This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Absolutely continuous spectrum for Schrödinger operators with random decaying matrix potentials on the strip

Hernán González  and  Christian Sadel Facultad de Matemáitcas, Pontificia Universidad Católica de Chile [email protected] [email protected]
Abstract.

We consider a family of random Schrödinger operators on the discrete strip with decaying random 2\ell^{2} matrix potential. We prove that the spectrum is almost surely pure absolutely continuous, apart from random possibly embedded eigenvalues, which may accumulate at band edges.

Key words and phrases:
random decyaing potential, absolutely continuous spectrum, extended states
2010 Mathematics Subject Classification:
Primary 82B44, Secondary 60H25, 47B36

1. Model and main result

We consider a random family of block-Jacobi operators on 2(+)l\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{l} given by

(HωΨ)n=Ψn1Ψn+1+AΨn+Vn(ω)Ψn(H_{\omega}\Psi)_{n}=-\Psi_{n-1}-\Psi_{n+1}+A\Psi_{n}+V_{n}(\omega)\Psi_{n} (1.1)

where Ψ=(Ψn)n02(+)l\Psi=(\Psi_{n})_{n\geq 0}\in\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{l} means that Ψnl,n+\Psi_{n}\in\mathds{C}^{l},\,\forall n\in\mathds{Z}_{+}, with n0Ψn2<\displaystyle\sum_{n\geq 0}||\Psi_{n}||^{2}<\infty, In the case n=0n=0 one sets Ψ1=0\Psi_{-1}=0 in (1.1). AA is a fixed Hermitian l×ll\times l matrix (A=AA=A^{*}) and finally we have a random Hermitian-matrix potential Vn=Vn(ω)V_{n}=V_{n}(\omega) This means, we have some probability space (Ω,𝒜,𝐏)(\Omega,{\mathcal{A}},{\mathbf{P}}) and Her(l){\rm Her}(l) valued random variables Vn:ΩHer(l)V_{n}\,:\,\Omega\to{\rm Her}(l). Moreover, we assume that the family (Vn)n(V_{n})_{n} is independent and that

n0(𝔼(Vn)+𝔼(Vn2))<,\sum_{n\geq 0}\left(\|{\mathbb{E}}(V_{n})\|+{\mathbb{E}}(||V_{n}||^{2})\;\right)\,<\,\infty\;, (1.2)

where 𝔼{\mathbb{E}} denotes the expectation value.

We also define the ’unperturbed’ operator H0H_{0} by eliminating the VnV_{n},

(H0Ψ)n=Ψn1Ψn+1+AΨn.(H_{0}\Psi)_{n}=-\Psi_{n-1}-\Psi_{n+1}+A\Psi_{n}\;. (1.3)

H0H_{0} and HωH_{\omega} can be seen as quasi-one dimensional discrete Schrödinger operators on a semi-infinite strip of width ll. The matrix AA maybe the adjacency matrix of a finite graph 𝔾{\mathbb{G}}, in which case H0H_{0} would be like a discrete Laplace operator on the product graph +×𝔾\mathds{Z}_{+}\times{\mathbb{G}}. HωH_{\omega} is then a random perturbation of H0H_{0} adding the matrix potentials VnV_{n} at each level nn. This way, HωH_{\omega} falls into the class of operators describing randomly perturbed quantum systems. The study of such systems was initiated by Anderson [1] with the today called Anderson model where one studies operators on d\mathds{Z}^{d} with independent identically distributed potentials on each lattice site. In general for such models one finds Anderson localization at large disorder (large variance of the potential) and at the edges of the spectrum. Anderson localization means one has pure point spectrum and exponentially decaying eigenfunctions. There are two general methods to prove this, the fractional moment method [3] and multi-scale analysis [12, 13, 14]. The fractional moment method at high disorder works fine in any graphs with a finite upper bound on the connectivity of one point [32]. In d=1d=1 dimension (line or strip) one finds localization for the Anderson model at any disorder [15, 21, 7, 19].

Except in one dimension, for a long time the high disorder Bernoulli Anderson model could not be handled, this means the i.i.d. potential has a Bernoulli distribution. A first breakthrough was done for the continuous model in [5], and recently, the high-disorder localization has also been shown for the discrete Bernoulli Anderson model in d\mathds{Z}^{d} for d=2d=2 and d=3d=3 dimensions [23, 24].

From d3d\geq 3 dimensions on, one expects some absolutely continuous spectrum at small enough disorder. However, this is still conjectural. Existence of absolutely continuous spectrum for Anderson models at low disorder has first been proved for infinite dimensional hyperbolic type graphs like regular trees and tree-like structures [18, 2, 4, 9, 10, 20, 16, 26, 27]. It has also been shown for the Anderson model on special graphs with a finite-dimensional growth, so called anti-trees and partial antitrees [28, 29].

As a mean to study critical transitions from absolutely continuous to pure point spectrum, random decaying potentials in one dimension were also investigated [17, 22, 11]. Here, we extend and improve on the result by Froese, Hasler and Spitzer [11] using methods similar to Last and Simon [22]. The key point for the absolutely continuous spectrum result in [22] has been the spectral average formula by Carmona-Lacroix [6, Theorem II.3.2]. Here, we use its generalization to strips, Proposition A.2 which is a special case of the broader generalization recently done in [30].

1.1. Spectrum and spectral bands

Without loss of generality, we may assume that AA in (1.1) is a diagonal matrix: If this is not the case, then, as A=AA^{*}=A, there is a unitary matrix UU such that UAUU^{*}AU is diagonal. Then, define the unitary operator 𝒰:2(+)l2(+)l{\mathcal{U}}:\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{l}\to\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{l} by (𝒰Ψ)n:=UΨn({\mathcal{U}}\Psi)_{n}:=U\Psi_{n} and one finds:

(𝒰Hω𝒰Ψ)n=Ψn+1Ψn1+UAUΨn+UVnUΨn({\mathcal{U}}^{*}H_{\omega}{\mathcal{U}}\Psi)_{n}=-\Psi_{n+1}-\Psi_{n-1}+U^{*}AU\Psi_{n}+U^{*}V_{n}U\Psi_{n}

Now UAUU^{*}AU is diagonal and UVnUU^{*}V_{n}U are random Hermitian matrices satisfying an inequality as (1.2). Thus, using this unitary conjugation, we may assume that AA is diagonal, hence

A=(α1000α20000000αl)A=\left(\begin{matrix}\alpha_{1}&0&\ldots&0\\ 0&\alpha_{2}&0&0\\ \vdots&0&\ddots&0\\ 0&0&0&\alpha_{l}\end{matrix}\right) (1.4)

with αj\alpha_{j}\in\mathds{R}, j=1,,lj=1,\ldots,l being the eigenvalues of AA. As a consequence,

σ(H0)=j=1l[aj2,aj+2]\sigma(H_{0})=\bigcup_{j=1}^{l}[a_{j}-2,a_{j}+2]

and the spectrum is purely absolutely continuous.

We call [αj2,αj+2][\alpha_{j}-2,\alpha_{j}+2] the j-th band of the spectrum of H0H_{0}, {αj2,αj+2}\{\alpha_{j}-2,\alpha_{j}+2\} are the band-edges of this band. Each band-edge can be internal, meaning inside of another band, or external, meaning an edge (boundary point) of the spectrum of H0H_{0}. We consider the spectrum of H0H_{0} without all the (external and internal) band-edges and define

Σ=[j=1l(αj2,αj+2)][j=1l{αj2,αj+2}]\Sigma=\left[\bigcup_{j=1}^{l}(\alpha_{j}-2,\alpha_{j}+2)\right]\setminus\left[\bigcup_{j=1}^{l}\{\alpha_{j}-2,\alpha_{j}+2\}\right] (1.5)

Note Σ\Sigma is open and Σ¯=σ(H0)\overline{\Sigma}=\sigma(H_{0}). We also define the intersection of all open bands,

Σ0=j=1l(αj2,αj+2)\Sigma_{0}=\bigcap_{j=1}^{l}(\alpha_{j}-2,\alpha_{j}+2)\; (1.6)

which might be empty. For the essential spectrum we note that Hω=H0+nVnH_{\omega}=H_{0}+\bigoplus_{n}V_{n} where nVn\bigoplus_{n}V_{n} is almost surely a compact operator, hence,

σess(Hω)=Σ¯=σ(H0)\sigma_{\rm ess}(H_{\omega})=\overline{\Sigma}=\sigma(H_{0})

1.2. The main result

The main theorem of the whole thesis is the following:

Theorem 1.

Apart from discrete spectrum, (embedded isolated eigenvalues) the spectrum of HωH_{\omega} is almost surely purely absolutely continuous in Σ\Sigma. Moreover, there are no embedded eigenvalues in the intersection of the bands, Σ0\Sigma_{0}. That means, there may be random embedded eigenvalues in ΣΣ0\Sigma\setminus\Sigma_{0} which may only accumulate at the boundary Σ\partial\Sigma, that is, the internal and external band-edges.
In technical terms, this means, there is a set Ω^Ω\hat{\Omega}\subset\Omega of probability one, 𝐏(Ω^)=1{\mathbf{P}}(\hat{\Omega})=1, such that for all ωΩ^\omega\in\hat{\Omega} and all compact subsets Σ{\mathfrak{C}}\subset\Sigma, there is a finite (random) subset of eigenvalues 𝔈=𝔈(ω)Σ0{\mathfrak{E}}={\mathfrak{E}}(\omega)\subset{\mathfrak{C}}\setminus\Sigma_{0}, such that the spectrum of HωH_{\omega} is purely absolutely continuous in 𝔈{\mathfrak{C}}\setminus{\mathfrak{E}}.

Under the slightly stronger assumption that 𝔼(Vn)=0{\mathbb{E}}(V_{n})=0 and n𝔼(Vn2+Vn4)<\sum_{n}{\mathbb{E}}(\|V_{n}\|^{2}+\|V_{n}\|^{4})<\infty it was aready shown in [11] that the spectrum is purely absolutely continuous in Σ0\Sigma_{0}, and that there is absolutely continuous spectrum in all of Σ\Sigma. However, the proof method used there for the set Σ\Sigma does not exclude any other type of singular spectrum.

Note that in the line case, l=1l=1 we have Σ=Σ0\Sigma=\Sigma_{0} and purely absolutely continuous spectrum in this case has already been shown in [22]. On the line case it is also known that for any, also non-random 2\ell^{2}-potential, one has absolutely continuous spectrum in Σ\Sigma [8], but again, any other type of embedded singular spectrum is possible (not excluded in the proof).

The general operator HωH_{\omega} investigated here allows the case, were the operator (almost surely) splits into the direct sum of two strip operators H1H2H^{1}\oplus H^{2} (two separated strips). Then, adjusting one of the VnV_{n} one may create an eigenvalue for H1H^{1}, lying outside of its essential spectrum, but lying inside the essential spectrum of H2H^{2}. In fact, one may have the part of VnV_{n} belonging to H1H^{1} non-random and create some fixed embedded eigenvalue (for all of ω\omega). Thus, without further ’channel-mixing’ assumptions, one can not expect to obtain pure absolutely continuous spectrum within Σ\Sigma. But under sufficient ’mixing’ created by the VnV_{n}, this should be true.

Finitely, let us mention that Theorem 1 does also cover the ’full’ strip case going from -\infty to \infty. That means, Theorem 1 also applies to random operators ω{\mathcal{H}}_{\omega} on 2()l\ell^{2}(\mathds{Z})\otimes\mathds{C}^{l} (rather than 2(+)\ell^{2}(\mathds{Z}_{+})) of the form

(ωΨ)n=Ψn+1Ψn1+𝒜Ψn+𝒱nΨn({\mathcal{H}}_{\omega}\Psi)_{n}=-\Psi_{n+1}-\Psi_{n-1}+{\mathcal{A}}\Psi_{n}+{\mathcal{V}}_{n}\Psi_{n}

where the 𝒱n{\mathcal{V}}_{n} are independent Hermitian matrices satisfying

n=(𝔼(𝒱n)+𝔼(𝒱n2))<.\sum_{n=-\infty}^{\infty}\left(\|{\mathbb{E}}({\mathcal{V}}_{n})\|+{\mathbb{E}}(\|{\mathcal{V}}_{n}\|^{2})\right)<\infty\;.

To see this, we can transform the operator {\mathcal{H}} unitarily to an operator HωH_{\omega} on 2(+)2l\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{2l} of the above form (1.1) by defining

A=(𝒜00𝒜),Vn=(𝒱n00𝒱n1)for n1,  andV0=(𝒱0II𝒱1)A=\begin{pmatrix}{\mathcal{A}}&0\\ 0&{\mathcal{A}}\end{pmatrix},\quad V_{n}=\begin{pmatrix}{\mathcal{V}}_{n}&0\\ 0&{\mathcal{V}}_{-n-1}\end{pmatrix}\quad\text{for $n\geq 1$,\; and}\quad V_{0}=\begin{pmatrix}{\mathcal{V}}_{0}&-I\\ -I&{\mathcal{V}}_{-1}\end{pmatrix}

It is obvious to see that the random matrices VnV_{n} do indeed satisfy the conditions as above.

To picture the transformation, just think of the case l=1l=1, the doubly infinite discrete line, and then flip over the negative line to make a half-infinity strip of width two. The off-diagonal blocks in V0V_{0} then correspond to the connection in the n=0n=0 shell of the strip, which corresponds to the points 0 and 1-1 on the line:

[Uncaptioned image]

2. Transfer matrices, elliptic and hyperbolic channels

The eigenvalue equation HωΨ=zΨH_{\omega}\Psi=z\Psi is a recursion that can be written in the matrix form as follows:

(Ψn+1Ψn)=Tnz(ΨnΨn1)whereTnz=(Vn+AzIII0).\left(\begin{matrix}\Psi_{n+1}\\ \Psi_{n}\end{matrix}\right)=T^{z}_{n}\left(\begin{matrix}\Psi_{n}\\ \Psi_{n-1}\end{matrix}\right)\quad\text{where}\quad T^{z}_{n}=\begin{pmatrix}V_{n}+A-zI&-I\\ I&0\end{pmatrix}\;.

Iteration leads to the products of transfer matrices for n>mn>m,

(Ψn+1Ψn)=Tm,nz(ΨmΨm1)whereTm,nz=TnzTn1zTm+1zTmz.\begin{pmatrix}\Psi_{n+1}\\ \Psi_{n}\end{pmatrix}=T^{z}_{m,n}\begin{pmatrix}\Psi_{m}\\ \Psi_{m-1}\end{pmatrix}\quad\text{where}\quad T^{z}_{m,n}=T^{z}_{n}T^{z}_{n-1}\cdots T^{z}_{m+1}T^{z}_{m}\;.

We may write

Tnλ=TH0λ+(Vn000)whereTH0λ=(AλIII0)T^{\lambda}_{n}=T_{H_{0}}^{\lambda}+\begin{pmatrix}V_{n}&0\\ 0&0\end{pmatrix}\quad\text{where}\quad T^{\lambda}_{H_{0}}=\begin{pmatrix}A-\lambda I&-I\\ I&0\end{pmatrix}

is basically the transfer matrix of the unperturbed operator H0H_{0}. We will now write the transfer matrix in some basis which diagonalises TH0λT_{H_{0}}^{\lambda}. Recall, AA is assumed diagonal and its eigenvalues are α1,,αl\alpha_{1},\ldots,\alpha_{l}. Adopting the notions of [25] we define:

Definition 1.

Let λ\lambda\in\mathds{R}. We call the jj-th channel

  1. (1)

    Elliptic at λ\lambda if |αjλ|<2|\alpha_{j}-\lambda|<2

  2. (2)

    Hyperbolic at λ\lambda if |αjλ|>2|\alpha_{j}-\lambda|>2

  3. (3)

    Parabolic at λ\lambda if |αjλ|=2|\alpha_{j}-\lambda|=2

Now fix some λΣ\lambda\in\Sigma. Note that by the definition of Σ\Sigma, there are no parabolic channels and there is at least one elliptic channel at λ\lambda We assume the channels to be ordered such that:

|αjλ|<2j{1,,le}|\alpha_{j}-\lambda|<2\quad\forall j\in\{1,...,l_{e}\}
|αjλ|>2j{le+1,,l}|\alpha_{j}-\lambda|>2\quad\forall j\in\{l_{e}+1,...,l\}

Note that the set of all λ\lambda satisfying these inequalities is some open interval (λ0,λ1)Σ(\lambda_{0},\lambda_{1})\subset\Sigma. We later vary λ\lambda slightly within this interval. For λ(λ0,λ1)\lambda\in(\lambda_{0},\lambda_{1}), and j{1,,le}j\in\{1,...,l_{e}\} we define kj=kj(λ)(0,π)k_{j}=k_{j}(\lambda)\in(0,\pi) by

2cos(kj)=αjλ.2\cos(k_{j})=\alpha_{j}-\lambda\;.

For j{1,,lh}j\in\{1,...,l_{h}\} with lh=llel_{h}=l-l_{e} we define γj=γj(λ)\gamma_{j}=\gamma_{j}(\lambda)\in\mathds{R}, |γj|>1|\gamma_{j}|>1, by

γj+1γj=αj+leλ\gamma_{j}+\frac{1}{\gamma_{j}}=\alpha_{j+l_{e}}-\lambda

We define the diagonal matrices

Γ=(γ1000γ20000000γlh),K=(k1000k20000000kle)\Gamma=\left(\begin{matrix}\gamma_{1}&0&\ldots&0\\ 0&\gamma_{2}&0&0\\ \vdots&0&\ddots&0\\ 0&0&0&\gamma_{l_{h}}\end{matrix}\right)\,,\quad K=\left(\begin{matrix}k_{1}&0&\ldots&0\\ 0&k_{2}&0&0\\ \vdots&0&\ddots&0\\ 0&0&0&k_{l_{e}}\end{matrix}\right)

such that

AλI=(2cos(K)00Γ+Γ1).A-\lambda I=\left(\begin{matrix}2\cos(K)&0\\ 0&\Gamma+\Gamma^{-1}\end{matrix}\right)\;.

Thus, for the transfer matrices of H0H_{0} we find

TH0λ=(2cos(K)0I00Γ+Γ10II0000I00).T^{\lambda}_{H_{0}}=\left(\begin{matrix}2\cos(K)&0&-I&0\\ 0&\Gamma+\Gamma^{-1}&0&-I\\ I&0&0&0\\ 0&I&0&0\end{matrix}\right)\;.

Also we note that

TH0λ(e±iK0I0)=(e±iK0I0)e±iK,TH0λ(0Γ±10I)=(0Γ±10I)Γ±1T^{\lambda}_{H_{0}}\left(\begin{matrix}e^{\pm iK}\\ 0\\ I\\ 0\end{matrix}\right)=\left(\begin{matrix}e^{\pm iK}\\ 0\\ I\\ 0\end{matrix}\right)e^{\pm iK},\qquad T^{\lambda}_{H_{0}}\left(\begin{matrix}0\\ \Gamma^{\pm 1}\\ 0\\ I\end{matrix}\right)=\left(\begin{matrix}0\\ \Gamma^{\pm 1}\\ 0\\ I\end{matrix}\right)\Gamma^{\pm 1}

so that e±ikje^{\pm ik_{j}}, γj\gamma_{j} and γj1\gamma_{j}^{-1} are the eigenvalues of TH0λT^{\lambda}_{H_{0}}. In order to diagonlize TH0λT^{\lambda}_{H_{0}} we introduce

Qλ=(eiKeiK0000Γ1ΓIleIle0000IlhIlh),Q_{\lambda}=\begin{pmatrix}e^{iK}&e^{-iK}&0&0\\ 0&0&\Gamma^{-1}&\Gamma\\ I_{l_{e}}&I_{l_{e}}&0&0\\ 0&0&I_{l_{h}}&I_{l_{h}}\end{pmatrix}\;,

where IdI_{d} is the unit matrix of size d×dd\times d, then

Qλ1TnλQλ=Tλ+𝒱nλQ_{\lambda}^{-1}T^{\lambda}_{n}Q_{\lambda}\,=\,T^{\lambda}\,+\,{\mathcal{V}}^{\lambda}_{n} (2.1)

with TλT^{\lambda} being diagonal, more precisely,

Tλ=(eiK0000eiK0000Γ10000Γ),𝒱nλ=Qλ1(Vn000)Qλ.T^{\lambda}\,=\,\begin{pmatrix}e^{iK}&0&0&0\\ 0&e^{-iK}&0&0\\ 0&0&\Gamma^{-1}&0\\ 0&0&0&\Gamma\end{pmatrix}\;,\qquad{\mathcal{V}}^{\lambda}_{n}=Q_{\lambda}^{-1}\begin{pmatrix}V_{n}&0\\ 0&0\end{pmatrix}Q_{\lambda}\;. (2.2)

We note that QλQ_{\lambda} is indeed invertible for λ(λ0,λ1)\lambda\in(\lambda_{0},\lambda_{1}) as eikjeikje^{ik_{j}}\neq e^{-ik_{j}} and γj1/γj\gamma_{j}\neq 1/\gamma_{j} in this case. Defining

𝒬K=(eiKeiK)1,𝒬Γ=(Γ1Γ)1{\mathcal{Q}}_{K}=(e^{iK}-e^{-iK})^{-1}\;,\quad{\mathcal{Q}}_{\Gamma}=(\Gamma^{-1}-\Gamma)^{-1} (2.3)

we find

Qλ1=(𝒬K0eiK𝒬K0𝒬K0𝒬KeiK00𝒬Γ0Γ𝒬Γ0𝒬Γ0Γ1𝒬Γ)Q_{\lambda}^{-1}\,=\,\begin{pmatrix}{\mathcal{Q}}_{K}&0&-e^{-iK}{\mathcal{Q}}_{K}&0\\ -{\mathcal{Q}}_{K}&0&{\mathcal{Q}}_{K}e^{iK}&0\\ 0&{\mathcal{Q}}_{\Gamma}&0&-\Gamma{\mathcal{Q}}_{\Gamma}\\ 0&-{\mathcal{Q}}_{\Gamma}&0&\Gamma^{-1}{\mathcal{Q}}_{\Gamma}\end{pmatrix} (2.4)

Now, in order to work with uniform estimates we will restrict our consideration to a compact interval [a,b](λ0,λ1)Σ[a,b]\subset(\lambda_{0},\lambda_{1})\subset\Sigma. Chosen such a compact interval and allowing complex values for kjk_{j} and γj\gamma_{j}, we can extend the definitions of K=K(λ),Γ=Γ(λ),Qλ,Qλ1,TλK=K(\lambda),\Gamma=\Gamma(\lambda),Q_{\lambda},Q_{\lambda}^{-1},T^{\lambda} analytically to spectral parameters zz in the complex plane, z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c]\subset\mathds{C}, for cc small enough. This means λ[a,b],η[c,c]\lambda\in[a,b],\;\eta\in[-c,c], and the equations (2.1) and (2.2) still hold with λ\lambda replaced by zz. We will need this extension in some part to use analyticity arguments.

Choosing c>0c>0 small enough, one can guarantee by compactness and analyticity arguments, that there is some γ>0\gamma>0 such that

Γ1(λ+iη)e2γ,ande±iK(λ+iη)eγλ[a,b],|η|c.\left\|\Gamma^{-1}(\lambda+i\eta)\right\|\,\leq\,e^{-2\gamma}\;,\quad\text{and}\quad\left\|e^{\pm iK(\lambda+i\eta)}\right\|\,\leq\,e^{\gamma}\quad\forall\,\lambda\in[a,b],\;\forall\,|\eta|\leq c\;. (2.5)

Note for λ[a,b]\lambda\in[a,b] we have e±iK=1\|e^{\pm iK}\|=1.

3. The key estimates

The estimates in this section are somewhat independent of the rest of the paper. But in many respects, it is the key part of the proof.

We consider the following general situation: Let be given independent random (l0+l1)×(l0+l1)(l_{0}+l_{1})\times(l_{0}+l_{1}) matrices of the form

Tn=T+WnwhereT=(SΓ),Sl0×l0,Γl1×l1T_{n}\,=\,T\,+\,W_{n}\quad\text{where}\quad T=\begin{pmatrix}S&\\ &\Gamma\\ \end{pmatrix}\;,\quad S\in\mathds{C}^{l_{0}\times l_{0}},\quad\Gamma\in\mathds{C}^{l_{1}\times l_{1}} (3.1)

where for some fixed γ>0\gamma>0 we have

Seγ,Γ1e2γ.\|S\|\,\leq\,e^{\gamma}\quad\text{,}\quad\|\Gamma^{-1}\|\leq e^{-2\gamma}\;. (3.2)

(Later we use l1=lhl_{1}=l_{h} and l0=2le+lhl_{0}=2l_{e}+l_{h}.)

Note that the second condition implies Γve2γv\|\Gamma v\|\geq e^{2\gamma}\|v\| for any vector vl0+l1v\in\mathds{C}^{l_{0}+l_{1}}. Moreover, WnW_{n} are independent random (l0+l1)×(l0+l1)(l_{0}+l_{1})\times(l_{0}+l_{1}) matrices satisfying, with some fixed constant 𝒞W>0{\mathcal{C}}_{W}>0,

Wne2γeγ4andn=1𝔼(Wn)+𝔼(Wn2)𝒞W<\|W_{n}\|\leq\frac{e^{2\gamma}-e^{\gamma}}{4}\quad\text{and}\quad\sum_{n=1}^{\infty}\|{\mathbb{E}}(W_{n})\|+{\mathbb{E}}(\|W_{n}\|^{2})\,\leq{\mathcal{C}}_{W}\,<\,\infty (3.3)

For certain parts we will also assume the stricter bound S1\|S\|\leq 1 (cf. Proposition 3.3). In fact, at real spectral parameters λ\lambda we will have this bound, however, for some arguments we need to allow some small imaginary part, which is why in general we only assume Seγ\|S\|\leq e^{\gamma} in this section.

Now let us consider the Markov process of (l0+l1)×(l0+l1)(l_{0}+l_{1})\times(l_{0}+l_{1}) matrices given by

𝒳0=I,𝒳n+1=Tn𝒳n.{\mathcal{X}}_{0}=I,\quad{\mathcal{X}}_{n+1}=T_{n}\,{\mathcal{X}}_{n}\;.

Using the splitting into blocks of sizes l0l_{0} and l1l_{1} like above we write

𝒳n=(AnBnCnDn)andWn=(anbncndn){\mathcal{X}}_{n}=\begin{pmatrix}A_{n}&B_{n}\\ C_{n}&D_{n}\end{pmatrix}\quad\text{and}\quad W_{n}=\begin{pmatrix}a_{n}&b_{n}\\ c_{n}&d_{n}\end{pmatrix} (3.4)

From the process 𝒳n{\mathcal{X}}_{n} we will define the process of pairs of matrices (Xn,Zn)(X_{n},Z_{n}) given by

Xn=AnBnDn1Cn,Zn=BnDn1.X_{n}=A_{n}-B_{n}D_{n}^{-1}C_{n}\;,\quad Z_{n}=B_{n}D_{n}^{-1}\;. (3.5)

XnX_{n} is a so called Schur-complement. Some standard calculations , see for instance [31], show that (Xn,Zn)(X_{n},Z_{n}) can be seen as the process of equivalence classes of 𝒳n{\mathcal{X}}_{n} defining

𝒳1𝒳2𝒳1=𝒳2(I0MG){\mathcal{X}}_{1}\sim{\mathcal{X}}_{2}\quad\Leftrightarrow\quad{\mathcal{X}}_{1}={\mathcal{X}}_{2}\begin{pmatrix}I&0\\ M&G\end{pmatrix}

with II being the l0×l0l_{0}\times l_{0} identity matrix, GGL(l1)G\in{\rm GL}(l_{1}) and MM being any l1×l0l_{1}\times l_{0} matrix. Note that the set of matrices of the form (I0MG)\left(\begin{smallmatrix}I&0\\ M&G\end{smallmatrix}\right) is a group.

In that sense if DnD_{n} is invertible we get

𝒳n+1=(AnBnCnDn)(AnBnCnDn)(I𝟎Dn1CnDn1)=(XnZn𝟎I){\mathcal{X}}_{n+1}=\begin{pmatrix}A_{n}&B_{n}\\ C_{n}&D_{n}\end{pmatrix}\sim\begin{pmatrix}A_{n}&B_{n}\\ C_{n}&D_{n}\end{pmatrix}\begin{pmatrix}I&{\bf 0}\\ -D_{n}^{-1}C_{n}&D_{n}^{-1}\end{pmatrix}=\begin{pmatrix}X_{n}&Z_{n}\\ {\bf 0}&I\end{pmatrix}\;

and we find

𝒳n+1(S+anbncnΓ+dn)(XnZn𝟎I)=((S+an)Xn(S+an)Zn+bncnXncnZn+Γ+dn){\mathcal{X}}_{n+1}\sim\begin{pmatrix}S+a_{n}&b_{n}\\ c_{n}&\Gamma+d_{n}\end{pmatrix}\begin{pmatrix}X_{n}&Z_{n}\\ {\bf 0}&I\end{pmatrix}=\begin{pmatrix}(S+a_{n})X_{n}&(S+a_{n})Z_{n}+b_{n}\\ c_{n}X_{n}&c_{n}Z_{n}+\Gamma+d_{n}\end{pmatrix}

which leads to the identities

Zn+1=((S+an)Zn+bn)(cnZn+Γ+dn)1Z_{n+1}=\big{(}(S+a_{n})Z_{n}+b_{n}\big{)}\big{(}c_{n}Z_{n}+\Gamma+d_{n}\big{)}^{-1}\ (3.6)
Xn+1=(S+an)XnZn+1cnXnX_{n+1}=(S+a_{n})X_{n}-Z_{n+1}\,c_{n}X_{n} (3.7)

provided that Dn1D_{n}^{-1} and Dn+11D_{n+1}^{-1} exist.

Proposition 3.1.

Under the given assumptions (3.2) and (3.3) one finds: DnD_{n} is invertible for all nn\in\mathds{N}, hence, XnX_{n} and ZnZ_{n} are well defined for all nn and

supnZn1\sup_{n\in\mathds{N}}\|Z_{n}\|\leq 1
Proof.

First we note that by straight forward calculations one finds for c>0c>0 and some square d×dd\times d matrix MM that

Mvcvfor all vdMis invertible andM11c\|Mv\|\geq c\|v\|\quad\text{for all $v\in\mathds{C}^{d}$}\quad\Leftrightarrow\quad M\;\;\text{is invertible and}\;\;\|M^{-1}\|\leq\frac{1}{c} (3.8)

From there we find:

Lemma 3.2.

Assume Zn1\lVert Z_{n}\rVert\leq 1 and that the bounds (3.2), (3.3) hold. Then

(cnZn+Γ+dn)11e2γ2Wn2e2γ+eγ\lVert(c_{n}Z_{n}+\Gamma+d_{n})^{-1}\rVert\,\leq\,\frac{1}{e^{2\gamma}-2\|W_{n}\|}\,\leq\,\frac{2}{e^{2\gamma}+e^{\gamma}}

To show this, we use the equivalence (3.8) noting

(cnZn+(Γ+dn))vΓv(cnZn+dn)ve2γv(cnZn+dn)v\displaystyle\lVert(c_{n}Z_{n}+(\Gamma+d_{n}))v\rVert\geq\lVert\Gamma v\rVert-\lVert(c_{n}Z_{n}+d_{n})v\rVert\geq e^{2\gamma}\lVert v\rVert-(\lVert c_{n}\rVert\lVert Z_{n}\rVert+\lVert d_{n}\rVert)\lVert v\rVert
(e2γ2Wn)v(e2γe2γeγ2)v=e2γ+eγ2v.\displaystyle\qquad\geq\left(e^{2\gamma}-2\|W_{n}\|\right)\|v\|\,\geq\,\left(e^{2\gamma}-\frac{e^{2\gamma}-e^{\gamma}}{2}\right)\lVert v\rVert=\frac{e^{2\gamma}+e^{\gamma}}{2}\;\|v\|\;.

Now we proof by induction that DnD_{n} is invertible and Zn1\|Z_{n}\|\leq 1. First, we notice D0=ID_{0}=I is invertible and Z0=0=01\|Z_{0}\|=\|0\|=0\leq 1. Now assume Zn1\|Z_{n}\|\leq 1 and DnD_{n} being invertible. We find

(An+1Bn+1Cn+1Dn+1)=(S+anbncnΓ+dn)(AnBnCnDn)\left(\begin{matrix}A_{n+1}&B_{n+1}\\ C_{n+1}&D_{n+1}\end{matrix}\right)=\left(\begin{matrix}S+a_{n}&b_{n}\\ c_{n}&\Gamma+d_{n}\end{matrix}\right)\left(\begin{matrix}A_{n}&B_{n}\\ C_{n}&D_{n}\end{matrix}\right)

and by the lower right block

Dn+1Dn1\displaystyle D_{n+1}D_{n}^{-1} =cnBnDn1+(Γ+dn)=cnZn+(Γ+dn)\displaystyle=c_{n}B_{n}D_{n}^{-1}+(\Gamma+d_{n})\,=\,c_{n}Z_{n}+(\Gamma+d_{n})

Lemma 3.2 now shows invertibility of Dn+1Dn1D_{n+1}D_{n}^{-1} and hence of Dn+1D_{n+1}. Using (3.6) we find

Zn+1\displaystyle\lVert Z_{n+1}\rVert =((S+an)Zn+bn)(cnZn+(Γ+dn))1(eγ+e2γeγ2)2e2γ+eγ= 1.\displaystyle=\lVert((S+a_{n})Z_{n}+b_{n})(c_{n}Z_{n}+(\Gamma+d_{n}))^{-1}\lVert\;\leq\;\left(e^{\gamma}+\frac{e^{2\gamma}-e^{\gamma}}{2}\right)\,\frac{2}{e^{2\gamma}+e^{\gamma}}\,=\,1\;.

This finishes the induction. ∎

Proposition 3.3.

Under the given assumptions (3.2) and (3.3) and the aditional property limnWn=0\lim_{n\to\infty}W_{n}=0 we find

limnZn=0,limnDn1=0andlimnDn1Cn=Yexists.\lim_{n\to\infty}Z_{n}=0\,,\quad\lim_{n\to\infty}D_{n}^{-1}=0\quad\text{and}\quad\lim_{n\to\infty}D_{n}^{-1}C_{n}\,=\,Y\quad\text{exists}\;.
Proof.

We will prove by induction that there exists NkN_{k} such that for all n>Nkn>N_{k} we have Znekγ/2\|Z_{n}\|\leq e^{-k\gamma/2} for all n>Nkn>N_{k}. The induction start for k=0k=0 is given by Proposition 3.1. Assume the statement is true for kk. Then we find NN such that for all n>Nn>N

Wn<ekγ/2e3γ/2eγ4andZnekγ/2.\|W_{n}\|\,<\,e^{-k\gamma/2}\;\frac{e^{3\gamma/2}-e^{\gamma}}{4}\quad\text{and}\quad\|Z_{n}\|\leq e^{-k\gamma/2}\;.

Using (3.6), Lemma 3.8 we find for n>Nn>N that

Zn+1\displaystyle\|Z_{n+1}\|\, (eγ+Wn)Zn+Wne2γ2Wn\displaystyle\leq\,\;\frac{(e^{\gamma}+\|W_{n}\|)\|Z_{n}\|+\|W_{n}\|}{e^{2\gamma}-2\|W_{n}\|}\,\leq\
ekγ/2eγ+14(e3γ/2eγ)(1+ekγ/2)e2γ12(e3/2γeγ)ekγ/2\displaystyle\leq\,\,e^{-k\gamma/2}\;\frac{e^{\gamma}+\frac{1}{4}(e^{3\gamma/2}-e^{\gamma})(1+e^{-k\gamma/2})}{e^{2\gamma}-\frac{1}{2}(e^{3/2\gamma}-e^{\gamma})e^{-k\gamma/2}}\,
ekγ/2eγ+12(e3γ/2eγ)e2γ12(e2γe3γ/2)=e(k+1)γ/2\displaystyle\leq\,e^{-k\gamma/2}\;\frac{e^{\gamma}+\frac{1}{2}(e^{3\gamma/2}-e^{\gamma})}{e^{2\gamma}-\frac{1}{2}(e^{2\gamma}-e^{3\gamma/2})}\,=\,e^{-(k+1)\gamma/2}

For the last line we used the estimates ekγ/21eγ/2e^{-k\gamma/2}\leq 1\leq e^{\gamma/2}. This finishes the induction and the first statement.

For the second statement, note

Dn+11Dn1[Γ+dn+cnZ]12e2γ+eγDn1.\|D_{n+1}^{-1}\|\leq\|D_{n}^{-1}\|\,\|[\Gamma+d_{n}+c_{n}Z]^{-1}\|\,\leq\,\frac{2}{e^{2\gamma}+e^{\gamma}}\|D_{n}\|^{-1}\;.

which gives

Dn1(e2γ+eγ2)n 0\|D_{n}^{-1}\|\,\leq\,\left(\frac{e^{2\gamma}+e^{\gamma}}{2}\right)^{-n}\,\to\,0 (3.9)

where we use that D0=ID_{0}=I as 𝒳0=I{\mathcal{X}}_{0}=I.

Moreover,to get the last assertion, note

Dn+11Cn+1\displaystyle D_{n+1}^{-1}C_{n+1}\, =[(Γ+dn)Dn+cnBn]1[cnAn+(Γ+dn)Cn]=\displaystyle=\,[(\Gamma+d_{n})D_{n}+c_{n}B_{n}]^{-1}[c_{n}A_{n}+(\Gamma+d_{n})C_{n}]\,=\,
=Dn1[Γ+dn+cnZn]1[cnAn+(Γ+dn)Cn]\displaystyle=\,D_{n}^{-1}\left[\Gamma+d_{n}+c_{n}Z_{n}\right]^{-1}[c_{n}A_{n}+(\Gamma+d_{n})C_{n}]

Now, using

[Γ+dn+cnZn]1(Γ+dn)=I[Γ+dn+cnZn]1cnZn\displaystyle\left[\Gamma+d_{n}+c_{n}Z_{n}\right]^{-1}(\Gamma+d_{n})=\,I-\left[\Gamma+d_{n}+c_{n}Z_{n}\right]^{-1}c_{n}Z_{n}

we obtain

Dn+11Cn+1\displaystyle D_{n+1}^{-1}C_{n+1}\, =Dn1Cn+Dn1[Γ+dn+cnZn]1cn(AnZnCn)\displaystyle=\,D_{n}^{-1}C_{n}+D_{n}^{-1}\left[\Gamma+d_{n}+c_{n}Z_{n}\right]^{-1}c_{n}(A_{n}-Z_{n}C_{n})
=Dn1Cn+Dn+11cnXn.\displaystyle=\,D_{n}^{-1}C_{n}\,+\,D_{n+1}^{-1}c_{n}X_{n}\;.

Therefore, using D0=I,C0=0D_{0}=I,C_{0}=0,

Dn+11Cn+1=k=0nDk+11ckXk.D_{n+1}^{-1}C_{n+1}=\sum_{k=0}^{n}D_{k+1}^{-1}c_{k}X_{k}\;. (3.10)

Using (3.7) and Zn1\|Z_{n}\|\leq 1 and the condition (3.2) we obtain

Xn+1(eγ+2Wn)Xn.\|X_{n+1}\|\,\leq\,(e^{\gamma}+2\|W_{n}\|)\|X_{n}\|\;.

We note that for ε>0\varepsilon>0 sufficiently small we have eγ+2ε<e2γ+eγ2e^{\gamma}+2\varepsilon<\frac{e^{2\gamma}+e^{\gamma}}{2}. Now there exists N>0N>0 such that for n>Nn>N we have Wn<ε\|W_{n}\|<\varepsilon and thus for n>Nn>N we find for 𝒞0=XN{\mathcal{C}}_{0}=\|X_{N}\| that

Dn+11cnXn𝒞0(2(eγ+2ε)e2γ+eγ)<1nε.\|D_{n+1}^{-1}c_{n}X_{n}\|\leq{\mathcal{C}}_{0}{\underbrace{\left(\frac{2(e^{\gamma}+2\varepsilon)}{e^{2\gamma}+e^{\gamma}}\right)}_{<1}}^{n}\varepsilon\;.

Therefore,

n=0Dn+11cnXn\sum_{n=0}^{\infty}D_{n+1}^{-1}c_{n}X_{n}

converges absolutely and

limnDn1Cn=k=0Dk+11ckXk\lim_{n\to\infty}D_{n}^{-1}C_{n}=\sum_{k=0}^{\infty}D_{k+1}^{-1}c_{k}X_{k}

exists. ∎

Concerning probabilistic estimates, the main point of this section is the following proposition.

Proposition 3.4.

Under the given assumptions (3.2) and (3.3) and the additional condition S1\|S\|\leq 1, one has

supn𝔼(Xn4)𝒞W,γ<\sup_{n}\,{\mathbb{E}}(\|X_{n}\|^{4})\,\leq{\mathcal{C}}_{W,\gamma}\,<\,\infty

where 𝒞W,γ{\mathcal{C}}_{W,\gamma} is a continuous function in γ>0,\gamma>0, and 𝒞W>0{\mathcal{C}}_{W}>0 as they appear in (3.2), (3.3).

Proof.

Given a starting vector v0l0v_{0}\in\mathds{C}^{l_{0}} we define (vn)n(v_{n})_{n} inductively by vn=Xnv0.v_{n}\,=\,X_{n}\,v_{0}\;. Using (3.7) we find

vn+12\displaystyle\lVert v_{n+1}\rVert^{2} =v0Xn+1,Xn+1v0\displaystyle=\langle v_{0}^{\ast}X_{n+1}^{\ast},X_{n+1}v_{0}\rangle
=v0Xn[S+ancnZn+1][S+anZn+1cn]Xnv0\displaystyle=v_{0}^{*}X_{n}^{*}[S^{*}+a_{n}^{*}-c^{*}_{n}Z^{*}_{n+1}][S+a_{n}-Z_{n+1}c_{n}]X_{n}v_{0}
=vnSSvnχ1+2e(vnSanvn)χ2+2e[vnSZn+1cnvn]χ3\displaystyle=\underbrace{v_{n}^{\ast}S^{*}Sv_{n}}_{\chi_{1}}+\underbrace{2\Re e(v_{n}^{\ast}S^{*}a_{n}v_{n})}_{\chi_{2}}+\underbrace{-2\Re e[v_{n}^{\ast}S^{*}Z_{n+1}c_{n}v_{n}]}_{\chi_{3}}
+vn(ancnZn+1)(anZn+1cn)vnχ4\displaystyle\;\;\;\;+\underbrace{v_{n}^{\ast}(a_{n}^{*}-c_{n}^{*}Z_{n+1}^{*})(a_{n}-Z_{n+1}c_{n})v_{n}}_{\chi_{4}}

Now:

vn+14\displaystyle\lVert v_{n+1}\rVert^{4} =χ12+χ22+χ32+χ42+2j=24i=1j1χiχj\displaystyle=\chi_{1}^{2}+\chi_{2}^{2}+\chi_{3}^{2}+\chi_{4}^{2}+2\sum_{j=2}^{4}\sum_{i=1}^{j-1}\chi_{i}\chi_{j}

As S1||S||\leq 1 and Zn1\|Z_{n}\|\leq 1, we first note

|χ1|\displaystyle|\chi_{1}|\, vn2\displaystyle\leq\,\|v_{n}\|^{2}
|χ2|\displaystyle|\chi_{2}|\,  2Wnvn2\displaystyle\leq\,2\|W_{n}\|\|v_{n}\|^{2}
|χ3|\displaystyle|\chi_{3}|\, Wnvn2\displaystyle\leq\,\|W_{n}\|\|v_{n}\|^{2}
|χ4|\displaystyle|\chi_{4}|\,  4Wn2vn2\displaystyle\leq\,4\|W_{n}\|^{2}\,\|v_{n}\|^{2}

The problematic terms, were we can not use the expectation outside the norm are χ1χ2\chi_{1}\chi_{2} and χ1χ3\chi_{1}\chi_{3}. For the other terms, we remark

𝔼(χ12+χ22+χ32+χ42+2χ1χ4+2χ2χ3+2χ2χ4+2χ3χ4)\displaystyle{\mathbb{E}}(\chi_{1}^{2}+\chi_{2}^{2}+\chi_{3}^{2}+\chi_{4}^{2}+2\chi_{1}\chi_{4}+2\chi_{2}\chi_{3}+2\chi_{2}\chi_{4}+2\chi_{3}\chi_{4})\,\leq\,
𝔼(vn4(1+17Wn2+24Wn3+16Wn4))\displaystyle\qquad\qquad\leq\;{\mathbb{E}}\left(\|v_{n}\|^{4}\left(1+17\|W_{n}\|^{2}+24\|W_{n}\|^{3}+16\|W_{n}\|^{4}\right)\right)
𝔼(vn4)(1+𝔼(Wn2)[17+6(e2γeγ)+(e2γeγ)2)])\displaystyle\qquad\qquad\leq\;{\mathbb{E}}(\|v_{n}\|^{4})\left(1+{\mathbb{E}}(\|W_{n}\|^{2})[17+6(e^{2\gamma}-e^{\gamma})+(e^{2\gamma}-e^{\gamma})^{2})]\right) (3.11)

For the last step we use the bound (3.3) and the fact that WnW_{n} is independent of XnX_{n} and thus vnv_{n}.

For the frst problematic term, note that

𝔼(χ1χ2)=𝔼(𝔼(χ1χ2|Xn))=𝔼(χ12e(vnS𝔼(an)vn)){\mathbb{E}}(\chi_{1}\chi_{2})\,=\,{\mathbb{E}}({\mathbb{E}}(\chi_{1}\chi_{2}|X_{n}))={\mathbb{E}}\big{(}\chi_{1}2\Re e(v_{n}^{*}S^{*}{\mathbb{E}}(a_{n})v_{n})\big{)}

using the fact that vnv_{n} is XnX_{n} measurable and ana_{n} is independent of XnX_{n}. Thus

|𝔼(χ1χ2)| 2𝔼(vn4)𝔼(Wn).|{\mathbb{E}}(\chi_{1}\chi_{2})|\,\leq\,2\,{\mathbb{E}}(\|v_{n}\|^{4})\,\|{\mathbb{E}}(W_{n})\|\;. (3.12)

Now for the term χ1χ3\chi_{1}\chi_{3} we want to use a similar estiamte. However, one of hte problem is now that Zn+1Z_{n+1} actually depends on WnW_{n} and XnX_{n}. However, WnW_{n} is independent of 𝒳n{\mathcal{X}}_{n} and (Xn,Zn)(X_{n},Z_{n}) are 𝒳n{\mathcal{X}}_{n} measurable. Thus, we want to condition on 𝒳n{\mathcal{X}}_{n}. Furthermore, before that, in order to handle some the inverse, we use we use a resolvent identity together with (3.6) to find

Zn+1=((S+an)Zn+bn)(Γ1(Γ+dn+cnZn)1(cnZn+dn)Γ1)Z_{n+1}\,=\,((S+a_{n})Z_{n}+b_{n})\left(\Gamma^{-1}-(\Gamma+d_{n}+c_{n}Z_{n})^{-1}(c_{n}Z_{n}+d_{n})\Gamma^{-1}\right)\\

giving

Zn+1=((S+an)Zn+bn)Γ1Zn+1(cnZn+dn)Γ1.Z_{n+1}=((S+a_{n})Z_{n}+b_{n})\Gamma^{-1}-Z_{n+1}(c_{n}Z_{n}+d_{n})\Gamma^{-1}\;.

Thus,

Zn+1=SZnΓ1+MnZ_{n+1}=SZ_{n}\Gamma^{-1}\,+\,M_{n}

where

Mn 4WnΓ1 4e2γWn.\|M_{n}\|\,\leq\,4\,\|W_{n}\|\,\|\Gamma^{-1}\|\,\leq\,4\,e^{-2\gamma}\,\|W_{n}\|\;.

Splitting up Zn+1Z_{n+1} this way gives

𝔼(χ1χ3)=2e𝔼(χ1vnSSZnΓ1cnvn) 2e𝔼(χ1vnSMncnvn).{\mathbb{E}}(\chi_{1}\chi_{3})\,=\,-2\Re e\,{\mathbb{E}}(\chi_{1}v_{n}^{*}S^{*}SZ_{n}\Gamma^{-1}c_{n}v_{n})\,-\,2\Re e{\mathbb{E}}(\chi_{1}v_{n}^{*}S^{*}M_{n}c_{n}v_{n})\;.

Using the bounds from above, we see

|2e𝔼(χ1vnSMncnvn)| 8e2γ𝔼(Wn2vn4)=8e2γ𝔼(Wn2)𝔼(vn4).|2\Re e{\mathbb{E}}(\chi_{1}v_{n}^{*}S^{*}M_{n}c_{n}v_{n})|\,\leq\,8e^{-2\gamma}{\mathbb{E}}(\|W_{n}\|^{2}\|v_{n}\|^{4})=8e^{-2\gamma}\,{\mathbb{E}}(\|W_{n}\|^{2}){\mathbb{E}}(\|v_{n}\|^{4})\;.

and

|𝔼(χ1vnSSZnΓ1cnvn)|=|𝔼(𝔼(χ1vnSSZnΓ1cnvn|𝒳n))|\displaystyle\left|{\mathbb{E}}(\chi_{1}v_{n}^{*}S^{*}SZ_{n}\Gamma^{-1}c_{n}v_{n})\right|=\left|{\mathbb{E}}\big{(}{\mathbb{E}}(\chi_{1}v_{n}^{*}S^{*}SZ_{n}\Gamma^{-1}c_{n}v_{n}|{\mathcal{X}}_{n})\big{)}\right|
=|𝔼(χ1vnSSZnΓ1𝔼(cn)vn)|e2γ𝔼(Wn)𝔼(vn4)\displaystyle\qquad=\left|{\mathbb{E}}(\chi_{1}v_{n}^{*}S^{*}SZ_{n}\Gamma^{-1}{\mathbb{E}}(c_{n})v_{n})\right|\,\leq\,e^{-2\gamma}\,\|{\mathbb{E}}(W_{n})\|\,{\mathbb{E}}(\|v_{n}\|^{4})

Thus, we have in total the bound

|𝔼(χ1χ3)|𝔼(vn4)(2e2γ𝔼(Wn)+8e2γ𝔼(Wn2))|{\mathbb{E}}(\chi_{1}\chi_{3})|\,\leq\,{\mathbb{E}}(\|v_{n}\|^{4})\,\left(2e^{-2\gamma}\|{\mathbb{E}}(W_{n})\|+8e^{-2\gamma}{\mathbb{E}}(\|W_{n}\|^{2})\right) (3.13)

In summary we find

𝔼(vn+14)𝔼(vn4)(1+α(γ)𝔼(Wn)+β(γ)𝔼(Wn)2){\mathbb{E}}(\lVert v_{n+1}\rVert^{4})\leq{\mathbb{E}}(\lVert v_{n}\rVert^{4})(1+\alpha(\gamma)||{\mathbb{E}}(W_{n})||+\beta(\gamma){\mathbb{E}}||(W_{n})||^{2})

where α(γ)\alpha(\gamma) and β(γ)\beta(\gamma) are some positive conitnuous functions in γ\gamma. Taking 𝒞γ=max(α(γ),β(γ)){\mathcal{C}}_{\gamma}=\max(\alpha(\gamma),\beta(\gamma)) we find

𝔼(vn+14)\displaystyle{\mathbb{E}}(\lVert v_{n+1}\rVert^{4}) v04n1(1+α(γ)||𝔼(Wn)||+β(γ)𝔼||(Wn)||2))\displaystyle\leq\lVert v_{0}\rVert^{4}\prod_{n\geq 1}(1+\alpha(\gamma)||{\mathbb{E}}(W_{n})||+\beta(\gamma){\mathbb{E}}||(W_{n})||^{2}))
v04exp[𝒞γ(n1𝔼(Wn)+𝔼(Wn)2)]v04exp(𝒞γ𝒞W)\displaystyle\leq\lVert v_{0}\rVert^{4}\exp\left[{\mathcal{C}}_{\gamma}\left(\sum_{n\geq 1}||{\mathbb{E}}(W_{n})||+{\mathbb{E}}||(W_{n})||^{2}\right)\right]\leq\lVert v_{0}\rVert^{4}\exp({\mathcal{C}}_{\gamma}{\mathcal{C}}_{W})

Use XkXwk\|X\|\leq\sum_{k}\|Xw_{k}\| for (wk)k(w_{k})_{k} being some orthogonal basis to get the result. ∎

4. Applying the key estimates to the transfer matrices

The main point of this section will be to apply the estimates from Section 3 to the conjugated transfer matrices as developed in Section 2. Like indicated at the end of Section 2 we choose some compact interval [a,b]Σ[a,b]\subset\Sigma such that for λ[a,b]\lambda\in[a,b] the first lel_{e} channels are elliptic and the other lle=lhl-l_{e}=l_{h} channels are hyperbolic. In the notations of the previous sections, we have l0=2le+lhl_{0}=2l_{e}+l_{h}, l1=lhl_{1}=l_{h} and the matrices TT and SS as defined in (3.1) are given by

T=(SΓ),S=(eiKeiKΓ1).T\,=\,\begin{pmatrix}S\\ &\Gamma\end{pmatrix}\;,\qquad S\,=\,\begin{pmatrix}e^{-iK}\\ &e^{iK}\\ &&\Gamma^{-1}\end{pmatrix}\;.

where KK and Γ\Gamma depend analytically on z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c]. Using continuity and compactness arguments we have uniform estimates like

Γ1<e2γ,Qz<𝒞Q,Qz1<𝒞Q\|\Gamma^{-1}\|\,<\,e^{-2\gamma}\;,\quad\|Q_{z}\|<{\mathcal{C}}_{Q}\;,\quad\|Q_{z}^{-1}\|<{\mathcal{C}}_{Q}

for all z=λ+iηz=\lambda+i\eta with λ[a,b]\lambda\in[a,b] and η[c,c]\eta\in[-c,c] . This leads to

𝒱nz=Qz1(Vn000)Qz𝒞Q2Vn=𝒞Q2Vn(ω).\|{\mathcal{V}}^{z}_{n}\|\,=\,\left\|Q_{z}^{-1}\begin{pmatrix}V_{n}&0\\ 0&0\end{pmatrix}Q_{z}\right\|\,\leq\,{\mathcal{C}}_{Q}^{2}\,\|V_{n}\|\,=\,{\mathcal{C}}_{Q}^{2}\,\left\|V_{n}(\omega)\right\|\;. (4.1)

for all z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c]\subset\mathds{C}.

In order to apply the results of Section 3 we need 𝒱nz<e2γeγ4\|{\mathcal{V}}^{z}_{n}\|<\frac{e^{2\gamma}-e^{\gamma}}{4}. We therefore will replace 𝒱nλ{\mathcal{V}}^{\lambda}_{n} by

Wnz=Wnz(ω)=𝒱nz(ω) 1Vn<(e2γeγ)/(4𝒞Q2)(ω)W^{z}_{n}=W^{z}_{n}(\omega)={\mathcal{V}}^{z}_{n}(\omega)\,\cdot\,1_{\|V_{n}\|<(e^{2\gamma}-e^{\gamma})/(4{\mathcal{C}}_{Q}^{2})}(\omega)\; (4.2)

where the latter expression is the indicator function on the event that Vn(ω)<e2γeγ4𝒞Q2\|V_{n}(\omega)\|<\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}} on the probability space Ω\Omega. This means essentially to replace the potential VnV_{n} by

V^n=Vn 1Vn<e2γeγ4𝒞Q2.\widehat{V}_{n}\,=\,V_{n}\,\cdot\,1_{\|V_{n}\|<\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}}}\;.

Note that by the estimates above

Wnz<e2γeγ4for allz=λ+iη[a,b]+i[c,c]\|W^{z}_{n}\|<\frac{e^{2\gamma}-e^{\gamma}}{4}\quad\text{for all}\quad z=\lambda+i\eta\in[a,b]+i[-c,c] (4.3)

We modify the transfer matrices accordingly and let

T^nz=(A+V^nzIII𝟎).\widehat{T}^{z}_{n}=\begin{pmatrix}A+\widehat{V}_{n}\,-\,z\,I&-I\\ I&{\bf 0}\end{pmatrix}\;. (4.4)

With these definitions we note that

Qz1T^nzQz=Tz+Wnz.Q_{z}^{-1}\widehat{T}^{z}_{n}Q_{z}\,=\,T^{z}\,+\,W^{z}_{n}\;.

Similarly to the products Tm,nzT^{z}_{m,n} we define

T^m,nz=T^nzT^n1zT^m+1zT^mz.\widehat{T}^{z}_{m,n}\,=\,\widehat{T}^{z}_{n}\widehat{T}^{z}_{n-1}\cdots\widehat{T}^{z}_{m+1}\widehat{T}^{z}_{m}\;.

and

𝒳m,nz=Qz1T^m,nzQz{\mathcal{X}}^{z}_{m,n}\,=\,Q_{z}^{-1}\widehat{T}^{z}_{m,n}Q_{z} (4.5)

Using the splitting into blocks of sizes l0=2le+lhl_{0}=2l_{e}+l_{h} and l1=lhl_{1}=l_{h} we write

𝒳m,nz=(Am,nzBm,nzCm,nzDm,nz){\mathcal{X}}^{z}_{m,n}\,=\,\begin{pmatrix}A^{z}_{m,n}&B^{z}_{m,n}\\ C^{z}_{m,n}&D^{z}_{m,n}\end{pmatrix} (4.6)

and we define the Schur complements

Xm,nz=Am,nzBm,nz(Dm,nz)1Cm,nzandZm,nz=Bm,nz(Dm,nz)1.X^{z}_{m,n}\,=\,A^{z}_{m,n}\,-\,B^{z}_{m,n}\left(D^{z}_{m,n}\right)^{-1}C^{z}_{m,n}\quad\text{and}\quad Z^{z}_{m,n}\,=\,B^{z}_{m,n}\left(D^{z}_{m,n}\right)^{-1}\;. (4.7)

The reason that we will work with the products from some mm on is that for large nmn\geq m and some random mm, we will have that Vn=V^nV_{n}=\widehat{V}_{n}. More precise probabilistic arguments will be given later.

First, we need to check that the matrices WnzW^{z}_{n} do indeed satisfy the bounds we need:

Proposition 4.1.

There exists 𝒞W<{\mathcal{C}}_{W}<\infty (depending on the chosen compact interval [a,b]Σ[a,b]\subset\Sigma and the chosen c>0c>0) such that for all z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c] we have

n=0(𝔼(Wnz)+𝔼(Wnz2))𝒞W.\sum_{n=0}^{\infty}\left(\left\|{\mathbb{E}}\left(W^{z}_{n}\right)\right\|\,+\,{\mathbb{E}}\left(\|W^{z}_{n}\|^{2}\right)\,\right)\,\leq\,{\mathcal{C}}_{W}\;.
Proof.

First we note

n=0𝔼(Wnz2)n=0𝔼(𝒱nz2)𝒞Q4n=0𝔼(Vn2)=𝒞<.\sum_{n=0}^{\infty}{\mathbb{E}}\left(\|W^{z}_{n}\|^{2}\right)\,\leq\,\sum_{n=0}^{\infty}{\mathbb{E}}\left(\|{\mathcal{V}}^{z}_{n}\|^{2}\right)\,\leq\,{\mathcal{C}}_{Q}^{4}\,\sum_{n=0}^{\infty}{\mathbb{E}}\left(\left\|V_{n}\right\|^{2}\right)\,=\,{\mathcal{C}}^{\prime}\,<\,\infty\;.

uniformly for z[a,b]+i[c,c]z\in[a,b]+i[-c,c]\subset\mathds{C}, which bounds the second term as needed.

Using the Cauchy-Schwartz Inequality in L2(Ω,,𝐏)L^{2}(\Omega,{\mathcal{F}},{\mathbf{P}}) we find

𝔼(Wnz𝒱nz)\displaystyle{\mathbb{E}}\left(\left\|W^{z}_{n}-{\mathcal{V}}^{z}_{n}\right\|\right)\, =𝔼(𝒱nz1Vne2γeγ4𝒞Q2)\displaystyle=\,{\mathbb{E}}\left(\left\|{\mathcal{V}}^{z}_{n}\right\|\cdot 1_{\|V_{n}\|\geq\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}}}\right)
𝔼(𝒱nz2)𝔼(1Vne2γeγ4𝒞Q2).\displaystyle\leq\,\sqrt{{\mathbb{E}}\left(\left\|{\mathcal{V}}^{z}_{n}\right\|^{2}\right)}\,\sqrt{{\mathbb{E}}\left(1_{\|V_{n}\|\geq\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}}}\right)}\;.

For the first term we use (4.1), for the second term, we use Chebyshev’s inequality

𝔼(1Vne2γeγ4𝒞Q2)=𝐏(Vne2γeγ4𝒞Q2)16𝒞Q4(e2γeγ)2𝔼(Vn2){\mathbb{E}}\left(1_{\|V_{n}\|\geq\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}}}\right)\,=\,{\mathbf{P}}\left(\|V_{n}\|\geq\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}}\right)\,\leq\,\frac{16\,{\mathcal{C}}_{Q}^{4}}{(e^{2\gamma}-e^{\gamma})^{2}}\,{\mathbb{E}}(\|V_{n}\|^{2})\;

in order to get

𝔼(Wnλ𝒱nλ)4𝒞Q4e2γeγ𝔼(Vn2){\mathbb{E}}\left(\left\|W^{\lambda}_{n}-{\mathcal{V}}^{\lambda}_{n}\right\|\right)\,\leq\,\frac{4\,{\mathcal{C}}_{Q}^{4}}{e^{2\gamma}-e^{\gamma}}\,{\mathbb{E}}(\|V_{n}\|^{2}) (4.8)

for all z[a,b]+i[c,c]z\in[a,b]+i[-c,c]\subset\mathds{C}. Thus,

𝔼(Wnz)𝔼(𝒱nz)+𝔼(Wnz𝒱nz)𝒞Q𝔼(Vn)+4𝒞Q4e2γeγ𝔼(Vn2)\left\|{\mathbb{E}}\left(W^{z}_{n}\right)\right\|\,\leq\,\left\|{\mathbb{E}}\left({\mathcal{V}}^{z}_{n}\right)\right\|\,+\,{\mathbb{E}}\left(\|W^{z}_{n}-{\mathcal{V}}^{z}_{n}\|\right)\,\leq\,{\mathcal{C}}_{Q}\left\|{\mathbb{E}}\left(V_{n}\right)\right\|\,+\,\frac{4\,{\mathcal{C}}_{Q}^{4}}{e^{2\gamma}-e^{\gamma}}{\mathbb{E}}(\|V_{n}\|^{2})

which leads to

n=0𝔼(Wnλ)n=0(𝒞Q𝔼(Vn)+4𝒞Q4e2γeγ𝔼(Vn2))=𝒞′′<.\sum_{n=0}^{\infty}\left\|{\mathbb{E}}\left(W^{\lambda}_{n}\right)\right\|\,\leq\,\sum_{n=0}^{\infty}\left({\mathcal{C}}_{Q}\left\|{\mathbb{E}}\left(V_{n}\right)\right\|\,+\,\frac{4\,{\mathcal{C}}_{Q}^{4}}{e^{2\gamma}-e^{\gamma}}{\mathbb{E}}(\|V_{n}\|^{2})\right)\,=\,{\mathcal{C}}^{\prime\prime}<\infty.

Now 𝒞W=𝒞+𝒞′′{\mathcal{C}}_{W}={\mathcal{C}}^{\prime}+{\mathcal{C}}^{\prime\prime} does the job. ∎

Thus, we can apply the results from Section 3.

Proposition 4.2.

Let Ω={ω:limnVn(ω)=0}\Omega^{\prime}=\{\omega\,:\,\lim_{n\to\infty}V_{n}(\omega)=0\} which satisfies 𝐏(Ω)=1{\mathbf{P}}(\Omega^{\prime})=1.

  1. (i)

    For all ωΩ\omega\in\Omega^{\prime}, all m+m\in\mathds{Z}_{+}, and for all z[a,b]+i[c,c]z\in[a,b]+i[-c,c] we have,

    limnZm,nz=0,limn(Dm,nz)1=0,andYmz:=limn(Dm,nz)1Cm,nzexists.\lim_{n\to\infty}Z^{z}_{m,n}=0\;,\quad\lim_{n\to\infty}(D^{z}_{m,n})^{-1}=0\;,\quad\text{and}\quad Y_{m}^{z}\,:=\,\lim_{n\to\infty}(D^{z}_{m,n})^{-1}C^{z}_{m,n}\quad\text{exists.}
  2. (ii)

    For all ωΩ\omega\in\Omega^{\prime}, all m+m\in\mathds{Z}_{+}

    zYmλis analytic for z=λ+iη(a,b)+i(c,c)z\mapsto Y_{m}^{\lambda}\quad\text{is analytic for $z=\lambda+i\eta\in(a,b)+i(-c,c)$}

    and, uniformly in z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c] we find

    limmYmz= 0.\lim_{m\to\infty}Y^{z}_{m}\,=\,0\;.
  3. (iii)

    We have for all ωΩ\omega\in\Omega, and z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c] that Zm,nz1.\|Z^{z}_{m,n}\|\leq 1\;.

  4. (iv)

    We find 𝒞>0{\mathcal{C}}>0 such that (uniformly) for all λ[a,b]\lambda\in[a,b] and all m+m\in\mathds{Z}_{+}

    supnm𝔼(Xm,nλ4)𝒞<.\sup_{n\geq m}{\mathbb{E}}(\|X^{\lambda}_{m,n}\|^{4})\,\leq\,{\mathcal{C}}<\,\infty\;.
Proof.

For part (i) note that with probability 1, Vn0\|V_{n}\|\to 0 for nn\to\infty. We let ΩΩ\Omega^{\prime}\subset\Omega be the set of probability one where Vn=Vn(ω)0V_{n}=V_{n}(\omega)\to 0. Then we have the same for WnzW^{z}_{n} and the limits follow from Proposition 3.3.

For part (ii) note first that (Dm,nz)1Cm,nz(D_{m,n}^{z})^{-1}C_{m,n}^{z} is analytic in z[a,b]+i[c,c]z\in[a,b]+i[-c,c]. Now, for ωΩ\omega\in\Omega^{\prime} fixed, one sees from the estimates in Proposition 3.3 that the convergence of the series n>m[(Dm,n+1z)1Cm,n+1z(Dm,nz)1Cm,nz]\sum_{n>m}[(D_{m,n+1}^{z})^{-1}C_{m,n+1}^{z}-(D_{m,n}^{z})^{-1}C_{m,n}^{z}] is uniform for z[a,b]+i[c,c]z\in[a,b]+i[-c,c]. Hence, the limiting function is analytic in zz. Moreover, if for all n>mn>m we have Vn<ε\|V_{n}\|<\varepsilon then one sees that with a uniform constant 𝒞Y<{\mathcal{C}}_{Y}<\infty, we have Ymz<ε𝒞Y\|Y^{z}_{m}\|<\varepsilon{\mathcal{C}}_{Y}. As Vn0V_{n}\to 0 for ωΩ\omega\in\Omega^{\prime}, we find ε\varepsilon arbitrarily small as mm\to\infty and hence limmYmz=0\lim_{m\to\infty}Y^{z}_{m}=0 uniformly in zz.

Part (iii) simply follows from Proposition 3.1 and part (iv) from Proposition 3.4, noting that all bounds are uniform for λ[a,b]\lambda\in[a,b] and S1\|S\|\leq 1 for λ[a,b]\lambda\in[a,b]. ∎

Proposition 4.3.

There is a set of probability one, Ω~Ω\tilde{\Omega}\subset\Omega, 𝐏(Ω~)=1{\mathbf{P}}(\tilde{\Omega})=1, such that for any ωΩ~\omega\in\tilde{\Omega} and any m+m\in\mathds{Z}_{+} we find

lim infnabXm,nλ4dλ<.\liminf_{n\to\infty}\int_{a}^{b}\|X^{\lambda}_{m,n}\,\|^{4}\,{\rm d}\lambda\,<\,\infty\;.
Proof.

By Proposition 4.2 (iv), Fatou lemma and Fubini theorem we find

𝔼lim infnab(Xm,nz4)𝑑λlim infnab𝔼(Xm,nz4)𝑑λ𝒞(ba)<{\mathbb{E}}\,\liminf_{n\to\infty}\int_{a}^{b}(||X^{z}_{m,n}||^{4})d\lambda\leq\liminf_{n\to\infty}\int_{a}^{b}{\mathbb{E}}(||X^{z}_{m,n}||^{4})d\lambda\leq{\mathcal{C}}(b-a)\,<\,\infty

Hence, 𝐏(lim infnabXm,nzdλ=)=0{\mathbf{P}}\left(\liminf_{n\to\infty}\int_{a}^{b}\|X^{z}_{m,n}\|{\rm d}\lambda=\infty\right)=0. ∎

5. Absolutely continuous spectrum

In this section we finally prove Theorem 1. Recall in Proposition 4.2 we defined the set Ω\Omega^{\prime} of probability one, where Vn0V_{n}\to 0. For ωΩ\omega\in\Omega^{\prime} we find mm such that for nmn\geq m and all λ[a,b]+i[c,c]\lambda\in[a,b]+i[-c,c] we have 𝒱nz=Wnz{\mathcal{V}}^{z}_{n}=W^{z}_{n}. However, the mm is random and not uniform in ω\omega. Therefore, we define the events

Ωm={ωΩ:(nm:Vn(ω)<e2γeγ4𝒞Q2)}\Omega_{m}\,=\,\left\{\omega\in\Omega^{\prime}\,:\,\left(\forall n\geq m\,:\,\|V_{n}(\omega)\|<\frac{e^{2\gamma}-e^{\gamma}}{4{\mathcal{C}}_{Q}^{2}}\;\right)\;\right\}

For ωΩm\omega\in\Omega_{m}, z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c] and nmn\geq m we find T^nz=Tnz\widehat{T}^{z}_{n}=T^{z}_{n} and, hence,

Tm,nz(ω)=T^m,nz(ω)=Qz𝒳m,nz(ω)Qz1.T^{z}_{m,n}(\omega)\,=\,\widehat{T}^{z}_{m,n}(\omega)\,=\,Q_{z}{\mathcal{X}}^{z}_{m,n}(\omega)Q_{z}^{-1}\;.

Moreover,

𝐏(m=0Ωm)=𝐏(Ω)= 1.{\mathbf{P}}\left(\bigcup_{m=0}^{\infty}\Omega_{m}\right)\,=\,{\mathbf{P}}\left(\Omega^{\prime}\right)\,=\,1.

The main work left to do now is to use Proposition 4.3 to obtain an estimate of the form as needed in Theorem A.3 which is a special case of [30, Theorem 4]. Thus, given a vector xl{\vec{x}}\in\mathds{C}^{l} associated to some vector in the 0-th shell, we need to find vectors uλ,nl\vec{u}_{\lambda,n}\in\mathds{C}^{l} such that

lim infnabT0,nλ(uλ,nx)4dλ<.\liminf_{n\to\infty}\int_{a}^{b}\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\right\|^{4}\,{\rm d}\lambda\,<\,\infty\;.

Note that for ωΩm\omega\in\Omega_{m} one has

T0,nz(uz,nx)=Qz(Am,nzBm,nzCm,nzDm,nz)Qz1T0,m1z(uz,nx).T^{z}_{0,n}\begin{pmatrix}\vec{u}_{z,n}\\ {\vec{x}}\end{pmatrix}\,=\,Q_{z}\begin{pmatrix}A^{z}_{m,n}&B^{z}_{m,n}\\ C^{z}_{m,n}&D^{z}_{m,n}\end{pmatrix}Q_{z}^{-1}T^{z}_{0,m-1}\begin{pmatrix}\vec{u}_{z,n}\\ {\vec{x}}\end{pmatrix}\;.
Lemma 5.1.

For Ylh×(l+le)Y\in\mathds{C}^{l_{h}\times(l+l_{e})} assume

rank[(YIlh)Qλ1T0,m1λ(Il0)]=lh,{\rm rank}\,\left[\begin{pmatrix}Y&I_{l_{h}}\end{pmatrix}Q_{\lambda}^{-1}T^{\lambda}_{0,m-1}\begin{pmatrix}I_{l}\\ 0\end{pmatrix}\right]\,=\,l_{h}\;, (5.1)

then, for any x{\vec{x}} one finds uλ,Yl\vec{u}_{\lambda,Y}\in\mathds{C}^{l}, yYl+le\vec{y}_{Y}\in\mathds{C}^{l+l_{e}} such that

Qλ1T0,m1λ(uλ,Yx)=(yλ,YYyλ,Y).Q_{\lambda}^{-1}T^{\lambda}_{0,m-1}\begin{pmatrix}\vec{u}_{\lambda,Y}\\ {\vec{x}}\end{pmatrix}\,=\,\begin{pmatrix}\vec{y}_{\lambda,Y}\\ -Y\,\vec{y}_{\lambda,Y}\end{pmatrix}\;. (5.2)

If the condition (5.1) is fulfilled for specific λ=λ0\lambda=\lambda_{0} and Y=Y0Y=Y_{0}, then it is fulfilled in a neighborhood of (λ0,Y0)(\lambda_{0},Y_{0}). Moreover, given a fixed vector x{\vec{x}}, one may get solutions uY\vec{u}_{Y} and yY\vec{y}_{Y} that depend continuously on (λ,Y)(\lambda,Y) in a neighborhood of (λ0,Y0)(\lambda_{0},Y_{0}).

Now let ωΩm\omega\in\Omega_{m} and use Y=(Dm,nλ)1Cm,nλY=(D^{\lambda}_{m,n})^{-1}C^{\lambda}_{m,n} and denote uλ,Y\vec{u}_{\lambda,Y}, yλ,Y\vec{y}_{\lambda,Y} byuλ,n\vec{u}_{\lambda,n} and yλ,n\vec{y}_{\lambda,n}. Hence,

T0,nλ(uλ,nx)=Qλ(Xm,nλyλ,n0).T^{\lambda}_{0,n}\begin{pmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{pmatrix}\,=\,Q_{\lambda}\begin{pmatrix}X^{\lambda}_{m,n}\;\vec{y}_{\lambda,n}\\ 0\end{pmatrix}\;. (5.3)
Proof.

Using (5.2) in the decomposition of T0,nzT^{z}_{0,n} above, with z=λz=\lambda and Y=(Dm,nλ)1Cm,nλY=(D^{\lambda}_{m,n})^{-1}C^{\lambda}_{m,n}, the statement (5.3) follows directly. Thus, we need to check that we find uλ,Y\vec{u}_{\lambda,Y} and yλ,Y\vec{y}_{\lambda,Y} such that (5.2) is satisfied. Dividing the 2l×2l2l\times 2l matrix Qλ1T0,m1λQ_{\lambda}^{-1}T^{\lambda}_{0,m-1} horizontally in blocks of sizes ll and ll, and vertically into blocks of sizes l+lel+l_{e} and lhl_{h} we may write

Qλ1T0,m1λ=(𝔞𝔟𝔠𝔡)andQλ1T0,m1λ(uλ,nx)=(𝔞uλn+𝔟x𝔠uλ,n+𝔡x)Q_{\lambda}^{-1}T^{\lambda}_{0,m-1}=\begin{pmatrix}{\mathfrak{a}}&{\mathfrak{b}}\\ {\mathfrak{c}}&{\mathfrak{d}}\end{pmatrix}\quad\text{and}\quad Q_{\lambda}^{-1}T^{\lambda}_{0,m-1}\begin{pmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{pmatrix}\,=\,\begin{pmatrix}{\mathfrak{a}}\vec{u}_{\lambda_{n}}+{\mathfrak{b}}{\vec{x}}\\ {\mathfrak{c}}\vec{u}_{\lambda,n}+{\mathfrak{d}}{\vec{x}}\end{pmatrix}

Note 𝔞,𝔟(l+le)×l,𝔠,𝔡lh×l{\mathfrak{a}},{\mathfrak{b}}\in\mathds{C}^{(l+l_{e})\times l},\,{\mathfrak{c}},{\mathfrak{d}}\in\mathds{C}^{l_{h}\times l} . Then, (5.2) is satisfied for yλ,Y=𝔞uλ,Y+𝔟x\vec{y}_{\lambda,Y}={\mathfrak{a}}\vec{u}_{\lambda,Y}+{\mathfrak{b}}{\vec{x}} if and only if

𝔠uλ,Y+𝔡x=Y(𝔞uλ,Y+𝔟x){\mathfrak{c}}\vec{u}_{\lambda,Y}+{\mathfrak{d}}{\vec{x}}\,=\,-Y\,\left({\mathfrak{a}}\vec{u}_{\lambda,Y}+{\mathfrak{b}}{\vec{x}}\right)

This is equivalent to

(Y𝔞+𝔠)uλ,Y=(Y𝔟𝔡)x.\left(Y\,{\mathfrak{a}}+{\mathfrak{c}}\right)\vec{u}_{\lambda,Y}\,=\,\left(-Y{\mathfrak{b}}-{\mathfrak{d}}\right)\,{\vec{x}}\;.

Thus, we find a solution uλ,Y\vec{u}_{\lambda,Y} for any x{\vec{x}}, if Y𝔞+𝔠Y\,{\mathfrak{a}}+{\mathfrak{c}} is surjective (as a linear map from l\mathds{C}^{l} to lh\mathds{C}^{l_{h}}), which is exactly the rank condition given in the assumption.

Note, if this is fulfilled for some specific Y=Y0Y=Y_{0}, and some specific spectral parameter λ=λ0\lambda=\lambda_{0}, then we find a matrix Ml×lhM\in\mathds{C}^{l\times l_{h}} such that det((Y0𝔞+𝔠)M)0\det((Y_{0}\,{\mathfrak{a}}+{\mathfrak{c}})M)\neq 0,. So in a neighborhood of Y0Y_{0} and λ0\lambda_{0}, this determinant is still not zero and we may use

uY=M[(Y𝔞+𝔠)M]1(Y𝔟𝔡)x\vec{u}_{Y}\,=\,M[(Y{\mathfrak{a}}+{\mathfrak{c}})M]^{-1}\,\left(-Y{\mathfrak{b}}-{\mathfrak{d}}\right)\,{\vec{x}}\;

and as above, yλ,Y=𝔞uλ,Y+𝔟x\vec{y}_{\lambda,Y}={\mathfrak{a}}\vec{u}_{\lambda,Y}+{\mathfrak{b}}{\vec{x}}. Thus, both depend continuously on (λ,Y)(\lambda,Y). ∎

In the sequel need to use the form of the transfer matrices as in [30] using the resolvent boundary data of restrictions to finite graphs. Thus, let H0,m=H0,m(ω)H_{0,m}=H_{0,m}(\omega) be the restriction of HωH_{\omega} to 2({0,,m})l\ell^{2}(\{0,\ldots,m\})\otimes\mathds{C}^{l}, that is H0,m(ω)=PHωPH_{0,m}(\omega)=P^{*}H_{\omega}P where P:2({0,,m})l2(+)lP:\ell^{2}(\{0,\ldots,m\})\otimes\mathds{C}^{l}\hookrightarrow\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{l} is the natural embedding. Note that H0,mH_{0,m} is a l(m+1)×l(m+1)l(m+1)\times l(m+1) Hermitian matrix. One may define the resolvent boundary data from shell 0 to mm as in [30] by

(α0,mzβ0,mzγ0,mzδ0,mz)=(P0Pm)(H0,mz)1(P0Pm)\begin{pmatrix}\alpha^{z}_{0,m}&\beta^{z}_{0,m}\\ \gamma^{z}_{0,m}&\delta^{z}_{0,m}\end{pmatrix}=\begin{pmatrix}P_{0}^{*}\\ P_{m}^{*}\end{pmatrix}(H_{0,m}-z)^{-1}\begin{pmatrix}P_{0}&P_{m}\end{pmatrix} (5.4)

where PkP_{k} is the natural embedding of 2({k})l\ell^{2}(\{k\})\otimes\mathds{C}^{l} into 2({0,,m})l\ell^{2}(\{0,\ldots,m\})\otimes\mathds{C}^{l} and can be regarded as an l(m+1)×ll(m+1)\times l matrix. In this sense,

P0=(Il𝟎𝟎),Pm=(𝟎𝟎Il)P_{0}=\begin{pmatrix}I_{l}\\ {\bf 0}\\ \vdots\\ {\bf 0}\end{pmatrix},\qquad P_{m}=\begin{pmatrix}{\bf 0}\\ \vdots\\ {\bf 0}\\ I_{l}\end{pmatrix}

and α0,mz,β0,mz,γ0,mz\alpha^{z}_{0,m},\beta^{z}_{0,m},\gamma^{z}_{0,m} and δ0,mz\delta^{z}_{0,m} are all l×ll\times l matrices. Then, one of the main points following from the work in [30] is the following formula, which we also prove in Appendix A.

Proposition 5.2.

(cf. Proposition A.1) If zz is not an eigenvalue of H0,mH_{0,m} and β0,mz\beta^{z}_{0,m} is invertible, then

T0,mz=((β0,mz)1(β0,mz)1α0,mzδ0,mz(β0,mz)1γ0,mzδ0,mz(β0,mz)1α0,mz)T^{z}_{0,m}=\begin{pmatrix}(\beta^{z}_{0,m})^{-1}&-(\beta^{z}_{0,m})^{-1}\alpha^{z}_{0,m}\\ \delta^{z}_{0,m}(\beta^{z}_{0,m})^{-1}&\gamma^{z}_{0,m}-\delta^{z}_{0,m}(\beta^{z}_{0,m})^{-1}\alpha^{z}_{0,m}\end{pmatrix}

Now, we can continue with the following. Note, that ωΩm\omega\in\Omega_{m^{\prime}} and mmm\geq m^{\prime} implies ωΩm\omega\in\Omega_{m}.

Lemma 5.3.

Given ωΩm\omega\in\Omega_{m^{\prime}}, and c>η>0c>\eta>0 fixed, there exists m~>m\tilde{m}>m^{\prime} such that m>m~\forall m>\tilde{m} and λ[a,b]:\forall\lambda\in[a,b]\;:\; we have rank[𝒜mλ+iη]=lh{\rm rank}\,\left[{\mathcal{A}}^{\lambda+i\eta}_{m}\right]\,=\,l_{h}, where

𝒜mz:=(YmzIlh)Qz1T0,m1z(Il0){\mathcal{A}}^{z}_{m}\,:=\,\begin{pmatrix}Y^{z}_{m}&\;I_{l_{h}}\end{pmatrix}Q_{z}^{-1}T^{z}_{0,m-1}\begin{pmatrix}I_{l}\\ 0\end{pmatrix}
Proof.

For notation we let z=λ+iηz=\lambda+i\eta. From Proposition 4.2 part (ii)we find that YmzY^{z}_{m} is uniformly small for mm sufficiently big. This means, for any ε>0\varepsilon>0, there exists m~>m\tilde{m}>m^{\prime} such that for any n>m>m~n>m>\tilde{m} and any z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c] we have

Ymz<ε.\|Y^{z}_{m}\|\,<\,\varepsilon\;.

The ε\varepsilon needed for the statement will be chosen later.

Using the definitions (5.4) and Proposition 5.2 we find

T0,m1z(Il0)=((β0,m1z)1δ0,m1z(β0,m1z)1)T^{z}_{0,m-1}\begin{pmatrix}I_{l}\\ 0\end{pmatrix}\,=\,\begin{pmatrix}(\beta^{z}_{0,m-1})^{-1}\\ \delta^{z}_{0,m-1}(\beta^{z}_{0,m-1})^{-1}\end{pmatrix}

By the other ways of writing the transfer matrix, we see that (β0,m1z)1(\beta^{z}_{0,m-1})^{-1} exists for any zz, at least after analytic continuation. We also note that β0,m1z\beta^{z}_{0,m-1} exists for any value zz except for the eigenvalues of H0,m1H_{0,m-1}. Thus, it exists for any z=λ+iηz=\lambda+i\eta with η>0\eta>0.

In order to prove that 𝒜z{\mathcal{A}}^{z} is of full rank lhl_{h}, it is sufficient to prove that 𝒬Γ1Γ𝒜z{\mathcal{Q}}_{\Gamma}^{-1}\Gamma{\mathcal{A}}^{z}{\mathcal{B}} is invertible, where l×lh{\mathcal{B}}\in\mathds{C}^{l\times l_{h}}. In particular, we consider

=β0,m1z(0Ilh)giving𝒜mz=(YmzIlh)Qz1(Ilδ0,m1z)(0Ilh){\mathcal{B}}^{\prime}=\beta^{z}_{0,m-1}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}\quad\text{giving}\quad{\mathcal{A}}^{z}_{m}{\mathcal{B}}^{\prime}\,=\,\begin{pmatrix}Y^{z}_{m}&I_{l_{h}}\end{pmatrix}Q_{z}^{-1}\begin{pmatrix}I_{l}\\ \delta^{z}_{0,m-1}\end{pmatrix}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}

First, take the ’limit case’ and with (2.4) we find

(0Ilh)Qz1(Ilδ0,m1z)(0Ilh)=(0𝒬Γ0Γ1𝒬Γ)(0Ilhδ0,m1z(0Ilh))\begin{pmatrix}0&I_{l_{h}}\end{pmatrix}Q_{z}^{-1}\begin{pmatrix}I_{l}\\ \delta^{z}_{0,m-1}\end{pmatrix}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}\,=\,\begin{pmatrix}0&-{\mathcal{Q}}_{\Gamma}&0&\Gamma^{-1}{\mathcal{Q}}_{\Gamma}\end{pmatrix}\begin{pmatrix}0\\ I_{l_{h}}\\ \delta^{z}_{0,m-1}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}\end{pmatrix}
=𝒬ΓΓ1(Γ+(0Ilh)δ0,m1z(0Ilh)).\;=\;{\mathcal{Q}}_{\Gamma}\Gamma^{-1}\left(-\Gamma+\begin{pmatrix}0&I_{l_{h}}\end{pmatrix}\delta^{z}_{0,m-1}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}\right)\;.

were we note that by their definition, 𝒬Γ=(Γ1Γ)1{\mathcal{Q}}_{\Gamma}=(\Gamma^{-1}-\Gamma)^{-1} and Γ\Gamma commute. Thus, we find

𝒬Γ1Γ𝒜mz=(0Ilh)δ0,m1z(0Ilh)Γ+z{\mathcal{Q}}_{\Gamma}^{-1}\Gamma{\mathcal{A}}^{z}_{m}{\mathcal{B}}\,=\,\begin{pmatrix}0&I_{l_{h}}\end{pmatrix}\delta^{z}_{0,m-1}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}-\Gamma+{\mathcal{R}}^{z}

where

z=𝒬Γ1Γ(Ymz0)Qz1(Ilhδ0,m1z)(0Ilh).{\mathcal{R}}^{z}\,=\,{\mathcal{Q}}_{\Gamma}^{-1}\Gamma\begin{pmatrix}Y^{z}_{m}&0\end{pmatrix}Q_{z}^{-1}\begin{pmatrix}I_{l_{h}}\\ \delta^{z}_{0,m-1}\end{pmatrix}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}\;.

Using δm,nz1η\|\delta^{z}_{m,n}\|\leq\frac{1}{\eta} , where z=λ+iηz=\lambda+i\eta, and compactness, we get with some uniform constant 𝒞>0{\mathcal{C}}>0 that

𝒬Γ1ΓQz1<𝒞and(Ilδ0,m1z)< 1+1η\|{\mathcal{Q}}_{\Gamma}^{-1}\Gamma\|\|Q_{z}^{-1}\|\,<\,{\mathcal{C}}\quad\text{and}\quad\left\|\begin{pmatrix}I_{l}\\ \delta^{z}_{0,m-1}\end{pmatrix}\right\|\,<\,1+\frac{1}{\eta}\;

for all z[a,b]+i[c,c]z\in[a,b]+i[-c,c] and all m>m~m>\tilde{m}. This gives

z𝒞ε(1+1η)\|{\mathcal{R}}^{z}\|\,\leq\,{\mathcal{C}}\,\varepsilon\,\left(1+\frac{1}{\eta}\right)

for any z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c] and any m>m~=m~(ε)m>\tilde{m}=\tilde{m}(\varepsilon). Note, Γ=Γ(z)\Gamma=\Gamma(z) is a diagonal matrix, such that

Γ+Γ1=(αle+1zαlz)\Gamma+\Gamma^{-1}\,=\,\begin{pmatrix}\alpha_{l_{e}+1}-z\\ &\ddots\\ \ &&\alpha_{l}-z\end{pmatrix}

Moreover, as set above, all diagonal entries of Γ(z)\Gamma(z) are bigger than e2γ>1e^{2\gamma}>1. We note, that the imaginary parts of Γ1\Gamma^{-1} have opposite sign and an absolute value smaller than for the corresponding values of Γ\Gamma. Thus, we find for η>0\eta>0 that

(ΓΓ1)=ηIimplying(Γ)>ηI.\Im(-\Gamma-\Gamma^{-1})=\eta\,I\,\quad\text{implying}\quad\Im(-\Gamma)>\eta\,I\;.

In general, we will define the ”imaginary” part in CC^{*} algebra sense, that is (𝒜)=(𝒜𝒜)/(2i)\Im({\mathcal{A}})=({\mathcal{A}}-{\mathcal{A}}^{*})/(2i), then

[(0Ilh)δ0,m1z(0Ilh)]> 0\Im\left[\begin{pmatrix}0&I_{l_{h}}\end{pmatrix}\delta^{z}_{0,m-1}\begin{pmatrix}0\\ I_{l_{h}}\end{pmatrix}\right]\,>\,0

for η>0\eta>0 and z=λ+iηz=\lambda+i\eta Hence, we finally obtain

(𝒬Γ1Γ𝒜mzz)>ηIlh.\Im\left({\mathcal{Q}}_{\Gamma}^{-1}\Gamma{\mathcal{A}}^{z}_{m}{\mathcal{B}}-{\mathcal{R}}^{z}\right)\,>\,\eta\,I_{l_{h}}\,.

Thus, if

ε<η2𝒞(1+η)implyingz<η\varepsilon<\frac{\eta^{2}}{{\mathcal{C}}(1+\eta)}\quad\text{implying}\quad\|{\mathcal{R}}^{z}\|\,<\,\eta

then, the lh×lhl_{h}\times l_{h} matrix 𝒬Γ1Γ𝒜mz{\mathcal{Q}}_{\Gamma}^{-1}\Gamma{\mathcal{A}}^{z}_{m}{\mathcal{B}} is invertible and we have rank(𝒜mz)lh{\rm rank}({\mathcal{A}}^{z}_{m})\geq l_{h} (for any m>m~m>\tilde{m}). By the dimensions of 𝒜mzlh×l{\mathcal{A}}^{z}_{m}\in\mathds{C}^{l_{h}\times l} we also have rank(𝒜mz)lh{\rm rank}({\mathcal{A}}^{z}_{m})\leq l_{h}. ∎

Proposition 5.4.

Let ωΩΩ~\omega\in\Omega^{\prime}\cap\tilde{\Omega}, where Ω~\tilde{\Omega} is the set as in Proposition 4.3. Then, there is a finite set {λ1,,λk}\{\lambda_{1},\ldots,\lambda_{k}\} such that the spectrum of HωH_{\omega} is purely absolutely continuous in (a,b){λ1,,λk}(a,b)\setminus\{\lambda_{1},\ldots,\lambda_{k}\}.
If there is no hyperbolic channel, that is lh=0l_{h}=0, then the spectrum is purely absolutely continuous in (a,b)(a,b).

Proof.

For some mm^{\prime} we find ωΩm\omega\in\Omega_{m^{\prime}}. Choose η\eta with c>η>0c>\eta>0, take m~>m\tilde{m}>m^{\prime} as in Lemma 5.3 and consider some fixed m>m~m>\tilde{m}. We note that we also have ωΩm\omega\in\Omega_{m}. Now, using the notation as above, 𝒜mz{\mathcal{A}}^{z}_{m} has full rank for m(z)=η\Im m(z)=\eta. By analyticity, the rank of 𝒜mz{\mathcal{A}}^{z}_{m} is full for all but finitely many values of z=λ+iη[a,b]+i[c,c]z=\lambda+i\eta\in[a,b]+i[-c,c]. We may now restrict to the real line again and let {λ1,,λk}[a,b]\{\lambda_{1},\ldots,\lambda_{k}\}\subset[a,b] be the finite set of energies, where rank(𝒜mλ)<lh{\rm rank}({\mathcal{A}}^{\lambda}_{m})<l_{h}.

We consider now a compact interval [a,b][a,b]{λ1,,λk}[a^{\prime},b^{\prime}]\subset[a,b]\setminus\{\lambda_{1},\ldots,\lambda_{k}\}. For all λ[a,b]\lambda\in[a^{\prime},b^{\prime}] we find that 𝒜mλ{\mathcal{A}}^{\lambda}_{m} has full rank lhl_{h}. By compactness, the set {𝒜mλ:λ[a,b]}\{{\mathcal{A}}^{\lambda}_{m}\,:\,\lambda\in[a^{\prime},b^{\prime}]\} has some positive distance, say ε>0\varepsilon>0, to the set of lh×ll_{h}\times l matrices of non full rank.

In order to get to the point of Lemma 5.3, let us introduce the notations

𝒜Yz=(YIlh)Qz1T0,m1z(Il0){\mathcal{A}}^{z}_{Y}=\begin{pmatrix}Y&I_{l_{h}}\end{pmatrix}Q_{z}^{-1}T^{z}_{0,m-1}\begin{pmatrix}I_{l}\\ 0\end{pmatrix}
Ym,nz=(Dm,nz)1Cm,nzand𝒜m,nz=𝒜Ym,nzz=(Ym,nzIlh)Qz1T0,m1z(Il0).Y^{z}_{m,n}=(D^{z}_{m,n})^{-1}C^{z}_{m,n}\quad\text{and}\quad{\mathcal{A}}^{z}_{m,n}={\mathcal{A}}^{z}_{Y^{z}_{m,n}}=\begin{pmatrix}Y^{z}_{m,n}&I_{l_{h}}\end{pmatrix}Q_{z}^{-1}T^{z}_{0,m-1}\begin{pmatrix}I_{l}\\ 0\end{pmatrix}\;.

Again by compactness we note that Qλ1T0,m1λ<𝒞\|Q_{\lambda}^{-1}T^{\lambda}_{0,m-1}\|<{\mathcal{C}} for all λ[a,b]\lambda\in[a,b]. (Note, that mm is fixed now!). Thus we see that

𝒜Yλ𝒜mλ𝒞YYmλ\|{\mathcal{A}}^{\lambda}_{Y}-{\mathcal{A}}^{\lambda}_{m}\|\,\leq\,{\mathcal{C}}\|Y-Y^{\lambda}_{m}\|

for all λ[a,b][a,b]\lambda\in[a,b]\supset[a^{\prime},b^{\prime}]. Therefore, if

YYmλ<ε𝒞implying𝒜Yλ𝒜mλ<ε\|Y-Y^{\lambda}_{m}\|<\frac{\varepsilon}{{\mathcal{C}}}\quad\text{implying}\quad\|{\mathcal{A}}^{\lambda}_{Y}-{\mathcal{A}}^{\lambda}_{m}\|<\varepsilon

then 𝒜Yλ{\mathcal{A}}^{\lambda}_{Y} is of full rank lhl_{h}.

Now, consider the compact set

𝒮={(λ,Y):λ[a,b],YYmλε2𝒞}.{\mathcal{S}}=\left\{\ (\lambda,Y)\,:\,\lambda\in[a^{\prime},b^{\prime}]\,,\,\|Y-Y^{\lambda}_{m}\|\leq\frac{\varepsilon}{2{\mathcal{C}}}\right\}\;.

By Lemma 5.1, for any (λ,Y)𝒮(\lambda^{\prime},Y^{\prime})\in{\mathcal{S}}, we find some neighborhood 𝒰λ,Y{\mathcal{U}}_{\lambda^{\prime},Y^{\prime}} and solutions uλ,Y\vec{u}_{\lambda,Y}, yλ,Y\vec{y}_{\lambda,Y} to (5.2), that depend continuously on (λ,Y)𝒰Y,λ(\lambda,Y)\in{\mathcal{U}}_{Y^{\prime},\lambda^{\prime}}. Possibly shrinking the neighborhood a bit, we may assume it is compact, and thus, yλ,Y\|\vec{y}_{\lambda,Y}\| attains a maximum in 𝒰λ,Y{\mathcal{U}}_{\lambda^{\prime},Y^{\prime}}. By compactness, 𝒮{\mathcal{S}} can be covered by finitely many such compact neighborhoods 𝒰{\mathcal{U}}^{\prime}. Making a specific choice in the overlaps of these finitely many neighborhood, we find piece-wise continuous functions

u:𝒮l,(λ,Y)uλ,Y,y:𝒮𝒞l+le,(λ,Y)yλ,Y\vec{u}\,:\,{\mathcal{S}}\to\mathds{C}^{l}\;,\;(\lambda,Y)\to\vec{u}_{\lambda,Y}\;,\quad\vec{y}\,:\,{\mathcal{S}}\to{\mathcal{C}}^{l+l_{e}}\;,\;(\lambda,Y)\to\vec{y}_{\lambda,Y}

satisfying equation (5.2) such that for some constant 𝒞y<{\mathcal{C}}_{\vec{y}}<\infty and all (λ,Y)𝒮(\lambda,Y)\in{\mathcal{S}} we have

yλ,Y𝒞y.\|\vec{y}_{\lambda,Y}\|\,\leq\,{\mathcal{C}}_{\vec{y}}\;.

As mentioned in the proof of Proposition 4.2 part (ii), the convergence of Ym,nzYmzY^{z}_{m,n}\to Y^{z}_{m} for nn\to\infty is uniform in zz, as such we find N>0N>0 such that n>N\forall n>N and all λ[a,b]\lambda\in[a^{\prime},b^{\prime}] we have

Ym,nλYmλε2𝒞implying(λ,Ym,nλ)𝒮.\|Y^{\lambda}_{m,n}-Y^{\lambda}_{m}\|\,\leq\,\frac{\varepsilon}{2{\mathcal{C}}}\quad\text{implying}\quad(\lambda,Y^{\lambda}_{m,n})\,\in\,{\mathcal{S}}\;.

Thus, for all n>Nn>N, and all λ[a,b]\lambda\in[a^{\prime},b^{\prime}] we may choose

uλ,n=uYm,nλ,λ,yλ,n=yYm,nλ,λ.\vec{u}_{\lambda,n}=\vec{u}_{Y^{\lambda}_{m,n},\lambda}\;,\quad\vec{y}_{\lambda,n}=\vec{y}_{Y^{\lambda}_{m,n},\lambda}\;.

By (5.3) we obtain that

T0,nλ(uλ,nx)=Qλ(Xm,nλyλ,n0)QλXm,nλyλ,n𝒞Q𝒞yXm,nλ\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\right\|\,=\,\left\|Q_{\lambda}\begin{pmatrix}X^{\lambda}_{m,n}\,\vec{y}_{\lambda,n}\\ 0\end{pmatrix}\right\|\,\leq\,\|Q_{\lambda}\|\,\|X^{\lambda}_{m,n}\|\,\|\vec{y}_{\lambda,n}\|\,\leq\,{\mathcal{C}}_{Q}{\mathcal{C}}_{\vec{y}}\|X^{\lambda}_{m,n}\| (5.5)

for λ[a,b]\lambda\in[a^{\prime},b^{\prime}] and all n>Nn>N.

Hence, using that ωΩ~\omega\in\tilde{\Omega} we get by Proposition 4.3 that

lim infnabT0,nλ(uλ,nx)4dλ𝒞Q𝒞ylim infnabXm,nλ4dλ<.\liminf_{n\to\infty}\int_{a^{\prime}}^{b^{\prime}}\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\right\|^{4}\,{\rm d}\lambda\,\leq\,{\mathcal{C}}_{Q}{\mathcal{C}}_{y}\liminf_{n\to\infty}\int_{a^{\prime}}^{b^{\prime}}\|X^{\lambda}_{m,n}\|^{4}\,{\rm d}\lambda\,<\,\infty\;.

Hence, Theorem A.3 gives that the spectral measure at δ0x\delta_{0}\otimes{\vec{x}} is purely absolutely continuous in [a,b][a^{\prime},b^{\prime}]. As xl{\vec{x}}\in\mathds{C}^{l} was arbitrary, and the closures of span({(Hω)kδ0x:xl,k0}){\rm span}(\{(H_{\omega})^{k}\delta_{0}\otimes{\vec{x}}\,:\,{\vec{x}}\in\mathds{C}^{l},\;k\in\mathds{N}_{0}\}) is the whole Hilbert space, we find that the spectrum of HωH_{\omega} is purely absolutely continuous in (a,b)(a^{\prime},b^{\prime}). Now, the set Σ=[a,b]{λ1,,λk}\Sigma^{\prime}=[a,b]\setminus\{\lambda_{1},\ldots,\lambda_{k}\} can be written as countable union of intervals (a,b)(a^{\prime},b^{\prime}) such that [a,b]Σ[a^{\prime},b^{\prime}]\subset\Sigma^{\prime}. Therefore, the spectrum of HωH_{\omega} is purely absolutely continuous in Σ\Sigma^{\prime}.  Note that λ1,,λk\lambda_{1},\ldots,\lambda_{k} may be eigenvalues of HωH_{\omega}, but they do not have to be. If λj\lambda_{j} is not an eigenvalue, then the spectrum of HωH_{\omega} is also purely absolutely continuous in a neighborhood of λj\lambda_{j}. Thus, we only need to subtract the eigenvalues from the set [a,b][a,b].
Note, in the intersection of all the bands, that is, if lh=0l_{h}=0, one has Xm,nλ=Qλ1Tm,nλQλX^{\lambda}_{m,n}=Q_{\lambda}^{-1}T^{\lambda}_{m,n}Q_{\lambda}, yλ,n=Qλ1T0,nλ(uλ,nx)\vec{y}_{\lambda,n}=Q_{\lambda}^{-1}T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right) and one can choose any family of uniformly bounded vectors uλ,n\vec{u}_{\lambda,n} to get pure absolutely continuous spectrum in (a,b)(a,b). There is no need to subtract a finite set of values. ∎

Theorem 1 now essentially follows directly from this proposition:

Proof.

First note that the set Ω\Omega^{\prime} does not depend on the interval [a,b][a,b] analyzed above, but Ω~\tilde{\Omega} does. Using compact intervals inside Σ\Sigma with rational boundary points we may write Σ\Sigma as countable union of open intervals, whose closure is inside Σ\Sigma,

Σ=i=1(ai,bi)where[ai,bi]Σ.\Sigma=\bigcup_{i=1}^{\infty}(a_{i},b_{i})\quad\text{where}\quad[a_{i},b_{i}]\subset\Sigma\;.

As Σ\Sigma does not contain any band-edges, for each j=1,lj=1\ldots,l the type of the jj-th channel does not change in [ai,bi][a_{i},b_{i}]. Therefore, one can make the whole analysis as done for the compact interval [a,b][a,b] above for the interval [ai,bi][a_{i},b_{i}]. In particular, there is a corresponding set Ω~j\tilde{\Omega}_{j} of probability one for the set [ai,bi][a_{i},b_{i}]. We then let

Ω^=Ωi=1Ω~i\hat{\Omega}=\Omega^{\prime}\cap\bigcap_{i=1}^{\infty}\tilde{\Omega}_{i}

and note 𝐏(Ω^)= 1{\mathbf{P}}(\hat{\Omega})\,=\,1\;. Let ωΩ^\omega\in\hat{\Omega} and let Σ{\mathfrak{C}}\subset\Sigma be compact. Using compactness, there is a finite sub-collection of these intervals, [aik,bik][a_{i_{k}},b_{i_{k}}], k=1,nk=1,\ldots n, such that

k=1n(aik,bik).{\mathfrak{C}}\subset\bigcup_{k=1}^{n}(a_{i_{k}},b_{i_{k}})\;.

Theorem 5.4 gives that there is a finite set 𝔈k{\mathfrak{E}}_{k} of eigenvalues, such that the spectrum of HωH_{\omega} in (aik,bik)𝔈k(a_{i_{k}},b_{i_{k}})\setminus{\mathfrak{E}}_{k} is purely absolutely continuous. Letting 𝔈=k=1n𝔈k{\mathfrak{E}}=\bigcup_{k=1}^{n}{\mathfrak{E}}_{k}, which is finite, we see that the spectrum in 𝔈{\mathfrak{C}}\setminus{\mathfrak{E}} is purely absolutely continuous.
Due to the last comment in Theorem 5.4, the spectrum of HωH_{\omega} is purely absolutely continuous in the intersection of all bands Σ0\Sigma_{0} (which might be an empty set). ∎

6. Acknowledgement

This work has been supported by the Chilean grants FONDECYT Nr. 1161651, FONDECYT Nr. 1201836 and the Nucleo Mileneo MESCD.

Appendix A Transfer matrices and spectral averaging formula on the strip

As above we consider operators of the form

(HΨ)n=Ψn1Ψn+1+BnΨn(H\Psi)_{n}=-\Psi_{n-1}-\Psi_{n+1}+B_{n}\Psi_{n}

on 2(+)l\ell^{2}(\mathds{Z}_{+})\otimes\mathds{C}^{l}. Solving the eigenvalue equation HΨ=zΨH\Psi=z\Psi leads to the transfer matrices

Tnz=(BnzIII𝟎)and the equation(Ψn+1Ψn)=Tnz(ΨnΨn1)T^{z}_{n}=\begin{pmatrix}B_{n}-zI&-I\\ I&{\bf 0}\end{pmatrix}\quad\text{and the equation}\quad\begin{pmatrix}\Psi_{n+1}\\ \Psi_{n}\end{pmatrix}=T^{z}_{n}\begin{pmatrix}\Psi_{n}\\ \Psi_{n-1}\end{pmatrix}

Then, for n>mn>m we define the products

Tm,nz=TnzTn1zTm+1zTmzleading to(Ψn+1Ψn)=Tm,nz(ΨmΨm1)T^{z}_{m,n}=T^{z}_{n}T^{z}_{n-1}\cdots T^{z}_{m+1}T^{z}_{m}\quad\text{leading to}\quad\begin{pmatrix}\Psi_{n+1}\\ \Psi_{n}\end{pmatrix}=T^{z}_{m,n}\begin{pmatrix}\Psi_{m}\\ \Psi_{m-1}\end{pmatrix}

for a formal solution of HΨ=zΨH\Psi=z\Psi.

A.1. Transfer matrices and resolvent boundary data

Let n>mn>m, be non-negative integers. With Hm,nH_{m,n} we denote the restriction of HH to 2({m,m+1,,n})l\ell^{2}(\{m,m+1,\ldots,n\})\otimes\mathds{C}^{l}, that is

Hm,n=(BmIIBm+1IIIBn)H_{m,n}=\begin{pmatrix}B_{m}&-I&\\ -I&B_{m+1}&-I\\ &\ddots&\ddots&\ddots\\ &&\ddots&\ddots&-I\\ &&&-I&B_{n}\end{pmatrix}

Then we define the mm to nn boundary resolvent data for zσ(Hm,n)z\not\in\sigma(H_{m,n}) by

(αm,nzβm,nzγm,nzδm,nz)=(PmPn)(Hm,nz)1(PmPn)\begin{pmatrix}\alpha^{z}_{m,n}&\beta^{z}_{m,n}\\ \gamma^{z}_{m,n}&\delta^{z}_{m,n}\end{pmatrix}=\begin{pmatrix}P_{m}^{*}\\ P_{n}^{*}\end{pmatrix}(H_{m,n}-z)^{-1}\begin{pmatrix}P_{m}&P_{n}\end{pmatrix} (A.1)

where PkP_{k} is the natural embedding of 2({k})l\ell^{2}(\{k\})\otimes\mathds{C}^{l} into 2({m,m+1,,n})l\ell^{2}(\{m,m+1,\ldots,n\})\otimes\mathds{C}^{l} for mknm\leq k\leq n. This means, e.g. αm,nz=Pm(Hm,nz)1Pm\alpha^{z}_{m,n}=P_{m}^{*}(H_{m,n}-z)^{-1}P_{m}, and in this setup

Pm=(I𝟎𝟎),Pn=(𝟎𝟎I)(nm+1)l×l.P_{m}=\begin{pmatrix}I\\ {\bf 0}\\ \vdots\\ {\bf 0}\end{pmatrix}\,,\quad P_{n}=\begin{pmatrix}{\bf 0}\\ \vdots\\ {\bf 0}\\ I\end{pmatrix}\quad\in\;\;\mathds{C}^{(n-m+1)l\times l}\;.

Note that αm,nz,βm,nz,γm,nz,δm,nz\alpha^{z}_{m,n},\beta^{z}_{m,n},\gamma^{z}_{m,n},\delta^{z}_{m,n} are all l×ll\times l matrices.

Proposition A.1.

Let be given nm+n\geq m\in\mathds{Z}_{+} and let zσ(Hm,n)z\not\in\sigma(H_{m,n}) and let βm,nz\beta^{z}_{m,n} be invertible. Then,

Tm,nz=((βm,nz)1(βm,nz)1αm,nzδm,nz(βm,nz)1γm,nzδm,nz(βm,nz)1αm,nz)T^{z}_{m,n}\,=\,\begin{pmatrix}(\beta^{z}_{m,n})^{-1}&-(\beta^{z}_{m,n})^{-1}\alpha^{z}_{m,n}\\ \delta^{z}_{m,n}(\beta^{z}_{m,n})^{-1}&\gamma^{z}_{m,n}-\delta^{z}_{m,n}(\beta^{z}_{m,n})^{-1}\alpha^{z}_{m,n}\end{pmatrix}
Proof.

For Ψ=(Ψn)n\Psi=(\Psi_{n})_{n} with Ψnl\Psi_{n}\in\mathds{C}^{l} we define the notations:

Ψ^k:=Ψk,k<m.Ψ^m:=(ΨmΨm+1Ψn),Ψ^m+1:=Ψn+1,\hat{\Psi}_{k}:=\Psi_{k},\quad k<m.\quad\quad\quad\hat{\Psi}_{m}:=\left(\begin{smallmatrix}\Psi_{m}\\ \Psi_{m+1}\\ \vdots\\ \Psi_{n}\end{smallmatrix}\right),\qquad\hat{\Psi}_{m+1}:=\Psi_{n+1},

and we use PmP_{m} and PnP_{n} as in (A.1), then we have

Ψm=PmΨ^m,Ψn:=PnΨ^m\Psi_{m}=P_{m}^{*}\hat{\Psi}_{m}\;,\quad\Psi_{n}:=P_{n}^{*}\hat{\Psi}_{m}

and we get

(HΨ)^m:=Hm,nΨ^mPmΨ^m1PnΨ^m+1.\widehat{(H\Psi)}_{m}:=H_{m,n}\hat{\Psi}_{m}-P_{m}\hat{\Psi}_{m-1}-P_{n}\hat{\Psi}_{m+1}\,.

With zz being the spectral parameter, (HΨ)^m=zΨ^m\widehat{(H\Psi)}_{m}=z\hat{\Psi}_{m} leads to

PnΨ^m+1=(Hm,nz)Ψ^mPmΨ^m1P_{n}\hat{\Psi}_{m+1}=(H_{m,n}-z)\hat{\Psi}_{m}-P_{m}\hat{\Psi}_{m-1}

Multiplying with Pm(Hm,nz)1P_{m}^{*}(H_{m,n}-z)^{-1} from the left, noting that Ψ^m+1=Ψn+1\hat{\Psi}_{m+1}=\Psi_{n+1} and using (A.1) gives

βm,nzΨn+1=Ψmαm,nzΨm1Ψn+1=(βm,nz)1Ψm(βm,nz)1αm,nzΨm1\beta^{z}_{m,n}\Psi_{n+1}=\Psi_{m}-\alpha^{z}_{m,n}\Psi_{m-1}\implies\Psi_{n+1}=(\beta^{z}_{m,n})^{-1}\Psi_{m}-(\beta^{z}_{m,n})^{-1}\alpha^{z}_{m,n}\Psi_{m-1}

Multiplying from the left with Pn(Hm,nz)1P_{n}^{*}(H_{m,n}-z)^{-1} instead of Pm(Hm,nz)1)P_{m}^{*}(H_{m,n}-z)^{-1}) leads to

δm,nzΨn+1=Ψnγm,nzΨm1\delta^{z}_{m,n}\Psi_{n+1}=\Psi_{n}-\gamma^{z}_{m,n}\Psi_{m-1}

Replacing Ψn+1\Psi_{n+1} with the formula above and resolving for Ψn\Psi_{n} leads to

Ψn=δm,nz(βm,nz)1Ψm+(γm,nzδm,nz(βm,nz)1αm,nz)Ψm1\Psi_{n}=\delta^{z}_{m,n}(\beta^{z}_{m,n})^{-1}\Psi_{m}+(\gamma^{z}_{m,n}-\delta^{z}_{m,n}(\beta^{z}_{m,n})^{-1}\alpha^{z}_{m,n})\Psi_{m-1}

Finally, we have:

(Ψn+1Ψn)=((βm,nz)1(βm,nz)1αm,nzδm,nz(βm,nz)1γm,nzδm,nz(βm,nz)1αm,nz)(ΨmΨm1)\begin{pmatrix}\Psi_{n+1}\\ \Psi_{n}\end{pmatrix}=\begin{pmatrix}(\beta^{z}_{m,n})^{-1}&-(\beta^{z}_{m,n})^{-1}\alpha^{z}_{m,n}\\ \delta^{z}_{m,n}(\beta^{z}_{m,n})^{-1}&\gamma^{z}_{m,n}-\delta^{z}_{m,n}(\beta^{z}_{m,n})^{-1}\alpha^{z}_{m,n}\end{pmatrix}\begin{pmatrix}\Psi_{m}\\ \Psi_{m-1}\end{pmatrix}

As Ψm,Ψm1\Psi_{m},\Psi_{m-1} determine the solution to HΨ=zΨH\Psi=z\Psi uniquely, the matrix must be Tm,nzT^{z}_{m,n}. ∎

A.2. Spectral averaging formula

Here we state the strip-equivalent of the spectral average formula from Carmona-Lacroix [6, Theorem III.3.2 and III.3.6]. It is a special case of [30, Theorem 1]. First, we need to fix a vector in the root-slice. Thus, we choose some xl{\vec{x}}\in\mathds{C}^{l} which we identify with δ0x2{𝐙+}l\delta_{0}\otimes{\vec{x}}\in\ell^{2}\{{\mathbf{Z}}_{+}\}\otimes\mathds{C}^{l}. Let us assume that x=1\|{\vec{x}}\|=1, so that xx=1{{\vec{x}}}^{*}{\vec{x}}=1. Furthermore, identifying x{\vec{x}}\,^{*} with a linear map from l\mathds{C}^{l} to \mathds{C}, we have a l1l-1 dimensional kernel consisting of the vectors orthogonal to x{\vec{x}},

𝕂:=ker(x)={vl:xv=0}={vl:xv=0}.{\mathbb{K}}:=\ker({\vec{x}}\,^{*})=\{{\vec{v}}\in\mathds{C}^{l}\,:\,{\vec{x}}\,^{*}{\vec{v}}=0\}\,=\,\{{\vec{v}}\in\mathds{C}^{l}\,:\,{\vec{x}}\cdot{\vec{v}}=0\}.

Then, in this special case, the work of [30] simply replaces T0zT^{z}_{0} by the set of 2l×22l\times 2 matrices

𝕋0z={((BnzI)(x+v)x+(BnzI)wx+vw):v,w𝕂}2l×2.{\mathbb{T}}^{z}_{0}\,=\,\left\{\begin{pmatrix}(B_{n}-zI)({\vec{x}}+{\vec{v}})&-{\vec{x}}+(B_{n}-zI){\vec{w}}\\ {\vec{x}}+{\vec{v}}&{\vec{w}}\end{pmatrix}\,:\,{\vec{v}},{\vec{w}}\in{\mathbb{K}}\;\right\}\;\subset\;\mathds{C}^{2l\times 2}\;. (A.2)

Note that

T0z=(B0zIII𝟎)and𝕋0z=T0z{(x+vw𝟎x):v,w𝕂}T^{z}_{0}=\begin{pmatrix}B_{0}-zI&-I\\ I&{\bf 0}\end{pmatrix}\quad\text{and}\quad{\mathbb{T}}^{z}_{0}=T^{z}_{0}\,\left\{\begin{pmatrix}{\vec{x}}+{\vec{v}}&{\vec{w}}\\ {\bf 0}&{\vec{x}}\end{pmatrix}\,:\,{\vec{v}},{\vec{w}}\in{\mathbb{K}}\right\} (A.3)

where we adopt the notation that T𝔸={TA:A𝔸}T{\mathbb{A}}=\{TA\,:\,A\in{\mathbb{A}}\} for sets of matrices 𝔸{\mathbb{A}}.

Moreover we consider the spectral measure μx\mu_{{\vec{x}}} at the vector xδ0x{\vec{x}}\equiv\delta_{0}\otimes{\vec{x}}, that means

f𝑑μx=δ0x,f(H)(δ0x).\int fd\mu_{{\vec{x}}}\,=\,\langle\delta_{0}\otimes{\vec{x}},\,f(H)\,(\delta_{0}\otimes{\vec{x}})\,\rangle\;.

Now, using that the operator HH can not have compactly (finitely) supported eigenfunctions, Theorem 1 in [30] implies the following:

Proposition A.2.

[30] In the sense of a weak limit for finite measures one finds that

dμx(λ)\displaystyle{\rm d}\mu_{{\vec{x}}}(\lambda)\, =limn1πdλminTλ𝕋0λT1,nλTλ(10)2=limn1πdλminv𝕂T0,nλ(x+v0)2\displaystyle=\,\lim_{n\to\infty}\,\frac{1}{\pi}\,\frac{{\rm d}\lambda}{\min\limits_{T^{\lambda}\in{\mathbb{T}}^{\lambda}_{0}}\|T^{\lambda}_{1,n}\,T^{\lambda}\left(\begin{smallmatrix}1\\ 0\end{smallmatrix}\right)\|^{2}}\,=\,\lim_{n\to\infty}\frac{1}{\pi}\,\frac{{\rm d}\lambda}{\min\limits_{\vec{v}\in{\mathbb{K}}}\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}\\ 0\end{smallmatrix}\right)\right\|^{2}}

Using the symplectic structure of the transfer matrices and the Banach-Alaoglu theorem one can obtain a criterion for absolute continuity (see [30]).

Proposition A.3.

If one finds uλ,nm\vec{u}_{\lambda,n}\in\mathds{C}^{m} for λ(a,b)\lambda\in(a,b), nn\in\mathds{N}, such that

lim infnabT0,nλ(uλ,nx)4dλ<\liminf_{n\to\infty}\;\int_{a}^{b}\,\left\|\,T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\,\right\|^{4}\;{\rm d}\lambda\,<\,\infty

then, the measure μx\mu_{{\vec{x}}} is absolutely continuous in the interval (a,b)(a,b).

Proof.

First, in [30] it was shown that the minimum minv𝕂T0,nλ(x+v0)\min\limits_{\vec{v}\in{\mathbb{K}}}\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}\\ 0\end{smallmatrix}\right)\right\| is achieved at a very specific vector which we call vλ,n𝕂\vec{v}_{\lambda,n}\in{\mathbb{K}}. Defining

fn(λ):=π1T0,nλ(x+vλ,n0)2f_{n}(\lambda):=\pi^{-1}\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}_{\lambda,n}\\ 0\end{smallmatrix}\right)\right\|^{-2}

we see from Theorem A.2 that μx\mu_{{\vec{x}}} is the weak limit of fn(λ)dλf_{n}(\lambda){\rm d}\lambda in the interval (a,b)(a,b). Note that

(T0,nλ(uλ,nx))(𝟎II𝟎)T0,nλ(x+vλ,n0)=\displaystyle\left(T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\right)^{*}\left(\begin{smallmatrix}{\bf 0}&-I\\ I&{\bf 0}\end{smallmatrix}\right)T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}_{\lambda,n}\\ 0\end{smallmatrix}\right)\,=\,
=(uλ,nx)(T0,nλ)(𝟎II𝟎)T0,nλ(x+vλ,n0)=\displaystyle\qquad=\,\left(\begin{smallmatrix}\vec{u}^{*}_{\lambda,n}&{\vec{x}}\,^{*}\end{smallmatrix}\right)\,\big{(}T^{\lambda}_{0,n}\big{)}^{*}\left(\begin{smallmatrix}{\bf 0}&-I\\ I&{\bf 0}\end{smallmatrix}\right)T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}_{\lambda,n}\\ 0\end{smallmatrix}\right)\,=\,
=(uλ,nx)(𝟎II𝟎)(x+vλ,n0)=(uλ,nx)(0x+vλ,n)= 1\displaystyle\qquad=\,\left(\begin{smallmatrix}\vec{u}^{*}_{\lambda,n}&{\vec{x}}\,^{*}\end{smallmatrix}\right)\left(\begin{smallmatrix}{\bf 0}&-I\\ I&{\bf 0}\end{smallmatrix}\right)\left(\begin{smallmatrix}{\vec{x}}+\vec{v}_{\lambda,n}\\ 0\end{smallmatrix}\right)\,=\,\left(\begin{smallmatrix}\vec{u}^{*}_{\lambda,n}&{\vec{x}}\,^{*}\end{smallmatrix}\right)\left(\begin{smallmatrix}0\\ {\vec{x}}+\vec{v}_{\lambda,n}\end{smallmatrix}\right)\,=\,1

where we use x=1\|{\vec{x}}\|=1 and xvλ,n=0{\vec{x}}\,^{*}\vec{v}_{\lambda,n}=0 as vλ,n𝕂\vec{v}_{\lambda,n}\in{\mathbb{K}}. Now, using the Cauchy Schwartz inequality, this gives

1T0,nλ(uλ,nx)T0,nλ(x+vλ,n0)1\,\leq\,\left\|\,T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\,\right\|\;\cdot\;\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}_{\lambda,n}\\ 0\end{smallmatrix}\right)\right\|

and hence

π2|fn(λ)|2=1T0,nλ(x+vλ,n0)4T0,nλ(uλ,nx)4.\pi^{2}|f_{n}(\lambda)|^{2}\,=\,\frac{1}{\left\|T^{\lambda}_{0,n}\left(\begin{smallmatrix}{\vec{x}}+\vec{v}_{\lambda,n}\\ 0\end{smallmatrix}\right)\right\|^{4}}\,\leq\,\left\|\,T^{\lambda}_{0,n}\left(\begin{smallmatrix}\vec{u}_{\lambda,n}\\ {\vec{x}}\end{smallmatrix}\right)\,\right\|^{4}\;.

Thus, the estimate given implies that

lim infnab|fn(λ)|2dλ<.\liminf_{n\to\infty}\int_{a}^{b}|f_{n}(\lambda)|^{2}\;{\rm d}\lambda\,<\,\infty\;.

This means, along a suitable sub-sequence, the norm of fnf_{n} in L2(a,b)L^{2}(a,b) is bounded. By Banach-Alaaoglu, there is a sub-sequence ( o better, a sub-sub-sequence of the suitable sub-sequence) fnkf_{n_{k}} which converges weakly in L2(a,b)L^{2}(a,b) to a limit fL2(a,b)f\in L^{2}(a,b). Noting that bounded continuous functions gCb(a,b)g\in C_{b}(a,b) are also in L2(a,b)L^{2}(a,b) one has

limkabg(λ)fnk(λ)dλ=abg(λ)f(λ)dλ.\lim_{k\to\infty}\int_{a}^{b}g(\lambda)\;f_{n_{k}}(\lambda)\,{\rm d}\lambda\,=\,\int_{a}^{b}g(\lambda)\,f(\lambda)\,{\rm d}\lambda\;.

for all gCb(a,b)g\in C_{b}(a,b). But since fnk(λ)dλf_{n_{k}}(\lambda){\rm d}\lambda converges weakly to the measure μx\mu_{{\vec{x}}} this means that in the interval (a,b)(a,b) we have

dμx(λ)=f(λ)dλ{\rm d}\mu_{{\vec{x}}}(\lambda)\,=\,f(\lambda)\,{\rm d}\lambda\;

which is an absolutely continuous measure in (a,b)(a,b) with a density in L2(a,b)L^{2}(a,b). ∎

References

  • [1] Anderson, P.W. (1958), Absence of diffusion in certain random lattices, Physical Review 109, 1492–1505, doi: 10.1103/PhysRev.109.1492
  • [2] Aizenman, M. & Sims, R. & Warzel, S. (2006), Stability of the absolutely continuous spectrum of random Schrödinger operators on tree graphs, Prob. Theor. Rel. Fields, 136, 363-394, doi: 10.1007/s00440-005-0486-8
  • [3] Aizenman, M. & Molchanov, S. (1993), Localization at large disorder and extreme energies: an elementary derivation, Commun. Math. Phys. 157, 245-278, doi: 10.1007/BF02099760
  • [4] Aizenman, M. & Warzel, S. (2013), Resonant delocalization for random Schrödinger operators on tree graphs, J. Eur. Math. Soc., 15 (4), 1167-1222, doi: 10.4171/JEMS/389
  • [5] Bourgain, J. & . Kenig, C. (2005) On localization in the continuous Anderson-Bernoulli model in higher dimension, Inv. Math., 161, 389-426, doi: 10.1007/s00222-004-0435-7
  • [6] Carmona, R. & Lacroix, J. (2013), Spectral theory of random Schrödinger operator, Boston: Birkhäuser.
  • [7] Carmona, R. & Klein, A. & Martinelli, F. (1987) Anderson localization for Bernoulli and other singular potentials, Commun. Math. Phys. 108, 41-66, doi: 10.1007/BF01210702
  • [8] Deift, P. & Killip, R. (1999) On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Communications in Mathematical Physics 203, 341-347, doi: 10.1007/s002200050615
  • [9] Froese R., & Hasler, D. & Spitzer, W. (2006), Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete Schrödinger operators on graphs, Journal of Functional Analysis 230, 184-221, doi:10.1016/j.jfa.2005.04.004
  • [10] Froese, R. & D. Hasler, D. & Spitzer, W. (2007), Absolutely continuous spectrum for the Anderson Model on a tree: A geometric proof of Klein’s Theorem, Communications in Mathematical Physics 269, 239-257, doi: 10.1007/s00220-006-0120-3
  • [11] Froese, R. & Hasler, D. & Spitzer, W. (2010) On the ac spectrum of one-dimensional random Schrödinger operators with matrix-valued potentials, Mathematical Physics Analysis and Geometry 13, 219-233, doi: 10.1007/s11040-010-9076-9
  • [12] Fröhlich, J. & Spencer, T. (1983) Absence of difusion in the Anderson tight binding model for large disorder or low energy, Communications in Mathematical Physics 88, 151-184, doi: 10.1007/BF01209475
  • [13] Germinet, F. & A. Klein (2001), Bootstrap multiscale analysis and localization in random media, Communications in Mathematical Physics 222, 415–448, doi: 10.1007/s002200100518
  • [14] Germinet, F. & Klein, A. (2013), A comprehensive proof of localization for continuous Anderson models with singular random potentials, Journal of the European Mathematical Society 15, 53–143, doi: 10.4171/JEMS/356
  • [15] Gol’dsheid, Y & Molchanov, S. & Pastur, L. (1977) Pure point spectrum of stochastic one dimensional Schrödinger operators, Funct. Anal. Appl. 11, 1-10, doi:10.1007/BF01135526
  • [16] Keller, M. & Lenz, D. & Warzel, S. (2012) Absolutely continuous spectrum for random operators on trees of finite cone type, J. D’ Analyse Math. 118, 363-396, doi: 10.1007/s11854-012-0040-4
  • [17] Kiselev, A. & Last, Y. & Simon, B. (1997), Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators, Communications in Mathematical Physics 194, 1-45, doi: 10.1007/s002200050346
  • [18] Klein, A. (1998), Extended states in the Anderson model on the Bethe lattice, Advances in Mathematics 133, 163-184, doi:10.1006/aima.1997.1688
  • [19] Klein, A. & Lacroix, J. & Speis A. (1990), Localization for the Anderson model on a strip with singular potentials, J. Funct. Anal. 94, 135-155, doi: 10.1016/0022-1236(90)90031-F
  • [20] Klein, A. & Sadel, C. (2012) Absolutely Continuous Spectrum for Random Schrödinger Operators on the Bethe Strip, Mathematische Nachrichten 285, 5-26, doi: 10.1002/mana.201100019
  • [21] Kunz, H. & Souillard, B. (1980) Sur le spectre des operateurs aux differences finies aleatoires, Commun. Math. Phys. 78, 201-246, doi:10.1007/bf01942371
  • [22] Last, Y. & Simon, B. (1999), Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Inventiones Mathematicae, 135(2), 329-367. doi:10.1007/s002220050288
  • [23] Li, L. (2020) Anderson-Bernoulli localization with large disorder on the 2D lattice, preprint, arXiv:2002.11580
  • [24] Li L. & Zhang, L. (2019) Anderson-Bernoulli Localization on the 3D lattice and discrete unique continuation principle, preprint, arXiv:1906.04350
  • [25] Sadel, C. (2011), Relations between transfer and scattering matrices in the presence of hyperbolic channels. Journal of Mathematical Physics, 52, 1235111, doi:10.1063/1.3669483
  • [26] Sadel, C. (2013), Absolutely continuous spectrum for random Schrödinger operators on tree-strips of finite cone type, Annales Henri Poincaré, 14, 737-773, doi: 10.1007/s00023-012-0203-y
  • [27] Sadel, C. (2014), Absolutely continuous spectrum for random Schrödinger operators on the Fibbonacci and similar tree-strips, Mathematical Physics Analysis and Geometry 17, 409-440, doi: 10.1007/s11040-014-9163-4
  • [28] Sadel, C. (2016) Anderson transition at two-dimensional growth rate on antitrees and spectral theory for operators with one propagating channel, Annales Henri Poincare 17, 1631-1675, doi: 10.1007/s00023-015-0456-3
  • [29] Sadel, C. (2018). Spectral theory of one-channel operators and application to absolutely continuous spectrum for Anderson type models. Journal of Functional Analysis, 274(8), 2205-2244. doi:10.1016/j.jfa.2018.01.017
  • [30] Sadel, C. (2021), Transfer matrices for discrete Hermitian operators and absolutely continuous spectrum, Journal of Functional Analysis, 281(8), published online doi:10.1016/j.jfa.2021.109151
  • [31] Sadel, C. & Virág, B. (2016). A Central Limit Theorem for Products of Random Matrices and GOE Statistics for the Anderson Model on Long Boxes. Communications in Mathematical Physics, 343(3), 881-919. doi:10.1007/s00220-016-2600-4
  • [32] Tautenhahn, M. (2011), Localization criteria for Anderson Models on locally finite graphs, Journal of Statistical Physics 144, 60-75, doi: 10.1007/s10955-011-0248-1