This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\marginsize

2cm2cm2cm2cm

Action of \mathbb{R}-Fuchsian groups on n\mathbb{P}_{\mathbb{C}}^{n}

W. Barrera Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat, Mérida, 13615, Yucatán, México. [email protected] E. Montiel Instituto de Matemáticas, UNAM, Av. Universidad, Cuernavaca, 62210, Morelos, México. [email protected]  and  J.P. Navarrete Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat, Mérida, 13615, Yucatán, México. [email protected]
Abstract.

We consider discrete subgroups of the group of orientation preserving isometries of the mm-dimensional hyperbolic space, whose limit set is a (m1)(m-1)-dimensional real sphere, acting on the nn-dimensional complex projective space for nmn\geq m, via an embedding from the group of orientation preserving isometries of the mm-dimensional hyperbolic space to the group of holomorphic isometries of the nn-dimensional complex hyperbolic space. We describe the Kulkarni limit set of any of these subgroups under the embedding as a real semi-algebraic set. Also, we show that the Kulkarni region of discontinuity can only have one or three connected components. We use the Sylvester’s law of inertia when n=mn=m. In the other cases, we use some suitable projections of the the nn-dimensional complex projective space to the mm-dimensional complex projective space.

Key words and phrases:
Complex hyperbolic spaces, limit set, complex projective space
1991 Mathematics Subject Classification:
Primary 51M10,22E40

1. Introduction

Let Γ\Gamma be a discrete subgroup of SO(m,1)+{}_{+}(m,1), the group of isometries that preserves orientation of the hyperbolic space of dimension mm, we know that the limit set of Γ\Gamma is contained in 𝕊m1\mathbb{S}^{m-1}, see [4, 9]. Here, we are taking the limit set of a discrete subgroup ΓSO+(m,1)\Gamma\subset\mathrm{SO}_{+}(m,1) just as the accumulation set in the sphere 𝕊m1\mathbb{S}^{m-1} of an orbit Γ𝐳\Gamma\cdot\mathbf{z}, where 𝐳m\mathbf{z}\in\mathbb{H}_{\mathbb{R}}^{m}, see [4, 9]. We are interested in discrete subgroups ΓSO+(m,1)\Gamma\subset\mathrm{SO}_{+}(m,1) whose limit set is the whole sphere 𝕊m1\mathbb{S}^{m-1}. In the remainder of this article all the discrete subgroups we will consider are of this kind, examples of such groups are given by lattices. Given Γ\Gamma a discrete subgroup of SO(m,1)+{}_{+}(m,1) we can obtain a complex Kleinian group ι(Γ)\iota(\Gamma) whose limit set in the sense Chen and Greenberg, see [6], is a (m1)(m-1)-dimensional real sphere, by the embedding

(1.1) ι:SO+(m,1)SU(n,1)\displaystyle\iota:\mathrm{SO}_{+}(m,1)\rightarrow\mathrm{SU}(n,1)
G=(A𝐛𝐜d)(A0𝐛0I0𝐜0d)\displaystyle G=\left(\begin{matrix}A&\mathbf{b}\\ \mathbf{c}&d\end{matrix}\right)\mapsto\left(\begin{matrix}A&0&\mathbf{b}\\ 0&I&0\\ \mathbf{c}&0&d\end{matrix}\right)

where AA is the left-upper submatrix of size m×mm\times m of GG, 𝐜\mathbf{c} is a row matrix of size mm, 𝐛\mathbf{b} is a column vector of size mm, dd is a 1×11\times 1 entry and II is the identity matrix of size (nm)×(nm)(n-m)\times(n-m). By the work of Cano et al. in [3] we can compute the Kulkarni limit set (see [12]) of ι(Γ)\iota(\Gamma) as the union of all complex projective hyperplanes in n\mathbb{P}_{\mathbb{C}}^{n} which are tangent to the sphere n\partial\mathbb{H}_{\mathbb{C}}^{n} at points in the Chen-Greenberg limit set, in other words, if we denote by ΛKul(ι(Γ))\Lambda_{Kul}(\iota(\Gamma)) the Kulkarni limit set of ι(Γ)\iota(\Gamma), by 𝒮\mathcal{S} the (m1)(m-1)-dimensional real sphere contained in n\partial\mathbb{H}_{\mathbb{R}}^{n} whose points have the form [w1::wm:0::0:wn+1][w_{1}:\cdots:w_{m}:0:\cdots:0:w_{n+1}] and by HzH_{z} the complex projective hyperplane tangent to n\partial\mathbb{H}_{\mathbb{C}}^{n} at the point z𝒮z\in\mathcal{S} then

ΛKul(ι(Γ))=z𝒮Hz.\Lambda_{Kul}(\iota(\Gamma))=\underset{z\in\mathcal{S}}{\bigcup}H_{z}.

We show that in this case ΛKul(ι(Γ))\Lambda_{Kul}(\iota(\Gamma)) is a real semi-algebraic set and that the complement ΩKul:=nΛKul(ι(Γ))\Omega_{Kul}:=\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda_{Kul}(\iota(\Gamma)) has three connected components when m=2m=2, and is connected in other case, the precise statements are given in Theorems 1.1, 1.2, 1.3. The case m=n=2m=n=2 was studied in [5] using as main tool the Hermitian cross-product \boxtimes defined in 2,1\mathbb{C}^{2,1} by Goldman, the Hermitian cross-product of two vectors 𝐳\mathbf{z} and 𝐰\mathbf{w} is a orthogonal vector to both 𝐳\mathbf{z} and 𝐰\mathbf{w}. The function f(𝐳):=i𝐳𝐳¯,i𝐳𝐳¯f(\mathbf{z}):=\langle i\mathbf{z}\boxtimes\overline{\mathbf{z}},i\mathbf{z}\boxtimes\overline{\mathbf{z}}\rangle allows to characterize Λ\Lambda as a semi-algebraic subset of 2\mathbb{P}_{\mathbb{C}}^{2}, moreover the function ff gives a partition of 2,1{𝟎}\mathbb{C}^{2,1}\setminus\{\mathbf{0}\} that under projection provides a partition of 2\mathbb{P}_{\mathbb{C}}^{2} into SO+(2,1)\mathrm{SO}_{+}(2,1)-invariants sets. This partition allows to describe the set Λ\Lambda and the connected components of Ω\Omega. When we consider ΓSO+(m,1)\Gamma\subset\mathrm{SO}_{+}(m,1) acting on m\mathbb{P}_{\mathbb{C}}^{m}, we find that the Sylvester’s law of Inertia is a good replacement for the Hermitian cross-product because if we define the function

f:=|𝐳𝟏,𝐳𝟏𝐳𝟏,𝐳𝟐𝐳𝟐,𝐳𝟏𝐳𝟐,𝐳𝟐|f:=-\bigg{\lvert}\begin{array}[]{cc}\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle&\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\\ \langle\mathbf{z_{2}},\mathbf{z_{1}}\rangle&\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle\end{array}\bigg{|}

then the Sylvester’s law of Inertia allows to describe the set Λ\Lambda as a real semi-algebraic subset of m\mathbb{P}_{\mathbb{C}}^{m}. The function ff defined in terms of the determinant of (𝐳𝟏,𝐳𝟏𝐳𝟏,𝐳𝟐𝐳𝟐,𝐳𝟏𝐳𝟐,𝐳𝟐)\left(\begin{array}[]{cc}\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle&\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\\ \langle\mathbf{z_{2}},\mathbf{z_{1}}\rangle&\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle\end{array}\right) coincides with the Hermitian product i𝐳𝐳¯,i𝐳𝐳¯\langle i\mathbf{z}\boxtimes\overline{\mathbf{z}},i\mathbf{z}\boxtimes\overline{\mathbf{z}}\rangle when m=2m=2. For our purposes we just need to know if the orthogonal complement of the plane spanned by 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}}, under the assumption that 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly independent, is elliptic (positive definite), parabolic (degenerate) or hyperbolic (non-degenerate and indefinite), this is the main reason to use the Sylvester’s law of Inertia. This information as well as the linearly dependence of 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} is codified by the function ff. In the same manner that before the function ff determines a partition of m,1{𝟎}\mathbb{C}^{m,1}\setminus\{\mathbf{0}\} which projects to a partition of m\mathbb{P}_{\mathbb{C}}^{m} into SO+(m,1)\mathrm{SO}_{+}(m,1)-invariants sets which are useful to describe Λ\Lambda and Ω\Omega. For 2<m=n2<m=n we have that the set Ω\Omega is connected, in contrast to the case m=n=2m=n=2, this occurs because m,1\mathbb{C}^{m,1} does not contain negative definite subspaces of codimension 2 while 2,1\mathbb{C}^{2,1} does contain such spaces. This phenomenon makes the set Λ\Lambda become “larger” for m>2m>2, in fact in this case the set Λ\Lambda has non-empty interior. In order to study the case m<nm<n we consider the projection

Q:nΛ0m\displaystyle Q:\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda_{0}\rightarrow\mathbb{P}_{\mathbb{C}}^{m}
[z1::zn+1][z1::zm:zn+1]\displaystyle[z_{1}:\cdots:z_{n+1}]\mapsto[z_{1}:\cdots:z_{m}:z_{n+1}]

which is induced by the map

(1.2) Q~:n,1m,1\displaystyle\widetilde{Q}:\mathbb{C}^{n,1}\rightarrow\mathbb{C}^{m,1}
(z1,,zn+1)(z1,,zm,zn+1)\displaystyle(z_{1},\cdots,z_{n+1})\mapsto(z_{1},\cdots,z_{m},z_{n+1})

the set Λ0\Lambda_{0} is the projectivization of the kernel of the map Q~\widetilde{Q} and is contained in the Kulkarni limit set Λ\Lambda, the projection QQ allows to obtain the topological information of the sets Λ\Lambda and Ω\Omega from the information obtained when mm and nn coincide. Actually, if we denote by Λ(m)\Lambda_{(m)} the Kulkarni limit set of Γ\Gamma when it acts on the copy of m\mathbb{P}_{\mathbb{C}}^{m}, then the set Λ\Lambda is obtained as the union of Λ0\Lambda_{0} and the preimage under QQ of Λ(m)\Lambda_{(m)}. Also, writing Ω(m)\Omega_{(m)} the complement of Λ(m)\Lambda_{(m)} in m\mathbb{P}_{\mathbb{C}}^{m} we obtain that Ω\Omega is the preimage under QQ of Ω(m)\Omega_{(m)}. Our main results can be summarized in the following theorems.

Theorem 1.1.

Let Γ\Gamma be a discrete subgroup of SO+(m,1)\mathrm{SO}_{+}(m,1) acting in m\mathbb{H}_{\mathbb{R}}^{m}, whose limit set is 𝕊m1\mathbb{S}^{m-1}. If Ω\Omega is the Kulkarni discontinuity region of ι(Γ)\iota(\Gamma), see (1.1), acting in m\mathbb{P}_{\mathbb{C}}^{m}, then there exists an SO+(m,1)\mathrm{SO_{+}}(m,1)-equivariant smooth fibre bundle Π\Pi from Ω\Omega to m\mathbb{H}_{\mathbb{R}}^{m}.

Theorem 1.2.

Let Γ\Gamma be a discrete subgroup of SO+(m,1)\mathrm{SO}_{+}(m,1) acting in m\mathbb{H}_{\mathbb{R}}^{m}, whose limit set is 𝕊m1\mathbb{S}^{m-1}. If Λ\Lambda is the Kulkarni limit set of ι(Γ)\iota(\Gamma), see (1.1), acting in m\mathbb{P}_{\mathbb{C}}^{m}, then Λ\Lambda is a semi-algebraic set. Moreover, if m>2m>2, Λ\Lambda has non empty interior.

Theorem 1.3.

Let Γ\Gamma be a discrete subgroup of SO+(m,1)\mathrm{SO}_{+}(m,1) acting in m\mathbb{H}_{\mathbb{R}}^{m}, whose limit set is 𝕊m1\mathbb{S}^{m-1}. If Ω\Omega is the Kulkarni discontinuity region of ι(Γ)\iota(\Gamma), see (1.1), acting in n\mathbb{P}_{\mathbb{C}}^{n}, where nmn\geq m, then

  • i)

    Ω\Omega has three connected components, for m=2m=2;

  • ii)

    Ω\Omega is connected, for m>2m>2.

The map Π\Pi that appears in Theorem 1.1 assigns to zΩz\in\Omega the class [𝐳η¯(𝐳)+𝐳¯η(𝐳)][\mathbf{z}\overline{\eta}(\mathbf{z})+\mathbf{\overline{z}}\eta(\mathbf{z})], where η2(𝐳)=<𝐳,𝐳¯>\eta^{2}(\mathbf{z})\!=\!-<\!\mathbf{z},\mathbf{\overline{z}}\!>, we can compute explicitly the fibre over the origin and use the equivariance of Π\Pi to show that it is a smooth fibre bundle. Theorem 1.2 follows from the Lemmas 3.7 and 3.8 which use the Sylvester’s law of Inertia to give a criterion to decide whether or not a point is in Λ\Lambda for m>2m>2, the result for m=2m=2 was proved in [3]. Theorem 1.3 follows from Lemmas 4.3 and 5.2 which are obtained using the projections defined in (1.2). We have the following consequence of our results:

Corollary 1.4.

Let Γ\Gamma be a discrete subgroup of SO+(m,1)\mathrm{SO}_{+}(m,1) acting in m\mathbb{H}_{\mathbb{R}}^{m}, whose limit set is 𝕊m1\mathbb{S}^{m-1}. If Ω\Omega is the Kulkarni discontinuity region of ι(Γ)\iota(\Gamma), see (1.1), acting in n\mathbb{P}_{\mathbb{C}}^{n}, where nmn\geq m, then the quotient Ω/Γ\Omega/\Gamma is the union of a finite number of nn-dimensional complex manifolds.

The main interest in counting connected components comes from Kleinian groups in PSL(2,)\mathrm{PSL}(2,\mathbb{C}) where it is known that the number of components of the discontinuity region can only be 0, 11, 22 or infinity. For higher dimensional Kleinian groups there is no result on the number of components, our results provide examples where the Kulkarni discontinuity region is connected or has three components. In particular, we calculate the number of components for lattices in SO+(m,1)\mathrm{SO}_{+}(m,1) for m2m\geq 2. The paper is organized as follows: Section 2 is devoted to generalities about complex hyperbolic geometry and projective geometry. The case of a discrete subgroup of SO+(m,1)\mathrm{SO}_{+}(m,1) acting on m\mathbb{P}_{\mathbb{C}}^{m} viewed as a subgroup of SU(m,1)\mathrm{SU}(m,1) via the embedding ι\iota is discussed in Section 3. In Section 4, we treated the case when the subgroup Γ\Gamma of SO+(2,1)\mathrm{SO}_{+}(2,1) has as limit set a \mathbb{R}-circle, and nn is greater than 2. Finally, the remaining cases are studied in Section 5.

2. Preliminaries

2.1. Complex Projective Spaces and Complex Hyperbolic Geometry

We recall some results about complex hyperbolic geometry, general references for complex hyperbolic geometry are [2], [10],[13],[14] and [16] . We call projective complex space to the quotient of n+1{𝟎}\mathbb{C}^{n+1}\setminus\{\mathbf{0}\} obtained by the equivalence relation: 𝐮𝐯\mathbf{u}\sim\mathbf{v} if there is α\alpha\in\mathbb{C}^{*} such that 𝐮=α𝐯\mathbf{u}=\alpha\mathbf{v}. We denote by n\mathbb{P}_{\mathbb{C}}^{n} the projective complex space and by [][\;\;] the quotient map that sends a point 𝐳=(z1,z2,,zn+1)\mathbf{z}=(z_{1},z_{2},...,z_{n+1}) to its corresponding class, denoted [z1:z2::zn+1][z_{1}:z_{2}:...:z_{n+1}].

A complex projective (d1)(d-1)-subspace of n\mathbb{P}_{\mathbb{C}}^{n} is a subset WW of n\mathbb{P}_{\mathbb{C}}^{n} such that [W]1{0}[W]^{-1}\cup\{0\} is a complex linear dd-subspace of n+1\mathbb{C}^{n+1}. Given a subset AnA\subset\mathbb{P}_{\mathbb{C}}^{n}, we denote by A\langle A\rangle the smallest projective subspace containing AA and, we call it the projective subspace generated by AA. For 𝐳𝟏\mathbf{z_{1}} and 𝐳𝟐\mathbf{z_{2}} linearly independent vectors in n+1\mathbb{C}^{n+1}, we denote by 𝐳𝟏,𝐳𝟐\overleftrightarrow{\mathbf{z_{1}},\mathbf{z_{2}}} the complex 22-plane spanned by 𝐳𝟏\mathbf{z_{1}} and 𝐳𝟐\mathbf{z_{2}}. Also we denote by z1,z2\overleftrightarrow{z_{1},z_{2}} to the line {z1,z2}\langle\{z_{1},z_{2}\}\rangle, where z1=[𝐳𝟏]z_{1}=[\mathbf{z_{1}}] and z2=[𝐳𝟐]z_{2}=[\mathbf{z_{2}}]. The next lemma is the translation of the dimension formula for vector spaces to the setting of projective spaces, see [7].

Lemma 2.1.

Given LL and LL^{\prime} two projective subspaces of n\mathbb{P}_{\mathbb{C}}^{n}, the following formula holds:

dimL+dimL=dim(LL)+dim(LL).\mathrm{dim}\>L+\mathrm{dim}\>L^{\prime}=\mathrm{dim}(L\cap L^{\prime})+\mathrm{dim}(\langle L\cup L^{\prime}\rangle).

As a consequence: If dimL+dimLn\mathrm{dim}\>L+\mathrm{dim}\>L^{\prime}\geq n, the intersection LLL\cap L^{\prime} is non-empty. We denote by n,1\mathbb{C}^{n,1} the complex vector space n+1\mathbb{C}^{n+1} equipped with the non-degenerate indefinite Hermitian form of signature (n,1)(n,1):

𝐳,𝐰=z1w1¯+znw2¯+znwn¯zn+1wn+1¯,\langle\mathbf{z},\mathbf{w}\rangle=z_{1}\overline{w_{1}}+z_{n}\overline{w_{2}}+\cdots z_{n}\overline{w_{n}}-z_{n+1}\overline{w_{n+1}},

where 𝐳=(z1,z2,,zn+1)\mathbf{z}=(z_{1},z_{2},\ldots,z_{n+1}) and 𝐰=(w1,w2,,wn+1)\mathbf{w}=(w_{1},w_{2},\ldots,w_{n+1}). Given two vectors 𝐳,𝐰\mathbf{z},\mathbf{w} in n+1\mathbb{C}^{n+1}, we say that 𝐳\mathbf{z} and 𝐰\mathbf{w} are orthogonal if 𝐳,𝐰=0\langle\mathbf{z},\mathbf{w}\rangle=0. Consider WW a subspace of n+1\mathbb{C}^{n+1}, the set

W={𝐳n+1:𝐳,𝐰=0forevery𝐰W}W^{\bot}=\{\mathbf{z}\in\mathbb{C}^{n+1}:\langle\mathbf{z},\mathbf{w}\rangle=0\;\mathrm{for\;every\;\mathbf{w}\in W}\}

is a subspace of n+1\mathbb{C}^{n+1} that we call the orthogonal complement of WW. We use the same terminology as in [6]. That is, if WW is a subspace of n+1\mathbb{C}^{n+1}, we say that WW is hyperbolic, elliptic or parabolic if the Hermitian form HH restricted to WW is respectively non-degenerate and indefinite, positive definite or degenerate.

When WW is a hyperbolic (respectively elliptic) subspace then n+1=WW\mathbb{C}^{n+1}=W\oplus W^{\bot}, so WW^{\bot} must be elliptic (respectively hyperbolic). If WW is a parabolic subspace, then so is WW^{\bot}. We use the following notation for the null, positive and negative sets of vectors in n+1\mathbb{C}^{n+1}:

V0=\displaystyle V_{0}= {𝐳n,1{𝟎}:𝐳,𝐳=0},\displaystyle\{\mathbf{z}\in\mathbb{C}^{n,1}\setminus\{\mathbf{0}\}:\langle\mathbf{z},\mathbf{z}\rangle=0\},
V+=\displaystyle V_{+}= {𝐳n,1:𝐳,𝐳>0},\displaystyle\{\mathbf{z}\in\mathbb{C}^{n,1}:\langle\mathbf{z},\mathbf{z}\rangle>0\},
V=\displaystyle V_{-}= {𝐳n,1:𝐳,𝐳<0}.\displaystyle\{\mathbf{z}\in\mathbb{C}^{n,1}:\langle\mathbf{z},\mathbf{z}\rangle<0\}.

An automorphism that preserves the Hermitian form is called an unitary transformation and we denote the group of all unitary transformations by U(n,1)\mathrm{U}(n,1). The sets V0,V+V_{0},V_{+} and VV_{-} are preserved by U(n,1)\mathrm{U}(n,1), also U(n,1)\mathrm{U}(n,1) acts transitively in VV_{-} and doubly transitively in V0V_{0}. The projectivization of VV_{-}:

[V]={[z1::zn:1]n:|z1|2++|zn|2<1}[V_{-}]=\{[z_{1}:\cdots:z_{n}:1]\in\mathbb{P}_{\mathbb{C}}^{n}:\lvert z_{1}\rvert^{2}+\cdots+\lvert z_{n}\rvert^{2}<1\}

is a complex nn-dimensional open ball in n\mathbb{P}_{\mathbb{C}}^{n}. The set [V][V_{-}] equipped with the quadratic form induced by the Hermitian Form ,\langle\cdot\;,\cdot\rangle is a model for the complex hyperbolic space n\mathbb{H}_{\mathbb{C}}^{n}. In the same manner, we obtain that [V0][V_{0}] is the (2n1)(2n-1)-sphere in n\mathbb{P}_{\mathbb{C}}^{n} that is the boundary of n\mathbb{H}_{\mathbb{C}}^{n}. Finally, we obtain that [V+][V_{+}] is the complement of the complex n-dimensional closed ball n¯\overline{\mathbb{H}_{\mathbb{C}}^{n}}.

The projectivization in PGL(n+1,)\mathrm{PGL}(n+1,\mathbb{C}) of the unitary group U(n,1)\mathrm{U}(n,1), denoted by PU(n,1)\mathrm{PU}(n,1), acts transitively in n\mathbb{H}_{\mathbb{C}}^{n} and by diffeomorphisms in the boundary n\partial\mathbb{H}_{\mathbb{C}}^{n}.

2.2. Sylvester’s law of Inertia

In order to obtain analogous results to those in Cano et al. [5], we use the following Lemma known as Sylvester’s law of Inertia.

Lemma 2.2.

Let 𝐳𝟏\mathbf{z_{1}} and 𝐳𝟐\mathbf{z_{2}} be two linearly independent vectors in n,1\mathbb{C}^{n,1}. Consider the matrix G=(𝐳𝟏,𝐳𝟏𝐳𝟏,𝐳𝟐𝐳𝟐,𝐳𝟏𝐳𝟐,𝐳𝟐)G=\left(\begin{array}[]{cc}\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle&\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\\ \langle\mathbf{z_{2}},\mathbf{z_{1}}\rangle&\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle\end{array}\right), we have that 𝐳𝟏,𝐳𝟐\overleftrightarrow{\mathbf{z_{1}},\mathbf{z_{2}}} is elliptic, hyperbolic, or parabolic if and only if GG has two positive eigenvalues, one negative eigenvalue, or one zero eigenvalue, respectively. Moreover, 𝐳𝟏,𝐳𝟐\overleftrightarrow{\mathbf{z_{1}},\mathbf{z_{2}}} is elliptic, hyperbolic, or parabolic if and only if the determinant of GG is positive, negative, or zero, respectively.

We give the proof of the elliptic case. The other cases use similar arguments, and we omit their proof:

Proof.

The eigenvalues of GG are

λ1\displaystyle\lambda_{1} =𝐳𝟏,𝐳𝟏+𝐳𝟐,𝐳𝟐+(𝐳𝟏,𝐳𝟏𝐳𝟐,𝐳𝟐)2+4|𝐳𝟏,𝐳𝟐|22,and\displaystyle=\frac{\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle+\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle+\sqrt{(\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle-\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle)^{2}+4\lvert\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\rvert^{2}}}{2},\;\mathrm{and}
λ2\displaystyle\lambda_{2} =𝐳𝟏,𝐳𝟏+𝐳𝟐,𝐳𝟐(𝐳𝟏,𝐳𝟏𝐳𝟐,𝐳𝟐)2+4|𝐳𝟏,𝐳𝟐|22.\displaystyle=\frac{\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle+\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle-\sqrt{(\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle-\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle)^{2}+4\lvert\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\rvert^{2}}}{2}.

If 𝐳𝟏,𝐳𝟐\overleftrightarrow{\mathbf{z_{1}},\mathbf{z_{2}}} is elliptic then λ1>0\lambda_{1}>0 since 𝐳𝟏,𝐳𝟏,𝐳𝟐,𝐳𝟐>0\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle,\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle>0. Also,

𝐳𝟏𝐳𝟐𝐳𝟏,𝐳𝟐𝐳𝟐,𝐳𝟐,𝐳𝟏𝐳𝟐𝐳𝟏,𝐳𝟐𝐳𝟐,𝐳𝟐=𝐳𝟏,𝐳𝟏𝐳𝟐,𝐳𝟐|𝐳𝟏,𝐳𝟐|2𝐳𝟐,𝐳𝟐>0.\displaystyle\left\langle\mathbf{z_{1}}-\mathbf{z_{2}}\frac{\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle}{\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle},\mathbf{z_{1}}-\mathbf{z_{2}}\frac{\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle}{\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle}\right\rangle=\frac{\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle-\lvert\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\rvert^{2}}{\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle}>0.

Thus both eigenvalues and the determinant of GG are positive. In fact, the inequality 𝐳𝟏,𝐳𝟏𝐳𝟐,𝐳𝟐|𝐳𝟏,𝐳𝟐|2>0\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle-\lvert\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\rvert^{2}>0 is the Cauchy’s inequality for 𝐳𝟏\mathbf{z_{1}} and 𝐳𝟐\mathbf{z_{2}}, and this inequality holds for elliptic spaces. Conversely, if det(G)=𝐳𝟏,𝐳𝟏𝐳𝟐,𝐳𝟐|𝐳𝟏,𝐳𝟐|2>0\mathrm{det}(G)=\langle\mathbf{z_{1}},\mathbf{z_{1}}\rangle\langle\mathbf{z_{2}},\mathbf{z_{2}}\rangle-\lvert\langle\mathbf{z_{1}},\mathbf{z_{2}}\rangle\rvert^{2}>0, then the eigenvalues are both negative or both positive. In the first case, GG is similar to I-I, thus 𝐳𝟏,𝐳𝟐\overleftrightarrow{\mathbf{z_{1}},\mathbf{z_{2}}} is negative definite, a contradiction. So, both eigenvalues are positive, GG is similar to II and 𝐳𝟏,𝐳𝟐\overleftrightarrow{\mathbf{z_{1}},\mathbf{z_{2}}} is positive definite. ∎

3. A real (n1)(n-1)-sphere in n\mathbb{P}_{\mathbb{C}}^{n}

We extend the work of Cano et al. [5], for n>2n>2, in the sense that given SS a \mathbb{R}-sphere of highest dimension in n\mathbb{P}_{\mathbb{C}}^{n}, we describe the set Λ\Lambda defined as the union of all complex hyperplanes tangent to n\partial\mathbb{H}_{\mathbb{C}}^{n} at points in SS, also we show that Ω:=nΛ\Omega:=\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda is connected.

Consider the real (n1)(n-1)-sphere

n=nn,\partial\mathbb{H}_{\mathbb{R}}^{n}=\partial\mathbb{H}_{\mathbb{C}}^{n}\cap\mathbb{P}_{\mathbb{R}}^{n},

where n={[r1:r2::rn+1]n:rj, 1jn+1}\mathbb{P}_{\mathbb{R}}^{n}=\{[r_{1}:r_{2}:\cdots:r_{n+1}]\in\mathbb{P}_{\mathbb{C}}^{n}:r_{j}\in\mathbb{R},\;1\leq j\leq n+1\}. It is a well known fact that all the other real (n1)(n-1)-spheres are obtained by the usual action of PU(n,1)\mathrm{PU}(n,1) on n\partial\mathbb{H}_{\mathbb{C}}^{n}, see [8].
Given pnp\in\mathbb{P}_{\mathbb{C}}^{n}, we denote by HpH_{p} the projective hyperplane

{wn:p1w1¯++pnwn¯pn+1wn+1¯=0}.\{w\in\mathbb{P}_{\mathbb{C}}^{n}:p_{1}\overline{w_{1}}+\cdots+p_{n}\overline{w_{n}}-p_{n+1}\overline{w_{n+1}}=0\}.

Then we can write the set Λ\Lambda as the set:

pnHp.\underset{p\in\partial\mathbb{H}_{\mathbb{R}}^{n}}{\bigcup}H_{p}.

The next Lemma is just a restatement in the nn-dimensional case of the part (i)(i) of Proposition 4.1 in Barrera et al. [1].

Lemma 3.1.

The set Λ\Lambda can be written as:

{zn:Hzn}.\{z\in\mathbb{P}_{\mathbb{C}}^{n}:H_{z}\cap\partial\mathbb{H}_{\mathbb{R}}^{n}\neq\emptyset\}.
Proof.

Consider znz\in\mathbb{P}_{\mathbb{C}}^{n}, zz lies in Λ\Lambda if and only if there is ww in n\partial\mathbb{H}_{\mathbb{R}}^{n} such that zz lies in HwH_{w}, that is, if and only if ww lies in HzH_{z}. ∎

We use this characterization to determine when the projectivization of a vector 𝐳=(z1,,zn+1)n,1{𝟎}\mathbf{z}=(z_{1},\ldots,z_{n+1})\in\mathbb{C}^{n,1}\setminus\{\mathbf{0}\} lies in Λ\Lambda.

Lemma 3.2.

Let 𝐳\mathbf{z} be a vector in n,1{𝟎}\mathbb{C}^{n,1}\setminus\{\mathbf{0}\}. The following sentences are equivalent:

  1. (1)

    The vectors 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly dependent,

  2. (2)

    the complex numbers zjzk¯zkzj¯z_{j}\overline{z_{k}}-z_{k}\overline{z_{j}} vanish for 1j,kn+11\leq j,k\leq n+1,

  3. (3)

    the point z=[𝐳]z=[\mathbf{z}], lies in n\mathbb{P}_{\mathbb{R}}^{n}.

Proof.

The third statement follows from the first one, since if 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly dependent, then zz is invariant under complex conjugation, that is, zz belongs to n\mathbb{P}_{\mathbb{R}}^{n}.

Now, if the third statement holds, then there are a 𝐰\mathbf{w} in n,1\mathbb{R}^{n,1} and an α\alpha\in\mathbb{C}^{*} such that 𝐳=α𝐰\mathbf{z}=\alpha\mathbf{w}, so zjzk¯zkzj¯z_{j}\overline{z_{k}}-z_{k}\overline{z_{j}} is equal to |α|2(wjwkwkwj)=0\lvert\alpha\rvert^{2}(w_{j}w_{k}-w_{k}w_{j})=0 for every 1j,kn+11\leq j,k\leq n+1.

Finally, we prove that the second statement implies the linear dependence of 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}}. Without loss of generality, we suppose that z10z_{1}\neq 0, so zk¯=zkz1¯z1\overline{z_{k}}=z_{k}\frac{\overline{z_{1}}}{z_{1}} for 1kn+11\leq k\leq n+1; in other words, there is α=z1¯z1\alpha=\frac{\overline{z_{1}}}{z_{1}} such that 𝐳¯=α𝐳\mathbf{\overline{z}}=\alpha\mathbf{z}.

Lemmas 3.1 and 3.2 imply that:

Proposition 3.3.

A point z=[𝐳]z=[\mathbf{z}] lies in Λ\Lambda if and only if there is 𝐰n,1\mathbf{w}\in\mathbb{C}^{n,1} satisfying the following three conditions:

  1. (1)

    w=[𝐰]Hzw=[\mathbf{w}]\in H_{z},

  2. (2)

    𝐰\mathbf{w} and 𝐰¯\overline{\mathbf{w}} are linearly dependent, and

  3. (3)

    𝐰,𝐰=0\langle\mathbf{w},\mathbf{w}\rangle=0.

The first two conditions above give a system of equations that can be interpreted geometrically. Actually, we can write the condition 1 as,

(3.1) z1w1¯+znwn¯zn+1wn+1¯=0,z_{1}\overline{w_{1}}+\cdots z_{n}\overline{w_{n}}-z_{n+1}\overline{w_{n+1}}=0,

and using the condition 2, we can rewrite it in the form,

(3.2) z1w1+znwnzn+1wn+1=0,z_{1}w_{1}+\cdots z_{n}w_{n}-z_{n+1}w_{n+1}=0,

additionally, taking the conjugate of Equation (3.1) we obtain,

(3.3) z1¯w1+zn¯wnzn+1¯wn+1=0.\overline{z_{1}}w_{1}+\cdots\overline{z_{n}}w_{n}-\overline{z_{n+1}}w_{n+1}=0.

Equations (3.2) and (3.3) imply that 𝐰\mathbf{w} belongs to the orthogonal hyperplane to 𝐳\mathbf{z} and to the orthogonal hyperplane to 𝐳¯\overline{\mathbf{z}}, respectively. If we denote by 𝐇𝐩\mathbf{H_{p}} the hyperplane orthogonal to a vector 𝐩\mathbf{p} in n,1\mathbb{C}^{n,1}, then 𝐰\mathbf{w} belongs to the intersection 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}.

Proposition 3.4.

There are only two possibilities for the intersection 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}:

  • a)

    The intersection 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is the hyperplane 𝐇𝐳\mathbf{H_{z}}. It occurs if and only if 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly dependent;

  • b)

    the intersection 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is a codimension 2 subspace, and it happens if and only if 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly independent.

In either case, the intersection 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is preserved by conjugation, so, 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is either the complexification of a hyperplane in n,1\mathbb{R}^{n,1} or the complexification of a codimension 2 subspace in n,1\mathbb{R}^{n,1}.

3.1. Case 1: 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} linearly independent

We first note that the plane 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} spanned by 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} is orthogonal to 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}. Moreover, 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is the orthogonal complement of 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}.

Lemma 3.5.

Let 𝐳\mathbf{z} be a vector in n,1\mathbb{C}^{n,1} such that 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly independent. The following statements hold:

  • a)

    The set 𝐇𝐳𝐇𝐳¯{𝟎}\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}\setminus\{\mathbf{0}\} is contained in V+V_{+} if and only if 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} has a negative vector and (𝐇𝐳𝐇𝐳¯)𝐳,𝐳¯={𝟎}(\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}})\cap\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}=\{\mathbf{0}\};

  • b)

    the set 𝐳,𝐳¯{𝟎}\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}\setminus\{\mathbf{0}\} is contained in V+V_{+} if and only if 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} has a negative vector and (𝐇𝐳𝐇𝐳¯)𝐳,𝐳¯={𝟎}(\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}})\cap\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}=\{\mathbf{0}\};

  • c)

    the space 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is parabolic if and only if 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is parabolic.

Proof.

This is a particular case of the well known fact that the orthogonal complement of a hyperbolic, elliptic or parabolic subspace is (respectively) elliptic, hyperbolic or parabolic; however, we provide a proof.

We first note that the subspaces 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} and 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} are not parabolic if and only if the intersection (𝐇𝐳𝐇𝐳¯)𝐳,𝐳¯(\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}})\cap\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is {𝟎}\{\mathbf{0}\}, and it happens, if and only if n,1\mathbb{C}^{n,1} is decomposed as the direct sum of 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} and 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}.
a) Given that 𝐇𝐳𝐇𝐳¯{𝟎}V+\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}\setminus\{\mathbf{0}\}\subset V_{+} then n,1\mathbb{C}^{n,1} is the direct sum of 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} and 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}, thus 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} has a negative vector. Conversely, n,1=(𝐇𝐳𝐇𝐳¯)𝐳,𝐳¯\mathbb{C}^{n,1}=(\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}})\oplus\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} and 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} has a negative vector, since the total space has signature (n,1)(n,1) then 𝐇𝐳𝐇𝐳¯{𝟎}V+\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}\setminus\{\mathbf{0}\}\subset V_{+}.
b) It follows by the same arguments used in a).
c) 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is parabolic if and only if (𝐇𝐳𝐇𝐳¯)𝐳,𝐳¯{𝟎}(\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}})\cap\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}\neq\{\mathbf{0}\}, and it happens if and only if 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is parabolic. ∎

Corollary 3.6.

If the plane 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is elliptic or parabolic then, 𝐳\mathbf{z} is positive.

Now, we generalize the function ff given by Cano et al. [5] by means of Sylvester’s law of inertia. In order to define ff, we note that the determinant of G=(𝐳,𝐳𝐳,𝐳¯𝐳¯,𝐳𝐳¯,𝐳¯)G=\left(\begin{array}[]{cc}\langle\mathbf{z},\mathbf{z}\rangle&\langle\mathbf{z},\overline{\mathbf{z}}\rangle\\ \langle\overline{\mathbf{z}},\mathbf{z}\rangle&\langle\overline{\mathbf{z}},\overline{\mathbf{z}}\rangle\end{array}\right) is:

𝐳,𝐳2|𝐳,𝐳¯|2=j=1n(zjzn+1¯zn+1zj¯)21j<kn(zjzk¯zkzj¯)2\displaystyle\langle\mathbf{z},\mathbf{z}\rangle^{2}-\lvert\langle\mathbf{z},\mathbf{\overline{z}}\rangle\rvert^{2}={\displaystyle\sum_{j=1}^{n}}(z_{j}\overline{z_{n+1}}-z_{n+1}\overline{z_{j}})^{2}-\sum_{1\leq j<k\leq n}(z_{j}\overline{z_{k}}-z_{k}\overline{z_{j}})^{2}
=j=1n4(xjyn+1xn+1yj)2+1j<kn4(xjykykxj)2.\displaystyle={\displaystyle-\sum_{j=1}^{n}}4(x_{j}y_{n+1}-x_{n+1}y_{j})^{2}+\sum_{1\leq j<k\leq n}4(x_{j}y_{k}-y_{k}x_{j})^{2}.

Where xj=Re(zj)x_{j}=\mathrm{Re}(z_{j}) and yj=Im(zj)y_{j}=\mathrm{Im}(z_{j}). Thus, we define ff as follows:

f:n,1{𝟎}f:\mathbb{C}^{n,1}\setminus\{\mathbf{0}\}\rightarrow\mathbb{R}
f(𝐳)=j=1n4(xjyn+1xn+1yj)21j<kn4(xjykykxj)2.f(\mathbf{z})={\displaystyle\sum_{j=1}^{n}}4(x_{j}y_{n+1}-x_{n+1}y_{j})^{2}-\sum_{1\leq j<k\leq n}4(x_{j}y_{k}-y_{k}x_{j})^{2}.

The function ff allow us to characterize the set Λ\Lambda when 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} are linearly independent, and n>2n>2.

Lemma 3.7.

Let n>2n>2 be an integer. Consider 𝐳\mathbf{z} a vector in n,1\mathbb{C}^{n,1} such that 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} are linearly independent. The projectivization z=[𝐳]z=[\mathbf{z}] lies in Λ\Lambda if and only if f(𝐳)0f(\mathbf{z})\leq 0.

Proof.

By the remark just below Proposition 3.3, zΛz\in\Lambda if and only if 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is hyperbolic or parabolic, and by Lemma 3.5 it happens if and only if the plane 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is elliptic or parabolic, and by Lemma 2.2, the latter occurs, if and only if f(𝐳)0f(\mathbf{z})\leq 0. ∎

The Lemma 3.7 exhibits a difference between the cases n=2n=2 and n>2n>2. We recall that if n=2n=2, see Corollary 2.5 in Cano et al. [5], it is necessary that f(𝐳)=0f(\mathbf{z})=0 to ensure that z=[𝐳]z=[\mathbf{z}] lies in Λ\Lambda. This behavior is due to that for n=2n=2, 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} is the complex line spanned by i𝐳𝐳¯i\mathbf{z}\boxtimes\mathbf{\overline{z}} and this line can be contained in VV_{-}. In other words, 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} can be a negative definite subspace because it has dimension 11. However in the case n>2n>2, 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}} can not be a negative definite subspace because it has codimension 22 and thus dimension greater than 11. The case n=2n=2 is a threshold at which the set Λ\Lambda “grows”, in fact for n>2n>2 it can be observed from inequality f(𝐳)0f(\mathbf{z})\leq 0 that Λ\Lambda has non-empty interior.

3.2. Case 2: 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} linearly dependent

If 𝐳𝟎\mathbf{z}\neq\mathbf{0}, and satisfies that 𝐳\mathbf{z} and 𝐳¯\overline{\mathbf{z}} are linearly dependent, then by Lemma 3.2, z=[𝐳]nz=[\mathbf{z}]\in\mathbb{P}_{\mathbb{R}}^{n} and f(𝐳)=0f(\mathbf{z})=0.

Lemma 3.8.

Let 𝐳\mathbf{z} be a vector in n,1{𝟎}\mathbb{C}^{n,1}\setminus\{\mathbf{0}\} such that 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} are linearly dependent. The projectivization z=[𝐳]z=[\mathbf{z}] lies in Λ\Lambda if and only if 𝐳,𝐳0\langle\mathbf{z},\mathbf{z}\rangle\geq 0.

Proof.

The necessary condition is straightforward: if zΛz\in\Lambda then 𝐳\mathbf{z} is non-negative. Now, if 𝐳\mathbf{z} is null then znΛz\in\partial\mathbb{H}_{\mathbb{R}}^{n}\subset\Lambda because znz\in\mathbb{P}_{\mathbb{R}}^{n}. If 𝐳\mathbf{z} is positive, then znn¯z\in\mathbb{P}_{\mathbb{R}}^{n}\setminus\overline{\mathbb{H}_{\mathbb{R}}^{n}}, so there is a real projective hyperplane HH tangent to n\partial\mathbb{H}_{\mathbb{R}}^{n} that passes through zz. Thus zΛz\in\Lambda because the complexification of HH is a projective hyperplane contained in Λ\Lambda. ∎

Note that Lemma 3.8 does not depend of nn but Lemma 3.7 does.

Proof of Theorem 1.2.

For n>2n>2 the Lemmas 3.7 and 3.8 imply that the set Λ\Lambda is the semi-algebraic subset of n\mathbb{P}_{\mathbb{C}}^{n} consisting of points z=[𝐳]z=[\mathbf{z}] that satisfy the following pair of inequalities:

1)\displaystyle 1)  0𝐳,𝐳=x12+y12++xn2+yn2xn+12yn+12\displaystyle\;0\leq\langle\mathbf{z},\mathbf{z}\rangle=x_{1}^{2}+y_{1}^{2}+\cdots+x_{n}^{2}+y_{n}^{2}-x_{n+1}^{2}-y_{n+1}^{2}
2)\displaystyle 2)  0f(𝐳)=j=1n4(xjyn+1xn+1yj)21j<kn4(xjykykxj)2.\displaystyle\;0\geq f(\mathbf{z})={\displaystyle\sum_{j=1}^{n}}4(x_{j}y_{n+1}-x_{n+1}y_{j})^{2}-\sum_{1\leq j<k\leq n}4(x_{j}y_{k}-y_{k}x_{j})^{2}.

Thus Λ\Lambda has non-empty interior. If n=2n=2, the result is the Corollary 2.5 in [5]. In this case inequality 2 is indeed an equality. ∎

Lemma 3.9.

The function f(𝐳)f(\mathbf{z}) is invariant under the usual action of SO+(n,1)\mathrm{SO_{+}}(n,1)

Proof.
f(𝐳)\displaystyle f(\mathbf{z}) =j=1n4(xjyn+1xn+1yj)21j<kn4(xjykykxj)2\displaystyle={\displaystyle\sum_{j=1}^{n}}4(x_{j}y_{n+1}-x_{n+1}y_{j})^{2}-\sum_{1\leq j<k\leq n}4(x_{j}y_{k}-y_{k}x_{j})^{2}
=4𝐱,𝐲24𝐱,𝐱𝐲,𝐲,\displaystyle=4\langle\mathbf{x},\mathbf{y}\rangle^{2}-4\langle\mathbf{x},\mathbf{x}\rangle\langle\mathbf{y},\mathbf{y}\rangle,

where 𝐱=Re(𝐳)\mathbf{x}=\mathrm{Re}(\mathbf{z}) and 𝐲=Im(𝐳)\mathbf{y}=\mathrm{Im}(\mathbf{z}). So, if AA lies in SO+(n,1)\mathrm{SO_{+}}(n,1), then A𝐳=A𝐱+iA𝐲A\mathbf{z}=A\mathbf{x}+iA\mathbf{y}, and

f(A𝐳)\displaystyle f(A\mathbf{z}) =4A𝐱,A𝐲24A𝐱,A𝐱A𝐲,A𝐲\displaystyle=4\langle A\mathbf{x},A\mathbf{y}\rangle^{2}-4\langle A\mathbf{x},A\mathbf{x}\rangle\langle A\mathbf{y},A\mathbf{y}\rangle
=4𝐱,𝐲24𝐱,𝐱𝐲,𝐲\displaystyle=4\langle\mathbf{x},\mathbf{y}\rangle^{2}-4\langle\mathbf{x},\mathbf{x}\rangle\langle\mathbf{y},\mathbf{y}\rangle
=f(𝐳),\displaystyle=f(\mathbf{z}),

in the second equality we used that AA preserves the Hermitian form ,\langle\cdot,\cdot\rangle. ∎

3.3. A partition of n\mathbb{P}_{\mathbb{C}}^{n}

In this subsection we will assume that n>2n>2. If the function

f(𝐳)=j=1n(zjzn+1¯zn+1zj¯)2+1j<kn(zjzk¯zkzj¯)2f(\mathbf{z})=\displaystyle-\sum_{j=1}^{n}(z_{j}\overline{z_{n+1}}-z_{n+1}\overline{z_{j}})^{2}+\sum_{1\leq j<k\leq n}(z_{j}\overline{z_{k}}-z_{k}\overline{z_{j}})^{2}

takes the value 0 then there are two possibilities: the complex numbers zjzk¯zkzj¯z_{j}\overline{z_{k}}-z_{k}\overline{z_{j}} vanish for all jj and kk, so 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} are linearly dependent; or zjzk¯zkzj¯z_{j}\overline{z_{k}}-z_{k}\overline{z_{j}} is no zero for some jj and kk, and therefore 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} are linearly independent.
The function ff gives a partition of n,1{𝟎}\mathbb{C}^{n,1}\setminus\{\mathbf{0}\} in the following sets:

U0\displaystyle U_{0} ={𝐳n,1{𝟎}:f(𝐳)=0}\displaystyle=\{\mathbf{z}\in\mathbb{C}^{n,1}\setminus\{\mathbf{0}\}:f(\mathbf{z})=0\}
=\displaystyle= {𝐳n,1{𝟎}:𝐳and𝐳¯arelinearlydependent}{𝐳n,1{𝟎}:𝐳,𝐳¯isparabolic},\displaystyle\{\mathbf{z}\in\mathbb{C}^{n,1}\setminus\{\mathbf{0}\}:\mathbf{z}\;\mathrm{and}\;\mathbf{\overline{z}}\;\mathrm{are\;linearly\;dependent}\}\cup\{\mathbf{z}\in\mathbb{C}^{n,1}\setminus\{\mathbf{0}\}:\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}\;\mathrm{is\;parabolic}\},
U+\displaystyle U_{+} ={𝐳n,1:f(𝐳)>0}={𝐳n,1:𝐳,𝐳¯ishyperbolic},\displaystyle=\{\mathbf{z}\in\mathbb{C}^{n,1}:f(\mathbf{z})>0\}=\{\mathbf{z}\in\mathbb{C}^{n,1}:\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}\;\mathrm{is\;hyperbolic}\},
U\displaystyle U_{-} ={𝐳n,1:f(𝐳)<0}={𝐳n,1:𝐳,𝐳¯iselliptic}.\displaystyle=\{\mathbf{z}\in\mathbb{C}^{n,1}:f(\mathbf{z})<0\}=\{\mathbf{z}\in\mathbb{C}^{n,1}:\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}}\;\mathrm{is\;elliptic}\}.
Proposition 3.10.

The sets [U0],[U+][U_{0}],[U_{+}] and [U][U_{-}] give a partition of n\mathbb{P}_{\mathbb{C}}^{n}.

Proof.

We remember that f(𝐳)f(\mathbf{z}) is equal to |𝐳,𝐳¯|2𝐳,𝐳2\lvert\langle\mathbf{z},\mathbf{\overline{z}}\rangle\rvert^{2}-\langle\mathbf{z},\mathbf{z}\rangle^{2}. So, if α\alpha lies in \mathbb{C}^{*} then

f(α𝐳)\displaystyle f(\alpha\mathbf{z}) =|α𝐳,α¯𝐳¯|2α𝐳,α𝐳2\displaystyle=\lvert\langle\alpha\mathbf{z},\overline{\alpha}\mathbf{\overline{z}}\rangle\rvert^{2}-\langle\alpha\mathbf{z},\alpha\mathbf{z}\rangle^{2}
=|α|4(|𝐳,𝐳¯|2𝐳,𝐳2)\displaystyle=\lvert\alpha\rvert^{4}(\lvert\langle\mathbf{z},\mathbf{\overline{z}}\rangle\rvert^{2}-\langle\mathbf{z},\mathbf{z}\rangle^{2})
=|α|4f(𝐳).\displaystyle=\lvert\alpha\rvert^{4}f(\mathbf{z}).

Thus, [U0],[U+][U_{0}],[U_{+}] and [U][U_{-}] are non-empty pairwise disjoint sets whose union is all n\mathbb{P}_{\mathbb{C}}^{n}. ∎

The next proposition is an analogous but different result to Theorem 2.7 in [5], in such proposition we can appreciate the “growth” of Λ\Lambda.

Proposition 3.11.

The projective sets [U0],[U+][U_{0}],[U_{+}] and [U][U_{-}] are SO+(n,1)\mathrm{SO_{+}}(n,1)-invariants and have the following properties:

  • i)

    The union ([U0]n)[U]([U_{0}]\setminus\mathbb{H}_{\mathbb{R}}^{n})\cup[U_{-}] is equal to Λ\Lambda;

  • ii)

    The union [U+]n[U_{+}]\cup\mathbb{H}_{\mathbb{R}}^{n} is equal to Ω=nΛ\Omega=\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda;

  • iii)

    The set Ω=nΛ\Omega=\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda is a complete Kobayashi hyperbolic space.

Proof.

By Lemma 3.9 we know that the sets [U0],[U+][U_{0}],[U_{+}] and [U][U_{-}] are SO+(n,1)\mathrm{SO_{+}}(n,1)-invariants. The parts i) and ii) follow from the description of Λ\Lambda given in the proof of Theorem 2 because when 𝐳\mathbf{z} lies in U0n,1U_{0}\setminus\mathbb{R}^{n,1} or in UU_{-} then 𝐳\mathbf{z} is positive.

iii) By Corollary 3.10.9 in [11] we know that an open subset of n\mathbb{P}_{\mathbb{C}}^{n} that omits at least 2n+12n+1 projective hyperplanes in general position is a complete Kobayashi hyperbolic space. Given that for any point in nn¯\mathbb{P}_{\mathbb{R}}^{n}\setminus\overline{\mathbb{H}_{\mathbb{R}}^{n}} there are infinitely many projective hyperplanes in general position passing through the point and contained in Λ\Lambda, then Λ\Lambda contains infinitely many projective hyperplanes in general position. Thus, Ω\Omega is a complete Kobayashi hyperbolic space. ∎

3.4. The fiber bundle Ωn\Omega\rightarrow\mathbb{H}_{\mathbb{R}}^{n}

Following Cano et al. [5] we use the orthogonal projection Π:nn\Pi_{\mathbb{R}}:\mathbb{H}_{\mathbb{C}}^{n}\rightarrow\mathbb{H}_{\mathbb{R}}^{n} that sends zz to its closest point in n\mathbb{H}_{\mathbb{R}}^{n}. Goldman in [8] proves that Π(z)\Pi_{\mathbb{R}}(z) is the midpoint m(z)m(z) of the geodesic segment joining zz and z¯\overline{z}. Explicitly, m(z)=[𝐦(𝐳)]m(z)=[\mathbf{m}(\mathbf{z})], where

𝐦(𝐳)=𝐳η¯(𝐳)+𝐳¯η(𝐳)\mathbf{m}(\mathbf{z})=\mathbf{z}\overline{\eta}(\mathbf{z})+\mathbf{\overline{z}}\eta(\mathbf{z})

and η(𝐳)\eta(\mathbf{z}) is a number such that

η2(𝐳)=𝐳,𝐳¯=zn+12z12zn2.\eta^{2}(\mathbf{z})=-\langle\mathbf{z},\mathbf{\overline{z}}\rangle=z_{n+1}^{2}-z_{1}^{2}-\cdots-z_{n}^{2}.

For the remainder of this subsection we will assume that n>2n>2. We know, by definition of U+U_{+}, that the space of non-real negative vectors is contained in U+U_{+}, so we define the function Π~:U+n,1\widetilde{\Pi}:U_{+}\rightarrow\mathbb{R}^{n,1} given by

(3.4) Π~(𝐳)=𝐳η¯(𝐳)+𝐳¯η(𝐳).\widetilde{\Pi}(\mathbf{z})=\mathbf{z}\overline{\eta}(\mathbf{z})+\mathbf{\overline{z}}\eta(\mathbf{z}).
Lemma 3.12.

The function Π~\widetilde{\Pi} is SO+(n,1)\mathrm{SO_{+}}(n,1)-equivariant.

Proof.

Since AA lies in SO+(n,1)\mathrm{SO_{+}}(n,1), then A𝐳¯=A𝐳¯\overline{A\mathbf{z}}=A\mathbf{\overline{z}}. So, we have that

η2(A𝐳)=A𝐳,A𝐳¯=A𝐳,A𝐳¯=𝐳,𝐳¯=η2(𝐳).\eta^{2}(A\mathbf{z})=-\langle A\mathbf{z},\overline{A\mathbf{z}}\rangle=-\langle A\mathbf{z},A\mathbf{\overline{z}}\rangle=-\langle\mathbf{z},\mathbf{\overline{z}}\rangle=\eta^{2}(\mathbf{z}).

Hence η(A𝐳)=η(𝐳)\eta(A\mathbf{z})=\eta(\mathbf{z}) and

Π~(A𝐳)=A𝐳η¯(A𝐳)+A𝐳¯η(A𝐳)=A𝐳η¯(𝐳)+A𝐳¯η(𝐳)=A(𝐳η¯(𝐳)+𝐳¯η(𝐳))=AΠ~(𝐳).\widetilde{\Pi}(A\mathbf{z})=A\mathbf{z}\overline{\eta}(A\mathbf{z})+\overline{A\mathbf{z}}\eta(A\mathbf{z})=A\mathbf{z}\overline{\eta}(\mathbf{z})+A\overline{\mathbf{z}}\eta(\mathbf{z})=A(\mathbf{z}\overline{\eta}(\mathbf{z})+\overline{\mathbf{z}}\eta(\mathbf{z}))=A\widetilde{\Pi}(\mathbf{z}).

That is Π~\widetilde{\Pi} is SO+(n,1)\mathrm{SO_{+}}(n,1)-equivariant. ∎

Lemma 3.13.

Consider the function Π~\widetilde{\Pi} defined by Equation (3.4). The equality Π~(α𝐳)=|α|2Π~(𝐳)\widetilde{\Pi}(\alpha\mathbf{z})=\lvert\alpha\rvert^{2}\widetilde{\Pi}(\mathbf{z}) holds for every α\alpha\in\mathbb{C}^{*}.

Proof.

Take α\alpha\in\mathbb{C}^{*}, since

η2(α𝐳)=α𝐳,α𝐳¯=|α|2𝐳,𝐳¯=|α|2η2(𝐳),\eta^{2}(\alpha\mathbf{z})=-\langle\alpha\mathbf{z},\overline{\alpha\mathbf{z}}\rangle=-\lvert\alpha\rvert^{2}\langle\mathbf{z},\mathbf{\overline{z}}\rangle=\lvert\alpha\rvert^{2}\eta^{2}(\mathbf{z}),

we have that,

Π~(α𝐳)=α𝐳η¯(α𝐳)+α𝐳¯η(α𝐳)=α𝐳α¯η¯(𝐳)+α¯𝐳¯αη(𝐳)=|α|2Π~(𝐳).\widetilde{\Pi}(\alpha\mathbf{z})=\alpha\mathbf{z}\overline{\eta}(\alpha\mathbf{z})+\overline{\alpha\mathbf{z}}\eta(\alpha\mathbf{z})=\alpha\mathbf{z}\overline{\alpha}\,\overline{\eta}(\mathbf{z})+\overline{\alpha}\,\mathbf{\overline{z}}\alpha\eta(\mathbf{z})=\lvert\alpha\rvert^{2}\widetilde{\Pi}(\mathbf{z}).

By the Lemma 3.13 the map Π~\widetilde{\Pi} induces a well-defined projection map:

Π:[U+]\displaystyle\Pi:[U_{+}] n\displaystyle\rightarrow\mathbb{P}_{\mathbb{R}}^{n}
z\displaystyle z Π(z)=[Π~(𝐳)].\displaystyle\mapsto\Pi(z)=[\widetilde{\Pi}(\mathbf{z})].

If we take a real negative vector 𝐳\mathbf{z} then, since 𝐳¯=𝐳\mathbf{\overline{z}}=\mathbf{z}

η2=𝐳,𝐳¯=𝐳,𝐳=|𝐳,𝐳|,\eta^{2}=-\langle\mathbf{z},\mathbf{\overline{z}}\rangle=-\langle\mathbf{z},\mathbf{z}\rangle=\lvert\langle\mathbf{z},\mathbf{z}\rangle\rvert,

then η¯(𝐳)=η(𝐳)\overline{\eta}(\mathbf{z})=\eta(\mathbf{z}), therefore

𝐳η¯(𝐳)+𝐳¯η(𝐳)=2η(𝐳)𝐳.\mathbf{z}\overline{\eta}(\mathbf{z})+\overline{\mathbf{z}}\eta(\mathbf{z})=2\eta(\mathbf{z})\mathbf{z}.

Thus, we can extend Π\Pi continuously to all Ω=[U+]n\Omega=[U_{+}]\cup\mathbb{H}_{\mathbb{R}}^{n} by defining

Π(z)=z,ifzn.\Pi(z)=z,\;\;\mathrm{if}\;\;z\in\mathbb{H}_{\mathbb{R}}^{n}.

The next result follows straightforwardly from Lemma 3.12.

Proposition 3.14.

The projection Π:Ω=[U+]nn\Pi:\Omega=[U_{+}]\cup\mathbb{H}_{\mathbb{R}}^{n}\rightarrow\mathbb{P}_{\mathbb{R}}^{n} is SO+\mathrm{SO_{+}}-equivariant.

Lemma 3.15.

The image of the function Π~\widetilde{\Pi} is contained in the space of real negative vectors. Hence the image of the function Π\Pi is contained in n\mathbb{H}_{\mathbb{R}}^{n}.

Proof.

We only need to prove that Π~(𝐳)\widetilde{\Pi}(\mathbf{z}) is negative for all 𝐳U+\mathbf{z}\in U_{+} because the image of Π~\widetilde{\Pi} is a subset of n,1\mathbb{R}^{n,1} and Π(z)=z\Pi(z)=z for all znz\in\mathbb{H}_{\mathbb{R}}^{n}. If 𝐳\mathbf{z} lies in U+U_{+} then

0<f(𝐳)\displaystyle 0<f(\mathbf{z}) =𝐳,𝐳¯𝐳¯,𝐳𝐳,𝐳𝐳¯,𝐳¯\displaystyle=\langle\mathbf{z},\mathbf{\overline{z}}\rangle\langle\mathbf{\overline{z}},\mathbf{z}\rangle-\langle\mathbf{z},\mathbf{z}\rangle\langle\mathbf{\overline{z}},\mathbf{\overline{z}}\rangle
=η2(𝐳)η¯2(𝐳)𝐳,𝐳2\displaystyle=-\eta^{2}(\mathbf{z})\,\overline{\eta}^{2}(\mathbf{z})-\langle\mathbf{z},\mathbf{z}\rangle^{2}
=|η(𝐳)|4𝐳,𝐳2.\displaystyle=\lvert\eta(\mathbf{z})\rvert^{4}-\langle\mathbf{z},\mathbf{z}\rangle^{2}.

Therefore |η(𝐳)|2>𝐳,𝐳\lvert\eta(\mathbf{z})\rvert^{2}>\langle\mathbf{z},\mathbf{z}\rangle. Using this fact it is not hard to check that

Π~(𝐳),Π~(𝐳)=2|η(𝐳)|2(𝐳,𝐳|η(𝐳)|2)<0.\displaystyle\langle\widetilde{\Pi}(\mathbf{z}),\widetilde{\Pi}(\mathbf{z})\rangle=2\lvert\eta(\mathbf{z})\rvert^{2}(\langle\mathbf{z},\mathbf{z}\rangle-\lvert\eta(\mathbf{z})\rvert^{2})<0.

Thus, Π~(𝐳)\widetilde{\Pi}(\mathbf{z}) is a negative vector. It follows that [Π~(𝐳)][\widetilde{\Pi}(\mathbf{z})] lies in n\mathbb{H}_{\mathbb{R}}^{n} for all 𝐳U+\mathbf{z}\in U_{+} and Π(Ω)\Pi(\Omega) is a subset of n\mathbb{H}_{\mathbb{R}}^{n}. ∎

The following Lemma is the analogous to Corollary 3.4 in [5] and we have put it here for completeness.

Lemma 3.16.

If 𝐳\mathbf{z} is a positive vector such that 𝐳\mathbf{z} and 𝐳¯\mathbf{\overline{z}} are linearly independent and 𝐳,𝐳¯\overleftrightarrow{\mathbf{z},\mathbf{\overline{z}}} is parabolic, then 𝐳η¯(𝐳)+𝐳¯η(𝐳)𝐇𝐳𝐇𝐳¯\mathbf{z}\overline{\eta}(\mathbf{z})+\mathbf{\overline{z}}\eta(\mathbf{z})\in\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}.

Proof.

We have that f(𝐳)=0f(\mathbf{z})=0, so

0=f(𝐳)=|η(𝐳)|4𝐳,𝐳2,0=f(\mathbf{z})=\lvert\eta(\mathbf{z})\rvert^{4}-\langle\mathbf{z},\mathbf{z}\rangle^{2},

therefore |η(𝐳)|2=𝐳,𝐳>0\lvert\eta(\mathbf{z})\rvert^{2}=\langle\mathbf{z},\mathbf{z}\rangle>0 because 𝐳\mathbf{z} is positive. Thus

𝐳,𝐳η¯(𝐳)+𝐳¯η(𝐳)\displaystyle\langle\mathbf{z},\mathbf{z}\overline{\eta}(\mathbf{z})+\overline{\mathbf{z}}\eta(\mathbf{z})\rangle =\displaystyle= η(𝐳)𝐳,𝐳+η¯(𝐳)𝐳,𝐳¯\displaystyle\eta(\mathbf{z})\langle\mathbf{z},\mathbf{z}\rangle+\overline{\eta}(\mathbf{z})\langle\mathbf{z},\overline{\mathbf{z}}\rangle
=\displaystyle= η(𝐳)𝐳,𝐳+η¯(𝐳)(η2(𝐳))\displaystyle\eta(\mathbf{z})\langle\mathbf{z},\mathbf{z}\rangle+\overline{\eta}(\mathbf{z})(-\eta^{2}(\mathbf{z}))
=\displaystyle= η(𝐳)(𝐳,𝐳|η(𝐳)|2)\displaystyle\eta(\mathbf{z})\left(\langle\mathbf{z},\mathbf{z}\rangle-\lvert\eta(\mathbf{z})\rvert^{2}\right)
=\displaystyle= 0\displaystyle 0

Analogously, 𝐳¯,𝐳η¯(𝐳)+𝐳¯η(𝐳)=0\langle\overline{\mathbf{z}},\mathbf{z}\overline{\eta}(\mathbf{z})+\overline{\mathbf{z}}\eta(\mathbf{z})\rangle=0. Hence, 𝐳η¯(𝐳)+𝐳¯η(𝐳)\mathbf{z}\overline{\eta}(\mathbf{z})+\mathbf{\overline{z}}\eta(\mathbf{z}) lies in 𝐇𝐳𝐇𝐳¯\mathbf{H_{z}}\cap\mathbf{H}_{\overline{\mathbf{z}}}. ∎

3.5. The fiber of Π\Pi

In this subsection we still assume that n>2n>2. Consider the function Π\Pi defined in the Subsection 3.4. We compute the preimage under Π\Pi of the point o=[0::0:1]no=[0:\cdots:0:1]\in\mathbb{P}_{\mathbb{C}}^{n} and then we find the fiber over any other point using that SO+(n,1)\mathrm{SO_{+}}(n,1) acts transitively on n\mathbb{H}_{\mathbb{R}}^{n} and the equivariance of Π\Pi.

Lemma 3.17.

Let z=[z1::zn+1]z=[z_{1}:\cdots:z_{n+1}] be a point in Ω\Omega such that Π(z)=o\Pi(z)=o, then the last homogeneous coordinate zn+1z_{n+1} is non zero and the quotient zj/zn+1z_{j}/z_{n+1} is purely imaginary for 1jn1\leq j\leq n. Moreover, the fiber Lo=Π1(o)L_{o}=\Pi^{-1}(o) is the Lagrangian space

Lo={[iy1::iyn:xn+1]:xn+1,y1,yn,xn+10}.L_{o}=\{[iy_{1}:\cdots:iy_{n}:x_{n+1}]:x_{n+1},y_{1},\dots y_{n}\in\mathbb{R},x_{n+1}\neq 0\}.

The boundary CoC_{o} of LoL_{o} consists of all the points in n\mathbb{P}_{\mathbb{C}}^{n} that can be represented by homogeneous coordinates of the same form but with xn+1=0x_{n+1}=0

Co={[iy1::iyn:0]:(y1,,yn)n{(0,,0)}}.C_{o}=\{[iy_{1}:\cdots:iy_{n}:0]:(y_{1},\dots,y_{n})\in\mathbb{R}^{n}\setminus\{(0,\dots,0)\}\}.
Proof.

If zΩz\in\Omega and Π(z)=o\Pi(z)=o then

Π~(𝐳)=𝐳η¯(𝐳)+𝐳¯η(𝐳)=(z1η¯+z1¯ηznη¯+zn¯ηzn+1η¯+zn+1¯η)=o=(001)\widetilde{\Pi}(\mathbf{z})=\mathbf{z}\overline{\eta}(\mathbf{z})+\mathbf{\overline{z}}\eta(\mathbf{z})=\left(\begin{array}[]{c}z_{1}\overline{\eta}+\overline{z_{1}}\eta\\ \vdots\\ z_{n}\overline{\eta}+\overline{z_{n}}\eta\\ z_{n+1}\overline{\eta}+\overline{z_{n+1}}\eta\end{array}\right)=o=\left(\begin{array}[]{c}0\\ \vdots\\ 0\\ 1\end{array}\right)

where η2=zn+12z12zn2\eta^{2}=z_{n+1}^{2}-z_{1}^{2}-\cdots-z_{n}^{2}. We obtain the n+1n+1 equations

(3.5) 0=zjη¯+zj¯η,  1jn,0=z_{j}\overline{\eta}+\overline{z_{j}}\eta\mathrm{,}\;\;1\leq j\leq n,
(3.6) 1=zn+1η¯+zn+1¯η.1=z_{n+1}\overline{\eta}+\overline{z_{n+1}}\eta.

We multiply the nn equations in (3.5) by their corresponding zjηz_{j}\eta

(3.7) 0=zjη(zjη¯+zj¯η)=zj2|η|2+|zj|2η2for 1jn.0=z_{j}\eta(z_{j}\overline{\eta}+\overline{z_{j}}\eta)=z_{j}^{2}\lvert\eta\rvert^{2}+\lvert z_{j}\rvert^{2}\eta^{2}\;\mathrm{for}\;1\leq j\leq n.

We define θ\theta such that η2=|η|2eiθ\eta^{2}=\lvert\eta\rvert^{2}e^{i\theta}, so by Equations (3.7)

(3.8) zj2=|zj|2eiθ  1jn.z_{j}^{2}=-\lvert z_{j}\rvert^{2}e^{i\theta}\;\;1\leq j\leq n.

We substitute (3.8) in η2\eta^{2},

|η|2eiθ=η2=zn+12j=1nzj2=zn+12j=1n|zj|2eiθ,\lvert\eta\rvert^{2}e^{i\theta}=\eta^{2}=z_{n+1}^{2}-{\displaystyle\sum_{j=1}^{n}}z_{j}^{2}=z_{n+1}^{2}-{\displaystyle\sum_{j=1}^{n}}\lvert z_{j}\rvert^{2}e^{i\theta},

So, we can write zn+12z_{n+1}^{2} as ϵ|zn+1|2eiθ\epsilon\lvert z_{n+1}\rvert^{2}e^{i\theta} for some ϵ{1,1}\epsilon\in\{-1,1\}, and |η|2=ϵ|zn+1|2+j=1n|zj|2\lvert\eta\rvert^{2}=\epsilon\lvert z_{n+1}\rvert^{2}+{\displaystyle\sum_{j=1}^{n}}\lvert z_{j}\rvert^{2}, now by these equalities and Equation (3.6),

1\displaystyle 1 =(zn+1η¯+zn+1¯η)2=2(ϵ+1)|zn+1|2|η|2.\displaystyle=(z_{n+1}\overline{\eta}+\overline{z_{n+1}}\eta)^{2}=2(\epsilon+1)\lvert z_{n+1}\rvert^{2}\lvert\eta\rvert^{2}.

Therefore, zn+10z_{n+1}\neq 0 and ϵ=1\epsilon=1, then zn+12=|zn+1|2eiθz_{n+1}^{2}=\lvert z_{n+1}\rvert^{2}e^{i\theta} and the quotient zj2/zn+12=|zj|2/|zn+1|2z_{j}^{2}/z_{n+1}^{2}=-\lvert z_{j}\rvert^{2}/\lvert z_{n+1}\rvert^{2} is negative for 1jn1\leq j\leq n. Hence zj/zn+1z_{j}/z_{n+1} is purely imaginary for 1jn1\leq j\leq n. ∎

Now we can compute the general fibre using the fibre over oo, in the sake of this we consider \mathbb{H}_{\mathbb{R}} as the unit ball {[x1:xn:1]:x12++xn21<0}\{[x_{1}:\cdots x_{n}:1]:x_{1}^{2}+\cdots+x_{n}^{2}-1<0\} in n\mathbb{P}_{\mathbb{R}}^{n}. So, we can describe, see [15], the coordinates (x1,,xn)(x_{1},\cdots,x_{n}) as the hyperbolic coordinates,

x1\displaystyle x_{1} =tanh(t1)cos(tn)sin(tn1)sin(t2)\displaystyle=\mathrm{tanh}(t_{1})\mathrm{cos}(t_{n})\mathrm{sin}(t_{n-1})\cdots\mathrm{sin}(t_{2})
x2\displaystyle x_{2} =tanh(t1)sin(tn)sin(tn1)sin(t2)\displaystyle=\mathrm{tanh}(t_{1})\mathrm{sin}(t_{n})\mathrm{sin}(t_{n-1})\cdots\mathrm{sin}(t_{2})
x3\displaystyle x_{3} =tanh(t1)cos(tn1)sin(tn2)sin(t2)\displaystyle=\mathrm{tanh}(t_{1})\mathrm{cos}(t_{n-1})\mathrm{sin}(t_{n-2})\cdots\mathrm{sin}(t_{2})
\displaystyle\vdots
xn2\displaystyle x_{n-2} =tanh(t1)cos(t4)sin(t3)sin(t2)\displaystyle=\mathrm{tanh}(t_{1})\mathrm{cos}(t_{4})\mathrm{sin}(t_{3})\mathrm{sin}(t_{2})
xn1\displaystyle x_{n-1} =tanh(t1)cos(t3)sin(t2)\displaystyle=\mathrm{tanh}(t_{1})\mathrm{cos}(t_{3})\mathrm{sin}(t_{2})
xn\displaystyle x_{n} =tanh(t1)cos(t2).\displaystyle=\mathrm{tanh}(t_{1})\mathrm{cos}(t_{2}).

In homogeneous coordinates we obtain

x\displaystyle x =[x1::xn:1]\displaystyle=[x_{1}:\cdots:x_{n}:1]
=[tanh(t1)cos(tn)k=2n1sin(tk)::tanh(t1)cos(t2):1],\displaystyle=[\mathrm{tanh}(t_{1})\mathrm{cos}(t_{n}){\displaystyle\prod_{k=2}^{n-1}}{\mathrm{sin}(t_{k})}:\cdots:\mathrm{tanh}(t_{1})\mathrm{cos}(t_{2}):1],

as t1,,tnt_{1},...,t_{n} vary, we describe the real hyperbolic space n\mathbb{H}_{\mathbb{R}}^{n} embedded in nn\mathbb{H}_{\mathbb{C}}^{n}\subset\mathbb{P}_{\mathbb{C}}^{n}.

Lemma 3.18.

Consider x=[tanh(t1)cos(tn)k=2n1sin(tk)::tanh(t1)cos(t2):1]x=[\mathrm{tanh}(t_{1})\mathrm{cos}(t_{n}){\displaystyle\prod_{k=2}^{n-1}}{\mathrm{sin}(t_{k})}:\cdots:\mathrm{tanh}(t_{1})\mathrm{cos}(t_{2}):1] a point in n\mathbb{H}_{\mathbb{R}}^{n}. The matrix AA described below lies in SO+(n,1)\mathrm{SO_{+}}(n,1) and projectively carries o=[0::0:1]o=[0:\cdots:0:1] into xx.

We describe the matrix AA by displaying its columns. The jj-th column AjA_{j} of AA is given as follows:

A1=(cosh(t1)cos(tn)k=2n1sin(tk)cosh(t1)sin(tn)k=2n1sin(tk)cosh(t1)cos(tn1)k=2n2sin(tk)cosh(t1)cos(t3)sin(t2)cosh(t1)cos(t2)sinh(t1)),\displaystyle\small{A_{1}}=\left(\begin{smallmatrix}\mathrm{cosh}(t_{1})\mathrm{cos}(t_{n})\prod\limits_{k=2}^{n-1}{\mathrm{sin}(t_{k})}\\ \mathrm{cosh}(t_{1})\mathrm{sin}(t_{n})\prod\limits_{k=2}^{n-1}{\mathrm{sin}(t_{k})}\\ \mathrm{cosh}(t_{1})\mathrm{cos}(t_{n-1})\prod\limits_{k=2}^{n-2}{\mathrm{sin}(t_{k})}\\ \vdots\\ \mathrm{cosh}(t_{1})\mathrm{cos}(t_{3})\mathrm{sin}(t_{2})\\ \mathrm{cosh}(t_{1})\mathrm{cos}(t_{2})\\ \mathrm{sinh}(t_{1})\end{smallmatrix}\right), An+1=(sinh(t1)cos(tn)k=2n1sin(tk)sinh(t1)sin(tn)k=2n1sin(tk)sinh(t1)cos(tn1)k=2n2sin(tk)sinh(t1)cos(t3)sin(t2)sinh(t1)cos(t2)cosh(t1))\displaystyle\;A_{n+1}=\left(\begin{smallmatrix}\mathrm{sinh}(t_{1})\mathrm{cos}(t_{n})\prod\limits_{k=2}^{n-1}{\mathrm{sin}(t_{k})}\\ \mathrm{sinh}(t_{1})\mathrm{sin}(t_{n})\prod\limits_{k=2}^{n-1}{\mathrm{sin}(t_{k})}\\ \mathrm{sinh}(t_{1})\mathrm{cos}(t_{n-1})\prod\limits_{k=2}^{n-2}{\mathrm{sin}(t_{k})}\\ \vdots\\ \mathrm{sinh}(t_{1})\mathrm{cos}(t_{3})\mathrm{sin}(t_{2})\\ \mathrm{sinh}(t_{1})\mathrm{cos}(t_{2})\\ \mathrm{cosh}(t_{1})\end{smallmatrix}\right)

and

Aj=(cos(tn)cos(tj)k=j+1n1sin(tk)sen(tn)cos(tj)k=j+1n1sin(tk)cos(tn1)cos(tj)k=j+1n2sin(tk)cos(tj+2)sin(tj+1)cos(tj)cos(tj+1)cos(tj)sin(tj)00)\displaystyle A_{j}=\left(\begin{smallmatrix}\mathrm{cos}(t_{n})\mathrm{cos}(t_{j})\prod\limits_{k=j+1}^{n-1}{\mathrm{sin}(t_{k})}\\ \mathrm{sen}(t_{n})\mathrm{cos}(t_{j})\prod\limits_{k=j+1}^{n-1}{\mathrm{sin}(t_{k})}\\ \mathrm{cos}(t_{n-1})\mathrm{cos}(t_{j})\prod\limits_{k=j+1}^{n-2}{\mathrm{sin}(t_{k})}\\ \vdots\\ \mathrm{cos}(t_{j+2})\mathrm{sin}(t_{j+1})\mathrm{cos}(t_{j})\\ \mathrm{cos}(t_{j+1})\mathrm{cos}(t_{j})\\ \mathrm{-sin}(t_{j})\\ 0\\ \vdots\\ 0\end{smallmatrix}\right) for 2jn.\displaystyle\;\mathrm{for}\;2\leq j\leq n.

The proof of Lemma 3.18 is straightforward and we omit it. The matrix AA allow to translate the fibre over oo to the fibre over an arbitrary point in n\mathbb{H}_{\mathbb{R}}^{n} and induces the following basis x\mathcal{B}_{x} adapted to xx:

x:={W1=A1/cosh(t1),W2=A2,,Wn=An,Wn+1=An+1/cosh(t1)}\mathcal{B}_{x}:=\{W_{1}=A_{1}/\mathrm{cosh}(t_{1}),W_{2}=A_{2},\cdots,W_{n}=A_{n},W_{n+1}=A_{n+1}/\mathrm{cosh}(t_{1})\}

We have scaled A1A_{1} and An+1A_{n+1} by the positive number 1/cosh(t1)1/\mathrm{cosh}(t_{1}) as in [5]. The following results follows from applying the matrix AA to the fibre over oo.

Lemma 3.19.

If zz is a point in Ω\Omega such that Π(z)=x\Pi(z)=x, where xnx\in\mathbb{H}_{\mathbb{R}}^{n} is the point

x=[tanh(t1)cos(tn)sin(tn1)sin(t2)::tanh(t1)cos(t2):1],x=[\mathrm{tanh}(t_{1})\mathrm{cos}(t_{n})\mathrm{sin}(t_{n-1})\cdots\mathrm{sin}(t_{2}):\cdots:\mathrm{tanh}(t_{1})\mathrm{cos}(t_{2}):1],

then zz is the image under AA of a point in LoL_{o} and Lx=Π1(x)L_{x}=\Pi^{-1}(x) is the Lagrangian space

Lx={[iy1W1++iynWn+ixn+1Wn+1]:xn+1,y1,,yn,xn+10}.L_{x}=\{[iy_{1}W_{1}+\cdots+iy_{n}W_{n}+ix_{n+1}W_{n+1}]:x_{n+1},y_{1},...,y_{n}\in\mathbb{R},x_{n+1}\neq 0\}.

The boundary of LxL_{x} is

Cx={[iy1W1++iynWn]:(y1,,yn)n{0,,0}}.C_{x}=\{[iy_{1}W_{1}+\cdots+iy_{n}W_{n}]:(y_{1},...,y_{n})\in\mathbb{R}^{n}\setminus\{0,...,0\}\}.

Now, we prove the Theorem 1.1 verifying that the projection Π:Ωn\Pi:\Omega\rightarrow\mathbb{H}_{\mathbb{R}}^{n} is an SO+(n,1)\mathrm{SO_{+}}(n,1)-equivariant smooth fibre bundle. The result is analogous to Theorem 3.6 in [5].

Proof of Theorem 1.1.

Consider a point xnx\in\mathbb{H}_{\mathbb{R}}^{n} distinct of the origin. We can find an open ball U(x)U(x) centered at xx that does not contain the origin. So, we define φ:Π1(U(x))U(x)×Lo\varphi:\Pi^{-1}(U(x))\rightarrow U(x)\times L_{o} given by z=Aylo(y,lo)z=A_{y}l_{o}\mapsto(y,l_{o}). It is not hard to see that φ\varphi is smooth and has smooth inverse. Also, since Π\Pi is equivariant Π(z)=Π(Aylo)=Ayo=y\Pi(z)=\Pi(A_{y}l_{o})=A_{y}o=y, Π\Pi agrees with the projection on the first factor of φ\varphi. For the origin, we take an open ball UxU_{x} centered at a point xox\neq o that does not contain oo. Then Ax1UxA_{x}^{-1}U_{x} is an open neighborhood of oo. We take the function φo:Π1(Ax1Ux)Ax1Ux×Lo\varphi_{o}:\Pi^{-1}(A_{x}^{-1}U_{x})\rightarrow A_{x}^{-1}U_{x}\times L_{o} given by z=AAx1ylo(Ax1y,lo)z=A_{A_{x}^{-1}y}l_{o}\mapsto(A_{x}^{-1}y,l_{o}), again it is not hard to see that φo\varphi_{o} is smooth and has smooth inverse, also Π\Pi agrees with the projection on the first factor of φo\varphi_{o} because Π(z)=Π(AAx1ylo)=y\Pi(z)=\Pi(A_{A_{x}^{-1}y}l_{o})=y. Thus, Π\Pi is a smooth fibre bundle with connected fibre LoL_{o}. ∎

4. A \mathbb{R}-circle in n\mathbb{P}_{\mathbb{C}}^{n}

4.1. The projection

For this subsection we assume n>2n>2. Consider the \mathbb{R}-circle 2\partial\mathcal{H}_{\mathbb{R}}^{2} defined as the set

{[w1:w2:0::0:wn+1]n:w1,w2,wn+1,w12+w22wn+12=0}.\{[w_{1}:w_{2}:0:\cdots:0:w_{n+1}]\in\mathbb{P}_{\mathbb{C}}^{n}:w_{1},w_{2},w_{n+1}\in\mathbb{R},w_{1}^{2}+w_{2}^{2}-w_{n+1}^{2}=0\}.

The circle 2\partial\mathcal{H}_{\mathbb{R}}^{2} is the set of null vectors of the subspace

𝒫2:={[w1:w2:0::0:wn+1]n:w1,w2,wn+1}\mathcal{P}_{\mathbb{R}}^{2}:=\{[w_{1}:w_{2}:0:\cdots:0:w_{n+1}]\in\mathbb{P}_{\mathbb{C}}^{n}:w_{1},w_{2},w_{n+1}\in\mathbb{R}\}

which is a copy of 2\mathbb{P}_{\mathbb{R}}^{2}. Moreover, the circle 2\partial\mathcal{H}_{\mathbb{R}}^{2} is the boundary of the disk

2:={w𝒫2:w12+w22wn+12<0}.\mathcal{H}_{\mathbb{R}}^{2}:=\{w\in\mathcal{P}_{\mathbb{R}}^{2}:w_{1}^{2}+w_{2}^{2}-w_{n+1}^{2}<0\}.

We are interested again in the set obtained as union of hyperplanes

Λ=p2Hp.\Lambda=\bigcup_{p\in\partial\mathcal{H}_{\mathbb{R}}^{2}}H_{p}.

Let 𝐳=(z1,zn+1)\mathbf{z}=(z_{1}\cdots,z_{n+1}) be a point in n,1\mathbb{C}^{n,1}, we study the intersection of HzH_{z} with 𝒫2\mathcal{P}_{\mathbb{R}}^{2}, where z=[𝐳]z=[\mathbf{z}]. If 𝐳\mathbf{z} has the form (0,0,z3,,zn,0)(0,0,z_{3},...,z_{n},0) then Hz𝒫2=𝒫2H_{z}\cap\mathcal{P}_{\mathbb{R}}^{2}=\mathcal{P}_{\mathbb{R}}^{2}, so zz lies in Λ\Lambda. Conversely, if Hz𝒫2=𝒫2H_{z}\cap\mathcal{P}_{\mathbb{R}}^{2}=\mathcal{P}_{\mathbb{R}}^{2} then, it is not hard to see that, 𝐳\mathbf{z} must have the form (0,0,z3,,zn,0)(0,0,z_{3},...,z_{n},0). In order to study the case when 𝐳\mathbf{z} has not the form (0,0,z3,,zn,0)(0,0,z_{3},...,z_{n},0), we define the projection

Q~:n,12,1\displaystyle\widetilde{Q}:\;\mathbb{C}^{n,1}\rightarrow\mathbb{C}^{2,1}
𝐳=(z1,z2,,zn+1)Q~(𝐳)=(z1,z2,zn+1).\displaystyle\mathbf{z}=(z_{1},z_{2},...,z_{n+1})\mapsto\widetilde{Q}(\mathbf{z})=(z_{1},z_{2},z_{n+1}).

The kernel of the projection Q~\widetilde{Q} is the set

Λ~0={(z1,z2,,zn,zn+1)n,1:z1=z2=zn+1=0}n2.\widetilde{\Lambda}_{0}=\{(z_{1},z_{2},...,z_{n},z_{n+1})\in\mathbb{C}^{n,1}:z_{1}=z_{2}=z_{n+1}=0\}\cong\mathbb{C}^{n-2}.

So, the map Q~\widetilde{Q} induces a projection

Q:n[Λ~0]2\displaystyle Q:\;\mathbb{P}_{\mathbb{C}}^{n}\setminus[\widetilde{\Lambda}_{0}]\rightarrow\mathbb{P}_{\mathbb{C}}^{2}
z=[z1:z2::zn+1]Q(z)=[z1:z2:zn+1].\displaystyle z=[z_{1}:z_{2}:...:z_{n+1}]\mapsto Q(z)=[z_{1}:z_{2}:z_{n+1}].

The maps Q~\widetilde{Q} and QQ allow to restrict this study to the case treated in [5] and [1]. We denote the set [Λ~0][\widetilde{\Lambda}_{0}] by Λ0\Lambda_{0}. If 𝐳\mathbf{z} has not the form (0,0,z3,,zn,0)(0,0,z_{3},...,z_{n},0) then we have two possibilities

  1. (1)

    Q~(𝐳)\widetilde{Q}(\mathbf{z}) and Q~(𝐳¯)\widetilde{Q}(\mathbf{\overline{z}}) are linearly dependent and Hz𝒫2H_{z}\cap\mathcal{P}_{\mathbb{R}}^{2} is a projective line in 𝒫2\mathcal{P}_{\mathbb{R}}^{2}, or

  2. (2)

    Q~(𝐳)\widetilde{Q}(\mathbf{z}) and Q~(𝐳¯)\widetilde{Q}(\mathbf{\overline{z}}) are linearly independent and Hz𝒫2H_{z}\cap\mathcal{P}_{\mathbb{R}}^{2} is a point in 𝒫2\mathcal{P}_{\mathbb{R}}^{2}.

In the first case when the intersection is a projective line l:=Hz𝒫2l:=H_{z}\cap\mathcal{P}_{\mathbb{R}}^{2} we have two possibilities:

  • 1.1

    the projective line ll is a subset of 𝒫22¯\mathcal{P}_{\mathbb{R}}^{2}\setminus\overline{\mathcal{H}_{\mathbb{R}}^{2}}, and zz lies in Ω\Omega,

  • 1.2

    the projective line ll intersects 2¯\overline{\mathcal{H}_{\mathbb{R}}^{2}}, and zz lies in Λ\Lambda.

In the second case when the intersection is a point, we have the following possibilities:

  • 2.1

    the point is contained in 𝒫22¯\mathcal{P}_{\mathbb{R}}^{2}\setminus\overline{\mathcal{H}_{\mathbb{R}}^{2}}, and zz lies in Ω\Omega,

  • 2.2

    the point is contained in 2\mathcal{H}_{\mathbb{R}}^{2}, and zz lies in Ω\Omega,

  • 2.3

    the point is contained in 2\partial\mathcal{H}_{\mathbb{R}}^{2}, and zz lies in Λ\Lambda.

We denote the union of the tangent lines to 2\partial\mathbb{H}_{\mathbb{C}}^{2} at points of 2\partial\mathbb{H}_{\mathbb{R}}^{2} in 2\mathbb{P}_{\mathbb{C}}^{2} by Λ(2)\Lambda_{(2)}. The Corollary 2.5 and the Theorem 2.7 in [5] give descriptions of the sets Λ(2)\Lambda_{(2)} and Ω(2):=2Λ(2)\Omega_{(2)}:=\mathbb{P}_{\mathbb{C}}^{2}\setminus\Lambda_{(2)}, respectively in terms of the function ff defined in the Subsection 3.1. The descriptions are similar to those given in the proof of Theorem 2 and in Proposition 3.11.

Lemma 4.1.

The set Λ\Lambda is equal to Q1(Λ(2))Λ0Q^{-1}(\Lambda_{(2)})\cup\Lambda_{0}.

Proof.

Note that n=Λ0Q1(Λ(2))Q1(Ω(2))\mathbb{P}_{\mathbb{C}}^{n}=\Lambda_{0}\cup Q^{-1}(\Lambda_{(2)})\cup Q^{-1}(\Omega_{(2)}). Take z=[z1:z2::zn+1]Λz=[z_{1}:z_{2}:\cdots:z_{n+1}]\in\Lambda. Suppose that zQ1(Ω(2))z\in Q^{-1}(\Omega_{(2)}), since zΛz\in\Lambda then there is a w=[w1:w2:0::0:wn+1]2w=[w_{1}:w_{2}:0:\cdots:0:w_{n+1}]\in\partial\mathcal{H}_{\mathbb{R}}^{2} such that zz belongs to HwH_{w}, the tangent hyperplane to n\partial\mathbb{H}_{\mathbb{C}}^{n} at the point ww. So,

z1w1¯+z2w2¯zn+1wn+1¯=0z_{1}\overline{w_{1}}+z_{2}\overline{w_{2}}-z_{n+1}\overline{w_{n+1}}=0

this implies that Q(z)=[z1:z2:zn+1]Q(z)=[z_{1}:z_{2}:z_{n+1}] must be in the projective line tangent to 2\partial\mathbb{H}_{\mathbb{R}}^{2} at the point Q(w)=[w1:w2:wn+1]Q(w)=[w_{1}:w_{2}:w_{n+1}], but this is impossible since Q(z)Ω(2)Q(z)\in\Omega_{(2)}. Thus zQ1(Λ(2))Λ0z\in Q^{-1}(\Lambda_{(2)})\cup\Lambda_{0}. On the other hand, we know that Λ0Λ\Lambda_{0}\subset\Lambda. Now, we take zQ1(Λ(2))z\in Q^{-1}(\Lambda_{(2)}), then Q(z)Q(z) must be in the projective line tangent to 2\partial\mathbb{H}_{\mathbb{R}}^{2} at some point w=[w1:w2:wn+1]w^{\prime}=[w^{\prime}_{1}:w^{\prime}_{2}:w^{\prime}_{n+1}], so zz belongs to HwH_{w}, where w=[w1:w2:0::0:wn+1]w=[w^{\prime}_{1}:w^{\prime}_{2}:0:\cdots:0:w^{\prime}_{n+1}] lies in Q1(w)2Q^{-1}(w^{\prime})\cap\partial\mathcal{H}_{\mathbb{R}}^{2}. That is zz belongs to Λ\Lambda. ∎

By the Lemma 4.1 the set Ω:=nΛ\Omega:=\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda is equal to the set Q1(Ω(2))Q^{-1}(\Omega_{(2)}), where Ω(2)=2Λ(2)\Omega_{(2)}=\mathbb{P}_{\mathbb{C}}^{2}\setminus\Lambda_{(2)}. Also Cano et al. [5] show that Ω(2)\Omega_{(2)} has three components

Ω(2)0\displaystyle\Omega_{(2)}^{0}\! ={p2:Hp222¯},\displaystyle\!=\!\{p\!\in\!\mathbb{P}_{\mathbb{C}}^{2}\!:\!H_{p}\!\cap\!\mathbb{P}_{\mathbb{R}}^{2}\!\subset\!\mathbb{P}_{\mathbb{R}}^{2}\!\setminus\!\overline{\mathbb{H}_{\mathbb{R}}^{2}}\},
Ω(2)1\displaystyle\Omega_{(2)}^{1-}\! ={p=[p1:p2:p3]2:Hp2isapointin2and|Re(p1)Re(p2)Im(p1)Im(p2)|<0},\displaystyle\!=\!\{p\!=\![p_{1}\!:\!p_{2}\!:\!p_{3}]\!\in\!\mathbb{P}_{\mathbb{C}}^{2}\!:\!H_{p}\!\cap\!\mathbb{P}_{\mathbb{R}}^{2}\;\mathrm{is\;a\;point\;in\;}\mathbb{H}_{\mathbb{R}}^{2}\;\mathrm{and}\;\Bigg{\lvert}\begin{matrix}\mathrm{Re}(p_{1})&\!\mathrm{Re}(p_{2})\\ \mathrm{Im}(p_{1})&\!\mathrm{Im}(p_{2})\end{matrix}\Bigg{\rvert}\!<\!0\},
Ω(2)1+\displaystyle\Omega_{(2)}^{1+}\! ={p=[p1:p2:p3]2:Hp2isapointin2and|Re(p1)Re(p2)Im(p1)Im(p2)|>0}.\displaystyle\!=\!\{p\!=\![p_{1}\!:\!p_{2}\!:\!p_{3}]\!\in\!\mathbb{P}_{\mathbb{C}}^{2}\!:\!H_{p}\!\cap\!\mathbb{P}_{\mathbb{R}}^{2}\;\mathrm{is\;a\;point\;in\;}\mathbb{H}_{\mathbb{R}}^{2}\;\mathrm{and}\;\Bigg{\lvert}\begin{matrix}\mathrm{Re}(p_{1})&\!\mathrm{Re}(p_{2})\\ \mathrm{Im}(p_{1})&\!\mathrm{Im}(p_{2})\end{matrix}\Bigg{\rvert}\!>\!0\}.

each being diffeomorphic to an open 44-ball. The sets Q1(Ω(2)0)Q^{-1}(\Omega_{(2)}^{0}), Q1(Ω(2)1)Q^{-1}(\Omega_{(2)}^{1-}) and Q1(Ω(2)1+)Q^{-1}(\Omega_{(2)}^{1+}) are non-empty, open and disjoint.

Proposition 4.2.

Let n>2n>2 be an integer. The set nΛ0\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda_{0} is diffeomorphic to 2×n2\mathbb{P}_{\mathbb{C}}^{2}\times\mathbb{C}^{n-2}.

Proof.

Observe that

n{[1:z2::zn+1]:z2,,zn+1}={[0:z2::zn+1]:z2,,zn+1}.\mathbb{P}_{\mathbb{C}}^{n}\!\setminus\!\{[1\!:\!z_{2}\!:\!\cdots\!:\!z_{n+1}]:z_{2},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}\!=\!\{[0\!:\!z_{2}\!:\!\cdots\!:\!z_{n+1}]:z_{2},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}.

and analogously

{[0:z2::zn+1]:z2,zn+1}{[0:1:z3::zn+1]:z3,,zn+1}=\displaystyle\{[0\!:\!z_{2}\!:\!\cdots\!:\!z_{n+1}]:z_{2},\!\cdots\!z_{n+1}\!\in\!\mathbb{C}\}\setminus\!\{[0\!:\!1\!:\!z_{3}\!:\!\cdots\!:\!z_{n+1}]:z_{3},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}=
{[0:0:z3::zn+1]:z3,,zn+1}\displaystyle\{[0\!:\!0\!:\!z_{3}\!:\!\cdots\!:\!z_{n+1}]:z_{3},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}

and

{[0:0:z3::zn+1]:z3,,zn+1}{[0:0:z3::zn:1]:z3,,zn}=\displaystyle\{[0\!:\!0\!:\!z_{3}\!:\!\cdots\!:\!z_{n+1}]:z_{3},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}\setminus\!\{[0\!:\!0\!:\!z_{3}\!:\!\cdots\!:\!z_{n}\!:\!1]:z_{3},\!\cdots\!,\!z_{n}\!\in\!\mathbb{C}\}=
{[0:0:z3::zn:0]:z3,,zn}=Λ0.\displaystyle\{[0\!:\!0\!:\!z_{3}\!:\!\cdots\!:\!z_{n}\!:\!0]:z_{3},\!\cdots\!,\!z_{n}\!\in\!\mathbb{C}\}=\Lambda_{0}.

Thus,

nΛ0=\displaystyle\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda_{0}=
{[1:z2::zn+1]:z2,,zn+1}\displaystyle\{[1\!:\!z_{2}\!:\!\cdots\!:\!z_{n+1}]:z_{2},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}\cup
{[0:1:z3::zn+1]:z3,,zn+1}\displaystyle\{[0\!:\!1\!:\!z_{3}\!:\!\cdots\!:\!z_{n+1}]:z_{3},\!\cdots\!,\!z_{n+1}\!\in\!\mathbb{C}\}\cup
{[0:0:z3::zn:1]:z3,,zn}.\displaystyle\{[0\!:\!0\!:\!z_{3}\!:\!\cdots\!:\!z_{n}\!:\!1]:z_{3},\!\cdots\!,\!z_{n}\!\in\!\mathbb{C}\}.

so,

nΛ0\displaystyle\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda_{0}\cong
({[1:z2:0::0:zn+1]:z2,zn+1}\displaystyle(\{[1\!:\!z_{2}\!:\!0\!:\!\cdots\!:\!0\!:\!z_{n+1}]:z_{2},\!z_{n+1}\!\in\!\mathbb{C}\}\cup
({[0:1:0::0:zn+1]:zn+1}\displaystyle(\{[0\!:\!1\!:\!0\!:\!\cdots\!:\!0\!:\!z_{n+1}]:z_{n+1}\!\in\!\mathbb{C}\}\cup
{[0:0:1]})×n2\displaystyle\{[0\!\cdots\!:\!0\!:\!1]\!\})\times\mathbb{C}^{n-2}
\displaystyle\cong 2×n2.\displaystyle\;\mathbb{P}_{\mathbb{C}}^{2}\times\mathbb{C}^{n-2}.

Lemma 4.3.

The four-tuples (Q1(Ω(2)0),Ω(2)0,Q,n2)(Q^{-1}(\Omega_{(2)}^{0}),\Omega_{(2)}^{0},Q,\mathbb{C}^{n-2}), (Q1(Ω(2)1),Ω(2)1,Q,n2)(Q^{-1}(\Omega_{(2)}^{1-}),\Omega_{(2)}^{1-},Q,\mathbb{C}^{n-2}) and (Q1(Ω(2)1+),Ω(2)1+,Q,n2)(Q^{-1}(\Omega_{(2)}^{1+}),\Omega_{(2)}^{1+},Q,\mathbb{C}^{n-2}) are trivial fibre bundles.

Proof.

By reasoning similar to that given in the proof of the Proposition 4.2 the set Q1(Ω(2)0)Q^{-1}(\Omega_{(2)}^{0}) is diffeomorphic to Ω(2)0×n2\Omega_{(2)}^{0}\times\mathbb{C}^{n-2}, and the following diagram commutes

Q1(Ω(2)0)\textstyle{Q^{-1}(\Omega_{(2)}^{0})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Q\scriptstyle{Q}Ω(2)0×n2\textstyle{\Omega_{(2)}^{0}\times\mathbb{C}^{n-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Proj\scriptstyle{\mathrm{Proj}}Ω(2)0\textstyle{\Omega_{(2)}^{0}}

The other cases are treated similarly. ∎

A consequence of the previous lemma is the connectedness of the sets Q1(Ω(2)0)Q^{-1}(\Omega_{(2)}^{0}), Q1(Ω(2)1)Q^{-1}(\Omega_{(2)}^{1-}) and Q1(Ω(2)1+)Q^{-1}(\Omega_{(2)}^{1+}). Thus we have shown that Ω\Omega has three connected components each component diffeomorphic to an open nn-dimensional complex ball.

5. The other cases

5.1. A real (m1)(m-1)-sphere in n\mathbb{P}_{\mathbb{C}}^{n}

The work [5] of Cano et al. deals with the case m=n=2. The Section 3 cover the case m=nm=n for n>2n>2 and the Section 4 the case m=2m=2 for n>2n>2. In this section we study the remaining cases.

We use the same notation that in the Section 4, that is for 2<m<n2<m<n, we write

𝒫m\displaystyle\mathcal{P}_{\mathbb{R}}^{m} :={[w1::wm:0::0:wn+1]n:wkforallk}\displaystyle:=\left\{[w_{1}:\cdots:w_{m}:0:\cdots:0:w_{n+1}]\in\mathbb{P}_{\mathbb{C}}^{n}:w_{k}\in\mathbb{R}\mathrm{\;for\;all\;}k\right\}
m\displaystyle\partial\mathcal{H}_{\mathbb{R}}^{m} :={[w1::wm:0::0:wn+1]𝒫m:k=1mwk2wn+12=0}\displaystyle:=\left\{[w_{1}:\cdots:w_{m}:0:\cdots:0:w_{n+1}]\in\mathcal{P}_{\mathbb{R}}^{m}:\;{\displaystyle\sum_{k=1}^{m}}w_{k}^{2}-w_{n+1}^{2}=0\right\}
m\displaystyle\mathcal{H}_{\mathbb{R}}^{m} :={[w1::wm:0::0:wn+1]𝒫m:k=1mwk2wn+12<0}\displaystyle:=\left\{[w_{1}:\cdots:w_{m}:0:\cdots:0:w_{n+1}]\in\mathcal{P}_{\mathbb{R}}^{m}:\;{\displaystyle\sum_{k=1}^{m}}w_{k}^{2}-w_{n+1}^{2}<0\right\}

for the real mm-projective space, the real (m1)(m-1)-sphere and the real mm-ball in n\mathbb{P}_{\mathbb{C}}^{n}, respectively. Again we consider the set obtained as union of hyperplanes

Λ=pmHp.\Lambda=\bigcup_{p\in\partial\mathcal{H}_{\mathbb{R}}^{m}}H_{p}.

For this purpose we examine the intersection of HzH_{z} with 𝒫m\mathcal{P}_{\mathbb{R}}^{m}, where 𝐳\mathbf{z} is a point in n,1\mathbb{C}^{n,1} and z=[𝐳]z=[\mathbf{z}]. The next result follows from the same arguments explained in the third paragraph of Subsection 4.1.

Lemma 5.1.

The intersection Hz𝒫mH_{z}\cap\mathcal{P}_{\mathbb{R}}^{m} is equal to 𝒫m\mathcal{P}_{\mathbb{R}}^{m} if and only if 𝐳\mathbf{z} has the form (0,,0,zm+1,,zn,0)(0,\cdots,0,z_{m+1},\cdots,z_{n},0).

We now suppose that 𝐳\mathbf{z} is not in the following subspace

Λ~0:={𝐰=(w1,,wn+1)n+1:w1==wm=wn+1=0}nm+1,\widetilde{\Lambda}_{0}:=\{\mathbf{w}=(w_{1},\cdots,w_{n+1})\in\mathbb{C}^{n+1}:w_{1}\!=\!\cdots\!=\!w_{m}\!=\!w_{n+1}\!=\!0\}\cong\mathbb{C}^{n-m+1},

it is useful to consider the projection

Q~m:n,1m,1\displaystyle\widetilde{Q}_{m}:\;\mathbb{C}^{n,1}\rightarrow\mathbb{C}^{m,1}
𝐳=(z1,z2,,zn+1)Q~m(𝐳)=(z1,,zm,zn+1).\displaystyle\mathbf{z}=(z_{1},z_{2},...,z_{n+1})\mapsto\widetilde{Q}_{m}(\mathbf{z})=(z_{1},\cdots,z_{m},z_{n+1}).

The kernel of the projection Q~m\widetilde{Q}_{m} is the set Λ~0\widetilde{\Lambda}_{0}, so the map Q~m\widetilde{Q}_{m} induces the projection

Qm:n[Λ~0]m\displaystyle Q_{m}:\;\mathbb{P}_{\mathbb{C}}^{n}\setminus[\widetilde{\Lambda}_{0}]\rightarrow\mathbb{P}_{\mathbb{C}}^{m}
z=[z1,z2,,zn+1]Qm(z)=[z1,,zm,zn+1].\displaystyle z=[z_{1},z_{2},...,z_{n+1}]\mapsto Q_{m}(z)=[z_{1},\cdots,z_{m},z_{n+1}].

Again, we write Λ0\Lambda_{0} for [Λ~0][\widetilde{\Lambda}_{0}]. We can distinguish two cases

  1. (1)

    Q~m(𝐳)\widetilde{Q}_{m}(\mathbf{z}) and Q~m(𝐳¯)\widetilde{Q}_{m}(\mathbf{\overline{z}}) are linearly dependent (or equivalently Qm(z)Q_{m}(z) lies in 𝒫m\mathcal{P}_{\mathbb{R}}^{m}) and Hz𝒫mH_{z}\cap\mathcal{P}_{\mathbb{R}}^{m} is a real projective hyperplane in 𝒫m\mathcal{P}_{\mathbb{R}}^{m}, or

  2. (2)

    Q~m(𝐳)\widetilde{Q}_{m}(\mathbf{z}) and Q~m(𝐳¯)\widetilde{Q}_{m}(\mathbf{\overline{z}}) are linearly independent and Hz𝒫mH_{z}\cap\mathcal{P}_{\mathbb{R}}^{m} is a real projective subspace of dimension m2m-2 in 𝒫m\mathcal{P}_{\mathbb{R}}^{m}.

We have already dealt with the case of a real (m1)(m-1)-sphere in the mm-dimensional projective space, so we can use the projection QmQ_{m} as in the Section 4 to describe the sets Λ\Lambda and Ω=nΛ\Omega=\mathbb{P}_{\mathbb{C}}^{n}\setminus\Lambda. We denote by Λ(m)\Lambda_{(m)} the union of all complex hyperplanes in m\mathbb{P}_{\mathbb{C}}^{m} tangent to m\partial\mathbb{H}_{\mathbb{C}}^{m} at points in m\partial\mathbb{H}_{\mathbb{R}}^{m} and by Ω(m)\Omega_{(m)} to mΛ(m)\mathbb{P}_{\mathbb{C}}^{m}\setminus\Lambda_{(m)}.

Lemma 5.2.

The set Λ\Lambda is equal to Qm1(Λ(m))Λ0Q_{m}^{-1}(\Lambda_{(m)})\cup\Lambda_{0}. Also, the set Ω\Omega is equal to Qm1(Ω(m))Q_{m}^{-1}(\Omega_{(m)}) and it is connected.

Proof.

Arguing in the same manner as in the proof of Lemma 4.1 we have the equality Λ=Qm1(Λ(m))Λ0\Lambda=Q_{m}^{-1}(\Lambda_{(m)})\cup\Lambda_{0}, and therefore also the equality Ω=Qm1(Ω(m))\Omega=Q_{m}^{-1}(\Omega_{(m)}). By using arguments similar to those given in the proof of Lemma 4.3 it is not hard to see that the four-tuple (Q1(Ω(m)),Ω(m),Q,nm)(Q^{-1}(\Omega_{(m)}),\Omega_{(m)},Q,\mathbb{C}^{n-m}) is a trivial fibre bundle. We know that Ω(m)\Omega_{(m)} is connected, so we conclude that Ω\Omega is connected. ∎

Declarations

Acknowledgements E. Montiel would like to thank to UADY’s Facultad de Matemáticas for the kindness and the facilities provided during his stay.

Funding. The research of W. Barrera and J. P. Navarrete has been supported by the CONACYT, “Proyecto Ciencia de Frontera” 2019–21100 via Faculty of Mathematics, UADY, México. The research of E. Montiel has been supported by the CONACYT.
Conflict of interests The authors declare that they have no conflict of interest.

Authors’ contributions All authors have contributed equally to the paper.

References

  • [1] W. Barrera, A. Cano, R. García, and J. Navarrete. Chains homotopy in the complement of a knot in the sphere 𝐒3\mathbf{S}^{3}. Bulletin of the Brazilian Mathematical Society, New Series, 50(4):971–997, 2019.
  • [2] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319. Springer Science & Business Media, 2013.
  • [3] A. Cano, B. Liu, and M. M. López. The limit set for discrete complex hyperbolic groups. Indiana University Mathematics Journal, pages 927–948, 2017.
  • [4] A. Cano, J. P. Navarrete, and J. Seade. Complex kleinian groups. Springer, 2013.
  • [5] A. Cano, J. R. Parker, and J. Seade. Action of \mathbb{R}-fuchsian groups on 2\mathbb{CP}^{2}. Asian journal of mathematics., 20(3):449–474, 2016.
  • [6] S. S. Chen and L. Greenberg. Hyperbolic spaces. In Contributions to analysis, pages 49–87. Elsevier, 1974.
  • [7] H. S. M. Coxeter. Projective geometry. Springer Science & Business Media, 2003.
  • [8] W. M. Goldman. Complex hyperbolic geometry. Oxford University Press, 1999.
  • [9] M. Kapovich. Kleinian groups in higher dimensions. Springer, 2008.
  • [10] M. Kapovich. A survey of complex hyperbolic kleinian groups. In In the Tradition of Thurston II: Geometry and Groups, pages 7–51. Springer, 2022.
  • [11] S. Kobayashi. Hyperbolic complex spaces, volume 318. Springer Science & Business Media, 2013.
  • [12] R. S. Kulkarni. Groups with domains of discontinuity. Mathematische Annalen, 237(3):253–272, 1978.
  • [13] J. R. Parker. Notes on complex hyperbolic geometry. preprint, 2003.
  • [14] J. R. Parker. Hyperbolic spaces. Jyväskylä lectures in Mathematics, (2), 2008.
  • [15] J. G. Ratcliffe, S. Axler, and K. Ribet. Foundations of hyperbolic manifolds, volume 149. Springer, 1994.
  • [16] R. E. Schwartz. Spherical CR Geometry and Dehn Surgery (AM-165), volume 165. Princeton University Press, 2007.