This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A virtual element method for the elasticity problem allowing small edges

Danilo Amigo GIMNAP-Departamento de Matemática, Universidad del Bío - Bío, Casilla 5-C, Concepción, Chile. [email protected] Felipe Lepe GIMNAP-Departamento de Matemática, Universidad del Bío - Bío, Casilla 5-C, Concepción, Chile. [email protected]  and  Gonzalo Rivera Departamento de Ciencias Exactas, Universidad de Los Lagos, Casilla 933, Osorno, Chile. [email protected]
Abstract.

In this paper we analyze a virtual element method for the two dimensional elasticity problem allowing small edges. With this approach, the classic assumptions on the geometrical features of the polygonal meshes can be relaxed. In particular, we consider only star-shaped polygons for the meshes. Suitable error estimates are presented, where a rigorous analysis on the influence of the Lamé constants in each estimate is presented. We report numerical tests to assess the performance of the method.

Key words and phrases:
Elasticity equations, eigenvalue problems, error estimates
2000 Mathematics Subject Classification:
Primary 35J25, 65N15, 65N30, 65N12,74B05, 76M10
The first and second authors were partially supported by DIUBB through project 2120173 GI/C Universidad del Bío-Bío and ANID-Chile through FONDECYT project 11200529 (Chile).
The third author was partially supported by Universidad de Los Lagos through regular project R02/21.

1. Introduction

The virtual element method (VEM) is a numerical approach that has taken relevance in the community of numerical analysis in the nowadays, since t allows to approximate the solutions of partial differential equations with accuracy together with a computational implementation that results to be easy to handle. Moreover, the flexibility of this method on the geometrical assumptions on the elements of the meshes, which permits arbitrary polygonal elements such as convex and nonconvex polygons, and hanging nodes, that are not allowed in the finite element approach, just for mention the most relevant. These considerations, lead the VEM to be a suitable alternative to approximate physical phenomenons that the standard finite element method is not possible to consider, such as domains with fractures, cuspids, holes, etc. A full treatment of the basic elements of the VEM is available in [6, 7].

In recent years, different studies have been carried out that demonstrate the good performance of VEM on problems of different natute, such as evolutionary problems, spectral problems, nonlinear problems, among others. For a better knowledge of the recent state of art we resort to [2]. Now, in the continuous advance in the research of virtual methods, a new approach has been developed that allows the use of even more general and flexible meshes. This new approach for the VEM is now related to consider small edges for the polygonal elements on the meshes, as is presented in [8, 10, 12]. More precisely, depending on the regularity of the solution of the partial differential equations, is possible to only consider star shaped polygonal elements, or a bounded number of edges for the polygons. In both cases these assumptions are enough to allow sufficiently small sides on the elements. To make matter precise, in [8] the authors have developed this new strategy considering the Laplace operator in two dimensions, whereas in [10] have been capable to extend the ideas for three dimensions, proving that VEM with small edges also works when more complicated domains are considered.

The aim now is to analyze the performance of the VEM with small edges in other contexts, in fact, this research is in ongoing progress. For instance, in [17] an application of this new approach in eigenvalue problems has shown the accuracy of the approximation of the spectrum for the Steklov eigenvalue problem, in [24] for elliptic interface problems, [14] for three dimensional problems considering polytopal meshes, etc.

In the present paper, our contribution is to apply the methodology of small edges for the two dimensional linear elasticity problem. The bibliography related to numerical methods to approximate the displacement of some elastic structure is abundant, where different method as been proposed, as [5, 11, 13, 15, 18, 19, 25], where mixed finite element methods, mixed virtual element methods, stabilized methods, discontinuous Galerkin methods, just for mention some of them, have been considered. Regarding the study of VEM applied to elasticity problems, we can cite the following works [3, 4, 20, 22, 23, 26, 27]. In particular, a VEM for the primal formulation of the elasticity eigenvalue problem as been proposed in [20], where the proposed virtual spaces on this reference are a suitable alternative for the load problem. These virtual spaces for the elasticity equations, together with the small edges approach, are the core of our contribution.

In our paper, we are interested in the primal formulation of the linear elasticity equations with vanishing Dirichlet boundary condition. This boundary condition is needed for our purposes, since lead to the precise regularity that the small edges approach needs to be performed.

It is well known that the primal formulation for linear elasticity leads to the so called locking phenomenon when finite element families to discretize H1\mathrm{H}^{1} are implemented, which not occurs when mixed formulations are considered. This locking is due to the effects of the Poisson ratio, which we denote by ν\nu, on the computation of the Lamé coefficient λS\lambda_{S}: if ν\nu tends to 1/21/2, then λS\lambda_{S} goes to infinity. Then, it is important to have a correct control and knowledge on the constants that appear on the estimates when the mathematical analysis is performed. Moreover, the numerical tests that we will present lead to the conclusion that, regardless of the family of polygonal mesh under consideration, the convergence errors are not deteriorated; however, when ν\nu tends to 1/21/2, the deterioration of the error curves is observed.

With this consideration, for the small edges approach we need to take care on this Lamé coefficient as with any other family of elements that discretizes H1\mathrm{H}^{1}. Moreover, the small edges approach that we will consider to run the analysis is based in the results of [10]. Hence, we need to adapt the theory, already available for the Laplace operator, for the elasticity operator. This obligates to have a spacial treatment on this context due the Lamé constants, specially λS\lambda_{S}.

The outline of this manuscript is as follows. In Section 2 the model problem that we consider in our paper, summarizing the results that are needed along our studies, together with definitions and notations to develop the mathematical analysis. The core of our manuscript is contained in Section 3, where we introduce the virtual element method of our interest. Under the assumption that the meshes allow small edges for the elements, we prove a series of technical results that are needed for the elasticity operator. These results contain important information related to how the physical parameters, inherent on the linear elasticity equations, are involved on the estimates associated to projections, interpolant operators and error estimates, among others. Finally, in Section 4, we report numerical tests, that illustrate the theory and exhibit the performance of the proposed method.

2. The model problem

Let Ω2\Omega\subset\mathbb{R}^{2} be a convex, bounded, and open Lipschitz domain with boundary Ω\partial\Omega. The linear elasticity problem is as follows

(2.1) {div(𝝈(u))=ϱfinΩ,u=𝟎onΩ,\left\{\begin{array}[]{cccc}\textbf{div}(\boldsymbol{\sigma}(\textbf{u}))&=&-\varrho\textbf{f}\quad\text{in}\;\Omega,\\ \textbf{u}&=&\boldsymbol{0}\quad\text{on}\;\partial\Omega,\end{array}\right.

where u represents the displacement of the solid, f is an external load, ϱ\varrho represents the density of the material that we assume constant, 𝜺\boldsymbol{\varepsilon} represents the strain tensor, and 𝝈\boldsymbol{\sigma} is the Cauchy tensor. The strain and Cauchy tensors are related through the operator 𝓒\boldsymbol{\mathcal{C}}, where 𝝈(u)=𝓒𝜺(u)\boldsymbol{\sigma}(\textbf{u})=\boldsymbol{\mathcal{C}}\boldsymbol{\varepsilon}(\textbf{u}) and, which according to Hooke’s law, 𝓒\boldsymbol{\mathcal{C}} is defined by

𝓒𝝉:=2μS𝝉+λStr(𝝉)𝕀,\boldsymbol{\mathcal{C}}\boldsymbol{\tau}:=2\mu_{S}\boldsymbol{\tau}+\lambda_{S}\text{tr}(\boldsymbol{\tau})\mathbb{I},

where 𝕀2×2\mathbb{I}\in\mathbb{R}^{2\times 2} is the identity matrix, and μS\mu_{S} and λS\lambda_{S} are the Lamé coefficients defined by

μS=E2(1+ν)andλS=Eν(1+ν)(12ν),\mu_{S}=\dfrac{E}{2(1+\nu)}\quad\text{and}\quad\lambda_{S}=\dfrac{E\nu}{(1+\nu)(1-2\nu)},

where EE is the Young’s modulus and ν\nu is the Poisson ratio. Let us remark that when ν1/2\nu\rightarrow 1/2, then λS\lambda_{S}\rightarrow\infty, which is an important issue that we need to take in consideration for our purposes. The variational formulation of (2.1) is the following: Given fL2(Ω)\textbf{f}\in\textbf{L}^{2}(\Omega), find uH01(Ω)\textbf{u}\in\textbf{H}_{0}^{1}(\Omega) such that

(2.2) Ω𝝈(u):𝜺(v)=ΩϱfvvH01(Ω).\displaystyle{\int_{\Omega}}\boldsymbol{\sigma}(\textbf{u}):\boldsymbol{\varepsilon}(\textbf{v})=\displaystyle{\int_{\Omega}\varrho\textbf{f}\cdot\textbf{v}}\quad\forall\;\textbf{v}\in\textbf{H}^{1}_{0}(\Omega).

Let us define the symmetric and continuous bilinear form

(2.3) a:H01(Ω)×H01(Ω),a(w,v):=Ω𝝈(w):𝜺(v)w,vH01(Ω).a:\textbf{H}_{0}^{1}(\Omega)\times\textbf{H}_{0}^{1}(\Omega)\longrightarrow\mathbb{R},\quad a(\textbf{w},\textbf{v}):=\displaystyle{\int_{\Omega}}\boldsymbol{\sigma}(\textbf{w}):\boldsymbol{\varepsilon}(\textbf{v})\quad\forall\textbf{w},\textbf{v}\in\textbf{H}_{0}^{1}(\Omega).

and the linear functional

(2.4) F:H01(Ω),F(v):=ΩϱfvvH01(Ω).F:\textbf{H}_{0}^{1}(\Omega)\longrightarrow\mathbb{R},\quad F(\textbf{v}):=\displaystyle{\int_{\Omega}\varrho\textbf{f}\cdot\textbf{v}}\quad\forall\textbf{v}\in\textbf{H}_{0}^{1}(\Omega).

Note that |a(w,v)|max{λS,μS}w1,Ωv1,Ω|a(\textbf{w},\textbf{v})|\lesssim\max\{\lambda_{S},\mu_{S}\}\|\textbf{w}\|_{1,\Omega}\|\textbf{v}\|_{1,\Omega}, and F(v)ϱf0,Ωv1,ΩF(\textbf{v})\leq\varrho\|\textbf{f}\|_{0,\Omega}\|\textbf{v}\|_{1,\Omega}, proving that a(,)a(\cdot,\cdot) and F()F(\cdot) are bounded. Now, with (2.3) and (2.4) at hand, we rewrite (2.2) as follows

Problem 1.

Given fL2(Ω)\textbf{f}\in\textbf{L}^{2}(\Omega), find uH01(Ω)\textbf{u}\in\textbf{H}_{0}^{1}(\Omega) such that

a(u,v)=F(v),vH01(Ω).a(\textbf{u},\textbf{v})=F(\textbf{v}),\quad\forall\;\textbf{v}\in\textbf{H}_{0}^{1}(\Omega).

From Korn’s inequality and Lax-Milgram’s lemma we have that Problem 1 is well posed and its solution satisfies u1,Ω1C^f0,Ω\|\textbf{u}\|_{1,\Omega}\leq\dfrac{1}{\widehat{C}}\|\textbf{f}\|_{0,\Omega}, where C^>0\widehat{C}>0 is independent of λS\lambda_{S}. Moreover, from [16], the following regularity holds.

Lemma 2.1.

For every fL2(Ω)\textbf{f}\in\textbf{L}^{2}(\Omega), the solution of Problem 1 is such that uH2(Ω)\textbf{u}\in\textbf{H}^{2}(\Omega). Moreover, there exists C>0C>0 such that u2,ΩCf0,Ω\|\textbf{u}\|_{2,\Omega}\leq C\|\textbf{f}\|_{0,\Omega}.

3. The virtual element method

In the present section we introduce the virtual element method that we consider to approximate the solution of Problem 1. To do this task, we will consider a more relaxed conditions compared with those introduced in [6] for the classic VEM, where there is no possible to assume more general polygonal meshes allowing arbitrary edges, more precisely, small edges. Hence, and inspired in [8], if {𝒯h}h>0\{\mathcal{T}_{h}\}_{h>0} represents a family of polygonal meshes to discretize Ω\Omega, E𝒯hE\in{\mathcal{T}}_{h} is an arbitrary element of the mesh, and h:=maxE𝒯hhEh:=\underset{E\in\mathcal{T}_{h}}{\max}\;h_{E} represents the mesh size. On the other hand, let a,b\texttt{a},\texttt{b}\in\mathbb{R}. If aCb\texttt{a}\leq C\texttt{b} and bCa\texttt{b}\leq C\texttt{a} with C+C\in\mathbb{R}^{+}, we define the relation ab\texttt{a}\simeq\texttt{b}. Then, from now and on, we will assume that for E𝒯hE\in{\mathcal{T}}_{h}, there holds that |E|hE2|E|\simeq h_{E}^{2} and |E|hE|\partial E|\simeq h_{E}.

Let us assume the following assumption on 𝒯h{\mathcal{T}}_{h}:

  • A1.

    There exists γ+\gamma\in\mathbb{R}^{+} such that each polygon E{𝒯h}h>0E\in\{\mathcal{T}_{h}\}_{h>0} is star-shaped with respect to a ball BEB_{E} with center xE\textbf{x}_{E} and radius ρEγhE\rho_{E}\geq\gamma h_{E}.

We denote by NN the number of vertices of 𝒯h\mathcal{T}_{h}.

Let us write the bilinear form a(,)a(\cdot,\cdot) and the functional F()F(\cdot) as follows

a(w,v)=E𝒯haE(w,v)a(\textbf{w},\textbf{v})=\displaystyle{\sum_{E\in\mathcal{T}_{h}}a^{E}(\textbf{w},\textbf{v})}  where aE(w,v):=E𝝈(w):𝜺(v)a^{E}(\textbf{w},\textbf{v}):=\displaystyle{\int_{E}\boldsymbol{\sigma}(\textbf{w}):\boldsymbol{\varepsilon}(\textbf{v})}w,vH01(Ω)\forall\;\textbf{w},\textbf{v}\in\textbf{H}^{1}_{0}(\Omega),

F(v)=E𝒯hFE(v)F(\textbf{v})=\displaystyle{\sum_{E\in\mathcal{T}_{h}}F^{E}(\textbf{v})}  where FE(v):=EϱfvF^{E}(\textbf{v}):=\displaystyle{\int_{E}\varrho\textbf{f}\cdot\textbf{v}}vH01(Ω)\forall\;\textbf{v}\in\textbf{H}^{1}_{0}(\Omega).

3.1. Virtual spaces

Now we introduce the virtual spaces of our interest. Following [1] and [8], we introduce the following local spaces

𝔹E:={vh𝓒0(E):vh|ek(e)eE}\mathbb{B}_{\partial E}:=\{\textbf{v}_{h}\in\boldsymbol{\mathcal{C}}^{0}(\partial E)\;:\;\textbf{v}_{h}\lvert_{e}\in\mathbb{P}_{k}(e)\;\forall e\subset\partial E\},

𝓦hE:={vhH1(E):Δvh[k(E)]2yvh|E𝔹E}\boldsymbol{\mathcal{W}}_{h}^{E}:=\{\textbf{v}_{h}\in\textbf{H}^{1}(E)\;:\;\Delta\textbf{v}_{h}\in[\mathbb{P}_{k}(E)]^{2}\;\text{y}\;\textbf{v}_{h}\lvert_{\partial E}\;\in\mathbb{B}_{\partial E}\}.

For each, E{𝒯h}h>0E\in\{\mathcal{T}_{h}\}_{h>0}, we introduce the projection 𝚷k,E:𝓦hE[k(E)]2,\boldsymbol{\Pi}_{k,E}:\boldsymbol{\mathcal{W}}_{h}^{E}\longrightarrow[\mathbb{P}_{k}(E)]^{2}, defined for every vh𝓦hE\textbf{v}_{h}\in\boldsymbol{\mathcal{W}}_{h}^{E} as the solution of (see [27] for instance)

{aE(vh𝚷k,Evh,𝒑)=0𝒑[k(E)]2,Evh𝚷k,Evh=0,Erot(vh)rot(𝚷k,Evh)=0\left\{\begin{array}[]{ccl}a^{E}(\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h},\boldsymbol{p})&=&0\quad\forall\;\boldsymbol{p}\in[\mathbb{P}_{k}(E)]^{2},\\ \displaystyle{\int_{\partial E}\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h}}&=&0,\\ \displaystyle{\int_{E}\mathop{\mathrm{rot}}\nolimits(\textbf{v}_{h})-\mathop{\mathrm{rot}}\nolimits\left(\boldsymbol{\Pi}_{k,E}\textbf{v}_{h}\right)}&=&0\end{array}\right.
Definition 1.

We define the local virtual space by

𝓥hE:={vh𝓦hE:E𝒑(vh𝚷k,Evh)=0,𝒑[k(E)]2/[k2(E)]2}\boldsymbol{\mathcal{V}}_{h}^{E}:=\left\{\textbf{v}_{h}\in\boldsymbol{\mathcal{W}}_{h}^{E}\;:\;\displaystyle{\int_{E}\boldsymbol{p}\cdot(\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})=0,\forall\;\boldsymbol{p}\in[\mathbb{P}_{k}(E)]^{2}/[\mathbb{P}_{k-2}(E)]^{2}}\right\},

where the space [k(E)]2/[k2(E)]2[\mathbb{P}_{k}(E)]^{2}/[\mathbb{P}_{k-2}(E)]^{2} denotes the polynomials in [k(E)]2[\mathbb{P}_{k}(E)]^{2} in which are orthogonal to [k2(E)]2[\mathbb{P}_{k-2}(E)]^{2} with respect to the L2(E)\textbf{L}^{2}(E) product. We choose the same degrees of freedom as those in [6, Section 4.1] for the local virtual space defined above.

Now we are in position to introduce the global virtual space which we define by

𝓥h:={vhH01(Ω):vh|E𝓥hE}.\boldsymbol{\mathcal{V}}_{h}:=\{\textbf{v}_{h}\in\textbf{H}_{0}^{1}(\Omega)\;:\;\textbf{v}_{h}\lvert_{E}\;\in\boldsymbol{\mathcal{V}}_{h}^{E}\}.

For the analysis of the VEM allowing small edges, we introduce the following seminorm which is induced by the stability term ||||||k,E:H1(E){\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}:\textbf{H}^{1}(E)\rightarrow\mathbb{R} defined by (see [10, equation (3.9)])

(3.5) |𝜻|k,E2:=𝚷k2,E0𝜻0,E2+hEeE𝚷k1,e0𝜻0,e2𝜻H1(E),{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2}:=\|\boldsymbol{\Pi}_{k-2,E}^{0}\boldsymbol{\zeta}\|_{0,E}^{2}+h_{E}\displaystyle{\sum_{e\in\mathcal{E}_{E}}\|\boldsymbol{\Pi}_{k-1,e}^{0}\boldsymbol{\zeta}\|_{0,e}^{2}}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E),

where E\mathcal{E}_{E} represents the set of edges of EE, 𝚷k1,e0\boldsymbol{\Pi}_{k-1,e}^{0} is the L2(e)\textbf{L}^{2}(e) orthogonal projection onto the space [k1(e)]2[\mathbb{P}_{k-1}(e)]^{2} and 𝚷k2,E0\boldsymbol{\Pi}_{k-2,E}^{0} is the L2(E)\textbf{L}^{2}(E) orthogonal projection onto the space [k2(E)]2[\mathbb{P}_{k-2}(E)]^{2}. This seminorm will appear naturally when we operate to control the approximation errors of the virtual solutions, in particular to bound the norms of the polynomial projectors and the interpolations of the solutions. From the following trace inequality

(3.6) 𝜻0,E2hE1𝜻0,E2+hE|𝜻|1,E2𝜻H1(E),\|\boldsymbol{\zeta}\|_{0,\partial E}^{2}\lesssim h_{E}^{-1}\|\boldsymbol{\zeta}\|_{0,E}^{2}+h_{E}|\boldsymbol{\zeta}|_{1,E}^{2}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E),

and (3.5), there holds that

|𝜻|k,E𝜻0,E+hE|𝜻|1,E𝜻H1(E).{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}\lesssim\|\boldsymbol{\zeta}\|_{0,E}+h_{E}|\boldsymbol{\zeta}|_{1,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E).

On the other hand, from Korn’s inequality and the fact that a(,)a(\cdot,\cdot) is bounded, we have

(3.7) |𝚷k,Evh|1,Emax{λSμS1,1}|vh|1,Evh𝓥hE.|\boldsymbol{\Pi}_{k,E}\textbf{v}_{h}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}|\textbf{v}_{h}|_{1,E}\quad\forall\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}^{E}.

The following result is an adaptation of [10, Lemma 3.4] to our case, and gives an estimate for 𝚷k,E\boldsymbol{\Pi}_{k,E} in terms of ||||||k,E{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}.

Lemma 3.1.

There holds

𝚷k,E𝜻0,Emax{λSμS1,1}|𝜻|k,E𝜻H1(E),\|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E),

where the hidden constant is independent of hEh_{E}.

Proof.

Let 𝜻H1(E)\boldsymbol{\zeta}\in\textbf{H}^{1}(E). Then, using the definition of 𝚷k,E\boldsymbol{\Pi}_{k,E}, integration by parts, the definitions of 𝚷k2,E0\boldsymbol{\Pi}_{k-2,E}^{0} and 𝚷k1,e0\boldsymbol{\Pi}_{k-1,e}^{0}, inverse estimates and trace inequalities, we have

|𝚷k,E𝜻|1,E2\displaystyle|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}^{2} E𝜺(𝚷k,E𝜻):𝜺(𝚷k,E𝜻)\displaystyle\lesssim\displaystyle{\int_{E}\boldsymbol{\varepsilon}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}):\boldsymbol{\varepsilon}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})}
μS1E𝝈(𝚷k,E𝜻):𝜺(𝚷k,E𝜻)=μS1E𝝈(𝚷k,E𝜻):𝜺(𝜻)\displaystyle\lesssim\mu_{S}^{-1}\displaystyle{\int_{E}\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}):\boldsymbol{\varepsilon}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})}=\mu_{S}^{-1}\displaystyle{\int_{E}\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}):\boldsymbol{\varepsilon}(\boldsymbol{\zeta})}
=μS1(E𝚷k2,E0𝜻div(𝝈(𝚷k,E𝜻))+eEe(𝝈(𝚷k,E𝜻)nE)𝚷k1,e0𝜻)\displaystyle=\mu_{S}^{-1}\left(-\displaystyle{\int_{E}\boldsymbol{\Pi}_{k-2,E}^{0}\boldsymbol{\zeta}\cdot\textbf{div}(\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}))+\sum_{e\in\mathcal{E}_{E}}\int_{e}(\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\cdot\textbf{n}_{E})\cdot\boldsymbol{\Pi}_{k-1,e}^{0}\boldsymbol{\zeta}}\right)
μS1(𝚷k2,E0𝜻0,Ediv(𝝈(𝚷k,E𝜻))0,E+eE𝚷k1,e0𝜻0,e𝝈(𝚷k,E𝜻)0,e)\displaystyle\leq\mu_{S}^{-1}\left(\|\boldsymbol{\Pi}_{k-2,E}^{0}\boldsymbol{\zeta}\|_{0,E}\|\textbf{div}(\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}))\|_{0,E}+\displaystyle{\sum_{e\in\mathcal{E}_{E}}\|\boldsymbol{\Pi}_{k-1,e}^{0}\boldsymbol{\zeta}\|_{0,e}\|\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\|_{0,e}}\right)
hE1μS1𝝈(𝚷k,E𝜻)0,E(𝚷k2,E0𝜻0,E+hE1/2(eE𝚷k1,e0𝜻0,e2)1/2)\displaystyle\lesssim h_{E}^{-1}\mu_{S}^{-1}\|\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\|_{0,E}\left(\|\boldsymbol{\Pi}_{k-2,E}^{0}\boldsymbol{\zeta}\|_{0,E}+h_{E}^{1/2}\left(\displaystyle{\sum_{e\in\mathcal{E}_{E}}\|\boldsymbol{\Pi}_{k-1,e}^{0}\boldsymbol{\zeta}\|_{0,e}^{2}}\right)^{1/2}\right)
hE1μS1𝝈(𝚷k,E𝜻)0,E|𝜻|k,E.\displaystyle\lesssim h_{E}^{-1}\mu_{S}^{-1}\|\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\|_{0,E}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}.

From the definition of 𝝈\boldsymbol{\sigma} we have

𝝈(𝚷k,E𝜻)0,Emax{λS,μS}𝜺(𝚷k,E𝜻)0,E,\|\boldsymbol{\sigma}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\|_{0,E}\lesssim\max\{\lambda_{S},\mu_{S}\}\|\boldsymbol{\varepsilon}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\|_{0,E},

and invoking the estimate 𝜺(𝚷k,E𝜻)0,E|𝚷k,E𝜻|1,E\|\boldsymbol{\varepsilon}(\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta})\|_{0,E}\lesssim|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E} we obtain directly the following estimate for the seminorm of the projection

(3.8) |𝚷k,E𝜻|1,EhE1max{λSμS1,1}|𝜻|k,E.|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim h_{E}^{-1}\max\{\lambda_{S}\mu_{S}^{-1},1\}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}.

On the other hand, notice that from the definition of ||||||k,E{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}, the definition of 𝚷k,E\boldsymbol{\Pi}_{k,E} and the fact that |E|hE|\partial E|\simeq h_{E}, we have

(3.9) |E𝚷k,E𝜻|=|E𝜻|=|eEe𝚷0,e0𝜻|(hEeE𝚷k1,e0𝜻0,e2)1/2|||𝜻|||k,E,\left\lvert\displaystyle{\int_{\partial E}\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}}\right\lvert=\left\lvert\displaystyle{\int_{\partial E}\boldsymbol{\zeta}}\right\lvert=\left\lvert\displaystyle{\sum_{e\in\mathcal{E}_{E}}\int_{e}\boldsymbol{\Pi}_{0,e}^{0}\boldsymbol{\zeta}}\right\lvert\lesssim\left(h_{E}\displaystyle{\sum_{e\in\mathcal{E}_{E}}\|\boldsymbol{\Pi}_{k-1,e}^{0}\boldsymbol{\zeta}\|_{0,e}^{2}}\right)^{1/2}\leq{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E},

where in the first inequality, we have used Cauchy-Schwarz inequality and the fact that 𝚷0,e0𝜻0,e𝚷k1,e0𝜻0,e\|\boldsymbol{\Pi}_{0,e}^{0}\boldsymbol{\zeta}\|_{0,e}\leq\|\boldsymbol{\Pi}_{k-1,e}^{0}\boldsymbol{\zeta}\|_{0,e}. Hence, from the following Poincaré-Friedrich inequality

(3.10) 𝜻0,E|E𝜻|+hE|𝜻|1,E𝜻H1(E),\|\boldsymbol{\zeta}\|_{0,E}\lesssim\left\lvert\displaystyle{\int_{\partial E}\boldsymbol{\zeta}}\right\lvert+h_{E}|\boldsymbol{\zeta}|_{1,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E),

and using (3.8) and (3.9), we obtain

𝚷k,E𝜻0,E|E𝚷k,E𝜻|+hE|𝚷k,E𝜻|1,Emax{λSμS1,1}|||𝜻|||k,E.\|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\left\lvert\displaystyle{\int_{\partial E}\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}}\right\lvert+h_{E}|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}.

This concludes the proof. ∎

Now we need approximation properties for 𝚷k,E\boldsymbol{\Pi}_{k,E}. In the following result we derive such an estimates, that are an adaptation of those in [10, Lemma 3.5], in which we emphasize that the estimates depends on the Lamé coefficients.

Lemma 3.2.

The following estimates hold

  • i)

    For all 𝜻H+1(E)\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E) and 0k0\leq\ell\leq k, there holds

    𝜻𝚷k,E𝜻0,Emax{λSμS1,1}hE+1|𝜻|+1,E,\|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell+1}|\boldsymbol{\zeta}|_{\ell+1,E},
  • ii)

    For all 𝜻H+1(E)\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E) and 1k1\leq\ell\leq k, there holds

    |𝜻𝚷k,E𝜻|1,Emax{λSμS1,1}hE|𝜻|+1,E,|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell}|\boldsymbol{\zeta}|_{\ell+1,E},
  • iii)

    For all 𝜻H+1(E)\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E) and 1k1\leq\ell\leq k, there holds

    |𝜻𝚷k,E𝜻|2,Emax{λSμS1,1}hE1|𝜻|+1,E,|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{2,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell-1}|\boldsymbol{\zeta}|_{\ell+1,E},

where in each estimate, the hidden constants are independent of hEh_{E}.

Proof.

Let us recall the following Bramble-Hilbert estimate

(3.11) inf𝒒[(E)]2|𝜻𝒒|m,EhE+1m|𝜻|+1,E𝜻H+1(E).\underset{\boldsymbol{q}\in[\mathbb{P}_{\ell}(E)]^{2}}{\inf}|\boldsymbol{\zeta}-\boldsymbol{q}|_{m,E}\lesssim h_{E}^{\ell+1-m}|\boldsymbol{\zeta}|_{\ell+1,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E).

We begin by proving ii). To do this task, given 𝒒[(E)]2\boldsymbol{q}\in[\mathbb{P}_{\ell}(E)]^{2} arbitrary, and invoking estimate (3.7) we have

|𝚷k,E𝜻𝒒|1,E=|𝚷k,E(𝜻𝒒)|1,Emax{λSμS1,1}|𝜻𝒒|1,E.|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}-\boldsymbol{q}|_{1,E}=|\boldsymbol{\Pi}_{k,E}(\boldsymbol{\zeta}-\boldsymbol{q})|_{1,E}\leq\max\{\lambda_{S}\mu_{S}^{-1},1\}|\boldsymbol{\zeta}-\boldsymbol{q}|_{1,E}.

From triangle inequality and (3.11), we have

|𝜻𝚷k,E𝜻|1,Emax{λSμS1,1}hE|𝜻|+1,E.\begin{split}|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}&\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell}|\boldsymbol{\zeta}|_{\ell+1,E}.\end{split}

Now to derive i), invoking (3.10), ii) and the definition of 𝚷k,E\boldsymbol{\Pi}_{k,E}, for each 𝜻H+1(E)\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E) we have

𝜻𝚷k,E𝜻0,E|E(𝜻𝚷k,E𝜻)|+hE|𝜻𝚷k,E𝜻|1,E=hE|𝜻𝚷k,E𝜻|1,Emax{λSμS1,1}hE+1|𝜻|+1,E.\|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\left\lvert\displaystyle{\int_{\partial E}\left(\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\right)}\right\lvert+h_{E}|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\\ =h_{E}|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell+1}|\boldsymbol{\zeta}|_{\ell+1,E}.

Finally, from the following polynomial approximation property (see [9, (4.5.3) Lemma])

(3.12) |𝒑|1,ΩhE1𝒑0,E𝒑[k(E)]2,|\boldsymbol{p}|_{1,\Omega}\lesssim h_{E}^{-1}\|\boldsymbol{p}\|_{0,E}\quad\forall\boldsymbol{p}\in[\mathbb{P}_{k}(E)]^{2},

together with (3.7), yields to

|𝚷k,E𝜻|2,EhE1|𝚷k,E𝜻|1,Emax{λSμS1,1}hE1|𝜻|1,E.|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{2,E}\lesssim h_{E}^{-1}|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{-1}|\boldsymbol{\zeta}|_{1,E}.

Then, given 𝒒[k(E)]2\boldsymbol{q}\in[\mathbb{P}_{k}(E)]^{2} arbitrary, triangle inequality and (3.11), we obtain

|𝜻𝚷k,E𝜻|2,Emax{λSμS1,1}hE1|𝜻|+1,E,\begin{split}|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{2,E}&\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell-1}|\boldsymbol{\zeta}|_{\ell+1,E},\end{split}

concluding iii) and hence, the proof. ∎

In the previous result, we have made clear the dependence of the Lamé constants on the estimates. This is important to take into account, since in particular λS\lambda_{S} leads to numerical locking. Now, we are going to analyze stability and approximation properties for the L2(E)\textbf{L}^{2}(E) orthogonal projector 𝚷k,E0\boldsymbol{\Pi}_{k,E}^{0} onto the space [k(E)]2[\mathbb{P}_{k}(E)]^{2}.

Remark 3.1.

The following estimate for 𝚷k,E0\boldsymbol{\Pi}_{k,E}^{0} holds

(3.13) 𝚷k,E0𝜻0,E𝜻0,E.\|\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}\|_{0,E}\leq\|\boldsymbol{\zeta}\|_{0,E}.

Moreover, since 𝚷k,E0𝐩=𝐩\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{p}=\boldsymbol{p} for all 𝐩[k(E)]2\boldsymbol{p}\in[\mathbb{P}_{k}(E)]^{2}, as a consequence of (3.11) there holds

(3.14) 𝜻𝚷k,E0𝜻0,EhE+1|𝜻|+1,E𝜻H+1(E),0k.\|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}\|_{0,E}\lesssim h_{E}^{\ell+1}|\boldsymbol{\zeta}|_{\ell+1,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E),\quad 0\leq\ell\leq k.

The following lemma is adapted from [10, Lemma 3.6] to our case, and states an estimate for the seminorm ||1,E|\cdot|_{1,E} of 𝚷k,E0\boldsymbol{\Pi}_{k,E}^{0}.

Lemma 3.3.

There holds

|𝚷k,E0𝜻|1,Emax{λSμS1,1}|𝜻|1,E𝜻H1(E),|\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}|\boldsymbol{\zeta}|_{1,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E),

where the hidden constant is independent of hEh_{E}.

Proof.

Let 𝜻H1(E)\boldsymbol{\zeta}\in\textbf{H}^{1}(E). From triangle inequality, (3.12), (3.7), and item i) of Lemma 3.2, we obtain

|𝚷k,E0𝜻|1,E|𝚷k,E0𝜻𝚷k,E𝜻|1,E+|𝚷k,E𝜻|1,EhE1𝚷k,E0𝜻𝚷k,E𝜻0,E+max{λSμS1,1}|𝜻|1,EhE1(𝚷k,E0𝜻𝜻0,E+𝜻𝚷k,E𝜻0,E)+max{λSμS1,1}|𝜻|1,EhE1hE|𝜻|1,E+max{λSμS1,1}|𝜻|1,Emax{λSμS1,1}|𝜻|1,E,\begin{split}|\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}|_{1,E}&\leq|\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}+|\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}|_{1,E}\\ &\lesssim h_{E}^{-1}\|\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\max\{\lambda_{S}\mu_{S}^{-1},1\}|\boldsymbol{\zeta}|_{1,E}\\ &\lesssim h_{E}^{-1}(\|\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}-\boldsymbol{\zeta}\|_{0,E}+\|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\boldsymbol{\zeta}\|_{0,E})+\max\{\lambda_{S}\mu_{S}^{-1},1\}|\boldsymbol{\zeta}|_{1,E}\\ &\lesssim h_{E}^{-1}h_{E}|\boldsymbol{\zeta}|_{1,E}+\max\{\lambda_{S}\mu_{S}^{-1},1\}|\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}|\boldsymbol{\zeta}|_{1,E},\end{split}

which concludes the proof. ∎

The following result is adapted from [10, Lemma 3.7], and gives us an approximation for 𝚷k,E0\boldsymbol{\Pi}_{k,E}^{0} in seminorm ||1,E|\cdot|_{1,E}.

Lemma 3.4.

The following estimate holds

|𝜻𝚷k,E0𝜻|1,Emax{λSμS1,1}hE|𝜻|1+,E,1k,|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}^{0}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell}|\boldsymbol{\zeta}|_{1+\ell,E},\quad 1\leq\ell\leq k,

where the hidden constant is independent of hEh_{E}.

Proof.

Let 1k1\leq\ell\leq k and 𝜻H+1(E)\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E). Then, we obtain the result for a given 𝒒[(E)]2\boldsymbol{q}\in[\mathbb{P}_{\ell}(E)]^{2}, triangle inequality, (3.11) and Lemma 3.3. ∎

Now we prove a stability result for L2\textbf{L}^{2} norm of the projection 𝚷k,E0\boldsymbol{\Pi}_{k,E}^{0} with respect to the triple norm ||||||k,E{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}, for virtual functions. A similar result can be found in [10, Lemma 3.8] for the Laplace problem.

Lemma 3.5.

There holds

𝚷k,E0vh0,Emax{λSμS1,1}|vh|k,Evh𝓥hE,\|\boldsymbol{\Pi}_{k,E}^{0}\textbf{v}_{h}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}\quad\forall\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}^{E},

where the hidden constant is independent of hEh_{E}.

Proof.

Given vh𝓥hE\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}^{E}, from the definition of 𝚷k2,E0\boldsymbol{\Pi}_{k-2,E}^{0} we have

E𝚷k2,E0vh(𝚷k2,E0vh𝚷k,E0vh)=0.\begin{split}\displaystyle{\int_{E}\boldsymbol{\Pi}_{k-2,E}^{0}\textbf{v}_{h}\cdot(\boldsymbol{\Pi}_{k-2,E}^{0}\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}^{0}\textbf{v}_{h})}=0.\end{split}

Hence, from Pithagoras Theorem, the definition of 𝓥hE\boldsymbol{\mathcal{V}}_{h}^{E}, (3.5), and Lemma 3.1 we obtain

𝚷k,E0vh0,E2=𝚷k2,E0vh0,E2+(𝚷k,E0𝚷k2,E0)vh0,E2=𝚷k2,E0vh0,E2+(𝚷k,E0𝚷k2,E0)𝚷k,Evh0,E2|||vh|||k,E2+max{λSμS1,1}2|||vh|||k,E2max{λSμS1,1}2|||vh|||k,E2,\|\boldsymbol{\Pi}_{k,E}^{0}\textbf{v}_{h}\|_{0,E}^{2}=\|\boldsymbol{\Pi}_{k-2,E}^{0}\textbf{v}_{h}\|_{0,E}^{2}+\|(\boldsymbol{\Pi}_{k,E}^{0}-\boldsymbol{\Pi}_{k-2,E}^{0})\textbf{v}_{h}\|_{0,E}^{2}\\ =\|\boldsymbol{\Pi}_{k-2,E}^{0}\textbf{v}_{h}\|_{0,E}^{2}+\|(\boldsymbol{\Pi}_{k,E}^{0}-\boldsymbol{\Pi}_{k-2,E}^{0})\boldsymbol{\Pi}_{k,E}\textbf{v}_{h}\|_{0,E}^{2}\\ \lesssim{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2}+\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2},

concluding the proof. ∎

To prove the following result, we need to adapt the arguments of the proof of [10, Lemma 3.9] for the vectorial case, taking into account that now, in the estimates, the Lamé constants appear naturally.

Lemma 3.6.

Assume that A1 holds. Then, there exists a constant C>0C>0 depending on ρE\rho_{E} and kk such that

|vh|1,ECmax{λSμS1,1}(hE1|vh|k,E+|vh|1/2,E)vh𝓥hE.|\textbf{v}_{h}|_{1,E}\leq C\max\{\lambda_{S}\mu_{S}^{-1},1\}(h_{E}^{-1}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}+|\textbf{v}_{h}|_{1/2,\partial E})\quad\forall\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}^{E}.
Proof.

The proof is similar to what was done in [10, Lemma 3.9], since the two-dimensional case is direct. Then, we have

𝒑0,E𝚷k,E0vhwh0,E,\|\boldsymbol{p}\|_{0,E}\lesssim\|\boldsymbol{\Pi}_{k,E}^{0}\textbf{v}_{h}-\textbf{w}_{h}\|_{0,E},

where wh:=Υ(vh)\textbf{w}_{h}:=\Upsilon(\textbf{v}_{h}), the operator Υ\Upsilon, called lifting operator, was introduced in [10, Section 2.7], and 𝒑\boldsymbol{p} was defined in the proof of [10, Lemma 3.9]. Therefore, from triangle inequality and Lemma 3.5 we have

(3.15) 𝒑0,Emax{λSμS1,1}(|vh|k,E+|vh|1/2,E).\|\boldsymbol{p}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}+|\textbf{v}_{h}|_{1/2,\partial E}).

Hence, we conclude that

(3.16) |vh|1,E|𝜻|1,E|vh|1/2,E+𝒑0,Emax{λSμS1,1}(|vh|k,E+|vh|1/2,E),\begin{split}|\textbf{v}_{h}|_{1,E}\leq|\boldsymbol{\zeta}|_{1,E}&\lesssim|\textbf{v}_{h}|_{1/2,\partial E}+\|\boldsymbol{p}\|_{0,E}\\ &\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}({\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}+|\textbf{v}_{h}|_{1/2,\partial E}),\end{split}

where 𝜻\boldsymbol{\zeta} was defined in the proof of [10, Lemma 3.9], and (3.16) is obtained from [10, Lemma 3.9], together with (3.15). ∎

As a direct consequence of lemma above, we have the following result.

Corollary 3.1.

Assume that A1 holds. Then, there exists C>0C>0 depending on ρE\rho_{E} y kk, such that

|vh|1,ECmax{λSμS1,1}(hE1|vh|k,E+hE1/2svh0,E)vh𝓥hE.|\textbf{v}_{h}|_{1,E}\leq C\max\{\lambda_{S}\mu_{S}^{-1},1\}\left(h_{E}^{-1}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}+h_{E}^{1/2}\|\partial_{s}\textbf{v}_{h}\|_{0,\partial E}\right)\quad\forall\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}^{E}.

where svh\partial_{s}\textbf{v}_{h} denotes the tangential derivative of vh\textbf{v}_{h}.

Proof.

To derive the result, it is enough to apply Lemma 3.6, together with the inverse estimate

|𝜻|1/2,EhE1/2s𝜻0,E𝜻H1(E).|\boldsymbol{\zeta}|_{1/2,\partial E}\lesssim h_{E}^{1/2}\|\partial_{s}\boldsymbol{\zeta}\|_{0,\partial E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(\partial E).

3.2. The interpolation operator 𝐈k,E\mathbf{I}_{k,E}

In order to obtain error estimates for our numerical method, and interpolation operator is needed. This operator is defined locally, and its construction is based in the references [21] and [8], where this last reference makes the construction of this operator for the small edges approach.

We consider for s>1s>1 the interpolation operator 𝐈k,E:Hs(E)𝓥hE\mathbf{I}_{k,E}:\textbf{H}^{s}(E)\longrightarrow\boldsymbol{\mathcal{V}}_{h}^{E}, which satisfies that the degrees of freedom of 𝜻\boldsymbol{\zeta} and 𝐈k,E𝜻\mathbf{I}_{k,E}\boldsymbol{\zeta} are the same, together with the identity 𝚷k2,E0Ik,E𝜻=𝚷k2,E0𝜻\boldsymbol{\Pi}_{k-2,E}^{0}\textbf{I}_{k,E}\boldsymbol{\zeta}=\boldsymbol{\Pi}_{k-2,E}^{0}\boldsymbol{\zeta} and 𝐈k,E𝒒=𝒒𝒒[k(E)]2.\mathbf{I}_{k,E}\boldsymbol{q}=\boldsymbol{q}\quad\forall\;\boldsymbol{q}\in[\mathbb{P}_{k}(E)]^{2}.

The following result is a stability estimate for Ik,E\textbf{I}_{k,E} in ||||||k,E{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\cdot\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E} norm and its proof is straightforward from [10, Lemma 3.12].

Lemma 3.7.

Assume that A1 holds. Then, there holds

|𝐈k,E𝜻|k,E(𝜻0,E+hE|𝜻|1,E+hE2|𝜻|2,E)𝜻H2(E),{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{I}_{k,E}\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}\lesssim\left(\|\boldsymbol{\zeta}\|_{0,E}+h_{E}|\boldsymbol{\zeta}|_{1,E}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\right)\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{2}(E),

where the hidden constant depends on ρE\rho_{E} and kk, but not on hEh_{E}.

We have the following estimate for |𝐈k,E𝜻|1,E|\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}. This result is adapted from [10, Lemma 3.13] to our case.

Lemma 3.8.

The following estimate hold

|𝐈k,E𝜻|1,Emax{λSμS1,1}(|𝜻|1,E+hE|𝜻|2,E)𝜻H2(E),|\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}\left(|\boldsymbol{\zeta}|_{1,E}+h_{E}|\boldsymbol{\zeta}|_{2,E}\right)\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{2}(E),

where the hidden constant depends on ρE\rho_{E} and kk.

Proof.

Given 𝜻H2(E)\boldsymbol{\zeta}\in\textbf{H}^{2}(E), let us define

𝜻¯E:=1|E|E𝜻.\overline{\boldsymbol{\zeta}}_{E}:=\dfrac{1}{|\partial E|}\displaystyle{\int_{\partial E}\boldsymbol{\zeta}}.

Invoking Corollary 3.1 and Lemma 3.7 we obtain

|𝐈k,E𝜻|1,E2=|𝐈k,E(𝜻𝜻¯E)|1,E2max{λSμS1,1}2(hE2|||𝐈k,E(𝜻𝜻¯E)|||k,E2+hEs𝐈k,E𝜻0,E2)=max{λSμS1,1}2(hE2𝜻𝜻¯E0,E2+|𝜻|1,E2+hE2|𝜻|2,E+hEs𝐈k,E𝜻0,E2).|\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}^{2}=|\mathbf{I}_{k,E}(\boldsymbol{\zeta}-\overline{\boldsymbol{\zeta}}_{E})|_{1,E}^{2}\\ \lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(h_{E}^{-2}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{I}_{k,E}(\boldsymbol{\zeta}-\overline{\boldsymbol{\zeta}}_{E})\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2}+h_{E}\|\partial_{s}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}^{2}\right)\\ =\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(h_{E}^{-2}\|\boldsymbol{\zeta}-\overline{\boldsymbol{\zeta}}_{E}\|_{0,E}^{2}+|\boldsymbol{\zeta}|_{1,E}^{2}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}+h_{E}\|\partial_{s}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,\partial E}^{2}\right).

Now, from (3.6) and standard interpolant estimates we obtain

hEs𝐈k,E𝜻0,E2eEhEs𝜻0,e2|𝜻|1,E2+hE2|𝜻|2,E.h_{E}\|\partial_{s}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,\partial E}^{2}\lesssim\displaystyle{\sum_{e\in\mathcal{E}_{E}}h_{E}\|\partial_{s}\boldsymbol{\zeta}\|_{0,e}^{2}}\lesssim|\boldsymbol{\zeta}|_{1,E}^{2}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}.

Hence, using the estimate 𝜻𝜻¯E0,EhE|𝜻|1,E\|\boldsymbol{\zeta}-\overline{\boldsymbol{\zeta}}_{E}\|_{0,E}\lesssim h_{E}|\boldsymbol{\zeta}|_{1,E}, we obtain

|𝐈k,E𝜻|1,E2max{λSμS1,1}2(|𝜻|1,E2+hE2|𝜻|2,E2).|\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}^{2}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(|\boldsymbol{\zeta}|_{1,E}^{2}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}^{2}\right).

This concludes the proof. ∎

We also have a stability result for 𝐈k,E𝜻\mathbf{I}_{k,E}\boldsymbol{\zeta} in 0,E\|\cdot\|_{0,E} norm, which is adapted from [10, Lemma 3.14].

Lemma 3.9.

The following estimate hold

𝐈k,E𝜻0,Emax{λSμS1,1}2(𝜻0,E+hE|𝜻|1,E+hE2|𝜻|2,E)𝜻H2(E),\|\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(\|\boldsymbol{\zeta}\|_{0,E}+h_{E}|\boldsymbol{\zeta}|_{1,E}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\right)\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{2}(E),

where the hidden constant depends on ρE\rho_{E} and kk.

Proof.

Let 𝜻H2(Ω)\boldsymbol{\zeta}\in\textbf{H}^{2}(\Omega). From triangle inequality we obtain

(3.17) 𝐈k,E𝜻0,E𝐈k,E𝜻𝚷k,E𝐈k,E𝜻0,E+𝚷k,E𝐈k,E𝜻0,E.\|\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\leq\|\mathbf{I}_{k,E}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\|\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}.

Now the aim is to estimate each term on the right hand side of (3.17). Invoking item i) of Lemma 3.2 with =0\ell=0 and Lemma 3.8, we have

(3.18) 𝐈k,E𝜻𝚷k,E𝐈k,E𝜻0,Emax{λSμS1,1}hE|𝐈k,E𝜻|1,Emax{λSμS1,1}2(hE|𝜻|1,E+hE2|𝜻|2,E).\begin{split}\|\mathbf{I}_{k,E}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}&\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}|\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}\\ &\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(h_{E}|\boldsymbol{\zeta}|_{1,E}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\right).\end{split}

On the other hand, from Lemmas 3.1 and 3.7 we have

(3.19) 𝚷k,E𝐈k,E𝜻0,Emax{λSμS1,1}|𝐈k,E𝜻|k,Emax{λSμS1,1}(𝜻0,E+hE|𝜻|1,E+hE2|𝜻|2,E).\begin{split}\|\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}&\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{I}_{k,E}\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}\\ &\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}\left(\|\boldsymbol{\zeta}\|_{0,E}+h_{E}|\boldsymbol{\zeta}|_{1,E}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\right).\end{split}

Finally, replacing (3.18) and (3.19) in (3.17), we conclude the proof. ∎

The following result establishes approximation properties for 𝐈k,E\mathbf{I}_{k,E}. This results are adapted from those in [10, Lemma 3.15], and we again emphasize that the Lamé coefficients appears in our estimates.

Lemma 3.10.

For 1k1\leq\ell\leq k and 𝛇H+1(E)\boldsymbol{\zeta}\in\textbf{H}^{\ell+1}(E), the following estimates hold

  • i)

    𝜻𝐈k,E𝜻0,E+𝜻𝚷k,E𝐈k,E𝜻0,Emax{λSμS1,1}2hE+1|𝜻|+1,E\|\boldsymbol{\zeta}-\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h_{E}^{\ell+1}|\boldsymbol{\zeta}|_{\ell+1,E},

  • ii)

    |𝜻𝐈k,E𝜻|1,E+|𝜻𝚷k,E𝐈k,E𝜻|1,Emax{λSμS1,1}hE|𝜻|+1,Ω|\boldsymbol{\zeta}-\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}+|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell}|\boldsymbol{\zeta}|_{\ell+1,\Omega},

  • iii)

    |𝜻𝚷k,E𝐈k,E𝜻|2,Emax{λSμS1,1}2hE1|𝜻|+1,E|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{2,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h_{E}^{\ell-1}|\boldsymbol{\zeta}|_{\ell+1,E},

where the hidden constants depend on ρE\rho_{E} and kk.

Proof.

First we prove i). We observe that, from Lemmas 3.1, 3.7 and 3.8, we have the estimate

𝐈k,E𝜻0,E+𝚷k,E𝐈k,E𝜻0,E𝐈k,E𝜻0,E+max{λSμS1,1}|𝐈k,E𝜻|k,Emax{λSμS1,1}2(𝜻0,E+hE|𝜻|1,E+hE2|𝜻|2,E).\begin{split}\|\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\|\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}&\lesssim\|\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\max\{\lambda_{S}\mu_{S}^{-1},1\}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\mathbf{I}_{k,E}\boldsymbol{\zeta}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}\\ &\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(\|\boldsymbol{\zeta}\|_{0,E}+h_{E}|\boldsymbol{\zeta}|_{1,E}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\right).\end{split}

Therefore, applying triangular inequality and invoking (3.11), we conclude that

𝜻𝐈k,E𝜻0,E+𝜻𝚷k,E𝐈k,E𝜻0,Emax{λSμS1,1}2hE+1|𝜻|+1,E.\|\boldsymbol{\zeta}-\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h_{E}^{\ell+1}|\boldsymbol{\zeta}|_{\ell+1,E}.

To prove ii), we invoke (3.7) and Lemma 3.8, in order to obtain

|𝐈k,E𝜻|1,E+|𝚷k,E𝐈k,E𝜻|1,Emax{λSμS1,1}(|𝜻|1,E+hE|𝜻|2,E).|\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}+|\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}\left(|\boldsymbol{\zeta}|_{1,E}+h_{E}|\boldsymbol{\zeta}|_{2,E}\right).

Hence, applying triangular inequality and invoking (3.11), we obtain

|𝜻𝐈k,E𝜻|1,E+|𝜻𝚷k,E𝐈k,E𝜻|1,Emax{λSμS1,1}hE|𝜻|+1,E.|\boldsymbol{\zeta}-\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}+|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{\ell}|\boldsymbol{\zeta}|_{\ell+1,E}.

Finally, for iii), we use (3.12), (3.7) and Lemma 3.8 to obtain

|𝚷k,E𝐈k,E𝜻|2,EhE1|𝚷k,E𝐈k,E𝜻|1,Emax{λSμS1,1}2(hE1|𝜻|1,E+|𝜻|2,E),|\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{2,E}\lesssim h_{E}^{-1}|\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(h_{E}^{-1}|\boldsymbol{\zeta}|_{1,E}+|\boldsymbol{\zeta}|_{2,E}\right),

Therefore, applying triangular inequality and (3.11), we have

|𝜻𝚷k,E𝐈k,E𝜻|2,Emax{λSμS1,1}2hE1|𝜻|+1,E.|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\mathbf{I}_{k,E}\boldsymbol{\zeta}|_{2,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h_{E}^{\ell-1}|\boldsymbol{\zeta}|_{\ell+1,E}.

This concludes the proof.

The following result is adapted from [10, Lemma 3.16] to our case, and gives us an approximation property for the interpolant operator 𝐈k,E𝜻\mathbf{I}_{k,E}\boldsymbol{\zeta}, when 𝜻H2(Ω)\boldsymbol{\zeta}\in\textbf{H}^{2}(\Omega). We will need this results to demonstrate properties about the operator F()F(\cdot) and its discrete counterpart.

Lemma 3.11.

The following estimate holds

𝐈k,E𝜻𝚷1,E0𝐈k,E𝜻0,Emax{λSμS1,1}2hE2|𝜻|2,E𝜻H2(Ω),\|\mathbf{I}_{k,E}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{1,E}^{0}\mathbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{2}(\Omega),

where the hidden constant depends on ρE\rho_{E} and kk.

Proof.

Let 𝜻H2(E)\boldsymbol{\zeta}\in\textbf{H}^{2}(E). From Lemma 3.9 and (3.13) we obtain

Ik,E𝜻0,E+𝚷1,E0Ik,E𝜻0,Emax{λSμS1,1}2(𝜻0,E+hE|𝜻|1,E+hE2|𝜻|2,E).\begin{split}\|\textbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}+\|\boldsymbol{\Pi}_{1,E}^{0}\textbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(\|\boldsymbol{\zeta}\|_{0,E}+h_{E}|\boldsymbol{\zeta}|_{1,E}+h_{E}^{2}|\boldsymbol{\zeta}|_{2,E}\right).\end{split}

Hence, using triangle inequality and (3.11) with =1\ell=1, we obtain

Ik,E𝜻𝚷1,E0Ik,E𝜻0,Emax{λSμS1,1}2h2|𝜻|2,E,\|\textbf{I}_{k,E}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{1,E}^{0}\textbf{I}_{k,E}\boldsymbol{\zeta}\|_{0,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h^{2}|\boldsymbol{\zeta}|_{2,E},

which concludes the proof. ∎

The following result is straightforward from [10, Lemma 3.18] which is essential to prove that the discrete bilinear form ah(,)a_{h}(\cdot,\cdot) is elliptic in 𝓥h\boldsymbol{\mathcal{V}}_{h}.

Lemma 3.12.

The following estimate holds

|v|k,E2hEeE𝚷k1,e0v0,e2vsuch that𝚷k,Ev=0,{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{v}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2}\lesssim h_{E}\displaystyle{\sum_{e\in\mathcal{E}_{E}}\|\boldsymbol{\Pi}_{k-1,e}^{0}\textbf{v}\|_{0,e}^{2}}\quad\forall\textbf{v}\;\text{such that}\,\,\boldsymbol{\Pi}_{k,E}\textbf{v}=0,

where the hidden constant is independent of hEh_{E}

The following result establishes an estimate for vh0,E\|\textbf{v}_{h}\|_{0,\partial E}, with vh𝔹E\textbf{v}_{h}\in\mathbb{B}_{\partial E}, and its proof is naturally extended to our vectorial case, from the proof of [10, Lemma 3.19].

Lemma 3.13.

For every vh𝔹E\textbf{v}_{h}\in\mathbb{B}_{\partial E} that vanishes in some part of E\partial E, there holds

vh0,EhEsvh0,E,\|\textbf{v}_{h}\|_{0,\partial E}\lesssim h_{E}\|\partial_{s}\textbf{v}_{h}\|_{0,\partial E},

where the hidden constant depends only on kk.

Remark 3.2.

Let vH1(E)\textbf{v}\in\textbf{H}^{1}(E) be such that 𝚷k,Ev=0\boldsymbol{\Pi}_{k,E}\textbf{v}=0. Then

Ev=0\displaystyle{\int_{\partial E}\textbf{v}}=0,

which implies that v vanishes in some part of E\partial E. Then, invoking Corollary 3.1, Lemmas 3.12 and 3.13, we obtain that

(3.20) |v|1,Emax{λSμS1,1}hE1/2sv0,E.|\textbf{v}|_{1,E}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h_{E}^{1/2}\|\partial_{s}\textbf{v}\|_{0,\partial E}.

Let us introduce the following stabilization term SE(,)S^{E}(\cdot,\cdot) defined for 𝐰h,𝐯h𝓥h\mathbf{w}_{h},\mathbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h} by

SE(wh,vh):=hEEswhsvh,S^{E}(\textbf{w}_{h},\textbf{v}_{h}):=h_{E}\displaystyle{\int_{\partial E}\partial_{s}\textbf{w}_{h}\partial_{s}\textbf{v}_{h}},

which corresponds to a scaled inner product between swh\partial_{s}\textbf{w}_{h} and svh\partial_{s}\textbf{v}_{h} in L2(E)\textbf{L}^{2}(\partial E). Let us introduce the discrete bilinear form ah(,):𝓥h×𝓥ha_{h}(\cdot,\cdot):\boldsymbol{\mathcal{V}}_{h}\times\boldsymbol{\mathcal{V}}_{h}\rightarrow\mathbb{R} defined by

ah(wh,vh):=E𝒯h[aE(𝚷k,Ewh,𝚷k,Evh)+SE(wh𝚷k,Ewh,vh𝚷k,Evh)].a_{h}(\textbf{w}_{h},\textbf{v}_{h}):=\displaystyle{\sum_{E\in\mathcal{T}_{h}}\left[a^{E}(\boldsymbol{\Pi}_{k,E}\textbf{w}_{h},\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})+S^{E}(\textbf{w}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{w}_{h},\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})\right]}.

Now we define the following discrete operator

(3.21) Fh(vh):=ΩϱfΞhvh,F_{h}(\textbf{v}_{h}):=\displaystyle{\int_{\Omega}\varrho\textbf{f}\cdot\Xi_{h}\textbf{v}_{h}},

where Ξh:𝓥h𝓟k,h\Xi_{h}:\boldsymbol{\mathcal{V}}_{h}\longrightarrow\boldsymbol{\mathcal{P}}_{k,h} is defined by

Ξh={𝚷1,h0ifk=1,2,𝚷k2,h0ifk3.\Xi_{h}=\left\{\begin{array}[]{lll}\boldsymbol{\Pi}_{1,h}^{0}&\text{if}\;k=1,2,\\ \boldsymbol{\Pi}_{k-2,h}^{0}&\text{if}\;k\geq 3.\end{array}\right.

where 𝓟k,h\boldsymbol{\mathcal{P}}_{k,h} is the piecewise discontinuous polynomial space of degree kk respect to 𝒯h\mathcal{T}_{h} and 𝚷k,h0\boldsymbol{\Pi}_{k,h}^{0} is the global L2(Ω)\textbf{L}^{2}(\Omega)-projector, such that 𝚷k,h0|E=𝚷k,E0\boldsymbol{\Pi}_{k,h}^{0}|_{E}=\boldsymbol{\Pi}_{k,E}^{0}. Finally, 𝚷k,h\boldsymbol{\Pi}_{k,h} is the global projector with respect to a(,)a(\cdot,\cdot), such that 𝚷k,h|E=𝚷k,E\boldsymbol{\Pi}_{k,h}|_{E}=\boldsymbol{\Pi}_{k,E}.

Now, we can write the virtual element discretization of Problem 1.

Problem 2.

Given fL2(Ω)\textbf{f}\in\textbf{L}^{2}(\Omega), find uh𝓥h\textbf{u}_{h}\in\boldsymbol{\mathcal{V}}_{h} such that

ah(uh,vh)=Fh(vh)vh𝓥h.a_{h}(\textbf{u}_{h},\textbf{v}_{h})=F_{h}(\textbf{v}_{h})\quad\forall\;\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}.
Remark 3.3.

Observe that from triangle inequality and (3.20), there holds

|vh|1,E2max{λS2μS2,μS1,1}ahE(vh,vh).\begin{split}|\textbf{v}_{h}|_{1,E}^{2}\lesssim\max\{\lambda_{S}^{2}\mu_{S}^{-2},\mu_{S}^{-1},1\}a_{h}^{E}(\textbf{v}_{h},\textbf{v}_{h}).\end{split}

Moreover, the following estimate holds

(3.22) |vh|1,Ω2max{λS2μS2,μS1,1}ah(vh,vh).|\textbf{v}_{h}|_{1,\Omega}^{2}\lesssim\max\{\lambda_{S}^{2}\mu_{S}^{-2},\mu_{S}^{-1},1\}a_{h}(\textbf{v}_{h},\textbf{v}_{h}).

It is easy to check that ah(,)a_{h}(\cdot,\cdot) is elliptic in 𝓥h\boldsymbol{\mathcal{V}}_{h} and hence, we deduce that Problem 2 has unique solution as a consequence of Lax-Milgram’s Lemma.

Now for the functional F()F(\cdot) defined in (2.4) and its discrete counterpart Fh()F_{h}(\cdot) defined in (3.21), we have the following approximation result (see [10, Lemma 4.1]).

Lemma 3.14.

Let 1k1\leq\ell\leq k. The following estimates hold true

  • i)

    For all fH1(Ω)\textbf{f}\in\textbf{H}^{\ell-1}(\Omega) and for all wh𝓥h\textbf{w}_{h}\in\boldsymbol{\mathcal{V}}_{h},

    |F(wh)Fh(wh)|h|f|1,Ω|wh|1,Ω.|F(\textbf{w}_{h})-F_{h}(\textbf{w}_{h})|\lesssim h^{\ell}|\textbf{f}|_{\ell-1,\Omega}|\textbf{w}_{h}|_{1,\Omega}.
  • ii)

    For all fH1(Ω)\textbf{f}\in\textbf{H}^{\ell-1}(\Omega) and for all 𝜻H2(Ω)\boldsymbol{\zeta}\in\textbf{H}^{2}(\Omega),

    |F(𝐈k,h𝜻)Fh(𝐈k,h𝜻)|max{λSμS1,1}2h+1|f|1,Ω|𝜻|2,Ω,|F(\mathbf{I}_{k,h}\boldsymbol{\zeta})-F_{h}(\mathbf{I}_{k,h}\boldsymbol{\zeta})|\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h^{\ell+1}|\textbf{f}|_{\ell-1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega},

where the hidden constants are independent of hh.

Proof.

The result follows from adapting the proof of [10, Lemma 4.1] together with the aid of Lemma 3.11.∎

To conclude this section, we introduce the broken H1\textbf{H}^{1}-seminorm with respect to 𝒯h\mathcal{T}_{h}, given by

|v|1,h2:=E𝒯h|v|1,E2vhL2(Ω)such thatv|EH1(E).|\textbf{v}|_{1,h}^{2}:=\displaystyle{\sum_{E\in\mathcal{T}_{h}}|\textbf{v}|_{1,E}^{2}}\quad\forall\;\textbf{v}_{h}\in\textbf{L}^{2}(\Omega)\;\text{such that}\;\textbf{v}|_{E}\in\textbf{H}^{1}(E).

3.3. Error estimates

Now our aim is to obtain error estimates for the proposed method. Clearly, due the previous results, the error estimates will depend on the Lamé coefficients. This fact gives us the hint that the error estimates that we can derive will not be optimal when the Poisson ratio is close to 1/21/2.

We introduce the energy norm h\|\cdot\|_{h} defined by vhh2:=ah(vh,vh)\|\textbf{v}_{h}\|_{h}^{2}:=a_{h}(\textbf{v}_{h},\textbf{v}_{h}) vh𝓥h\forall\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}, and let us recall the following standard estimate (see [9] for instance)

(3.23) uuhhinfvh𝓥huvhh+supvh𝓥hah(u,vh)Fh(vh)vhh.\|\textbf{u}-\textbf{u}_{h}\|_{h}\leq\underset{\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}}{\inf}\|\textbf{u}-\textbf{v}_{h}\|_{h}+\underset{\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}}{\sup}\dfrac{a_{h}(\textbf{u},\textbf{v}_{h})-F_{h}(\textbf{v}_{h})}{\|\textbf{v}_{h}\|_{h}}.

The main task now is to estimate correctly the supremum in (3.23). With this aim in mind, we begin with the following result that states an approximation for the elliptic projector 𝚷k,h\boldsymbol{\Pi}_{k,h} in the energy norm.

Remark 3.4.

For any vh𝓥h\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}, from the definition of 𝚷k,h\boldsymbol{\Pi}_{k,h} and ah(,)a_{h}(\cdot,\cdot), the following estimate holds

(3.24) vh𝚷k,hvhhvhhvh𝓥h.\|\textbf{v}_{h}-\boldsymbol{\Pi}_{k,h}\textbf{v}_{h}\|_{h}\leq\|\textbf{v}_{h}\|_{h}\quad\forall\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}.

Let us recall estimate (3.23). Now our task is to estimate each of the terms on its right hand side. With this goal in mind, let us begin by recalling that from the definition of 𝚷k,E\boldsymbol{\Pi}_{k,E} and for each vh𝓥h\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h} we have

ah(u,vh)=E𝒯h[aE(𝚷k,Euu,vh𝚷k,Evh)+SE(u𝚷k,Eu,vh𝚷k,Evh)]+F(vh).a_{h}(\textbf{u},\textbf{v}_{h})=\displaystyle\sum_{E\in\mathcal{T}_{h}}\left[a^{E}(\boldsymbol{\Pi}_{k,E}\textbf{u}-\textbf{u},\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})+S^{E}(\textbf{u}-\boldsymbol{\Pi}_{k,E}\textbf{u},\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})\right]+F(\textbf{v}_{h}).

Therefore, applying the Cauchy Schwarz inequality, (3.24) and the continuity of aE(,)a^{E}(\cdot,\cdot), we obtain

ah(u,vh)Fh(vh)=E𝒯h[aE(𝚷k,Euu,vh𝚷k,Evh)+SE(u𝚷k,Eu,vh𝚷k,Evh)]+F(vh)Fh(vh)max{λS,μS}max{λSμS1μS1/2,1}(|𝚷k,Euu|1,hvhh)+u𝚷k,huhvhh+max{λSμS1,μS1/2,1}𝓡hvhh,a_{h}(\textbf{u},\textbf{v}_{h})-F_{h}(\textbf{v}_{h})=\displaystyle{\sum_{E\in\mathcal{T}_{h}}\left[a^{E}(\boldsymbol{\Pi}_{k,E}\textbf{u}-\textbf{u},\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})\right.}\\ +\left.S^{E}(\textbf{u}-\boldsymbol{\Pi}_{k,E}\textbf{u},\textbf{v}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{v}_{h})\right]+F(\textbf{v}_{h})-F_{h}(\textbf{v}_{h})\\ \lesssim\max\{\lambda_{S},\mu_{S}\}\max\{\lambda_{S}\mu_{S}^{-1}\mu_{S}^{-1/2},1\}\left(|\boldsymbol{\Pi}_{k,E}\textbf{u}-\textbf{u}|_{1,h}\|\textbf{v}_{h}\|_{h}\right)+\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}\|\textbf{v}_{h}\|_{h}\\ +\max\{\lambda_{S}\mu_{S}^{-1},\mu_{S}^{-1/2},1\}\boldsymbol{\mathcal{R}}_{h}\|\textbf{v}_{h}\|_{h},

where 𝓡h:=supvh𝓥hF(vh)Fh(vh)|vh|1,Ω\boldsymbol{\mathcal{R}}_{h}:=\underset{\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}}{\sup}\dfrac{F(\textbf{v}_{h})-F_{h}(\textbf{v}_{h})}{|\textbf{v}_{h}|_{1,\Omega}}. Hence, we have

ah(u,vh)Fh(vh)vhhC1(λS,μS)(|𝚷k,Euu|1,h+u𝚷k,huh+𝓡h),\dfrac{a_{h}(\textbf{u},\textbf{v}_{h})-F_{h}(\textbf{v}_{h})}{\|\textbf{v}_{h}\|_{h}}\lesssim C_{1}(\lambda_{S},\mu_{S})\left(|\boldsymbol{\Pi}_{k,E}\textbf{u}-\textbf{u}|_{1,h}+\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}+\boldsymbol{\mathcal{R}}_{h}\right),

with C1(λS,μS):=max{λSμS1μS1/2,1}max{λS,μS,1}C_{1}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}\mu_{S}^{-1}\mu_{S}^{-1/2},1\}\max\{\lambda_{S},\mu_{S},1\}. On the other hand, there holds

infvh𝓥huvhhuIk,huh,\underset{\textbf{v}_{h}\in\boldsymbol{\mathcal{V}}_{h}}{\inf}\|\textbf{u}-\textbf{v}_{h}\|_{h}\leq\|\textbf{u}-\textbf{I}_{k,h}\textbf{u}\|_{h},

and therefore we obtain

(3.25) uuhhC1(λS,μS)(|𝚷k,huu|1,h+u𝚷k,huh+𝓡h+uIk,huh).\|\textbf{u}-\textbf{u}_{h}\|_{h}\lesssim C_{1}(\lambda_{S},\mu_{S})\left(|\boldsymbol{\Pi}_{k,h}\textbf{u}-\textbf{u}|_{1,h}+\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}+\boldsymbol{\mathcal{R}}_{h}+\|\textbf{u}-\textbf{I}_{k,h}\textbf{u}\|_{h}\right).

Now, using the results of the previous sections, we can give an error estimate in h\|\cdot\|_{h} norm, under the assumption that u belongs to H+1(Ω)\textbf{H}^{\ell+1}(\Omega), with 1k1\leq\ell\leq k. From i) of Lemma 3.14 and 2.1, we have

(3.26) 𝓡hh|div(𝝈(u))|1,Ωh|𝝈(u)|,Ωmax{λS,μS}h|u|+1,Ω.\boldsymbol{\mathcal{R}}_{h}\lesssim h^{\ell}|\textbf{div}(\boldsymbol{\sigma}(\textbf{u}))|_{\ell-1,\Omega}\lesssim h^{\ell}|\boldsymbol{\sigma}(\textbf{u})|_{\ell,\Omega}\lesssim\max\{\lambda_{S},\mu_{S}\}h^{\ell}|\textbf{u}|_{\ell+1,\Omega}.

On the other hand, from ii)\text{ii}) of Lemma 3.2, there holds

|u𝚷k,hu|1,h2max{λSμS1,1}2E𝒯hhE2|u|+1,E2max{λSμS1,1}2h2|u|+1,Ω2,|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}|_{1,h}^{2}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}^{2\ell}|\textbf{u}|_{\ell+1,E}^{2}}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2},

in which we derive

(3.27) |u𝚷k,hu|1,hmax{λSμS1,1}h|u|+1,Ω.|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}|_{1,h}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h^{\ell}|\textbf{u}|_{\ell+1,\Omega}.

Now, to estimate uIk,huh\|\textbf{u}-\textbf{I}_{k,h}\textbf{u}\|_{h}, we put j:=uIk,hu\textbf{j}:=\textbf{u}-\textbf{I}_{k,h}\textbf{u} and jE:=uIk,Eu\textbf{j}_{E}:=\textbf{u}-\textbf{I}_{k,E}\textbf{u}. Then, we have

jh2=E𝒯h[aE(𝚷k,EjE,𝚷k,EjE)+SE(jE𝚷k,EjE,jE𝚷k,EjE)]E𝒯hmax{λS,μS}|𝚷k,EjE|1,E2+E𝒯hhEsjE0,E2+E𝒯hhEs𝚷k,EjE0,E2.\|\textbf{j}\|_{h}^{2}=\displaystyle{\sum_{E\in\mathcal{T}_{h}}\left[a^{E}(\boldsymbol{\Pi}_{k,E}\textbf{j}_{E},\boldsymbol{\Pi}_{k,E}\textbf{j}_{E})+S^{E}(\textbf{j}_{E}-\boldsymbol{\Pi}_{k,E}\textbf{j}_{E},\textbf{j}_{E}-\boldsymbol{\Pi}_{k,E}\textbf{j}_{E})\right]}\\ \lesssim\displaystyle{\sum_{E\in\mathcal{T}_{h}}\max\{\lambda_{S},\mu_{S}\}|\boldsymbol{\Pi}_{k,E}\textbf{j}_{E}|_{1,E}^{2}}+\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}\textbf{j}_{E}\|_{0,\partial E}^{2}}+\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}\boldsymbol{\Pi}_{k,E}\textbf{j}_{E}\|_{0,\partial E}^{2}}.

First, from item ii)\text{ii}) of Lemma 3.10 and (3.7), we obtain

E𝒯hmax{λS,μS}|𝚷k,EjE|1,E2max{λS,μS}max{λSμS1,1}3h2|u|+1,Ω2.\displaystyle{\sum_{E\in\mathcal{T}_{h}}\max\{\lambda_{S},\mu_{S}\}|\boldsymbol{\Pi}_{k,E}\textbf{j}_{E}|_{1,E}^{2}}\lesssim\max\{\lambda_{S},\mu_{S}\}\max\{\lambda_{S}\mu_{S}^{-1},1\}^{3}h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2}.

On the other hand, using the estimate

|𝜻|1/2,E|𝜻|1,E𝜻H1(E),|\boldsymbol{\zeta}|_{1/2,\partial E}\lesssim|\boldsymbol{\zeta}|_{1,E}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{1}(E),

applied to the \ell-order derivatives of u, and standard interpolation estimates, we obtain

E𝒯hhEssE0,E2=E𝒯hhEs(uIk,Eu)0,E2E𝒯hhEeEhe21|su|1/2,e2h2|u|+1,Ω2.\begin{split}\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}\textbf{s}_{E}\|_{0,\partial E}^{2}}=\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}(\textbf{u}-\textbf{I}_{k,E}\textbf{u})\|_{0,\partial E}^{2}}&\lesssim\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\sum_{e\in\mathcal{E}_{E}}h_{e}^{2\ell-1}|\partial_{s}^{\ell}\textbf{u}|_{1/2,e}^{2}}\\ &\lesssim h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2}.\end{split}

Finally, applying the polynomial estimate p0,E2hE1p0,E2\|\textbf{p}\|_{0,\partial E}^{2}\lesssim h_{E}^{-1}\|\textbf{p}\|_{0,E}^{2} together with (3.7) and ii) of Lemma 3.10, we obtain

E𝒯hhEs𝚷k,EsE0,E2=E𝒯hhEs𝚷k,E(uIk,Eu)0,E2E𝒯h|𝚷k,E(uIk,Eu)|1,E2max{λSμS1,1}2E𝒯h|uIk,Eu|1,E2max{λSμS1,1}3h2|u|+1,Ω2.\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}\boldsymbol{\Pi}_{k,E}\textbf{s}_{E}\|_{0,\partial E}^{2}}=\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}\boldsymbol{\Pi}_{k,E}(\textbf{u}-\textbf{I}_{k,E}\textbf{u})\|_{0,\partial E}^{2}}\\ \lesssim\displaystyle{\sum_{E\in\mathcal{T}_{h}}|\boldsymbol{\Pi}_{k,E}(\textbf{u}-\textbf{I}_{k,E}\textbf{u})|_{1,E}^{2}}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\displaystyle{\sum_{E\in\mathcal{T}_{h}}|\textbf{u}-\textbf{I}_{k,E}\textbf{u}|_{1,E}^{2}}\\ \lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{3}h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2}.

Then, there holds

(3.28) uIk,huhC2(λS,μS)h|u|+1,Ω,\|\textbf{u}-\textbf{I}_{k,h}\textbf{u}\|_{h}\lesssim C_{2}(\lambda_{S},\mu_{S})h^{\ell}|\textbf{u}|_{\ell+1,\Omega},

with C2(λS,μS):=max{λSμS1,1}3/2max{λS1/2,μS1/2,1}C_{2}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}\mu_{S}^{-1},1\}^{3/2}\max\{\lambda_{S}^{1/2},\mu_{S}^{1/2},1\}.
As a final task, we provide an estimate for u𝚷k,huh\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}. From the definition of h\|\cdot\|_{h} and SE(,)S^{E}(\cdot,\cdot), (3.6) and Lemma 3.2, we have

u𝚷k,huh2=E𝒯hSE(u𝚷k,hu,u𝚷k,hu)=E𝒯hhEs(u𝚷k,Eu)0,E2E𝒯h[|u𝚷k,Eu|1,E2+hE2|u𝚷k,Eu|2,E2]max{λSμS1,1}2h2|u|+1,Ω2.\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}^{2}=\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u},\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u})}=\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}(\textbf{u}-\boldsymbol{\Pi}_{k,E}\textbf{u})\|_{0,\partial E}^{2}}\\ \lesssim\displaystyle{\sum_{E\in\mathcal{T}_{h}}\left[|\textbf{u}-\boldsymbol{\Pi}_{k,E}\textbf{u}|_{1,E}^{2}+h_{E}^{2}|\textbf{u}-\boldsymbol{\Pi}_{k,E}\textbf{u}|_{2,E}^{2}\right]}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2}.

Hence, we derive the estimate

(3.29) u𝚷k,huhmax{λSμS1,1}h|u|+1,Ω.\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}h^{\ell}|\textbf{u}|_{\ell+1,\Omega}.

The above estimates give us the following result, that is an adaptation of [10, Theorem 4.1], and we emphasize that the Lamé coefficients appears.

Theorem 3.1.

Assuming that the solution u of Problem 1 belongs to H+1(Ω)\textbf{H}^{\ell+1}(\Omega) for 1k1\leq\ell\leq k. Then, the following estimate holds

uuhhC(λS,μS)h|u|+1,Ω,\|\textbf{u}-\textbf{u}_{h}\|_{h}\lesssim C(\lambda_{S},\mu_{S})h^{\ell}|\textbf{u}|_{\ell+1,\Omega},

where the constants C(λS,μS)C(\lambda_{S},\mu_{S}) is given by

C(λS,μS):=C1(λS,μS)C~2(λS,μS),andC~2(λS,μS):=max{C2(λS,μS),λSμS1,1},C(\lambda_{S},\mu_{S}):=C_{1}(\lambda_{S},\mu_{S})\widetilde{C}_{2}(\lambda_{S},\mu_{S}),\,\,\,\text{and}\quad\widetilde{C}_{2}(\lambda_{S},\mu_{S}):=\max\{C_{2}(\lambda_{S},\mu_{S}),\lambda_{S}\mu_{S}^{-1},1\},

and the hidden constant is independent of hh.

Proof.

The proof follows by replacing (3.26), (3.27), (3.28) and (3.29) in (3.25). ∎

We also have the following result, that give us an error estimate for 𝚷k,huh\boldsymbol{\Pi}_{k,h}\textbf{u}_{h} and 𝚷k,h0u\boldsymbol{\Pi}_{k,h}^{0}\textbf{u} in ||1,Ω|\cdot|_{1,\Omega} seminorm. This result is adapted from [10, Theorem 4.2] to our case.

Theorem 3.2.

Assuming that the solution u of Problem 1 belongs to H+1(Ω)\textbf{H}^{\ell+1}(\Omega), 1k1\leq\ell\leq k. Then, there holds

|uuh|1,Ω+|u𝚷k,huh|1,h+|u𝚷k,h0u|1,hK(λS,μS)h|u|+1,Ω,|\textbf{u}-\textbf{u}_{h}|_{1,\Omega}+|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}|_{1,h}+|\textbf{u}-\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}|_{1,h}\lesssim K(\lambda_{S},\mu_{S})h^{\ell}|\textbf{u}|_{\ell+1,\Omega},

where K(λS,μS)K(\lambda_{S},\mu_{S}) is a positive constant depending on the Lamé coefficients.

Proof.

Note that, from the definition of h\|\cdot\|_{h} and Theorem 3.1, we have

|𝚷k,h(uuh)|1,h2E𝒯hμS1aE(𝚷k,E(uuh),𝚷k,E(uuh))μS1uuhh2μS1C(λS,μS)2h2|u|+1,Ω2.|\boldsymbol{\Pi}_{k,h}(\textbf{u}-\textbf{u}_{h})|_{1,h}^{2}\leq\displaystyle{\sum_{E\in\mathcal{T}_{h}}\mu_{S}^{-1}a^{E}(\boldsymbol{\Pi}_{k,E}(\textbf{u}-\textbf{u}_{h}),\boldsymbol{\Pi}_{k,E}(\textbf{u}-\textbf{u}_{h}))}\\ \lesssim\mu_{S}^{-1}\|\textbf{u}-\textbf{u}_{h}\|_{h}^{2}\lesssim\mu_{S}^{-1}C(\lambda_{S},\mu_{S})^{2}h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2}.

This gives us the following estimate

|𝚷k,h(uuh)|1,hμS1/2C(λS,μS)h|u|+1,Ω,|\boldsymbol{\Pi}_{k,h}(\textbf{u}-\textbf{u}_{h})|_{1,h}\lesssim\mu_{S}^{-1/2}C(\lambda_{S},\mu_{S})h^{\ell}|\textbf{u}|_{\ell+1,\Omega},

Therefore, applying triangular inequality and (3.27), we obtain

(3.30) |u𝚷k,huh|1,h|u𝚷k,hu|1,h+|𝚷k,h(uuh)|1,hC3(λS,μS)h|u|+1,Ω,|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}|_{1,h}\leq|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}|_{1,h}+|\boldsymbol{\Pi}_{k,h}(\textbf{u}-\textbf{u}_{h})|_{1,h}\lesssim C_{3}(\lambda_{S},\mu_{S})h^{\ell}|\textbf{u}|_{\ell+1,\Omega},

where C3(λS,μS):=max{λSμS1,1,μS1/2C(λS,μS)}C_{3}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}\mu_{S}^{-1},1,\mu_{S}^{-1/2}C(\lambda_{S},\mu_{S})\}. On the other hand, applying triangular inequality, Lemma 3.3 and (3.27), we deduce that

(3.31) |u𝚷k,h0u|1,h|u𝚷k,hu|1,h+|𝚷k,h0(𝚷k,huu)|1,hmax{λS2μS2,1}h|u|+1,Ω.|\textbf{u}-\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}|_{1,h}\leq|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}|_{1,h}+|\boldsymbol{\Pi}_{k,h}^{0}(\boldsymbol{\Pi}_{k,h}\textbf{u}-\textbf{u})|_{1,h}\lesssim\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}h^{\ell}|\textbf{u}|_{\ell+1,\Omega}.

Finally, from triangular inequality, (3.22), (3.28), Theorem 3.1, and ii) of Lemma 3.10, we obtain

(3.32) |uuh|1,Ω|uIk,hu|1,Ω+max{λSμS1,μS1/2,1}Ik,huuhh|uIk,hu|1,Ω+max{λSμS1,μS1/2,1}(Ik,huuh+uuhh)C4(λS,μS)h|u|+1,Ω,\begin{split}|\textbf{u}-\textbf{u}_{h}|_{1,\Omega}&\lesssim|\textbf{u}-\textbf{I}_{k,h}\textbf{u}|_{1,\Omega}+\max\{\lambda_{S}\mu_{S}^{-1},\mu_{S}^{-1/2},1\}\|\textbf{I}_{k,h}\textbf{u}-\textbf{u}_{h}\|_{h}\\ &\lesssim|\textbf{u}-\textbf{I}_{k,h}\textbf{u}|_{1,\Omega}+\max\{\lambda_{S}\mu_{S}^{-1},\mu_{S}^{-1/2},1\}\left(\|\textbf{I}_{k,h}\textbf{u}-\textbf{u}\|_{h}+\|\textbf{u}-\textbf{u}_{h}\|_{h}\right)\\ &\lesssim C_{4}(\lambda_{S},\mu_{S})h^{\ell}|\textbf{u}|_{\ell+1,\Omega},\end{split}

with

C4(λS,μS):=max{λSμS1,1,C~4(λS,μS)},C~4(λS,μS):=max{λSμS1,μS1/2,1}max{C(λS,μS),C2(λS,μS)}.\begin{split}C_{4}(\lambda_{S},\mu_{S})&:=\max\{\lambda_{S}\mu_{S}^{-1},1,\widetilde{C}_{4}(\lambda_{S},\mu_{S})\},\\ \widetilde{C}_{4}(\lambda_{S},\mu_{S})&:=\max\{\lambda_{S}\mu_{S}^{-1},\mu_{S}^{-1/2},1\}\max\{C(\lambda_{S},\mu_{S}),C_{2}(\lambda_{S},\mu_{S})\}.\end{split}

Therefore, we conclude the proof from (3.30), (3.31) y (3.32). ∎

Now, we will prove two results involving the stability term S(,)S(\cdot,\cdot). These results are adapted respectively from [10, Lemma 4.2] and [10, Lemma 4.3], to our case.

Lemma 3.15.

For all 𝛇H01(Ω)H2(Ω)\boldsymbol{\zeta}\in\textbf{H}_{0}^{1}(\Omega)\cap\textbf{H}^{2}(\Omega), there holds

E𝒯hSE(𝜻𝚷k,EIk,E𝜻,𝜻𝚷k,EIk,E𝜻)max{λSμS1,1}2h2|𝜻|2,Ω2.\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta},\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta})}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h^{2}|\boldsymbol{\zeta}|_{2,\Omega}^{2}.
Proof.

From the definition of SE(,)S^{E}(\cdot,\cdot), (3.6), and Lemma 3.10 with =1\ell=1, we have

E𝒯hSE(𝜻𝚷k,EIk,E𝜻,𝜻𝚷k,EIk,E𝜻)E𝒯hhEs(𝜻𝚷k,EIk,E𝜻)0,E2E𝒯h(|𝜻𝚷k,EIk,E𝜻|1,E2+hE2|𝜻𝚷k,EIk,E𝜻|2,E2)max{λS2μS2,1}h2|𝜻|2,Ω2.\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta},\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta})}\lesssim\displaystyle{\sum_{E\in\mathcal{T}_{h}}h_{E}\|\partial_{s}\left(\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta}\right)\|_{0,\partial E}^{2}}\\ \lesssim\displaystyle{\sum_{E\in\mathcal{T}_{h}}\left(|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta}|_{1,E}^{2}+h_{E}^{2}|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta}|_{2,E}^{2}\right)}\lesssim\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}h^{2}|\boldsymbol{\zeta}|_{2,\Omega}^{2}.

This concludes the proof. ∎

Lemma 3.16.

Assume that uH+1(Ω)\textbf{u}\in\textbf{H}^{\ell+1}(\Omega), 1k1\leq\ell\leq k. Then there holds

E𝒯hSE(uh𝚷k,Euh,uh𝚷k,Euh)𝒞(λS,μS)h2|u|+1,Ω2,\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h},\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h})}\lesssim\mathcal{C}(\lambda_{S},\mu_{S})h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2},

where 𝒞(λS,μS)\mathcal{C}(\lambda_{S},\mu_{S}) is a positive constant depending on the Lamé coefficients.

Proof.

From triangle inequality, the continuity of aE(,)a^{E}(\cdot,\cdot), Theorem 3.1, and (3.29) we obtain

(3.33) E𝒯hSE(uh𝚷k,Euh,uh𝚷k,Euh)=uh𝚷k,huhh2uuhh2+u𝚷k,huh2+𝚷k,h(uuh)h2(C(λS,μS)2+max{λS2μS2,1})h2|u|+1,Ω+𝚷k,h(uuh)h2.\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h},\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h})}=\|\textbf{u}_{h}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}\|_{h}^{2}\\ \lesssim\|\textbf{u}-\textbf{u}_{h}\|_{h}^{2}+\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}\|_{h}^{2}+\|\boldsymbol{\Pi}_{k,h}(\textbf{u}-\textbf{u}_{h})\|_{h}^{2}\\ \lesssim\left(C(\lambda_{S},\mu_{S})^{2}+\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}\right)h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}\\ +\|\boldsymbol{\Pi}_{k,h}(\textbf{u}-\textbf{u}_{h})\|_{h}^{2}.

On the other hand, from the definition of h\|\cdot\|_{h}, (3.7), and Theorem 3.2, we have

𝚷k,h(uuh)h2=E𝒯haE(𝚷k,E(uuh),𝚷k,E(uuh))max{λS3μS2,λS2μS1,λS,μS}E𝒯h|uuh|1,E2C5(λS,μS)h2|u|+1,Ω2,\begin{split}\|\boldsymbol{\Pi}_{k,h}(\textbf{u}-\textbf{u}_{h})\|_{h}^{2}&=\displaystyle{\sum_{E\in\mathcal{T}_{h}}a^{E}(\boldsymbol{\Pi}_{k,E}(\textbf{u}-\textbf{u}_{h}),\boldsymbol{\Pi}_{k,E}(\textbf{u}-\textbf{u}_{h}))}\\ &\lesssim\max\{\lambda_{S}^{3}\mu_{S}^{-2},\lambda_{S}^{2}\mu_{S}^{-1},\lambda_{S},\mu_{S}\}\displaystyle{\sum_{E\in\mathcal{T}_{h}}|\textbf{u}-\textbf{u}_{h}|_{1,E}^{2}}\\ &\lesssim C_{5}(\lambda_{S},\mu_{S})h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2},\end{split}

where C5(λS,μS):=max{λS3μS2,λS2μS1,λS,μS}(K(λS,μS))2C_{5}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}^{3}\mu_{S}^{-2},\lambda_{S}^{2}\mu_{S}^{-1},\lambda_{S},\mu_{S}\}(K(\lambda_{S},\mu_{S}))^{2}. Hence, replacing this into (3.33) we obtain

E𝒯hSE(uh𝚷k,Euh,uh𝚷k,Euh)𝒞(λS,μS)h2|u|+1,Ω2,\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h},\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h})}\lesssim\mathcal{C}(\lambda_{S},\mu_{S})h^{2\ell}|\textbf{u}|_{\ell+1,\Omega}^{2},

where 𝒞(λS,μS):=max{C(λS,μS)2,C5(λS,μS),max{λS2μS2,1}}\mathcal{C}(\lambda_{S},\mu_{S}):=\max\{C(\lambda_{S},\mu_{S})^{2},C_{5}(\lambda_{S},\mu_{S}),\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}\}. This concludes the proof. ∎

The following lemma is adapted from [10, Lemma 4.4], and gives us a consistency result.

Lemma 3.17.

Assuming that uH+1(Ω)\textbf{u}\in\textbf{H}^{\ell+1}(\Omega) with 1k1\leq\ell\leq k. Then, there holds

a(uuh,Ik,h𝜻)𝔇(λS,μS)h+1|u|+1,Ω|𝜻|2,Ω𝜻H2(Ω)H01(Ω),a(\textbf{u}-\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta})\lesssim\mathfrak{D}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega}\quad\forall\boldsymbol{\zeta}\in\textbf{H}^{2}(\Omega)\cap\textbf{H}_{0}^{1}(\Omega),

where 𝔇(λS,μS)\mathfrak{D}(\lambda_{S},\mu_{S}) is a positive constant depending on the Lamé coefficients.

Proof.

From the linearity of a(,)a(\cdot,\cdot), the definition of ah(,)a_{h}(\cdot,\cdot), Problems 1 and 2, we have

(3.34) a(uuh,Ik,h𝜻)=a(u,Ik,hu)E𝒯haE(uh,Ik,h𝜻)=F(Ik,h𝜻)Fh(Ik,h𝜻)+E𝒯hSE(uh𝚷k,Euh,Ik,E𝜻𝚷k,EIk,E𝜻)+E𝒯haE(𝚷k,Euhuh,Ik,h𝜻𝚷k,EIk,E𝜻).a(\textbf{u}-\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta})=a(\textbf{u},\textbf{I}_{k,h}\textbf{u})-\displaystyle{\sum_{E\in\mathcal{T}_{h}}a^{E}(\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta})}\\ =F(\textbf{I}_{k,h}\boldsymbol{\zeta})-F_{h}(\textbf{I}_{k,h}\boldsymbol{\zeta})+\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h},\textbf{I}_{k,E}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta})}\\ +\displaystyle{\sum_{E\in\mathcal{T}_{h}}a^{E}(\boldsymbol{\Pi}_{k,E}\textbf{u}_{h}-\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta})}.

Now, from item ii) of Lemma 3.14 we have

(3.35) |F(Ik,h𝜻)Fh(Ik,h𝜻)|max{λSμS1,1}2h+1|u|+1,Ω|𝜻|2,Ω.\left\lvert F(\textbf{I}_{k,h}\boldsymbol{\zeta})-F_{h}(\textbf{I}_{k,h}\boldsymbol{\zeta})\right\lvert\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega}.

On the other hand, applying Cauchy Schwarz inequality, and Lemmas 3.15 and 3.16, we obtain

(3.36) E𝒯hSE(uh𝚷k,Euh,Ik,E𝜻𝚷k,EIk,E𝜻)C6(λS,μS)h+1|u|+1,Ω|𝜻|2,Ω,\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{u}_{h}-\boldsymbol{\Pi}_{k,E}\textbf{u}_{h},\textbf{I}_{k,E}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta})}\lesssim C_{6}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega},

with C6(λS,μS):=max{λSμS1,1}𝒞(λS,μS)C_{6}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}\mu_{S}^{-1},1\}\sqrt{\mathcal{C}(\lambda_{S},\mu_{S})}. Finally, invoking the Cauchy Schwarz inequality, Theorems 3.1 and 3.2, and part ii) of Lemma 3.10 yields to

(3.37) E𝒯haE(𝚷k,Euhuh,Ik,h𝜻𝚷k,EIk,E𝜻)max{λS2,μS2}(|uh𝚷k,huh|1,h)(|Ik,h𝜻𝚷k,hIk,h𝜻|1,h)max{λS2,μS2}(|uhu|1,Ω+|u𝚷k,huh|1,h)(|Ik,h𝜻𝜻|1,Ω+|𝜻𝚷k,hIk,h𝜻|1,h)C7(λS,μS)h+1|u|+1,Ω|𝜻|2,Ω,\displaystyle{\sum_{E\in\mathcal{T}_{h}}a^{E}(\boldsymbol{\Pi}_{k,E}\textbf{u}_{h}-\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,E}\textbf{I}_{k,E}\boldsymbol{\zeta})}\\ \lesssim\max\{\lambda_{S}^{2},\mu_{S}^{2}\}\left(|\textbf{u}_{h}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}|_{1,h}\right)\left(|\textbf{I}_{k,h}\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,h}\textbf{I}_{k,h}\boldsymbol{\zeta}|_{1,h}\right)\\ \leq\max\{\lambda_{S}^{2},\mu_{S}^{2}\}\left(|\textbf{u}_{h}-\textbf{u}|_{1,\Omega}+|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}|_{1,h}\right)\left(|\textbf{I}_{k,h}\boldsymbol{\zeta}-\boldsymbol{\zeta}|_{1,\Omega}+|\boldsymbol{\zeta}-\boldsymbol{\Pi}_{k,h}\textbf{I}_{k,h}\boldsymbol{\zeta}|_{1,h}\right)\\ \lesssim C_{7}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega},

where C7(λS,μS):=max{λS3μS1,λSμS,λS2,μS2}max{C(λS,μS),K(λS,μS)}C_{7}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}^{3}\mu_{S}^{-1},\lambda_{S}\mu_{S},\lambda_{S}^{2},\mu_{S}^{2}\}\max\{C(\lambda_{S},\mu_{S}),K(\lambda_{S},\mu_{S})\}. Thus, from (3.34), (3.35), (3.36) and (3.37) allows us to conclude

a(uuh,Ik,h𝜻)𝔇(λS,μS)h+1|u|+1,Ω|𝜻|2,Ω,a(\textbf{u}-\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta})\lesssim\mathfrak{D}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega},

with 𝔇(λS,μS):=max{C6(λS,μS),C7(λS,μS),max{λSμS1,1}2}\mathfrak{D}(\lambda_{S},\mu_{S}):=\max\{C_{6}(\lambda_{S},\mu_{S}),C_{7}(\lambda_{S},\mu_{S}),\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\}. This concludes the proof. ∎

The following result is an adaptation of [10, Theorem 4.3] to our case, and gives us an error estimate in L2(Ω)\textbf{L}^{2}(\Omega) norm.

Theorem 3.3.

Assuming that uH+1(Ω)\textbf{u}\in\textbf{H}^{\ell+1}(\Omega), 1k1\leq\ell\leq k, there holds

uuh0,Ω(λS,μS)h+1|u|+1,Ω,\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}\lesssim\mathfrak{R}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega},

where the hidden constant depends on Ω\Omega and not on hh, and (λS,μS)\mathfrak{R}(\lambda_{S},\mu_{S}) is a positive constant depending on the Lamé coefficients.

Proof.

Let 𝜻H01(Ω)\boldsymbol{\zeta}\in\textbf{H}_{0}^{1}(\Omega) the solution of

a(v,𝜻)=Ωv(uuh)vH01(Ω).a(\textbf{v},\boldsymbol{\zeta})=\displaystyle{\int_{\Omega}\textbf{v}(\textbf{u}-\textbf{u}_{h})}\quad\forall\textbf{v}\in\textbf{H}_{0}^{1}(\Omega).

Then, we have

uuh0,Ω2=a(uuh,𝜻)=a(uuh,𝜻Ik,h𝜻)+a(uuh,Ik,h𝜻).\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}^{2}=a(\textbf{u}-\textbf{u}_{h},\boldsymbol{\zeta})=a(\textbf{u}-\textbf{u}_{h},\boldsymbol{\zeta}-\textbf{I}_{k,h}\boldsymbol{\zeta})+a(\textbf{u}-\textbf{u}_{h},\textbf{I}_{k,h}\boldsymbol{\zeta}).

Since we are assuming that Ω\Omega is convex, and invoking Lemma 2.1, we have the following estimate for the 𝐇2\mathbf{H}^{2} seminorm

(3.38) |𝜻|2,Ω𝜻2,ΩCΩuuh0,Ω.|\boldsymbol{\zeta}|_{2,\Omega}\leq\|\boldsymbol{\zeta}\|_{2,\Omega}\lesssim C_{\Omega}\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}.

Then, from the continuity of a(,)a(\cdot,\cdot), part ii) of Lemma 3.10, and Theorem 3.2 we obtain

a(uuh,𝜻Ik,h𝜻)max{λS,μS}|uuh|1,Ω|𝜻Ik,h𝜻|1,ΩC8(λS,μS)h+1|u|+1,Ω|𝜻|2,Ω,a(\textbf{u}-\textbf{u}_{h},\boldsymbol{\zeta}-\textbf{I}_{k,h}\boldsymbol{\zeta})\lesssim\max\{\lambda_{S},\mu_{S}\}|\textbf{u}-\textbf{u}_{h}|_{1,\Omega}|\boldsymbol{\zeta}-\textbf{I}_{k,h}\boldsymbol{\zeta}|_{1,\Omega}\\ \lesssim C_{8}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega},

where C8(λS,μS):=max{λS2μS1,λS,μS}K(λS,μS)C_{8}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}^{2}\mu_{S}^{-1},\lambda_{S},\mu_{S}\}K(\lambda_{S},\mu_{S}). Therefore, from (3.38) and Lemma 3.17 we obtain

uuh0,Ω2max{C8(λS,μS),𝔇(λS,μS)}h+1|u|+1,Ω|𝜻|2,Ω(λS,μS)h+1|u|+1,Ωuuh0,Ω,\begin{split}\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}^{2}&\lesssim\max\{C_{8}(\lambda_{S},\mu_{S}),\mathfrak{D}(\lambda_{S},\mu_{S})\}h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}|\boldsymbol{\zeta}|_{2,\Omega}\\ &\lesssim\mathfrak{R}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega},\end{split}

where (λS,μS):=CΩmax{𝔇(λS,μS),C8(λS,μS)}\mathfrak{R}(\lambda_{S},\mu_{S}):=C_{\Omega}\max\{\mathfrak{D}(\lambda_{S},\mu_{S}),C_{8}(\lambda_{S},\mu_{S})\}. This concludes the proof. ∎

Finally, we conclude this section with the following result, that gives us an error estimate for 𝚷k,h0uh\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}_{h} and 𝚷k,huh\boldsymbol{\Pi}_{k,h}\textbf{u}_{h} in 0,Ω\|\cdot\|_{0,\Omega} norm. This result is adapted from [10, Theorem 4.4] to our case.

Theorem 3.4.

Assuming that uH+1(Ω)\textbf{u}\in\textbf{H}^{\ell+1}(\Omega), 1k1\leq\ell\leq k, there holds

u𝚷k,h0uh0,Ω+u𝚷k,huh0,Ω(λS,μS)h+1|u|+1,Ω,\|\textbf{u}-\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}_{h}\|_{0,\Omega}+\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}\|_{0,\Omega}\lesssim\mathfrak{C}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega},

where (λS,μS)\mathfrak{C}(\lambda_{S},\mu_{S}) is a positive constant depending on the Lamé coefficients.

Proof.

First, using triangular inequality, (3.14) and Theorem 3.3, we obtain

(3.39) u𝚷k,h0uh0,Ωu𝚷k,h0u0,Ω+uuh0,Ωmax{(λS,μS),1}h+1|u|+1,Ω.\|\textbf{u}-\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}_{h}\|_{0,\Omega}\leq\|\textbf{u}-\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}\|_{0,\Omega}+\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}\\ \lesssim\max\{\mathfrak{R}(\lambda_{S},\mu_{S}),1\}h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}.

On the other hand, applying triangular inequality again, we have

u𝚷k,huh0,Ωu𝚷k,hIk,hu0,Ω+𝚷k,h(Ik,huuh)0,Ω.\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}\|_{0,\Omega}\leq\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{I}_{k,h}\textbf{u}\|_{0,\Omega}+\|\boldsymbol{\Pi}_{k,h}(\textbf{I}_{k,h}\textbf{u}-\textbf{u}_{h})\|_{0,\Omega}.

Hence, from Lemma 3.1, (3.5) and (3.6), we deduce that

𝚷k,h(Ik,huuh)0,Ω2max{λSμS1,1}2E𝒯h|||Ik,Euuh|||k,E2max{λSμS1,1}2(Ik,huu0,Ω2+uuh0,Ω2+h2|Ik,huu|1,Ω2+h2|uuh|1,Ω).\|\boldsymbol{\Pi}_{k,h}(\textbf{I}_{k,h}\textbf{u}-\textbf{u}_{h})\|_{0,\Omega}^{2}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\displaystyle{\sum_{E\in\mathcal{T}_{h}}{\left|\kern-1.07639pt\left|\kern-1.07639pt\left|\textbf{I}_{k,E}\textbf{u}-\textbf{u}_{h}\right|\kern-1.07639pt\right|\kern-1.07639pt\right|}_{k,E}^{2}}\\ \lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}^{2}\left(\|\textbf{I}_{k,h}\textbf{u}-\textbf{u}\|_{0,\Omega}^{2}\right.\\ \left.+\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}^{2}+h^{2}|\textbf{I}_{k,h}\textbf{u}-\textbf{u}|_{1,\Omega}^{2}+h^{2}|\textbf{u}-\textbf{u}_{h}|_{1,\Omega}\right).

Therefore, we obtain the estimate

(3.40) 𝚷k,h(Ik,huuh)0,Ωmax{λSμS1,1}(uuh0,Ω+uIk,hu0,Ω+h|uIk,hu|1,Ω+h|uuh|1,Ω).\|\boldsymbol{\Pi}_{k,h}(\textbf{I}_{k,h}\textbf{u}-\textbf{u}_{h})\|_{0,\Omega}\lesssim\max\{\lambda_{S}\mu_{S}^{-1},1\}\left(\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}\right.\\ \left.+\|\textbf{u}-\textbf{I}_{k,h}\textbf{u}\|_{0,\Omega}+h|\textbf{u}-\textbf{I}_{k,h}\textbf{u}|_{1,\Omega}+h|\textbf{u}-\textbf{u}_{h}|_{1,\Omega}\right).

Now, from Lemma 3.10 we obtain

(3.41) uIk,hu0,Ω+h|uIk,hu|1,Ωmax{λS2μS2,1}h+1|u|+1,Ω,\|\textbf{u}-\textbf{I}_{k,h}\textbf{u}\|_{0,\Omega}+h|\textbf{u}-\textbf{I}_{k,h}\textbf{u}|_{1,\Omega}\lesssim\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega},

and by Theorems 3.2 and 3.3, there holds

(3.42) uuh0,Ω+h|uuh|1,ΩC9(λS,μS)h+1|u|+1,Ω.\|\textbf{u}-\textbf{u}_{h}\|_{0,\Omega}+h|\textbf{u}-\textbf{u}_{h}|_{1,\Omega}\lesssim C_{9}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}.

with C9(λS,μS):=max{(λS,μS),K(λS,μS)}C_{9}(\lambda_{S},\mu_{S}):=\max\{\mathfrak{R}(\lambda_{S},\mu_{S}),K(\lambda_{S},\mu_{S})\}. Hence, from (3.40), (3.41) and (3.42) we conclude that

(3.43) 𝚷k,h(Ik,huuh)0,ΩC~9(λS,μS)h+1|u|+1,Ω,\|\boldsymbol{\Pi}_{k,h}(\textbf{I}_{k,h}\textbf{u}-\textbf{u}_{h})\|_{0,\Omega}\lesssim\widetilde{C}_{9}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega},

where C~9(λS,μS):=max{λSμS1,1}max{C9(λS,μS),max{λS2μS2,1}}\widetilde{C}_{9}(\lambda_{S},\mu_{S}):=\max\{\lambda_{S}\mu_{S}^{-1},1\}\max\{C_{9}(\lambda_{S},\mu_{S}),\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}\}. Finally, from i) of Lemma 3.10, we derive

(3.44) u𝚷k,hIk,hu0,Ωmax{λS2μS2,1}h+1|u|+1,Ω.\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{I}_{k,h}\textbf{u}\|_{0,\Omega}\lesssim\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega}.

Therefore, from (3.43) and (3.44) we obtain

(3.45) u𝚷k,huh0,ΩC10(λS,μS)h+1|u|+1,Ω,\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}\|_{0,\Omega}\lesssim C_{10}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega},

with C10(λS,μS):=max{C~9(λS,μS),max{λS2μS2,1}}C_{10}(\lambda_{S},\mu_{S}):=\max\{\widetilde{C}_{9}(\lambda_{S},\mu_{S}),\max\{\lambda_{S}^{2}\mu_{S}^{-2},1\}\}. Hence, we conclude from (3.39) and (3.45) that

u𝚷k,h0uh0,Ω+u𝚷k,huh0,Ω(λS,μS)h+1|u|+1,Ω,\|\textbf{u}-\boldsymbol{\Pi}_{k,h}^{0}\textbf{u}_{h}\|_{0,\Omega}+\|\textbf{u}-\boldsymbol{\Pi}_{k,h}\textbf{u}_{h}\|_{0,\Omega}\lesssim\mathfrak{C}(\lambda_{S},\mu_{S})h^{\ell+1}|\textbf{u}|_{\ell+1,\Omega},

where (λS,μS):=max{C10(λS,μS),max{(λS,μS),1}}\mathfrak{C}(\lambda_{S},\mu_{S}):=\max\{C_{10}(\lambda_{S},\mu_{S}),\max\{\mathfrak{R}(\lambda_{S},\mu_{S}),1\}\}. This concludes the proof. ∎

4. Numerical experiments

In the following section we report a series of numerical experiments in which we illustrate the performance of the proposed numerical method. The results have been obtained with a MATLAB code.

To make matters precise, we are interested in the computation of experimental rates of convergence for the load problem, where we measure the error of approximation in the 𝐋2\mathbf{L}^{2} and 𝐇1\mathbf{H}^{1} norms. Moreover, as we have claimed through our study, the Poisson ratio ν\nu is not allowed to be equal to 1/21/2, since the Lamé coefficient λS\lambda_{S} tends to infinity. Then, we will focus on values of ν\nu far enough from 1/21/2, in order to obtain the desire results, and avoid the locking phenomenon. Let us remark that in all our numerical tests, we have taken as material density ϱ=1\varrho=1 and Young modulus E=1E=1.

4.1. The unit square

We begin with a simple convex domain as the unit square Ω:=(0,1)2\Omega:=(0,1)^{2}. The boundary condition for the forthcoming tests is 𝒖=𝟎\boldsymbol{u}=\boldsymbol{0} on the whole boundary Ω\partial\Omega. This configuration for the domain leads to solutions that are smooth enough on Ω\Omega, except for values of ν\nu, too close to 1/21/2.

The polygonal meshes that we will consider for our tests are the following:

  • \bullet

    𝒯h1\mathcal{T}_{h}^{1}: Triangles with small edges.

  • \bullet

    𝒯h2\mathcal{T}_{h}^{2}: Deformed triangles with middle points.

  • \bullet

    𝒯h3\mathcal{T}_{h}^{3}: Deformed squares.

  • \bullet

    𝒯h4\mathcal{T}_{h}^{4}: Voronoi,

and in Figure 1 we present examples of these meshes.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1. Example of the meshes for our experimentations. Top left: 𝒯h1\mathcal{T}_{h}^{1}, top right 𝒯h2\mathcal{T}_{h}^{2}, bottom left 𝒯h3\mathcal{T}_{h}^{3} and bottom right 𝒯h4\mathcal{T}_{h}^{4}.

Les us mention that 𝒯h1\mathcal{T}_{h}^{1} has the particularity that, for some element E𝒯h1E\in\mathcal{T}_{h}^{1}, the vertices are admissible to be very close between them, in order to almost collapse. This characteristic that can be observed in Figure 2 is the flexibility that the meshes with small edges allows, making a significant improvement from the classically admissible meshes. In Figure 2, we present the way in which the elements on 𝒯h1\mathcal{T}_{h}^{1} are constructed: From a triangular mesh, we consider the middle point of each edge of the element EE as a new degree of freedom. Then, we move such a point on each edge to a distance he/50h_{e}/50 from one vertex of EE and 1he/501-h_{e}/50 from the other where heh_{e} is the length of the edge ee, resulting a 6 edges polygon.

Refer to caption
Figure 2. Zoom of 𝒯h1\mathcal{T}_{h}^{1} mesh

.

We remark that each of these meshes have the condition of our interest: the polygons are allowed to consider small edges as is claimed in assumption A1.

We begin by comparing the performance of the proposed method with two different stabilizations S(,)S(\cdot,\cdot), in order to observe if there are significant differences when the small edges method is considered.

4.2. The derivative stabilization

The following results have been obtained with the following stabilization term

(4.46) S(wh,vh)=E𝒯hSE(wh,vh),SE(wh,vh)=hEEswhsvh.S(\textbf{w}_{h},\textbf{v}_{h})=\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{w}_{h},\textbf{v}_{h})},\quad S^{E}(\textbf{w}_{h},\textbf{v}_{h})=h_{E}\displaystyle{\int_{\partial E}\partial_{s}\textbf{w}_{h}\cdot\partial_{s}\textbf{v}_{h}}.

This stabilization is the one considered in, for instance, [8] for the Laplace source problem and [17] for the Steklov eigenvalue problem. With this stabilization, we perform the computation of the convergence orders for the elasticity problem for different values of the Poisson ratio and hence, different values of the Lamé coefficient λS\lambda_{S}. We remark that each load term 𝒇\boldsymbol{f} is different for each value of ν\nu.

In Figures 3 and 4 we report error curves for our method, where the meshes presented in Figure 1 have been considered. In these figures, the Poisson ratio takes the values ν{0.35,0.45,0.47,0.49}\nu\in\{0.35,0.45,0.47,0.49\} and we observe that the error of the displacement in the 𝐋2\mathbf{L}^{2} norm and the seminorm decay when the mesh is refined. Moreover, this decay of the error occurs with the optimal order, as is expected according to our theory. However, we observe that when ν=0.49\nu=0.49 and 𝒯h4{\mathcal{T}}_{h}^{4} are considered, the error estimate is not completely optimal. This is expectable since as we have claimed along our paper, when ν\nu is close to 1/21/2 the method is unstable. Moreover, 𝒯h4{\mathcal{T}}_{h}^{4} is not an uniform mesh compared with the rest of the considered meshes, leading to geometrical issues that also may affect the convergence order for a Poisson ratio close to 1/21/2.

These results allow us to infer that the small edges approach, together with the stabilization term (4.46), perform an accurate approximation of the solution, independently of the polygonal mesh under consideration.

Refer to caption
Refer to caption
Figure 3. Plots of computed errors for different polygonal meshes. Left: Poisson ratio ν=0.35\nu=0.35, right: Poisson ratio ν=0.45\nu=0.45, and stabilization (4.46).
Refer to caption
Refer to caption
Figure 4. Plots of computed errors for different polygonal meshes. Left: Poisson ratio ν=0.47\nu=0.47, right: Poisson ratio ν=0.49\nu=0.49, and stabilization (4.46).

4.3. The classic stabilization

Now our aim is to compare the results obtained with the stabilization defined in (4.46), with the classic stabilization that us used in the VEM. To make matters precise, the stabilization term for the following tests is given by

(4.47) S(wh,vh)=E𝒯hSE(wh,vh),SE(wh,vh)=i=1NEwh(Vi)vh(Vi),S(\textbf{w}_{h},\textbf{v}_{h})=\displaystyle{\sum_{E\in\mathcal{T}_{h}}S^{E}(\textbf{w}_{h},\textbf{v}_{h}),\quad S^{E}(\textbf{w}_{h},\textbf{v}_{h})}=\displaystyle{\sum_{i=1}^{N_{E}}\textbf{w}_{h}(V_{i})\textbf{v}_{h}(V_{i})},

which corresponds to the evaluation on the vertices of the polygons.

In what follows, we report error curves for the 𝐋2\mathbf{L}^{2} norm and H1\textbf{H}^{1} seminorm when the stabilization (4.47) is considered. These results have obtained, once again, for ν{0.35,0.45,0.47,0.49}\nu\in\{0.35,0.45,0.47,0.49\} and the meshes presented in Figure 1.

Refer to caption
Refer to caption
Figure 5. Plots of computed errors for different polygonal meshes. Left: Poisson ratio ν=0.35\nu=0.35, right: Poisson ratio ν=0.45\nu=0.45, and stabilization (4.47).
Refer to caption
Refer to caption
Figure 6. Plots of computed errors for different polygonal meshes. Left: Poisson ratio ν=0.47\nu=0.47, right: Poisson ratio ν=0.49\nu=0.49, and stabilization (4.47).

From Figures 5 and 6 we observe that the error in norm and seminorm behave according to the theory, when the different Poisson ratios are involved in the computation of the solution. This allows us to conclude that our small edges approach for the elasticity equations, works well independent of the stabilization implemented on the computation al codes, reinforcing the idea that the VEM, and particularly the small edges approach, is a versatile tool that approximates accurately the solutions of the elasticity equations.

Finally in Figures 7 and 8 we present plots of the magnitude of the displacement, where components of the approximated and exact solutions are presented.

Refer to caption
Refer to caption
Figure 7. First components of the displacement 𝒖1\boldsymbol{u}_{1}. Left: exact solution, right: approximated solution, both computed with ν=0.35\nu=0.35.
Refer to caption
Refer to caption
Figure 8. Second components of the displacement 𝒖2\boldsymbol{u}_{2}. Left: exact solution, right: approximated solution, both computed with ν=0.35\nu=0.35.

In order to confirm the robustness of the method, we present an additional experiment where we consider a mesh that we denote by 𝒯hv\mathcal{T}_{h}^{v}, which consists in the union of three different Voronoi mesh. This mesh has the particularity that, where the meshes are glued, the nodes are sufficiently close each other, appearing polygons with arbitrary small edges. In Figure 9 we present an example of this mesh.

Refer to caption
Figure 9. Sample of the mesh 𝒯hv\mathcal{T}_{h}^{v}, where the three meshes can be observed.

In Figure 10, we present the plots of computed error for 𝒯hv\mathcal{T}_{h}^{v} mesh and different values of Poisson ratio, namely ν{0.35,0.45,0.47,0.49}\nu\in\{0.35,0.45,0.47,0.49\}. Also, we present this experiment considering both stabilization terms (4.46) and (4.47).

Refer to caption
Refer to caption
Figure 10. Plots of computed errors for different Poisson ratio and 𝒯hv\mathcal{T}_{h}^{v}. Left: results for the stabilization term (4.46), right: results for the stabilization term (4.47).

The results clearly show that the method is strongly precise with this more general mesh and for the Poisson ratios. More precisely, there are no significant differences for these meshes when we compare the results with the ones obtained when 𝒯h1{\mathcal{T}}_{h}^{1}, 𝒯h2{\mathcal{T}}_{h}^{2}, 𝒯h3{\mathcal{T}}_{h}^{3}, and 𝒯h4{\mathcal{T}}_{h}^{4} are considered. Moreover, the stabilizations (4.46) and (4.47) work similarly.

4.4. Nonconvex domain

Now we perform a test that goes beyond the theory that we have developed, which assumes the convexity of the domain Ω\Omega in order to obtain optimal order of convergence for the proposed VEM method. For this test, we consider a nonconvex domain that we call the L-shaped domain as is defined by Ω:=(0,2)2[1,2)2\Omega:=(0,2)^{2}\setminus[1,2)^{2}. Clearly the geometry of this domain presents a geometrical singularity that leads to approximate a solution for the elasticity problem that is no sufficiently smooth. Hence, the VEM method will be not capable to achieve the optimal order of convergence under this configuration.

The polygonal meshes that we will consider for our tests are the following:

  • \bullet

    𝒯h1\mathcal{T}_{h}^{1}: Triangles with small edges.

  • \bullet

    𝒯h2\mathcal{T}_{h}^{2}: Deformed triangles with middle points.

  • \bullet

    𝒯h3\mathcal{T}_{h}^{3}: Voronoi-squares-deformed squares mixed.

  • \bullet

    𝒯h4\mathcal{T}_{h}^{4}: Voronoi.

In Figure 11 we present examples of these meshes when the L-shaped domain is considered.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 11. Example of the meshes for our experimentations. Top left: 𝒯h1\mathcal{T}_{h}^{1}, top right 𝒯h2\mathcal{T}_{h}^{2}, bottom left 𝒯h3\mathcal{T}_{h}^{3} and bottom right 𝒯h4\mathcal{T}_{h}^{4}.

For our experiments, we will consider the classic stabilization term (4.47). In what follows, we report error curves for the 𝐋2\mathbf{L}^{2} norm and seminorm when the stabilization (4.47) is considered. These results have obtained for ν{0.35,0.45,0.47,0.49}\nu\in\{0.35,0.45,0.47,0.49\} and the meshes presented in Figure 11.

Refer to caption
Refer to caption
Figure 12. Plots of computed errors for different polygonal meshes. Left: Poisson ratio ν=0.35\nu=0.35, right: Poisson ratio ν=0.45\nu=0.45, and stablization (4.47).
Refer to caption
Refer to caption
Figure 13. Plots of computed errors for different polygonal meshes. Left: Poisson ratio ν=0.47\nu=0.47, right: Poisson ratio ν=0.49\nu=0.49, and stablization (4.47).

Finally in Figure 14 and Figure 15 we present plots of the magnitude of the displacement, where components of the approximated and exact solutions are presented.

Refer to caption
Refer to caption
Figure 14. First components of the displacement 𝒖1\boldsymbol{u}_{1}. Left: exact solution, right: approximated solution, both computed with ν=0.35\nu=0.35.
Refer to caption
Refer to caption
Figure 15. Second components of the displacement 𝒖2\boldsymbol{u}_{2}. Left: exact solution, right: approximated solution, both computed with ν=0.35\nu=0.35.

References

  • [1] B. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl., 66 (2013), pp. 376–391.
  • [2] P. Antonietti, L. Beirão da Veiga, and G. Manzini, The Virtual Element Method and its Applications, vol. 31, SEMA SIMAI Springer Series, 2022.
  • [3] E. Artioli, L. Beirão da Veiga, C. Lovadina, and E. Sacco, Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech., 60 (2017), pp. 355–377.
  • [4] E. Artioli, S. de Miranda, C. Lovadina, and L. Patruno, A dual hybrid virtual element method for plane elasticity problems, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 1725–1750.
  • [5] T. P. Barrios, G. N. Gatica, M. González, and N. Heuer, A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity, M2AN Math. Model. Numer. Anal., 40 (2006), pp. 843–869 (2007).
  • [6] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), pp. 199–214.
  • [7] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24 (2014), pp. 1541–1573.
  • [8] L. Beirão da Veiga, C. Lovadina, and A. Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci., 27 (2017), pp. 2557–2594.
  • [9] S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, third ed., 2008.
  • [10] S. C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces, Math. Models Methods Appl. Sci., 28 (2018), pp. 1291–1336.
  • [11] E. Cáceres, G. N. Gatica, and F. A. Sequeira, A mixed virtual element method for a pseudostress-based formulation of linear elasticity, Appl. Numer. Math., 135 (2019), pp. 423–442.
  • [12] S. Cao and L. Chen, Anisotropic error estimates of the linear virtual element method on polygonal meshes, SIAM J. Numer. Anal., 56 (2018), pp. 2913–2939.
  • [13] H. Chen, S. Jia, and H. Xie, Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem, Appl. Numer. Math., 61 (2011), pp. 615–629.
  • [14] J. Droniou and L. Yemm, Robust hybrid high-order method on polytopal meshes with small faces, Comput. Methods Appl. Math., 22 (2022), pp. 47–71.
  • [15] G. N. Gatica, L. F. Gatica, and F. A. Sequeira, A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity, Comput. Math. Appl., 71 (2016), pp. 585–614.
  • [16] P. Grisvard, Problèmes aux limites dans les polygones. Mode d’emploi, EDF Bull. Direction Études Rech. Sér. C Math. Inform., (1986), pp. 3, 21–59.
  • [17] F. Lepe, D. Mora, G. Rivera, and I. Velásquez, A virtual element method for the Steklov eigenvalue problem allowing small edges, J. Sci. Comput., 88 (2021), pp. Paper No. 44, 21.
  • [18] Y. Liu and J. Wang, A locking-free P0P_{0} finite element method for linear elasticity equations on polytopal partitions, IMA J. Numer. Anal., 42 (2022), pp. 3464–3498.
  • [19] A. Márquez, S. Meddahi, and T. Tran, Analyses of mixed continuous and discontinuous Galerkin methods for the time harmonic elasticity problem with reduced symmetry, SIAM J. Sci. Comput., 37 (2015), pp. A1909–A1933.
  • [20] D. Mora and G. Rivera, A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations, IMA J. Numer. Anal., 40 (2020), pp. 322–357.
  • [21] D. Mora, G. Rivera, and R. Rodríguez, A virtual element method for the Steklov eigenvalue problem, Math. Models Methods Appl. Sci., 25 (2015), pp. 1421–1445.
  • [22] V. M. Nguyen-Thanh, X. Zhuang, H. Nguyen-Xuan, T. Rabczuk, and P. Wriggers, A virtual element method for 2D linear elastic fracture analysis, Comput. Methods Appl. Mech. Engrg., 340 (2018), pp. 366–395.
  • [23] X. Tang, Z. Liu, B. Zhang, and M. Feng, A low-order locking-free virtual element for linear elasticity problems, Comput. Math. Appl., 80 (2020), pp. 1260–1274.
  • [24] J. Tushar, A. Kumar, and S. Kumar, Virtual element methods for general linear elliptic interface problems on polygonal meshes with small edges, Comput. Math. Appl., 122 (2022), pp. 61–75.
  • [25] C. Wang and S. Zhang, A weak Galerkin method for elasticity interface problems, J. Comput. Appl. Math., 419 (2023), pp. Paper No. 114726, 14.
  • [26] B. Zhang and M. Feng, Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation, Appl. Math. Comput., 328 (2018), pp. 1–25.
  • [27] B. Zhang, J. Zhao, Y. Yang, and S. Chen, The nonconforming virtual element method for elasticity problems, J. Comput. Phys., 378 (2019), pp. 394–410.