Serapioni and Serra Cassano. We do this by focusing our attention on the graph property instead of the map one.

Key words and phrases:
Quasi-symmetric graphs, Ahlfors-David regularity, Metric spaces
Mathematics Subject Classification:
26A16 51F30 46B04 54E35

1. Introduction

The notion of Lipschitz maps is a key one for rectifiability theory in metric spaces [Fed69]. On the other hand, in [AK00] Ambrosio and Kirchheim prove that the classical Lipschitz definition not work in the context of SubRiemannian Carnot groups [ABB19, BLU07, CDPT07]. Then in a similar way of Euclidean case, Franchi, Serapioni and Serra Cassano [FSSC01, FSSC03b, FSSC03a] introduce a suitable definition of intrinsic cones which is deep different to Euclidean cones and then they say that a map φ\varphi is intrinsic Lipschitz if for any pgraph(φ)p\in\mbox{graph}(\varphi) it is possible to consider an intrinsic cone 𝒞\mathcal{C} with vertex on pp such that

𝒞graph(φ)=.\mathcal{C}\cap\mbox{graph}(\varphi)=\emptyset.

In [DDLD22], we generalize this concept in general metric spaces. Roughly speaking, in our new approach a section ψ\psi is such that graph(φ)=ψ(Y)X\mbox{graph}(\varphi)=\psi(Y)\subset X where XX is a metric space and YY is a topological space. We prove some important properties as the Ahlfors regularity, the Ascoli-Arzelá Theorem, the Extension theorem for so-called intrinsically Lipschitz sections. Following this idea, the author introduce other two natural definitions: intrinsically Hölder sections [DD22a] and intrinsically quasi-isometric sections [DD22b] in metric spaces. Yet, thanks to the seminal paper [Che99] (see also [Kei04, KM16]) it is possible to found suitable sets of this class of sections in order to get the convexity and vector space over \mathbb{R} and .\mathbb{C}.

Following Pansu in [Pan16], the purpose of this note is to give a natural intrinsically quasi-symmetric notion and then, following again [DDLD22], to prove the Ahlfors-David regularity result for this class of sections which includes intrinsically Lipschitz sections. More precisely, the main result of this paper is Theorem 2.1.

1.1. Quasi-symmetric sections

Before to give a suitable definition of quasi-symmetric sections, we recall the classical notion of quasi-conformal maps [HK98, Ahl06, Hei01, IM01, TV80]. Let XX and YY be two metric spaces and let f:YXf:Y\to X be an homeomorphism (i.e., ff and its inverse are continuous maps). For y¯Y,r>0\bar{y}\in Y,r>0 we define

Lf(y¯,r)\displaystyle L_{f}(\bar{y},r) :=sup{d(f(y¯),f(y)):d(y¯,y)r},\displaystyle:=\sup\{d(f(\bar{y}),f(y))\,:\,d(\bar{y},y)\leq r\},
f(y¯,r)\displaystyle\ell_{f}(\bar{y},r) :=inf{d(f(y¯),f(y)):d(y¯,y)r},\displaystyle:=\inf\{d(f(\bar{y}),f(y))\,:\,d(\bar{y},y)\geq r\},

and the ratio Hf(y¯,r):=Lf(y¯,r)/f(y¯,r)H_{f}(\bar{y},r):=L_{f}(\bar{y},r)/\ell_{f}(\bar{y},r) which measures the eccentricity of the image of the ball B(y¯,r)B(\bar{y},r) under f.f. We say that ff is HH-quasiconformal if

(1) lim supr0Hf(y¯,r)H,y¯Y.\limsup_{r\to 0}H_{f}(\bar{y},r)\leq H,\quad\forall\bar{y}\in Y.

A good point of our research is that YY is just a topological space because, in many cases, we just consider the metric on X.X. On the other hand, we can not do a automatically choice of f\ell_{f} and the reason will be clear after to present our setting. We have a metric space XX, a topological space YY, and a quotient map π:XY\pi:X\to Y, meaning continuous, open, and surjective. The standard example for us is when XX is a metric Lie group GG (meaning that the Lie group GG is equipped with a left-invariant distance that induces the manifold topology), for example a subRiemannian Carnot group, and YY is the space of left cosets G/HG/H, where H<GH<G is a closed subgroup and π:GG/H\pi:G\to G/H is the projection modulo HH, ggHg\mapsto gH.

In [DDLD22], we consider a section φ:YX\varphi:Y\to X of π:XY\pi:X\to Y (i.e., πφ=idY\pi\circ\varphi=id_{Y}) such that π\pi produces a foliation for X,X, i.e., X=π1(y)X=\coprod\pi^{-1}(y) and the Lipschitz property of φ\varphi consists to ask that the distance between two points φ(y1),φ(y2)\varphi(y_{1}),\varphi(y_{2}) is not comparable with the distance between y1y_{1} and y2y_{2} but between φ(y1)\varphi(y_{1}) and the fiber of y2y_{2}. Following this idea, the corresponding notion given in (1) becomes

(2) lim supr0Hφ(y¯,r)H,y¯Y,\limsup_{r\to 0}H_{\varphi}(\bar{y},r)\leq H,\quad\forall\bar{y}\in Y,

where

Lφ(y¯,r)\displaystyle L_{\varphi}(\bar{y},r) :=sup{d(φ(y¯),φ(y)):d(φ(y¯),π1(y))r},\displaystyle:=\sup\{d(\varphi(\bar{y}),\varphi(y))\,:\,d(\varphi(\bar{y}),\pi^{-1}(y))\leq r\},
φ(y¯,r)\displaystyle\ell_{\varphi}(\bar{y},r) :=inf{d(φ(y¯),φ(y)):d(φ(y¯),π1(y))r},\displaystyle:=\inf\{d(\varphi(\bar{y}),\varphi(y))\,:\,d(\varphi(\bar{y}),\pi^{-1}(y))\geq r\},

and the intrinsic ratio Hf(y¯,r):=Lφ(y¯,r)/φ(y¯,r).H_{f}(\bar{y},r):=L_{\varphi}(\bar{y},r)/\ell_{\varphi}(\bar{y},r).

Now we can understand why we can not choice φ.\ell_{\varphi}. Indeed, in this case,

rd(φ(y1),π1(y2))d(φ(y1),φ(y2))r\leq d(\varphi(y_{1}),\pi^{-1}(y_{2}))\leq d(\varphi(y_{1}),\varphi(y_{2}))

and so

f(y¯,r)=r,y¯Y.\displaystyle\ell_{f}(\bar{y},r)=r,\quad\forall\bar{y}\in Y.

Because of this, we follow Pansu in [Pan16], and we give the following non-trivial definition.

Definition \thedefi@alt.

We say that a map φ:YX\varphi:Y\to X is an intrinsically η\eta-quasi-symmetric section of π\pi, if it is a section, i.e.,

(3) πφ=idY,\pi\circ\varphi=\mbox{id}_{Y},

and if there exists an homeomorphism η:(0,)(0,)\eta:(0,\infty)\to(0,\infty) (i.e., η\eta and its inverse are continuous maps) measuring the intrinsic quasi-symmetry of φ.\varphi. This means that for any y1,y2,y3Yy_{1},y_{2},y_{3}\in Y distinct points of YY which not belong to the same fiber, it holds

(4) d(φ(y1),φ(y2))d(φ(y1),φ(y3))η(d(φ(y2),π1(y1))d(φ(y3),π1(y1))).\frac{d(\varphi(y_{1}),\varphi(y_{2}))}{d(\varphi(y_{1}),\varphi(y_{3}))}\leq\eta\left(\frac{d(\varphi(y_{2}),\pi^{-1}(y_{1}))}{d(\varphi(y_{3}),\pi^{-1}(y_{1}))}\right).

Here dd denotes the distance on XX, and, as usual, for a subset AXA\subset X and a point xXx\in X, we have d(x,A):=inf{d(x,a):aA}d(x,A):=\inf\{d(x,a):a\in A\}.

Equivalently to (17), we are requesting that

(5) d(x1,x2)d(x1,x3)η(d(x2,π1(π(x1)))d(x3,π1(π(x1)))),for all x1,x2,x3φ(Y),\frac{d(x_{1},x_{2})}{d(x_{1},x_{3})}\leq\eta\left(\frac{d(x_{2},\pi^{-1}(\pi(x_{1})))}{d(x_{3},\pi^{-1}(\pi(x_{1})))}\right),\quad\mbox{for all }x_{1},x_{2},x_{3}\in\varphi(Y),

where we ask that x2,x3π1(π(x1)).x_{2},x_{3}\notin\pi^{-1}(\pi(x_{1})).

We give some examples of this class of maps.

Example \theexa@alt (Intrinsically Lipschitz section of π\pi).

Following [DDLD22], we say that a map φ:YX\varphi:Y\to X is an intrinsically Lipschitz section of π\pi with constant LL, with L[1,)L\in[1,\infty), if it is a section and

d(φ(y1),φ(y2))Ld(φ(y1),π1(y2)),for all y1,y2Y.d(\varphi(y_{1}),\varphi(y_{2}))\leq Ld(\varphi(y_{1}),\pi^{-1}(y_{2})),\quad\mbox{for all }y_{1},y_{2}\in Y.

Here, η(x)=Lx\eta(x)=Lx for every x(0,)x\in(0,\infty). Indeed,

d(φ(y1),φ(y2))d(φ(y1),φ(y3))\displaystyle\frac{d(\varphi(y_{1}),\varphi(y_{2}))}{d(\varphi(y_{1}),\varphi(y_{3}))} =d(φ(y1),φ(y2))d(φ(y2),π1(y1))d(φ(y3),π1(y1))d(φ(y1),φ(y3))d(φ(y2),π1(y1))d(φ(y3),π1(y1))\displaystyle=\frac{d(\varphi(y_{1}),\varphi(y_{2}))}{d(\varphi(y_{2}),\pi^{-1}(y_{1}))}\frac{d(\varphi(y_{3}),\pi^{-1}(y_{1}))}{d(\varphi(y_{1}),\varphi(y_{3}))}\frac{d(\varphi(y_{2}),\pi^{-1}(y_{1}))}{d(\varphi(y_{3}),\pi^{-1}(y_{1}))}
Ld(φ(y2),π1(y1))d(φ(y3),π1(y1)),\displaystyle\leq L\frac{d(\varphi(y_{2}),\pi^{-1}(y_{1}))}{d(\varphi(y_{3}),\pi^{-1}(y_{1}))},

where in the last inequality we used the simply fact φ(y1)π1(y1)\varphi(y_{1})\in\pi^{-1}(y_{1}) and so d(φ(y3),π1(y1))d(φ(y1),φ(y3))1.\frac{d(\varphi(y_{3}),\pi^{-1}(y_{1}))}{d(\varphi(y_{1}),\varphi(y_{3}))}\leq 1.

Example \theexa@alt (BiLipschitz embedding).

BiLipschitz embedding are examples of intrinsically η\eta-quasi-symmetric sections of π.\pi. This follows because in the case π\pi is a Lipschitz quotient or submetry [BJL+99, VN88], being intrinsically Lipschitz is equivalent to biLipschitz embedding, (see Proposition 2.4 in [DDLD22]).

Example \theexa@alt (Intrinsically Hölder section of π\pi (in the discrete case)).

Let XX be a metric space with the additional hypothesis that there is ε>0\varepsilon>0 such that d(φ(y1),φ(y2))ε>0d(\varphi(y_{1}),\varphi(y_{2}))\geq\varepsilon>0 for any y1,y2Y.y_{1},y_{2}\in Y. Following [DD22a], we say that a map φ:YX\varphi:Y\to X is an intrinsically (L,α)(L,\alpha)-Hölder section of π\pi, with L[1,)L\in[1,\infty) and α(0,1)\alpha\in(0,1), if it is a section and

d(φ(y1),φ(y2))Ld(φ(y1),π1(y2))α,for all y1,y2Y.d(\varphi(y_{1}),\varphi(y_{2}))\leq Ld(\varphi(y_{1}),\pi^{-1}(y_{2}))^{\alpha},\quad\mbox{for all }y_{1},y_{2}\in Y.

Here, η(x)=Lεα1xα\eta(x)=L\varepsilon^{\alpha-1}x^{\alpha} for any x(0,)x\in(0,\infty). Indeed,

d(φ(y1),φ(y2))d(φ(y1),φ(y3))\displaystyle\frac{d(\varphi(y_{1}),\varphi(y_{2}))}{d(\varphi(y_{1}),\varphi(y_{3}))} =d(φ(y1),φ(y2))d(φ(y2),π1(y1))αd(φ(y3),π1(y1))αd(φ(y1),φ(y3))d(φ(y2),π1(y1))αd(φ(y3),π1(y1))α\displaystyle=\frac{d(\varphi(y_{1}),\varphi(y_{2}))}{d(\varphi(y_{2}),\pi^{-1}(y_{1}))^{\alpha}}\frac{d(\varphi(y_{3}),\pi^{-1}(y_{1}))^{\alpha}}{d(\varphi(y_{1}),\varphi(y_{3}))}\frac{d(\varphi(y_{2}),\pi^{-1}(y_{1}))^{\alpha}}{d(\varphi(y_{3}),\pi^{-1}(y_{1}))^{\alpha}}
Lεα1d(φ(y2),π1(y1))αd(φ(y3),π1(y1))α,\displaystyle\leq L\varepsilon^{\alpha-1}\frac{d(\varphi(y_{2}),\pi^{-1}(y_{1}))^{\alpha}}{d(\varphi(y_{3}),\pi^{-1}(y_{1}))^{\alpha}},

as desired.

2. Ahlfors-David regularity

Regarding Ahlfors-David regularity in metric setting, the reader can see [DDLD22] for intrinsically Lipschitz sections; [DD22a] for Hölder sections; [DD22b] for intrinsically quasi-isometric sections.

The main result of this paper is the following.

Theorem 2.1 (Ahlfors-David regularity).

Let π:XY\pi:X\to Y be a quotient map between a metric space XX and a topological space YY such that there is a measure μ\mu on YY such that for every r0>0r_{0}>0 and every x,xXx,x^{\prime}\in X with π(x)=π(x)\pi(x)=\pi(x^{\prime}) there is C>0C>0 such that

(6) μ(π(B(x,r)))Cμ(π(B(x,r))),\mu(\pi(B(x,r)))\leq C\mu(\pi(B(x^{\prime},r))),

for every r(0,r0).r\in(0,r_{0}).

We also assume that φ:YX\varphi:Y\to X is an intrinsically η\eta-quasi-symmetric section of π\pi such that

  1. (1)

    φ(Y)\varphi(Y) is QQ-Ahlfors-David regular with respect to the measure φμ\varphi_{*}\mu, with Q(0,)Q\in(0,\infty)

  2. (2)

    it holds

    (7) η:=supg,qφ(Y)π(g)=π(q)η(d(g,π1(y¯))d(q,π1(y¯)))<,\ell_{\eta}:=\sup_{\begin{subarray}{c}g,q\in\varphi(Y)\\ \pi(g)=\pi(q)\end{subarray}}\eta\left(\frac{d(g,\pi^{-1}(\bar{y}))}{d(q,\pi^{-1}(\bar{y}))}\right)<\infty,

    for any y¯Y\bar{y}\in Y such that g,qπ1(y¯)g,q\notin\pi^{-1}(\bar{y})

Then, for every intrinsically η\eta-quasi-symmetric section ψ:YX,\psi:Y\to X, the set ψ(Y)\psi(Y) is QQ-Ahlfors-David regular with respect to the measure ψμ\psi_{*}\mu, with Q(0,)Q\in(0,\infty).

Namely, in Theorem 2.1 QQ-Ahlfors-David regularity means that the measure φμ\varphi_{*}\mu is such that for each point xφ(Y)x\in\varphi(Y) there exist r0>0r_{0}>0 and C>0C>0 so that

(8) C1rQφμ(B(x,r)φ(Y))CrQ, for all r(0,r0).C^{-1}r^{Q}\leq\varphi_{*}\mu\big{(}B(x,r)\cap\varphi(Y)\big{)}\leq Cr^{Q},\qquad\text{ for all }r\in(0,r_{0}).

We need to a preliminary result.

Lemma \thelem@alt.

Let XX be a metric space, YY a topological space, and π:XY\pi:X\to Y a quotient map. If φ:YX\varphi:Y\to X is an intrinsically η\eta-quasi-symmetric section of π\pi such that (7) holds, then

(9) π(B(p,r))π(B(p,ηr)φ(Y))π(B(p,ηr)),pφ(Y),r>0.\pi\left(B\left(p,r\right)\right)\subset\pi(B(p,\ell_{\eta}r)\cap\varphi(Y))\subset\pi(B(p,\ell_{\eta}r)),\quad\forall p\in\varphi(Y),\forall r>0.
Proof.

Regarding the first inclusion, fix p=φ(y)φ(Y),r>0p=\varphi(y)\in\varphi(Y),r>0 and qB(p,r)q\in B(p,r) with qp.q\neq p.

We need to show that π(q)π(φ(Y)B(p,ηr)).\pi(q)\in\pi(\varphi(Y)\cap B(p,\ell_{\eta}r)). Actually, it is enough to prove that

(10) φ(π(q))B(p,ηr),\varphi(\pi(q))\in B(p,\ell_{\eta}r),

because if we take g:=φ(π(q)),g:=\varphi(\pi(q)), then gφ(Y)g\in\varphi(Y) and

π(g)=π(φ(π(q)))=π(q)π(φ(Y)B(p,ηr)).\pi(g)=\pi(\varphi(\pi(q)))=\pi(q)\in\pi(\varphi(Y)\cap B(p,\ell_{\eta}r)).

Hence using the intrinsic η\eta-quasi-symmetric property of φ\varphi and (7), we have that for any p=φ(y),q,gφ(Y)p=\varphi(y),q,g\in\varphi(Y) with g=φ(π(q)),g=\varphi(\pi(q)),

(11) d(p,g)=d(p,g)d(p,q)d(p,q)η(d(g,π1(y))d(q,π1(y)))rηr,d(p,g)=\frac{d(p,g)}{d(p,q)}d(p,q)\leq\eta\left(\frac{d(g,\pi^{-1}(y))}{d(q,\pi^{-1}(y))}\right)r\leq\ell_{\eta}r,

i.e., (10) holds, as desired. Finally, the second inclusion in (9) follows immediately noting that π(φ(Y))=Y\pi(\varphi(Y))=Y because φ\varphi is a section and the proof is complete. ∎

Now we are able to prove Theorem 2.1.

Proof of Theorem 2.1.

Let φ\varphi and ψ\psi intrinsically η\eta-quasi-symmetric sections. Fix yY.y\in Y. By Ahlfors regularity of φ(y),\varphi(y), we know that there are c1,c2,r0>0c_{1},c_{2},r_{0}>0 such that

(12) c1rQφμ(B(φ(y),r)φ(Y))c2rQ,{c_{1}}r^{Q}\leq\varphi_{*}\mu\big{(}B(\varphi(y),r)\cap\varphi(Y)\big{)}\leq c_{2}r^{Q},

for all r(0,r0).r\in(0,r_{0}). We would like to show that there is c3,c4>0c_{3},c_{4}>0 such that

(13) c4rQψμ(B(ψ(y),r)ψ(Y))c4rQ,c_{4}r^{Q}\leq\psi_{*}\mu\big{(}B(\psi(y),r)\cap\psi(Y)\big{)}\leq c_{4}r^{Q},

for every r(0,r0).r\in(0,r_{0}). We begin noticing that, by symmetry and (18)

(14) C1μ(π(B(ψ(y),r)))μ(π(B(φ(y),r)))Cμ(π(B(ψ(y),r))).C^{-1}\mu(\pi(B(\psi(y),r)))\leq\mu(\pi(B(\varphi(y),r)))\leq C\mu(\pi(B(\psi(y),r))).

Moreover,

(15) ψμ(B(ψ(y),r)ψ(Y))=μ(ψ1(B(ψ(y),r)ψ(Y)))=μ(π(B(ψ(y),r)ψ(Y))),\psi_{*}\mu\big{(}B(\psi(y),r)\cap\psi(Y)\big{)}=\mu(\psi^{-1}\big{(}B(\psi(y),r)\cap\psi(Y)\big{)})=\mu(\pi\big{(}B(\psi(y),r)\cap\psi(Y)\big{)}),

and, consequently,

ψμ(B(ψ(y),r)ψ(Y))\displaystyle\psi_{*}\mu\big{(}B(\psi(y),r)\cap\psi(Y)\big{)} μ(π(B(ψ(y),r/η)))C1μ(π(B(φ(y),r/η)))\displaystyle\geq\mu(\pi(B(\psi(y),r/\ell_{\eta})))\geq C^{-1}\mu(\pi(B(\varphi(y),r/\ell_{\eta})))
C1μ(π(B(φ(y),r/η)φ(Y)))\displaystyle\geq C^{-1}\mu(\pi(B(\varphi(y),r/\ell_{\eta})\cap\varphi(Y)))
=C1φμ(B(φ(y),r/η)φ(Y))\displaystyle=C^{-1}\varphi_{*}\mu\big{(}B(\varphi(y),r/\ell_{\eta})\cap\varphi(Y)\big{)}
c1C1ηQrQ,\displaystyle\geq c_{1}C^{-1}\ell_{\eta}^{-Q}r^{Q},

where in the first inequality we used the first inclusion of (9) with ψ\psi in place of φ\varphi, and in the second one we used (14). In the third inequality we used the second inclusion of (9) and in the fourth one we used (15) with φ\varphi in place of ψ.\psi. Moreover, in a similar way we have that

ψμ(B(ψ(y),r)ψ(Y))\displaystyle\psi_{*}\mu\big{(}B(\psi(y),r)\cap\psi(Y)\big{)} μ(π(B(ψ(y),r)))Cμ(π(B(φ(y),r)))\displaystyle\leq\mu(\pi(B(\psi(y),r)))\leq C\mu(\pi(B(\varphi(y),r)))
Cμ(π(B(φ(y),ηr))φ(Y)))\displaystyle\leq C\mu(\pi(B(\varphi(y),\ell_{\eta}r))\cap\varphi(Y)))
=Cφμ(B(φ(y),ηr)φ(Y))\displaystyle=C\varphi_{*}\mu\big{(}B(\varphi(y),\ell_{\eta}r)\cap\varphi(Y)\big{)}
c2CηQrQ.\displaystyle\leq{c_{2}}C\ell_{\eta}^{Q}r^{Q}.

Hence, putting together the last two inequalities we have that (13) holds with c3=c1C1ηQ{c_{3}}=c_{1}C^{-1}\ell_{\eta}^{-Q} and c4=c2CηQ.c_{4}={c_{2}}C\ell_{\eta}^{Q}.

2.1. Quasi-conformal sections

In this section we present the definition of quasi-conformal sections. Regarding the classical quasi-conformal and quasi-symmetric maps the reader can see [HK98, Ahl06, Hei01, IM01].

Definition \thedefi@alt.

We say that a map φ:YX\varphi:Y\to X is an intrinsically η\eta-quasi-conformal section of π\pi, if it is a section, i.e.,

(16) πφ=idY,\pi\circ\varphi=\mbox{id}_{Y},

and there exist H0H\geq 0 and an homeomorphism η:(0,)(0,)\eta:(0,\infty)\to(0,\infty) (i.e., η\eta such that for any y1,y2,y3Yy_{1},y_{2},y_{3}\in Y distinct points of YY which not belong to the same fiber, it holds

(17) d(φ(y1),φ(y2))d(φ(y1),φ(y3))lim supx,xφ(Y),π(x)=π(x)xxη(d(x,π1(y1))d(x,π1(y1)))<H.\frac{d(\varphi(y_{1}),\varphi(y_{2}))}{d(\varphi(y_{1}),\varphi(y_{3}))}\leq\limsup_{\begin{subarray}{c}x,x^{\prime}\in\varphi(Y),\,\pi(x)=\pi(x^{\prime})\\ x\to x^{\prime}\end{subarray}}\,\eta\left(\frac{d(x,\pi^{-1}(y_{1}))}{d(x^{\prime},\pi^{-1}(y_{1}))}\right)<H.

Here dd denotes the distance on XX, and, as usual, for a subset AXA\subset X and a point xXx\in X, we have d(x,A):=inf{d(x,a):aA}d(x,A):=\inf\{d(x,a):a\in A\}.

Finally, this class of section satisfies the hypothesis (7) of Theorem 2.1. Hence, we can conclude with the following corollary.

Theorem 2.2 (Ahlfors-David regularity).

Let π:XY\pi:X\to Y be a quotient map between a metric space XX and a topological space YY such that there is a measure μ\mu on YY such that for every r0>0r_{0}>0 and every x,xXx,x^{\prime}\in X with π(x)=π(x)\pi(x)=\pi(x^{\prime}) there is C>0C>0 such that

(18) μ(π(B(x,r)))Cμ(π(B(x,r))),\mu(\pi(B(x,r)))\leq C\mu(\pi(B(x^{\prime},r))),

for every r(0,r0).r\in(0,r_{0}).

We also assume that φ:YX\varphi:Y\to X is an intrinsically (η,H)(\eta,H)-quasi-conformal section of π\pi such that φ(Y)\varphi(Y) is QQ-Ahlfors-David regular with respect to the measure φμ\varphi_{*}\mu, with Q(0,)Q\in(0,\infty) for some fixed y¯,y¯1Y.\bar{y},\bar{y}_{1}\in Y.

Then, for every intrinsically (η,H)(\eta,H)-quasi-conformal section ψ:YX,\psi:Y\to X, the set ψ(Y)\psi(Y) is QQ-Ahlfors-David regular with respect to the measure ψμ\psi_{*}\mu, with Q(0,)Q\in(0,\infty).

Conflict of interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  • [ABB19] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A comprehensive introduction to sub-Riemannian geometry. Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, 181:762, 2019.
  • [Ahl06] L.V. Ahlfors. Lectures on quasiconformal mappings, University Lecture Series. Amer. Math. Soc., Providence, RI, 38, 2006.
  • [AK00] Luigi Ambrosio and Bernd Kirchheim. Rectifiable sets in metric and Banach spaces. Math. Ann., 318(3):527–555, 2000.
  • [BJL+99] S. Bates, W. B. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman. Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal., 9(6):1092–1127, 1999.
  • [BLU07] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.
  • [CDPT07] Luca Capogna, Donatella Danielli, Scott D. Pauls, and Jeremy T. Tyson. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
  • [Che99] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, pages 428–517, 1999.
  • [DD22a] Daniela Di Donato. Intrinsically Hölder sections in metric spaces. preprint, 2022.
  • [DD22b] Daniela Di Donato. Intrinsically quasi-isometric sections in metric spaces. preprint, 2022.
  • [DDLD22] Daniela Di Donato and Enrico Le Donne. Intrinsically lipschitz sections and applications to metric groups. preprint, 2022.
  • [Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.
  • [FSSC01] B. Franchi, R. Serapioni, and F. Serra Cassano. Rectifiability and perimeter in the Heisenberg group. Math. Ann., 321(3):479–531, 2001.
  • [FSSC03a] B. Franchi, R. Serapioni, and F. Serra Cassano. Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups. Comm. Anal. Geom., 11(5):909–944, 2003.
  • [FSSC03b] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano. On the structure of finite perimeter sets in step 2 Carnot groups. The Journal of Geometric Analysis, 13(3):421–466, 2003.
  • [Hei01] J. Heinonen. Lectures on Analysis on Metric Spaces, Springer-Verlag. 2001.
  • [HK98] J. Heinonen and P. Koskela. Quasiconformal maps in metric spaces with controlled geometry. Acta Mathematica, 181(1):1 – 61, 1998.
  • [IM01] T. Iwaniec and G. Martin. Geometric function theory and non-linear analysis. Oxford Mathematical Monographs, Clarendon Press, Oxford University Press, 2001.
  • [Kei04] S. Keith. A differentiable structure for metric measure spaces. Adv. Math. 183, pages 271–315, 2004.
  • [KM16] B. Kleiner and J.M. Mackay. Differentiable structures on metric measure spaces: a primer. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XVI, pages 41–64, 2016.
  • [Pan16] P. Pansu. On the quasisymmetric Hölder equivalence problem for Carnot groups. Annales de la facolté des sciences de Toulouse Mathématiques, 2016.
  • [TV80] P. Tukia and J. Vaïsälä. Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5, pages 97–114, 1980.
  • [VN88] Berestovskii Valerii Nikolaevich. Homogeneous manifolds with intrinsic metric. Sib Math J, I(29):887–897, 1988.