This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\stackMath

Adic Sheafiness of 𝐀inf\mathbf{A}_{\textnormal{inf}} Witt Vectors over Perfectoid Rings

Zongze Liu E-mail address: [email protected] Department of Mathematics, University of California San Diego, La Jolla, CA 92093-0112, USA
Abstract

For (R,R+)(R,R^{+}) an analytic perfectoid ring in char pp, let 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) be the ring of Witt vectors with the induced topology from (R,R+)(R,R^{+}). We prove that Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) is a sheafy adic space and its structure sheaf is acyclic. We first show 𝐀inf​(R+)\mathbf{A}_{\textnormal{{inf}}}(R^{+}) is a stably uniform Banach ring. The β€˜stably uniform implies sheafy’ argument is applied to Tate Huber rings in [BV18] and is generalized to analytic Huber rings in [Ked19]. Here we show that the β€˜stably uniform implies sheafy’ argument in [Ked19] can be applied to general stably uniform Banach rings whose underlying topological ring is a Huber ring. Finally we show the equivalence of categories of vector bundles over Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) and finite projective modules over 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}).

1 Introduction

Let (R,R+)(R,R^{+}) be a char pp perfectoid ring, 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is the ring of Witt vectors W​(R+)W(R^{+}) equipped with the topology induced from (R,R+)(R,R^{+}) as defined in Notations 3.1. 𝐀inf\mathbf{A}_{\textnormal{inf}} plays a pivotal role in pp-adic Hodge theory and pp-adic geometry. 𝐀inf\mathbf{A}_{\textnormal{inf}} is first defined for a complete nonarchimedean perfect field KK equipped with a nontrivial valuation vv by Fontaine to construct the pp-adic period rings for establishing the comparison isomorphisms in pp-adic Hodge Theory. Later Bhatt-Morrow-Scholze[BMS18] defined an 𝐀inf\mathbf{A}_{\textnormal{inf}}-valued cohomology theory to reinterpret and refine the crystalline comparison isomorphism. In the theory of perfectoid spaces, 𝐀inf\mathbf{A}_{\textnormal{inf}} is instrumental for establishing the perfectoid correspondence between characteristic 0 and characteristic pp perfectoids. For a perfectoid ring (R,R+)(R,R^{+}) in characteristic pp, 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) classifies the set of characteristic 0 untilt perfectoid rings (S,S+)(S,S^{+}) of (R,R+)(R,R^{+}) with its primitive elements: given a primitive element zβˆˆπ€inf​(R+)z\in\mathbf{A}_{\textnormal{inf}}(R^{+}), a untilt of RR is given by (S,S+)(S,S^{+}) where S:=Wb​(R)/(z)​Wb​(R)​and​S+:=𝐀inf​(R+)/(z)S:=W^{b}(R)/(z)W^{b}(R)\ \textnormal{and}\ S^{+}:=\mathbf{A}_{\textnormal{inf}}(R^{+})/(z). Then the adic space Spa​(S,S+)\textnormal{Spa}(S,S^{+}) is canonically identified with Spa​(R,R+)\textnormal{Spa}(R,R^{+}).The Fargues-Fontaine curve [FF18], a central object in pp-adic Hodge theory, was first defined as a schematic curve using algebraically closed nonarchimedean fields and then perfectoid fields. The relative and adic Fargues-Fontaine curve was introduced in [KL15] over Tate perfectoid rings and over analytic perfectoid rings in [Ked19]. The relative Fargues-Fontaine curve over Spa​(R,R+)\textnormal{Spa}(R,R^{+}), 𝐅𝐅R\mathbf{FF}_{R}, is defined as the quotient space of an analytic open locus of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) by the action of the cyclic group generated by the Frobenius map Ο†\varphi. Moreover, a GAGA theorem between the analytic adic curve and the schematic curve was established in [KL15]. The relative Fargues-Fontaine curve 𝐅𝐅R\mathbf{FF}_{R} is a sheafy adic space. When RR is the tilt of a complete algebraically-closed nonarchimedean field 𝐂♭\mathbf{C^{\flat}}, the category of vector bundles over 𝐅𝐅𝐂♭\mathbf{FF}_{\mathbf{C^{\flat}}} with an Frobenius isomorphism is equivalent to the category of Breuil-Kisin-Fargues modules over 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) and the category of mixed characteristic shtukas with one leg, which is the starting point of the geometrization of pp-adic local Langlands program, as summarized in [SW20].

The main result of our paper proves the sheafiness of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})):

Theorem 1.1.

Let (R,R+)(R,R^{+}) be an analytic perfectoid ring in char pp. Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) is a sheafy adic space and π’ͺSpa​(𝐀inf​(R+),𝐀inf​(R+))\mathcal{O}_{\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+}))} is an acyclic sheaf.

The nonarchimedean analytic geometry of Witt vectors was first studied in [Ked13] for p-typical Witt vector rings W​(S)W(S) equipped with the pp-adic norm where SS is a perfect 𝔽p\mathbb{F}_{p}-algebra with the trivial norm. Working with Berkovich spaces, [Ked13] already shows the homeomorphism of topological spaces that underlies the perfectoid correspondence. Despite the importance of 𝐀inf\mathbf{A}_{\textnormal{inf}} in the adic space geometry of perfectoid spaces and the relative Fargues-Fontaine curves, the adic space geometry of 𝐀inf\mathbf{A}_{\textnormal{inf}} itself remains previously largely unexplored. This is due to the fact that the streamlined proofs of generalizations of the Tate acyclicity theorems to adic spaces as in [BV18] and [Ked19] require the Huber rings to contain a pseudo-uniformizer or, more generally, be analytic. A Huber ring (A,A+)(A,A^{+}) is analytic if all of its valuations are analytic, i.e. the kernel of the valuation does not contain open ideals, or equivalently, the ideal of definition of AA generates the unit ideal in AA. The category of analytic Huber rings is equivalent to the category of analytic Banach rings (over a nonarchimedean field) and it is crucial for the proof to promote analytic Huber rings to analytic Banach rings (and back) to obtain the strictness of the multiplication map by the term defining Laurent coverings. However, 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is never an analytic Huber ring because it always contains a nonempty set of non-analytic valuations corresponding to Spec​(𝐀inf​(R+)/I)\textnormal{Spec}(\mathbf{A}_{\textnormal{inf}}(R^{+})/I) where II is the ideal of definition of 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}).

To circumvent the issue of non-analyticity, we show that the streamlined proof of the β€˜stably uniform implies sheafy’ argument in [Ked19] can be formulated slightly more generally for stably uniform Banach rings whose underlying topological ring is Huber:

Theorem 1.2.

Let BB be a stably uniform Banach ring such that its Banach norm defines a Huber ring (B,B+)(B,B^{+}). Spa​(B,B+)\textnormal{Spa}(B,B^{+}) is an adic space and π’ͺSpa​(B,B+)\mathcal{O}_{\textnormal{Spa}(B,B^{+})} is an acyclic sheaf.

In particular, one observes that showing the vanishing of the Čech cohomologies on arbitrary open coverings on a general affinoid adic space may be first reduced to the case of standard rational coverings and then finally to the case of two term Laurent coverings. This reduction step is in fact true for arbitrary complete Huber rings. 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is a Banach ring with the Gauss norm extended from (R,R+)(R,R^{+}). We show that the Gauss norm defines the Huber ring topology on 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}). Finally to show 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is a stably uniform Banach ring, we use elements from the theory of prismatic cohomology[BS22]. We embed 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) into its pp-power-root completion 𝐀inf​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©\mathbf{A}_{\textnormal{inf}}(R^{+})\langle p^{p^{-\infty}}\rangle and observe that the latter can be canonically identified as a lens 𝐀inf​(R+​[[Tpβˆ’βˆž]])([T]βˆ’p)\frac{\mathbf{A}_{\textnormal{inf}}(R^{+}[[T^{p^{-\infty}}]])}{([T]-p)}, i.e. the quotient of the perfect prism (𝐀inf​(R+​[[Tpβˆ’βˆž]]),([T]βˆ’p))(\mathbf{A}_{\textnormal{inf}}(R^{+}[[T^{p^{-\infty}}]]),([T]-p)) by a distinguished element. Furthermore, we can canonically identify rational localizations of 𝐀inf​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©\mathbf{A}_{\textnormal{inf}}(R^{+})\langle p^{p^{-\infty}}\rangle with lenses defined by the 𝐀inf\mathbf{A}_{\textnormal{inf}} of rational localizations of Rβ€‹βŸ¨Tpβˆ’βˆžβŸ©R\langle T^{p^{-\infty}}\rangle:

Proposition 1.3.

Let (f1,…,fn,g)(f_{1},...,f_{n},g) be an open ideal of 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) defining a rational open subset such that p∀f1,…,fn,gp\nmid f_{1},...,f_{n},g. We have a canonical topological isomorphism

𝐀inf​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]≅𝐀inf​(R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fnβˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο)([T]βˆ’p),\frac{\mathbf{A}_{\textnormal{inf}}(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}\Big{[}\frac{1}{g}\Big{]}\cong\frac{\mathbf{A}_{\textnormal{inf}}(\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho})}{([T]-p)},

where R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fnβˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho} is the completion of R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]​[Tpβˆ’βˆž]\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}][T^{p^{-\infty}}] under the weighted Gauss norm |βˆ‘iai​Ti|=maxi⁑{|ai|​ρi}|\sum_{i}a_{i}T^{i}|=\max_{i}\{|a_{i}|\rho^{i}\} with ρ∈(0,1)\rho\in(0,1).

The lens isomorphism for rational localizations of 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) allows us to extend the power-multiplicative Banach norm on R+R^{+} to a power-multiplicative Banach norm on the rational localizations of 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}). Finally, once we have the acyclicity of the structure sheaf of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})), we can follow [Ked19] 1.9 verbatim to show the equivalence of categories between the category of vector bundles over Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) and the category of vector bundles over Spec​(𝐀inf​(R+))\textnormal{Spec}(\mathbf{A}_{\textnormal{inf}}(R^{+})):

Theorem 1.4.

Let (R,R+)(R,R^{+}) be an analytic perfectoid ring in char pp. The functor

π…ππŒπ¨ππ€inf​(R+)β†’π•πžπœSpa​(𝐀inf​(R+),𝐀inf​(R+)):Mβ†’M~\mathbf{FPMod}_{\mathbf{A}_{\textnormal{inf}}(R^{+})}\rightarrow\mathbf{Vec}_{\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+}))}:\quad M\rightarrow\widetilde{M}

is an equivalence of categories, with quasi-inverse ℱ→ℱ​(𝐀inf​(R+))\mathcal{F}\rightarrow\mathcal{F}(\mathbf{A}_{\textnormal{inf}}(R^{+})). In particular, every sheaf in π•πžπœSpa​(𝐀inf​(R+),𝐀inf​(R+))\mathbf{Vec}_{\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+}))} is acyclic.

1.1 Overview of the proof

In chapter 2, we recollect the basic definitions and discuss uniformity for Huber and Banach rings as well as results for analytic rings.

In chapter 3, we fix some notations and conventions for 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) and its rational localizations for the rest of the paper. We present a few initial reduction steps.

In chapter 4, we introduce perfect prisms and lenses from the theory of prismatic cohomology. We show the rational localizations of 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) can be identified as lenses and give the explicit topological lens isomorphism.

In chapter 5, using the explicit lens isomorphism, we show that the power-multiplicative Banach norm on (R,R+)(R,R^{+}) can be extended to a power-multiplicative norm on the rational localizations of 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) agreeing with the Huber ring topology. In particular, we show that the weighted Gauss norm defines the correct Huber ring topology on 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}), i.e. the topology induced from (R,R+)(R,R^{+}).

In chapter 6, we demonstrate the streamlined proof of β€˜stably uniform implies sheafy’ for stably uniform Banach rings whose underlying topological ring is Huber. In particular, we show the sheafiness and acyclicity of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})).

In chapter 7, we give results on the gluing of vector bundles over Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})), showing the equivalence of categories of vector bundles over Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) and finite projective modules over 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}).

Acknowledgment

The author would like to thank professor Kiran S. Kedlaya for suggesting this problem and providing many very helpful discussions throughout the writing of this paper. The author is deeply grateful for the years of mentorship provided by Professor Kedlaya throughout their undergraduate and PhD studies. The author would also like to thank Zeyu Liu for reading a preliminary draft of this paper and providing helpful feedback. The author is partially supported by NSF grants DMS-1802161 and DMS-2053473 under professor Kedlaya during the preparation of this project.

2 Huber rings, Banach rings, analytic rings and uniformity

In this section we first define Huber rings and Banach rings. We then define the two different notions of uniformity for Huber rings and Banach rings respectively and how they are related in general and under the assumption of analyticity.

Definition 2.1.

A Huber ring is a topological ring AA containing an open subring A0A_{0} carrying the linear topology induced by a finitely generated ideal IβŠ‚A0I\subset A_{0}. The ring A0A_{0} and the ideal II are called the ring of definition and the ideal of definition respectively.
A Huber ring AA is Tate if it contains a topologically nilpotent unit, i.e. a pseudo-uniformizer.

Definition 2.2.

A (nonarchimedean commutative) Banach ring is a ring BB equipped with a function |βˆ™|:B→ℝβ‰₯0|\bullet|:B\rightarrow\mathbb{R}_{\geq 0} satisfying the following conditions:

  1. (a)

    On the additive group of BB, |βˆ™||\bullet| is a norm (i.e. a nonarchimedean absolute value such that |xβˆ’y|≀max​{|x|,|y|}|x-y|\leq\textnormal{max}\{|x|,|y|\} for all x,y∈Bx,y\in B).

  2. (b)

    The norm |βˆ™||\bullet| on BB is submultiplicative: |x​y|≀|x|​|y||xy|\leq|x||y| for all x,y∈Bx,y\in B

Definition 2.3.

For BB a Banach ring, the spectral seminorm on BB is the function |β‹…|s​p:B→ℝβ‰₯0|\cdot|_{sp}:B\rightarrow\mathbb{R}_{\geq 0} given by

|x|s​p=limnβ†’βˆž|xn|1/n(x∈B)|x|_{sp}=\lim_{n\rightarrow\infty}|x^{n}|^{1/n}\quad(x\in B)

In the literature sometimes Huber rings and Banach rings may be implicitly assumed to Tate or analytic. In the rest of our paper, we do not make such an assumption and work with the general definitions.

Definition 2.4.

A Huber ring AA is uniform if the subset (subring) of power-bounded elements A∘:={a∈A|{an,n=1,2,…}is bounded}A^{\circ}:=\{a\in A|\{a^{n},n=1,2,...\}\ \textnormal{is bounded}\} is bounded.

Definition 2.5.

A Banach ring BB is uniform if one of the following equivalent conditions holds:

  1. (1)

    The norm on BB |βˆ™|B|\bullet|_{B} is equivalent to some power-multiplicative norm.

  2. (2)

    For any integer m>1m>1, there exists c>0c>0 such that |xm|β‰₯c​|x|m|x^{m}|\geq c|x|^{m} for all x∈Bx\in B.

  3. (3)

    There exists c>0c>0 such that |x|s​pβ‰₯c​|x||x|_{sp}\geq c|x| for all x∈Bx\in B.

The next lemma shows that uniformity for Banach rings whose underlying topological ring is Huber is a stronger condition than uniformity for Huber rings.

Lemma 2.6.

([Ked19] Remark 1.5.13)
Let BB be a uniform Banach ring such that its underlying topological ring is Huber, i.e. the Banach norm |βˆ™|B|\bullet|_{B} defines a Huber ring (B,B+)(B,B^{+}). Then the following conditions hold ((1) and (2) are in fact equivalent):

  1. (1)

    The spectral seminorm |βˆ™|s​p|\bullet|_{sp} defines the same topology as the norm |βˆ™|B|\bullet|_{B}.

  2. (2)

    The underlying Huber ring of B is uniform, i.e. B∘B^{\circ} is bounded.

Next we give the definition of a analytic topological ring as defined in [Ked19]. We warn the reader that this is a completely different notion from the analytic ring in condensed mathematics in [SC19]. This term is renamed as ”locally Tate” in [Ked24a] to avoid the confusion. However, to keep consistency with [Ked19], we shall continue to use the term β€˜analytic topological ring’ in this paper.

Definition 2.7.

A topological ring AA is analytic if the set of topologically nilpotent elements A∘∘A^{\circ\circ} generate the unit ideal of AA.

Using the above definition, we may talk about analytic Huber rings and analytic Banach rings. The terminology ’analytic’ comes from the notion of an analytic valuation vv on a Huber ring AA where Ker​(v)\textnormal{Ker}(v) does not contain any open ideals of AA, introduced in [Hub93]. A Huber ring AA is analytic if and only if all of its valuations are analytic. This is characterized in the following lemma.

Lemma 2.8.

([Ked19] Lemma 1.1.3)
The following conditions on a general Huber ring (A,A+)(A,A^{+}) are equivalent:

  1. (1)

    The ring AA is analytic.

  2. (2)

    Any ideal of definition in any ring of definition A0A_{0} generates the unit ideal in AA.

  3. (3)

    Every open ideal of AA is trivial.

  4. (4)

    Spa​(A,A+)\textnormal{Spa}(A,A^{+}) contains no point on whose residue field the induced valuation is trivial.

As per Remark 1.5.4 in [Ked19], one can promote a general Huber ring AA to a Banach ring using the norm defined by the ideal of definition JJ of AA: |x|=inf{eβˆ’n|nβˆˆβ„€β€‹such that​x​JmβŠ‚Jm+n​for all​mβˆˆβ„€β‰₯0}|x|=\inf\{e^{-n}|\ n\in\mathbb{Z}\ \textnormal{such that}\ xJ^{m}\subset J^{m+n}\ \textnormal{for all}\ m\in\mathbb{Z}_{\geq 0}\}. Conversely, for an analytic Banach ring BB, analyticity will guarantee the existence of an ideal of definition in a ring of definition, making BB a Huber ring. Then one can freely view an analytic Huber ring as an analytic Banach ring and vice versa. Moreover, the notions of uniformity are equivalent for analytic Huber rings and analytic Banach rings:

Lemma 2.9.

([Ked19] Remark 1.5.13)
Let BB be an analytic Banach ring such that the Banach norm of BB is equivalent to the norm defined by an ideal of definition. Then BB is uniform if and only if B∘B^{\circ} is bounded in BB.

Given the above lemma, the sheafiness theory of Huber rings is done under the analyticity, (or more restrictively Tate), assumption. Because 𝐀inf\mathbf{A}_{\textnormal{inf}} is not analytic, we can not work in the above setting. Because the Gauss norm on 𝐀inf\mathbf{A}_{\textnormal{inf}} defines the Huber ring topology on 𝐀inf\mathbf{A}_{\textnormal{inf}}, we will work under the setting of general uniform Banach rings.

Finally we define analytic perfectoid rings, over which we shall define 𝐀inf\mathbf{A}_{\textnormal{inf}}.

Definition 2.10.

Let (A,A+)(A,A^{+}) be a uniform analytic Huber ring. (A,A+)(A,A^{+}) is an analytic perfectoid ring if there exists an ideal of definition IβŠ‚A+I\subset A^{+} such that p∈Ipp\in I^{p} and the Frobenius map Ο†:A+/Iβ†’A+/Ip\varphi:A^{+}/I\rightarrow A^{+}/I^{p} is surjective.

3 Notations and initial reductions

We fix the following notations throughout the rest of the paper.

Notations 3.1.

Let (R,R+)(R,R^{+}) be a characteristic pp analytic perfectoid pair and let W​(R+)W(R^{+}) be the ring of Witt vectors over R+R^{+}. Let x0,…,xm∈R+x_{0},...,x_{m}\in R^{+} be generators of an ideal of definition in R+R^{+} and let Ο€:W​(R+)β†’R+\pi:W(R^{+})\rightarrow R^{+} be the natural mod-pp projection map. Then W​(R+)W(R^{+}) is complete and separated for the topology defined by the ideal I:=Ο€βˆ’1​((x0,…,xm))=(p,[xΒ―0],…,[xΒ―m])I:=\pi^{-1}((x_{0},...,x_{m}))=(p,[\overline{x}_{0}],...,[\overline{x}_{m}]). 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is defined as W​(R+)W(R^{+}) equipped with the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology. We will assume W​(R+)W(R^{+}) is always equipped with the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology (unless stated otherwise) and will use W​(R+)W(R^{+}) and 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) interchangeably.

Notations 3.2.

Let UU be a rational open subspace of X:=Spa​(W​(R+),W​(R+))X:=\textnormal{Spa}(W(R^{+}),W(R^{+})). Then

U=X​(f1,…,fng)={v∈X|v​(fi)≀v​(g)β‰ 0,for all​i}U=X\big{(}\frac{f_{1},...,f_{n}}{g}\big{)}=\{v\in X|\ v(f_{i})\leq v(g)\neq 0,\;\text{for all}\;i\}

where (f1,…,fn,g)(f_{1},...,f_{n},g) generates an open ideal in W​(R+)W(R^{+}). We will use fi​0f_{i0} and g0g_{0} to denote the reduction mod pp of the fi,gf_{i},g’s. (To alleviate the abundant appearances of overlines later.)

The next two lemmas will allow us to assume p∀f1,…,fn,gp\nmid f_{1},...,f_{n},g. This will be important as we will need to consider the rational localizations of W​(R+)W(R^{+}) modulo pp.

Lemma 3.3.

For any open ideal (f1,…,fn,g)βŠ‚W​(R+)(f_{1},...,f_{n},g)\subset W(R^{+}) defining the rational open subspace UU, without the loss of generality, we may assume gg is not topologically nilpotent and in particular gg is not divisible by pp.

Proof. If gg is topologically nilpotent, then we have for all v∈Uv\in U, v​(g)β‰ 0v(g)\neq 0. This shows for all v∈Uv\in U, vv is a nontrivial valuation and thus UβŠ‚Spa​(W​(R+),W​(R+))a​nU\subset\textnormal{Spa}(W(R^{+}),W(R^{+}))^{an}. Then since Spa​(W​(R+),W​(R+))a​n\textnormal{Spa}(W(R^{+}),W(R^{+}))^{an} is stably uniform, π’ͺX​(U)\mathcal{O}_{X}(U) is uniform and in fact UU is stably uniform. β–‘\Box

Lemma 3.4.

For any open ideal (f1,…,fn,g)βŠ‚W​(R+)(f_{1},...,f_{n},g)\subset W(R^{+}) defining the rational open subspace UU, without the loss of generality, we may assume for i=1,…,ni=1,...,n, all of the fif_{i}’s are not divisible by pp.

Proof. If fjf_{j} is divisible by pp, we can replace fjf_{j} by an element that is ”very close” to fjf_{j} and not divisible by pp without changing the rational open subset. This follows from the following lemma.

We note that for an open ideal (f1,…,fn,g)βŠ‚W​(R+)(f_{1},...,f_{n},g)\subset W(R^{+}), (f1,…,fn,g)(f_{1},...,f_{n},g) mod pp is open in R+R^{+}.

Lemma 3.5.
  1. (1)

    Let U=X​(f1,…,fng)U=X\big{(}\frac{f_{1},...,f_{n}}{g}\big{)} be a rational open subset defined by an open ideal (f1,…,fn,g)(f_{1},...,f_{n},g). Then there exists k>0k>0, only depending on the ideal (f1,…,fn,g)(f_{1},...,f_{n},g), such that the ideal (f1+[xΒ―0]k,f2,…,fn,[xΒ―0]k,g)(f_{1}+[\overline{x}_{0}]^{k},f_{2},...,f_{n},[\overline{x}_{0}]^{k},g) is open in W​(R+)W(R^{+}) and defines the same rational open subset i.e.

    X​(f1,…,fng)=X​(f1+[xΒ―0]k,f2,…,fn,[xΒ―0]kg).X\big{(}\frac{f_{1},...,f_{n}}{g}\big{)}=X\big{(}\frac{f_{1}+[\overline{x}_{0}]^{k},f_{2},...,f_{n},[\overline{x}_{0}]^{k}}{g}\big{)}.

    ([xΒ―0][\overline{x}_{0}] can be any generator of the ideal of definition of W​(R+)W(R^{+}) not equal to pp)

  2. (2)

    (f1+[xΒ―0]k,f2,…,fn,[xΒ―0]k,g)(f_{1}+[\overline{x}_{0}]^{k},f_{2},...,f_{n},[\overline{x}_{0}]^{k},g) (mod pp) =(f10+xΒ―0k,f20,…,fn​0,xΒ―0k,g0)=(f_{10}+\overline{x}_{0}^{k},f_{20},...,f_{n0},\overline{x}_{0}^{k},g_{0}) is open in R+R^{+}.

Proof. There exists kk such that IkβŠ‚(f1,…,fn,g)I^{k}\subset(f_{1},...,f_{n},g) by openness and in particular IkβŠ‚(f1+[xΒ―0]k,f2,…,fn,[xΒ―0]k,g)I^{k}\subset(f_{1}+[\overline{x}_{0}]^{k},f_{2},...,f_{n},[\overline{x}_{0}]^{k},g). Then there exists a1,…,an+1a_{1},...,a_{n+1} such that [xΒ―0]k=a1​f1+…+an​fn+an+1​g[\overline{x}_{0}]^{k}=a_{1}f_{1}+...+a_{n}f_{n}+a_{n+1}g. Then for any v∈U=X​(f1,…,fng)v\in U=X\big{(}\frac{f_{1},...,f_{n}}{g}\big{)},

v​([xΒ―0]k)=v​(a1​f1+…+an​fn+an+1​g)≀max⁑(v​(a1​f1),…,v​(an​fn),v​(an+1​g))≀v​(g)v([\overline{x}_{0}]^{k})=v(a_{1}f_{1}+...+a_{n}f_{n}+a_{n+1}g)\leq\max(v(a_{1}f_{1}),...,v(a_{n}f_{n}),v(a_{n+1}g))\leq v(g)
v​(f1+[xΒ―0]k)≀max⁑(v​(f1),v​([xΒ―0]k))≀v​(g)v(f_{1}+[\overline{x}_{0}]^{k})\leq\max(v(f_{1}),v([\overline{x}_{0}]^{k}))\leq v(g)

and for any v∈X​(f1+[xΒ―0]k,f2,…,fn,[xΒ―0]kg)v\in X(\frac{f_{1}+[\overline{x}_{0}]^{k},f_{2},...,f_{n},[\overline{x}_{0}]^{k}}{g}\big{)}

v​(f1)≀max⁑(v​(f1+[xΒ―0]k),v​([xΒ―0]k))≀v​(g)v(f_{1})\leq\max(v(f_{1}+[\overline{x}_{0}]^{k}),v([\overline{x}_{0}]^{k}))\leq v(g)

For (2), recall that I=(p,[xΒ―0],…,[xΒ―m])I=(p,[\overline{x}_{0}],...,[\overline{x}_{m}]). We know IkβŠ‚(f1+[xΒ―0]k,f2,…,fn,[xΒ―0]k,g)I^{k}\subset(f_{1}+[\overline{x}_{0}]^{k},f_{2},...,f_{n},[\overline{x}_{0}]^{k},g). This inclusion mod pp gives (xΒ―0,…,xΒ―m)kβŠ‚(f10+xΒ―0k,f20,…,fn​0,xΒ―0k,g0)(\overline{x}_{0},...,\overline{x}_{m})^{k}\subset(f_{10}+\overline{x}_{0}^{k},f_{20},...,f_{n0},\overline{x}_{0}^{k},g_{0}) and thus is open in R+R^{+}. β–‘\Box

Now we embed W​(R+)W(R^{+}) into its β€˜integral perfectoidization’ W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©:=W​(R+)​[ppβˆ’βˆž]^IW(R^{+})\langle p^{p^{-\infty}}\rangle:=\widehat{W(R^{+})[p^{p^{-\infty}}]}_{I}. By the next two lemmas, it will suffice to show W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©W(R^{+})\langle p^{p^{-\infty}}\rangle is stably uniform.

Lemma 3.6.

Let

W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©:=W​(R+)​[ppβˆ’βˆž]^IW(R^{+})\langle p^{p^{-\infty}}\rangle:=\widehat{W(R^{+})[p^{p^{-\infty}}]}_{I}

and

Xβ€²:=Spa​(W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©,W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©).X^{{}^{\prime}}:=\textnormal{Spa}(W(R^{+})\langle p^{p^{-\infty}}\rangle,W(R^{+})\langle p^{p^{-\infty}}\rangle).

The natural strict inclusion W​(R+)β†ͺW​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©W(R^{+})\hookrightarrow W(R^{+})\langle p^{p^{-\infty}}\rangle splits in the category of topological W​(R+)W(R^{+})-modules and is stable under taking completed tensor products. More specifically, let UU be a rational open subset of XX defined by f1,…,fn,gf_{1},...,f_{n},g and let Uβ€²U^{{}^{\prime}} be the rational open subset of Xβ€²X^{{}^{\prime}} defined by f1,…,fn,gf_{1},...,f_{n},g, i.e

U=X​(f1,…,fng)Β andΒ Uβ€²=X′​(f1,…,fng)U=X\big{(}\frac{f_{1},...,f_{n}}{g}\big{)}\quad\mbox{ and }\quad U^{{}^{\prime}}=X^{{}^{\prime}}\big{(}\frac{f_{1},...,f_{n}}{g}\big{)}

Then there exits a unique strict inclusion π’ͺX​(U)β†ͺπ’ͺX′​(Uβ€²)\mathcal{O}_{X}(U)\hookrightarrow\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) which splits in the category of topological π’ͺX​(U)\mathcal{O}_{X}(U)-modules and is compatible with rational localizations.

Proof. The strictness and splitting of W​(R+)β†ͺW​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©W(R^{+})\hookrightarrow W(R^{+})\langle p^{p^{-\infty}}\rangle is clear. We know that π’ͺX​(U)=W​(R+)β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]\mathcal{O}_{X}(U)=\frac{W(R^{+})\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}] and π’ͺX′​(Uβ€²)=W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})=\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]. It is clear that the natural map W​(R+)β†ͺW​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©W(R^{+})\hookrightarrow W(R^{+})\langle p^{p^{-\infty}}\rangle, after taking the completed tensor product with W​(R+)β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]\frac{W(R^{+})\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}],

W​(R+)β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]⟢W​(R+)β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]β€‹βŠ—^W​(R+)​W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©\frac{W(R^{+})\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]\longrightarrow\frac{W(R^{+})\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]\widehat{\otimes}_{W(R^{+})}W(R^{+})\langle p^{p^{-\infty}}\rangle

splits in the category of topological W​(R+)β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]\frac{W(R^{+})\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}] -modules and thus is the inclusion map. Since both the source and target have (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology, the inclusion is strict. By the universal property of rational localization, we have an unique isomorphism

W​(R+)β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]β€‹βŠ—^W​(R+)​W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β‰…W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g].\frac{W(R^{+})\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]\widehat{\otimes}_{W(R^{+})}W(R^{+})\langle p^{p^{-\infty}}\rangle\cong\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}].

β–‘\Box

4 Perfect prism and lens

We show a natural (topological) isomorphism between π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) and quotient of a perfect prism by a distinguished element, i.e. a lens. Moreover, the later can be identified as the quotient of 𝐀inf\mathbf{A}_{\textnormal{inf}} of a rational localization of the char pp perfectoid ring (Rβ€‹βŸ¨Tpβˆ’βˆžβŸ©,R+β€‹βŸ¨Tpβˆ’βˆžβŸ©)(R\langle T^{p^{-\infty}}\rangle,R^{+}\langle T^{p^{-\infty}}\rangle) by a primitive element.

Definition 4.1.

([Ked24b] Definition 2.1.1)
Let a Ξ΄\delta-ring be a pair (A,Ξ΄)(A,\delta) where AA is a commutative ring and Ξ΄:Aβ†’A\delta:A\rightarrow A is a map of sets that satisfies the following conditions for all x,y∈Ax,y\in A:

  1. (a)

    δ​(1)=0\delta(1)=0

  2. (b)

    δ​(x​y)=xp​δ​(y)+yp​δ​(x)+p​δ​(x)​δ​(y)\delta(xy)=x^{p}\delta(y)+y^{p}\delta(x)+p\delta(x)\delta(y)

  3. (c)

    δ​(x+y)=δ​(x)+δ​(y)+βˆ‘i=1pβˆ’1(pβˆ’1)!i!​(pβˆ’i)!​xi​ypβˆ’i\delta(x+y)=\delta(x)+\delta(y)+\sum_{i=1}^{p-1}\frac{(p-1)!}{i!(p-i)!}x^{i}y^{p-i}.

The map Ξ΄\delta is called a pp-derivation on AA.

Lemma 4.2.

([Ked24b] Lemma 2.1.3)

  1. 1.

    Let AA be a commutative ring. Let δ:A→A\delta:A\rightarrow A be a pp-derivation. Then the map ϕ:A→A\phi:A\rightarrow A given by

    ϕ​(x)=xp+p​δ​(x)\phi(x)=x^{p}+p\delta(x)

    is a ring homomorphism that induces the Frobenius endomorphism on A/p​AA/pA. Ο•\phi will be referred to as the associated Frobenius lift on (A,Ξ΄)(A,\delta).

  2. 2.

    If AA is pp-torsion-free, then this construction defines a bijection between pp-derivations on AA and Frobenius lifts on AA.

Definition 4.3.

([Ked24b] Definition 3.3.1)
A Ξ΄\delta-ring (A,Ξ΄)(A,\delta) is perfect if Ο•\phi is an ismorphism on A/p​AA/pA.

Definition 4.4.

([Ked24b] Definition 5.1.1) Let AA be a Ξ΄\delta-ring. An element dd is distinguished if (p,d,δ​(d))(p,d,\delta(d)) is the unit ideal of AA.

Definition 4.5.

([Ked24b] Definition 5.3.1)

  1. (1)

    A Ξ΄\delta-pair consists of a pair (A,J)(A,J) in which A is a Ξ΄\delta-ring and JJ is an ideal.

  2. (2)

    A prism is a Ξ΄\delta-pair such that:

    1. (a)

      The ideal JJ defines a Cartier divisor on Spec​(A)\textnormal{Spec}(A).

    2. (b)

      The ring AA is derived (p,J)(p,J)-complete.

    3. (c)

      p∈J+ϕ​(J)p\in J+\phi(J)

  3. (3)

    A prism (A,J)(A,J) is perfect if AA is a perfect Ξ΄\delta-ring. Then JJ is principal and any generator of JJ is a distinguished element.([Ked24b] 7.2.2)

Definition 4.6.

([Ked24b] Definition 8.1.1)
A lens SS is a ring of the form S=A/JS=A/J for some perfect prism (A,J)(A,J).

A lens is really a β€œintegral perfectoid” ring,i.e. it is a perfectoid ring without the topological assumptions of being analytic/Tate and uniform in the context of Huber rings. We know that any rational localization of a perfectoid ring is perfectoid. We would like to show the analogous statement β€œany rational localization of an β€˜integral perfectoid’ ring is β€˜integral perfectoid’ ” for a suitable β€œintegral perfectoid” ring.

Note that (W​(R+​[[Tpβˆ’βˆž]]),([T]βˆ’p))(W(R^{+}[[T^{p^{-\infty}}]]),([T]-p)) is a perfect prism and W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©=W​(R+​[[Tpβˆ’βˆž]])([T]βˆ’p)W(R^{+})\langle p^{p^{-\infty}}\rangle=\frac{W(R^{+}[[T^{p^{-\infty}}]])}{([T]-p)}. Thus W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©W(R^{+})\langle p^{p^{-\infty}}\rangle is a lens. (We remark that it is also true that

W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β‰…W​(R+β€‹βŸ¨Tpβˆ’βˆžβŸ©)([T]βˆ’p)W(R^{+})\langle p^{p^{-\infty}}\rangle\cong\frac{W(R^{+}\langle T^{p^{-\infty}}\rangle)}{([T]-p)}

i.e. we do not need to take the TT-adic completion as forming the ring of Witt vectors has the effect of taking pp-adic completion and TT and pp are identified in the quotient. We need to take the TT-adic completion for the formalism of prisms and lenses.) Next we will show for any rational open subset Uβ€²βŠ‚Xβ€²U^{{}^{\prime}}\subset X^{{}^{\prime}}, π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is a lens.

Proposition 4.7.

([Ked24b] Proposition 8.2.5)
A commutative ring SS is a lens if and only if the following conditions hold.

  1. (1)

    The ring SS is classically pp-complete and S/pS/p is semiperfect.

  2. (2)

    The kernel of the map ΞΈS:W​(Sβ™­)β†’S\theta_{S}:W(S^{\flat})\rightarrow S is principal.

  3. (3)

    There exists some Ο–\varpi such that Ο–p=p​u\varpi^{p}=pu for some unit u∈Su\in S.

Proposition 4.8.

([Ked24b] Proposition 8.2.6)
A pp-torsion-free commutative ring SS is a lens if and only if the following conditions hold.

  1. (a)

    The ring SS is classically pp-complete and and S/pS/p is semiperfect.

  2. (b)

    The ring SS is pp-normal: every x∈S​[pβˆ’1]x\in S[p^{-1}] with xp∈Sx^{p}\in S belongs to SS.

  3. (c)

    There exists some Ο–\varpi such that Ο–p=p​u\varpi^{p}=pu for some unit u∈Su\in S.

Lemma 4.9.

The Frobenius map

Ο•:W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]/(p1p)β†’W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]/(p)\phi:\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]/(p^{\frac{1}{p}})\rightarrow\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]/(p)

is an isomorphism.

Proof. By Stacks Project [Aut] Tag 0AMS, we have an explicit description of closure of ideals in adic rings. Since W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle has (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology and R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle has (x0,…,xm)(x_{0},...,x_{m})-adic topology, we have

(f1βˆ’T1​g,…,fnβˆ’Tn​g)Β―\displaystyle\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}
=β‹‚l=0∞((f1βˆ’T1​g,…,fnβˆ’Tn​g)+(p,[xΒ―0],…,[xΒ―m])l)βŠ‚W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩\displaystyle=\bigcap_{l=0}^{\infty}\Big{(}(f_{1}-T_{1}g,...,f_{n}-T_{n}g)+(p,[\overline{x}_{0}],...,[\overline{x}_{m}])^{l}\Big{)}\subset W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle
(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)Β―\displaystyle\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}
=β‹‚l=0∞((f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)+(x0,…,xm)l)βŠ‚R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩.\displaystyle=\bigcap_{l=0}^{\infty}\Big{(}(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})+(x_{0},...,x_{m})^{l}\Big{)}\subset R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle.

This shows that taking closure of ideals and taking quotient by pp are compatible. Then we have

W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]/(p)\displaystyle\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]/(p) =W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,TnβŸ©β‹‚l((f1βˆ’T1​g,…,fnβˆ’Tn​g)+(p,[xΒ―0],…,[xΒ―m])l)​[1g]/(p)\displaystyle=\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\bigcap_{l}((f_{1}-T_{1}g,...,f_{n}-T_{n}g)+(p,[\overline{x}_{0}],...,[\overline{x}_{m}])^{l})}[\frac{1}{g}]/(p)
β‰…R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,TnβŸ©β‹‚l((f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)+(x0,…,xm)l)​[1g0]/(T)\displaystyle\cong\frac{R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\bigcap_{l}((f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})+(x_{0},...,x_{m})^{l})}[\frac{1}{g_{0}}]/(T)
=R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]/(T).\displaystyle=\frac{R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]/(T).

And similarly we have

W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]/(p1p)β‰…R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]/(T1p).\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]/(p^{\frac{1}{p}})\cong\frac{R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]/(T^{\frac{1}{p}}).

Now R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fnβˆ’Tn​g0)¯​[1g0]\frac{R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n}-T_{n}g_{0})}}[\frac{1}{g_{0}}] is a perfect ring in char pp and it is clear that

Ο•:R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]/(T1p)β†’R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]/(T)\phi:\frac{R^{+}\langle T^{{}^{p-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]/(T^{\frac{1}{p}})\rightarrow\frac{R^{+}\langle T^{{}^{p-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]/(T)

is an isomorphism. β–‘\Box

Proposition 4.10.

π’ͺX′​(Uβ€²)=W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})=\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}] is a lens.

Proof. We first show π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is pp-torsion-free. Because pp does not divide gg, it suffices to show W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)Β―\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}} is pp-torsion-free. Since R+R^{+} is an integral domain, the map W​(R+)β†ͺW​(R+​[1g0])W(R^{+})\hookrightarrow W(R^{+}[\frac{1}{g_{0}}]) is injective and gg is invertible in W​(R+​[1g0])W(R^{+}[\frac{1}{g_{0}}]). We have an injective ring homomorphism

W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)Β―β†ͺW​(R+​[1g0])β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)Β―β‰…W​(R+​[1g0])β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨f1,…,fn⟩.\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}\hookrightarrow\frac{W(R^{+}[\frac{1}{g_{0}}])\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}\cong W(R^{+}[\frac{1}{g_{0}}])\langle p^{p^{-\infty}}\rangle\langle f_{1},...,f_{n}\rangle.

It is clear that W​(R+​[1g0])β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨f1,…,fn⟩W(R^{+}[\frac{1}{g_{0}}])\langle p^{p^{-\infty}}\rangle\langle f_{1},...,f_{n}\rangle is pp-torsion-free, so π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is pp-torsion-free. Next we will check all the conditions of Proposition 4.8. (3) is clear. For (1), classical pp-completeness is clear and semiperfectness follows by Lemma 4.9. We only need to check π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is pp-normal. Let x∈π’ͺX′​(Uβ€²)​[pβˆ’1]x\in\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})[p^{-1}] with xp∈π’ͺX′​(Uβ€²)x^{p}\in\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}). Let kk be the smallest nonnegative integer such that pkp​x∈π’ͺX′​(Uβ€²)p^{\frac{k}{p}}x\in\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}). If k>0k>0, we have

(pkp​x)p=pk​xp∈pk​π’ͺX′​(Uβ€²)βŠ‚p​π’ͺX′​(Uβ€²)(p^{\frac{k}{p}}x)^{p}=p^{k}x^{p}\in p^{k}\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})\subset p\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})

By Lemma 4.9, the Frobenius map Ο•:π’ͺX′​(Uβ€²)/(p1p)β†’π’ͺX′​(Uβ€²)/(p)\phi:\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})/(p^{\frac{1}{p}})\rightarrow\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})/(p) is an isomorphism and we have pkp​x∈p1p​π’ͺX′​(Uβ€²)p^{\frac{k}{p}}x\in p^{\frac{1}{p}}\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}). Hence pkβˆ’1p​x∈π’ͺX′​(Uβ€²)p^{\frac{k-1}{p}}x\in\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) which is a contradiction. Thus k=0k=0 and x∈π’ͺX′​(Uβ€²)x\in\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}). β–‘\Box

Lemma 4.11.

Let SS be a perfect ring in char pp and let f∈Sf\in S be a nonzerodivisor. Then (S/f)β™­(S/f)^{\flat} is the ff-adic completion of SS, i.e.

(S/f)β™­=lim←ϕ⁑S/fβ‰…lim←n⁑S/(fn).(S/f)^{\flat}=\varprojlim_{\phi}S/f\cong\varprojlim_{n}S/(f^{n}).

Proof. This is clear because {S/(fpm)}m\{S/(f^{p^{m}})\}_{m} is cofinal in lim←n⁑S/(fn)\varprojlim_{n}S/(f^{n}) as mβ†’βˆžm\rightarrow\infty. β–‘\Box

Proposition 4.12.

We have a canonical topological isomorphism

π’ͺX′​(Uβ€²)=W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]β‰…W​(R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fnβˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο)([T]βˆ’p),\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})=\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}\Big{[}\frac{1}{g}\Big{]}\cong\frac{W(\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho})}{([T]-p)},

where R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fnβˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho} is the completion of R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]​[Tpβˆ’βˆž]\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}][T^{p^{-\infty}}] under the weighted Gauss norm |βˆ‘iai​Ti|=maxi⁑{|ai|​ρi}|\sum_{i}a_{i}T^{i}|=\max_{i}\{|a_{i}|\rho^{i}\} with ρ∈(0,1)\rho\in(0,1).

Proof. By Proposition 4.10, we know π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is a lens. Consider the natural map ΞΈ:W​(π’ͺX′​(Uβ€²)β™­)β†’π’ͺX′​(Uβ€²)\theta:W(\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat})\rightarrow\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}). By the proof of Proposition 4.7, Ker​(ΞΈ)=([T]βˆ’p)\mathrm{Ker}(\theta)=([T]-p) and (W​(π’ͺX′​(Uβ€²)β™­),([T]βˆ’p))(W(\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat}),([T]-p)) is a perfect prism with

W​(π’ͺX′​(Uβ€²)β™­)([T]βˆ’p)β‰…π’ͺX′​(Uβ€²)\frac{W(\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat})}{([T]-p)}\cong\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})

By [Ked24b] Proposition 7.3.3., the isomorphism is natural.

We have the sequence of isomorphisms:

π’ͺX′​(Uβ€²)β™­\displaystyle\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat} =(W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g])β™­\displaystyle=\Big{(}\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]\Big{)}^{\flat}
β‰…(W​(R+)β€‹βŸ¨ppβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f1βˆ’T1​g,…,fnβˆ’Tn​g)¯​[1g]/(p))β™­\displaystyle\cong\Big{(}\frac{W(R^{+})\langle p^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{1}-T_{1}g,...,f_{n}-T_{n}g)}}[\frac{1}{g}]/(p)\Big{)}^{\flat}
β‰…(R+β€‹βŸ¨Tpβˆ’βˆžβŸ©β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]/(T))β™­\displaystyle\cong\Big{(}\frac{R^{+}\langle T^{p^{-\infty}}\rangle\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]/(T)\Big{)}^{\flat}
=(R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©/(T))β™­\displaystyle=\Big{(}\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle/(T)\Big{)}^{\flat} (1)
β‰…R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fnβˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο,ρ∈(0,1).\displaystyle\cong\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho},\ \ \rho\in(0,1). (2)

(1)(1) is true because the closure of the quotient ideal (f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0}) is taken in the (xΒ―0,…,xΒ―m)(\overline{x}_{0},...,\overline{x}_{m})-adic topology and all of f10,…,fn​0,g0f_{10},...,f_{n0},g_{0} are not divisible by TT as we assumed all of the fi,gf_{i},g are not divisible by pp. Thus the quotient is independent of TT.
By Lemma 4.11, (1)(1) is the (T)(T)-adic completion of R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle, which is

\savestack​\tmpbox​\stretchto​\scaleto​\scalerelβˆ—[w​i​d​t​h​("​R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]​[[Tpβˆ’βˆž]]​")]​⋀ ​0.5​e​x​\stackon​[1​p​t]​R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]​[[Tpβˆ’βˆž]]​\tmpbox(xΒ―0,…,xΒ―m)\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[width("\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}][[T^{p^{-\infty}}]]")]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-576.94263pt]{4.30554pt}{576.94263pt}}}{}}{0.5ex}}\stackon[1pt]{\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}][[T^{p^{-\infty}}]]}{\tmpbox}_{(\overline{x}_{0},...,\overline{x}_{m})}

with the (T,xΒ―0,…,xΒ―m)(T,\overline{x}_{0},...,\overline{x}_{m})-adic topology. This is really just the completion of R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]​[Tpβˆ’βˆž]\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}][T^{p^{-\infty}}] under the weighted Gauss norm |βˆ‘iai​Ti|=maxi⁑{|ai|​ρi}|\sum_{i}a_{i}T^{i}|=\max_{i}\{|a_{i}|\rho^{i}\} with ρ∈(0,1)\rho\in(0,1). And thus we get (2)(2). Now it is clear that the natural isomorphism (4) identifies the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology on both sides. β–‘\Box

5 Banach norms and the (weighted) Gauss norm on the ring of Witt Vectors

Next, we will use the lens isomorphism to show π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is a uniform Banach ring by extending the power multiplicative norm on R+R^{+} to π’ͺX′​(Uβ€²)β™­\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat}. The power-multiplicative norm on π’ͺX′​(Uβ€²)β™­\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat} extends to the Gauss norm and weighted Gauss norm on W​(π’ͺX′​(Uβ€²)β™­)W(\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat}). Finally the weighted Gauss norm on W​(π’ͺX′​(Uβ€²)β™­)W(\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}})^{\flat}) will descend to a power-multiplicative norm on π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) and defines the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology on π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}).

We first show the weighted Gauss norm defines the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology on the underlying Huber ring. In the following definitions and lemmas, let (S,S+)(S,S^{+}) be a Huber pair such that SS is a perfect and uniform Banach ring in char pp (then it follows S+S^{+} is also a perfect and uniform Banach ring).

Definition 5.1.

Let Wb​(S)W^{b}(S) be the subset of W​(S)W(S) consisting of the series βˆ‘n=0∞pn​[xΒ―n]\sum_{n=0}^{\infty}p^{n}[\overline{x}_{n}] for which the set {xΒ―n:n=0,1,…}\{\overline{x}_{n}:n=0,1,...\} is bounded in SS. Wb​(S)W^{b}(S) forms a subring of W​(S)W(S) and W​(S+)βŠ‚Wb​(S)W(S^{+})\subset W^{b}(S). Wb​(S)W^{b}(S) is equipped with the topology of uniform convergence in the T​e​i​c​h​m​u¨​l​l​e​rTeichm\ddot{u}ller coordinates and this topology coincides with the topology induced by the Gauss norm defined below.

Definition 5.2.
  1. (1)

    The Gauss norm on W​(S+)W(S^{+}) and Wb​(S)W^{b}(S) is defined by

    |βˆ‘n=0∞pn[xΒ―n]|=sup{|xΒ―n|:n=0,1,…,}.\Bigg{|}\sum_{n=0}^{\infty}p^{n}[\overline{x}_{n}]\Bigg{|}=\sup\{|\overline{x}_{n}|:n=0,1,...,\}.
  2. (2)

    The weighted Gauss norm on W​(S+)W(S^{+}) and Wb​(S)W^{b}(S) is defined by

    |βˆ‘n=0∞pn[xΒ―n]|ρ=sup{Οβˆ’n|xΒ―n|:n=0,1,…,}\Bigg{|}\sum_{n=0}^{\infty}p^{n}[\overline{x}_{n}]\Bigg{|}_{\rho}=\sup\{\rho^{-n}|\overline{x}_{n}|:n=0,1,...,\}

    for some ρ∈(0,1)\rho\in(0,1).

Lemma 5.3.

(Argument due to Kedlaya)
Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. Then Wb​(R)W^{b}(R) is an analytic Huber ring with a ring of definition W​(R+)βŠ‚Wb​(R)W(R^{+})\subset W^{b}(R) and an ideal of definition ([xΒ―0],…,[xΒ―m])βŠ‚W​(R+).([\overline{x}_{0}],...,[\overline{x}_{m}])\subset W(R^{+}).

Proof. We will show ([xΒ―0],…,[xΒ―m])([\overline{x}_{0}],...,[\overline{x}_{m}]) generates the unit ideal in Wb​(R)W^{b}(R). Since (xΒ―0,…,xΒ―m)(\overline{x}_{0},...,\overline{x}_{m}) generate the unit ideal in RR, there exist aΒ―0,…,aΒ―m∈R\overline{a}_{0},...,\overline{a}_{m}\in R such that

aΒ―0​xΒ―0+…+aΒ―m​xΒ―m=1∈R.\overline{a}_{0}\overline{x}_{0}+...+\overline{a}_{m}\overline{x}_{m}=1\ \in R.

Then for [aΒ―0],…,[aΒ―m]∈Wb​(R)[\overline{a}_{0}],...,[\overline{a}_{m}]\in W^{b}(R), we have

[aΒ―0​xΒ―0]+…+[aΒ―m​xΒ―m]=[aΒ―0​xΒ―0+…+aΒ―m​xΒ―m]+βˆ‘n=1∞pn​[zn]=1+βˆ‘n=1∞pn​[zn]∈Wb​(R)[\overline{a}_{0}\overline{x}_{0}]+...+[\overline{a}_{m}\overline{x}_{m}]=[\overline{a}_{0}\overline{x}_{0}+...+\overline{a}_{m}\overline{x}_{m}]+\sum_{n=1}^{\infty}p^{n}[z_{n}]=1+\sum_{n=1}^{\infty}p^{n}[z_{n}]\ \in W^{b}(R)

where, for each nn, znz_{n} is given by a certain universal degree 11 homogeneous polynomial in variables y0pβˆ’n,…,ympβˆ’ny_{0}^{p^{-n}},...,y_{m}^{p^{-n}} evaluated at (aΒ―0​xΒ―0),…,(aΒ―m​xΒ―m)(\overline{a}_{0}\overline{x}_{0}),...,(\overline{a}_{m}\overline{x}_{m}). Next we leave 11 on one side of the equation (5) and raise everything to the (m+1m+1)-th power:

1\displaystyle 1 =1m+1\displaystyle=1^{m+1}
=([aΒ―0​xΒ―0]+…+[aΒ―m​xΒ―m]βˆ’βˆ‘n=1∞pn​[zn])m+1\displaystyle=\Big{(}[\overline{a}_{0}\overline{x}_{0}]+...+[\overline{a}_{m}\overline{x}_{m}]-\sum_{n=1}^{\infty}p^{n}[z_{n}]\Big{)}^{m+1}
=βˆ‘i0,…,imβˆˆβ„€β€‹[ppβˆ’βˆž]β‰₯0i0+…+im=m+1pni0,…,im​bi0,…,im​[aΒ―0]i0​…​[aΒ―m]im​([xΒ―0]i0​…​[xΒ―m]im)\displaystyle=\sum_{\begin{subarray}{c}i_{0},...,i_{m}\in\mathbb{Z}[p^{p^{-\infty}}]_{\geq 0}\\ i_{0}+...+i_{m}=m+1\end{subarray}}p^{n_{i_{0},...,i_{m}}}b_{i_{0},...,i_{m}}[\overline{a}_{0}]^{i_{0}}...[\overline{a}_{m}]^{i_{m}}([\overline{x}_{0}]^{i_{0}}...[\overline{x}_{m}]^{i_{m}})
=βˆ‘j0,…,jmβˆˆβ„€β‰₯0j0+…+jm=m+1​or​m\displaystyle=\sum_{\begin{subarray}{c}j_{0},...,j_{m}\in\mathbb{Z}_{\geq 0}\\ j_{0}+...+j_{m}=m+1\ \textnormal{or}\ m\end{subarray}}
(βˆ‘i0,…,imβˆˆβ„€β€‹[ppβˆ’βˆž]β‰₯0i0+…+im=m+1βˆ€k,⌊ikβŒ‹=jkpni0,…,im​bi0,…,im​[aΒ―0]i0​…​[aΒ―m]im​[xΒ―0]i0βˆ’j0​…​[xΒ―m]imβˆ’jm)​[xΒ―0]j0​…​[xΒ―m]jm\displaystyle\hskip 14.45377pt\Big{(}\sum_{\begin{subarray}{c}i_{0},...,i_{m}\in\mathbb{Z}[p^{p^{-\infty}}]_{\geq 0}\\ i_{0}+...+i_{m}=m+1\\ \forall k,\lfloor i_{k}\rfloor=j_{k}\end{subarray}}p^{n_{i_{0},...,i_{m}}}b_{i_{0},...,i_{m}}[\overline{a}_{0}]^{i_{0}}...[\overline{a}_{m}]^{i_{m}}[\overline{x}_{0}]^{i_{0}-j_{0}}...[\overline{x}_{m}]^{i_{m}-j_{m}}\Big{)}[\overline{x}_{0}]^{j_{0}}...[\overline{x}_{m}]^{j_{m}}
=βˆ‘j0,…,jmβˆˆβ„€β‰₯0j0+…+jm=m+1​or​mcj0,…,jm​[xΒ―0]j0​…​[xΒ―m]jm\displaystyle=\sum_{\begin{subarray}{c}j_{0},...,j_{m}\in\mathbb{Z}_{\geq 0}\\ j_{0}+...+j_{m}=m+1\ \textnormal{or}\ m\end{subarray}}c_{j_{0},...,j_{m}}[\overline{x}_{0}]^{j_{0}}...[\overline{x}_{m}]^{j_{m}} (**)

The indices i0,…,imi_{0},...,i_{m} in the above summations are from the family of homogeneous polynomials defining Witt vector addition and the bi0,…,imb_{i_{0},...,i_{m}}’s are some universal integer coefficients. Because each cj0,…,jmc_{j_{0},...,j_{m}} becomes a finite sum modulo any powers of pp, we have cj0,…,jm∈W​(R)c_{j_{0},...,j_{m}}\in W(R). The set {[aΒ―0]i0​…​[aΒ―m]im:i0+…+im=m+1,i0,…,imβˆˆβ„€β€‹[ppβˆ’βˆž]β‰₯0}\{[\overline{a}_{0}]^{i_{0}}...[\overline{a}_{m}]^{i_{m}}:i_{0}+...+i_{m}=m+1,\;i_{0},...,i_{m}\in\mathbb{Z}[p^{p^{-\infty}}]_{\geq 0}\} (where i0,…,imi_{0},...,i_{m} are degrees of the homogeneous polynomials defining Witt vector addition) is bounded under the Gauss norm. We observe that each [xΒ―0]i0βˆ’j0​…​[xΒ―m]imβˆ’jm[\overline{x}_{0}]^{i_{0}-j_{0}}...[\overline{x}_{m}]^{i_{m}-j_{m}} has norm less than 1. Thus every cj0,…,jm∈Wb​(R)c_{j_{0},...,j_{m}}\in W^{b}(R). Then (** β€£ 5) writes 11 as a finite linear combination of the [xΒ―0],…,[xΒ―m][\overline{x}_{0}],...,[\overline{x}_{m}]. Therefore we have

1=βˆ‘j0,…,jmβˆˆβ„€β‰₯0j0+…+jm=m+1​or​mcj0,…,jm​[xΒ―0]j0​…​[xΒ―m]jm∈([xΒ―0],…,[xΒ―m])βŠ‚Wb​(R).1=\sum_{\begin{subarray}{c}j_{0},...,j_{m}\in\mathbb{Z}_{\geq 0}\\ j_{0}+...+j_{m}=m+1\ \textnormal{or}\ m\end{subarray}}c_{j_{0},...,j_{m}}[\overline{x}_{0}]^{j_{0}}...[\overline{x}_{m}]^{j_{m}}\ \in([\overline{x}_{0}],...,[\overline{x}_{m}])\ \subset W^{b}(R).

β–‘\Box

Corollary 5.4.

Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. Then Wb​(R)W^{b}(R) is an analytic Huber ring with a ring of definition W​(R+)βŠ‚Wb​(R)W(R^{+})\subset W^{b}(R) and an ideal of definition (p,[xΒ―0],…,[xΒ―m])βŠ‚W​(R+).(p,[\overline{x}_{0}],...,[\overline{x}_{m}])\subset W(R^{+}).

Lemma 5.5.

(Argument due to Kedlaya)
Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. Then the Gauss norm on W​(R+)W(R^{+}) defines the ([xΒ―0],…,[xΒ―m])([\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology.

Proof. In one direction, it is clear that if f∈([xΒ―0],…,[xΒ―m])Nf\in([\overline{x}_{0}],...,[\overline{x}_{m}])^{N} for NN large, the Gauss norm of ff will be small. For the other direction, we need to show if f∈W​(R+)f\in W(R^{+}) with sufficiently small Gauss norm |f||f|, then f∈([xΒ―0],…,[xΒ―m])Nf\in([\overline{x}_{0}],...,[\overline{x}_{m}])^{N} for sufficiently large N>0N>0. To do this, it suffices to show:
(1) for such f∈W​(R+)f\in W(R^{+}) with small Gauss norm, we can write ff as a linear combination of [xΒ―0],…,[xΒ―m][\overline{x}_{0}],...,[\overline{x}_{m}], i.e. f=a0​[xΒ―0]+…+an​[xΒ―n]f=a_{0}[\overline{x}_{0}]+...+a_{n}[\overline{x}_{n}] with ai∈W​(R+)a_{i}\in W(R^{+}).
(2) for any Ρ>0\varepsilon>0, there exists δ>0\delta>0 such that if |f|<δ|f|<\delta, then maxi⁑{|ai|}<Ρ\max_{i}\{|a_{i}|\}<\varepsilon.
Given (1) and (2), (2) shows that if ff has very small norm, then each aia_{i} also has small norm. Then one can repeat steps (1) and (2) for each aia_{i}. This proves the other direction. To show (1), by Lemma 5.4, there exist b0,…,bm∈Wb​(R)b_{0},...,b_{m}\in W^{b}(R) such that

b0​[xΒ―0]+…+bm​[xΒ―m]=1∈Wb​(R).b_{0}[\overline{x}_{0}]+...+b_{m}[\overline{x}_{m}]=1\ \in W^{b}(R).

(Note that the bib_{i}’s above are fixed once and for all.) Then multiplying the above equation by ff, we get

f=f​b0​[xΒ―0]+…+f​bm​[xΒ―m]∈Wb​(R).f=fb_{0}[\overline{x}_{0}]+...+fb_{m}[\overline{x}_{m}]\ \in W^{b}(R).

Now if f∈W​(R+)f\in W(R^{+}) has sufficiently small Gauss norm, for i∈{0,…,m}i\in\{0,...,m\}, we have f​bi∈W​(R+)fb_{i}\in W(R^{+}). Thus

f=f​b0​[xΒ―0]+…+f​bm​[xΒ―m]∈([xΒ―0],…,[xΒ―m])βŠ‚W​(R+).f=fb_{0}[\overline{x}_{0}]+...+fb_{m}[\overline{x}_{m}]\in([\overline{x}_{0}],...,[\overline{x}_{m}])\subset W(R^{+}).

This shows (1) with ai=f​bia_{i}=fb_{i}. Now for (2), given any Ξ΅\varepsilon, we can take Ξ΄=Ξ΅/maxi⁑{|bi|}\delta=\varepsilon/\max_{i}\{|b_{i}|\}. β–‘\Box

Corollary 5.6.

Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. Then the weighted Gauss norm on W​(R+)W(R^{+}) defines the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology.

The next lemma is [KL15] Proposition 3.1.7. In [KL15] Proposition 3.1.7 the adic Banach 𝔽p\mathbb{F}_{p}-algebras are assumed to contain a topologically nilpotent unit (pseudo-uniformizer) i.e. they are Tate. The statement and proof of the proposition are valid without the pseudo-uniformizer assumption. We relax the hypothesis and reproduce the proof for the sake of completeness.

Lemma 5.7.

([KL15] Proposition 3.1.7)
Let (A,A+)(A,A^{+}) be a general Huber pair such that AA is a perfect and uniform Banach ring in char pp (the Banach norm gives rise to the Huber ring topology). Then any rational localization of (A,A+)(A,A^{+}) is also a perfect and uniform Banach ring.

Proof. Let (A,A+)β†’(B,B+)(A,A^{+})\rightarrow(B,B^{+}) be a rational localization corresponding to a rational open subset VβŠ‚Spa​(A,A+)V\subset\textnormal{Spa}(A,A^{+}). Then B=Aβ€‹βŸ¨T1,…,Tn⟩(w1βˆ’T1​z,…,wnβˆ’Tn​z)¯​[zβˆ’1]B=\frac{A\langle T_{1},...,T_{n}\rangle}{\overline{(w_{1}-T_{1}z,...,w_{n}-T_{n}z)}}[z^{-1}] where (w1,…,wn,z)βŠ‚A(w_{1},...,w_{n},z)\subset A is an open ideal. BB is clearly perfect and B+B^{+} is also perfect because it is integrally closed in BB. Equip B1/pB^{1/p} with the norm |x|B1/p=|xp|B1/p|x|_{B^{1/p}}=|x^{p}|_{B}^{1/p}. By applying the inverse of the Frobenius map Ο•βˆ’1\phi^{-1}, raising norms to the pp-th power, and using that AA is perfect and its norm is power-multiplicative (so its norm is unchanged), we have another rational localization (A,A+)β†’(B1/p,(B+)1/p)(A,A^{+})\rightarrow(B^{1/p},(B^{+})^{1/p}) representing VV. Then we have B1/pβ‰…Aβ€‹βŸ¨T11/p,…,Tn1/p⟩(w11/pβˆ’T11/p​z1/p,…,wn1/pβˆ’Tn1/p​z1/p)¯​[zβˆ’1/p]B^{1/p}\cong\frac{A\langle T^{1/p}_{1},...,T^{1/p}_{n}\rangle}{\overline{(w^{1/p}_{1}-T^{1/p}_{1}z^{1/p},...,w^{1/p}_{n}-T^{1/p}_{n}z^{1/p})}}[z^{-1/p}]. The inclusion Aβ€‹βŸ¨T1,…,Tn⟩β†ͺAβ€‹βŸ¨T11/p,…,Tn1/p⟩A\langle T_{1},...,T_{n}\rangle\hookrightarrow A\langle T^{1/p}_{1},...,T^{1/p}_{n}\rangle induces a morphism (B,B+)β†’(B1/p,(B+)1/p)(B,B^{+})\rightarrow(B^{1/p},(B^{+})^{1/p}) of Huber pairs over (A,A+)(A,A^{+}) which must be an isomorphism by the universal property of rational localizations. This shows BB and B+B^{+} are perfect and uniform Banach rings. β–‘\Box

Proposition 5.8.

R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho} with ρ∈(0,1)\rho\in(0,1) is a perfect and uniform Banach ring.

Proof. Note that (f10,…,fn​0,g0)(f_{10},...,f_{n0},g_{0}) is open in R+R^{+} (by Lemma 3.5 (2)). Then R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}] is a rational localization of the Huber pair (R+,R+)(R^{+},R^{+}). By Lemma 5.7, we know that R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}] is perfect and uniform as a Banach ring. We give R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho} the weighted Gauss norm |βˆ‘iai​Ti|=maxi⁑{|ai|​ρi}|\sum_{i}a_{i}T^{i}|=\max_{i}\{|a_{i}|\rho^{i}\}. The (weighted) Gauss extension of a power-multiplicative norm is also a power-multiplicative norm by [Ked13] Lemma 1.7. This shows R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho} is a uniform Banach ring and perfectness is clear. β–‘\Box

Lemma 5.9.

([Ked13] Lemma 4.1 and Corollary 4.2)
If SS is a uniform Banach ring, then W​(S+)W(S^{+}) and Wb​(S)W^{b}(S) are uniform Banach rings under both the Gauss norm and the weighted Gauss norm.

Corollary 5.10.

Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. Let Wb​(R)W^{b}(R) be a Huber ring with the ring of definition W​(R+)βŠ‚Wb​(R)W(R^{+})\subset W^{b}(R) and the ideal of definition I:=(p,[xΒ―0],…,[xΒ―m])βŠ‚W​(R+).I:=(p,[\overline{x}_{0}],...,[\overline{x}_{m}])\subset W(R^{+}). Then (Wb​(R),W​(R+))(W^{b}(R),W(R^{+})) is an analytic stably uniform Huber pair. In particular, Spa​(Wb​(R),W​(R+))\textnormal{Spa}(W^{b}(R),W(R^{+})) is a sheafy adic space.

Proof. Since Wb​(R)W^{b}(R) is an analytic uniform Huber ring by by Lemma 5.4 and Lemma 5.9, Wb​(R)​[ppβˆ’βˆž]I^\widehat{W^{b}(R)[p^{p^{-\infty}}]_{I}} is an analytic perfectoid ring. We have a strict inclusion Wb​(R)β†ͺWb​(R)​[ppβˆ’βˆž]I^W^{b}(R)\hookrightarrow\widehat{W^{b}(R)[p^{p^{-\infty}}]_{I}} which splits in the category of topological Wb​(R)W^{b}(R)-modules and is stable under rational localization. Therefore Wb​(R)W^{b}(R) is a stably uniform analytic Huber ring. β–‘\Box

Definition 5.11.

An element z=βˆ‘n=0∞pn​[zΒ―n]∈W​(S+)z=\sum_{n=0}^{\infty}p^{n}[\overline{z}_{n}]\in W(S^{+}) is primitive if zΒ―0\overline{z}_{0} is topologically nilpotent and zΒ―1\overline{z}_{1} is a unit in S+S^{+} i.e. z=[zΒ―0]+p​z1z=[\overline{z}_{0}]+pz_{1} where z1z_{1} is a unit in W​(S+)W(S^{+}). Note that a primitive element is a distinguished element (Definition 4.4) when we give W​(S+)W(S^{+}) the structure of a perfect Ξ΄\delta-ring.

Proposition 5.12.

([Ked19] Corollary 2.6.10)
For zz primitive, the quotient norm of the Gauss norm on Wb​(S)/(z)W^{b}(S)/(z) is power-multiplicative. If in addition the norm on SS is multiplicative, then the quotient norm on Wb​(S)/(z)W^{b}(S)/(z) is multiplicative.

Since we are working with 𝐀inf\mathbf{A}_{\textnormal{inf}}, we really want the (p,[yΒ―0],…,[yΒ―m])(p,[\overline{y}_{0}],...,[\overline{y}_{m}])-adic topology on W​(S+)W(S^{+}) and thus we really should be considering the weighted Gauss norm on W​(S+)W(S^{+}) and Wb​(S)W^{b}(S). However, by [Ked19] Lemma 2.6.9, the quotient norm of the weighted Gauss norm with ρ∈(0,1)\rho\in(0,1) and the Gauss norm agree on Wb​(S)/(z)W^{b}(S)/(z) when zz is a primitive element.

Proposition 5.13.

π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is a uniform Banach ring i.e. there exists a power-multiplicative norm on π’ͺX′​(Uβ€²)\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) that induces the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology.

Proof. TT is topologically nilpotent in R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho}: |T|=ρ<1|T|=\rho<1 and we have |Tn|=|T|n=ρnβ†’0|T^{n}|=|T|^{n}=\rho^{n}\rightarrow 0 as n β†’βˆž\rightarrow\infty. Therefore [T]βˆ’p[T]-p is a primitive element in W​(R+β€‹βŸ¨T1,…,Tn⟩(f10βˆ’T1​g0,…,fn​0βˆ’Tn​g0)¯​[1g0]β€‹βŸ¨Tpβˆ’βˆžβŸ©Ο)W\big{(}\frac{R^{+}\langle T_{1},...,T_{n}\rangle}{\overline{(f_{10}-T_{1}g_{0},...,f_{n0}-T_{n}g_{0})}}[\frac{1}{g_{0}}]\langle T^{p^{-\infty}}\rangle_{\rho}\big{)}. Then the claim follows from Proposition 5.12. β–‘\Box

Corollary 5.14.

π’ͺX​(U)\mathcal{O}_{X}(U) is a uniform Banach ring i.e. there exists a power-multiplicative norm on π’ͺX​(U)\mathcal{O}_{X}(U) that induces the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology.

Proof. By Lemma 3.6, the natural inclusion π’ͺX​(U)β†ͺπ’ͺX′​(Uβ€²)\mathcal{O}_{X}(U)\hookrightarrow\mathcal{O}_{X^{{}^{\prime}}}(U^{{}^{\prime}}) is strict. This implies the Banach norm on π’ͺX​(U)\mathcal{O}_{X}(U) is equivalent to a power-multiplicative norm. β–‘\Box

Theorem 5.15.

Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is a stably uniform Banach ring and thus (𝐀inf​(R+),𝐀inf​(R+))(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) a stably uniform Huber pair.

Proof. The theorem follows from the corollary above. β–‘\Box

6 β€˜Stably uniform implies sheafy’ for Banach rings whose underlying topological ring is Huber

We show the β€˜stably uniform implies sheafy’ argument in [Ked19] works for general Banach rings whose underlying topological ring is Huber, without the analyticity or pseudo-uniformizer assumption. In this section we let BB be a stably uniform Banach ring whose Banach norm defines a Huber ring (B,B+)(B,B^{+}) and show Spa​(B,B+)\textnormal{Spa}(B,B^{+}) is a sheafy adic space. In particular, we show Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) is a sheafy adic space.

Lemma 6.1.

([Ked19] Lemma 1.6.3)
Let CC be a cofinal family of rational coverings. Let X=Spa​(A,A+)X=\textnormal{Spa}(A,A^{+}) where (A,A+)(A,A^{+}) is a Huber pair. Let β„±\mathcal{F} be a presheaf on XX with the property that for any open subset UU, ℱ​(U)\mathcal{F}(U) is the inverse limit of ℱ​(V)\mathcal{F}(V) over all rational subspaces VβŠ†UV\subseteq U.

(a) Suppose that for every rational subspace UU of XX and every covering π”™βˆˆC​(U)\mathfrak{V}\in C(U), the natural map

ℱ​(U)β†’HΛ‡0​(U,β„±;𝔙)\mathcal{F}(U)\rightarrow\check{\mathrm{H}}^{0}(U,\mathcal{F};\mathfrak{V})

is an isomorphism. Then β„±\mathcal{F} is a sheaf.

(b) Suppose that β„±\mathcal{F} is sheaf, and that for every rational subspace UU of XX and every covering π”™βˆˆC​(U)\mathfrak{V}\in C(U), we have HΛ‡i​(U,β„±;𝔙)=0\check{\mathrm{H}}^{i}(U,\mathcal{F};\mathfrak{V})=0 for all i>0i>0. Then β„±\mathcal{F} is acyclic.

By Lemma 6.1, we need to show for any rational open subspace UU of Spa​(W​(R+),W​(R+))\textnormal{Spa}(W(R^{+}),W(R^{+})), the Čech cohomology groups HΛ‡i​(U,π’ͺ;𝔙)\check{\mathrm{H}}^{i}(U,\mathcal{O};\mathfrak{V}) vanish for all i>0i>0 and HΛ‡0​(U,π’ͺ;𝔙)\check{\mathrm{H}}^{0}(U,\mathcal{O};\mathfrak{V}) is isomorphic to π’ͺ​(U)\mathcal{O}(U) where 𝔙\mathfrak{V} belongs to some cofinal family of rational coverings of UU.

To calculate the Čech cohomologies of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})), we can refine any general rational open coverings to standard rational open coverings.

Lemma 6.2.

([Hub94] Lemma 2.6)
Let (A,A+)(A,A^{+})be a complete Huber pair. Let (Vj)j∈J(V_{j})_{j\in J} be an open covering of Spa​(A,A+)\textnormal{Spa}(A,A^{+}). Then there exist f1,…,fn∈Af_{1},...,f_{n}\in A generating the unit ideal such that for every i=0,…,ni=0,...,n, the rational subset U​(f1,…,fnfi)U\Big{(}\frac{f_{1},...,f_{n}}{f_{i}}\Big{)}is contained in some VjV_{j}. Such open coverings are called the standard rational coverings defined by f1,…,fnf_{1},...,f_{n}.

We remark that for the following two lemmas, the analytic assumption on the Huber rings are not needed because we do not need to use arbitrary open ideals in the Huber ring AA to generate the desired binary rational open subsets. The wanted binary rational open subsets come from an induction on the number of the parameters nn of a standard rational covering f1,…,fnf_{1},...,f_{n} generating the unit ideal in AA from Lemma 6.2.

Lemma 6.3.

([Ked19] Lemma 1.6.12)
For a general Huber pair (A,A+)(A,A^{+}), every open covering of a rational subspace of Spa​(A,A+)\textnormal{Spa}(A,A^{+}) can be refined by some composition of standard binary rational coverings.

Lemma 6.4.

([Ked19] Lemma 1.6.13)
Let (A,A+)(A,A^{+}) be a complete Huber pair. Every open covering of a rational subspace of Spa​(A,A+)\textnormal{Spa}(A,A^{+}) can be refined by some composition of coverings, each of which is either a simple Laurent covering or a simple balanced covering.

Let (B,B+)β†’(C,C+)(B,B^{+})\rightarrow(C,C^{+}) be a rational localization. By the above two lemma, we can compute the Čech cohomologies on a simple Laurent covering or a simple balanced covering. Then we need to show, for every pair f,g∈Cf,g\in C with g∈{1,1βˆ’f}g\in\{1,1-f\}, the following is a (strict) exact sequence:

0{0}C{C}Cβ€‹βŸ¨T⟩(g​Tβˆ’f)¯​⨁Cβ€‹βŸ¨Tβˆ’1⟩(gβˆ’Tβˆ’1​f)Β―{\dfrac{C\langle T\rangle}{\overline{(gT-f)}}\bigoplus\dfrac{C\langle T^{-1}\rangle}{\overline{(g-T^{-1}f)}}}Cβ€‹βŸ¨T,Tβˆ’1⟩(g​Tβˆ’f)Β―{\dfrac{C\langle T,T^{-1}\rangle}{\overline{(gT-f)}}}0{0}

The next lemma is [Ked19] Lemma 1.5.26. [Ked19] Lemma 1.5.26 assumes AA to be an uniform analytic Huber ring. The analytic assumption is only needed to promote a uniform Huber ring to a uniform Banch ring and is irrelevant to the rest of the proof. For the sake of completeness, we reproduce the proof here.

Lemma 6.5.

([Ked19] Lemma 1.5.26)
Suppose AA is a uniform Banach ring. Choose x=βˆ‘n=0∞xn​Tn∈Aβ€‹βŸ¨T⟩x=\sum_{n=0}^{\infty}x_{n}T^{n}\in A\langle T\rangle such that the xnx_{n}’s generate the unit ideal in AA. Then multiplication by xx defines a strict inclusion Aβ€‹βŸ¨TβŸ©β†’Aβ€‹βŸ¨T⟩A\langle T\rangle\rightarrow A\langle T\rangle. In particular, (x)(x) is a closed ideal in Aβ€‹βŸ¨T⟩A\langle T\rangle. (Same for Aβ€‹βŸ¨T±⟩A\langle T^{\pm}\rangle)

Proof. Let ℳ​(A)\mathcal{M}(A) be the Gelfand Spectrum of AA. For Ξ±βˆˆβ„³β€‹(A)\alpha\in\mathcal{M}(A) a multiplicative seminorm on AA, write Ξ±~βˆˆβ„³β€‹(Aβ€‹βŸ¨T⟩)\widetilde{\alpha}\in\mathcal{M}(A\langle T\rangle) for the Gauss extension. Then Ξ±~\widetilde{\alpha} is the maximal seminorm on Aβ€‹βŸ¨T⟩A\langle T\rangle restricting to Ξ±\alpha on ℳ​(A)\mathcal{M}(A). Since for a general Banach ring BB, the spectral seminorm of BB equals the supremum over ℳ​(B)\mathcal{M}(B) ([Ked19] Lemma 1.5.22), we may compute the spectral seminorm on Aβ€‹βŸ¨T⟩A\langle T\rangle as the supremum of Ξ±~\widetilde{\alpha} as Ξ±\alpha runs over ℳ​(A)\mathcal{M}(A).

Choose x0,…,xmx_{0},...,x_{m} that generate the unit ideal in AA, the quantity

c:=infΞ±βˆˆβ„³β€‹(A){maxi⁑{α​(x0),…,α​(xm)}}c:=\inf_{\alpha\in\mathcal{M}(A)}\{\max_{i}\{\alpha(x_{0}),...,\alpha(x_{m})\}\}

is positive. For all y∈Aβ€‹βŸ¨T⟩y\in A\langle T\rangle, we have

supΞ±βˆˆβ„³β€‹(A){Ξ±~​(x​y)}=supΞ±βˆˆβ„³β€‹(A){Ξ±~​(x)​α~​(y)}β‰₯c​supΞ±βˆˆβ„³β€‹(A){Ξ±~​(y)}\sup_{\alpha\in\mathcal{M}(A)}\{\widetilde{\alpha}(xy)\}=\sup_{\alpha\in\mathcal{M}(A)}\{\widetilde{\alpha}(x)\widetilde{\alpha}(y)\}\geq c\sup_{\alpha\in\mathcal{M}(A)}\{\widetilde{\alpha}(y)\}

Since AA is uniform, the spectral seminorm is a norm on AA, this shows multiplication by xx is a strict inclusion. In general for a strict morphism f:Mβ†’Nf:M\rightarrow N of Banach modules, Im​(f)\textnormal{Im}(f) is closed: Im​(f)βŠ‚N\textnormal{Im}(f)\subset N is Hausdorff in the subspace topology and thus is also Hausdorff in the quotient topology from MM. Thus Ker​(f)\textnormal{Ker}(f) is closed and Im​(f)\textnormal{Im}(f) must be complete and thus closed as NN is Hausdorff. β–‘\Box

Proposition 6.6.
  1. (1)

    (g​Tβˆ’f)βŠ‚Cβ€‹βŸ¨T⟩(gT-f)\subset C\langle T\rangle is closed.

  2. (2)

    (g​Tβˆ’f)βŠ‚Cβ€‹βŸ¨T,Tβˆ’1⟩(gT-f)\subset C\langle T,T^{-1}\rangle is closed.

  3. (3)

    (g​Tβˆ’1βˆ’f)βŠ‚Cβ€‹βŸ¨Tβˆ’1⟩(gT^{-1}-f)\subset C\langle T^{-1}\rangle is closed.

Proof. These statements follow from the previous lemma. β–‘\Box

By Proposition 6.6, the two term Čech complex (6) becomes

0{0}C{C}Cβ€‹βŸ¨T⟩(g​Tβˆ’f)​⨁Cβ€‹βŸ¨Tβˆ’1⟩(gβˆ’Tβˆ’1​f){\dfrac{C\langle T\rangle}{(gT-f)}\bigoplus\dfrac{C\langle T^{-1}\rangle}{(g-T^{-1}f)}}Cβ€‹βŸ¨T,Tβˆ’1⟩(g​Tβˆ’f){\dfrac{C\langle T,T^{-1}\rangle}{(gT-f)}}0{0}

Proposition 6.7.

The two term Čech complex ((6)) is exact.

Proof. We have the following commutative diagram

0{0}0{0}0{0}Cβ€‹βŸ¨TβŸ©β€‹β¨Cβ€‹βŸ¨Tβˆ’1⟩{C\langle T\rangle\bigoplus C\langle T^{-1}\rangle}Cβ€‹βŸ¨T,Tβˆ’1⟩{C\langle T,T^{-1}\rangle}0{0}0{0}C{C}Cβ€‹βŸ¨TβŸ©β€‹β¨Cβ€‹βŸ¨Tβˆ’1⟩{C\langle T\rangle\bigoplus C\langle T^{-1}\rangle}Cβ€‹βŸ¨T,Tβˆ’1⟩{C\langle T,T^{-1}\rangle}0{0}0{0}C{C}Cβ€‹βŸ¨T⟩(g​Tβˆ’f)​⨁Cβ€‹βŸ¨Tβˆ’1⟩(gβˆ’Tβˆ’1​f){\dfrac{C\langle T\rangle}{(gT-f)}\bigoplus\dfrac{C\langle T^{-1}\rangle}{(g-T^{-1}f)}}Cβ€‹βŸ¨T,Tβˆ’1⟩(g​Tβˆ’f){\dfrac{C\langle T,T^{-1}\rangle}{(gT-f)}}0{0}0{0}0{0}0{0}Γ—(g​Tβˆ’f,gβˆ’Tβˆ’1​f)\scriptstyle{\times(gT-f,\ g-T^{-1}f)}βˆ™+Tβˆ’1βˆ™\scriptstyle{\bullet+T^{-1}\bullet}Γ—(g​Tβˆ’f)\scriptstyle{\times(gT-f)}βˆ™β£βˆ’β£βˆ™\scriptstyle{\bullet-\bullet}

in which all the three columns and the first two rows are exact. We can apply the snake lemma to the first two rows to deduce the exactness at the left and middle of the two term complex. The exactness at the right follows by chasing the bottom right square. β–‘\Box

Theorem 6.8.

Let BB be a stably uniform Banach ring such that its Banach norm defines a Huber ring (B,B+)(B,B^{+}). Spa​(B,B+)\textnormal{Spa}(B,B^{+}) is an adic space and π’ͺSpa​(B,B+)\mathcal{O}_{\textnormal{Spa}(B,B^{+})} is an acyclic sheaf.

Proof. This follows directly from the above proposition. β–‘\Box

Theorem 6.9.

Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) is a sheafy adic space and π’ͺSpa​(𝐀inf​(R+),𝐀inf​(R+))\mathcal{O}_{\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+}))} is an acyclic sheaf.

Proof. This follows from the above theorem and the fact that (𝐀inf​(R+),𝐀inf​(R+))(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) is a stably uniform Banach ring. β–‘\Box

Corollary 6.10.

The two term Čech complex ((6)) is strict exact.

Proof. The first map is an isometry for the spectral seminorm by [Ked19] Remark 1.5.25 and thus is a strict inclusion by uniformity. For the second map we consider the bottom right corner of the commutative diagram in the last proposition.

Cβ€‹βŸ¨TβŸ©β€‹β¨Cβ€‹βŸ¨Tβˆ’1⟩{C\langle T\rangle\bigoplus C\langle T^{-1}\rangle}Cβ€‹βŸ¨T,Tβˆ’1⟩{C\langle T,T^{-1}\rangle}Cβ€‹βŸ¨T⟩(g​Tβˆ’f)​⨁Cβ€‹βŸ¨Tβˆ’1⟩(gβˆ’Tβˆ’1​f){\dfrac{C\langle T\rangle}{(gT-f)}\bigoplus\dfrac{C\langle T^{-1}\rangle}{(g-T^{-1}f)}}Cβ€‹βŸ¨T,Tβˆ’1⟩(g​Tβˆ’f){\dfrac{C\langle T,T^{-1}\rangle}{(gT-f)}}βˆ™β£βˆ’β£βˆ™\scriptstyle{\bullet-\bullet}

All four modules (rings) in the above diagram are complete in the (p,[xΒ―0],…,[xΒ―m])(p,[\overline{x}_{0}],...,[\overline{x}_{m}])-adic topology. It is clear that the top horizontal map and the two vertical surjections map open basis to open subsets of the targets. Thus the top horizontal map and the two vertical surjections are open (the ideals in the quotients are closed). Thus the bottom horizontal map is open and strict. Since both maps in the short exact sequence are strict, the strictness of the middle part is clear. β–‘\Box

7 Gluing finite projective modules over 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+})

Since the sheafiness of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) is established, we follow [Ked19] 1.9 to show the equivalence of categories between the category of vector bundles over Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) and the category of finite projective modules over 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}). Recently, using condensed mathematics, Kedlaya showed the equivalence of categories between the category of vector bundles over Spa​(A,A+)\textnormal{Spa}(A,A^{+}) and and the category of finite projective modules over AA for a general sheafy Huber pair (A,A+)(A,A^{+})[Ked24a]. Here we give a direct proof.

Definition 7.1.

Let (A,A+)(A,A^{+}) be a Huber pair. For any AA-module MM, let M~\widetilde{M} be the presheaf on Spa​(A,A+)\textnormal{Spa}(A,A^{+}) such that for open VβŠ‚Spa​(A,A+)V\subset\textnormal{Spa}(A,A^{+}),

M~​(V)=lim←Spa​(B,B+)βŠ‚V⁑Mβ€‹βŠ—^​B,\widetilde{M}(V)=\varprojlim_{\textnormal{Spa}(B,B^{+})\subset V}M\widehat{\otimes}B,

where the inverse limit is taken over all rational localizations (A,A+)β†’(B,B+)(A,A^{+})\rightarrow(B,B^{+})

Definition 7.2.

Let (A,A+)(A,A^{+}) be a Huber pair. Let π…ππŒπ¨πA\mathbf{FPMod}_{A} denote the category of finite projective AA-modules. A vector bundle on Spa​(A,A+)\textnormal{Spa}(A,A^{+}) is a sheaf β„±\mathcal{F} of π’ͺSpa​(A,A+)\mathcal{O}_{\textnormal{Spa}(A,A^{+})}-modules which is locally of the form M~\widetilde{M} for finite projective AA-module MM. More specifically, there exists a finite covering {Vi}i=1n\big{\{}V_{i}\big{\}}_{i=1}^{n} of Spa​(A,A+)\textnormal{Spa}(A,A^{+}) by rational subspaces such that for each ii, Mi:=ℱ​(Vi)βˆˆπ…ππŒπ¨ππ’ͺ​(Vi)M_{i}:=\mathcal{F}(V_{i})\in\mathbf{FPMod}_{\mathcal{O}(V_{i})} and the canonical morphism M~iβ†’β„±|Vi\widetilde{M}_{i}\rightarrow\mathcal{F}|_{V_{i}} of sheaves of π’ͺ|Vi\mathcal{O}|_{V_{i}}-modules is an isomorphism. Let π•πžπœSpa​(A,A+)\mathbf{Vec}_{\textnormal{Spa}(A,A^{+})} denote the category of vector bundles on Spa​(A,A+)\textnormal{Spa}(A,A^{+}).The functor π…ππŒπ¨πAβ†’π•πžπœSpa​(A,A+):Mβ†’M~\mathbf{FPMod}_{A}\rightarrow\mathbf{Vec}_{\textnormal{Spa}(A,A^{+})}:M\rightarrow\widetilde{M} is exact by the flatness of finite projective modules.

Theorem 7.3.

For any finite projective 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+})-modules MM, the presheaf M~\widetilde{M} is an acyclic sheaf.

Proof. Since MM is a direct summand of a finite free 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+})-module, we may reduce to the case M=𝐀inf​(R+)M=\mathbf{A}_{\textnormal{inf}}(R^{+}). By results in section 4, we may check the claim on binary standard rational coverings. Then the theorem follows from Proposition 4.7. β–‘\Box

Following [Ked19] Remark 1.6.16, given that 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+}) is sheafy and M~\widetilde{M} is acyclic for every finite projective 𝐀inf​(R+)\mathbf{A}_{\textnormal{inf}}(R^{+})-module, it suffices to consider a bundle which is specified by modules on each term of a composition of simple Laurent coverings and simple balanced coverings by Lemma 6.4.
We continue to fix the notation that UU is a rational open subspace of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) with ring of global sections π’ͺX​(U)\mathcal{O}_{X}(U) and consider the two term coverings U​(fg)U\big{(}\frac{f}{g}\big{)} and U​(gf)U\big{(}\frac{g}{f}\big{)} for every pair f,g∈π’ͺX​(U)f,g\in\mathcal{O}_{X}(U) with g∈{1,1βˆ’f}g\in\{1,1-f\}. Finally we let π’ͺX​(U)β€‹βŸ¨fg⟩:=π’ͺX​(U)β€‹βŸ¨T⟩(g​Tβˆ’f)\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle:=\dfrac{\mathcal{O}_{X}(U)\langle T\rangle}{(gT-f)}, π’ͺX​(U)β€‹βŸ¨gf⟩:=π’ͺX​(U)β€‹βŸ¨Tβˆ’1⟩(gβˆ’Tβˆ’1​f)\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle:=\dfrac{\mathcal{O}_{X}(U)\langle T^{-1}\rangle}{(g-T^{-1}f)}, and π’ͺX​(U)β€‹βŸ¨fg,gf⟩:=π’ͺX​(U)β€‹βŸ¨T,Tβˆ’1⟩(g​Tβˆ’f)\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle:=\dfrac{\mathcal{O}_{X}(U)\langle T,T^{-1}\rangle}{(gT-f)}.

Lemma 7.4.

([KL15] Lemma 2.7.2)
Let R1β†’SR_{1}\rightarrow S, R2β†’SR_{2}\rightarrow S be bounded homomorphisms of Banach rings (not necessarily containing topologically nilpotent units) such that the sum homomorphism Ο•:R1βŠ•R2β†’S\phi:R_{1}\oplus R_{2}\rightarrow S of groups is strict surjective. Then there exists a constant c>0c>0 such that for every positive integer nn, every matrix U∈G​Ln​(S)U\in GL_{n}(S) with |Uβˆ’1|<c|U-1|<c can be written in the form ϕ​(U1)​ϕ​(U2)\phi(U_{1})\phi(U_{2}) with Ui∈G​Ln​(Ri)U_{i}\in GL_{n}(R_{i}), i=1,2i=1,2.

The next lemma is [Ked19] 1.9.6, where finite projective modules and pseudo-coherent modules over analytic Huber rings are treated in parallel. We reproduce the proof to highlight the independence from analyticity and the open mapping theorem.

Lemma 7.5.

([Ked19] 1.9.6)
Let M1M_{1},M2M_{2},M12M_{12} be finitely generated modules over π’ͺX​(U)β€‹βŸ¨fg⟩\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle, π’ͺX​(U)β€‹βŸ¨gf⟩\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle, π’ͺX​(U)β€‹βŸ¨fg,gf⟩\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle respectively. Let

ψ1:M1βŠ—π’ͺX​(U)β€‹βŸ¨fg⟩π’ͺX​(U)β€‹βŸ¨fg,gfβŸ©β†’M12,ψ2:M2βŠ—π’ͺX​(U)β€‹βŸ¨gf⟩π’ͺX​(U)β€‹βŸ¨fg,gfβŸ©β†’M12\psi_{1}:M_{1}\otimes_{\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle\rightarrow M_{12},\qquad\psi_{2}:M_{2}\otimes_{\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle}\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle\rightarrow M_{12}

be isomorphisms. Then we have
Β Β Β (a) The map ψ:M1βŠ•M2β†’M12\psi:M_{1}\oplus M_{2}\rightarrow M_{12} taking (v,w)(\textbf{v},\textbf{w}) to ψ1​(v)βˆ’Οˆ2​(w)\psi_{1}(\textbf{v})-\psi_{2}(\textbf{w}) is strict surjective.
Β Β Β (b) For M:=k​e​r​(ψ)M:=ker(\psi), the induced maps

MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fgβŸ©β†’M1,MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨gfβŸ©β†’M2M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\rightarrow M_{1},\qquad M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle\rightarrow M_{2}

β€…Β Β Β Β Β Β are strict surjective.

Proof. Let v1,…,vn\textbf{v}_{1},...,\textbf{v}_{n} and w1,…,wn\textbf{w}_{1},...,\textbf{w}_{n} be generating sets of M1M_{1} and M2M_{2} respectively of the same cardinality. We chose nΓ—nn\times n matrices VV and WW over π’ͺX​(U)β€‹βŸ¨fg,gf⟩\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle such that ψ2​(wj)=βˆ‘iVi​jβ€‹Οˆ1​(vi)\psi_{2}(\textbf{w}_{j})=\sum_{i}V_{ij}\psi_{1}(\textbf{v}_{i}) and ψ1​(vj)=βˆ‘iWi​jβ€‹Οˆ2​(wi)\psi_{1}(\textbf{v}_{j})=\sum_{i}W_{ij}\psi_{2}(\textbf{w}_{i}).

By Corollary 6.10, the map Ο•:π’ͺX​(U)β€‹βŸ¨fgβŸ©βŠ•π’ͺX​(U)β€‹βŸ¨gfβŸ©β†’π’ͺX​(U)β€‹βŸ¨fg,gf⟩\phi:\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\oplus\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle\rightarrow\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle is strict surjective and there exists c>0c>0 such that Lemma 7.4 holds for our Ο•\phi. Since π’ͺX​(U)β€‹βŸ¨fgβŸ©β€‹[fβˆ’1]\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle[f^{-1}] is dense in π’ͺX​(U)β€‹βŸ¨fg,gf⟩\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle, we can choose a nonnegative integer mm and an nΓ—nn\times n matrix Wβ€²W^{{}^{\prime}} over π’ͺX​(U)β€‹βŸ¨gf⟩\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle so that |V​(fβˆ’m​Wβ€²βˆ’W)|<c|V(f^{-m}W^{{}^{\prime}}-W)|<c. Then we have 1+V​(fβˆ’m​Wβ€²βˆ’W)=ϕ​(X1)​ϕ​(X2βˆ’1)1+V(f^{-m}W^{{}^{\prime}}-W)=\phi(X_{1})\phi(X_{2}^{-1}) with X1∈G​Ln​(π’ͺX​(U)β€‹βŸ¨fg⟩),X2∈G​Ln​(π’ͺX​(U)β€‹βŸ¨gf⟩)X_{1}\in GL_{n}(\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle),X_{2}\in GL_{n}(\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle). We shall omit Ο•\phi and write 1+V​(fβˆ’m​Wβ€²βˆ’W)=X1​X2βˆ’11+V(f^{-m}W^{{}^{\prime}}-W)=X_{1}X_{2}^{-1} for clarity.

Now define elements xj∈M1βŠ•M2\textbf{x}_{j}\in M_{1}\oplus M_{2} by the formula

xj=(xj,1,xj,2)=(βˆ‘ifm(X1)i​jvi,βˆ‘i(Wβ€²X2)i​jwi)),j=1,…,n.\textbf{x}_{j}=(\textbf{x}_{j,1},\textbf{x}_{j,2})=\Big{(}\sum_{i}f^{m}(X_{1})_{ij}\textbf{v}_{i},\sum_{i}(W^{{}^{\prime}}X_{2})_{ij}\textbf{w}_{i})\Big{)},\qquad j=1,...,n.

Then for every jj,

ψ1​(xj,1)βˆ’Οˆ2​(xj,2)=βˆ‘i(fm​X1βˆ’V​W′​X2)i​jβ€‹Οˆ1​(vi)=βˆ‘ifm​((1βˆ’V​W)​X2)i​jβ€‹Οˆ1​(vi)=0,\psi_{1}(\textbf{x}_{j,1})-\psi_{2}(\textbf{x}_{j,2})=\sum_{i}(f^{m}X_{1}-VW^{{}^{\prime}}X_{2})_{ij}\psi_{1}(\textbf{v}_{i})=\sum_{i}f^{m}((1-VW)X_{2})_{ij}\psi_{1}(\textbf{v}_{i})=0,

since V​WVW is the identity and therefore xj∈M\textbf{x}_{j}\in M. Since X1∈G​Ln​(π’ͺX​(U)β€‹βŸ¨fg⟩)X_{1}\in GL_{n}(\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle) and {v1,…,vn}\{\textbf{v}_{1},...,\textbf{v}_{n}\} is a generating set of M1M_{1}, we see that the map MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fgβŸ©β†’M1M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\rightarrow M_{1} induces a strict surjection onto fm​M1f^{m}M_{1}.

The induced map MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fg,gfβŸ©β†’M12M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle\rightarrow M_{12} is strict surjective as ff is invertible in π’ͺX​(U)β€‹βŸ¨fg,gf⟩\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle. By Corollary 4.9 and tensoring MM with the exact two term Čech complex ((6)), we get a strict surjection MβŠ—π’ͺX​(U)(π’ͺX​(U)β€‹βŸ¨fgβŸ©βŠ•π’ͺX​(U)β€‹βŸ¨gf⟩)β†’M12M\otimes_{\mathcal{O}_{X}(U)}(\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\oplus\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle)\rightarrow M_{12} which factors through ψ\psi. Thus we obtain (a).

For each v∈M2\textbf{v}\in M_{2}, ψ2​(v)\psi_{2}(\textbf{v}) lifts to MβŠ—π’ͺX​(U)(π’ͺX​(U)β€‹βŸ¨fgβŸ©βŠ•π’ͺX​(U)β€‹βŸ¨gf⟩)M\otimes_{\mathcal{O}_{X}(U)}(\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\oplus\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle) by above, then we can find w1∈M1\textbf{w}_{1}\in M_{1}, w2∈M2\textbf{w}_{2}\in M_{2} in the images of the base extension maps from MM with ψ1​(w1)βˆ’Οˆ2​(w2)=ψ2​(v)\psi_{1}(\textbf{w}_{1})-\psi_{2}(\textbf{w}_{2})=\psi_{2}(\textbf{v}). Then (w1,v+w2)∈M(\textbf{w}_{1},\textbf{v}+\textbf{w}_{2})\in M, then w2,w2+v∈Im​(MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨gfβŸ©β†’M2)\textbf{w}_{2},\textbf{w}_{2}+\textbf{v}\in\textnormal{Im}(M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle\rightarrow M_{2}) and therefore MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨gfβŸ©β†’M2M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle\rightarrow M_{2} is stric surjective. Swapping the role of f,gf,g, we get that MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fgβŸ©β†’M1M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\rightarrow M_{1} is strict surjective. This show (b). β–‘\Box

Lemma 7.6.

([Wed19] Lemma 7.51)
Let (A,A+)(A,A^{+}) be a complete Huber ring and let π”ͺβŠ‚A\mathfrak{m}\subset A be a maximal ideal. Then π”ͺ\mathfrak{m} is closed and there exists v∈Spa​(A,A+)v\in\textnormal{Spa}(A,A^{+}) with Ker​(v)=π”ͺ\textrm{Ker}(v)=\mathfrak{m}.

Proof. A∘∘A^{\circ\circ}, the ideal of the set of all topological nilpotent elements in AA, is open and thus 1+A∘∘1+A^{\circ\circ} is open. 1+Aβˆ˜βˆ˜βŠ‚AΓ—1+A^{\circ\circ}\subset A^{\times} implies AΓ—A^{\times} is open and thus Aβˆ–AΓ—A\setminus A^{\times} is closed. Therefore π”ͺ\mathfrak{m} is closed and A/π”ͺA/\mathfrak{m} is Hausdorff which implies Spa​(A/π”ͺ)β‰ βˆ…\textnormal{Spa}(A/\mathfrak{m})\neq\emptyset. β–‘\Box

Lemma 7.7.

([Ked19] Lemma 1.9.8)
The image of the natural map Spec​(π’ͺX​(U)β€‹βŸ¨fgβŸ©βŠ•π’ͺX​(U)β€‹βŸ¨gf⟩)β†’Spec​(π’ͺX​(U))\textnormal{Spec}(\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\oplus\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle)\rightarrow\textnormal{Spec}(\mathcal{O}_{X}(U)) contains all maximal ideals of π’ͺX​(U)\mathcal{O}_{X}(U).

Proof. By Lemma 7.6, for every maximal ideal π”ͺβŠ‚π’ͺX​(U)\mathfrak{m}\subset\mathcal{O}_{X}(U), there is v∈Spa​(π’ͺX​(U))v\in\textnormal{Spa}(\mathcal{O}_{X}(U)) with Ker​(v)=π”ͺ\textnormal{Ker}(v)=\mathfrak{m}. Since f,gf,g forms a binary covering on Spa​(π’ͺX​(U))\textnormal{Spa}(\mathcal{O}_{X}(U)), vv extends/factorizes through one of π’ͺX​(U)β€‹βŸ¨fg⟩\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle or π’ͺX​(U)β€‹βŸ¨gf⟩\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle. The kernel of the extension of vv is a prime ideal contracting to π”ͺ\mathfrak{m}. β–‘\Box

Proposition 7.8.

Let UU be a rational open subspace of Spa​(𝐀inf​(R+),𝐀inf​(R+))\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})). There is an exact functor

π…ππŒπ¨ππ’ͺX​(U)β€‹βŸ¨fgβŸ©Γ—π…ππŒπ¨ππ’ͺX​(U)β€‹βŸ¨fg,gfβŸ©π…ππŒπ¨ππ’ͺX​(U)β€‹βŸ¨gfβŸ©β†’π…ππŒπ¨ππ’ͺX​(U)\mathbf{FPMod}_{\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}\times_{\mathbf{FPMod}_{\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle}}\mathbf{FPMod}_{\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle}\rightarrow\mathbf{FPMod}_{\mathcal{O}_{X}(U)}

given by taking equalizers. The composition of this functor with the base extension functor in the opposite direction is naturally isomorphic to the identity.

Proof. Using the notations from Lemma 7.5, if M1M_{1},M2M_{2},M12M_{12} are finite projective modules over π’ͺX​(U)β€‹βŸ¨fg⟩\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle, π’ͺX​(U)β€‹βŸ¨gf⟩\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle, π’ͺX​(U)β€‹βŸ¨fg,gf⟩\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle respectively, then we need to show MM is finite projective over π’ͺX​(U)\mathcal{O}_{X}(U) and the maps

MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fgβŸ©β†’M1,MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨gfβŸ©β†’M2M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\rightarrow M_{1},\qquad M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle\rightarrow M_{2} (3)

are isomorphisms. By Lemma 7.5, we can choose a finite free π’ͺX​(U)\mathcal{O}_{X}(U)-module FF and a (not necessarily surjective) π’ͺX​(U)\mathcal{O}_{X}(U)-linear map Fβ†’MF\rightarrow M such that for F1,F2,F12F_{1},F_{2},F_{12} the respective base extensions of FF, the induced maps

F1β†’M1,F2β†’M2,F12β†’M12F_{1}\rightarrow M_{1},\qquad F_{2}\rightarrow M_{2},\qquad F_{12}\rightarrow M_{12}

are surjective. Let

N1:=Ker​(F1β†’M1),N2:=Ker​(F2β†’M2),N12:=Ker​(F12β†’M12)N_{1}:=\textnormal{Ker}(F_{1}\rightarrow M_{1}),\quad N_{2}:=\textnormal{Ker}(F_{2}\rightarrow M_{2}),\quad N_{12}:=\textnormal{Ker}(F_{12}\rightarrow M_{12})

and put N=Ker​(N1βŠ•N2β†’N12)N=\textnormal{Ker}(N_{1}\oplus N_{2}\rightarrow N_{12}). Consider the following commutative diagram with the second and third columns exact:

0{0}0{0}0{0}0{0}N{N}N1βŠ•N2{N_{1}\oplus N_{2}}N12{N_{12}}0{0}0{0}F{F}F1βŠ•F2{F_{1}\oplus F_{2}}F12{F_{12}}0{0}0{0}M{M}M1βŠ•M2{M_{1}\oplus M_{2}}M12{M_{12}}0{0}0{0}0{0}0{0}

The exactness of the first column (minus the dashed arrows) is obtained by applying the snake lemma to the second and third columns (injectivity of Nβ†’FN\rightarrow F follows by chasing the top left square). We have N=Ker​(Fβ†’M)N=\textnormal{Ker}(F\rightarrow M).

Because N1,N2,N12N_{1},N_{2},N_{12} are finite projective modules, we have isomorphisms

N1βŠ—π’ͺX​(U)β€‹βŸ¨fg⟩π’ͺX​(U)β€‹βŸ¨fg,gfβŸ©β‰…N12,N2βŠ—π’ͺX​(U)β€‹βŸ¨gf⟩π’ͺX​(U)β€‹βŸ¨fg,gfβŸ©β‰…N12.N_{1}\otimes_{\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle\cong N_{12},\qquad N_{2}\otimes_{\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle}\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle\cong N_{12}.

Therefore the modules N1,N2,N12N_{1},N_{2},N_{12} form an object of the fiber product category. By Lemma 7.5 again, we see the top right dash arrow N1βŠ•N2β†’N12N_{1}\oplus N_{2}\rightarrow N_{12} is exact and applying the snake lemma to the second and third columns of the diagram again gives the exactness of the bottom left dash arrow Fβ†’MF\rightarrow M.

Consider the diagram

NβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fg⟩{N\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}FβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fg⟩{F\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fg⟩{M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}0{0}0{0}N1{N_{1}}F1{F_{1}}M1{M_{1}}0{0}

with exact rows. By Lemma 7.5, both outside vertical arrows are surjective. Since the middle arrow is an isomorphism, the five lemma gives the injectivity of the right vertical arrow, i.e., MβŠ—π’ͺX​(U)π’ͺX​(U)β€‹βŸ¨fgβŸ©β‰…M1M\otimes_{\mathcal{O}_{X}(U)}\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle\cong M_{1}. Replacing M1M_{1} with M2M_{2}, we see the maps in (3) are isomorphisms.

Now it remains to show Mβˆˆπ…ππŒπ¨ππ’ͺ𝐗​(𝐔)M\in\mathbf{FPMod_{\mathcal{O}_{X}(U)}}. We have shown MM is a finitely presented π’ͺX​(U)\mathcal{O}_{X}(U)-module and Mπ”ͺM_{\mathfrak{m}} is a finite free π’ͺX​(U)π”ͺ\mathcal{O}_{X}(U)_{\mathfrak{m}}-module for every maximal ideal π”ͺ\mathfrak{m} of π’ͺX​(U)\mathcal{O}_{X}(U) by Lemma 7.7 and the isomorphisms in (3). By Stacks Project[Aut] Tag 00NX, MM is a finite projective π’ͺX​(U)\mathcal{O}_{X}(U)-module. β–‘\Box

Theorem 7.9.

Let (R,R+)(R,R^{+}) be an analytic perfectoid pair in char pp. The functor

π…ππŒπ¨ππ€inf​(R+)β†’π•πžπœSpa​(𝐀inf​(R+),𝐀inf​(R+)):Mβ†’M~\mathbf{FPMod}_{\mathbf{A}_{\textnormal{inf}}(R^{+})}\rightarrow\mathbf{Vec}_{\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+}))}:\quad M\rightarrow\widetilde{M}

is an equivalence of categories, with quasi-inverse ℱ→ℱ​(𝐀inf​(R+))\mathcal{F}\rightarrow\mathcal{F}(\mathbf{A}_{\textnormal{inf}}(R^{+})). In particular, by Theorem 7.3, every sheaf in π•πžπœSpa​(𝐀inf​(R+),𝐀inf​(R+))\mathbf{Vec}_{\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+}))} is acyclic.

Proof. It suffices to show for any rational subspace UβŠ‚Spa​(𝐀inf​(R+),𝐀inf​(R+))U\subset\textnormal{Spa}(\mathbf{A}_{\textnormal{inf}}(R^{+}),\mathbf{A}_{\textnormal{inf}}(R^{+})) and any binary standard coverings of UU by U​(fg)U\big{(}\frac{f}{g}\big{)} and U​(gf)U\big{(}\frac{g}{f}\big{)} for f,g∈π’ͺX​(U)f,g\in\mathcal{O}_{X}(U) with g∈{1,1βˆ’f}g\in\{1,1-f\},

π…ππŒπ¨ππ’ͺX​(U)β†’π…ππŒπ¨ππ’ͺX​(U)β€‹βŸ¨fgβŸ©Γ—π…ππŒπ¨ππ’ͺX​(U)β€‹βŸ¨fg,gfβŸ©π…ππŒπ¨ππ’ͺX​(U)β€‹βŸ¨gf⟩\mathbf{FPMod}_{\mathcal{O}_{X}(U)}\rightarrow\mathbf{FPMod}_{\mathcal{O}_{X}(U)\langle\frac{f}{g}\rangle}\times_{\mathbf{FPMod}_{\mathcal{O}_{X}(U)\langle\frac{f}{g},\frac{g}{f}\rangle}}\mathbf{FPMod}_{\mathcal{O}_{X}(U)\langle\frac{g}{f}\rangle}

is an exact equivalence of categories. The functor is fully faithful by Theorem 7.3, exact by flatness of finite projective modules, and essentially surjective by Proposition 7.8. β–‘\Box

References

  • [Aut] The StacksΒ Project Authors. Stacks project. https://stacks.math.columbia.edu/.
  • [BMS18] Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic hodge theory. Publications mathΓ©matiques de l’IHΓ‰S, 128(1):219–397, 2018.
  • [BS22] Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology. Annals of Mathematics, 196(3):1135–1275, 2022.
  • [BV18] Kevin Buzzard and Alain Verberkmoes. Stably uniform affinoids are sheafy. Journal fΓΌr die reine und angewandte Mathematik (Crelles Journal), 2018(740):25–39, 2018.
  • [FF18] Laurent Fargue and Jean-Marc Fontaine. Courbes et fibres vectoriels en theorie de hodge p-adique. Asterisque, 406, 2018.
  • [Hub93] Roland Huber. Continuous valuations. Mathematische Zeitschrift, 212(3):455–477, 1993.
  • [Hub94] Roland Huber. A generalization of formal schemes and rigid analytic varieties. Mathematische Zeitschrift, 217:513–551, 1994.
  • [Ked13] KiranΒ S Kedlaya. Nonarchimedean geometry of witt vectors. Nagoya Mathematical Journal, 209:111–165, 2013.
  • [Ked19] KiranΒ S Kedlaya. Sheaves, stacks, and shtukas. In Perfectoid Spaces: Lectures from the 2017 Arizona Winter School, volume 242 of Mathematical Surveys and Monographs, Providence, 2019. American Mathematical Society.
  • [Ked24a] KiranΒ S Kedlaya. Notes on condensed mathematics. Graduate Course at University of California San Diego, 2024. https://kskedlaya.org/papers/condensed.pdf.
  • [Ked24b] KiranΒ S Kedlaya. Notes on prismatic cohomology. Graduate Course at University of California San Diego, 2024. https://kskedlaya.org/papers/prismatic-ptx.pdf.
  • [KL15] KiranΒ S Kedlaya and Ruochuan Liu. Relative p-adic hodge theory, i: Foundations. Asterisque, 371:239, 2015.
  • [SC19] Peter Scholze and Dustin Clausen. Lectures on condensed mathematics, 2019. https://people.mpim-bonn.mpg.de/scholze/Condensed.pdf.
  • [SW20] Peter Scholze and Jared Weinstein. Berkeley Lectures on p-adic Geometry:(AMS-207). Princeton University Press, 2020.
  • [Wed19] Torsten Wedhorn. Adic spaces. arXiv preprint arXiv:1910.05934, 2019.