This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Absolute Constants of Koras-Russell-like threefolds

Guillermo Valdeon
(March 2025)
Abstract

This result generalizes a previous result established in [2] where the Absolute Constants of the Koras-Russell threefold was shown to be invariant under translates in the base field to the Absolute Constants of the Koras-Russell threefold being invariant under translates of any of its absolute invariants. It must be pointed out that there is no prior reason for the ring of Absolute Constants to be invariant under so general translates, but remains a possibility that it is part of a more general property of the Absolute Constants ring.

1 Introduction.

The Absolute Constants invariant together with the Koras-Russell threefold have been key in solving several conjectures in algebraic geometry. Now this work shows that at least for the Koras-Russell threefold the Absolute Constants invariant remains the same for any translate with respect to any of its invariants, hinting at possibly another general property of the Absolute Constants invariant that can help in its calculation over other affine curves.

2 Preliminary concepts and results.

This work presents the results of identifying the ring of absolute constants for translates over the Koras-Russell cubic threefold over its ring of absolute constants. Throughout this work, consider F,kF,k to be fields.

Notation 1.

RF,ηR_{F,\eta} denotes the domain F[X,Y,Z,T]X2Y+Z2+T3+η(X)\frac{F[X,Y,Z,T]}{X^{2}Y+Z^{2}+T^{3}+\eta(X)} for ηF[X]\eta\in F[X].

Remark 1.

AK(RF,η/F)F[x]\operatorname{AK}(R_{F,\eta}/F)\subseteq F[x] for all ηF[X]\eta\in F[X].

Proof.

Let ηF[X]\eta\in F[X] be such that η(X)=i=0nciXi\eta(X)=\sum_{i=0}^{n}c_{i}X^{i} for ciFc_{i}\in F. Consider a ring homomorphism ϕ1\phi_{1} as in [1], then ϕ1(x2y+z2+t3+η(x))=ϕ1(x2y+z2+t3+i=0ncixi)=ϕ1(i=0ncixi)+ϕ12(x)ϕ1(y)+ϕ12(z)+ϕ13(t)=i=0nciϕ1i(x)+x2(y+2zUx2U2)+(zx2U)2+t3=i=0ncixi+x2y+t3+2x2zUx4U2+z22x2zU+x4U2=η(x)+x2y+z2+t30\phi_{1}(x^{2}y+z^{2}+t^{3}+\eta(x))=\phi_{1}\left(x^{2}y+z^{2}+t^{3}+\sum_{i=0}^{n}c_{i}x^{i}\right)=\phi_{1}\left(\sum_{i=0}^{n}c_{i}x^{i}\right)+\phi_{1}^{2}(x)\phi_{1}(y)+\phi_{1}^{2}(z)+\phi_{1}^{3}(t)=\sum_{i=0}^{n}c_{i}\phi_{1}^{i}(x)+x^{2}(y+2zU-x^{2}U^{2})+(z-x^{2}U)^{2}+t^{3}=\sum_{i=0}^{n}c_{i}x^{i}+x^{2}y+t^{3}+2x^{2}zU-x^{4}U^{2}+z^{2}-2x^{2}zU+x^{4}U^{2}=\eta(x)+x^{2}y+z^{2}+t^{3}\cong 0; hence, ϕ1\phi_{1} is a well-defined ring homomorphism, so it has an associated locally finite higher derivation DD. Just as in [2], DD is iterative over Rk,ηR_{k,\eta}; and hence, ϕ1\phi_{1} is an exponential function of RF,η/FR_{F,\eta}/F. Only xx and tt are fixed by ϕ1\phi_{1} and RFηR_{F\eta} is a domain, so the ring of ϕ1\phi_{1}-invariants is F[x,t]F[x,t]. Then AK(RF,η/F)F[x,t]\operatorname{AK}(R_{F,\eta}/F)\subseteq F[x,t].
Again consider, ϕ2:RFRF[U]\phi_{2}\colon R_{F}\rightarrow R_{F}[U] as in [1], then ϕ2(η(x)+x2y+z2+t3)=ϕ2(η(x))+ϕ22(x)ϕ2(y)+ϕ22(z)+ϕ23(t)+ϕ2(i=0ncixi)=i=0nciϕ2i(x)+x2(y+3t2U3x2tU2+x4U3)+z2+(tx2U)3=i=0ncixi+x2y+z2+3x2t2U3x4tU2+x6U2+t33x2t2U+3x4tU2x6U3=η(x)+x2y+z2+t30\phi_{2}(\eta(x)+x^{2}y+z^{2}+t^{3})=\phi_{2}(\eta(x))+\phi_{2}^{2}(x)\phi_{2}(y)+\phi_{2}^{2}(z)+\phi_{2}^{3}(t)+\phi_{2}\left(\sum_{i=0}^{n}c_{i}x^{i}\right)=\sum_{i=0}^{n}c_{i}\phi_{2}^{i}(x)+x^{2}(y+3t^{2}U-3x^{2}tU^{2}+x^{4}U^{3})+z^{2}+(t-x^{2}U)^{3}=\sum_{i=0}^{n}c_{i}x^{i}+x^{2}y+z^{2}+3x^{2}t^{2}U-3x^{4}tU^{2}+x^{6}U^{2}+t^{3}-3x^{2}t^{2}U+3x^{4}tU^{2}-x^{6}U^{3}=\eta(x)+x^{2}y+z^{2}+t^{3}\cong 0; hence, ϕ2\phi_{2} is a well-defined ring homomorphism, so it has an associated locally finite higher derivation DD. DD is iterative over Rk,ηR_{k,\eta}; and hence, ϕ2\phi_{2} is an exponential function. The ring of ϕ2\phi_{2}-invariants is F[x,z]F[x,z]. Therefore, AK(RF,η/F)F[x,z]F[x,t]=F[x]\operatorname{AK}(R_{F,\eta}/F)\subseteq F[x,z]\cap F[x,t]=F[x]. ∎

Observation 1.

Consider indeterminates X,Y,Z,TX,Y,Z,T, B:=k[X,Y,Z,T]B:=k[X,Y,Z,T], ckc\in k and ηck[X]\eta_{c}\in k[X] such that the indepentent coefficient of ηc\eta_{c} is cc, let IηcI_{\eta_{c}}, JcJ_{c} be the ideals of BB generated by fηc:=X2Y+Z2+T3+ηc(X)f_{\eta_{c}}:=X^{2}Y+Z^{2}+T^{3}+\eta_{c}(X), and fc=X2Y+Z2+T3+cBf_{c}=X^{2}Y+Z^{2}+T^{3}+c\in B respectively. Let Rηc:=B/IηcR_{\eta_{c}}:=B/I_{\eta_{c}}, and Sc:=B/JcS_{c}:=B/J_{c}. IηcI_{\eta_{c}}, JcJ_{c} are prime ideals of BB for all ckc\in k and ηck[X]\eta_{c}\in k[X] because they are linear in YY. Let xηc,yηc,zηc,tηcRηcx_{\eta_{c}},y_{\eta_{c}},z_{\eta_{c}},t_{\eta_{c}}\in R_{\eta_{c}} denote the images of X,Y,Z,TBX,Y,Z,T\in B under the canonical map BRηcB\rightarrow R_{\eta_{c}}. Let Ξ(xc),Ξ(yc),Ξ(zc),Ξ(tc)Sc\Xi(x_{c}),\Xi(y_{c}),\Xi(z_{c}),\Xi(t_{c})\in S_{c} denote the images of X,Y,Z,TBX,Y,Z,T\in B under the canonical map BScB\rightarrow S_{c}. Note that according to the given notation RXR_{X} is the Koras-Russell threefold discussed in [1].

Definition 1.

Let ω1\omega_{1} be the grading {Bm}m\{B_{m}\}_{m\in\mathbb{Z}} on BB such that for mm\in\mathbb{Z}, Bm={Xi1Yi2Zi3Ti4|i1+2i2=m}B_{m}=\{X^{i_{1}}Y^{i_{2}}Z^{i_{3}}T^{i_{4}}\,|\,-i_{1}+2i_{2}=m\}. Also, let Rm,ηcR_{m,\eta_{c}} be the image of BmB_{m} under the canonical map BRηcB\rightarrow R_{\eta_{c}} and let 1:={imRi,ηc}m\mathcal{F}_{1}:=\left\{\cup_{i\leq m}R_{i,\eta_{c}}\right\}_{m\in\mathbb{Z}}.

Definition 2.

Let ω2\omega_{2} be the grading {Bm}m\{B_{m}\}_{m\in\mathbb{Z}} on BB such that for mm\in\mathbb{Z}, Bm={Xi1Yi2Zi3Ti4| 6i16i2+3i3+2i4=m}B_{m}=\{X^{i_{1}}Y^{i_{2}}Z^{i_{3}}T^{i_{4}}\,|\,6i_{1}-6i_{2}+3i_{3}+2i_{4}=m\}. Also, let Sm,cS_{m,c} be the image of BmB_{m} under the canonical map BScB\rightarrow S_{c} and let 2:={imSi,c}m\mathcal{F}_{2}:=\{\cup_{i\leq m}S_{i,c}\}_{m\in\mathbb{Z}}.

Lemma 0.1.

With the above notation, the following holds for all ckc\in k.

  1. 1.

    1\mathcal{F}_{1} is a degree filtration on RηcR_{\eta_{c}} having its associated graded ring naturally kk-isomorphic to ScS_{c}.

  2. 2.

    2\mathcal{F}_{2} is a degree filtration on ScS_{c} having its associated graded ring naturally kk-isomorphic to S0S_{0}.

  3. 3.

    ω2\omega_{2} induces a \mathbb{Z}-grading on S0S_{0} and an \mathbb{N}-grading on k[Ξ(z0),Ξ(t0)]k[\Xi(z_{0}),\Xi(t_{0})].

Proof.
  1. 1.

    Under ω1\omega_{1}, the leading form of fηcf_{\eta_{c}} is fcf_{c} a grade 0 homogeneous polynomial over the grading ω1\omega_{1}. Since fcf_{c} is a prime element of BB for all ckc\in k, 1\mathcal{F}_{1} is a degree filtration on RηcR_{\eta_{c}}. Identifying the 1\mathcal{F}_{1}-leading forms of xηc,yηc,zηc,tηcRηcx_{\eta_{c}},y_{\eta_{c}},z_{\eta_{c}},t_{\eta_{c}}\in R_{\eta_{c}} with Ξ(xc),Ξ(yc),Ξ(zc),Ξ(tc)Sc\Xi(x_{c}),\Xi(y_{c}),\Xi(z_{c}),\Xi(t_{c})\in S_{c} respectively, yields a natural kk-isomorphism of the associated graded ring of 1\mathcal{F}_{1} onto the integral domain ScS_{c}.

  2. 2.

    Under ω2\omega_{2}, the leading form of fcf_{c} is f0f_{0} a grade 66 homogeneous polynomial over the grading ω2\omega_{2}. Since f0f_{0} is a prime element of BB for all ckc\in k, 2\mathcal{F}_{2} is a degree filtration on ScS_{c}. Identifying the 2\mathcal{F}_{2}-leading forms of Ξ(xc),Ξ(yc),Ξ(zc),Ξ(tc)Sc\Xi(x_{c}),\Xi(y_{c}),\Xi(z_{c}),\Xi(t_{c})\in S_{c} with Ξ(x0),Ξ(y0),Ξ(z0),Ξ(t0)S0\Xi(x_{0}),\Xi(y_{0}),\Xi(z_{0}),\Xi(t_{0})\in S_{0} respectively, yields a natural kk-isomorphism of the associated graded ring of 2\mathcal{F}_{2} onto the integral domain S0S_{0}.

  3. 3.

    Finally, since f0f_{0} is homogeneous under ω1\omega_{1}, and ω2\omega_{2}; it induces a \mathbb{Z}-grading on S0S_{0} and clearly, induces an \mathbb{N}-grading on the subring k[Ξ(z0),Ξ(t0)]k[\Xi(z_{0}),\Xi(t_{0})].

Lemma 0.2.

Let A:=B/NA:=B/N where NN is a prime ideal of BB generated by Q:=X2Y+gQ:=X^{2}Y+g where gk[X,Z,T]g\in k[X,Z,T]. Let x,y,z,tAx,y,z,t\in A denote the images of X,Y,Z,TX,Y,Z,T under the canonical map BAB\rightarrow A. If 0pA0\neq p\in A, then there exist ε(p)\varepsilon(p)\in\mathbb{N}, uju_{j}, vjk[z,t]v_{j}\in k[z,t] for 1jε(p)1\leq j\leq\varepsilon(p) and hk[x,z,t]h\in k[x,z,t] such that p=h+j=1ε(p)(ujx+vj)yjp=h+\sum_{j=1}^{\varepsilon(p)}(u_{j}x+v_{j})y^{j} where (uε(p),vε(p))(0,0)(u_{\varepsilon(p)},v_{\varepsilon(p)})\neq(0,0).

Proof.

Clearly A=k[x,y,z,t]A=k[x,y,z,t]. Consider a product αyiA\alpha y^{i}\in A where 1i1\leq i\in\mathbb{N} and αk[x,z,t]\alpha\in k[x,z,t]. Then α=βx2+ux+v\alpha=\beta x^{2}+ux+v for some βk[x,z,t]\beta\in k[x,z,t], u,vk[z,t]u,v\in k[z,t]. Since x2y=gk[x,z,t]x^{2}y=-g\in k[x,z,t], so αyi=(ux+v)yi+γyi1\alpha y^{i}=(ux+v)y^{i}+\gamma y^{i-1} where γ:=gβk[x,z,t]\gamma:=-g\beta\in k[x,z,t]. Now the assertion readily follows by linearity. ∎

3 Main Result.

Theorem 1.

Fix ckc\in k, and ηck[X]\eta_{c}\in k[X] let R:=RηcR:=R_{\eta_{c}} and let ϕExp(R/k)\phi\in\operatorname{Exp}(R/k). If RϕRR^{\phi}\neq R, then k[x]Rϕk[x,z,t]k[x]\subseteq R^{\phi}\subseteq k[x,z,t].

Proof.

Fix ckc\in k and ηck[X]\eta_{c}\in k[X]. Let S:=Sc,x:=xc,y:=yc,z:=zc,t:=tcS:=S_{c},x:=x_{c},y:=y_{c},z:=z_{c},t:=t_{c} By (i) of 0.1. 1\mathcal{F}_{1} is a degree filtration on RR. Let δ\delta denote the corresponding degree function on RR. Suppose, if possible, Rϕk[x,z,t]R^{\phi}\setminus{k[x,z,t]}\neq\emptyset. Let pRϕk[x,z,t]p\in R^{\phi}\setminus{k[x,z,t]}. Applying 0.2, there are ε(p)\varepsilon(p)\in\mathbb{N}, uj,vj,k[z,t]u_{j},v_{j},\in k[z,t] for 1jε(p)1\leq j\leq\varepsilon(p) and hk[x,z,t]h\in k[x,z,t] such that p=h+j=1ε(p)(ujx+vj)yjp=h+\sum_{j=1}^{\varepsilon(p)}(u_{j}x+v_{j})y^{j} where (uε(p),vε(p))(0,0)(u_{\varepsilon(p)},v_{\varepsilon(p)})\neq(0,0). Our choice of pp forces ε(p)1\varepsilon(p)\geq 1. Let m:=ε(p)m:=\varepsilon(p), u:=umu:=u_{m} and v:=vmv:=v_{m}. Note that δ((ux+v)ym)=2m\delta((ux+v)y^{m})=2m if v0v\neq 0 and δ((ux+v)ym)=2m1\delta((ux+v)y^{m})=2m-1 otherwise. Since δ((ujx+vj)yj)2j2m2\delta((u_{j}x+v_{j})y^{j})\leq 2j\leq 2m-2 for 0j<m0\leq j<m, then δ((ux+v)ym)=δ(p)1\delta((ux+v)y^{m})=\delta(p)\geq 1. So, the 1\mathcal{F}_{1}-leading form Ξ(p)S\Xi(p)\in S of pp is either Ξ(u)x¯y¯m\Xi(u)\bar{x}\bar{y}^{m} or Ξ(v)y¯m\Xi(v)\bar{y}^{m} where Ξ(u),Ξ(v)\Xi(u),\Xi(v) denote the leading forms of u,vu,v respectively. Ξ(u),Ξ(v)k[z¯,t¯]\Xi(u),\Xi(v)\in k[\bar{z},\bar{t}]. It is claimed there is pRϕp\in R^{\phi} such that Ξ(p)\Xi(p) is either Ξ(u)x¯y¯m\Xi(u)\bar{x}\bar{y}^{m} or Ξ(v)y¯m\Xi(v)\bar{y}^{m} with mm\in\mathbb{N} and Ξ(v)k[z¯,t¯]k\Xi(v)\in k[\bar{z},\bar{t}]\setminus{k}. Supposing otherwise, i.e. supposing Ξ(p)=Ξ(v)y¯m\Xi(p)=\Xi(v)\bar{y}^{m} with 0Ξ(v)k0\neq\Xi(v)\in k for all 0pRϕ0\neq p\in R^{\phi}, derives to a contradiction.

First suppose there is vRϕk[x,z,t]kv\in R^{\phi}\cap k[x,z,t]\setminus{k}. Say v=v0+i1vixiv=v_{0}+\sum_{i\geq 1}v_{i}x^{i} where vik[z,t]v_{i}\in k[z,t] for i0i\geq 0. If v0k[z,t]kv_{0}\in k[z,t]\setminus{k}, then clearly Ξ(v)=Ξ(v0)k[z¯,t¯]k\Xi(v)=\Xi(v_{0})\in k[\bar{z},\bar{t}]\setminus{k} contrary to our supposition. If v0kv_{0}\in k, then 0vv0Rϕ0\neq v-v_{0}\in R^{\phi} and since RϕR^{\phi} is factorially closed, xRϕx\in R^{\phi}. But then, Ξ(x)=Ξ(1)x¯y¯0\Xi(x)=\Xi(1)\bar{x}\bar{y}^{0} contrary to our supposition above. Hence Rϕk[x,z,t]=kR^{\phi}\cap k[x,z,t]=k. Then, for ε(p)\varepsilon(p) and vv from the expression of pp above, ε(p)1\varepsilon(p)\geq 1 and 0vk0\neq v\in k, for all 0pRϕ0\neq p\in R^{\phi}. In particular, for each pRϕkp\in R^{\phi}\setminus{k}, δ(p)=2ε(p)2\delta(p)=2\varepsilon(p)\geq 2. Since the transcendence degree of RR over RϕR^{\phi} is 11, the elements z,tRz,t\in R must be algebraically dependent over RϕR^{\phi}. Let U,VU,V be indeterminates and 0PRϕ[U,V]0\neq P\in R^{\phi}[U,V] be such that P(z,t)=0P(z,t)=0. The polynomial PP is all not in k[U,V]k[U,V] since z,tz,t are algebraically independent over kk. Let P(U,V)=p(i,j)UiVjP(U,V)=\sum p(i,j)U^{i}V^{j} with p(i,j)Rϕp(i,j)\in R^{\phi} for all i,ji,j. Then, there is at least one i,ji,j such that p(i,j)p(i,j) is not in kk and hence δ(p(i,j))2\delta(p(i,j))\geq 2. Partition suppt(P):={(i,j)|p(i,j)0}\textit{suppt}(P):=\{(i,j)\,|\,p(i,j)\neq 0\} into sets M,MM,M^{{}^{\prime}} such that δ(p(i,j))=2n:=max{δ(p(i,j))suppt(P)}\delta(p(i,j))=2n:=\max\{\delta(p(i,j))\in\textit{suppt}(P)\} for all (i,j)M(i,j)\in M and δ(p(i,j))<2n\delta(p(i,j))<2n for all (i,j)M(i,j)\in M^{{}^{\prime}}. A straightforward verification shows that P(U,V)+(i,j)MMp(i,j)UiVj=P(U,V)=μ(U,V)yn+η(U,V)xyn+r=1nνr(U,V)ynrP^{{}^{\prime}}(U,V)+\sum_{(i,j)\in M\setminus{M^{{}^{\prime}}}}p(i,j)U^{i}V^{j}=P(U,V)=\mu(U,V)y^{n}+\eta(U,V)xy^{n}+\sum_{r=1}^{n}\nu_{r}(U,V)y^{n-r} where 0μ(U,V)k[U,V]0\neq\mu(U,V)\in k[U,V], η(U,V)k[z,t][U,V]\eta(U,V)\in k[z,t][U,V], P(U,V):=(i,j)Mp(i,j)UiVjP^{{}^{\prime}}(U,V):=\sum_{(i,j)\in M^{{}^{\prime}}}p(i,j)U^{i}V^{j}, and for 1rn1\leq r\leq n, νr(U,V)k[x,z,t][U,V]\nu_{r}(U,V)\in k[x,z,t][U,V].

Now P(z,t)=0P(z,t)=0 and since z,tz,t are algebraically independent over kk, μ(z,t)0\mu(z,t)\neq 0. So,

0μ(z,t)yn=η(z,t)xynr=1nνr(z,t)ynrP(z,t)0\neq\mu(z,t)y^{n}=-\eta(z,t)xy^{n}-\sum_{r=1}^{n}\nu_{r}(z,t)y^{n-r}-P^{{}^{\prime}}(z,t).

This is absurd since δ(RHS)<2n\delta(RHS)<2n whereas δ(μ(z,t)yn)=2n\delta(\mu(z,t)y^{n})=2n. In conclusion, there is pRϕp\in R^{\phi} such that Ξ(p)\Xi(p) is either Ξ(u)x¯y¯m\Xi(u)\bar{x}\bar{y}^{m} or Ξ(v)y¯m\Xi(v)\bar{y}^{m} with mm\in\mathbb{N} and Ξ(v)k[z¯,t¯]k\Xi(v)\in k[\bar{z},\bar{t}]\setminus{k}.

Next, let ϕ¯Exp(S/k)\bar{\phi}\in\operatorname{Exp}(S/k) be the nontrivial grade-preserving exponential map induced by ϕ\phi. The, for pRϕk[x,z,t]p\in R^{\phi}\setminus{k[x,z,t]}, so Ξ(p)Sϕ¯\Xi(p)\in S^{\bar{\phi}} and either Ξ(p)=Ξ(u)x¯y¯m\Xi(p)=\Xi(u)\bar{x}\bar{y}^{m} or Ξ(v)y¯m\Xi(v)\bar{y}^{m} for some positive integer mm. Since Sϕ¯S^{\bar{\phi}} is factorially closed in SS, surely y¯Sϕ¯\bar{y}\in S^{\bar{\phi}}. Furthermore, let pRϕp\in R^{\phi} such that either Ξ(p)=Ξ(u)x¯y¯m\Xi(p)=\Xi(u)\bar{x}\bar{y}^{m} or Ξ(p)=Ξ(v)y¯m\Xi(p)=\Xi(v)\bar{y}^{m} with m0m\geq 0 and Ξ(v)k[z¯,t¯]k\Xi(v)\in k[\bar{z},\bar{t}]\setminus{k}. It readily follows that either x¯Sϕ¯\bar{x}\in S^{\bar{\phi}} or Ξ(v)Sϕ¯k\Xi(v)\in S^{\bar{\phi}}\setminus{k}. Therefore either k[x¯,y¯]Sϕ¯k[\bar{x},\bar{y}]\subseteq S^{\bar{\phi}} or k[z¯,t¯]Sϕ¯kk[\bar{z},\bar{t}]\subseteq S^{\bar{\phi}}\neq k. Neither of these is a possibility in view of Lemma 4.0.4 and Theorem 4.1 of [2]. Thus Rϕk[x,z,t]R^{\phi}\subseteq k[x,z,t].

Lastly, suppose xx is not in RϕR^{\phi}. Let q,hRϕk[x,z,t]q,h\in R^{\phi}\subseteq k[x,z,t] be algebraically independent over kk. Then, q=q1x+q2q=q_{1}x+q_{2}, h=h1x+h2h=h_{1}x+h_{2} for q1,h1k[x,z,t]q_{1},h_{1}\in k[x,z,t] and q2,h2k[z,t]q_{2},h_{2}\in k[z,t]. If there is 0ρ(X,Y)k[X,Y]0\neq\rho(X,Y)\in k[X,Y] with ρ(q2,h2)=0\rho(q_{2},h_{2})=0, then ρ(q,h)=xσ\rho(q,h)=x\sigma for some σk[x,z,t]\sigma\in k[x,z,t] and that forces x,σRϕx,\sigma\in R^{\phi} contradicting our supposition. So, q2,h2q_{2},h_{2} are algebraically independent over kk. Furthermore, letting ϕ¯Exp(S/k)\bar{\phi}\in\operatorname{Exp}(S/k) denote the nontrivial grade-preserving exponential map induced by ϕ\phi, then k[Ξ(q),Ξ(h)]Sϕ¯k[\Xi(q),\Xi(h)]\subseteq S^{\bar{\phi}}. Now the elements z¯,t¯\bar{z},\bar{t} of SS both are algebraic over k[Ξ(q),Ξ(h)]k[\Xi(q),\Xi(h)] and also algebraic over Sϕ¯S^{\bar{\phi}}. Since Sϕ¯S^{\bar{\phi}} is algebraically closed in SS, so k[z¯,t¯]Sϕ¯k[\bar{z},\bar{t}]\subseteq S^{\bar{\phi}}. Now the equation x¯2y¯=z¯2t¯3c\bar{x}^{2}\bar{y}=-\bar{z}^{2}-\bar{t}^{3}-c allows us to conclude that each of x¯,y¯\bar{x},\bar{y} is also in Sϕ¯S^{\bar{\phi}}. Consequently, S=k[x¯,y¯,z¯,t¯]Sϕ¯S=k[\bar{x},\bar{y},\bar{z},\bar{t}]\subseteq S^{\bar{\phi}}, i.e., Sϕ¯=SS^{\bar{\phi}}=S. This is absurd since ϕ¯\bar{\phi} is nontrivial. Hence k[x]Rϕk[x]\subseteq R^{\phi}. ∎

Observation 2.

The previous result states that AK(RF,η)=F[x]\operatorname{AK}(R_{F,\eta})=F[x] for all ηF[X]AK(R0)\eta\in F[X]\cong\operatorname{AK}(R_{0}). So, for RF,0R_{F,0} it is obtained that its absolute constants is invariant under translates from its elements.

4 Questions for future research.

It remains for future research the question of how general is the invariance of the absolute constants ring with respect to translates.

References

  • [1] A. Crachiola. The hypersurface x+x2y+z2+t3=0x+x^{2}y+z^{2}+t^{3}=0 over a field of arbitrary characteristic. Proceedings of The American Mathematical Society, 134(5), 2005.
  • [2] G. Valdeon. Absolute Constants of the translates of the Koras-Russell threefold. PhD thesis, University of Tennessee at Knoxville, 2024.