This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Admissible estimators of a multivariate normal mean vector when the scale is unknown

Yuzo Maruyamalabel=e1][email protected] [    William, E. Strawdermanlabel=e2][email protected] [ University of Tokyo, Rutgers University,
Abstract

We study admissibility of a subclass of generalized Bayes estimators of a multivariate normal vector when the variance is unknown, under scaled quadratic loss. Minimaxity is also established for certain of these estimators.

62C15,
62C20,
admissibility,
Bayes estimators,
minimaxity,
keywords:
[class=MSC2010]
keywords:
\startlocaldefs\endlocaldefs

and

1 Introduction

We study admissibility of a subclass of generalized Bayes estimators of a multivariate normal vector in the case of an unknown variance, under scaled squared error loss. Specifically, let XX and SS be independent with

XNp(θ,σ2Ip),Sσ2χn2,X\sim N_{p}(\theta,\sigma^{2}I_{p}),\ S\sim\sigma^{2}\chi_{n}^{2}, (1.1)

and consider estimation of θ\theta under the scaled quadratic loss

L(d;{θ,σ2})=dθ2σ2.L(d;\{\theta,\sigma^{2}\})=\frac{\|d-\theta\|^{2}}{\sigma^{2}}. (1.2)

The class of hierarchical priors we consider, with η=1/σ2\eta=1/\sigma^{2}, is π(θ,η)\pi(\theta,\eta) given by

θ{η,λ}Np(0,1η1λλIp),λλa(1λ)bB(a+1,b+1) for 0<λ<1η1/η for 0<η<,\begin{split}\theta\!\mid\!\{\eta,\lambda\}&\sim N_{p}\left(0,\frac{1}{\eta}\frac{1-\lambda}{\lambda}I_{p}\right),\quad\lambda\sim\frac{\lambda^{a}(1-\lambda)^{b}}{B(a+1,b+1)}\text{ for }0<\lambda<1\\ \eta&\sim 1/\eta\text{ for }0<\eta<\infty,\end{split} (1.3)

where a>1a>-1 and b>1b>-1. Hence the prior is improper, due to the impropriety of the invariant prior on η\eta. However, the conditional prior on θη\theta\!\mid\!\eta is a proper scale mixture of normal priors generalizing that in Strawderman (1973) (see also Fourdrinier, Strawderman and Wells (2018)), who considered proper priors on η\eta. Maruyama and Strawderman (2020) considered related priors in a study of admissibility within the class of scale equivariant estimators. Maruyama and Strawderman (2005) studied minimaxity of such estimators. This paper may be viewed as a companion paper to Maruyama and Strawderman (2020) where admissibility is proved among the class of all estimators, not just scale equivariant ones. We also address the issue of minimaxity.

To our knowledge, aside from proper Bayes estimators, these are the first results proving admissibility of generalized Bayes estimators in this problem for p>2p>2. A difficulty comes from the presence of the nuisance parameter, η\eta. As mentioned in James and Stein (1961) and Brewster and Zidek (1974), proving admissibility of generalized Bayes estimators in the presence of a nuisance parameter has been a longstanding unsolved problem.

Our method of proof is similar in spirit to that of Brown and Hwang (1982) in the known scale case and makes use of a version of Blyth’s (1951) method. As Berger (1985) pointed out, “Indeed, in general, very elaborate (and difficult to work with) choices of sequences of proper priors are needed” for proving admissibility. The sequence of proper priors, we use in this paper, is given by

π(θ,η){ii+log(max(η,1/η))}2,i=1,2,,\displaystyle\pi(\theta,\eta)\left\{\frac{i}{i+\log(\max(\eta,1/\eta))}\right\}^{2},\ i=1,2,\dots,

which is novel in this area, to our knowledge. The main result of this paper (Theorem 2.1) is that the generalized Bayes estimator corresponding to the hierarchical prior (1.3) is admissible provided 1<a<n/2-1<a<n/2 and b>1/2b>-1/2. We also show that, for p5p\geq 5, a subclass of these estimators are admissible and minimax. Minimaxity of some of these estimators was shown in Maruyama and Strawderman (2005). Among them, the most striking estimator, because of its simple and explicit form, is

(12(p2)/(n+2)X2/S+1+2(p2)/(n+2))X.\left(1-\frac{2(p-2)/(n+2)}{\|X\|^{2}/S+1+2(p-2)/(n+2)}\right)X.

We show this to be admissible and minimax when n>3n>3 and p>4n/(n2)p>4n/(n-2).

Brown (1971) largely settled the issue of admissibility in the known scale case and has been a motivating force behind many admissibility studies in multidimensional settings, including Brown and Hwang (1982) and of course, the present paper. Johnstone (2019) gives an excellent review of the development and impact of Brown’s monumental paper.

The main result on admissibility is given in Section 2. Minimaxity is discussed in Section 3. An appendix is devoted to the proofs of many of the results used in the development of Section 2. Comments are given in Section 4.

2 Admissibility of generalized Bayes estimators

The main result of this paper is the following.

Theorem 2.1.

The generalized Bayes estimator corresponding to the prior π(θ,η)\pi(\theta,\eta) given by (1.3) is admissible for the model (1.1) under the loss (1.2) provided

1<a<n/2 and b>1/2.-1<a<n/2\text{ and }b>-1/2. (2.1)

The basic structure of the proof is standard, as in Brown and Hwang (1982), and is based on the Blyth (1951) method. We give an increasing sequence of proper priors

πi(θ,η)=π(θ,η)hi2(η).\pi_{i}(\theta,\eta)=\pi(\theta,\eta)h_{i}^{2}(\eta).

Let δπ\delta_{\pi} be the generalized Bayes estimator corresponding to π(θ,η)\pi(\theta,\eta) and δπi\delta_{\pi i} the proper Bayes estimator corresponding to πi(θ,η)\pi_{i}(\theta,\eta). The Bayes risk difference of δπ\delta_{\pi} and δπi\delta_{\pi i} with respect to the prior πi(θ,η)\pi_{i}(\theta,\eta), Δi\Delta_{i}, is defined by

Δi=p0{E[ηδπθ2]E[ηδπiθ2]}πi(θ,η)dθdη.\displaystyle\Delta_{i}=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{E\left[\eta\|\delta_{\pi}-\theta\|^{2}\right]-E\left[\eta\|\delta_{\pi i}-\theta\|^{2}\right]\right\}\pi_{i}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta. (2.2)

Then we show that

limiΔi=0.\lim_{i\to\infty}\Delta_{i}=0. (2.3)

The following form of Blyth’s sufficient condition shows that (2.3) implies admissibility. The proof, as for the lemmas that follow, is given in Appendix.

Lemma 2.1.

A sufficient condition for δπ\delta_{\pi} to be admissible is that there exists an increasing (in ii) sequence of proper priors πi(θ,η)\pi_{i}(\theta,\eta) such that πi(θ,η)>0\pi_{i}(\theta,\eta)>0 for all θ,η\theta,\eta and that Δi\Delta_{i} satisfies (2.3).

The following two lemmas give the form of the Bayes estimator and an expression for Δi\Delta_{i}.

Lemma 2.2.

The Bayes estimator of θ\theta for the problem in (1.1), (1.2) and (1.3) is given by

δπ(x,s)=x+m(θπ)m(πη),\displaystyle\delta_{\pi}(x,s)=x+\frac{m(\nabla_{\theta}\pi)}{m(\pi\eta)},

where θ=(/θ1,/θ2,,/θp)\nabla_{\theta}=(\partial/\partial\theta_{1},\partial/\partial\theta_{2},\dots,\partial/\partial\theta_{p})^{\prime} and

m(ψ)\displaystyle m(\psi) =p0ψ(θ,η)fx(xθ,η)fs(sη)dθdη,\displaystyle=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\psi(\theta,\eta)f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}\theta\mathrm{d}\eta,
fx(xθ,η)\displaystyle f_{x}(x\!\mid\!\theta,\eta) =ηp/2(2π)p/2exp(η2xθ2),\displaystyle=\frac{\eta^{p/2}}{(2\pi)^{p/2}}\exp\left(-\frac{\eta}{2}\|x-\theta\|^{2}\right),
fs(sη)\displaystyle f_{s}(s\!\mid\!\eta) =ηn/2Γ(n/2)2n/2sn/21exp(ηs2).\displaystyle=\frac{\eta^{n/2}}{\Gamma(n/2)2^{n/2}}s^{n/2-1}\exp\left(-\frac{\eta s}{2}\right).
Lemma 2.3.

The Bayes risk difference Δi\Delta_{i} is written as

Δi=p0m(π)m(πη)m(hi2π)m(πhi2η)2m(πhi2η)dxds.\displaystyle\Delta_{i}=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(h_{i}^{2}\nabla\pi)}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)\mathrm{d}x\mathrm{d}s. (2.4)
Remark 2.1.

Recall hih_{i} does not depend on θ\theta. Hence, unlike Brown and Hwang (1982), there is no term

m({θhi2}π)m(πhi2η)\displaystyle\frac{m(\{\nabla_{\theta}h_{i}^{2}\}\pi)}{m(\pi h_{i}^{2}\eta)}

in the expression of (2.4).

The specific sequence of priors used to prove admissibility is given by

πi(θ,η)=π(θ,η)hi2(η)\pi_{i}(\theta,\eta)=\pi(\theta,\eta)h_{i}^{2}(\eta) (2.5)

where π(θ,η)\pi(\theta,\eta) is given in (1.3), and

hi(η)=ii+log(max(η,1/η))={ii+log(1/η)0<η<1,ii+logηη1.h_{i}(\eta)=\frac{i}{i+\log(\max(\eta,1/\eta))}=\begin{cases}\displaystyle\frac{i}{i+\log(1/\eta)}&0<\eta<1,\\ \displaystyle\frac{i}{i+\log\eta}&\eta\geq 1.\end{cases} (2.6)

Note that hi(η)h_{i}(\eta) is increasing in ii and

limihi(η)=1 for all η>0.\displaystyle\lim_{i\to\infty}h_{i}(\eta)=1\text{ for all }\eta>0.
Lemma 2.4.
  1. 1.

    0η1hi2(η)dη=2i\displaystyle\int_{0}^{\infty}\eta^{-1}h_{i}^{2}(\eta)\mathrm{d}\eta=2i.

  2. 2.

    The prior πi(θ,η)\pi_{i}(\theta,\eta) is proper for all ii.

The bulk of the remainder of the construction of the proof consists in showing that (a) the integrand of Δi\Delta_{i} in (2.4) is bounded by an integrable function and (b) the integrand itself tends to 0 as ii tends to infinity. Hence, by the dominated convergence theorem, (2.3) is satisfied so that δπ\delta_{\pi} is admissible.

Lemma 2.5.

The integrand of Δi\Delta_{i} in (2.4) converges to 0 as ii tends to infinity.

Most of the remaining lemmas are devoted to bounding the integrand of (2.4).

Lemma 2.6.

There exists a positive constant CC such that

m(π)m(πη)m(hi2π)m(πhi2η)2m(πhi2η)CA(x,s)Bi(x,s)\displaystyle\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(h_{i}^{2}\nabla\pi)}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)\leq CA(x,s)B_{i}(x,s)

where

A(x,s)=m(π(θ,η)ηθ2k(ηθ2)),Bi(x,s)=1m(πηhi)2m(πη)m(πhi2η)A(x,s)=m\left(\frac{\pi(\theta,\eta)}{\eta\|\theta\|^{2}}k(\eta\|\theta\|^{2})\right),\ B_{i}(x,s)=1-\frac{m(\pi\eta h_{i})^{2}}{m(\pi\eta)m(\pi h_{i}^{2}\eta)} (2.7)

and k(r)=r1/2I[0,1](r)+I(1,)(r)k(r)=r^{1/2}I_{[0,1]}(r)+I_{(1,\infty)}(r).

The next lemma gives a bound on A(x,s)A(x,s).

Lemma 2.7.

If b>1/2b>-1/2,

A(x,s)Dsp/21(1+x2/s)p/21/2\displaystyle A(x,s)\leq Ds^{-p/2-1}\left(1+\|x\|^{2}/s\right)^{-p/2-1/2}

for some positive constant DD.

The following gives a bound on Bi(x,s)B_{i}(x,s) and accounts for the condition on aa in Theorem 2.1 as will be seen in the proof of Theorem 2.1.

Lemma 2.8.

Assume a<n/2a<n/2. For all positive integers ii,

Bi(x,s){E/{1+log(1/s)}2s<γ11γ1sγ2F/(1+logs)2s>γ2,\displaystyle B_{i}(x,s)\leq\begin{cases}E/\{1+\log(1/s)\}^{2}&s<\gamma_{1}\\ 1&\gamma_{1}\leq s\leq\gamma_{2}\\ F/(1+\log s)^{2}&s>\gamma_{2},\end{cases}

for some positive constants E,F,γ1<1,γ2>1E,F,\gamma_{1}<1,\gamma_{2}>1, all of which are independent of ii.

2.1 Proof of Theorem 2.1

Since the integrand of Δi\Delta_{i} tends to 0 as ii tends to infinity, it follows that Δi0\Delta_{i}\to 0 provided for all ii that the integrand is bounded by an integrable function. By Lemmas 2.3, 2.6, 2.7 and 2.8,

Δi\displaystyle\Delta_{i} =p0m(π)m(πη)m(hi2π)m(πhi2η)2m(πhi2η)dxds\displaystyle=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(h_{i}^{2}\nabla\pi)}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)\mathrm{d}x\mathrm{d}s
Cp0A(x,s)Bi(x,s)dxds\displaystyle\leq C\int_{\mathbb{R}^{p}}\int_{0}^{\infty}A(x,s)B_{i}(x,s)\mathrm{d}x\mathrm{d}s
CDp0{sp/2(1+x2/s)p/21/2}\displaystyle\leq CD\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{s^{-p/2}\left(1+\|x\|^{2}/s\right)^{-p/2-1/2}\right\}
×{EI(0,γ1)(s)s{1+log(1/s)}2+I[γ1,γ2](s)s+FI(γ2,)(s)s{1+logs}2}dxds\displaystyle\qquad\times\left\{\frac{EI_{(0,\gamma_{1})}(s)}{s\{1+\log(1/s)\}^{2}}+\frac{I_{[\gamma_{1},\gamma_{2}]}(s)}{s}+\frac{FI_{(\gamma_{2},\infty)}(s)}{s\{1+\log s\}^{2}}\right\}\mathrm{d}x\mathrm{d}s
=CDGH\displaystyle=CDGH

where

G\displaystyle G =psp/2(1+x2/s)p/21/2dx=p(1+y2)p/21/2dy,\displaystyle=\int_{\mathbb{R}^{p}}s^{-p/2}\left(1+\|x\|^{2}/s\right)^{-p/2-1/2}\mathrm{d}x=\int_{\mathbb{R}^{p}}\left(1+\|y\|^{2}\right)^{-p/2-1/2}\mathrm{d}y,
and H\displaystyle\text{and }\ H =0{EI(0,γ1)(s)s{1+log(1/s)}2+I[γ1,γ2](s)s+FI(γ2,)(s)s{1+logs}2}ds.\displaystyle=\int_{0}^{\infty}\left\{\frac{EI_{(0,\gamma_{1})}(s)}{s\{1+\log(1/s)\}^{2}}+\frac{I_{[\gamma_{1},\gamma_{2}]}(s)}{s}+\frac{FI_{(\gamma_{2},\infty)}(s)}{s\{1+\log s\}^{2}}\right\}\mathrm{d}s.

Note

G=πp/2Γ(p/2)0up/21(1+u)p/21/2du=πp/2Γ(p/2)B(p/2,1/2)<\displaystyle G=\frac{\pi^{p/2}}{\Gamma(p/2)}\int_{0}^{\infty}u^{p/2-1}(1+u)^{-p/2-1/2}\mathrm{d}u=\frac{\pi^{p/2}}{\Gamma(p/2)}B(p/2,1/2)<\infty

and

H\displaystyle H =E0γ1dss{1+log(1/s)}2+γ1γ2dss+Fγ2dss(1+logs)2\displaystyle=E\int_{0}^{\gamma_{1}}\frac{\mathrm{d}s}{s\{1+\log(1/s)\}^{2}}+\int_{\gamma_{1}}^{\gamma_{2}}\frac{\mathrm{d}s}{s}+F\int_{\gamma_{2}}^{\infty}\frac{\mathrm{d}s}{s(1+\log s)^{2}}
=E1+log(1/γ1)+logγ2γ1+F1+logγ2<.\displaystyle=\frac{E}{1+\log(1/\gamma_{1})}+\log\frac{\gamma_{2}}{\gamma_{1}}+\frac{F}{1+\log\gamma_{2}}<\infty.

Hence, by the dominated convergence theorem, we conclude Δi0\Delta_{i}\to 0. This completes the proof of Theorem 2.1.

3 Minimaxity of generalized Bayes estimators

Maruyama and Strawderman (2005) and Maruyama and Strawderman (2009) discussed minimaxity of the generalized Bayes estimators corresponding to π(θ,η)\pi(\theta,\eta) given by (1.3). Recall that Baranchik’s (1970) sufficient condition for a shrinkage estimator

(1ϕ(x2/s)x2/s)x\displaystyle\left(1-\frac{\phi(\|x\|^{2}/s)}{\|x\|^{2}/s}\right)x

to be minimax is that a) ϕ(w)\phi(w) is non-decreasing, and b) 0ϕ(w)2(p2)/(n+2)0\leq\phi(w)\leq 2(p-2)/(n+2). The following lemma (Lemma 2.2 of Maruyama and Strawderman (2005)) summarizes the behavior of the generalized Bayes estimators corresponding to π(θ,η)\pi(\theta,\eta) given by (1.3).

Lemma 3.1.
  1. 1.

    The generalized Bayes estimator corresponding to the prior (1.3) is of the form

    δπ(x,s)=(1ϕπ(x2/s)x2/s)x.\displaystyle\delta_{\pi}(x,s)=\left(1-\frac{\phi_{\pi}(\|x\|^{2}/s)}{\|x\|^{2}/s}\right)x.
  2. 2.

    Assume p/21<a<n/21-p/2-1<a<n/2-1 and b0b\geq 0. Then ϕπ(w)\phi_{\pi}(w) is increasing and approaches (p/2+a+1)/(n/2a1)(p/2+a+1)/(n/2-a-1) as ww\to\infty.

Noting

0<p/2+a+1n/21a2p2n+2p21<aξ(p,n)(<n21)0<\frac{p/2+a+1}{n/2-1-a}\leq 2\frac{p-2}{n+2}\ \Leftrightarrow\ -\frac{p}{2}-1<a\leq\xi(p,n)\ \left(<\frac{n}{2}-1\right) (3.1)

where

ξ(p,n)=2+(p2)(n+2)2(2p+n2),\xi(p,n)=-2+\frac{(p-2)(n+2)}{2(2p+n-2)}, (3.2)

we have the minimaxity result which is essentially given in Theorem 2.3 of Maruyama and Strawderman (2005).

Lemma 3.2.

δπ(x,s)\delta_{\pi}(x,s) is minimax provided b0b\geq 0 and p/21<aξ(p,n)-p/2-1<a\leq\xi(p,n).

Recall that we assumed a>1a>-1 for establishing admissibility in Theorem 2.1. Since n3n\geq 3 and p>4n/(n2)p>4n/(n-2) implies ξ(p,n)>1\xi(p,n)>-1, we have the following result.

Theorem 3.1.

Suppose n3n\geq 3 and p>4n/(n2)p>4n/(n-2). Then the generalized Bayes estimator is minimax and admissible provided

1<aξ(p,n) and b0.-1<a\leq\xi(p,n)\text{ and }b\geq 0.

A particularly interesting case is b=n/2a2b=n/2-a-2. As pointed out in (2.7) of Maruyama and Strawderman (2005), the generalized Bayes estimator corresponding to the prior (1.3) with b=n/2a2b=n/2-a-2 has the simple closed form, as a variant of the James–Stein estimator, given by

(1(p/2+a+1)/(n/21a)X2/S+1+{(p/2+a+1)/(n/21a)})X.\left(1-\frac{(p/2+a+1)/(n/2-1-a)}{\|X\|^{2}/S+1+\{(p/2+a+1)/(n/2-1-a)\}}\right)X.

As a corollary of Theorem 3.1, we have the following result.

Corollary 3.1.

Suppose n3n\geq 3 and p>4n/(n2)p>4n/(n-2). Then

(12(p2)/(n+2)X2/S+1+2(p2)/(n+2))X.\left(1-\frac{2(p-2)/(n+2)}{\|X\|^{2}/S+1+2(p-2)/(n+2)}\right)X.

is admissible and minimax.

4 Concluding remarks

We have studied admissibility of generalized Bayes estimators of a multivariate normal mean vector in the presence of an unknown scale under scaled squared error loss. The hierarchical prior structure is proper on θ\theta given η\eta (=1/σ2=1/\sigma^{2}) and is the improper invariant prior (π(η)=1/η\pi(\eta)=1/\eta) on the scale parameter. We have, to our knowledge, given the first class of improper generalized Bayes admissible estimators for this problem for p>2p>2. We note, for p=1,2p=1,2, XX is known to be admissible, since it is admissible for each fixed σ2\sigma^{2} (See for example Lemma 5.2.12 of Lehmann and Casella (1998)). The results in this paper are complementary to those in our earlier paper, Maruyama and Strawderman (2020), which gives a class of generalized Bayes estimators that are admissible within the class of scale equivariant estimators. This paper thereby makes substantial progress in an important problem that has long resisted progress. Generally, finding admissible procedure in problems with nuisance parameters has been difficult, and the current problem is no exception. To our knowledge, the only known admissible procedure in the current problem have been proper Bayes estimators, with the exception mentioned above.

Earlier we (Maruyama and Strawderman (2005)) also studied minimaxity of generalized Bayes minimax estimators. Happily, the intersection of the classes of procedures, studied in these papers is not empty as shown in Section 3. In particular the estimator given in Corollary 3.1 is one such admissible minimax estimator which has a surprisingly simple and explicit form.

Appendix A Proofs of lemmas in Section 2

We take the following notation for (1.3),

π(θ,η)=η1×ηp/2π(ηθ2a,b),\pi(\theta,\eta)=\eta^{-1}\times\eta^{p/2}\pi(\eta\|\theta\|^{2}\!\mid\!a,b), (A.1)

where

π(ra,b)=011(2π)p/2(λ1λ)p/2exp(λ1λr2)λa(1λ)bB(a+1,b+1)dλ.\begin{split}&\pi(r\!\mid\!a,b)\\ &=\int_{0}^{1}\frac{1}{(2\pi)^{p/2}}\left(\frac{\lambda}{1-\lambda}\right)^{p/2}\exp\left(-\frac{\lambda}{1-\lambda}\frac{r}{2}\right)\frac{\lambda^{a}(1-\lambda)^{b}}{B(a+1,b+1)}\mathrm{d}\lambda.\end{split} (A.2)

Recall

fx(xθ,η)=ηp/2(2π)p/2exp(η2xθ2),fs(sη)=ηn/2sn/21Γ(n/2)2n/2exp(ηs2)f_{x}(x\!\mid\!\theta,\eta)=\frac{\eta^{p/2}}{(2\pi)^{p/2}}\exp\left(-\frac{\eta}{2}\|x-\theta\|^{2}\right),\ f_{s}(s\!\mid\!\eta)=\frac{\eta^{n/2}s^{n/2-1}}{\Gamma(n/2)2^{n/2}}\exp\left(-\frac{\eta s}{2}\right)

and

m(ψ)=p0ψ(θ,η)fx(xθ,η)fs(sη)dθdη,m(\psi)=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\psi(\theta,\eta)f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}\theta\mathrm{d}\eta,

where ψ(θ,η)\psi(\theta,\eta) is possibly a vector function.

A.1 Proof of Lemma 2.1

Suppose that δπ\delta_{\pi} is inadmissible and hence δ\delta^{\prime} satisfies

R(θ,η,δ)R(θ,η,δπ)R(\theta,\eta,\delta^{\prime})\leq R(\theta,\eta,\delta_{\pi}) (A.3)

for all (θ,η)(\theta,\eta) and

R(θ,η,δ)<R(θ,η,δπ) for some (θ0,η0).R(\theta,\eta,\delta^{\prime})<R(\theta,\eta,\delta_{\pi})\text{ for some }(\theta_{0},\eta_{0}). (A.4)

By (A.4), we have

p0δπ(x,s)δ(x,s)2fx(xθ0,η0)fs(sη0)dxds>0.\displaystyle\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\|\delta_{\pi}(x,s)-\delta^{\prime}(x,s)\|^{2}f_{x}(x\!\mid\!\theta_{0},\eta_{0})f_{s}(s\!\mid\!\eta_{0})\mathrm{d}x\mathrm{d}s>0.

Further we have

p0δπ(x,s)δ(x,s)2fx(xθ,η)fs(sη)dxds\displaystyle\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\|\delta_{\pi}(x,s)-\delta^{\prime}(x,s)\|^{2}f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}x\mathrm{d}s
=p0δπ(x,s)δ(x,s)2fx(xθ,η)fs(sη)fx(xθ0,η0)fs(sη0)fx(xθ0,η0)fs(sη0)dxds.\displaystyle=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\|\delta_{\pi}(x,s)-\delta^{\prime}(x,s)\|^{2}\frac{f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)}{f_{x}(x\!\mid\!\theta_{0},\eta_{0})f_{s}(s\!\mid\!\eta_{0})}f_{x}(x\!\mid\!\theta_{0},\eta_{0})f_{s}(s\!\mid\!\eta_{0})\mathrm{d}x\mathrm{d}s.

Since the ratio

fx(xθ,η)fs(sη)fx(xθ0,η0)fs(sη0)\displaystyle\frac{f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)}{f_{x}(x\!\mid\!\theta_{0},\eta_{0})f_{s}(s\!\mid\!\eta_{0})}

is continuous in (x,s)(x,s) and positive, it follows that

p0δπ(x,s)δ(x,s)2fx(xθ,η)fs(sη)dxds>0\displaystyle\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\|\delta_{\pi}(x,s)-\delta^{\prime}(x,s)\|^{2}f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}x\mathrm{d}s>0

for all (θ,η)(\theta,\eta).

Set δ′′=(δπ+δ)/2\delta^{\prime\prime}=(\delta_{\pi}+\delta^{\prime})/2. Then we have

δ′′θ2=δπθ2+δθ22δπδ24,\displaystyle\|\delta^{\prime\prime}-\theta\|^{2}=\frac{\|\delta_{\pi}-\theta\|^{2}+\|\delta^{\prime}-\theta\|^{2}}{2}-\frac{\|\delta_{\pi}-\delta^{\prime}\|^{2}}{4},

and

R(θ,η,δ′′)\displaystyle R(\theta,\eta,\delta^{\prime\prime}) =E[ηδ′′θ2]\displaystyle=E\left[\eta\|\delta^{\prime\prime}-\theta\|^{2}\right]
<(1/2)E[ηδθ2]+(1/2)E[ηδπθ2]\displaystyle<(1/2)E\left[\eta\|\delta^{\prime}-\theta\|^{2}\right]+(1/2)E\left[\eta\|\delta_{\pi}-\theta\|^{2}\right]
=12{R(θ,η,δ)+R(θ,η,δπ)}\displaystyle=\frac{1}{2}\left\{R(\theta,\eta,\delta^{\prime})+R(\theta,\eta,\delta_{\pi})\right\}
R(θ,η,δπ),\displaystyle\leq R(\theta,\eta,\delta_{\pi}),

for all (θ,η)(\theta,\eta). Recall

Δi=p0{R(θ,η,δπ)R(θ,η,δπi)}πi(θ,η)dθdη.\displaystyle\Delta_{i}=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{R(\theta,\eta,\delta_{\pi})-R(\theta,\eta,\delta_{\pi i})\right\}\pi_{i}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta.

Then we have

Δi\displaystyle\Delta_{i} p0{R(θ,η,δπ)R(θ,η,δ′′)}πi(θ,η)dθdη\displaystyle\geq\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{R(\theta,\eta,\delta_{\pi})-R(\theta,\eta,\delta^{\prime\prime})\right\}\pi_{i}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta
p0{R(θ,η,δπ)R(θ,η,δ′′)}π1(θ,η)dθdη\displaystyle\geq\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{R(\theta,\eta,\delta_{\pi})-R(\theta,\eta,\delta^{\prime\prime})\right\}\pi_{1}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta
>0\displaystyle>0

which contradicts Δi0\Delta_{i}\to 0 as ii\to\infty.

A.2 Proof of Lemma 2.2

Under the loss given by (1.2), the generalized Bayes estimator corresponding to π(θ,η)\pi(\theta,\eta) is

δπ(x,s)=p0θηfx(xθ,η)fs(sη)π(θ,η)dθdηp0ηfx(xθ,η)fs(sη)π(θ,η)dθdη=x+p0(θx)ηfx(xθ,η)fs(sη)π(θ,η)dθdηp0ηfx(xθ,η)fs(sη)π(θ,η)dθdη=x+p0θπ(θ,η)fx(xθ,η)fs(sη)dθdηp0ηfx(xθ,η)fs(sη)π(θ,η)dθdη=x+m(θπ)m(πη),\begin{split}\delta_{\pi}(x,s)&=\frac{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\theta\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}\\ &=x+\frac{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}(\theta-x)\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}\\ &=x+\frac{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\nabla_{\theta}\pi(\theta,\eta)f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}\theta\mathrm{d}\eta}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}\\ &=x+\frac{m(\nabla_{\theta}\pi)}{m(\pi\eta)},\end{split} (A.5)

where θ=(/θ1,/θ2,,/θp)\nabla_{\theta}=(\partial/\partial\theta_{1},\partial/\partial\theta_{2},\dots,\partial/\partial\theta_{p})^{\prime} and the third equality follows from the Stein (1974) identity.

A.3 Proof of Lemma 2.3

Δi=p0{E[ηδπθ2]E[ηδπiθ2]}πi(θ,η)dθdη=p0{p0{δπ(x,s)θ2δπi(x,s)θ2}fx(xθ,η)fs(sη)dxds}×ηπi(θ,η)dθdη=p0(δπ2δπi2)m(πiη)dxds2p0m(θηπi)(δπδπi)dxds=p0δπδπi2m(πiη)dxds=p0m(π)m(πη)m({πhi2})m(πhi2η)2m(πhi2η)dxds=p0m(π)m(πη)m(hi2π)m(πhi2η)2m(πhi2η)dxds,\begin{split}\Delta_{i}&=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{E\left[\eta\|\delta_{\pi}-\theta\|^{2}\right]-E\left[\eta\|\delta_{\pi i}-\theta\|^{2}\right]\right\}\pi_{i}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta\\ &=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\{\|\delta_{\pi}(x,s)-\theta\|^{2}-\|\delta_{\pi i}(x,s)-\theta\|^{2}\}f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}x\mathrm{d}s\right\}\\ &\qquad\times\eta\pi_{i}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta\\ &=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}(\|\delta_{\pi}\|^{2}-\|\delta_{\pi i}\|^{2})m(\pi_{i}\eta)\mathrm{d}x\mathrm{d}s-2\int_{\mathbb{R}^{p}}\int_{0}^{\infty}m(\theta\eta\pi_{i})^{\prime}(\delta_{\pi}-\delta_{\pi i})\mathrm{d}x\mathrm{d}s\\ &=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\|\delta_{\pi}-\delta_{\pi i}\|^{2}m(\pi_{i}\eta)\mathrm{d}x\mathrm{d}s\\ &=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(\nabla\{\pi h_{i}^{2}\})}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)\mathrm{d}x\mathrm{d}s\\ &=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(h_{i}^{2}\nabla\pi)}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)\mathrm{d}x\mathrm{d}s,\end{split} (A.6)

where the fifth equality follows from (A.5).

A.4 Proof of Lemma 2.4

The results follow from the integrals,

0η1hi2(η)dη=01i2dηη{i+log(1/η)}2+1i2dηη{i+logη}2=[i2i+log(1/η)]01+[i2i+logη]1=2i\begin{split}\int_{0}^{\infty}\eta^{-1}h_{i}^{2}(\eta)\mathrm{d}\eta&=\int_{0}^{1}\frac{i^{2}\mathrm{d}\eta}{\eta\{i+\log(1/\eta)\}^{2}}+\int_{1}^{\infty}\frac{i^{2}\mathrm{d}\eta}{\eta\{i+\log\eta\}^{2}}\\ &=\left[\frac{i^{2}}{i+\log(1/\eta)}\right]_{0}^{1}+\left[-\frac{i^{2}}{i+\log\eta}\right]_{1}^{\infty}=2i\end{split} (A.7)

and

p0πi(θ,η)dθdη=p0π(θ,η)hi2(η)dθdη=pηp/2π(ηθ2a,b)dθ0η1hi2(η)dη=1×2i=2i.\begin{split}\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\pi_{i}(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta&=\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta\mathrm{d}\eta\\ &=\int_{\mathbb{R}^{p}}\eta^{p/2}\pi(\eta\|\theta\|^{2}\!\mid\!a,b)\mathrm{d}\theta\int_{0}^{\infty}\eta^{-1}h_{i}^{2}(\eta)\mathrm{d}\eta\\ &=1\times 2i=2i.\end{split} (A.8)

A.5 Proof of Lemma 2.5

Recall δπ\delta_{\pi} is expressed as

p0θηfx(xθ,η)fs(sη)π(θ,η)dθdηp0ηfx(xθ,η)fs(sη)π(θ,η)dθdη\displaystyle\frac{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\theta\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta}

and jj-th component is given by

δπ,j=(0+0)θj{p10ηfx(xθ,η)fs(sη)π(θ,η)dθjdη}dθjp0ηfx(xθ,η)fs(sη)π(θ,η)dθdη,\displaystyle\delta_{\pi,j}=\frac{\left(\int_{-\infty}^{0}+\int_{0}^{\infty}\right)\theta_{j}\left\{\int_{\mathbb{R}^{p-1}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta_{-j}\mathrm{d}\eta\right\}\mathrm{d}\theta_{j}}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta},

where θj=(θ1,,θj1,θj+1,,θp)p1\theta_{-j}=(\theta_{1},\dots,\theta_{j-1},\theta_{j+1},\dots,\theta_{p})\in\mathbb{R}^{p-1}. Due to the existence of δπ\delta_{\pi}, the following three integrals exist and are finite for any xx and ss,

0(θj){p10ηfx(xθ,η)fs(sη)π(θ,η)dθjdη}dθj,\displaystyle\int_{-\infty}^{0}(-\theta_{j})\left\{\int_{\mathbb{R}^{p-1}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta_{-j}\mathrm{d}\eta\right\}\mathrm{d}\theta_{j}, (A.9)
0θj{p10ηfx(xθ,η)fs(sη)π(θ,η)dθjdη}dθj,\displaystyle\int_{0}^{\infty}\theta_{j}\left\{\int_{\mathbb{R}^{p-1}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta_{-j}\mathrm{d}\eta\right\}\mathrm{d}\theta_{j}, (A.10)
p0ηfx(xθ,η)fs(sη)π(θ,η)dθdη.\displaystyle\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)\mathrm{d}\theta\mathrm{d}\eta. (A.11)

As in (A.6), the integrand of Δi\Delta_{i} can be written as

δπδπi2m(πiη).\|\delta_{\pi}-\delta_{\pi i}\|^{2}m(\pi_{i}\eta).

By continuity of squared norm, it suffices to show the jj-th component of δπi\delta_{\pi i} approaches δπ,j\delta_{\pi,j} as ii\to\infty. Note

δπi,j\displaystyle\delta_{\pi{i},j} =p0θjηfx(xθ,η)fs(sη)π(θ,η)hi2(η)dθdηp0ηfx(xθ,η)fs(sη)π(θ,η)hi2(η)dθdη\displaystyle=\frac{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\theta_{j}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta\mathrm{d}\eta}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta\mathrm{d}\eta}
=p0θjηfx(xθ,η)fs(sη)π(θ,η)hi2(η)dθdηp0ηfx(xθ,η)fs(sη)π(θ,η)hi2(η)dθdη,\displaystyle=\frac{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\theta_{j}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta\mathrm{d}\eta}{\int_{\mathbb{R}^{p}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta\mathrm{d}\eta},

where the numerator is decomposed as

0(θj){p10ηfx(xθ,η)fs(sη)π(θ,η)hi2(η)dθjdη}dθj\displaystyle-\int_{-\infty}^{0}(-\theta_{j})\left\{\int_{\mathbb{R}^{p-1}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta_{-j}\mathrm{d}\eta\right\}\mathrm{d}\theta_{j}
+0θj{p10ηfx(xθ,η)fs(sη)π(θ,η)hi2(η)dθjdη}dθj.\displaystyle\qquad+\int_{0}^{\infty}\theta_{j}\left\{\int_{\mathbb{R}^{p-1}}\int_{0}^{\infty}\eta f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\pi(\theta,\eta)h_{i}^{2}(\eta)\mathrm{d}\theta_{-j}\mathrm{d}\eta\right\}\mathrm{d}\theta_{j}.

Note hi1h_{i}\leq 1 and limihi=1\lim_{i\to\infty}h_{i}=1. By the dominated convergence theorem, the two terms and the denominator converge the integrals (A.9), (A.10), (A.11) respectively, which implies that the jj-th component of δπi\delta_{\pi i} approaches δπ,j\delta_{\pi,j} as ii\to\infty.

Comment.

In Appendix A.6A.7, A.8 and A.9, there are several positive constants denoted by QiQ_{i}, CiC_{i} and TiT_{i} (for i=1,2,,i=1,2,\dots,).

The positive constants in Lemmas 2.62.8, CC, DD, EE and FF, γ1\gamma_{1} and γ2\gamma_{2}, are expressed in terms of the QQ’s and CC’s as follows.

C\displaystyle C =32Q12Q2\displaystyle=32Q_{1}^{2}Q_{2}
D\displaystyle D =Q3Q4\displaystyle=Q_{3}Q_{4}
E\displaystyle E =2C6+2C7\displaystyle=2C_{6}+2C_{7}
F\displaystyle F =2C9+2C10\displaystyle=2C_{9}+2C_{10}
γ1\displaystyle\gamma_{1} =min{C5,1/exp(4C4(1))}\displaystyle=\min\{C_{5},1/\exp(4C_{4}(1))\}
γ2\displaystyle\gamma_{2} =max{C8,exp(4C4(1))}.\displaystyle=\max\{C_{8},\exp(4C_{4}(1))\}.

A.6 Proof of Lemma 2.6

Assume b>1/2b>-1/2. By Part 1 of Lemma B.1, there exists Q1>0Q_{1}>0 such that

θθπ(θ,η)π(θ,η)=θ2ηθ(d/dr)π(ra,b)|r=ηθ2ηp/21π(ηθ2a,b)ηp/21=2{r|π(r)|π(r)}|r=ηθ2<2Q1,\begin{split}\|\theta\|\frac{\|\nabla_{\theta}\pi(\theta,\eta)\|}{\pi(\theta,\eta)}&=\|\theta\|\frac{\|2\eta\theta(\mathrm{d}/\mathrm{d}r)\pi(r\!\mid\!a,b)|_{r=\eta\|\theta\|^{2}}\|\eta^{p/2-1}}{\pi(\eta\|\theta\|^{2}\!\mid\!a,b)\eta^{p/2-1}}\\ &=2\left\{r\frac{|\pi^{\prime}(r)|}{\pi(r)}\right\}|_{r=\eta\|\theta\|^{2}}<2Q_{1},\end{split} (A.12)

for any θ\theta and η\eta.

In the integrand of (A.6), we have

|1m(πη)hi2m(πhi2η)|=(1m(πη)+him(πhi2η))|1m(πη)him(πhi2η)|=1m(πη)m(πhi2η)(m(πhi2η)m(πη)+hi)|1m(πη)m(πhi2η)hi|2m(πη)m(πhi2η)|1m(πη)m(πhi2η)hi|,\begin{split}&\left|\frac{1}{m(\pi\eta)}-\frac{h_{i}^{2}}{m(\pi h_{i}^{2}\eta)}\right|\\ &=\left(\frac{1}{\sqrt{m(\pi\eta)}}+\frac{h_{i}}{\sqrt{m(\pi h_{i}^{2}\eta)}}\right)\left|\frac{1}{\sqrt{m(\pi\eta)}}-\frac{h_{i}}{\sqrt{m(\pi h_{i}^{2}\eta)}}\right|\\ &=\frac{1}{\sqrt{m(\pi\eta)m(\pi h_{i}^{2}\eta)}}\left(\frac{\sqrt{m(\pi h_{i}^{2}\eta)}}{\sqrt{m(\pi\eta)}}+h_{i}\right)\left|1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right|\\ &\leq\frac{2}{\sqrt{m(\pi\eta)m(\pi h_{i}^{2}\eta)}}\left|1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right|,\end{split} (A.13)

where the inequality follows from the fact 0hi10\leq h_{i}\leq 1. Then

m(π)m(πη)m(hi2π)m(πhi2η)2m(πhi2η)\displaystyle\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(h_{i}^{2}\nabla\pi)}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)
=m(π(1m(πη)hi2m(πhi2η)))2m(πhi2η)\displaystyle=\left\|m\left(\nabla\pi\left(\frac{1}{m(\pi\eta)}-\frac{h_{i}^{2}}{m(\pi h_{i}^{2}\eta)}\right)\right)\right\|^{2}m(\pi h_{i}^{2}\eta)
{m(π|1m(πη)hi2m(πhi2η)|)}2m(πhi2η)\displaystyle\leq\left\{m\left(\left\|\nabla\pi\right\|\left|\frac{1}{m(\pi\eta)}-\frac{h_{i}^{2}}{m(\pi h_{i}^{2}\eta)}\right|\right)\right\}^{2}m(\pi h_{i}^{2}\eta)
4Q12{m(πθ|1m(πη)hi2m(πhi2η)|)}2m(πhi2η)\displaystyle\leq 4Q_{1}^{2}\left\{m\left(\frac{\pi}{\|\theta\|}\left|\frac{1}{m(\pi\eta)}-\frac{h_{i}^{2}}{m(\pi h_{i}^{2}\eta)}\right|\right)\right\}^{2}m(\pi h_{i}^{2}\eta)
16Q12m(πη){m(πθ|1m(πη)m(πhi2η)hi|)}2\displaystyle\leq\frac{16Q_{1}^{2}}{m(\pi\eta)}\left\{m\left(\frac{\pi}{\|\theta\|}\left|1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right|\right)\right\}^{2}
16Q12m(πη)m(πηθ2k(ηθ2))m(πηk(ηθ2){1m(πη)m(πhi2η)hi}2),\displaystyle\leq\frac{16Q_{1}^{2}}{m(\pi\eta)}m\left(\frac{\pi}{\eta\|\theta\|^{2}}k(\eta\|\theta\|^{2})\right)m\left(\frac{\pi\eta}{k(\eta\|\theta\|^{2})}\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right),

where the second, third and fourth inequality follow from (A.12), (A.13) and Cauchy-Schwarz inequality and

k(r)=r1/2I[0,1](r)+I(1,)(r).\displaystyle k(r)=r^{1/2}I_{[0,1]}(r)+I_{(1,\infty)}(r).

By Lemma B.2, there exists a constant Q2>1Q_{2}>1 such that

m(πηk(ηθ2){1m(πη)m(πhi2η)hi}2)Q2m(πη{1m(πη)m(πhi2η)hi}2).\displaystyle m\left(\frac{\pi\eta}{k(\eta\|\theta\|^{2})}\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right)\leq Q_{2}m\left(\pi\eta\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right).

Further we have

m(πη{1m(πη)m(πhi2η)hi}2)\displaystyle m\left(\pi\eta\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right) =2m(πη){1m(πηhi)m(πη)m(πη)m(πhi2η)}\displaystyle=2m(\pi\eta)\left\{1-\frac{m(\pi\eta h_{i})}{m(\pi\eta)}\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}\right\}
=2m(πη){1m(πηhi)2m(πη)m(πhi2η)}\displaystyle=2m(\pi\eta)\left\{1-\sqrt{\frac{m(\pi\eta h_{i})^{2}}{m(\pi\eta)m(\pi h_{i}^{2}\eta)}}\right\}
2m(πη){1m(πηhi)2m(πη)m(πhi2η)},\displaystyle\leq 2m(\pi\eta)\left\{1-\frac{m(\pi\eta h_{i})^{2}}{m(\pi\eta)m(\pi h_{i}^{2}\eta)}\right\},

where the inequality follows from the fact

m(πηhi)2m(πη)m(πhi2η)(0,1)\displaystyle\frac{m(\pi\eta h_{i})^{2}}{m(\pi\eta)m(\pi h_{i}^{2}\eta)}\in(0,1)

which is shown by Cauchy-Schwarz inequality. Hence we have

m(π)m(πη)m(hi2π)m(πhi2η)2m(πhi2η)32Q12Q2m(πηθ2k(ηθ2)){1m(πηhi)2m(πη)m(πhi2η)}=32Q12Q2A(x,s)Bi(x,s)\begin{split}&\left\|\frac{m(\nabla\pi)}{m(\pi\eta)}-\frac{m(h_{i}^{2}\nabla\pi)}{m(\pi h_{i}^{2}\eta)}\right\|^{2}m(\pi h_{i}^{2}\eta)\\ &\leq 32Q_{1}^{2}Q_{2}m\left(\frac{\pi}{\eta\|\theta\|^{2}}k(\eta\|\theta\|^{2})\right)\left\{1-\frac{m(\pi\eta h_{i})^{2}}{m(\pi\eta)m(\pi h_{i}^{2}\eta)}\right\}\\ &=32Q_{1}^{2}Q_{2}A(x,s)B_{i}(x,s)\end{split} (A.14)

and, by (A.6),

Δi32Q12Q2p0A(x,s)Bi(x,s)dxds.\Delta_{i}\leq 32Q_{1}^{2}Q_{2}\int_{\mathbb{R}^{p}}\int_{0}^{\infty}A(x,s)B_{i}(x,s)\mathrm{d}x\mathrm{d}s. (A.15)

Hence with C=32Q12Q2C=32Q_{1}^{2}Q_{2}, the proof follows.

In Sub-Sections A.7 and A.8, we bound A(x,s)A(x,s) and Bi(x,s)B_{i}(x,s) from above, respectively.

A.7 Proof of Lemma 2.7

By Part 2 of lemma B.1, there exists Q3>0Q_{3}>0 such that

π(θ,η)ηθ2k(ηθ2)=ηp/21π(ηθ2a,b){I[0,1](ηθ2)η1/2θ+I(1,)(ηθ2)ηθ2}Q3ηp/21π(ηθ2a+1,b~)\begin{split}\frac{\pi(\theta,\eta)}{\eta\|\theta\|^{2}}k(\eta\|\theta\|^{2})&=\eta^{p/2-1}\pi(\eta\|\theta\|^{2}\!\mid\!a,b)\left\{\frac{I_{[0,1]}(\eta\|\theta\|^{2})}{\eta^{1/2}\|\theta\|}+\frac{I_{(1,\infty)}(\eta\|\theta\|^{2})}{\eta\|\theta\|^{2}}\right\}\\ &\leq Q_{3}\eta^{p/2-1}\pi(\eta\|\theta\|^{2}\!\mid\!a+1,\tilde{b})\end{split} (A.16)

where

b~={1/2b0b1/21/2<b<0.\displaystyle\tilde{b}=\begin{cases}-1/2&b\geq 0\\ b-1/2&-1/2<b<0.\end{cases}

Let

π(θ,η)=ηp/21π(ηθ2a+1,b~).\pi_{*}(\theta,\eta)=\eta^{p/2-1}\pi(\eta\|\theta\|^{2}\!\mid\!a+1,\tilde{b}). (A.17)

Note

λ1λθ2+xθ2=11λθ(1λ)x2+λx2.\frac{\lambda}{1-\lambda}\|\theta\|^{2}+\|x-\theta\|^{2}=\frac{1}{1-\lambda}\|\theta-(1-\lambda)x\|^{2}+\lambda\|x\|^{2}. (A.18)

Integrating w.r.t. θ\theta and η\eta, we have

m(π)\displaystyle m(\pi_{*}) =sn/21cp,n010η(p+n)/21exp(ηλx2+s2)λp/2+a+1(1λ)b~B(a+2,b~+1)dλdη\displaystyle=\frac{s^{n/2-1}}{c_{p,n}}\int_{0}^{1}\int_{0}^{\infty}\eta^{(p+n)/2-1}\exp\left(-\eta\frac{\lambda\|x\|^{2}+s}{2}\right)\frac{\lambda^{p/2+a+1}(1-\lambda)^{\tilde{b}}}{B(a+2,\tilde{b}+1)}\mathrm{d}\lambda\mathrm{d}\eta
=sp/212(p+n)/2Γ((p+n)/2)cp,nB(a+2,b~+1)01λp/2+a+1(1λ)b~(1+λx2/s)(p+n)/2dλ,\displaystyle=s^{-p/2-1}\frac{2^{(p+n)/2}\Gamma((p+n)/2)}{c_{p,n}B(a+2,\tilde{b}+1)}\int_{0}^{1}\frac{\lambda^{p/2+a+1}(1-\lambda)^{\tilde{b}}}{(1+\lambda\|x\|^{2}/s)^{(p+n)/2}}\mathrm{d}\lambda,

where

cp,n=(2π)p/2Γ(n/2)2n/2.\displaystyle c_{p,n}=(2\pi)^{p/2}\Gamma(n/2)2^{n/2}. (A.19)

By the change of variables

t=(1+w)λ1+λw,dλdt=11+w1(1{w/(1+w)}t)2,t=\frac{(1+w)\lambda}{1+\lambda w},\ \frac{\mathrm{d}\lambda}{\mathrm{d}t}=\frac{1}{1+w}\frac{1}{(1-\{w/(1+w)\}t)^{2}}, (A.20)

where w=x2/sw=\|x\|^{2}/s, we have

λ=(1z)t1zt, 1λ=1t1zt, 1+λw=11zt,\displaystyle\lambda=(1-z)\frac{t}{1-zt},\ 1-\lambda=\frac{1-t}{1-zt},\ 1+\lambda w=\frac{1}{1-zt},

where z=w/(1+w)z=w/(1+w), and hence

m(π)\displaystyle m(\pi_{*}) =(1z)p/2+a+2sp/2+12(p+n)/2Γ((p+n)/2)cp,nB(a+2,b~+1)01tp/2+a+1(1t)b~(1zt)n/2ab~3dt.\displaystyle=\frac{(1-z)^{p/2+a+2}}{s^{p/2+1}}\frac{2^{(p+n)/2}\Gamma((p+n)/2)}{c_{p,n}B(a+2,\tilde{b}+1)}\int_{0}^{1}t^{p/2+a+1}(1-t)^{\tilde{b}}(1-zt)^{n/2-a-\tilde{b}-3}\mathrm{d}t.

Since a3/2<(a+1)<0-a-3/2<-(a+1)<0, we have

(1zt)a3/2(1z)a3/2for allt(0,1)\displaystyle(1-zt)^{-a-3/2}\leq(1-z)^{-a-3/2}\ \text{for all}\ t\in(0,1)

and hence

m(π)(1z)p/2+1/2sp/2+12(p+n)/2Γ((p+n)/2)cp,nB(a+2,b~+1)01tp/2+a+1(1t)b~(1zt)n/2b~3/2dt.m(\pi_{*})\leq\frac{(1-z)^{p/2+1/2}}{s^{p/2+1}}\frac{2^{(p+n)/2}\Gamma((p+n)/2)}{c_{p,n}B(a+2,\tilde{b}+1)}\int_{0}^{1}t^{p/2+a+1}(1-t)^{\tilde{b}}(1-zt)^{n/2-\tilde{b}-3/2}\mathrm{d}t.

Further, since 1zt1-zt is monotone in zz, we have

m(π)Q4sp/21(1z)p/2+1/2,m(\pi_{*})\leq Q_{4}s^{-p/2-1}(1-z)^{p/2+1/2}, (A.21)

where

Q4=2(p+n)/2Γ((p+n)/2)cp,nB(a+2,b~+1)max{B(p/2+a+2,b~+1),B(p/2+a+2,n/21/2)}.\displaystyle Q_{4}=\frac{2^{(p+n)/2}\Gamma((p+n)/2)}{c_{p,n}B(a+2,\tilde{b}+1)}\max\left\{B(p/2+a+2,\tilde{b}+1),B(p/2+a+2,n/2-1/2)\right\}.

Therefore, by (A.16), (A.17) and (A.21), we have

A(x,s)=m(π(θ,η)ηθ2k(ηθ2))Dsp/2+1(11+x2/s)p/2+1/2A(x,s)=m\left(\frac{\pi(\theta,\eta)}{\eta\|\theta\|^{2}}k(\eta\|\theta\|^{2})\right)\leq\frac{D}{s^{p/2+1}}\left(\frac{1}{1+\|x\|^{2}/s}\right)^{p/2+1/2} (A.22)

where D=Q3Q4D=Q_{3}Q_{4}, completing the proof.

A.8 Proof of Lemma 2.8

The proof is based on Lemmas A.1A.3, whose proofs are given in Subsection A.9. First we re-express Bi(x,s)B_{i}(x,s) as follows.

Lemma A.1.
Bi(x,s)=1{E[Hi(V/s)z]}2E[Hi2(V/s)z],\begin{split}B_{i}(x,s)=1-\frac{\{E[H_{i}(V/s)\!\mid\!z]\}^{2}}{E[H_{i}^{2}(V/s)\!\mid\!z]},\end{split} (A.23)

where the expected value is with respect to the probability density on v(0,)v\in(0,\infty),

f(vz)\displaystyle f(v\!\mid\!z) =v(p+n)/2ψ(z)01tp/2+a(1t)b(1zt)p/2+a+b+2exp(v2(1zt))dt,\displaystyle=\frac{v^{(p+n)/2}}{\psi(z)}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}\exp\left(-\frac{v}{2(1-zt)}\right)\mathrm{d}t, (A.24)

with normalizing constant ψ(z)\psi(z) given below in (A.38) and

Hi(η)=hi(η)i=1i+log(max(η,1/η)).H_{i}(\eta)=\frac{h_{i}(\eta)}{i}=\frac{1}{i+\log(\max(\eta,1/\eta))}. (A.25)

The behavior of the probability density ff given in (A.24) is summarized in the following lemma.

Lemma A.2.

Suppose n/2a>0n/2-a>0.

  1. 1.

    For s1s\leq 1 and for k0k\geq 0, there exist C1(k)>0C_{1}(k)>0 and C2(k)>0C_{2}(k)>0 such that

    sC1(k)0s|logv|kf(vz)dvC2(k).\displaystyle s^{-C_{1}(k)}\int_{0}^{s}|\log v|^{k}f(v\!\mid\!z)\mathrm{d}v\leq C_{2}(k). (A.26)
  2. 2.

    For s>1s>1 and for k0k\geq 0, there exists C3(k)>0C_{3}(k)>0 such that

    exp(s/4)s|logv|kf(vz)dvC3(k).\displaystyle\exp\left(s/4\right)\int_{s}^{\infty}|\log v|^{k}f(v\!\mid\!z)\mathrm{d}v\leq C_{3}(k).

It follows from Lemma A.2 that

E[|logV|kz]<C2(k)+C3(k)C4(k).E\left[|\log V|^{k}\!\mid\!z\right]<C_{2}(k)+C_{3}(k)\coloneqq C_{4}(k). (A.27)

Using Lemma A.2, {E[Hi(V/s)z]}2\{E[H_{i}(V/s)\!\mid\!z]\}^{2} and E[Hi2(V/s)z]E[H_{i}^{2}(V/s)\!\mid\!z] with Hi()H_{i}(\cdot) given in (A.25) are bounded as follows.

Lemma A.3.
  1. 1.

    There exist 0<C5<10<C_{5}<1 and C6>0C_{6}>0 such that

    {i+log(1/s)}2{E[Hi(V/s)z]}212E[logVz]i+log(1/s)C6{1+log(1/s)}2\{i+\log(1/s)\}^{2}\{E[H_{i}(V/s)\!\mid\!z]\}^{2}\geq 1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}-\frac{C_{6}}{\{1+\log(1/s)\}^{2}} (A.28)

    for all 0<s<C50<s<C_{5}, all z(0,1)z\in(0,1) and all positive integers ii.

  2. 2.

    There exists C7>0C_{7}>0 such that

    {i+log(1/s)}2E[Hi2(V/s)z]12E[logVz]i+log(1/s)+C7{1+log(1/s)}2\{i+\log(1/s)\}^{2}E[H_{i}^{2}(V/s)\!\mid\!z]\leq 1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}+\frac{C_{7}}{\{1+\log(1/s)\}^{2}} (A.29)

    for all 0<s<10<s<1, all z(0,1)z\in(0,1) and all positive integers ii.

  3. 3.

    There exist C8>1C_{8}>1 and C9>0C_{9}>0 such that

    (i+logs)2{E[Hi(V/s)z]}21+2E[logVz]i+logsC9(1+logs)2(i+\log s)^{2}\{E[H_{i}(V/s)\!\mid\!z]\}^{2}\geq 1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}-\frac{C_{9}}{(1+\log s)^{2}} (A.30)

    for all s>C8s>C_{8}, all z(0,1)z\in(0,1) and all positive integers ii.

  4. 4.

    There exists C10>0C_{10}>0 such that

    (i+logs)2E[Hi2(V/s)z]1+2E[logVz]i+logs+C10(1+logs)2(i+\log s)^{2}E[H_{i}^{2}(V/s)\!\mid\!z]\leq 1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}+\frac{C_{10}}{(1+\log s)^{2}} (A.31)

    for all s>1s>1, all z(0,1)z\in(0,1) and all positive integers ii.

Using Lemmas A.1A.3, we now complete the proof in the subintervals, (0,γ1)(0,\gamma_{1}), (γ2,)(\gamma_{2},\infty) and [γ1,γ2][\gamma_{1},\gamma_{2}], respectively.

[CASE  I]  We first bound Bi(x,s)B_{i}(x,s) for 0<s<γ10<s<\gamma_{1} where γ1\gamma_{1} is defined by

γ1=min{C5,1/exp(4C4(1))}.\gamma_{1}=\min\{C_{5},1/\exp(4C_{4}(1))\}. (A.32)

Note, for 0<s<γ10<s<\gamma_{1},

12E[logVz]i+log(1/s)12E[|logV|z]log(1/s)12C4(1)4C4(1)=12,1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}\geq 1-2\frac{E\left[|\log V|\!\mid\!z\right]}{\log(1/s)}\geq 1-\frac{2C_{4}(1)}{4C_{4}(1)}=\frac{1}{2}, (A.33)

where the second inequality follows from (A.27). Further, by Parts 1 and 2 of Lemma A.3, for 0<s<γ10<s<\gamma_{1}, we have

Bi(x,s)=1{E[Hi(V/s)z]}2E[Hi2(V/s)z]112E[logVz]i+log(1/s)C6{1+log(1/s)}212E[logVz]i+log(1/s)+C7{1+log(1/s)}2=C6+C7{1+log(1/s)}2112E[logVz]i+log(1/s)+C7{1+log(1/s)}22C6+2C7{1+log(1/s)}2\begin{split}B_{i}(x,s)&=1-\frac{\{E[H_{i}(V/s)\!\mid\!z]\}^{2}}{E[H_{i}^{2}(V/s)\!\mid\!z]}\\ &\leq 1-\frac{1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}-\frac{C_{6}}{\{1+\log(1/s)\}^{2}}}{1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}+\frac{C_{7}}{\{1+\log(1/s)\}^{2}}}\\ &=\frac{C_{6}+C_{7}}{\{1+\log(1/s)\}^{2}}\frac{1}{1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}+\frac{C_{7}}{\{1+\log(1/s)\}^{2}}}\\ &\leq\frac{2C_{6}+2C_{7}}{\{1+\log(1/s)\}^{2}}\end{split} (A.34)

where the second inequality follows from (A.33). With E=2C6+2C7E=2C_{6}+2C_{7}, the proof for 0<s<γ10<s<\gamma_{1} is complete.

[CASE  II]  Here we bound Bi(x,s)B_{i}(x,s) for s>γ2>1s>\gamma_{2}>1 where γ2\gamma_{2} is defined by

γ2=max{C8,exp(4C4(1))}.\gamma_{2}=\max\{C_{8},\exp(4C_{4}(1))\}. (A.35)

Note, for s>γ2s>\gamma_{2},

1+2E[logVz]i+logs12E[|logV|z]logs12C4(1)4C4(1)=12,1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}\geq 1-2\frac{E\left[|\log V|\!\mid\!z\right]}{\log s}\geq 1-\frac{2C_{4}(1)}{4C_{4}(1)}=\frac{1}{2}, (A.36)

where the second inequality follows from (A.27). Further, by Parts 3 and 4 of Lemma A.3, for s>γ2s>\gamma_{2}, we have

Bi(x,s)=1{E[Hi(V/s)z]}2E[Hi2(V/s)z]1+1+2E[logVz]i+logsC9(1+logs)21+2E[logVz]i+logs+C10(1+logs)2=C9+C10(1+logs)211+2E[logVz]i+logs+C10(1+logs)22C9+2C10(1+logs)2\begin{split}B_{i}(x,s)&=1-\frac{\{E[H_{i}(V/s)\!\mid\!z]\}^{2}}{E[H_{i}^{2}(V/s)\!\mid\!z]}\\ &\leq 1+\frac{1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}-\frac{C_{9}}{(1+\log s)^{2}}}{1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}+\frac{C_{10}}{(1+\log s)^{2}}}\\ &=\frac{C_{9}+C_{10}}{(1+\log s)^{2}}\frac{1}{1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}+\frac{C_{10}}{(1+\log s)^{2}}}\\ &\leq\frac{2C_{9}+2C_{10}}{(1+\log s)^{2}}\end{split} (A.37)

where the second inequality follows from (A.36). With F=2C9+2C10F=2C_{9}+2C_{10}, the proof for s>γ2s>\gamma_{2} is complete.

Also, by (2.7), Bi1B_{i}\leq 1 for all xx and ss and thus the bound for γ1sγ2\gamma_{1}\leq s\leq\gamma_{2} is 11. This completes the proof.

A.9 Proof of Lemmas in Appendix A.8

A.9.1 Proof of Lemma A.1

For

Bi(x,s)=1m(πηhi)2m(πη)m(πhi2η),\displaystyle B_{i}(x,s)=1-\frac{m(\pi\eta h_{i})^{2}}{m(\pi\eta)m(\pi h_{i}^{2}\eta)},

we re-express m(πηL)m(\pi\eta L) with

L(η)=1,hi(η), and hi2(η).\displaystyle L(\eta)=1,\ h_{i}(\eta),\text{ and }h_{i}^{2}(\eta).

Noting (A.18) and integrating w.r.t. θ\theta, we have

m(πηL)=sn/21cp,n010η(p+n)/2L(η)exp(ηλx2+s2)λp/2+a(1λ)bB(a+1,b+1)dλdη,\displaystyle m(\pi\eta L)=\frac{s^{n/2-1}}{c_{p,n}}\int_{0}^{1}\int_{0}^{\infty}\eta^{(p+n)/2}L(\eta)\exp\left(-\eta\frac{\lambda\|x\|^{2}+s}{2}\right)\frac{\lambda^{p/2+a}(1-\lambda)^{b}}{B(a+1,b+1)}\mathrm{d}\lambda\mathrm{d}\eta,

where cp,nc_{p,n} is given by (A.19). By the change of variables given in (A.20), we have

m(πηL)\displaystyle m(\pi\eta L) =sn/21(1z)p/2+a+1cp,nB(a+1,b+1)001tp/2+a(1t)b(1zt)p/2+a+b+2\displaystyle=\frac{s^{n/2-1}(1-z)^{p/2+a+1}}{c_{p,n}B(a+1,b+1)}\int_{0}^{\infty}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}
×η(p+n)/2L(η)exp(η1zts2)dηdt,\displaystyle\quad\times\eta^{(p+n)/2}L(\eta)\exp\left(-\frac{\eta}{1-zt}\frac{s}{2}\right)\mathrm{d}\eta\mathrm{d}t,

where z=w/(w+1)=x2/(x2+s)z=w/(w+1)=\|x\|^{2}/(\|x\|^{2}+s). Further, by the change of variables, v=ηsv=\eta s, we have

m(πηL)\displaystyle m(\pi\eta L) =sp/22(1z)p/2+a+1cp,nB(a+1,b+1)001tp/2+a(1t)b(1zt)p/2+a+b+2\displaystyle=\frac{s^{-p/2-2}(1-z)^{p/2+a+1}}{c_{p,n}B(a+1,b+1)}\int_{0}^{\infty}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}
×v(p+n)/2L(v/s)exp(v2(1zt))dvdt\displaystyle\qquad\times v^{(p+n)/2}L(v/s)\exp\left(-\frac{v}{2(1-zt)}\right)\mathrm{d}v\mathrm{d}t
=sp/22(1z)p/2+a+1cp,nB(a+1,b+1)ψ(z)0L(v/s)f(vz)dv\displaystyle=\frac{s^{-p/2-2}(1-z)^{p/2+a+1}}{c_{p,n}B(a+1,b+1)}\psi(z)\int_{0}^{\infty}L(v/s)f(v\!\mid\!z)\mathrm{d}v
=sp/22(1z)p/2+a+1cp,nB(a+1,b+1)ψ(z)E[L(V/s)z]\displaystyle=\frac{s^{-p/2-2}(1-z)^{p/2+a+1}}{c_{p,n}B(a+1,b+1)}\psi(z)E[L(V/s)\!\mid\!z]

where ψ(z)\psi(z) is the normalizing constant given by

ψ(z)=001tp/2+a(1t)b(1zt)p/2+a+b+2v(p+n)/2exp(v2(1zt))dvdt.\displaystyle\psi(z)=\int_{0}^{\infty}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}v^{(p+n)/2}\exp\left(-\frac{v}{2(1-zt)}\right)\mathrm{d}v\mathrm{d}t. (A.38)

The the result follows.

A.9.2 Properties of ψ(z)\psi(z) and f(vz)f(v\!\mid\!z)

We present preliminary results for Lemma A.2. We consider a function more general than ψ(z)\psi(z) given by (A.38). Let

ψ(z;j,k)=001tp/2+a(1t)b(1zt)p/2+a+b+2v(p+n)/2+(n/2a)j×exp(v2k(1zt))dvdt,\begin{split}\psi(z;j,k)&=\int_{0}^{\infty}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}v^{(p+n)/2+(n/2-a)j}\\ &\qquad\times\exp\left(-\frac{v}{2k(1-zt)}\right)\mathrm{d}v\mathrm{d}t,\end{split} (A.39)

under the conditions

n/2a>0,j>1,k>0.\displaystyle n/2-a>0,\quad j>-1,\quad k>0. (A.40)

Clearly ψ(z)\psi(z) given by (A.38) is

ψ(z)=ψ(z;0,1).\displaystyle\psi(z)=\psi(z;0,1).
Lemma A.4.

Assume the assumption (A.40). Then

0<ψ(0;j,k)< and 0<ψ(1;j,k)<.0<\psi(0;j,k)<\infty\text{ and }0<\psi(1;j,k)<\infty. (A.41)

Further

T1(j,k)ψ(z;j,k)T2(j,k),T_{1}(j,k)\leq\psi(z;j,k)\leq T_{2}(j,k), (A.42)

where

T1(j,k)\displaystyle T_{1}(j,k) =min{ψ(0;j,k),ψ(1;j,k)}\displaystyle=\min\{\psi(0;j,k),\psi(1;j,k)\}
and T2(j,k)\displaystyle\text{and }\ T_{2}(j,k) =max{ψ(0;j,k),ψ(1;j,k)}.\displaystyle=\max\{\psi(0;j,k),\psi(1;j,k)\}.
Proof.

Note

ψ(z;j,k)=Γ((p+n)/2+1+(n/2a)j){2k}(p+n)/2+1+(n/2a)j×01tp/2+a(1t)b(1zt)(n/2a)(j+1)b1dt,\begin{split}\psi(z;j,k)&=\Gamma((p+n)/2+1+(n/2-a)j)\{2k\}^{(p+n)/2+1+(n/2-a)j}\\ &\quad\times\int_{0}^{1}t^{p/2+a}(1-t)^{b}(1-zt)^{(n/2-a)(j+1)-b-1}\mathrm{d}t,\end{split} (A.43)

which is monotone in zz (either increasing or decreasing depending on the sign of (n/2a)(j+1)b1(n/2-a)(j+1)-b-1). Further we have

ψ(0;j,k)\displaystyle\psi(0;j,k) =Γ((p+n)/2+1+(n/2a)j){2k}(p+n)/2+1+(n/2a)j\displaystyle=\Gamma((p+n)/2+1+(n/2-a)j)\{2k\}^{(p+n)/2+1+(n/2-a)j}
×B(p/2+a+1,b+1),\displaystyle\qquad\times B(p/2+a+1,b+1),
ψ(1;j,k)\displaystyle\psi(1;j,k) =Γ((p+n)/2+1+(n/2a)j){2k}(p+n)/2+1+(n/2a)j\displaystyle=\Gamma((p+n)/2+1+(n/2-a)j)\{2k\}^{(p+n)/2+1+(n/2-a)j}
×B(p/2+a+1,(n/2a)(j+1)),\displaystyle\qquad\times B(p/2+a+1,(n/2-a)(j+1)),

which are positive and finite under the assumption (A.40). Thus (A.41) and (A.42) follow. ∎

Lemma A.5.

For any ϵ(0,1)\epsilon\in(0,1) and v(0,1)v\in(0,1),

f(vz)T3(ϵ)vn/2a1ϵ(b+1)\displaystyle f(v\!\mid\!z)\leq T_{3}(\epsilon)v^{n/2-a-1-\epsilon(b+1)}

where

T3(ϵ)={p+2a+2+2ϵ(b+1)}p/2+a+1+ϵ(b+1)B(p/2+a+1,(b+1)ϵ)T1(0,1).\displaystyle T_{3}(\epsilon)=\frac{\{p+2a+2+2\epsilon(b+1)\}^{p/2+a+1+\epsilon(b+1)}B(p/2+a+1,(b+1)\epsilon)}{T_{1}(0,1)}.
Proof.

Note, for ϵ(0,1)\epsilon\in(0,1),

(1t)b(1zt)p/2ab2\displaystyle(1-t)^{b}(1-zt)^{-p/2-a-b-2}
=(1t)(b+1)ϵ1(1t1zt)(b+1)(1ϵ)(1zt)p/2a1ϵ(b+1)\displaystyle=(1-t)^{(b+1)\epsilon-1}\left(\frac{1-t}{1-zt}\right)^{(b+1)(1-\epsilon)}(1-zt)^{-p/2-a-1-\epsilon(b+1)}
(1t)(b+1)ϵ1(1zt)p/2a1ϵ(b+1).\displaystyle\leq(1-t)^{(b+1)\epsilon-1}(1-zt)^{-p/2-a-1-\epsilon(b+1)}.

Also note for v(0,1)v\in(0,1), since a>1a>-1 and b>1b>-1,

v/2<1/2p/2<p/2+a+1+ϵ(b+1).\displaystyle v/2<1/2\leq p/2<p/2+a+1+\epsilon(b+1).

Then, by Lemma B.3, we have

(1zt)p/2a1ϵ(b+1)exp(v2(1zt))\displaystyle(1-zt)^{-p/2-a-1-\epsilon(b+1)}\exp\left(-\frac{v}{2(1-zt)}\right)
(p+2a+2+2ϵ(b+1)v)p/2+a+1+ϵ(b+1).\displaystyle\leq\left(\frac{p+2a+2+2\epsilon(b+1)}{v}\right)^{p/2+a+1+\epsilon(b+1)}.

Further, by Lemma A.4, ψ(z)T1(0,1)\psi(z)\leq T_{1}(0,1) for all z(0,1)z\in(0,1). Hence, by the definition of f(vz)f(v\!\mid\!z) given by (A.24), we have

f(vz)T3(ϵ)vn/2a1ϵ(b+1).\displaystyle f(v\!\mid\!z)\leq T_{3}(\epsilon)v^{n/2-a-1-\epsilon(b+1)}.

A.9.3 Proof of Lemma A.2

[Part 1]  Let

ϵ=14min(n/2ab+1,2)(0,1)\displaystyle\epsilon_{*}=\frac{1}{4}\min\left(\frac{n/2-a}{b+1},2\right)\in(0,1)

in Lemma A.5. Then we have

C1(0)n/2aϵ(b+1)=n/2a4(4min{1,2b+1n/2a})>0\displaystyle C_{1}(0)\coloneqq n/2-a-\epsilon_{*}(b+1)=\frac{n/2-a}{4}\left(4-\min\left\{1,2\frac{b+1}{n/2-a}\right\}\right)>0

and hence

0sf(vz)dvT3(ϵ)C1(0)sC1(0)=C2(0)sC1(0),\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v\leq\frac{T_{3}(\epsilon_{*})}{C_{1}(0)}s^{C_{1}(0)}=C_{2}(0)s^{C_{1}(0)}, (A.44)

where C2(0)C_{2}(0) is defined by C2(0)=T3(ϵ)/C1(0)C_{2}(0)=T_{3}(\epsilon_{*})/C_{1}(0).

For k>0k>0, by Part 1 of Lemma B.6, we have

|logv|k(4kn/2a)kv(n/2a)/4.\displaystyle|\log v|^{k}\leq\left(\frac{4k}{n/2-a}\right)^{k}v^{-(n/2-a)/4}.

For k>0k>0, we have

C1(k)\displaystyle C_{1}(k) n/2aϵ(b+1)14(n/2a)\displaystyle\coloneqq n/2-a-\epsilon_{*}(b+1)-\frac{1}{4}(n/2-a)
=(n/2a)(3414min{1,2b+1n/2a})>0.\displaystyle=(n/2-a)\left(\frac{3}{4}-\frac{1}{4}\min\left\{1,2\frac{b+1}{n/2-a}\right\}\right)>0.

Then, for k>0k>0,

0s|logv|kf(vz)dvC2(k)sC1(k),\int_{0}^{s}|\log v|^{k}f(v\!\mid\!z)\mathrm{d}v\leq C_{2}(k)s^{C_{1}(k)}, (A.45)

where C2(k)C_{2}(k) is defined by

C2(k)=T3(ϵ)C1(k)(4kn/2a)k.\displaystyle C_{2}(k)=\frac{T_{3}(\epsilon_{*})}{C_{1}(k)}\left(\frac{4k}{n/2-a}\right)^{k}.

By (A.44) and (A.45), Part 1 follows.

[Part 2]  Note, for vsv\geq s,

exp(v2(1zt))\displaystyle\exp\left(-\frac{v}{2(1-zt)}\right) =exp(v4(1zt))exp(v4(1zt))\displaystyle=\exp\left(-\frac{v}{4(1-zt)}\right)\exp\left(-\frac{v}{4(1-zt)}\right)
exp(v4(1zt))exp(v4)\displaystyle\leq\exp\left(-\frac{v}{4(1-zt)}\right)\exp\left(-\frac{v}{4}\right)
exp(v4(1zt))exp(s4).\displaystyle\leq\exp\left(-\frac{v}{4(1-zt)}\right)\exp\left(-\frac{s}{4}\right).

For k=0k=0, by Lemma A.4, we have

exp(s/4)sf(vz)dv\displaystyle\exp(s/4)\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v
sv(p+n)/2ψ(z;0,1)01tp/2+a(1t)b(1zt)p/2+a+b+2exp(v4(1zt))dtdv\displaystyle\leq\int_{s}^{\infty}\frac{v^{(p+n)/2}}{\psi(z;0,1)}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}\exp\left(-\frac{v}{4(1-zt)}\right)\mathrm{d}t\mathrm{d}v
ψ(z,0,2)ψ(z;0,1)T2(0,2)T1(0,1)C3(0),\displaystyle\leq\frac{\psi(z,0,2)}{\psi(z;0,1)}\leq\frac{T_{2}(0,2)}{T_{1}(0,1)}\coloneqq C_{3}(0),

where the third inequality follows from Lemma A.4.

For k>0k>0, note by Part 2,

|logv|k(2kn/2a)k(v(n/2a)/2+v(n/2a)/2).|\log v|^{k}\leq\left(\frac{2k}{n/2-a}\right)^{k}\left(v^{(n/2-a)/2}+v^{-(n/2-a)/2}\right). (A.46)

Then we have

exp(s/4)s|logv|kf(vz)dv\displaystyle\exp(s/4)\int_{s}^{\infty}|\log v|^{k}f(v\!\mid\!z)\mathrm{d}v
s(2kn/2a)k(v(n/2a)/2+v(n/2a)/2)\displaystyle\leq\int_{s}^{\infty}\left(\frac{2k}{n/2-a}\right)^{k}\left(v^{(n/2-a)/2}+v^{-(n/2-a)/2}\right)
×v(p+n)/2ψ(z;0,1)01tp/2+a(1t)b(1zt)p/2+a+b+2exp(v4(1zt))dtdv\displaystyle\quad\times\frac{v^{(p+n)/2}}{\psi(z;0,1)}\int_{0}^{1}\frac{t^{p/2+a}(1-t)^{b}}{(1-zt)^{p/2+a+b+2}}\exp\left(-\frac{v}{4(1-zt)}\right)\mathrm{d}t\mathrm{d}v
(2kn/2a)kψ(z,1/2,2)+ψ(z,1/2,2)ψ(z;0,1)\displaystyle\leq\left(\frac{2k}{n/2-a}\right)^{k}\frac{\psi(z,-1/2,2)+\psi(z,1/2,2)}{\psi(z;0,1)}
(2kn/2a)kT2(1/2,2)+T2(1/2,2)T1(0,1)\displaystyle\leq\left(\frac{2k}{n/2-a}\right)^{k}\frac{T_{2}(-1/2,2)+T_{2}(1/2,2)}{T_{1}(0,1)}
C3(k)\displaystyle\coloneqq C_{3}(k)

where the third inequality follows from Lemma A.4. This completes the proof.

A.9.4 Proof of Lemma A.3

[Part 1]  Assume s<1s<1 equivalently log(1/s)>0\log(1/s)>0. Then by Lemma B.4, we have

{i+log(1/s)}E[Hi(V/s)z]\displaystyle\{i+\log(1/s)\}E\left[H_{i}(V/s)\!\mid\!z\right]
=0si+log(1/s)i+log(s/v)f(vz)dv+si+log(1/s)i+log(v/s)f(vz)dv\displaystyle=\int_{0}^{s}\frac{i+\log(1/s)}{i+\log(s/v)}f(v\!\mid\!z)\mathrm{d}v+\int_{s}^{\infty}\frac{i+\log(1/s)}{i+\log(v/s)}f(v\!\mid\!z)\mathrm{d}v
si+log(1/s)i+log(v/s)f(vz)dv\displaystyle\geq\int_{s}^{\infty}\frac{i+\log(1/s)}{i+\log(v/s)}f(v\!\mid\!z)\mathrm{d}v
s(1logvi+log(1/s)|logv|3{i+log(1/s)}2)f(vz)dv\displaystyle\geq\int_{s}^{\infty}\left(1-\frac{\log v}{i+\log(1/s)}-\frac{|\log v|^{3}}{\{i+\log(1/s)\}^{2}}\right)f(v\!\mid\!z)\mathrm{d}v
10sf(vz)dvE[logVz]i+log(1/s)0s|logv|f(vz)dvi+log(1/s)E[|logV|3z]{i+log(1/s)}2.\displaystyle\geq 1-\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v-\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}-\frac{\int_{0}^{s}|\log v|f(v\!\mid\!z)\mathrm{d}v}{i+\log(1/s)}-\frac{E\left[|\log V|^{3}\!\mid\!z\right]}{\{i+\log(1/s)\}^{2}}.

By Lemma A.2, there exists T4>0T_{4}>0 such that

0sf(vz)dv+0s|logv|f(vz)dvi+log(1/s)+E[|logV|3z]{i+log(1/s)}2T4{1+log(1/s)}2\displaystyle\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v+\frac{\int_{0}^{s}|\log v|f(v\!\mid\!z)\mathrm{d}v}{i+\log(1/s)}+\frac{E\left[|\log V|^{3}\!\mid\!z\right]}{\{i+\log(1/s)\}^{2}}\leq\frac{T_{4}}{\{1+\log(1/s)\}^{2}}

for all s(0,1)s\in(0,1) and hence

{i+log(1/s)}E[Hi(V/s)z]g(s,z;i)\{i+\log(1/s)\}E\left[H_{i}(V/s)\!\mid\!z\right]\geq g(s,z;i) (A.47)

where

g(s,z;i)=1E[logVz]i+log(1/s)T4{1+log(1/s)}2.g(s,z;i)=1-\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}-\frac{T_{4}}{\{1+\log(1/s)\}^{2}}. (A.48)

Further

|E[logVz]|i+log(1/s)<E[|logV|z]1+log(1/s)C4(1)1+log(1/s)\frac{|E\left[\log V\!\mid\!z\right]|}{i+\log(1/s)}<\frac{E\left[|\log V|\!\mid\!z\right]}{1+\log(1/s)}\leq\frac{C_{4}(1)}{1+\log(1/s)} (A.49)

and hence

g(s,z;i)0,\displaystyle g(s,z;i)\geq 0,

for all s<C5s<C_{5} where

C5=1/exp(C4(1)+T4).C_{5}=1/\exp(C_{4}(1)+T_{4}). (A.50)

Consider {g(s,z;i)}2\{g(s,z;i)\}^{2} for all s<C5s<C_{5}. Then, by (A.48) and (A.49),

{g(s,z;i)}2\displaystyle\{g(s,z;i)\}^{2} 12E[logVz]i+log(1/s)+2T4E[logVz]{1+log(1/s)}2{i+log(1/s)}2T4{1+log(1/s)}2\displaystyle\geq 1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}+\frac{2T_{4}E\left[\log V\!\mid\!z\right]}{\{1+\log(1/s)\}^{2}\{i+\log(1/s)\}}-\frac{2T_{4}}{\{1+\log(1/s)\}^{2}}
12E[logVz]i+log(1/s)C6{1+log(1/s)}2,\displaystyle\geq 1-2\frac{E\left[\log V\!\mid\!z\right]}{i+\log(1/s)}-\frac{C_{6}}{\{1+\log(1/s)\}^{2}},

where

C6=2T4{C4(1)+1}.\displaystyle C_{6}=2T_{4}\{C_{4}(1)+1\}.

This completes the proof for Part 1.

[Part 2]  Assume s<1s<1 equivalently log(1/s)>0\log(1/s)>0. We consider E[Hi2(V/s)z]E\left[H_{i}^{2}(V/s)\!\mid\!z\right] given by

E[Hi2(V/s)z]=0sf(vz){i+log(s/v)}2dv+sf(vz){i+log(v/s)}2dv.E\left[H_{i}^{2}(V/s)\!\mid\!z\right]=\int_{0}^{s}\frac{f(v\!\mid\!z)}{\{i+\log(s/v)\}^{2}}\mathrm{d}v+\int_{s}^{\infty}\frac{f(v\!\mid\!z)}{\{i+\log(v/s)\}^{2}}\mathrm{d}v. (A.51)

Note

0sf(vz){i+log(s/v)}2dv1i20sf(vz)dv{1+log(1/s)}2{i+log(1/s)}20sf(vz)dv={1+log(1/s)}40sf(vz)dv{i+log(1/s)}2{1+log(1/s)}2.\begin{split}\int_{0}^{s}\frac{f(v\!\mid\!z)}{\{i+\log(s/v)\}^{2}}\mathrm{d}v&\leq\frac{1}{i^{2}}\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v\\ &\leq\frac{\left\{1+\log(1/s)\right\}^{2}}{\{i+\log(1/s)\}^{2}}\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v\\ &=\frac{\left\{1+\log(1/s)\right\}^{4}\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v}{\{i+\log(1/s)\}^{2}\left\{1+\log(1/s)\right\}^{2}}.\end{split} (A.52)

In the numerator above, by Lemma A.2, there exists T5>0T_{5}>0 such that

{1+log(1/s)}40sf(vz)dvT5\left\{1+\log(1/s)\right\}^{4}\int_{0}^{s}f(v\!\mid\!z)\mathrm{d}v\leq T_{5} (A.53)

for all s(0,1)s\in(0,1). Further, by Lemma B.4, we have

{i+log(1/s)}2sf(vz){i+log(v/s)}2dvs(12logvi+log(1/s)+4j=26|logv|j{i+log(1/s)}2)f(vz)dv0(12logvi+log(1/s)+4j=26|logv|j{i+log(1/s)}2)f(vz)dv=12E[logVz]i+log(1/s)+4j=26C4(j){i+log(1/s)}2.\begin{split}&\{i+\log(1/s)\}^{2}\int_{s}^{\infty}\frac{f(v\!\mid\!z)}{\{i+\log(v/s)\}^{2}}\mathrm{d}v\\ &\leq\int_{s}^{\infty}\left(1-\frac{2\log v}{i+\log(1/s)}+4\frac{\sum_{j=2}^{6}|\log v|^{j}}{\{i+\log(1/s)\}^{2}}\right)f(v\!\mid\!z)\mathrm{d}v\\ &\leq\int_{0}^{\infty}\left(1-\frac{2\log v}{i+\log(1/s)}+4\frac{\sum_{j=2}^{6}|\log v|^{j}}{\{i+\log(1/s)\}^{2}}\right)f(v\!\mid\!z)\mathrm{d}v\\ &=1-2\frac{E[\log V\!\mid\!z]}{i+\log(1/s)}+4\frac{\sum_{j=2}^{6}C_{4}(j)}{\{i+\log(1/s)\}^{2}}.\end{split} (A.54)

By (A.51) – (A.54) and Lemma A.2, we have

{i+log(1/s)}2E[Hi2(V/s)z]12E[logVz]i+log(1/s)+C7{1+log(1/s)}2,{\{i+\log(1/s)\}^{2}}E\left[H_{i}^{2}(V/s)\!\mid\!z\right]\leq 1-2\frac{E[\log V\!\mid\!z]}{i+\log(1/s)}+\frac{C_{7}}{\{1+\log(1/s)\}^{2}}, (A.55)

for all s(0,1)s\in(0,1), where

C7=T5+4j=26C4(j).\displaystyle C_{7}=T_{5}+4\sum_{j=2}^{6}C_{4}(j).

This completes the proof for Part 2.

[Part 3]  Assume s>1s>1 equivalently logs>0\log s>0. Then by Lemma B.5, we have

{i+logs}E[Hi(V/s)z]\displaystyle\{i+\log s\}E\left[H_{i}(V/s)\!\mid\!z\right]
=0si+logsi+log(s/v)f(vz)dv+si+logsi+log(v/s)f(vz)dv\displaystyle=\int_{0}^{s}\frac{i+\log s}{i+\log(s/v)}f(v\!\mid\!z)\mathrm{d}v+\int_{s}^{\infty}\frac{i+\log s}{i+\log(v/s)}f(v\!\mid\!z)\mathrm{d}v
0si+logsi+log(s/v)f(vz)dv\displaystyle\geq\int_{0}^{s}\frac{i+\log s}{i+\log(s/v)}f(v\!\mid\!z)\mathrm{d}v
0s(1+logvi+logs|logv|3(i+logs)2)f(vz)dv\displaystyle\geq\int_{0}^{s}\left(1+\frac{\log v}{i+\log s}-\frac{|\log v|^{3}}{(i+\log s)^{2}}\right)f(v\!\mid\!z)\mathrm{d}v
1sf(vz)dv+E[logVz]i+logss|logv|f(vz)dvi+logsE[|logV|3z](i+logs)2.\displaystyle\geq 1-\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v+\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}-\frac{\int_{s}^{\infty}|\log v|f(v\!\mid\!z)\mathrm{d}v}{i+\log s}-\frac{E\left[|\log V|^{3}\!\mid\!z\right]}{(i+\log s)^{2}}.

By Lemma A.2, there exists T6>0T_{6}>0 such that

sf(vz)dv+s|logv|f(vz)dvi+logs+E[|logV|3z](i+logs)2T6(1+logs)2,\displaystyle\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v+\frac{\int_{s}^{\infty}|\log v|f(v\!\mid\!z)\mathrm{d}v}{i+\log s}+\frac{E\left[|\log V|^{3}\!\mid\!z\right]}{(i+\log s)^{2}}\leq\frac{T_{6}}{(1+\log s)^{2}},

for all s(1,)s\in(1,\infty) and hence

(i+logs)E[Hi(V/s)z]g(s,z;i)(i+\log s)E\left[H_{i}(V/s)\!\mid\!z\right]\geq g(s,z;i) (A.56)

where

g(s,z;i)=1+E[logVz]i+logsT6(1+logs)2.g(s,z;i)=1+\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}-\frac{T_{6}}{(1+\log s)^{2}}. (A.57)

Further, by (A.49), we have

g(s,z;i)0,\displaystyle g(s,z;i)\geq 0,

for all s>C8s>C_{8} where

C8=exp(C4(1)+T6).C_{8}=\exp(C_{4}(1)+T_{6}). (A.58)

Consider {g(s,z;i)}2\{g(s,z;i)\}^{2} for all s>C8s>C_{8}. Then, by (A.48) and (A.49),

{g(s,z;i)}2\displaystyle\{g(s,z;i)\}^{2} 1+2E[logVz]i+logs2T6E[logVz](1+logs)2(i+logs)2T6(1+logs)2\displaystyle\geq 1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}-\frac{2T_{6}E\left[\log V\!\mid\!z\right]}{(1+\log s)^{2}(i+\log s)}-\frac{2T_{6}}{(1+\log s)^{2}}
1+2E[logVz]i+logsC9(1+logs)2,\displaystyle\geq 1+2\frac{E\left[\log V\!\mid\!z\right]}{i+\log s}-\frac{C_{9}}{(1+\log s)^{2}},

where

C9=2T6{C4(1)+1}.\displaystyle C_{9}=2T_{6}\{C_{4}(1)+1\}.

This completes the proof for Part 3.

[Part 4]  Assume s>1s>1 equivalently logs>0\log s>0. We consider E[Hi2(V/s)z]E\left[H_{i}^{2}(V/s)\!\mid\!z\right] given by

E[Hi2(V/s)z]=0sf(vz){i+log(s/v)}2dv+sf(vz){i+log(v/s)}2dv.E\left[H_{i}^{2}(V/s)\!\mid\!z\right]=\int_{0}^{s}\frac{f(v\!\mid\!z)}{\{i+\log(s/v)\}^{2}}\mathrm{d}v+\int_{s}^{\infty}\frac{f(v\!\mid\!z)}{\{i+\log(v/s)\}^{2}}\mathrm{d}v. (A.59)

Note

sf(vz){i+log(v/s)}2dv1i2sf(vz)dv(1+logs)2(i+logs)2sf(vz)dv=(1+logs)4sf(vz)dv(1+logs)2(i+logs)2.\begin{split}\int_{s}^{\infty}\frac{f(v\!\mid\!z)}{\{i+\log(v/s)\}^{2}}\mathrm{d}v&\leq\frac{1}{i^{2}}\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v\\ &\leq\frac{(1+\log s)^{2}}{(i+\log s)^{2}}\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v\\ &=\frac{(1+\log s)^{4}\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v}{(1+\log s)^{2}(i+\log s)^{2}}.\end{split} (A.60)

In the numerator above, by Lemma A.2, there exists T7>0T_{7}>0 such that

(1+logs)4sf(vz)dvT7(1+\log s)^{4}\int_{s}^{\infty}f(v\!\mid\!z)\mathrm{d}v\leq T_{7} (A.61)

for all s(1,)s\in(1,\infty). Further, by Lemma B.5, we have

(i+logs)20s(1+2logvi+logs+4j=26|logv|j(i+logs)2)f(vz)dv0(1+2logvi+logs+4j=26|logv|j(i+logs)2)f(vz)dv=1+2E[logVz]i+logs+4j=26E[|logV|jz](i+logs)2.\begin{split}&(i+\log s)^{2}\int_{0}^{s}\left(1+\frac{2\log v}{i+\log s}+4\frac{\sum_{j=2}^{6}|\log v|^{j}}{(i+\log s)^{2}}\right)f(v\!\mid\!z)\mathrm{d}v\\ &\leq\int_{0}^{\infty}\left(1+\frac{2\log v}{i+\log s}+4\frac{\sum_{j=2}^{6}|\log v|^{j}}{(i+\log s)^{2}}\right)f(v\!\mid\!z)\mathrm{d}v\\ &=1+2\frac{E[\log V\!\mid\!z]}{i+\log s}+4\frac{\sum_{j=2}^{6}E[|\log V|^{j}\!\mid\!z]}{(i+\log s)^{2}}.\end{split} (A.62)

By (A.59) – (A.62) and Lemma A.2, we have

(i+logs)2E[Hi2(V/s)z]1+2E[logVz]i+logs+C10(1+logs)2(i+\log s)^{2}E\left[H_{i}^{2}(V/s)\!\mid\!z\right]\leq 1+2\frac{E[\log V\!\mid\!z]}{i+\log s}+\frac{C_{10}}{(1+\log s)^{2}} (A.63)

for all s(1,)s\in(1,\infty), where

C10=T7+4j=26C4(j).\displaystyle C_{10}=T_{7}+4\sum_{j=2}^{6}C_{4}(j).

This completes the proof for Part 4.

Appendix B Preliminary results for lemmas in Appendix A

B.1 Properties of π(ra,b)\pi(r\!\mid\!a,b)

Lemma B.1.
  1. 1.

    There exists Q1Q_{1} such that

    r|π(ra,b)|π(ra,b)<Q1\displaystyle r\frac{|\pi^{\prime}(r\!\mid\!a,b)|}{\pi(r\!\mid\!a,b)}<Q_{1}

    for all r0r\geq 0.

  2. 2.

    Assume b>1/2b>-1/2. There exists Q3Q_{3} such that

    π(ra,b){r1/2I[0,1](r)+r1I(1,)(r)}<Q3π(ra+1,b~)\displaystyle\pi(r\!\mid\!a,b)\{r^{-1/2}I_{[0,1]}(r)+r^{-1}I_{(1,\infty)}(r)\}<Q_{3}\pi(r\!\mid\!a+1,\tilde{b})

    where b~={1/2b0b1/21/2<b<0.\displaystyle\tilde{b}=\begin{cases}-1/2&b\geq 0\\ b-1/2&-1/2<b<0.\end{cases}

Proof.

By the change of variables ξ=λ/(1λ)\xi=\lambda/(1-\lambda), π(ra,b)\pi(r\!\mid\!a,b) is given by

π(ra,b)=01(2πξ)p/2exp(r2ξ)ξb(1+ξ)ab2B(a+1,b+1)dξ.\pi(r\!\mid\!a,b)=\int_{0}^{\infty}\frac{1}{(2\pi\xi)^{p/2}}\exp\left(-\frac{r}{2\xi}\right)\frac{\xi^{b}(1+\xi)^{-a-b-2}}{B(a+1,b+1)}\mathrm{d}\xi.

Note that

limξ0ξp/2ξb(1+ξ)ab2ξp/2+b=1,\lim_{\xi\to 0}\frac{\xi^{-p/2}\xi^{b}(1+\xi)^{-a-b-2}}{\xi^{-p/2+b}}=1, (B.1)

and

limξξp/2ξb(1+ξ)ab2ξp/2a2=1.\lim_{\xi\to\infty}\frac{\xi^{-p/2}\xi^{b}(1+\xi)^{-a-b-2}}{\xi^{-p/2-a-2}}=1. (B.2)

In the following, f(r)g(r)f(r)\approx g(r) stands for limf(r)/g(r)=1\lim f(r)/g(r)=1 as r0r\to 0 or rr\to\infty. By a standard Tauberian Theorem with (B.1), we have

{(2π)p/2B(a+1,b+1)}π(ra,b)Γ(p/2+a+1)(2/r)p/2+a+1\{(2\pi)^{p/2}B(a+1,b+1)\}\pi(r\!\mid\!a,b)\approx\Gamma(p/2+a+1)(2/r)^{p/2+a+1} (B.3)

as rr\to\infty. Further, by the Tauberian Theorem with (B.2), we have, as r0r\to 0,

{(2π)p/2B(a+1,b+1)}π(ra,b)Γ(p/2b1)(2/r)p/2b1\{(2\pi)^{p/2}B(a+1,b+1)\}\pi(r\!\mid\!a,b)\approx\Gamma(p/2-b-1)(2/r)^{p/2-b-1} (B.4)

for 1<b<p/21-1<b<p/2-1;

{(2π)p/2B(a+1,b+1)}π(ra,b)log(1/r)\{(2\pi)^{p/2}B(a+1,b+1)\}\pi(r\!\mid\!a,b)\approx\log(1/r) (B.5)

for b=p/21b=p/2-1; and

{(2π)p/2B(a+1,b+1)}π(0a,b)=B(p/2+a+1,bp/2+1)B(a+1,b+1)\{(2\pi)^{p/2}B(a+1,b+1)\}\pi(0\!\mid\!a,b)=\frac{B(p/2+a+1,b-p/2+1)}{B(a+1,b+1)} (B.6)

for b>p/21b>p/2-1. The derivative of π(ra,b)\pi(r\!\mid\!a,b) is

2π(ra,b)=01(2π)p/2ξp/2+1exp(r2ξ)ξb(1+ξ)ab2B(a+1,b+1)dξ.-2\pi^{\prime}(r\!\mid\!a,b)=\int_{0}^{\infty}\frac{1}{(2\pi)^{p/2}\xi^{p/2+1}}\exp\left(-\frac{r}{2\xi}\right)\frac{\xi^{b}(1+\xi)^{-a-b-2}}{B(a+1,b+1)}\mathrm{d}\xi.

Similarly, we have

{2(2π)p/2B(a+1,b+1)}π(ra,b)Γ(p/2+a+2)(2/r)p/2+a+2\displaystyle\{-2(2\pi)^{p/2}B(a+1,b+1)\}\pi^{\prime}(r\!\mid\!a,b)\approx\Gamma(p/2+a+2)(2/r)^{p/2+a+2}

as rr\to\infty. Further, as r0r\to 0,

{2(2π)p/2B(a+1,b+1)}π(ra,b)Γ(p/2b)(2/r)p/2b\displaystyle\{-2(2\pi)^{p/2}B(a+1,b+1)\}\pi^{\prime}(r\!\mid\!a,b)\approx\Gamma(p/2-b)(2/r)^{p/2-b}

for 1<b<p/2-1<b<p/2;

{2(2π)p/2B(a+1,b+1)}π(ra,b)log(1/r)\displaystyle\{-2(2\pi)^{p/2}B(a+1,b+1)\}\pi^{\prime}(r\!\mid\!a,b)\approx\log(1/r)

for b=p/2b=p/2; and

{2(2π)p/2B(a+1,b+1)}π(ra,b)|r=0=B(p/2+a+2,bp/2)B(a+1,b+1)\displaystyle\{-2(2\pi)^{p/2}B(a+1,b+1)\}\pi^{\prime}(r\!\mid\!a,b)|_{r=0}=\frac{B(p/2+a+2,b-p/2)}{B(a+1,b+1)}

for b>p/2b>p/2. Hence

limrrπ(ra,b)π(ra,b)=(p/2+a+1)limr0rπ(ra,b)π(ra,b)={(p/21b)1<b<p/210bp/21,\begin{split}\lim_{r\to\infty}r\frac{\pi^{\prime}(r\!\mid\!a,b)}{\pi(r\!\mid\!a,b)}&=-(p/2+a+1)\\ \lim_{r\to 0}r\frac{\pi^{\prime}(r\!\mid\!a,b)}{\pi(r\!\mid\!a,b)}&=\begin{cases}-(p/2-1-b)&-1<b<p/2-1\\ 0&b\geq p/2-1,\end{cases}\end{split} (B.7)

which completes the proof of Part 1.

Part 2 follows from (B.3)–(B.6). ∎

Lemma B.2.

Let

k(r)=r1/2I[0,1](r)+I(1,)(r).\displaystyle k(r)=r^{1/2}I_{[0,1]}(r)+I_{(1,\infty)}(r).

Then we have

m(π(θ,η)ηk(ηθ2){1m(πη)m(πhi2η)hi}2)\displaystyle m\left(\frac{\pi(\theta,\eta)\eta}{k(\eta\|\theta\|^{2})}\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right)
Q2m(π(θ,η)η{1m(πη)m(πhi2η)hi}2)\displaystyle\leq Q_{2}m\left(\pi(\theta,\eta)\eta\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right)

where

Q2=01π(ra,b)rp/23/2dr01π(ra,b)rp/21dr.\displaystyle Q_{2}=\frac{\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2-3/2}\mathrm{d}r}{\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2-1}\mathrm{d}r}.
Proof.

Note

m(π(θ,η)ηk(ηθ2){1m(πη)m(πhi2η)hi}2)\displaystyle m\left(\frac{\pi(\theta,\eta)\eta}{k(\eta\|\theta\|^{2})}\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}\right) (B.8)
=0pπ(θ,η)ηk(ηθ2){1m(πη)m(πhi2η)hi}2fx(xθ,η)fs(sη)dθdη\displaystyle=\int_{0}^{\infty}\int_{\mathbb{R}^{p}}\frac{\pi(\theta,\eta)\eta}{k(\eta\|\theta\|^{2})}\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}f_{x}(x\!\mid\!\theta,\eta)f_{s}(s\!\mid\!\eta)\mathrm{d}\theta\mathrm{d}\eta
=0(pπ(θ,η)ηk(ηθ2)fx(xθ,η)dθ){1m(πη)m(πhi2η)hi}2fs(sη)dη.\displaystyle=\int_{0}^{\infty}\left(\int_{\mathbb{R}^{p}}\frac{\pi(\theta,\eta)\eta}{k(\eta\|\theta\|^{2})}f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta\right)\left\{1-\frac{\sqrt{m(\pi\eta)}}{\sqrt{m(\pi h_{i}^{2}\eta)}}h_{i}\right\}^{2}f_{s}(s\!\mid\!\eta)\mathrm{d}\eta.

The integrand in parentheses can be decomposed as

pπ(θ,η)ηk(ηθ2)fx(xθ,η)dθ=ηθ21π(θ,η)ηη1/2θfx(xθ,η)dθ+ηθ2>1π(θ,η)ηfx(xθ,η)dθ.\begin{split}&\int_{\mathbb{R}^{p}}\frac{\pi(\theta,\eta)\eta}{k(\eta\|\theta\|^{2})}f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta\\ &=\int_{\eta\|\theta\|^{2}\leq 1}\frac{\pi(\theta,\eta)\eta}{\eta^{1/2}\|\theta\|}f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta+\int_{\eta\|\theta\|^{2}>1}\pi(\theta,\eta)\eta f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta.\end{split} (B.9)

In the first term of (B.9), we have

ηθ21π(θ,η)ηη1/2θfx(xθ,η)dθ=ηθ21ηp/2π(ηθ2a,b)η1/2θfx(xθ,η)dθ=ηp/2μ21π(μ2a,b)μ1(2π)p/2exp(μη1/2x22)dμ.\begin{split}&\int_{\eta\|\theta\|^{2}\leq 1}\frac{\pi(\theta,\eta)\eta}{\eta^{1/2}\|\theta\|}f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta\\ &=\int_{\eta\|\theta\|^{2}\leq 1}\frac{\eta^{p/2}\pi(\eta\|\theta\|^{2}\!\mid\!a,b)}{\eta^{1/2}\|\theta\|}f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta\\ &=\eta^{p/2}\int_{\|\mu\|^{2}\leq 1}\frac{\pi(\|\mu\|^{2}\!\mid\!a,b)}{\|\mu\|}\frac{1}{(2\pi)^{p/2}}\exp\left(-\frac{\|\mu-\eta^{1/2}x\|^{2}}{2}\right)\mathrm{d}\mu.\end{split} (B.10)

Note μ2\|\mu\|^{2} may be regarded as a non-central chi-square random variable with pp degrees of freedom and ηx2\eta\|x\|^{2} non-centrality parameter. Let

aj(ηx2)=1Γ(p/2+j)2p/2+j(ηz2/2)jj!exp(ηz2/2).\displaystyle a_{j}(\eta\|x\|^{2})=\frac{1}{\Gamma(p/2+j)2^{p/2+j}}\frac{(\eta\|z\|^{2}/2)^{j}}{j!}\exp(-\eta\|z\|^{2}/2).

Then we have

μ21π(μ2a,b)μ1(2π)p/2exp(μη1/2x22)dμ=j=0aj(ηx2)01π(ra,b)rp/2+j11/2dr.\begin{split}&\int_{\|\mu\|^{2}\leq 1}\frac{\pi(\|\mu\|^{2}\!\mid\!a,b)}{\|\mu\|}\frac{1}{(2\pi)^{p/2}}\exp\left(-\frac{\|\mu-\eta^{1/2}x\|^{2}}{2}\right)\mathrm{d}\mu\\ &=\sum_{j=0}^{\infty}a_{j}(\eta\|x\|^{2})\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2+j-1-1/2}\mathrm{d}r.\end{split} (B.11)

By the correlation inequality, we have

01π(ra,b)rp/2+j11/2dr01π(ra,b)rp/23/2dr01π(ra,b)rp/21dr01π(ra,b)rp/21+jdr=Q201π(ra,b)rp/21+jdr\begin{split}&\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2+j-1-1/2}\mathrm{d}r\\ &\leq\frac{\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2-3/2}\mathrm{d}r}{\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2-1}\mathrm{d}r}\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2-1+j}\mathrm{d}r\\ &=Q_{2}\int_{0}^{1}\pi(r\!\mid\!a,b)r^{p/2-1+j}\mathrm{d}r\end{split} (B.12)

for j0j\geq 0, where Q2Q_{2} is greater than 11 by definition. By (B.12),

ηθ21π(θ,η)ηη1/2θfx(xθ,η)dθQ2ηθ21π(θ,η)ηfx(xθ,η)dθ.\int_{\eta\|\theta\|^{2}\leq 1}\frac{\pi(\theta,\eta)\eta}{\eta^{1/2}\|\theta\|}f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta\leq Q_{2}\int_{\eta\|\theta\|^{2}\leq 1}\pi(\theta,\eta)\eta f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta. (B.13)

Also since Q2>1Q_{2}>1 and by (B.9), we have

ηθ2>1π(θ,η)ηfx(xθ,η)dθQ2ηθ2>1π(θ,η)ηfx(xθ,η)dθ.\int_{\eta\|\theta\|^{2}>1}\pi(\theta,\eta)\eta f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta\leq Q_{2}\int_{\eta\|\theta\|^{2}>1}\pi(\theta,\eta)\eta f_{x}(x\!\mid\!\theta,\eta)\mathrm{d}\theta. (B.14)

Hence the result follows from (B.8), (B.9), (B.13) and (B.14). ∎

Lemma B.3.

Let c1>c2>0c_{1}>c_{2}>0. Then

maxy(0,)yc1exp(c2/y)<(c1/c2)c1.\displaystyle\max_{y\in(0,\infty)}y^{-c_{1}}\exp(-c_{2}/y)<(c_{1}/c_{2})^{c_{1}}.
Proof.

Straightforward. ∎

Lemma B.4.

For s<1s<1 and vsv\geq s,

i+log(1/s)i+logv+log(1/s)1logvi+log(1/s)|logv|3{i+log(1/s)}2,\displaystyle\frac{i+\log(1/s)}{i+\log v+\log(1/s)}\geq 1-\frac{\log v}{i+\log(1/s)}-\frac{|\log v|^{3}}{\{i+\log(1/s)\}^{2}},
i+log(1/s)i+logv+log(1/s)1logvi+log(1/s)+|logv|2+|logv|3{i+log(1/s)}2\displaystyle\frac{i+\log(1/s)}{i+\log v+\log(1/s)}\leq 1-\frac{\log v}{i+\log(1/s)}+\frac{|\log v|^{2}+|\log v|^{3}}{\{i+\log(1/s)\}^{2}}

and

(i+log(1/s)i+logv+log(1/s))212logvi+log(1/s)+4i=26|logv|i{i+log(1/s)}2.\displaystyle\left(\frac{i+\log(1/s)}{i+\log v+\log(1/s)}\right)^{2}\leq 1-2\frac{\log v}{i+\log(1/s)}+4\frac{\sum_{i=2}^{6}|\log v|^{i}}{\{i+\log(1/s)\}^{2}}.
Proof.

For vsv\geq s,

i+log(1/s)i+logv+log(1/s)\displaystyle\frac{i+\log(1/s)}{i+\log v+\log(1/s)}
=1logvi+logv+log(1/s)\displaystyle=1-\frac{\log v}{i+\log v+\log(1/s)}
=1logvi+log(1/s)+{logv}2{i+log(1/s)}{i+logv+log(1/s)}\displaystyle=1-\frac{\log v}{i+\log(1/s)}+\frac{\{\log v\}^{2}}{\{i+\log(1/s)\}\{i+\log v+\log(1/s)\}}
=1logvi+log(1/s)+{logv}2{i+log(1/s)}2{logv}3{i+log(1/s)}2{i+logv+log(1/s)}.\displaystyle=1-\frac{\log v}{i+\log(1/s)}+\frac{\{\log v\}^{2}}{\{i+\log(1/s)\}^{2}}-\frac{\{\log v\}^{3}}{\{i+\log(1/s)\}^{2}\{i+\log v+\log(1/s)\}}.

Then three inequalities follow from the inequality

|{logv}3{i+log(1/s)}2{i+logv+log(1/s)}||logv|3{i+log(1/s)}2\displaystyle\left|\frac{\{\log v\}^{3}}{\{i+\log(1/s)\}^{2}\{i+\log v+\log(1/s)\}}\right|\leq\frac{|\log v|^{3}}{\{i+\log(1/s)\}^{2}}

for i1i\geq 1. ∎

In the similar way, we have a following result.

Lemma B.5.

For s>1s>1 and vsv\leq s,

i+logsi+logs+log(1/v)1+logvi+logs|logv|3(i+logs)2\displaystyle\frac{i+\log s}{i+\log s+\log(1/v)}\geq 1+\frac{\log v}{i+\log s}-\frac{|\log v|^{3}}{(i+\log s)^{2}}
i+logsi+logs+log(1/v)1+logvi+logs+|logv|2+|logv|3(i+logs)2,\displaystyle\frac{i+\log s}{i+\log s+\log(1/v)}\leq 1+\frac{\log v}{i+\log s}+\frac{|\log v|^{2}+|\log v|^{3}}{(i+\log s)^{2}},

and

(i+logsi+logs+log(1/v))21+2logvi+logs+4i=26|logv|i(i+logs)2.\displaystyle\left(\frac{i+\log s}{i+\log s+\log(1/v)}\right)^{2}\leq 1+2\frac{\log v}{i+\log s}+4\frac{\sum_{i=2}^{6}|\log v|^{i}}{(i+\log s)^{2}}.
Lemma B.6.
  1. 1.

    For x(0,1)x\in(0,1) and any positive ϵ\epsilon,

    |logx|1ϵxϵ.\displaystyle|\log x|\leq\frac{1}{\epsilon x^{\epsilon}}.
  2. 2.

    For any positive kk,

    |logx|kxkϵ+xkϵϵk,\displaystyle|\log x|^{k}\leq\frac{x^{k\epsilon}+x^{-k\epsilon}}{\epsilon^{k}},

    for all x(0,)x\in(0,\infty) and any positive ϵ\epsilon.

Proof.

For x(0,1)x\in(0,1), we have

log1xϵ1xϵ1\displaystyle\log\frac{1}{x^{\epsilon}}\leq\frac{1}{x^{\epsilon}}-1 ϵlog1x1xϵ1\displaystyle\Leftrightarrow\ \epsilon\log\frac{1}{x}\leq\frac{1}{x^{\epsilon}}-1
|logx|1ϵxϵ\displaystyle\Rightarrow\ |\log x|\leq\frac{1}{\epsilon x^{\epsilon}}

for any positive ϵ\epsilon. Then Part 1 follows. Similarly, for x(1,)x\in(1,\infty),

logxϵxϵ1\displaystyle\log x^{\epsilon}\leq x^{\epsilon}-1 ϵlogxxϵ1\displaystyle\Leftrightarrow\ \epsilon\log x\leq x^{\epsilon}-1
|logx|xϵϵ.\displaystyle\Rightarrow\ |\log x|\leq\frac{x^{\epsilon}}{\epsilon}.

Then Part 2 follows. ∎

Acknowledgements

The first author was supported by partially supported by KAKENHI #16K00040, 19K11852. The second author was supported in part by a grant from the Simons Foundation (#418098 to William Strawderman).

References

  • Baranchik (1970) {barticle}[author] \bauthor\bsnmBaranchik, \bfnmA. J.\binitsA. J. (\byear1970). \btitleA family of minimax estimators of the mean of a multivariate normal distribution. \bjournalAnn. Math. Statist. \bvolume41 \bpages642–645. \bmrnumber0253461 \endbibitem
  • Berger (1985) {bbook}[author] \bauthor\bsnmBerger, \bfnmJames O.\binitsJ. O. (\byear1985). \btitleStatistical decision theory and Bayesian analysis, \beditionsecond ed. \bseriesSpringer Series in Statistics. \bpublisherSpringer-Verlag, New York. \bmrnumber804611 \endbibitem
  • Blyth (1951) {barticle}[author] \bauthor\bsnmBlyth, \bfnmColin R.\binitsC. R. (\byear1951). \btitleOn minimax statistical decision procedures and their admissibility. \bjournalAnn. Math. Statist. \bvolume22 \bpages22–42. \bmrnumber39966 \endbibitem
  • Brewster and Zidek (1974) {barticle}[author] \bauthor\bsnmBrewster, \bfnmJ. F.\binitsJ. F. and \bauthor\bsnmZidek, \bfnmJ. V.\binitsJ. V. (\byear1974). \btitleImproving on equivariant estimators. \bjournalAnn. Statist. \bvolume2 \bpages21–38. \bmrnumber0381098 \endbibitem
  • Brown (1971) {barticle}[author] \bauthor\bsnmBrown, \bfnmL. D.\binitsL. D. (\byear1971). \btitleAdmissible estimators, recurrent diffusions, and insoluble boundary value problems. \bjournalAnn. Math. Statist. \bvolume42 \bpages855–903. \bmrnumber0286209 \endbibitem
  • Brown and Hwang (1982) {bincollection}[author] \bauthor\bsnmBrown, \bfnmLawrence D.\binitsL. D. and \bauthor\bsnmHwang, \bfnmJiunn Tzon\binitsJ. T. (\byear1982). \btitleA unified admissibility proof. In \bbooktitleStatistical decision theory and related topics, III, Vol. 1 (West Lafayette, Ind., 1981) \bpages205–230. \bpublisherAcademic Press, \baddressNew York. \bmrnumber705290 \endbibitem
  • Fourdrinier, Strawderman and Wells (2018) {bbook}[author] \bauthor\bsnmFourdrinier, \bfnmDominique\binitsD., \bauthor\bsnmStrawderman, \bfnmWilliam E.\binitsW. E. and \bauthor\bsnmWells, \bfnmMartin T.\binitsM. T. (\byear2018). \btitleShrinkage estimation. \bseriesSpringer Series in Statistics. \bpublisherSpringer, Cham. \bmrnumber3887633 \endbibitem
  • James and Stein (1961) {bincollection}[author] \bauthor\bsnmJames, \bfnmW.\binitsW. and \bauthor\bsnmStein, \bfnmCharles\binitsC. (\byear1961). \btitleEstimation with quadratic loss. In \bbooktitleProc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I \bpages361–379. \bpublisherUniv. California Press, \baddressBerkeley, Calif. \bmrnumber0133191 \endbibitem
  • Johnstone (2019) {barticle}[author] \bauthor\bsnmJohnstone, \bfnmIain M.\binitsI. M. (\byear2019). \btitleLarry Brown’s work on admissibility. \bjournalStatist. Sci. \bvolume34 \bpages657–668. \bmrnumber4048596 \endbibitem
  • Lehmann and Casella (1998) {bbook}[author] \bauthor\bsnmLehmann, \bfnmE. L.\binitsE. L. and \bauthor\bsnmCasella, \bfnmGeorge\binitsG. (\byear1998). \btitleTheory of point estimation, \beditionsecond ed. \bseriesSpringer Texts in Statistics. \bpublisherSpringer-Verlag, \baddressNew York. \bmrnumber1639875 \endbibitem
  • Maruyama and Strawderman (2005) {barticle}[author] \bauthor\bsnmMaruyama, \bfnmYuzo\binitsY. and \bauthor\bsnmStrawderman, \bfnmWilliam E.\binitsW. E. (\byear2005). \btitleA new class of generalized Bayes minimax ridge regression estimators. \bjournalAnn. Statist. \bvolume33 \bpages1753–1770. \bmrnumber2166561 \endbibitem
  • Maruyama and Strawderman (2009) {barticle}[author] \bauthor\bsnmMaruyama, \bfnmYuzo\binitsY. and \bauthor\bsnmStrawderman, \bfnmWilliam E.\binitsW. E. (\byear2009). \btitleAn extended class of minimax generalized Bayes estimators of regression coefficients. \bjournalJ. Multivariate Anal. \bvolume100 \bpages2155–2166. \bmrnumber2560360 \endbibitem
  • Maruyama and Strawderman (2020) {barticle}[author] \bauthor\bsnmMaruyama, \bfnmYuzo\binitsY. and \bauthor\bsnmStrawderman, \bfnmWilliam E.\binitsW. E. (\byear2020). \btitleAdmissible Bayes equivariant estimation of location vectors for spherically symmetric distributions with unknown scale. \bjournalAnn. Statist. \bnotein press. \endbibitem
  • Stein (1974) {binproceedings}[author] \bauthor\bsnmStein, \bfnmCharles\binitsC. (\byear1974). \btitleEstimation of the mean of a multivariate normal distribution. In \bbooktitleProceedings of the Prague Symposium on Asymptotic Statistics (Charles Univ., Prague, 1973), Vol. II \bpages345–381. \bpublisherCharles Univ., \baddressPrague. \bmrnumber0381062 \endbibitem
  • Strawderman (1973) {barticle}[author] \bauthor\bsnmStrawderman, \bfnmWilliam E.\binitsW. E. (\byear1973). \btitleProper Bayes minimax estimators of the multivariate normal mean vector for the case of common unknown variances. \bjournalAnn. Statist. \bvolume1 \bpages1189–1194. \bmrnumber0365806 \endbibitem