This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Aging arcsine law in Brownian motion and its generalization

Takuma Akimoto [email protected] Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan    Toru Sera    Kosuke Yamato    Kouji Yano Department of Mathematics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Abstract

Classical arcsine law states that fraction of occupation time on the positive or the negative side in Brownian motion does not converge to a constant but converges in distribution to the arcsine distribution. Here, we consider how a preparation of the system affects the arcsine law, i.e., aging of the arcsine law. We derive aging distributional theorem for occupation time statistics in Brownian motion, where the ratio of time when measurements start to the measurement time plays an important role in determining the shape of the distribution. Furthermore, we show that this result can be generalized as aging distributional limit theorem in renewal processes.

Stationarity is one of the most fundamental properties in stochastic processes. In equilibrium, physical quantities fluctuate around a constant value and the value is given by the equilibrium ensemble. However, statistical properties of physical quantities depend explicitly on time in non-equilibrium processes where the characteristic time scale diverges Bouchaud (1992); Godrèche and Luck (2001); Brokmann et al. (2003); Margolin and Barkai (2005, 2006); He et al. (2008); Weigel et al. (2011); Yamamoto et al. (2014); Massignan et al. (2014); Miyaguchi and Akimoto (2011, 2015); Schulz et al. (2013). In non-stationary stochastic processes, aging phenomena are essential, which can be observed by changing the start of the observation time or the total measurement time under the same setup Bouchaud and Georges (1990); Bouchaud (1992). In fact, the forward recurrence time in renewal processes explicitly depends on the time when the observation starts Godrèche and Luck (2001); Schulz et al. (2013). Furthermore, the mean square displacement (MSD) and the diffusion coefficient obtained by single trajectories depend on the start of the observation as well as the total measurement time in some diffusion processes He et al. (2008); Weigel et al. (2011); Miyaguchi and Akimoto (2011); Akimoto and Miyaguchi (2013); Metzler et al. (2014); Yamamoto et al. (2014); Massignan et al. (2014); Akimoto and Miyaguchi (2014); Miyaguchi and Akimoto (2015). A typical model that shows aging is a continuous-time random walk (CTRW) with infinite mean waiting time. In the CTRW, the MSD increases non-linearly Metzler and Klafter (2000), i.e., anomalous diffusion,

x(t)2Dαtα(t),\langle x(t)^{2}\rangle\sim D_{\alpha}t^{\alpha}\quad(t\to\infty), (1)

where x(t)x(t) is a displacement and 0<α<10<\alpha<1 characterizes the power-law exponent of the waiting time distribution. Moreover, it shows aging; i.e., the MSD explicitly depends on the start of the observation:

{x(ta+t)x(ta)}2Dα{(ta+t)αtaα}\langle\{x(t_{a}+t)-x(t_{a})\}^{2}\rangle\sim D_{\alpha}\{(t_{a}+t)^{\alpha}-t_{a}^{\alpha}\} (2)

for ta1t_{a}\gg 1, where tat_{a} is called aging time.

Aging phenomena are also observed in weakly chaotic dynamical systems such as Pomeau-Manniville map Manneville and Pomeau (1979); Manneville (1980); Akimoto and Barkai (2013). In weakly chaotic maps, the invariant measure cannot be normalized, i.e., infinite measure Akimoto and Aizawa (2011). Moreover, the generalized Lyapunov exponent, which characterizes a dynamical instability of the system, depends explicitly on the aging time Akimoto and Barkai (2013). In particular, the dynamical instability becomes weak when the aging time is increased. When the invariant measure of a dynamical system cannot be normalized, the density of a position does not converge to the invariant measure. This situation is similar to non-equilibrium processes exhibiting aging. In dynamical systems with infinite measures, time-averaged observables do not converge to a constant but converge in distribution in the long-time limit Aaronson (1981, 1997). In particular, distribution of time averages of L1(μ)L^{1}(\mu) function, i.e., a function integrable with respect to invariant measure μ\mu, converge to the Mittag-Leffler distribution Aaronson (1981, 1997). These distributional behaviors of time averages are characteristics of infinite ergodic theory, which includes the Mittag-Leffler distribution, the generalized arcsine distribution and another distribution Thaler (1998, 2002); Thaler and Zweimüller (2006); Akimoto (2008); Akimoto et al. (2015); Sera and Yano (2019); Sera (2020).

Aging distributional limit theorem in renewal processes, i.e., aging of the Mittag-Leffler distribution, has been studied in Refs. Schulz et al. (2013, 2014) and is applied to a weakly chaotic dynamical system Akimoto and Barkai (2013). However, aging of the arcsine law has not been considered so far. In this paper, we consider aging of the arcsine law, which is a distributional theorem of occupation time on the positive side in the Brownian motion. We rigorously prove an aging distributional theorem in the Brownian motion. Moreover, we generalize the aging distributional theorem to that in renewal processes in the long-time limit. Finally, we demonstrate numerically the aging distributional limit theorem using intermittent maps with infinite measures.

Preliminaries.—Consider 1D Brownian motion starting from the origin. This fundamental model of a stochastic process is described by x˙(t)=ξ(t)\dot{x}(t)=\xi(t), where ξ(t)\xi(t) is a white Gaussian noise: ξ(t)ξ(t)=δ(tt)\langle\xi(t)\xi(t^{\prime})\rangle=\delta(t-t^{\prime}). As is well known, the MSD grows as x(t)2=t\langle x(t)^{2}\rangle=t, implying diffusion coefficient DD is D=1/2D=1/2. In what follows, we denote the Brownian motion at time tt by BtB_{t}.

Here, we recall the first-passage time (FPT) distribution of a Brownian motion starting from position xx, the classical arcsine law, and give some notations. Let Px(s)P_{x}(s) be the probability density function (PDF) of FPT, which is the time when a Brownian motion starting from position xx reaches zero for the first time. It is known that the PDF is given by

Px(s)=xsp(s,x)P_{x}(s)=\frac{x}{s}p(s,x) (3)

for all x>0x>0 and s>0s>0 Karatzas and Shreve (2012), where p(s,x)p(s,x) is the propagator of a Brownian motion, i.e.,

p(s,x)=12πsex22sp(s,x)=\frac{1}{\sqrt{2\pi s}}e^{-\frac{x^{2}}{2s}} (4)

for s>0s>0 and xx\in{\mathbb{R}}.

Lemma 1: For all t>0t>0, the distribution of FPT DtD_{t}, which is the time when a Brownian motion reaches zero for the first time after time tt passed, i.e., Dtinf{s>0;Bs+t=0}D_{t}\equiv\inf\{s>0;B_{s+t}=0\} follows Pr(Dt>s)=sψt(u)𝑑u\Pr(D_{t}>s)=\int_{s}^{\infty}\psi_{t}(u)du, where

ψt(s)=1πts(s+t)\psi_{t}(s)=\frac{1}{\pi}\frac{\sqrt{t}}{\sqrt{s}(s+t)} (5)

Proof: Integrating Px(s)p(t,x)P_{x}(s)p(t,x) with respect to xx, we have

ψt(s)=xsp(s,x)p(t,x)𝑑x=1πsts(s+t).\psi_{t}(s)=\int_{-\infty}^{\infty}\frac{x}{s}p(s,x)p(t,x)dx=\frac{1}{\pi}\frac{\sqrt{st}}{s(s+t)}.\qed (6)
Refer to caption
Figure 1: Trajectory of Brownian motion with B0=0B_{0}=0. In the aging arcsine law, we measure the occupation time from tat_{a} to ta+tmt_{a}+t_{m}.

We consider an occupation time T+(t)T_{+}(t) that a Brownian motion BtB_{t} spends on the positive side until time tt, i.e.,

T+(t)=0t1[Bs>0]𝑑sT_{+}(t)=\int_{0}^{t}1_{[B_{s}>0]}ds (7)

for t>0t>0, where 1[Bs>0]=11_{[B_{s}>0]}=1 if Bs>0B_{s}>0 and 0 otherwise. The classical arcsine law states that a ratio between an occupation time of a Brownian motion starting from zero and measurement time tmt_{m} follows the arcsine distribution:

Pr(T+(tm)tms)=0sϕ(s)𝑑s=2πarcsins,\Pr\left(\frac{T_{+}(t_{m})}{t_{m}}\leq s\right)=\int_{0}^{s}\phi(s^{\prime})ds^{\prime}=\frac{2}{\pi}\arcsin\sqrt{s}, (8)

where

ϕ(s)1πs(1s)\phi(s)\equiv\frac{1}{\pi\sqrt{s(1-s)}} (9)

for 0<s<10<s<1. Here, we do not represent the initial position of a Brownian motion explicitly, but it is B0=0B_{0}=0. By the scaling property of a Brownian motion, this statement is equivalent to the following:

Pr(T+(1)s)=2πarcsins.\Pr\left(T_{+}(1)\leq s\right)=\frac{2}{\pi}\arcsin\sqrt{s}. (10)

Aging arcsine law.—We introduce the aging time tat_{a}, which is a start of measurement [see Fig. 1]. Before tat_{a} we do not track the trajectory although the process was started. In other words, a position of a Brownian motion is not the origin when the measurement is started.

Theorem 1: For all tm>0t_{m}>0 and ta>0t_{a}>0, the ratio of occupation time T+(tm;ta)T+(tm+ta)T+(ta)T_{+}(t_{m};t_{a})\equiv T_{+}(t_{m}+t_{a})-T_{+}(t_{a}) to measurement time tmt_{m} follows

Pr(T+(tm;ta)tms|B0=0)=0sϕ(r;s)𝑑s+q(r)+1[s1]q(r),\Pr\left(\left.\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s\right|B_{0}=0\right)=\int_{0}^{s}\phi(r;s^{\prime})ds^{\prime}+q(r)+1_{[s\geq 1]}q(r), (11)

where rta/tmr\equiv t_{a}/t_{m} is the aging ratio,

ϕ(r;s)=12π201/r{11s(1+sv)+1s(1+(1s)v)}dvv(1rv)\phi(r;s)=\frac{1}{2\pi^{2}}\int_{0}^{1/r}\left\{\frac{1}{\sqrt{1-s}(1+sv)}+\frac{1}{\sqrt{s}(1+(1-s)v)}\right\}\frac{dv}{\sqrt{v(1-rv)}} (12)

and

q(r)=12π1/rdv(1+v)v=1πarccot(r1).q(r)=\frac{1}{2\pi}\int_{1/r}^{\infty}\frac{dv}{(1+v)\sqrt{v}}=\frac{1}{\pi}\operatorname{arccot}(\sqrt{r^{-1}}). (13)

Proof of Theorem 1 is given in the Supplemental Material. We note that ϕ(r;s)ϕ(s)\phi(r;s)\to\phi(s) for r0r\to 0. In other words, the classical arcsine law is recovered when tatmt_{a}\ll t_{m}. This is consistent with the arcsine law without aging, i.e., ta=0t_{a}=0. Figure 2 shows the effect of aging in the occupation time statistics. In the limit of r0r\to 0, the classical arcsine law is actually recovered. Furthermore,

ϕ(r;s)c(r)ϕ(s)\phi(r;s)\sim c(r)\phi(s) (14)

for s0s\to 0 and s1s\to 1, where

c(r)=12π01/rdv(1+v)v(1rv).c(r)=\frac{1}{2\pi}\int_{0}^{1/r}\frac{dv}{(1+v)\sqrt{v(1-rv)}}. (15)

Therefore, constant c(r)c(r) explicitly depends on aging ratio rr. In particular, c(r)1/2c(r)\to 1/2 and c(r)0c(r)\to 0 for r0r\to 0 and rr\to\infty, respectively. We note that the classical arcsine law cannot be recovered when limit s0s\to 0 or s1s\to 1 is taken in advance, i.e., c(r)c(r) does not go to one for r0r\to 0 after s0s\to 0 or s1s\to 1. In other words, the limits of s0s\to 0 and r0r\to 0 are not commutative.

Refer to caption
Figure 2: Distribution of the ratio of occupation time T+(tm;ta)T_{+}(t_{m};t_{a}) to tmt_{m} in Brownian motion for different aging ratio rr, where measurement time tmt_{m} is fixed as tm=103t_{m}=10^{3}. Symbols are the results of numerical simulations and the solid lines represent our theory, i.e., Eq. (11).

Generalization of the aging arcsine law.—Here, we generalize our result, i.e., the aging arcsine law, to occupation time statistics in renewal processes Cox (1962); Godrèche and Luck (2001). We consider a two-state process (Rt)t0(R_{t})_{t\geq 0}, where the state is described by +1+1 or 1-1 state. Durations for +1+1 and 1-1 states are independent and identically distributed random variables. The PDFs of durations for +1+1 and 1-1 states are denoted by ρ+(τ)\rho_{+}(\tau) and ρ(τ)\rho_{-}(\tau), respectively. We assume that the PDFs follow power-law distributions:

ρ±(τ)A±τ1α(τ).\rho_{\pm}(\tau)\sim A_{\pm}\tau^{-1-\alpha}\quad(\tau\to\infty). (16)

In general, the first duration does not follow ρ±(τ)\rho_{\pm}(\tau). However, the following results do not depend on the first duration distribution in general. Therefore, in what follows, we do not specify the initial condition. For 0<α<10<\alpha<1, the mean duration diverges and the forward recurrence time Dt±D_{t}^{\pm}, which is a time at which state changes from ±\pm to \mp, respectively, for the first time after time tt, shows aging. In particular, the PDF of Dt±D_{t}^{\pm} depends explicitly on time tt Dynkin (1961). Let us define ψt±(τ)\psi_{t}^{\pm}(\tau) as

ψt±(τ)=p±sinπαπtατα(τ+t),\psi_{t}^{\pm}(\tau)=p_{\pm}\frac{\sin\pi\alpha}{\pi}\frac{t^{\alpha}}{\tau^{\alpha}(\tau+t)}, (17)

where p±p_{\pm} is the probability of finding state is ±\pm at time tt and given by p±=A±/(A++A)p_{\pm}=A_{\pm}/(A_{+}+A_{-}). In the limit of tmt_{m}\to\infty with being ta/tm=rt_{a}/t_{m}=r fixed, we have

Pr[Dta±tms,Rta0]0sψr±(τ)𝑑τ.\Pr\left[\frac{D_{t_{a}}^{\pm}}{t_{m}}\leq s,R_{t_{a}}\gtrless 0\right]\to\int_{0}^{s}\psi_{r}^{\pm}(\tau)d\tau. (18)

This is consistent with Brownian motion’s result, i.e., Eq. (5), where α=p±=1/2\alpha=p_{\pm}=1/2 in the Brownian motion.

In the renewal process, the classical arcsine law can be generalized. Occupation time of +1+1 state in the renewal processes follows the generalized arcsine law Lamperti (1958); Thaler (2002):

Pr(T+(t)ts)1παarccot(((1s)/s)αβsinπα+cotπα)=0sϕα,β(s)𝑑s(t),\Pr\left(\frac{T_{+}(t)}{t}\leq s\right)\to\frac{1}{\pi\alpha}\operatorname{arccot}\left(\frac{((1-s)/s)^{\alpha}}{\beta\sin\pi\alpha}+\cot\pi\alpha\right)=\int_{0}^{s}\phi_{\alpha,\beta}(s^{\prime})ds^{\prime}\quad(t\to\infty), (19)

where T+(t)=0t1[Rs>0]𝑑s{\displaystyle T_{+}(t)=\int_{0}^{t}1_{[R_{s}>0]}ds}, β=A/A+\beta=A_{-}/A_{+} and

ϕα,β(s)=βsinπαπsα1(1s)α1β2s2α+2βsα(1s)αcosπα+(1s)2α.\phi_{\alpha,\beta}(s)=\frac{\beta\sin\pi\alpha}{\pi}\frac{s^{\alpha-1}(1-s)^{\alpha-1}}{\beta^{2}s^{2\alpha}+2\beta s^{\alpha}(1-s)^{\alpha}\cos\pi\alpha+(1-s)^{2\alpha}}. (20)

Theorem 2: In the limit of tmt_{m}\to\infty with being ta/tm=rt_{a}/t_{m}=r fixed, the ratio of occupation time T+(tm;ta)T_{+}(t_{m};t_{a}) measured from tat_{a} to tm+tat_{m}+t_{a} to measurement time tmt_{m} follows

Pr(T+(tm;ta)tms)Φα,β(r;s)0sϕα,β(r;s)𝑑s+qα(r)+1[s1]qα+(r),\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s\right)\to\Phi_{\alpha,\beta}(r;s)\equiv\int_{0}^{s}\phi_{\alpha,\beta}(r;s^{\prime})ds^{\prime}+q_{\alpha}^{-}(r)+1_{[s\geq 1]}q_{\alpha}^{+}(r), (21)

where T+(tm;ta)=tata+tm1[Rs>0]𝑑s{\displaystyle T_{+}(t_{m};t_{a})=\int_{t_{a}}^{t_{a}+t_{m}}1_{[R_{s}>0]}ds},

ϕα,β(r;s)=0sψr+(s)ϕα,β(ss1s)ds1s+01sψr(s)ϕα,β(s1s)ds1s\phi_{\alpha,\beta}(r;s)=\int_{0}^{s}\psi_{r}^{+}(s^{\prime})\phi_{\alpha,\beta}\left(\frac{s-s^{\prime}}{1-s^{\prime}}\right)\frac{ds^{\prime}}{1-s^{\prime}}+\int_{0}^{1-s}\psi_{r}^{-}(s^{\prime})\phi_{\alpha,\beta}\left(\frac{s}{1-s^{\prime}}\right)\frac{ds^{\prime}}{1-s^{\prime}} (22)

and

qα±(r)=1ψr±(τ)𝑑τ.q_{\alpha}^{\pm}(r)=\int_{1}^{\infty}\psi_{r}^{\pm}(\tau)d\tau. (23)

Proof of Theorem 2 is given in the Supplemental Material.

Application of the aging generalized arcsine law to occupation time statistics in intermittent maps.—Here, we apply the aging distributional limit theorem in renewal processes to occupation time statistics in intermittent maps. One-dimensional map that we consider here is defined on [0,1][0,1], i.e., T(x):[0,1][0,1]T(x):[0,1]\to[0,1]:

T(x)={x+(1c)(xc)1+1/αx[0,c]xc(1x1c)1+1/αx(c,1],T(x)=\left\{\begin{array}[]{ll}x+(1-c)\left(\dfrac{x}{c}\right)^{1+1/\alpha}&x\in[0,c]\\ \\ x-c\left(\dfrac{1-x}{1-c}\right)^{1+1/\alpha}&x\in(c,1],\end{array}\right. (24)

where cc (0<c<10<c<1) is a parameter characterizing a skewness of the map and 0<α<10<\alpha<1 Akimoto (2008). There are two indifferent fixed points at x=0x=0 and 1, i.e., T(0)=0T(0)=0 and T(1)=0T(1)=0 with T(0)=T(1)=1T^{\prime}(0)=T^{\prime}(1)=1. With the aid of the chaotic behaviors outside the two indifferent fixed points, durations on [0,c][0,c] or (c,1](c,1] are considered to be independent and identically distributed random variables. Moreover, the duration distributions follow a power-law Akimoto (2008); Akimoto et al. (2015). Therefore, the aging distributional limit theorem can be applied to the occupation time statistics in the intermittent map. In the case of no aging, the ordinary generalized arcsine law is shown Thaler (2002), where parameter β\beta is given by

β=α+cα+1c(1cc)2α.\beta=\frac{\alpha+c}{\alpha+1-c}\left(\frac{1-c}{c}\right)^{2\alpha}. (25)

Figure 3 shows the distribution of the ratio of occupation time T+(tm;ta)T_{+}(t_{m};t_{a}) to tmt_{m} on [0,c][0,c]. The shape of the distribution strongly depends on aging ratio rr. Moreover, the generalized arcsine distribution can be recovered for small rr. This is because the generalized arcsine distribution is obtained by substituting r=0r=0 and ψr+(s)=p+δ(s)\psi_{r}^{+}(s)=p_{+}\delta(s) and ψr(s)=pδ(s)\psi_{r}^{-}(s)=p_{-}\delta(s) in Eq. (22).

Refer to caption
Figure 3: Distribution of the ratio of occupation time T+(tm;ta)T_{+}(t_{m};t_{a}) to measurement time tmt_{m} in the intermittent map, i.e., Eq. (24), for different aging ratio rr, where measurement time tmt_{m} is fixed as tm=105t_{m}=10^{5} [(a) α=0.5\alpha=0.5 and (b) α=0.7\alpha=0.7 (c=0.6c=0.6)]. Symbols with lines are the results of numerical simulations and the solid line represent the generalized arcsine distribution without aging, i.e., Φα,β(s)=0sϕα,β(s)𝑑s\Phi_{\alpha,\beta}(s)=\int_{0}^{s}\phi_{\alpha,\beta}(s^{\prime})ds^{\prime}. We used a uniform distribution as the initial distribution.

Conclusion.—We have shown aging distributional theorem of occupation time on the positive side in Brownian motion. FPT distribution Px(s)P_{x}(s) of Brownian motion starting from xx is a key distribution to derive the theorem. The distribution of the occupation time is described by aging ratio rr. The classical arcsine law is recovered when aging time tat_{a} is much smaller than measurement time tmt_{m}, i.e., r0r\to 0. We have also shown that the aging arcsine law is generalized to the occupation time distribution in renewal processes under the limits of tat_{a}\to\infty and tmt_{m}\to\infty. The ordinary generalized arcsine law is also recovered in the limit of r0r\to 0. Finally, this generalized aging arcsine law can be successfully applied to the occupation time statistics in intermittent maps with infinite invariant measures.

References

  • Bouchaud (1992) J.-P. Bouchaud, J. Phys. I 2, 1705 (1992).
  • Godrèche and Luck (2001) C. Godrèche and J. M. Luck, J. Stat. Phys. 104, 489 (2001).
  • Brokmann et al. (2003) X. Brokmann, J.-P. Hermier, G. Messin, P. Desbiolles, J.-P. Bouchaud,  and M. Dahan, Phys. Rev. Lett. 90, 120601 (2003).
  • Margolin and Barkai (2005) G. Margolin and E. Barkai, Phys. Rev. Lett. 94, 080601 (2005).
  • Margolin and Barkai (2006) G. Margolin and E. Barkai, J. Stat. Phys. 122, 137 (2006).
  • He et al. (2008) Y. He, S. Burov, R. Metzler,  and E. Barkai, Phys. Rev. Lett. 101, 058101 (2008).
  • Weigel et al. (2011) A. Weigel, B. Simon, M. Tamkun,  and D. Krapf, Proc. Natl. Acad. Sci. USA 108, 6438 (2011).
  • Yamamoto et al. (2014) E. Yamamoto, T. Akimoto, M. Yasui,  and K. Yasuoka, Sci. Rep. 4, 4720 (2014).
  • Massignan et al. (2014) P. Massignan, C. Manzo, J. A. Torreno-Pina, M. F. García-Parajo, M. Lewenstein,  and J. G. J. Lapeyre, Phys. Rev. Lett. 112, 150603 (2014).
  • Miyaguchi and Akimoto (2011) T. Miyaguchi and T. Akimoto, Phys. Rev. E 83, 031926 (2011).
  • Miyaguchi and Akimoto (2015) T. Miyaguchi and T. Akimoto, Phys. Rev. E 91, 010102(R) (2015).
  • Schulz et al. (2013) J. H. P. Schulz, E. Barkai,  and R. Metzler, Phys. Rev. Lett. 110, 020602 (2013).
  • Bouchaud and Georges (1990) J. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
  • Akimoto and Miyaguchi (2013) T. Akimoto and T. Miyaguchi, Phys. Rev. E 87, 062134 (2013).
  • Metzler et al. (2014) R. Metzler, J.-H. Jeon, A. G. Cherstvy,  and E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014).
  • Akimoto and Miyaguchi (2014) T. Akimoto and T. Miyaguchi, J. Stat. Phys. 157, 515 (2014).
  • Metzler and Klafter (2000) R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
  • Manneville and Pomeau (1979) P. Manneville and Y. Pomeau, Phys. Lett. 75, 1 (1979).
  • Manneville (1980) P. Manneville, J. Phys. (Paris) 41, 1235 (1980).
  • Akimoto and Barkai (2013) T. Akimoto and E. Barkai, Phys. Rev. E 87, 032915 (2013).
  • Akimoto and Aizawa (2011) T. Akimoto and Y. Aizawa, Chaos 20, 033110 (2011).
  • Aaronson (1981) J. Aaronson, J. D’Analyse Math. 39, 203 (1981).
  • Aaronson (1997) J. Aaronson, An Introduction to Infinite Ergodic Theory (American Mathematical Society, Providence, 1997).
  • Thaler (1998) M. Thaler, Trans. Am. Math. Soc. 350, 4593 (1998).
  • Thaler (2002) M. Thaler, Ergod. Theory Dyn. Syst. 22, 1289 (2002).
  • Thaler and Zweimüller (2006) M. Thaler and R. Zweimüller, Probab. Theory Relat. Fields 135, 15 (2006).
  • Akimoto (2008) T. Akimoto, J. Stat. Phys. 132, 171 (2008).
  • Akimoto et al. (2015) T. Akimoto, S. Shinkai,  and Y. Aizawa, J. Stat. Phys. 158, 476 (2015).
  • Sera and Yano (2019) T. Sera and K. Yano, Trans. Amer. Math. Soc. 372, 3191 (2019).
  • Sera (2020) T. Sera, Nonlinearity 33, 1183 (2020).
  • Schulz et al. (2014) J. H. P. Schulz, E. Barkai,  and R. Metzler, Phys. Rev. X 4, 011028 (2014).
  • Karatzas and Shreve (2012) I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, Vol. 113 (Springer Science & Business Media, 2012).
  • Cox (1962) D. R. Cox, Renewal theory (Methuen, London, 1962).
  • Dynkin (1961) E. Dynkin, Selected Translations in Mathematical Statistics and Probability (American Mathematical Society, Providence) 1, 171 (1961).
  • Lamperti (1958) J. Lamperti, Trans. Am. Math. Soc. 88, 380 (1958).

Supplemental Material for “Aging arcsine law in Brownian motion and its generalization”

Here, we give proofs of Theorem 1 and 2.

Appendix A Proof of Theorem 1

Proof: By the scaling property of the Brownian motion, statistical properties of BstB_{st} are the same as those of tBs\sqrt{t}B_{s}. It follows that statistical properties of occupation time T+(tm;ta)/tmT_{+}(t_{m};t_{a})/t_{m} are the same as those of T+(r+1)T+(r)T_{+}(r+1)-T_{+}(r) because

T+(tm;ta)tm=1tmtata+tm1[Bs>0]𝑑s=rr+11[Bstm>0]𝑑s.\frac{T_{+}(t_{m};t_{a})}{t_{m}}=\frac{1}{t_{m}}\int_{t_{a}}^{t_{a}+t_{m}}1_{[B_{s}>0]}ds=\int_{r}^{r+1}1_{[B_{st_{m}}>0]}ds. (26)

First, we consider case Bta>0B_{t_{a}}>0. Using the scaling property, we have

Pr(T+(tm;ta)tms,Bta>0)=Pr(T+(r+1)T+(r)s,Br>0).\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s,B_{t_{a}}>0\right)=\Pr\left(T_{+}(r+1)-T_{+}(r)\leq s,B_{r}>0\right). (27)

Since the probability of Bta>0B_{t_{a}}>0 is 1/2,

Pr(T+(tm;ta)tms,Bta>0)=120sψr(s)Pr(T+(1s)ss)𝑑s\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s,B_{t_{a}}>0\right)=\frac{1}{2}\int_{0}^{s}\psi_{r}(s^{\prime})\Pr(T_{+}(1-s^{\prime})\leq s-s^{\prime})ds^{\prime} (28)

for s<1s<1 and

Pr(T+(tm;ta)tm=1,Bta>0)=1ψr(s)2𝑑s.\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}=1,B_{t_{a}}>0\right)=\int_{1}^{\infty}\frac{\psi_{r}(s^{\prime})}{2}ds^{\prime}. (29)

By a change of variables, we obtain

Pr(T+(tm;ta)tms,Bta>0)\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s,B_{t_{a}}>0\right) =\displaystyle= 120sψr(s)Pr(T+(1)ss1s)𝑑s+1[s1]q(r)\displaystyle\frac{1}{2}\int_{0}^{s}\psi_{r}(s^{\prime})\Pr\left(T_{+}(1)\leq\frac{s-s^{\prime}}{1-s^{\prime}}\right)ds^{\prime}+1_{[s\geq 1]}q(r) (30)
=\displaystyle= 12π20srdyy(1+y)0sry1ryduu(1u)+1[s1]q(r)\displaystyle\frac{1}{2\pi^{2}}\int_{0}^{\frac{s}{r}}\frac{dy}{\sqrt{y}(1+y)}\int_{0}^{\frac{s-ry}{1-ry}}\frac{du}{\sqrt{u(1-u)}}+1_{[s\geq 1]}q(r)
=\displaystyle= 0s12π2dv1v01rduu(1ru)(1+vu)+1[s1]q(r).\displaystyle\int_{0}^{s}\frac{1}{2\pi^{2}}\frac{dv}{\sqrt{1-v}}\int_{0}^{\frac{1}{r}}\frac{du}{\sqrt{u(1-ru)}(1+vu)}+1_{[s\geq 1]}q(r).

By a similar calculation, we have

Pr(T+(tm;ta)tms,Bta<0)=s112π2dvv01rduu(1ru)(1+(1v)u)\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\geq s,B_{t_{a}}<0\right)=\int_{s}^{1}\frac{1}{2\pi^{2}}\frac{dv}{\sqrt{v}}\int_{0}^{\frac{1}{r}}\frac{du}{\sqrt{u(1-ru)}(1+(1-v)u)} (31)

for s>0s>0. For Bta<0B_{t_{a}}<0 and s=0s=0, the probability is

Pr(T+(tm;ta)tm=0,Bta<0)=121ψr(s)𝑑s.\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}=0,B_{t_{a}}<0\right)=\frac{1}{2}\int_{1}^{\infty}\psi_{r}(s^{\prime})ds^{\prime}. (32)

It follows that aging arcsine distribution is given by Eq. (11) and the PDF ϕ(r;s)\phi(r;s) is given by Eq. (12). ∎

Appendix B Proof of Theorem 2

Proof: By a scaling argument, aging occupation time statistics can be obtained by a similar way in the Brownian motion. By a change of variables, we have

T+(tm;ta)tm=T~+(r+1)T~+(r),\frac{T_{+}(t_{m};t_{a})}{t_{m}}=\tilde{T}_{+}(r+1)-\tilde{T}_{+}(r), (33)

where T~+(r)=0r1[Rstm>0]𝑑s{\displaystyle\tilde{T}_{+}(r)=\int_{0}^{r}1_{[R_{st_{m}}>0]}ds}. We note that limits ta1t_{a}\gg 1 and tm1t_{m}\gg 1 are necessary to derive the distribution of occupation time in renewal processes, which is different from the arcsine law in the Brownian motion. For Rta>0R_{t_{a}}>0 and tm1t_{m}\gg 1 and ta=rtm1t_{a}=rt_{m}\gg 1, we have

Pr(T+(tm;ta)tms,Rta>0)\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s,R_{t_{a}}>0\right) =\displaystyle= Pr(T~+(r+1)T~+(r)s,Rta>0).\displaystyle\Pr\left(\tilde{T}_{+}(r+1)-\tilde{T}_{+}(r)\leq s,R_{t_{a}}>0\right). (34)

By a similar calculation as in the aging arcsine law, we obtain

Pr(T+(tm;ta)tms,Rta>0)0s𝑑v0vψr+(s)1sϕα,β(vs1s)𝑑s+1[s1]qα+(r).\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\leq s,R_{t_{a}}>0\right)\to\int_{0}^{s}dv\int_{0}^{v}\frac{\psi_{r}^{+}(s^{\prime})}{1-s^{\prime}}\phi_{\alpha,\beta}\left(\frac{v-s^{\prime}}{1-s^{\prime}}\right)ds^{\prime}+1_{[s\geq 1]}q_{\alpha}^{+}(r). (35)

Similarly,

Pr(T+(tm;ta)tms,Rta<0)s1𝑑v01vψr(s)ϕα,β(v1s)11s𝑑s\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}\geq s,R_{t_{a}}<0\right)\to\int_{s}^{1}dv\int_{0}^{1-v}\psi_{r}^{-}(s^{\prime})\phi_{\alpha,\beta}\left(\frac{v}{1-s^{\prime}}\right)\frac{1}{1-s^{\prime}}ds^{\prime} (36)

for s>0s>0 and

Pr(T+(tm;ta)tm=0,Rtm<0)1ψr(s)𝑑s.\displaystyle\Pr\left(\frac{T_{+}(t_{m};t_{a})}{t_{m}}=0,R_{t_{m}}<0\right)\to\int_{1}^{\infty}\psi_{r}^{-}(s^{\prime})ds^{\prime}. (37)

It follows that aging arcsine distribution is given by Eq. (21) and the PDF ϕα,β(r;s)\phi_{\alpha,\beta}(r;s) is given by Eq. (22).∎