This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Aharonov-Bohm-Like Scattering in the Generalized Uncertainty Principle-corrected Quantum Mechanics

DaeKil Park1,2111[email protected] 1Department of Electronic Engineering, Kyungnam University, Changwon 631-701, Korea
2Department of Physics, Kyungnam University, Changwon 631-701, Korea
Abstract

We discuss classical electrodynamics and the Aharonov-Bohm effect in the presence of the minimal length. In the former we derive the classical equation of motion and the corresponding Lagrangian. In the latter we adopt the generalized uncertainty principle (GUP) and compute the scattering cross section up to the first-order of the GUP parameter β\beta. Even though the minimal length exists, the cross section is invariant under the simultaneous change ϕϕ\phi\rightarrow-\phi, αα\alpha^{\prime}\rightarrow-\alpha^{\prime}, where ϕ\phi and α\alpha^{\prime} are azimuthal angle and magnetic flux parameter. However, unlike the usual Aharonv-Bohm scattering the cross section exhibits discontinuous behavior at every integer α\alpha^{\prime}. The symmetries, which the cross section has in the absence of GUP, are shown to be explicitly broken at the level of 𝒪(β){\cal O}(\beta).

I Introduction

The most theories of quantum gravity predict the existence of a minimal length mead64 ; townsend76 ; amati89 ; garay94 at the Planck scale. It appears as various different expressions in loop quantum gravityrovelli98 ; carlip01 , string theorykonishi90 ; kato90 , path-integral quantum gravitypadmanabhan85 ; padmanabhan87 ; greensite91 , and black hole physicsmaggiore93 . From the aspect of quantum mechanics the existence of a minimal length results in the modification of the Heisenberg uncertainty principle (HUP)uncertainty ; robertson1929 ΔPΔQ2\Delta P\Delta Q\geq\frac{\hbar}{2}, because ΔQ\Delta Q should be larger than the minimal length. Various modification of HUP, called the generalized uncertainty principle (GUP), were suggested in Ref. kempf93 ; kempf94 . The GUP has been used to explore the various branches of physics such as micro-black holescar99-1 , gravityadler99-1 , cosmological constantokamura02-1 , and classical central potential problemokamura02-2 . It is also used in the low-energy regimescar10-1 and the emergence of (doubly) special relativityscar12-1 . The experimental detection of GUP was emphasized in Ref. scar15-1 , where GUP is directly linked to the deformation of the spacetime metric. In this way the existence of GUP can be experimentally verified by measuring the light deflection and perihelion procession. As we will show in this paper, the existence of GUP also can be verified by measuring the cross section of the Aharonov-Bohm-Like scattering.

In this paper222Although the effect of the presence of a minimal length should be discussed in a relativistic fashion, we will examine it in the non-relativistic quantum mechanics when the Aharonov-Bohm potential is involved. Therefore, the results presented in this paper should be modified when the relativistic effect is included. we will choose the dd-dimensional GUP in a form

ΔPiΔXi2[1+β(Δ𝐏2+𝐏2)+2β(ΔPi2+Pi2)](i=1,2,,d)\Delta P_{i}\Delta X_{i}\geq\frac{\hbar}{2}\left[1+\beta\left(\Delta{\bf P}^{2}+\langle{\bf P}\rangle^{2}\right)+2\beta\left(\Delta P_{i}^{2}+\langle P_{i}\rangle^{2}\right)\right]\hskip 28.45274pt(i=1,2,\cdots,d) (1)

where β\beta is a GUP parameter, which has a dimension (momentum)2(\mbox{momentum})^{-2}. Using ΔAΔB12|[A,B]|\Delta A\Delta B\geq\frac{1}{2}|\langle[A,B]\rangle|, Eq. (1) induces the modification of the commutation relations as333One may wonder whether the commutation relations (2) are inconsistent with each other. If, in fact, we impose [Pi,Pj]=0[P_{i},P_{j}]=0, the Jacobi identity determines [Xi,Xj][X_{i},X_{j}] in a form [Xi,Xj]=4β2𝐏21+β𝐏2(PiXjPjXi)=𝒪(β2).[X_{i},X_{j}]=\frac{4\beta^{2}{\bf P}^{2}}{1+\beta{\bf P}^{2}}(P_{i}X_{j}-P_{j}X_{i})={\cal O}(\beta^{2}). Since we will explore the AB-like phenomenon up to first of β\beta, Eq. (2) is valid for this reason.

[Xi,Pj]=i(δij+βδij𝐏2+2βPiPj)\displaystyle\left[X_{i},P_{j}\right]=i\hbar\left(\delta_{ij}+\beta\delta_{ij}{\bf P}^{2}+2\beta P_{i}P_{j}\right) (2)
[Xi,Xj]=[Pi,Pj]=0.\displaystyle\hskip 28.45274pt\left[X_{i},X_{j}\right]=\left[P_{i},P_{j}\right]=0.
Refer to caption
Figure 1: (Color online) The minimal length and allowed region of one-dimensional GUP (3) when =β=1\hbar=\beta=1.

The existence of the minimal length is easily shown at d=1d=1. In this case Eq. (1) is expressed as

ΔPΔX2(1+3βΔP2)\Delta P\Delta X\geq\frac{\hbar}{2}\left(1+3\beta\Delta P^{2}\right) (3)

if P=0\langle P\rangle=0. Then, the equality of Eq. (3) yields

ΔX2ΔXmin2=3β2.\Delta X^{2}\geq\Delta X_{min}^{2}=3\beta\hbar^{2}. (4)

In Fig. 1 the allowed region and minimal length of Eq. (3) is plotted when =β=1\hbar=\beta=1.

If β\beta is small, Eq. (2) can be solved as

Pi=pi(1+β𝐩2)+𝒪(β2)Xi=xiP_{i}=p_{i}\left(1+\beta{\bf p}^{2}\right)+{\cal O}(\beta^{2})\hskip 28.45274ptX_{i}=x_{i} (5)

where pip_{i} and xix_{i} obey the usual HUP. Using Eq. (5) and Feynman’s path-integral techniquefeynman ; kleinert the Feynman propagator (or kernel) was exactly derived up to 𝒪(β){\cal O}(\beta) for d=1d=1 free particle casedas2012 ; gangop2019 . Also the propagator for dd-dimensional simple harmonic oscillator system was also derived recently in Ref. comment-1 ; park20-1 .

The main purpose of this paper is to examine how the Aharonov-Bohm (AB) effectAB-1 ; hagen-91 is modified when the GUP (1) is introduced. The AB effect is a pure quantum mechanical phenomenon, which predicts that the electromagnetic vector potential plays a role of observable at the quantum level when the charged particle moves around an infinitely thin magnetic flux tube. The experimental realization of this effect was discussed in Ref. peshkin . The effect of the particle spin in the AB-scattering was examined a few years ago in Ref. hagen-91 ; hagen-90-2 ; park-95 . In particular, when the spin is 1/21/2, the corresponding Schrödinger-like equation derived from Dirac equation involves the δ\delta-function potentialhagen-91 ; jackiw as a Zeeman interaction. In order to make the theory finite a mathematically-oriented self-adjoint extensioncapri or the physically-oriented renormalizationhuang can be adopted. The equivalence of both methods was discussed in Ref. jackiw ; park97-1 .

The paper is organized as follows. In the next section we derive the classical equation of motion up to 𝒪(β){\cal O}(\beta) by making use of the Poisson bracket formalism when the minimal length (4) exists. Also, the classical Lagrangian is explicitly derived in this section. In section III we discuss the AB-scattering in the presence of GUP (5). Unlike the usual AB-effect with HUP it is shown that the irregularity at the origin cannot be avoided because of the effect of GUP. The scattering cross section is shown to be discontinuous at every integer α=α/\alpha^{\prime}=\alpha/\hbar, where α\alpha is a magnetic flux parameter. The various symmetries of the cross section in the usual AB-scattering are explicitly broken. In section IV a brief conclusion is given.

II Classical Electrodynamics in the presence of the minimal length

In this section we discuss how the classical electrodynamics is modified if the minimal length (4) exists. We start with a classical Hamiltonian

Hcl=12M(𝑷q𝑨)2+qV=H0,cl+βM𝒑2(𝒑q𝑨)𝒑+𝒪(β2)H_{cl}=\frac{1}{2M}\left(\bm{P}-q\bm{A}\right)^{2}+qV=H_{0,cl}+\frac{\beta}{M}\bm{p}^{2}\left(\bm{p}-q\bm{A}\right)\cdot\bm{p}+{\cal O}(\beta^{2}) (6)

where 𝑨\bm{A} and VV are the vector and scalar potentials, and H0,clH_{0,cl} is the classical Hamiltonian when there is no minimal length, which is explicitly expressed by

H0,cl=12M(𝒑q𝑨)2+qV.H_{0,cl}=\frac{1}{2M}\left(\bm{p}-q\bm{A}\right)^{2}+qV. (7)

In Eq. (6) we used Eq. (5). Of course, we have not considered the ordering problem of 𝒑\bm{p} and 𝒙\bm{x} because we deal with the classical Hamiltonian.

In order to derive a classical equation of motion we use the Poisson bracket

x˙j{Hcl,xj}=HclpjxjxjHclxjxjpj,\dot{x}_{j}\equiv\{H_{cl},x_{j}\}=\frac{\partial H_{cl}}{\partial p_{j}}\frac{\partial x_{j}}{\partial x_{j}}-\frac{\partial H_{cl}}{\partial x_{j}}\frac{\partial x_{j}}{\partial p_{j}}, (8)

which yields

M𝒙˙=𝒑q𝑨+β[4𝒑2𝒑2q(𝑨𝒑)𝒑q𝒑2𝑨]+𝒪(β2).M\dot{\bm{x}}=\bm{p}-q\bm{A}+\beta\left[4\bm{p}^{2}\bm{p}-2q(\bm{A}\cdot\bm{p})\bm{p}-q\bm{p}^{2}\bm{A}\right]+{\cal O}(\beta^{2}). (9)

Also, one can compute p˙j={Hcl,pj}\dot{p}_{j}=\left\{H_{cl},p_{j}\right\}, which gives

p˙j=[qM(𝒑q𝑨)𝑨xjqVxj]+βqM𝒑2(𝑨xj𝒑)+𝒪(β2).\dot{p}_{j}=\left[\frac{q}{M}(\bm{p}-q\bm{A})\cdot\frac{\partial\bm{A}}{\partial x_{j}}-q\frac{\partial V}{\partial x_{j}}\right]+\frac{\beta q}{M}\bm{p}^{2}\left(\frac{\partial\bm{A}}{\partial x_{j}}\cdot\bm{p}\right)+{\cal O}(\beta^{2}). (10)

Combining Eqs. (9) and (10) with long and tedious calculation, it is possible to derive

Mx¨j=q(𝑬+𝒗×𝑩)j+βqΓj+𝒪(β2)M\ddot{x}_{j}=q(\bm{E}+\bm{v}\times\bm{B})_{j}+\beta q\Gamma_{j}+{\cal O}(\beta^{2}) (11)

where 𝑬=Vt𝑨\bm{E}=-\bm{\nabla}V-\frac{\partial}{\partial t}\bm{A} and 𝑩=×𝑨\bm{B}=\bm{\nabla}\times\bm{A}, which are the usual electric and magnetic fields. The correction term Γj\Gamma_{j} at the first order of β\beta is expressed as

Γj=𝑯112(𝑬+𝒗×𝑩)j+2H11,j(𝑯11𝑬)2mvj(𝑯32V)2qAj(𝑯21V)\displaystyle\Gamma_{j}=\bm{H}_{11}^{2}(\bm{E}+\bm{v}\times\bm{B})_{j}+2H_{11,j}(\bm{H}_{11}\cdot\bm{E})-2mv_{j}(\bm{H}_{32}\cdot\bm{\nabla}V)-2qA_{j}(\bm{H}_{21}\cdot\bm{\nabla}V)
Vxj(𝑯11𝑯31)+2qH32,j(𝑨(𝒗×𝑩))+2mH32,j(𝑮𝒗)\displaystyle\hskip 56.9055pt-\frac{\partial V}{\partial x_{j}}(\bm{H}_{11}\cdot\bm{H}_{31})+2qH_{32,j}\left(\bm{A}\cdot(\bm{v}\times\bm{B})\right)+2mH_{32,j}(\bm{G}\cdot\bm{v}) (12)
+2qH21,j(𝑮𝑨)q(𝒗𝑯11)xj𝑨2\displaystyle\hskip 85.35826pt+2qH_{21,j}(\bm{G}\cdot\bm{A})-q(\bm{v}\cdot\bm{H}_{11})\frac{\partial}{\partial x_{j}}\bm{A}^{2}

where

𝑯ab=am𝒗+bq𝑨𝑮=ivi𝑨xi.\bm{H}_{ab}=am\bm{v}+bq\bm{A}\hskip 28.45274pt\bm{G}=\sum_{i}v_{i}\frac{\partial\bm{A}}{\partial x_{i}}. (13)

The equation of motion (11) can be derived as an Euler-Lagrange equation from the Lagrangian

L(𝒙,𝒙˙)=12m𝒙˙2+q𝒙˙𝑨qVβ𝑯112(𝒙˙𝑯11)+𝒪(β2),L(\bm{x},\dot{\bm{x}})=\frac{1}{2}m\dot{\bm{x}}^{2}+q\dot{\bm{x}}\cdot\bm{A}-qV-\beta\bm{H}_{11}^{2}(\dot{\bm{x}}\cdot\bm{H}_{11})+{\cal O}(\beta^{2}), (14)

where 𝒗\bm{v} in 𝑯ab\bm{H}_{ab} should be replaced by 𝒙˙\dot{\bm{x}} in Eq. (14). Unlike the classical equation of motion in the absence of the minimal length, the scalar and vector potentials explicitly appear in Eq. (11) at the first order of β\beta. This means that if the minimal length exists, the potentials VV and 𝑨\bm{A} are not merely mathematical tools for the derivation of 𝑬\bm{E} and 𝑩\bm{B} even at the classical level. Of course, the classical equation of motion (11) indicates that the usual gauge symmetry 𝐀𝐀+1qΛ{\bf A}\rightarrow{\bf A}+\frac{1}{q}\nabla\Lambda and VV1qΛtV\rightarrow V-\frac{1}{q}\frac{\partial\Lambda}{\partial t} does not hold at the classical level. However, one can show that this theory has a modified symmetry up to 𝒪(β){\cal O}(\beta) in a form:

𝐀𝐀+1q(Λ+β𝐅)VV1q(Λt+βF0){\bf A}\rightarrow{\bf A}+\frac{1}{q}\left(\nabla\Lambda+\beta{\bf F}\right)\hskip 28.45274ptV\rightarrow V-\frac{1}{q}\left(\frac{\partial\Lambda}{\partial t}+\beta F_{0}\right) (15)

where 𝐅{\bf F} and F0F_{0} satisfy

𝐅2(𝐇11Λ)𝐇11𝐇112ΛΛ1F0=Λ1t.{\bf F}-2({\bf H}_{11}\cdot\nabla\Lambda){\bf H}_{11}-{\bf H}_{11}^{2}\nabla\Lambda\equiv\nabla\Lambda_{1}\hskip 28.45274ptF_{0}=\frac{\partial\Lambda_{1}}{\partial t}. (16)

Under the transformation the Lagrangian (14) transforms LL+ddt(Λ+βΛ1)L\rightarrow L+\frac{d}{dt}\left(\Lambda+\beta\Lambda_{1}\right). Of course, the symmetry (15) reduces to the usual gauge symmetry at β=0\beta=0. However, this symmetry is completely different from the usual one because the vector 𝐇11{\bf H}_{11} contains not only particle’s velocity but also the vector potential itself. The Lagrangian (14) can be used to explore the quantum electrodynamics in the presence of the minimal length by applying the path-integral techniquefeynman ; kleinert .

III AB-like Phenomena with GUP

In this section we examine how the AB effectAB-1 is modified when the GUP (5) is introduced. The Hamiltonian with AB system can be written as

H^=12M(𝑷e𝑨)2=12M[(1+β𝒑2)𝒑e𝑨]2+𝒪(β2)=H^0+βH^1+𝒪(β2),\hat{H}=\frac{1}{2M}\left(\bm{P}-e\bm{A}\right)^{2}=\frac{1}{2M}\left[(1+\beta\bm{p}^{2})\bm{p}-e\bm{A}\right]^{2}+{\cal O}(\beta^{2})=\hat{H}_{0}+\beta\hat{H}_{1}+{\cal O}(\beta^{2}), (17)

where ee is an particle charge and

H^0=12M(𝒑2𝑨)2H^1=1M[(𝒑2)2e2{(𝑨𝒑)𝒑2+𝒑2(𝒑𝑨)}].\hat{H}_{0}=\frac{1}{2M}(\bm{p}-2\bm{A})^{2}\hskip 14.22636pt\hat{H}_{1}=\frac{1}{M}\left[(\bm{p}^{2})^{2}-\frac{e}{2}\left\{(\bm{A}\cdot\bm{p})\bm{p}^{2}+\bm{p}^{2}(\bm{p}\cdot\bm{A})\right\}\right]. (18)

If we represent the energy eigenvalue in terms of the wave number as E=E0+βE1+𝒪(β2)E=E_{0}+\beta E_{1}+{\cal O}(\beta^{2}) with E0=2k2/(2M)E_{0}=\hbar^{2}k^{2}/(2M) and E1=4k4/ME_{1}=\hbar^{4}k^{4}/M, it is straightforward to show that the Schrödinger equation H^ψ=Eψ\hat{H}\psi=E\psi can be written as

(ie𝑨)2ψ+2β4[(2)2ie2(𝑨2+2𝑨)]ψ\displaystyle(-i\hbar\bm{\nabla}-e\bm{A})^{2}\psi+2\beta\hbar^{4}\left[(\bm{\nabla}^{2})^{2}-\frac{ie}{2\hbar}\left(\bm{A}\cdot\bm{\nabla}\bm{\nabla}^{2}+\bm{\nabla}^{2}\bm{\nabla}\cdot\bm{A}\right)\right]\psi (19)
+𝒪(β2)=(2k2+2β4k4)ψ.\displaystyle\hskip 227.62204pt+{\cal O}(\beta^{2})=(\hbar^{2}k^{2}+2\beta\hbar^{4}k^{4})\psi.

We assume that there is a thin magnetic flux tube along the zz-axis, which gives the vector potential in a form:

eAi=αϵijxjr2,eA_{i}=\frac{\alpha\epsilon_{ij}x_{j}}{r^{2}}, (20)

where ϵij\epsilon_{ij} is an antisymmetric tensor with ϵ01=ϵ10=1\epsilon_{01}=-\epsilon_{10}=1. In the usual electromagnetic theory the choice of the vector potential (20) is not unique due to the gauge symmetry. Thus, the choice of Eq. (20) corresponds to the Coulomb gauge 𝐀=0\nabla\cdot{\bf A}=0. However, the gauge symmetry is modified to Eq. (15) for our case, which contains the particle’s velocity. Thus, our results presented in the paper are valid only for the particular choice of 𝐀{\bf A} given in Eq. (20). Then, the corresponding magnetic field is eB=(α/r)δ(r)eB=-(\alpha/r)\delta(r). Using Eq. (20) explicitly, one can show

2(e𝑨)=(e𝑨)2+4αr3(r1r)ϕ.\bm{\nabla}^{2}\bm{\nabla}\cdot(e\bm{A})=(e\bm{A})\cdot\bm{\nabla}\bm{\nabla}^{2}+\frac{4\alpha}{r^{3}}\left(\frac{\partial}{\partial r}-\frac{1}{r}\right)\frac{\partial}{\partial\phi}. (21)

Then, the Schrödinger equation (19) reduces to

[2r2+1rr+1r2(ϕ+iα)2+k2]ψ\displaystyle\hskip 56.9055pt\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\left(\frac{\partial}{\partial\phi}+i\alpha^{\prime}\right)^{2}+k^{2}\right]\psi (22)
2β2[(2)2+iαr2(2r21rr+1r22ϕ2+2r2)ϕk4]ψ+𝒪(β2)=0\displaystyle-2\beta\hbar^{2}\left[(\bm{\nabla}^{2})^{2}+\frac{i\alpha^{\prime}}{r^{2}}\left(\frac{\partial^{2}}{\partial r^{2}}-\frac{1}{r}\frac{\partial}{\partial r}+\frac{1}{r^{2}}\frac{\partial^{2}}{\partial\phi^{2}}+\frac{2}{r^{2}}\right)\frac{\partial}{\partial\phi}-k^{4}\right]\psi+{\cal O}(\beta^{2})=0

where α=α/\alpha^{\prime}=\alpha/\hbar. One can show that the Schrödinger equation (22) is invariant under the simultaneous operations αα\alpha\rightarrow-\alpha, ϕϕ\phi\rightarrow-\phi.

If one imposes

ψ(𝒓)=m=eimϕfm(r),\psi(\bm{r})=\sum_{m=-\infty}^{\infty}e^{im\phi}f_{m}(r), (23)

the radial equation of (22) can be written as

(S^12β2S^2)fm(r)+𝒪(β2)=0,\left(\widehat{S}_{1}-2\beta\hbar^{2}\widehat{S}_{2}\right)f_{m}(r)+{\cal O}(\beta^{2})=0, (24)

where

S^1=d2dr2+1rddr(m+α)2r2+k2\displaystyle\widehat{S}_{1}=\frac{d^{2}}{dr^{2}}+\frac{1}{r}\frac{d}{dr}-\frac{(m+\alpha^{\prime})^{2}}{r^{2}}+k^{2} (25)
S^2=(d2dr2+1rddrm2α(m+α)r2k2)S^1\displaystyle\widehat{S}_{2}=\left(\frac{d^{2}}{dr^{2}}+\frac{1}{r}\frac{d}{dr}-\frac{m^{2}-\alpha^{\prime}(m+\alpha^{\prime})}{r^{2}}-k^{2}\right)\widehat{S}_{1}
2α(3m+2α)r2(1rddr1r2+k22)+α2(m+α)(2m+α)r4.\displaystyle\hskip 56.9055pt-\frac{2\alpha^{\prime}(3m+2\alpha^{\prime})}{r^{2}}\left(\frac{1}{r}\frac{d}{dr}-\frac{1}{r^{2}}+\frac{k^{2}}{2}\right)+\frac{\alpha^{\prime 2}(m+\alpha^{\prime})(2m+\alpha^{\prime})}{r^{4}}.

The symmetry of the simultaneous operations αα\alpha\rightarrow-\alpha, ϕϕ\phi\rightarrow-\phi is represented in the radial equation as the simultaneous changes αα\alpha\rightarrow-\alpha, mmm\rightarrow-m. If we set

fm(r)=f0,m(r)+βf1,m(r)+𝒪(β2),f_{m}(r)=f_{0,m}(r)+\beta f_{1,m}(r)+{\cal O}(\beta^{2}), (26)

within 𝒪(β){\cal O}(\beta) the radial equation is represented as the following two equations:

S^1f0,m(r)=0\displaystyle\widehat{S}_{1}f_{0,m}(r)=0 (27)
S^1f1,m(r)=22[2α(3m+2α)r2(1rddr1r2+k22)+α2(m+α)(2m+α)r4]f0,m(r).\displaystyle\widehat{S}_{1}f_{1,m}(r)=2\hbar^{2}\left[-\frac{2\alpha^{\prime}(3m+2\alpha^{\prime})}{r^{2}}\left(\frac{1}{r}\frac{d}{dr}-\frac{1}{r^{2}}+\frac{k^{2}}{2}\right)+\frac{\alpha^{\prime 2}(m+\alpha^{\prime})(2m+\alpha^{\prime})}{r^{4}}\right]f_{0,m}(r).

The general solutions of Eq. (27) are

f0,m(r)=AmJ|m+α|(z)+BmJ|m+α|(z)\displaystyle f_{0,m}(r)=A_{m}J_{|m+\alpha^{\prime}|}(z)+B_{m}J_{-|m+\alpha^{\prime}|}(z) (28)
f1,m(r)=CmJ|m+α|(z)+DmJ|m+α|(z)+um(z)J|m+α|(z)+vm(z)J|m+α|(z)\displaystyle f_{1,m}(r)=C_{m}J_{|m+\alpha^{\prime}|}(z)+D_{m}J_{-|m+\alpha^{\prime}|}(z)+u_{m}(z)J_{|m+\alpha^{\prime}|}(z)+v_{m}(z)J_{-|m+\alpha^{\prime}|}(z)

where z=krz=kr and Jν(z)J_{\nu}(z) is usual Bessel function of the first kind. In Eq. (28) umu_{m} and vmv_{m} are

um(z)=π2k2sin(|m+α|π)\displaystyle u_{m}(z)=\frac{\pi\hbar^{2}k^{2}}{\sin(|m+\alpha^{\prime}|\pi)} (29)
×[Am{2ξmF2(z;|m+α|,|m+α|+1)+ξm,F3(z;|m+α|,|m+α|)\displaystyle\times\Bigg{[}A_{m}\bigg{\{}2\xi_{m}F_{2}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|+1)+\xi_{m,-}F_{3}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)
ξmF1(z;|m+α|,|m+α|)}\displaystyle\hskip 227.62204pt-\xi_{m}F_{1}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)\bigg{\}}
+Bm{2ξmF2(z;|m+α|,|m+α|+1)+ξm,+F3(z;|m+α|,|m+α|)\displaystyle\hskip 22.76228pt+B_{m}\bigg{\{}2\xi_{m}F_{2}(z;-|m+\alpha^{\prime}|,-|m+\alpha^{\prime}|+1)+\xi_{m,+}F_{3}(z;-|m+\alpha^{\prime}|,-|m+\alpha^{\prime}|)
ξmF1(z;|m+α|,|m+α|)}]\displaystyle\hskip 227.62204pt-\xi_{m}F_{1}(z;-|m+\alpha^{\prime}|,-|m+\alpha^{\prime}|)\bigg{\}}\Bigg{]}
vm(z)=π2k2sin(|m+α|π)\displaystyle v_{m}(z)=-\frac{\pi\hbar^{2}k^{2}}{\sin(|m+\alpha^{\prime}|\pi)}
×[Am{2ξmF2(z;|m+α|,|m+α|+1)+ξm,F3(z;|m+α|,|m+α|)\displaystyle\times\Bigg{[}A_{m}\bigg{\{}2\xi_{m}F_{2}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|+1)+\xi_{m,-}F_{3}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)
ξmF1(z;|m+α|,|m+α|)}\displaystyle\hskip 227.62204pt-\xi_{m}F_{1}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)\bigg{\}}
+Bm{2ξmF2(z;|m+α|,|m+α|+1)+ξm,+F3(z;|m+α|,|m+α|)\displaystyle\hskip 22.76228pt+B_{m}\bigg{\{}2\xi_{m}F_{2}(z;|m+\alpha^{\prime}|,-|m+\alpha^{\prime}|+1)+\xi_{m,+}F_{3}(z;|m+\alpha^{\prime}|,-|m+\alpha^{\prime}|)
ξmF1(z;|m+α|,|m+α|)}]\displaystyle\hskip 227.62204pt-\xi_{m}F_{1}(z;|m+\alpha^{\prime}|,-|m+\alpha^{\prime}|)\bigg{\}}\Bigg{]}

where

ξm=α(3m+2α)ξm,±=α2(m+α)(2m+α)+2ξm(1±|m+α|)\xi_{m}=\alpha^{\prime}(3m+2\alpha^{\prime})\hskip 28.45274pt\xi_{m,\pm}=\alpha^{\prime 2}(m+\alpha^{\prime})(2m+\alpha^{\prime})+2\xi_{m}(1\pm|m+\alpha^{\prime}|) (30)

and

Fn(z;μ,ν)Jμ(z)Jν(z)zn𝑑z.F_{n}(z;\mu,\nu)\equiv\int\frac{J_{\mu}(z)J_{\nu}(z)}{z^{n}}dz. (31)

In order to escape the infinity at r=0r=0, we should choose Bm=0B_{m}=0. Therefore, the wave function can be written in a form;

ψ(𝒓)=m=eimϕAmJ|m+α|(z)+βm=eimϕ(CmJ|m+α|(z)\displaystyle\psi({\bm{r}})=\sum_{m=-\infty}^{\infty}e^{im\phi}A_{m}J_{|m+\alpha^{\prime}|}(z)+\beta\sum_{m=-\infty}^{\infty}e^{im\phi}\bigg{(}C_{m}J_{|m+\alpha^{\prime}|}(z) (32)
+DmJ|m+α|(z)+um(z)J|m+α|(z)+vm(z)J|m+α|(z))+𝒪(β2)\displaystyle\hskip 28.45274pt+D_{m}J_{-|m+\alpha^{\prime}|}(z)+u_{m}(z)J_{|m+\alpha^{\prime}|}(z)+v_{m}(z)J_{-|m+\alpha^{\prime}|}(z)\bigg{)}+{\cal O}(\beta^{2})

where

um(z)=Amπ2k2sin(|m+α|π){2ξmF2(z;|m+α|,|m+α|+1)\displaystyle u_{m}(z)=\frac{A_{m}\pi\hbar^{2}k^{2}}{\sin(|m+\alpha^{\prime}|\pi)}\bigg{\{}2\xi_{m}F_{2}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|+1) (33)
+ξm,F3(z;|m+α|,|m+α|)ξmF1(z;|m+α|,|m+α|)}\displaystyle\hskip 28.45274pt+\xi_{m,-}F_{3}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)-\xi_{m}F_{1}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)\bigg{\}}
vm(z)=Amπ2k2sin(|m+α|π){2ξmF2(z;|m+α|,|m+α|+1)\displaystyle v_{m}(z)=-\frac{A_{m}\pi\hbar^{2}k^{2}}{\sin(|m+\alpha^{\prime}|\pi)}\bigg{\{}2\xi_{m}F_{2}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|+1)
+ξm,F3(z;|m+α|,|m+α|)ξmF1(z;|m+α|,|m+α|)}.\displaystyle\hskip 28.45274pt+\xi_{m,-}F_{3}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)-\xi_{m}F_{1}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)\bigg{\}}.

If we choose

Am=(i)|m+α|=eiπ|m+α|/2,A_{m}=(-i)^{|m+\alpha^{\prime}|}=e^{-i\pi|m+\alpha^{\prime}|/2}, (34)

one can showhagen-91

limrm=eimϕAmJ|m+α|(z)=eizcosϕ+eikrrf0(ϕ)\lim_{r\rightarrow\infty}\sum_{m=-\infty}^{\infty}e^{im\phi}A_{m}J_{|m+\alpha^{\prime}|}(z)=e^{-iz\cos\phi}+\frac{e^{ikr}}{\sqrt{r}}f_{0}(\phi) (35)

where444The incident wave derived by Ref. AB-1 is eizcosϕiαϕe^{-iz\cos\phi-i\alpha\phi}, which is different from that of Eq. (35). The authors in this reference derived it by solving the appropriate differential equation. It was arguedhagen-90-1 that this discrepancy is originated from the fact that the long-range nature of the vector potential does not allow the interchange of the summation over mm with the taking of the rr\rightarrow\infty limit in the partial-wave analysis. f0(ϕ)f_{0}(\phi) is

f0(ϕ)=12πik[2πδ(ϕπ)(1cosπα)ieiN(ϕπ)sinπαeiϕ/2cosϕ2].f_{0}(\phi)=\frac{1}{\sqrt{2\pi ik}}\left[-2\pi\delta(\phi-\pi)(1-\cos\pi\alpha^{\prime})-ie^{-iN(\phi-\pi)}\frac{\sin\pi\alpha^{\prime}e^{-i\phi/2}}{\cos\frac{\phi}{2}}\right]. (36)

In Eq. (36) we used α=N+γ\alpha^{\prime}=N+\gamma, where NN is integer and 0γ<10\leq\gamma<1.

Using

1zJν(z)=12ν[Jν1(z)+Jν+1(z)],\frac{1}{z}J_{\nu}(z)=\frac{1}{2\nu}\left[J_{\nu-1}(z)+J_{\nu+1}(z)\right], (37)

it is possible to show

F2(z;μ,ν)=12ν[F1(z;μ,ν1)+F1(z;μ,ν+1)]\displaystyle F_{2}(z;\mu,\nu)=\frac{1}{2\nu}\left[F_{1}(z;\mu,\nu-1)+F_{1}(z;\mu,\nu+1)\right] (38)
F3(z;μ,ν)=14μν[F1(z;μ1,ν1)+F1(z;μ1,ν+1)\displaystyle F_{3}(z;\mu,\nu)=\frac{1}{4\mu\nu}\bigg{[}F_{1}(z;\mu-1,\nu-1)+F_{1}(z;\mu-1,\nu+1)
+F1(z;μ+1,ν1)+F1(z;μ+1,ν+1)].\displaystyle\hskip 113.81102pt+F_{1}(z;\mu+1,\nu-1)+F_{1}(z;\mu+1,\nu+1)\bigg{]}.

Then, um(z)u_{m}(z) and vm(z)v_{m}(z) can be expressed as

um(z)=Amπ2k2sin(|m+α|π)[|m+α|ξm|m+α|+1F1(z;|m+α|,|m+α|)\displaystyle u_{m}(z)=\frac{A_{m}\pi\hbar^{2}k^{2}}{\sin(|m+\alpha^{\prime}|\pi)}\Bigg{[}-\frac{|m+\alpha^{\prime}|\xi_{m}}{|m+\alpha^{\prime}|+1}F_{1}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|) (39)
+ξm|m+α|+1F1(z;|m+α|,|m+α|+2)\displaystyle\hskip 170.71652pt+\frac{\xi_{m}}{|m+\alpha^{\prime}|+1}F_{1}(z;-|m+\alpha^{\prime}|,|m+\alpha^{\prime}|+2)
ξm,4|m+α|2{F1(z;|m+α|1,|m+α|1)+F1(z;|m+α|+1,|m+α|+1)\displaystyle-\frac{\xi_{m,-}}{4|m+\alpha^{\prime}|^{2}}\bigg{\{}F_{1}(z;-|m+\alpha^{\prime}|-1,|m+\alpha^{\prime}|-1)+F_{1}(z;-|m+\alpha^{\prime}|+1,|m+\alpha^{\prime}|+1)
+F1(z;|m+α|1,|m+α|+1)+F1(z;|m+α|+1,|m+α|1)}]\displaystyle\hskip 28.45274pt+F_{1}(z;-|m+\alpha^{\prime}|-1,|m+\alpha^{\prime}|+1)+F_{1}(z;-|m+\alpha^{\prime}|+1,|m+\alpha^{\prime}|-1)\bigg{\}}\Bigg{]}
vm(z)=Amπ2k2sin(|m+α|π)[|m+α|ξm|m+α|+1F1(z;|m+α|,|m+α|)\displaystyle v_{m}(z)=-\frac{A_{m}\pi\hbar^{2}k^{2}}{\sin(|m+\alpha^{\prime}|\pi)}\Bigg{[}-\frac{|m+\alpha^{\prime}|\xi_{m}}{|m+\alpha^{\prime}|+1}F_{1}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|)
+ξm|m+α|+1F1(z;|m+α|,|m+α|+2)\displaystyle\hskip 170.71652pt+\frac{\xi_{m}}{|m+\alpha^{\prime}|+1}F_{1}(z;|m+\alpha^{\prime}|,|m+\alpha^{\prime}|+2)
+ξm,4|m+α|2{F1(z;|m+α|1,|m+α|1)+F1(z;|m+α|+1,|m+α|+1)\displaystyle+\frac{\xi_{m,-}}{4|m+\alpha^{\prime}|^{2}}\bigg{\{}F_{1}(z;|m+\alpha^{\prime}|-1,|m+\alpha^{\prime}|-1)+F_{1}(z;|m+\alpha^{\prime}|+1,|m+\alpha^{\prime}|+1)
+2F1(z;|m+α|1,|m+α|+1)}].\displaystyle\hskip 113.81102pt+2F_{1}(z;|m+\alpha^{\prime}|-1,|m+\alpha^{\prime}|+1)\bigg{\}}\Bigg{]}.

Now, let us examine the behavior of ψ(𝒓)\psi({\bm{r}}) around r0r\sim 0. We use the following indefinite integral formula:

F1(z;μ,ν)=zμ2ν2[Jμ+1(z)Jν(z)Jμ(z)Jν+1(z)]+1μ+νJμ(z)Jν(z).F_{1}(z;\mu,\nu)=-\frac{z}{\mu^{2}-\nu^{2}}\left[J_{\mu+1}(z)J_{\nu}(z)-J_{\mu}(z)J_{\nu+1}(z)\right]+\frac{1}{\mu+\nu}J_{\mu}(z)J_{\nu}(z). (40)

If we takes ν±μ\nu\rightarrow\pm\mu limit in Eq. (40), one can also derive

F1(z;μ,μ)=212μz2μμΓ2(1+μ)F32(μ,μ+12:1+μ,1+μ,1+2μ:z2)\displaystyle F_{1}(z;\mu,\mu)=\frac{2^{-1-2\mu}z^{2\mu}}{\mu\Gamma^{2}(1+\mu)}{{}_{2}F}_{3}\left(\mu,\mu+\frac{1}{2}:1+\mu,1+\mu,1+2\mu:-z^{2}\right) (41)
F1(z;μ,μ)=z24Γ(2μ)Γ(2+μ)F43(1,1,32:2μ,2+μ,2,2:z2)+lnzΓ(1μ)Γ(1+μ)\displaystyle F_{1}(z;\mu,-\mu)=-\frac{z^{2}}{4\Gamma(2-\mu)\Gamma(2+\mu)}{{}_{3}F}_{4}\left(1,1,\frac{3}{2}:2-\mu,2+\mu,2,2:-z^{2}\right)+\frac{\ln z}{\Gamma(1-\mu)\Gamma(1+\mu)}

where Γ(z)\Gamma(z) and Fqp(a1,,ap:b1,,bq:z){}_{p}F_{q}(a_{1},\cdots,a_{p}:b_{1},\cdots,b_{q}:z) are the usual gamma and generalized hypergeometric functions. Using the limiting form

limz0Jν(z)=1Γ(ν+1)(z2)ν,\lim_{z\rightarrow 0}J_{\nu}(z)=\frac{1}{\Gamma(\nu+1)}\left(\frac{z}{2}\right)^{\nu}, (42)

one can show

limr0F1(z;μ,ν)=1(μ+ν)Γ(μ+1)Γ(ν+1)(z2)μ+ν\displaystyle\lim_{r\rightarrow 0}F_{1}(z;\mu,\nu)=\frac{1}{(\mu+\nu)\Gamma(\mu+1)\Gamma(\nu+1)}\left(\frac{z}{2}\right)^{\mu+\nu} (43)
limr0F1(z;μ,μ)=12μΓ2(1+μ)(z2)2μ\displaystyle\lim_{r\rightarrow 0}F_{1}(z;\mu,\mu)=\frac{1}{2\mu\Gamma^{2}(1+\mu)}\left(\frac{z}{2}\right)^{2\mu}
limr0F1(z;μ,μ)=lnzΓ(1μ)Γ(1+μ).\displaystyle\lim_{r\rightarrow 0}F_{1}(z;\mu,-\mu)=\frac{\ln z}{\Gamma(1-\mu)\Gamma(1+\mu)}.

Then the dominant terms in umu_{m} and vmv_{m} at r0r\sim 0 are

limr0um(z)=Am2k28ξm,|m+α|(z2)2\displaystyle\lim_{r\rightarrow 0}u_{m}(z)=-\frac{A_{m}\hbar^{2}k^{2}}{8}\frac{\xi_{m,-}}{|m+\alpha^{\prime}|}\left(\frac{z}{2}\right)^{-2} (44)
limr0vm(z)=Am2k28Γ(|m+α|)ξm,(|m+α|1)Γ(1+|m+α|)(z2)2(|m+α|1),\displaystyle\lim_{r\rightarrow 0}v_{m}(z)=\frac{A_{m}\hbar^{2}k^{2}}{8}\frac{\Gamma(-|m+\alpha^{\prime}|)\xi_{m,-}}{(|m+\alpha^{\prime}|-1)\Gamma(1+|m+\alpha^{\prime}|)}\left(\frac{z}{2}\right)^{2(|m+\alpha^{\prime}|-1)},

which yield at 𝒪(β){\cal O}(\beta)

limr0ψ(𝒓)=βm=eimϕ[DmΓ(1|m+α|)(z2)|m+α|\displaystyle\lim_{r\rightarrow 0}\psi({\bm{r}})=\beta\sum_{m=-\infty}^{\infty}e^{im\phi}\Bigg{[}\frac{D_{m}}{\Gamma(1-|m+\alpha^{\prime}|)}\left(\frac{z}{2}\right)^{-|m+\alpha^{\prime}|} (45)
Amh2k28ξm,(|m+α|1)Γ(1+|m+α|)(z2)|m+α|2].\displaystyle\hskip 113.81102pt-\frac{A_{m}h^{2}k^{2}}{8}\frac{\xi_{m,-}}{(|m+\alpha^{\prime}|-1)\Gamma(1+|m+\alpha^{\prime}|)}\left(\frac{z}{2}\right)^{|m+\alpha^{\prime}|-2}\Bigg{]}.

Since we cannot make limr0ψ(𝒓)\lim_{r\rightarrow 0}\psi({\bm{r}}) regular by choosing DmD_{m} appropriately, unlike the AB-scattering in the usual quantum mechanics the AB-like scattering with GUP (5) should allow the irregular solution at the origin.

Now, let us examine the behavior of ψ(𝒓)\psi({\bm{r}}) around rr\sim\infty. Using the limiting behavior of the Bessel function

limrJν(z)=2πzcos(zνπ2π4)=12πz[(i)ν+1/2eiz+(i)ν+1/2eiz],\lim_{r\rightarrow\infty}J_{\nu}(z)=\sqrt{\frac{2}{\pi z}}\cos\left(z-\frac{\nu\pi}{2}-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2\pi z}}\left[\left(-i\right)^{\nu+1/2}e^{iz}+\left(i\right)^{\nu+1/2}e^{-iz}\right], (46)

it is straightforward to show

limrF1(z;μ,ν)=12π(μ2ν2)[{(i)μν+1(i)νμ+1}+{(i)νμ1(i)μν1}].\lim_{r\rightarrow\infty}F_{1}(z;\mu,\nu)=-\frac{1}{2\pi(\mu^{2}-\nu^{2})}\left[\left\{(-i)^{\mu-\nu+1}-(-i)^{\nu-\mu+1}\right\}+\left\{(-i)^{\nu-\mu-1}-(-i)^{\mu-\nu-1}\right\}\right]. (47)

When ν=±μ\nu=\pm\mu in Eq. (47), one can derive the following asymptotic formula by making use of Eq. (41):

limrF1(z;μ,μ)=12μlimrF1(z;μ,μ)=γψ(12)+ψ(1μ)+ψ(1+μ)2Γ(1μ)Γ(1+μ),\lim_{r\rightarrow\infty}F_{1}(z;\mu,\mu)=\frac{1}{2\mu}\hskip 14.22636pt\lim_{r\rightarrow\infty}F_{1}(z;\mu,-\mu)=\frac{-\gamma-\psi\left(\frac{1}{2}\right)+\psi(1-\mu)+\psi(1+\mu)}{2\Gamma(1-\mu)\Gamma(1+\mu)}, (48)

where γ\gamma and ψ(z)\psi(z) are Euler number and digamma function. Using ψ(z+1)=ψ(z)+1/z\psi(z+1)=\psi(z)+1/z explicitly, one can show

limrum(z)=g1,mlimrvm(z)=g2,m,\lim_{r\rightarrow\infty}u_{m}(z)=g_{1,m}\hskip 56.9055pt\lim_{r\rightarrow\infty}v_{m}(z)=g_{2,m}, (49)

where

g1,m=Am2k22(1+|m+α|)[(ξm+ξm,2|m+α|(1|m+α|)){γψ(12)\displaystyle g_{1,m}=-\frac{A_{m}\hbar^{2}k^{2}}{2(1+|m+\alpha^{\prime}|)}\Bigg{[}\left(\xi_{m}+\frac{\xi_{m,-}}{2|m+\alpha^{\prime}|(1-|m+\alpha^{\prime}|)}\right)\bigg{\{}-\gamma-\psi\left(\frac{1}{2}\right) (50)
+ψ(|m+α|)+ψ(1|m+α|)}\displaystyle\hskip 256.0748pt+\psi(|m+\alpha^{\prime}|)+\psi(1-|m+\alpha^{\prime}|)\bigg{\}}
+1+2|m+α||m+α|(1+|m+α|)ξm1|m+α|3|m+α|2+|m+α|32|m+α|3(1+|m+α|)(1|m+α|)2ξm,]\displaystyle\hskip 71.13188pt+\frac{1+2|m+\alpha^{\prime}|}{|m+\alpha^{\prime}|(1+|m+\alpha^{\prime}|)}\xi_{m}-\frac{1-|m+\alpha|-3|m+\alpha^{\prime}|^{2}+|m+\alpha|^{3}}{2|m+\alpha^{\prime}|^{3}(1+|m+\alpha^{\prime}|)(1-|m+\alpha^{\prime}|)^{2}}\xi_{m,-}\Bigg{]}
g2,m=Am2k2Γ(|m+α|)Γ(1|m+α|)2(1+|m+α|)(ξm+ξm,2|m+α|(1|m+α|)).\displaystyle g_{2,m}=\frac{A_{m}\hbar^{2}k^{2}\Gamma(|m+\alpha^{\prime}|)\Gamma(1-|m+\alpha^{\prime}|)}{2(1+|m+\alpha^{\prime}|)}\left(\xi_{m}+\frac{\xi_{m,-}}{2|m+\alpha^{\prime}|(1-|m+\alpha^{\prime}|)}\right).

Using Eq. (49) it is straightforward to compute limrf1,m(r)\lim_{r\rightarrow\infty}f_{1,m}(r) explicitly. Since f1.m(r)f_{1.m}(r) should be outgoing wave at r=r=\infty, we should impose the coefficient of eikre^{-ikr} to be zero, which gives

Cm+g1,m=eiπ|m+α|(Dm+g2,m).C_{m}+g_{1,m}=-e^{-i\pi|m+\alpha^{\prime}|}(D_{m}+g_{2,m}). (51)

Then, f1,m(r)f_{1,m}(r\rightarrow\infty) reduces to

limrf1,m(r)=eikr2πikreiπ|m+α|/2(1e2iπ|m+α|)(Dm+g2,m).\lim_{r\rightarrow\infty}f_{1,m}(r)=\frac{e^{ikr}}{\sqrt{2\pi ikr}}e^{i\pi|m+\alpha^{\prime}|/2}\left(1-e^{-2i\pi|m+\alpha^{\prime}|}\right)(D_{m}+g_{2,m}). (52)

Thus, the asymptotic behavior of the wave function given in Eq. (32) can be written as a standard from

limrψ(𝒓)=eikrcosϕ+eikrrf(ϕ),\lim_{r\rightarrow\infty}\psi({\bm{r}})=e^{-ikr\cos\phi}+\frac{e^{ikr}}{\sqrt{r}}f(\phi), (53)

where the scattering amplitude f(ϕ)f(\phi) is

f(ϕ)=f0(ϕ)+βf1(ϕ)+𝒪(β2).f(\phi)=f_{0}(\phi)+\beta f_{1}(\phi)+{\cal O}(\beta^{2}). (54)

In Eq. (54) f0(ϕ)f_{0}(\phi) is given in Eq. (36) and f1(ϕ)f_{1}(\phi) is

f1(ϕ)=12πikm=eimϕei|m+α|π/2(1e2iπ|m+α|)(Dm+g2,m).f_{1}(\phi)=\frac{1}{\sqrt{2\pi ik}}\sum_{m=-\infty}^{\infty}e^{im\phi}e^{i|m+\alpha^{\prime}|\pi/2}\left(1-e^{-2i\pi|m+\alpha^{\prime}|}\right)(D_{m}+g_{2,m}). (55)

Here, we consider a special case Dm=0D_{m}=0 for all mm. Inserting ξm\xi_{m} and ξm,\xi_{m,-} given in Eq. (30) into g2,mg_{2,m}, one can express g2,mg_{2,m} in a form;

g2,m=(i)|m+α|2k24Γ(m+α)Γ(mα)\displaystyle g_{2,m}=-\frac{(-i)^{|m+\alpha^{\prime}|}\hbar^{2}k^{2}}{4}\Gamma(m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime}) (56)
×[2α2+6α(m+α)+α2(m+α){1α/21mα1+α/21+m+α}].\displaystyle\hskip 56.9055pt\times\left[-2\alpha^{\prime 2}+6\alpha^{\prime}(m+\alpha^{\prime})+\alpha^{\prime 2}(m+\alpha^{\prime})\left\{\frac{1-\alpha^{\prime}/2}{1-m-\alpha^{\prime}}-\frac{1+\alpha^{\prime}/2}{1+m+\alpha^{\prime}}\right\}\right].

Here, we used Am=(i)|m+α|A_{m}=(-i)^{|m+\alpha^{\prime}|}. It is worthwhile noting that except AmA_{m} there is no absolute value in Eq. (56). Inserting Eq. (56) into Eq. (55), we get

f1(ϕ)=2k2412πikm=eimϕ(1e2iπ|m+α|)\displaystyle f_{1}(\phi)=-\frac{\hbar^{2}k^{2}}{4}\frac{1}{\sqrt{2\pi ik}}\sum_{m=-\infty}^{\infty}e^{im\phi}\left(1-e^{-2i\pi|m+\alpha^{\prime}|}\right) (57)
×[2α2Γ(m+α)Γ(mα)+6αΓ(1+m+α)Γ(mα)\displaystyle\hskip 8.5359pt\times\Bigg{[}-2\alpha^{\prime 2}\Gamma(m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})+6\alpha^{\prime}\Gamma(1+m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})
+α2(1α2)Γ(1+m+α)Γ(mα)1mαα2(1+α2)Γ(1+m+α)Γ(mα)1+m+α].\displaystyle\hskip 28.45274pt+\alpha^{\prime 2}\left(1-\frac{\alpha^{\prime}}{2}\right)\frac{\Gamma(1+m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})}{1-m-\alpha}-\alpha^{\prime 2}\left(1+\frac{\alpha^{\prime}}{2}\right)\frac{\Gamma(1+m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})}{1+m+\alpha}\Bigg{]}.

Let us express α\alpha^{\prime} as α=N+γ\alpha^{\prime}=N+\gamma, where NN is integer and 0γ<10\leq\gamma<1. Then, f1(ϕ)f_{1}(\phi) in Eq. (57) can be written as following form:

f1(ϕ)\displaystyle f_{1}(\phi) (58)
=i2k22sin(πγ)eiπγ2πik[2α2J1+6αJ2+α2(1α2)J3α2(1+α2)J4]\displaystyle=-\frac{i\hbar^{2}k^{2}}{2}\sin(\pi\gamma)\frac{e^{-i\pi\gamma}}{\sqrt{2\pi ik}}\left[-2\alpha^{\prime 2}J_{1}+6\alpha^{\prime}J_{2}+\alpha^{\prime 2}\left(1-\frac{\alpha^{\prime}}{2}\right)J_{3}-\alpha^{\prime 2}\left(1+\frac{\alpha^{\prime}}{2}\right)J_{4}\right]
+i2k22sin(πγ)eiπγ2πik[2α2K1+6αK2+α2(1α2)K3α2(1+α2)K4],\displaystyle+\frac{i\hbar^{2}k^{2}}{2}\sin(\pi\gamma)\frac{e^{i\pi\gamma}}{\sqrt{2\pi ik}}\left[-2\alpha^{\prime 2}K_{1}+6\alpha^{\prime}K_{2}+\alpha^{\prime 2}\left(1-\frac{\alpha^{\prime}}{2}\right)K_{3}-\alpha^{\prime 2}\left(1+\frac{\alpha^{\prime}}{2}\right)K_{4}\right],

where

J1=m=NeimϕΓ(m+α)Γ(mα)J2=m=NeimϕΓ(1+m+α)Γ(mα)\displaystyle J_{1}=\sum_{m=-N}^{\infty}e^{im\phi}\Gamma(m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})\hskip 8.5359ptJ_{2}=\sum_{m=-N}^{\infty}e^{im\phi}\Gamma(1+m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime}) (59)
J3=m=NeimϕΓ(1+m+α)Γ(mα)1mαJ4=m=NeimϕΓ(1+m+α)Γ(mα)1+m+α\displaystyle J_{3}=\sum_{m=-N}^{\infty}e^{im\phi}\frac{\Gamma(1+m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})}{1-m-\alpha^{\prime}}\hskip 8.5359ptJ_{4}=\sum_{m=-N}^{\infty}e^{im\phi}\frac{\Gamma(1+m+\alpha^{\prime})\Gamma(-m-\alpha^{\prime})}{1+m+\alpha^{\prime}}

and Kj(j=1,2,3,4)K_{j}\hskip 2.84544pt(j=1,2,3,4) are similar to JjJ_{j}. The only difference is the summation range, which is from -\infty to N1-N-1. It is straightforward to show

K1=J1|ϕϕ,ααK2=J2|ϕϕ,αα\displaystyle K_{1}=J_{1}\Bigg{|}_{\phi\rightarrow-\phi,\alpha^{\prime}\rightarrow-\alpha^{\prime}}\hskip 28.45274ptK_{2}=-J_{2}\Bigg{|}_{\phi\rightarrow-\phi,\alpha^{\prime}\rightarrow-\alpha^{\prime}}
K3=J4|ϕϕ,ααK4=J3|ϕϕ,αα.\displaystyle K_{3}=-J_{4}\Bigg{|}_{\phi\rightarrow-\phi,\alpha^{\prime}\rightarrow-\alpha^{\prime}}\hskip 28.45274ptK_{4}=-J_{3}\Bigg{|}_{\phi\rightarrow-\phi,\alpha^{\prime}\rightarrow-\alpha^{\prime}}.

Of course, αα\alpha^{\prime}\rightarrow-\alpha^{\prime} implies NN1N\rightarrow-N-1 and γ1γ\gamma\rightarrow 1-\gamma. Then, it is easy to show that f1(ϕ)f_{1}(\phi) is invariant under the simultaneous change ϕϕ\phi\rightarrow-\phi, αα\alpha^{\prime}\rightarrow-\alpha^{\prime}, which is a symmetry of the Hamiltonian. Summing over mm, one can show

J1=πγsin(πγ)eiNϕF12(1,γ:1+γ:eiϕ)\displaystyle J_{1}=-\frac{\pi}{\gamma\sin(\pi\gamma)}e^{-iN\phi}{{}_{2}F}_{1}(1,\gamma:1+\gamma:-e^{i\phi}) (61)
=πei(N+1/2)ϕ2γsin(πγ)cos(ϕ/2)F12(1,1:1+γ:eiϕ/22cos(ϕ/2))\displaystyle\hskip 17.07182pt=-\frac{\pi e^{-i(N+1/2)\phi}}{2\gamma\sin(\pi\gamma)\cos(\phi/2)}{{}_{2}F}_{1}\left(1,1:1+\gamma:\frac{e^{i\phi/2}}{2\cos(\phi/2)}\right)
J2=πsin(πγ)eiNϕ1+eiϕ=πei(N+1/2)ϕ2sin(πγ)cos(ϕ/2)\displaystyle J_{2}=-\frac{\pi}{\sin(\pi\gamma)}\frac{e^{-iN\phi}}{1+e^{i\phi}}=-\frac{\pi e^{-i(N+1/2)\phi}}{2\sin(\pi\gamma)\cos(\phi/2)}
J3=π(1γ)sin(πγ)eiNϕF12(1,1+γ:γ:eiϕ)\displaystyle J_{3}=-\frac{\pi}{(1-\gamma)\sin(\pi\gamma)}e^{-iN\phi}{{}_{2}F}_{1}(1,-1+\gamma:\gamma:-e^{i\phi})
=πei(N+1/2)ϕ2(1γ)sin(πγ)cos(ϕ/2)F12(1,1:γ:eiϕ/22cos(ϕ/2))\displaystyle\hskip 17.07182pt=-\frac{\pi e^{-i(N+1/2)\phi}}{2(1-\gamma)\sin(\pi\gamma)\cos(\phi/2)}{{}_{2}F}_{1}\left(1,1:\gamma:\frac{e^{i\phi/2}}{2\cos(\phi/2)}\right)
J4=π(1+γ)sin(πγ)eiNϕF12(1,1+γ:2+γ:eiϕ)\displaystyle J_{4}=-\frac{\pi}{(1+\gamma)\sin(\pi\gamma)}e^{-iN\phi}{{}_{2}F}_{1}(1,1+\gamma:2+\gamma:-e^{i\phi})
=πei(N+1/2)ϕ2(1+γ)sin(πγ)cos(ϕ/2)F12(1,1:2+γ:eiϕ/22cos(ϕ/2))\displaystyle\hskip 17.07182pt=-\frac{\pi e^{-i(N+1/2)\phi}}{2(1+\gamma)\sin(\pi\gamma)\cos(\phi/2)}{{}_{2}F}_{1}\left(1,1:2+\gamma:\frac{e^{i\phi/2}}{2\cos(\phi/2)}\right)

where F12(a,b:c:z){}_{2}F_{1}(a,b:c:z) is a hypergeometric function and we used the identity

2F1(a,b:c:z)=(1z)aF12(a,cb:c:zz1)._{2}F_{1}(a,b:c:z)=(1-z)^{-a}{{}_{2}F}_{1}\left(a,c-b:c:\frac{z}{z-1}\right). (62)

Using Eq. (III) and Eq. (61) it is straightforward to show

K1=πei(N+1/2)ϕ2(1γ)sin(πγ)cos(ϕ/2)F12(1,1:2γ:eiϕ/22cos(ϕ/2))\displaystyle K_{1}=-\frac{\pi e^{-i(N+1/2)\phi}}{2(1-\gamma)\sin(\pi\gamma)\cos(\phi/2)}{{}_{2}F}_{1}\left(1,1:2-\gamma:\frac{e^{-i\phi/2}}{2\cos(\phi/2)}\right) (63)
K2=πei(N+1/2)ϕ2sin(πγ)cos(ϕ/2)\displaystyle K_{2}=\frac{\pi e^{-i(N+1/2)\phi}}{2\sin(\pi\gamma)\cos(\phi/2)}
K3=πei(N+1/2)ϕ2(2γ)sin(πγ)cos(ϕ/2)F12(1,1:3γ:eiϕ/22cos(ϕ/2))\displaystyle K_{3}=\frac{\pi e^{-i(N+1/2)\phi}}{2(2-\gamma)\sin(\pi\gamma)\cos(\phi/2)}{{}_{2}F}_{1}\left(1,1:3-\gamma:\frac{e^{-i\phi/2}}{2\cos(\phi/2)}\right)
K4=πei(N+1/2)ϕ2γsin(πγ)cos(ϕ/2)F12(1,1:1γ:eiϕ/22cos(ϕ/2)).\displaystyle K_{4}=\frac{\pi e^{-i(N+1/2)\phi}}{2\gamma\sin(\pi\gamma)\cos(\phi/2)}{{}_{2}F}_{1}\left(1,1:1-\gamma:\frac{e^{-i\phi/2}}{2\cos(\phi/2)}\right).

Inserting Eqs (61) and (63) into Eq. (58), one can show

f1(ϕ)=iπ2k2ei(N+1/2)ϕ4cos(ϕ/2)2πikG(α,ϕ)f_{1}(\phi)=\frac{i\pi\hbar^{2}k^{2}e^{-i(N+1/2)\phi}}{4\cos(\phi/2)\sqrt{2\pi ik}}G(\alpha^{\prime},\phi) (64)

where

G(α,ϕ)\displaystyle G(\alpha^{\prime},\phi) (65)
=2α2[eiπγ1γF12(1,1:2γ:x)eiπγγF12(1,1:1+γ:x)]+12αcos(πγ)\displaystyle=2\alpha^{\prime 2}\left[\frac{e^{i\pi\gamma}}{1-\gamma}{{}_{2}F}_{1}(1,1:2-\gamma:x^{*})-\frac{e^{-i\pi\gamma}}{\gamma}{{}_{2}F}_{1}(1,1:1+\gamma:x)\right]+12\alpha^{\prime}\cos(\pi\gamma)
+α2(1α2)[eiπγ2γF12(1,1:3γ:x)+eiπγ1γF12(1,1:γ:x)]\displaystyle\hskip 28.45274pt+\alpha^{\prime 2}\left(1-\frac{\alpha^{\prime}}{2}\right)\left[\frac{e^{i\pi\gamma}}{2-\gamma}{{}_{2}F}_{1}(1,1:3-\gamma:x^{*})+\frac{e^{-i\pi\gamma}}{1-\gamma}{{}_{2}F}_{1}(1,1:\gamma:x)\right]
α2(1+α2)[eiπγγF12(1,1:1γ:x)+eiπγ1+γF12(1,1:2+γ:x)].\displaystyle\hskip 28.45274pt-\alpha^{\prime 2}\left(1+\frac{\alpha^{\prime}}{2}\right)\left[\frac{e^{i\pi\gamma}}{\gamma}{{}_{2}F}_{1}(1,1:1-\gamma:x^{*})+\frac{e^{-i\pi\gamma}}{1+\gamma}{{}_{2}F}_{1}(1,1:2+\gamma:x)\right].

In Eq. (65) xx is given by

x=eiϕ/22cos(ϕ/2)x=\frac{e^{i\phi/2}}{2\cos(\phi/2)} (66)

and xx^{*} is its complex conjugate. From Eq. (64) one can show again that f1(ϕ)f_{1}(\phi) is invariant under the simultaneous change ϕϕ\phi\rightarrow-\phi, αα\alpha^{\prime}\rightarrow-\alpha^{\prime}. If ϕπ\phi\neq\pi, the scattering amplitude becomes

f(ϕ)=iei(N+1/2)ϕcos(ϕ/2)2πik[sin(πγ)π2k2β4G(α,ϕ)+𝒪(β2)].f(\phi)=\frac{-ie^{-i(N+1/2)\phi}}{\cos(\phi/2)\sqrt{2\pi ik}}\left[\sin(\pi\gamma)-\frac{\pi\hbar^{2}k^{2}\beta}{4}G(\alpha^{\prime},\phi)+{\cal O}(\beta^{2})\right]. (67)

Then, the differential cross section reduces to

dσdϕ=12πkcos2(ϕ/2)|sin(πγ)π2k2β4G(α,ϕ)|2+𝒪(β2)\displaystyle\frac{d\sigma}{d\phi}=\frac{1}{2\pi k\cos^{2}(\phi/2)}\Bigg{|}\sin(\pi\gamma)-\frac{\pi\hbar^{2}k^{2}\beta}{4}G(\alpha^{\prime},\phi)\Bigg{|}^{2}+{\cal O}(\beta^{2}) (68)
=sin(πγ)2πkcos2(ϕ/2)[sin(πγ)βπ2k22ReG(α,ϕ)]+𝒪(β2).\displaystyle\hskip 19.91684pt=\frac{\sin(\pi\gamma)}{2\pi k\cos^{2}(\phi/2)}\left[\sin(\pi\gamma)-\beta\frac{\pi\hbar^{2}k^{2}}{2}\mbox{Re}\hskip 2.84544ptG(\alpha^{\prime},\phi)\right]+{\cal O}(\beta^{2}).
Refer to caption
Refer to caption
Figure 2: (Color online) The α\alpha^{\prime}-dependence of the differential cross section when β=0\beta=0 (black solid line), β=0.01\beta=0.01 (red dashed line), and β=0.02\beta=0.02 (blue dotted line) for ϕ=π/4\phi=\pi/4 (Fig. 2(a)) and ϕ=π/4\phi=-\pi/4 (Fig. 2(b)). We chose =k=1\hbar=k=1 for simplicity. As expected Fig. 2 exhibits discontinuous behavior at α=1\alpha^{\prime}=1 when β0\beta\neq 0.

In the usual quantum mechanics with HUP the differential cross section vanishes when α\alpha^{\prime} is integer. This is analogous to the Ramsauer effectbohm1951 . However, this behavior is not maintained at the first order of β\beta. Furthermore, discontinuity occurs at every integer of α\alpha^{\prime}. For example, if α=N+=limγ0(N+γ)\alpha^{\prime}=N^{+}=\lim_{\gamma\rightarrow 0}(N+\gamma), one can show from the second expression of Eq. (68)

dσdϕ=βπ2kN22[2(N2)cos2ϕ2+6N].\frac{d\sigma}{d\phi}=\beta\frac{\pi\hbar^{2}kN^{2}}{2}\left[2(N-2)\cos^{2}\frac{\phi}{2}+6-N\right]. (69)

If, however, α=N=limγ1[(N1)+γ]\alpha^{\prime}=N^{-}=\lim_{\gamma\rightarrow 1}[(N-1)+\gamma], one can also show

dσdϕ=βπ2kN22[N+62(N+2)cos2ϕ2].\frac{d\sigma}{d\phi}=\beta\frac{\pi\hbar^{2}kN^{2}}{2}\left[N+6-2(N+2)\cos^{2}\frac{\phi}{2}\right]. (70)

In Fig. 2 we plot the α\alpha^{\prime}-dependence of the differential cross section when β=0\beta=0 (black solid line), β=0.01\beta=0.01 (red dashed line), and β=0.02\beta=0.02 (blue dotted line) for ϕ=π/4\phi=\pi/4 (Fig. 2(a)) and ϕ=π/4\phi=-\pi/4 (Fig. 2(b)). We chose =k=1\hbar=k=1 for simplicity. As expected Fig. 2 exhibits discontinuous behavior at α=1\alpha^{\prime}=1 when β0\beta\neq 0. Another interesting behavior Fig. 2 shows is the fact that while dσ/dϕd\sigma/d\phi at ϕ=±θ\phi=\pm\theta are exactly identical in the usual quantum mechanics, this symmetry is obviously broken due to G(α,ϕ)G(\alpha^{\prime},\phi).

Refer to caption
Figure 3: (Color online) The ϕ\phi-dependence of the differential cross section when β=0\beta=0 (black solid line), β=0.004\beta=0.004 (red dashed line), and β=0.008\beta=0.008 (blue dotted line). We chose =k=1\hbar=k=1 and α=2.5\alpha^{\prime}=2.5 for simplicity. Fig. 3 shows apparently that the symmetry (71) is broken when β0\beta\neq 0.

In usual quantum mechanics with HUP the cross section is symmetric at ϕ=π\phi=\pi, i.e.

dσdϕ(ϕ=πθ)=dσdϕ(ϕ=π+θ).\frac{d\sigma}{d\phi}(\phi=\pi-\theta)=\frac{d\sigma}{d\phi}(\phi=\pi+\theta). (71)

However, this symmetry is also broken at the first order of β\beta because

x(ϕ=πθ)=x(ϕ=π+θ)=ieiθ/22sin(θ/2)x(\phi=\pi-\theta)=x^{*}(\phi=\pi+\theta)=\frac{ie^{-i\theta/2}}{2\sin(\theta/2)} (72)

and ReG(α,ϕ)\mbox{Re}\hskip 2.84544ptG(\alpha^{\prime},\phi) does not have xxx\leftrightarrow x^{*} symmetry. In order to confirm the fact we plot the ϕ\phi-dependence of the differential cross section when β=0\beta=0 (black solid line), β=0.004\beta=0.004 (red dashed line), and β=0.008\beta=0.008 (blue dotted line) in Fig. 3. We chose =k=1\hbar=k=1 and α=2.5\alpha^{\prime}=2.5 for simplicity. This figure obviously show that the symmetry (71) is broken when β0\beta\neq 0.

IV Conclusion

HUP GUP
ϕϕ,αα\phi\rightarrow-\phi,\alpha^{\prime}\rightarrow-\alpha^{\prime} symmetry Y Y
symmetry of dσdϕ\frac{d\sigma}{d\phi} at ϕ=π\phi=\pi Y N
Ramsauer effect Y N and discontinuous at integer α\alpha^{\prime}

Table I: Comparison between usual and GUP-corrected AB-like effect

In this paper we explored how the Aharonov-Bohm scattering is modified in the GUP-corrected quantum mechanics. In Table I we compare the GUP-correct AB-like phenomenon with the usual AB-effect. The most striking difference is that the cross section is discontinuous at every integer α\alpha^{\prime} due to G(α,ϕ)G(\alpha^{\prime},\phi) given in Eq. (65). From Eqs. (69) and (70) one can show that the discontinuity width at α=N\alpha^{\prime}=N is

Δdσdϕ=βπ2kN3|2cos2ϕ21|.\Delta\frac{d\sigma}{d\phi}=\beta\pi\hbar^{2}kN^{3}\big{|}2\cos^{2}\frac{\phi}{2}-1\big{|}. (73)

Thus, it is possible, in principle, to verify the presence or absence of GUP experimentally by measuring the discontinuity. Of course, it seems to be very difficult to measure it because the discontinuity arises at the order of β\beta, and β\beta is believed to be extremely small.

One can use the Lagrangian (14) to derive the Feynman propagator (or Kernel) for the spin-0 AB-system with GUP. The propagator of the usual AB-system was derived long ago in Ref. inomata ; gerry ; yoo . It seems to be of interest to explore the quantum effect by deriving the Feynman propagator corresponding to the Lagrangian (14). In the usual quantum mechanics it is well-known that the magnetic flux trapped by a superconductor ring is quantized by Φ=πnc/e(n=0,±1,±2,)\Phi=\pi n\hbar c/e\hskip 5.69046pt(n=0,\pm 1,\pm 2,\cdots). It is of interest to explore how this quantization rule is modified in the presence of GUP.

Finally, one can extend this paper to the spin-1/21/2 AB problem in the presence of GUP. As commented earlier the Zeeman interaction term in this case is expressed as a 22-dimensional singular δ\delta-function potential. One dimensional δ\delta-function potential problem in the GUP-corrected quantum mechanics was recently discussed in Ref. park2020 . It was shown in this reference that unlike usual quantum mechanics, the Schrödinger and Feynman’s path-integral approaches are inequivalent at the first order of β\beta. It seems to be of interest to examine whether the 22-dimensional δ\delta-function potential yields a similar result or not in the spin-1/21/2 AB problem with GUP.

Acknowledgments:

This work was supported by the Kyungnam University Foundation Grant, 2020.

References

  • (1) C. A. Mead, Possible Connection Between Gravitation and Fundamental Length, Phys. Rev. 135 (1964) B849.
  • (2) P. K. Townsend, Small-scale structure of spacetime as the origin of the gravitational constant, Phys. Rev. D 15 (1977) 2795.
  • (3) D. Amati, M. Ciafaloni, and G. Veneziano, Can spacetime be probed below the string size?, Phys. Lett. B 216 (1989) 41.
  • (4) L. J. Garay, Quantum gravity and minimum length, Int. J. Mod. Phys. A 10 (1995) 145 [gr-qc/9403008].
  • (5) C. Rovelli, Loop Quantum Gravity, Living Rev. Relativity, 1 (1998) 1 [gr-qc/9710008].
  • (6) S. Carlip, Quantum Gravity: a Progress Report, Rep. Prog. Phys. 64 (2001) 885 [gr-qc/0108040].
  • (7) K. Konishi, G. Paffuti, and P. Provero, it Minimum physical length and the generalized uncertainty principle in string theory, Phys. Lett. B 234 (1990) 276.
  • (8) M. Kato, Particle theories with minimum observable length and open string theory, Phys. Lett. B 245 (1990) 43.
  • (9) T. Padmanabhan, Physical significance of planck length, Ann. Phys. 165 (1985) 38.
  • (10) T. Padmanabhan, Limitations on the operational definition of spacetime events and quantum gravity, Class. Quant. Grav. 4 (1987) L107.
  • (11) J. Greensite, Is there a minimum length in D=4 lattice quantum gravity?, Phys. Lett. B 255 (1991) 375.
  • (12) M. Maggiore, A Generalized Uncertainty Principle in Quantum Gravity, Phys. Lett. B 304 (1993) 65 [hep-th/9301067].
  • (13) W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43 (1927) 172.
  • (14) H. P. Robertson, The Uncertainty Principle, Phys. Rev. 34 (1929) 163.
  • (15) A. Kempf, Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry, J. Math. Phys. 35 (1994) 4483 [hep-th/9311147].
  • (16) A. Kempf, G. Mangano, and R. B. Mann, Hilbert Space Representation of the Minimal Length Uncertainty Relation, Phys. Rev. D 52 (1995) 1108 [hep-th/9412167].
  • (17) F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment, Phys. Lett, B 452 (1999) 39 [hep-th/9904025].
  • (18) R. J. Adler and D. I. Santiago, On Gravity and The Uncertainty Principle, Mod. Phys. Lett. A 14 (1999) 1371 [gr-qc/9904026].
  • (19) L. N. Chang, D. Minic, N. Okamura, and T. Takeuchi, Effect of the minimal length uncertainty relation on the density of states and the cosmological constant problem, Phys. Rev. D 65 (2002) 125028 [hep-th/0201017].
  • (20) S. Benczik, L. N. Chang, D. Minic, N. Okamura, S. Rayyan, and T. Takeuchi, Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation, Phys. Rev. D 66 (2002) 026003 [hep-th/0204049].
  • (21) P. Jizba, H. Kleinert, and F. Scardigli, Uncertainty relation on a world crystal and its applications to micro black holes, Phys. Rev. D 81 (2010) 084030 [arXiv: 0912.2253 (hep-th)].
  • (22) P. Jizba and F. Scardigli, Emergence of special and doubly special relativity, Phys. Rev. D 86 (2012) 025029 [arXiv:1105.3930 (hep-th)].
  • (23) F. Scardigli and R. Casadio, Gravitational tests of the generalized uncertainty principle, Eur. Phys. J. C 75 (2015) 425 [arXiv:1407.0113 (hep-th)].
  • (24) R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965, New York).
  • (25) H. Kleinert, Path integrals in Quantum Mechanics, Statistics, and Polymer Physics (World Scientific,1995, Singapore).
  • (26) S. Das and S. Pramanik, Path Integral for non-relativistic Generalized Uncertainty Principle corrected Hamiltonian, Phys. Rev. D 86 (2012) 085004 [arXiv:1205.3919 (hep-th)].
  • (27) S. Gangopadhyay and S. Bhattacharyya, Path-integral action of a particle with the generalized uncertainty principle and correspondence with noncommutativity, Phys. Rev. D 99 (2019) 104010 [arXiv:1901.03411 (quant-ph)].
  • (28) DaeKil Park and Eylee Jung, Comment on “Path-integral action of a particle with the generalized uncertainty principle and correspondence with noncommutativity”, Phys. Rev. D 101 (2020) 068501 [arXiv:2002.07954 (quant-ph)].
  • (29) DaeKil Park, “Generalized uncertainty principle and dd-dimensional quantum mechanics”, Phys. Rev. D 101 (2020) 106013 [arXiv:2003.13856 (quant-ph)].
  • (30) Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Phys. Rev. 115 (1959) 485.
  • (31) C. R. Hagen, Spin Dependence of the Aharonov-Bohm Effect, Int. J. Mod. Phys. A 6 (1991) 3119.
  • (32) M. Peshkin and A. Tonomura, The Aharonov-Bohm Effect (Springer-Verlag, Berlin, 1989).
  • (33) C. R. Hagen, Aharonov-Bohm Scattering of Particles with Spin, Phys. Rev. Lett. 64 (1990) 503.
  • (34) D. K, Park, Green’s function approach to two- and three-dimensional delta-function potentials and application to the spin-1/2 Aharonov-Bohm problem, J. Math. Phys. 36 (1995) 5453.
  • (35) R. Jackiw, Delta-funstion potential in two- and three-dimensional quantum mechanics, in M. A. Bég memorial volume, A. Ali and P. Hoodbhoy, eds. (World Scientific, Singapore, 1991).
  • (36) A. Z. Capri, Nonrelativistic Quantum Mechanics (Benjamin/Cummings, 1985, Menlo Park).
  • (37) H. Huang, Quarks, Leptons, and Gauge Fields (World Scientific, 1982, Singapore).
  • (38) D. K. Park and S. K. Yoo, Equivalence of renormalization with self-adjoint extension in Green’s function formalism, hep-th/9712134 (unpublished).
  • (39) C. R. Hagen, Aharonov-Bohm scattering amplitude, Phys. Rev. D 41 (1990) 2015.
  • (40) D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951).
  • (41) D. Peak and A. Inomata, Summation over Feynman Histories in Polar Coordinates, J. Math. Phys. 10 (1969) 1422.
  • (42) C. C. Gerry and V. A. Singh, Feynman path-integral approach to the Aharonov-Bohm effect, Phys. Rev. D 20 (1979) 2550.
  • (43) D. K. Park and S. K. Yoo, Propagator for spinless and spin-1/2 Aharonov-Bohm-Coulomb systems, Ann. Phys. 263 (1998) 295 [hep-th/9707024].
  • (44) D. K. Park and Eylee Jung, “Generalized Uncertainty Principle and Point Interaction”, Phys. Rev. D 101 (2020) 066007 [arXiv:2001.02850 (quant-ph)].