This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Variance Inequality for Meromorphic Functions under Exterior Probability

Swagatam Sen
(July 1, 2020)
Abstract

The problem of measuring an unbounded system attribute near a singularity has been discussed. Lenses have been introduced as formal objects to study increasingly precise measurements around the singularity and a specific family of lenses called Exterior probabilities have been investigated. It has been shown that under such probabilities, measurement variance of a measurable function around a 1st order pole on a complex manifold, consists of two separable parts - one that decreases with diminishing scale of the lenses, and the other that increases. It has been discussed how this framework can lend mathematical support to ideas of non-deterministic uncertainty prevalent at a quantum scale. In fact, the aforementioned variance decomposition allows for a minimum possible variance for such a system irrespective of how close the measurements are. This inequality is structurally similar to Heisenberg uncertainty relationship if one considers energy/momentum to be a meromorphic function of a complex spacetime.

1 Introduction

Emergence of discrete outcome choices upon measurement of a continuously evolving intrinsic system has been a longstanding topic of interest. It is particularly of interest in the context of quantum uncertainty which appears to be fundamental to reality and is most often characterised by the continuous wave function. However, upon measurement such a continuous system collapses to discrete outcome choices.

There has been substantial amount of work on developing a mathematical foundation for such fundamental uncertainties and evolution/collapse of continuous systems onto discrete ‘pure states’. Almost all of it treats measurements as operators on a Hilbert space. Born rule, put forward by Max Born in 1926 [1], proposed an interpretation of the wave function wherein the square of its amplitude represents the probability of measurement outcome in a quantum experiment. This became a core part of famous Copenhagen Interpretation of Quantum Mechanics. While it has been deemed the most satisfactory and certainly most popular interpretation for a long time, it poses a serious mathematical challenge as it remains at crossroads with classical framework of Probability Measures.

One of the most significant mathematical groundwork towards addressing this challenge was conducted by Gleason [2]. Subsequent generalisations led to the formation of Quantum probability via non-commutative *-algebras[3][4][5]. However, the approach merely calls to focus how probabilities work differently at quantum scale, but doesn’t reconcile the classical and quantum probabilities under a general framework that applies at all scales. In that sense, it harbours much of the same concerns around non-emergent nature of quantum mechanics in general. Some of the more recent works in the area[6][7] focuses on measurement as an ‘averaging’ operation, albeit in the operator space.

In contrast to that, our primary concern in this paper is to investigate the possibility of a classical probability measure reproducing some of the known quantum effects. Also the approach can be described as a geometric one as opposed to the standard Operator theoretic approach. Motivationally it can be compared with the work of Fuch [8] on Quantum Bayesianism.

Particularly within the scope of this paper, we would focus on the nature of the underlying uncertainty as described by Heisenberg Uncertainty principle, and how such a relation can emerge from a classical probability measure. Heisenberg Uncertainty principle, despite multiple different representations, fundamentally is a probabilistic statement around the limits on accuracy of measurement of certain attributes at a quantum scale[9]. For example, if we allow Δx\Delta x and Δμ\Delta\mu to be the standard error in measurement of position and momentum of a point in spacetime, then

ΔxΔμ2=const\Delta x\Delta\mu\geq\frac{\hbar}{2}=const

A similar relation exists between other conjugate pairs e.g. time and Energy etc.

To rigorously define these relationships, we would need to introduce the concept of ‘lenses’.

Definition 1.1.

Let \mathscr{M} be an arbitrary manifold, and ={Ωλ,Σλ,Pλ}λ0\mathscr{L}=\{\Omega_{\lambda},\Sigma_{\lambda},P_{\lambda}\}_{\lambda\geq 0} be an indexed family of probability spaces on \mathscr{M} such that ΩλΩλ\Omega_{\lambda}\subset\Omega_{\lambda^{\prime}} iff λ<λ\lambda<\lambda^{\prime} and λΩλ={p}\bigcap\limits_{\lambda}\Omega_{\lambda}=\{p\} for some pp\in\mathscr{M}. \mathscr{L} would be called a system of lenses around pp and each of the underlying probability spaces would be called a lens. pp would be called the focus of the system of lenses.

Now a conjugate pair of attributes can be represented by f:nf:\mathscr{M}\mapsto\mathbb{C}^{n} where \mathscr{M} is the manifold representing the domain for one of the pair of attributes, while ff denotes the relationship between the two.

Example 1.1.

Let z=x+itz=x+it be a coordinate on \mathbb{C} with xx and tt representing the space and time coordinates respectively. Let π:\pi:\mathbb{C}\mapsto\mathbb{C} be the complex momentum such that π(z)=p(x,t)+iE(x,t)\pi(z)=p(x,t)+iE(x,t). In this case (z,π)(z,\pi) represents a conjugate pair of attribute with =\mathscr{M}=\mathbb{C}

Let’s choose lense \mathscr{L} on \mathscr{M} with scale index λ\lambda such that ff is measurable λ\forall\lambda. That would mean we can safely talk about expectation EλE_{\lambda} and standard deviation σλ\sigma_{\lambda} of ff measured through individual lenses.

Definition 1.2.

Let \mathscr{L} be a system of lenses on \mathscr{M} with scale index λ\lambda and f:nf:\mathscr{M}\mapsto\mathbb{C}^{n} is measurable λ\forall\lambda. Then ff is called Detectable if Eλ(f)E_{\lambda}(f) is independent of scale λ\lambda and σλ(f)<,λ\sigma_{\lambda}(f)<\infty,\forall\lambda.

Without loss generality for any detectable ff, we would assume the expectation to be 0 unless mentioned otherwise.

For such a Detectable conjugate pair, Heisenberg-type uncertainty relation can be summarised as follows.

λσλ(f)const\lambda\sigma_{\lambda}(f)\geq const (1.1)

If ff is continuous in an open neighbourhood UU of pp then f|Uf|_{U} is bounded. In that case σλ(f)supUf|U<\sigma_{\lambda}(f)\leq\sup\limits_{U}f|_{U}<\infty would also be universally bounded and would clearly not satisfy desired relationships as in (1.1).

That implies that for relationships of type (1.1) to hold around a point pp, we must have a singularity of ff at pp. However, it is immediately clear that if we allow PλP_{\lambda} to be absolutely continuous (w.r.t Lebesgue measure on n\mathbb{C}^{n}), then ff can’t be detectable as σλ=,λ\sigma_{\lambda}=\infty,\forall\lambda. Consequently our search for a system of lenses that allow detectable functions to satisfy Heisenberg type relations, has to limit itself to certain types of probability measures that allows an open null set containing p,λp,\forall\lambda. We’d refer these probabilities as Exterior Probability.

In the next few sections we would build a system of lenses on a complex manifold and study standard deviation of a detectable function ff under Exterior probabilities.

2 Exterior Probability

We’ll start with a simple disc of arbitrary length on \mathbb{C}, Dλ={w|w|λ}D_{\lambda}=\{w\in\mathbb{C}\mid|w|\leq\lambda\}.

Definition 2.1.

For a given open interval I[π,π]I\subset[-\pi,\pi], we can define a Slice as Γλ(I)={w|w|λ,arg(w)I}\Gamma_{\lambda}(I)=\{w\in\mathbb{C}\mid|w|\leq\lambda,arg(w)\in I\}. Let γλ(I)={w|w|=λ,arg(w)I}\gamma_{\lambda}(I)=\{w\in\mathbb{C}\mid|w|=\lambda,arg(w)\in I\} be the corresponding arc. ∎

It’s easy to check that both Slices and Arcs can be seen as distributive operators on the semi-ring of intervals.

Remark.
  1. 1.

    Γλ(I1)Γλ(I2)=Γλ(I1I2), γλ(I1)γλ(I2)=γλ(I1I2)\Gamma_{\lambda}(I_{1})\cap\Gamma_{\lambda}(I_{2})=\Gamma_{\lambda}(I_{1}\cap I_{2}),\text{ }\gamma_{\lambda}(I_{1})\cap\gamma_{\lambda}(I_{2})=\gamma_{\lambda}(I_{1}\cap I_{2})

  2. 2.

    Γλ(k=1Ik)=k=1nΓλ(Ik), γλ(k=1Ik)=k=1nγλ(Ik)\Gamma_{\lambda}(\bigcup\limits_{k=1}^{\infty}I_{k})=\bigcup\limits_{k=1}^{n}\Gamma_{\lambda}(I_{k}),\text{ }\gamma_{\lambda}(\bigcup\limits_{k=1}^{\infty}I_{k})=\bigcup\limits_{k=1}^{n}\gamma_{\lambda}(I_{k})

  3. 3.

    Γλ(k=1Ik)=k=1nΓλ(Ik), γλ(k=1Ik)=k=1nγλ(Ik)\Gamma_{\lambda}(\bigsqcup\limits_{k=1}^{\infty}I_{k})=\bigsqcup\limits_{k=1}^{n}\Gamma_{\lambda}(I_{k}),\text{ }\gamma_{\lambda}(\bigsqcup\limits_{k=1}^{\infty}I_{k})=\bigsqcup\limits_{k=1}^{n}\gamma_{\lambda}(I_{k})

Space of all Slices of DλD_{\lambda} renders a semi-ring structure.

Definition 2.2.

Let Eλ={Γλ(I) interval I[π,π]}E_{\lambda}=\{\Gamma_{\lambda}(I)\mid\forall\text{ interval }I\subset[-\pi,\pi]\} be the collection of Slices on DλD_{\lambda}. ∎

Proposition 2.1.

EλE_{\lambda} is a semi-ring, λ\forall\lambda

Proof.

Proof follows trivially from the fact that the space of all intervals II, forms a semi-ring on [π,π][-\pi,\pi].
Let Γλ(I1)\Gamma_{\lambda}(I_{1}) and Γλ(I2)\Gamma_{\lambda}(I_{2}) be two Slices. It’s easy to see that, Γλ(I1)Γλ(I2)=Γλ(I1I2)Eλ\Gamma_{\lambda}(I_{1})\cap\Gamma_{\lambda}(I_{2})=\Gamma_{\lambda}(I_{1}\cap I_{2})\in E_{\lambda}. Also, Γλ(I1)Γλ(I2)=Γλ(I1I2)=Γλ(kCk)=kΓλ(Ck)\Gamma_{\lambda}(I_{1})\setminus\Gamma_{\lambda}(I_{2})=\Gamma_{\lambda}(I_{1}\setminus I_{2})=\Gamma_{\lambda}(\bigcup\limits_{k}C_{k})=\bigcup\limits_{k}\Gamma_{\lambda}(C_{k}), where {Ck}k\{C_{k}\}_{k} are a collection of intervals. ∎

Of course then we can extend it to the σ\sigma-algebra it generates.

Definition 2.3.

Let λ=σ(Eλ)\mathscr{E}_{\lambda}=\sigma(E_{\lambda}) be the σ\sigma-algebra generated by EλE_{\lambda}. ∎

Now we can start to build the measure, first on the semi-ring.

Definition 2.4.

Let Γλ(I)Eλ\Gamma_{\lambda}(I)\in E_{\lambda}. Then μλ:Eλ\mu_{\lambda}:E_{\lambda}\mapsto\mathbb{C} can be defined as μλ(Γλ(I))=12πiγλ(I)1w\mu_{\lambda}(\Gamma_{\lambda}(I))=\frac{1}{2\pi i}\oint\limits_{\gamma_{\lambda}(I)}\frac{1}{w}

Lemma 2.2.

μλ\mu_{\lambda} is σ\sigma-additive on EλE_{\lambda}

Proof.

Let Γ=k=1Γλ(Ik)Eλ\Gamma=\bigsqcup\limits_{k=1}^{\infty}\Gamma_{\lambda}(I_{k})\in E_{\lambda}. That means k=1Ik\bigsqcup\limits_{k=1}^{\infty}I_{k} is an interval. That would allow us to write μλ\mu_{\lambda} as,

μλ(Γ)\displaystyle\mu_{\lambda}(\Gamma) =μλ(k=1Γλ(Ik))=μλ(Γλ(k=1Ik))\displaystyle=\mu_{\lambda}(\bigsqcup\limits_{k=1}^{\infty}\Gamma_{\lambda}(I_{k}))=\mu_{\lambda}(\Gamma_{\lambda}(\bigsqcup\limits_{k=1}^{\infty}I_{k}))
=12πiγλ(k=1Ik)1w=12πik=1(γλ(Ik))1w\displaystyle=\frac{1}{2\pi i}\oint\limits_{\gamma_{\lambda}(\bigsqcup\limits_{k=1}^{\infty}I_{k})}\frac{1}{w}=\frac{1}{2\pi i}\oint\limits_{\bigsqcup\limits_{k=1}^{\infty}(\gamma_{\lambda}(I_{k}))}\frac{1}{w}
=k=112πiγλ(Ik)1w=k=1μλ(Γλ(Ik))\displaystyle=\sum\limits_{k=1}^{\infty}\frac{1}{2\pi i}\oint\limits_{\gamma_{\lambda}(I_{k})}\frac{1}{w}=\sum\limits_{k=1}^{\infty}\mu_{\lambda}(\Gamma_{\lambda}(I_{k}))

Corollary.

μλ\mu_{\lambda} can be uniquely extended as a complex probability on λ\mathscr{E}_{\lambda}. ∎

Let (λn,μλn)(\mathscr{E}^{n}_{\lambda},\mu^{n}_{\lambda}) denote the product probability space on DλnD^{n}_{\lambda} where μλn(\varprodΓk)=kμλ(Γk)\mu^{n}_{\lambda}(\varprod\Gamma_{k})=\prod\limits_{k}\mu_{\lambda}(\Gamma_{k}) for Γkλ,k\Gamma_{k}\in\mathscr{E}_{\lambda},\forall k. We’d refer to μλn\mu^{n}_{\lambda} as the Exterior Probability on the poly-disc DλnD^{n}_{\lambda}. We’d define a Unit Lens as the filtration of probability spaces ={(Dλn,λn,μλn)}λ0\mathscr{L}=\{(D^{n}_{\lambda},\mathscr{E}^{n}_{\lambda},\mu^{n}_{\lambda})\}_{\lambda\downarrow 0}.

Definition 2.5.

A Convergent Lens on n\mathbb{C}^{n} around 0, is a filtration of probability spaces {Dλn,λn,τλ)}λ0\{D^{n}_{\lambda},\mathscr{E}^{n}_{\lambda},\tau_{\lambda})\}_{\lambda\downarrow 0} such that τλ\tau_{\lambda} is absolutely continuous with respect to μλn\mu^{n}_{\lambda}, λ\forall\lambda. ∎

For the rest of this paper we’d focus on Unit Lenses. However, similar results can be recovered for a more general convergent lenses.

3 Variance Inequality for Meromorphic Functions

Let \mathscr{F} be the vector space of all meromorphic function f:nkf:\mathbb{C}^{n}\mapsto\mathbb{C}^{k} which has a potential pole of order at most 1 at 0 and is μλn\mu^{n}_{\lambda}-measurable over DλnD^{n}_{\lambda}.

Remark.

μλn\mu^{n}_{\lambda} induces an Expectation E()E(\cdot) and an inner product ,\langle\cdot,\cdot\rangle on \mathscr{F} as

  • E(f)=Dλf𝑑μλn=1(2πi)nDλf(w)αwαE(f)=\int\limits_{D_{\lambda}}fd\mu^{n}_{\lambda}=\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}\frac{f(w)}{\prod\limits_{\alpha}w_{\alpha}},

  • f,g=Dλfg𝑑μλn=1(2πi)nDλf(w)g(w)αwα\langle f,g\rangle=\int\limits_{D_{\lambda}}f^{*}gd\mu^{n}_{\lambda}=\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}\frac{f(w)^{*}g(w)}{\prod\limits_{\alpha}w_{\alpha}}

Remark.

We can write ff as a sum of its core, principal and analytical components.

  • f0α=1(2πi)nDλfα(𝐰)μ=13wμf_{0}^{\alpha}=\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}{\frac{f^{\alpha}(\mathbf{w})}{\prod_{\mu=1}^{3}w^{\mu}}} is the core of ff.

  • fPα=β=1nηβαzβf_{P}^{\alpha}=\sum_{\beta=1}^{n}\frac{\eta^{\alpha}_{\beta}}{z_{\beta}} is the principal component of ff where ηβα=1(2πi)nDλfα(𝐰)μβwμ\eta^{\alpha}_{\beta}=\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}{\frac{f^{\alpha}(\mathbf{w})}{\prod_{\mu\neq\beta}w_{\mu}}} is the matrix of residues.

  • fA=ff0fPf_{A}=f-f_{0}-f_{P} is the Analytic component of ff and can be expressed as a power series within a radius of convergence RR i.e. fAα=1(2πi)nβ=1n[Dλfα(𝐰)wβμwμ]zβ+Pα(z)=β=1n𝒟αβzβ+Pα(z)f_{A}^{\alpha}=\frac{1}{(2\pi i)^{n}}\sum_{\beta=1}^{n}[\oint\limits_{D_{\lambda}}{\frac{f^{\alpha}(\mathbf{w})}{w_{\beta}\prod_{\mu}w_{\mu}}}]z^{\beta}+P^{\alpha}(z)=\sum_{\beta=1}^{n}\mathscr{D}^{\alpha\beta}z_{\beta}+P^{\alpha}(z), z\forall z such that |zβ|<R|z^{\beta}|<R β\forall\beta where 𝒟αβ=fαwβ|w=0\mathscr{D}^{\alpha\beta}=\frac{\partial f^{\alpha}}{\partial w_{\beta}}|_{w=0} and PαP^{\alpha} is a power series of degree at least 2

Remark.

For ff\in\mathscr{F}, let η\eta be the residue matrix and f0f_{0} be the core. Then

  1. 1.

    E(f)=f0E(f)=f_{0} is independent of λ\lambda

  2. 2.

    z¯,f=λ21z,f=Tr(η)\langle\overline{z},f\rangle=\lambda^{2}\langle\frac{1}{z},f\rangle=Tr(\eta)

  3. 3.

    z,f=λ21z¯,f=Tr(𝒟)\langle z,f\rangle=\lambda^{2}\langle\frac{1}{\overline{z}},f\rangle=Tr(\mathscr{D})

Additionally we can characterise the higher order terms in fAf_{A}

Proposition 3.1.

Let ff\in\mathscr{F} and let fAf_{A} be the analytic component of ff. Also let fAα(𝐰)=𝒟αβwβ+Pα(𝐰),αf_{A}^{\alpha}(\mathbf{w})=\mathscr{D}^{\alpha\beta}w_{\beta}+P^{\alpha}(\mathbf{w}),\forall\alpha where PαP^{\alpha} is a power series of degree at least 2. Then the following statements are true

  1. 1.

    DλPα(𝐰)γwγ=DλPα(𝐰)¯γwγ=0 α.\oint\limits_{D_{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{\prod\limits_{\gamma}w_{\gamma}}=0\text{ }\forall\alpha.

  2. 2.

    DλPα(𝐰)γδwγ=DλPα(𝐰)¯γδwγ=0 α,δ.\oint\limits_{D_{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=0\text{ }\forall\alpha,\delta.

  3. 3.

    DλPα(𝐰)wδγδwγ=DλPα(𝐰)¯wδγwγ=0 α,δ.\oint\limits_{D_{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{w_{\delta}\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}=0\text{ }\forall\alpha,\delta.

  4. 4.

    Dλ(Pα(𝐰)¯)Pα(𝐰)γwγ=i,jDλ(Piα(𝐰)¯)Pjα(𝐰)γwγ=0 α\oint\limits_{D_{\lambda}}\frac{(\overline{P^{\alpha}(\mathbf{w})})P^{\alpha}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=\sum\limits_{i,j}\oint\limits_{D_{\lambda}}\frac{(\overline{P^{\alpha}_{i}(\mathbf{w})})P^{\alpha}_{j}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=0\text{ }\forall\alpha

Proof.

Let Dλ(β)={|w1|=λ}{|wβ1|=λ}{|wβ+1|=λ}{|wn|=λ}D^{(\beta)}_{\lambda}=\{|w_{1}|=\lambda\}\otimes...\otimes\{|w_{\beta-1}|=\lambda\}\otimes\{|w_{\beta+1}|=\lambda\}\otimes...\otimes\{|w_{n}|=\lambda\}.

If fAα(𝐰)=𝒟αβwβ+Pα(𝐰)f^{\alpha}_{A}(\mathbf{w})=\mathscr{D}_{\alpha\beta}w_{\beta}+P^{\alpha}(\mathbf{w}) α\forall\alpha where PαP^{\alpha} is a power series of lowest degree at least 2, convergent within the radius RR, that means Pα(𝐰)=Piα(𝐰)P^{\alpha}(\mathbf{w})=\sum P^{\alpha}_{i}(\mathbf{w}) where α,i\forall\alpha,\forall i either of these two possibilities are true-

  • Case I - βi\exists\beta_{i} such that Piα(𝐰)=wβiriQiα(𝐰(βi))P^{\alpha}_{i}(\mathbf{w})=w_{\beta_{i}}^{r_{i}}Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})}) with ri2r_{i}\geq 2 where QiαQ^{\alpha}_{i} is a convergent power series on 𝐰(βi)=(w1,,wβi1,wβi+1,,wn)\mathbf{w}^{(\beta_{i})}=(w_{1},...,w_{\beta_{i}-1},w_{\beta_{i}+1},...,w_{n}).

  • Case II - βi|1<βi|2\exists\beta_{i|1}<\beta_{i|2} such that Piα(𝐰)=wβi|1wβi|2Qiα(𝐰(βi|1,βi|2))P^{\alpha}_{i}(\mathbf{w})=w_{\beta_{i}|1}w_{\beta_{i|2}}Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i|1},\beta_{i|2})}) where QiαQ^{\alpha}_{i} is a convergent power series on 𝐰(βi|1,βi|2)=(w1,,wβi1,wβi+1,,wβi|21,wβi|2+1,,wn)\mathbf{w}^{(\beta_{i|1},\beta_{i|2})}=(w_{1},...,w_{\beta_{i}-1},w_{\beta_{i}+1},...,w_{\beta_{i|2}-1},w_{\beta_{i|2}+1},...,w_{n}).

  1. 1.
    1. (a)

      In that case,

      DλnPα(𝐰)γwγ=0\oint\limits_{D^{n}_{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=0

      because PαP^{\alpha} is analytic at 0.

    2. (b)

      Also

      DλnPiα(𝐰)¯γwγ=λ2riDλ(βi)Qiα(𝐰(βi))¯γβiwγ|wβi|=λ1wβiri+1=0 α,i.\oint\limits_{D^{n}_{\lambda}}\frac{\overline{P^{\alpha}_{i}(\mathbf{w})}}{\prod\limits_{\gamma}w_{\gamma}}=\lambda^{2r_{i}}\oint\limits_{D^{(\beta_{i})}_{\lambda}}\frac{\overline{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})})}}{\prod\limits_{\gamma\neq\beta_{i}}w_{\gamma}}\oint\limits_{|w_{\beta_{i}}|=\lambda}\frac{1}{w_{\beta_{i}}^{r_{i}+1}}=0\text{ }\forall\alpha,i.


      Hence it follows that

      DλnPα(w)¯γwγ=0 α.\oint\limits_{D^{n}_{\lambda}}\frac{\overline{P^{\alpha}(w)}}{\prod\limits_{\gamma}w_{\gamma}}=0\text{ }\forall\alpha.
  2. 2.
    1. (a)

      Working with the power series components PiαP^{\alpha}_{i}, we know that,

      DλnPiα(𝐰)γδwγ=Dλ(βi)Qiα(𝐰(βi))γβi,δwγ|wβi|=λwβirisi=0\oint\limits_{D^{n}_{\lambda}}\frac{P^{\alpha}_{i}(\mathbf{w})}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\oint\limits_{D^{(\beta_{i})}_{\lambda}}\frac{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})})}{\prod\limits_{\gamma\neq\beta_{i},\delta}w_{\gamma}}\oint\limits_{|w_{\beta_{i}}|=\lambda}w_{\beta_{i}}^{r_{i}-s_{i}}=0

      where si=I(βiδ)s_{i}=I(\beta_{i}\neq\delta) and ri1r_{i}\geq 1

    2. (b)

      Same would apply for the conjugate with a slightly different calculation.

      DλPiα(𝐰)¯γδwγ=λ2riDλQiα(𝐰(βi))¯wβiri+siγβi,δwγ\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}_{i}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\lambda^{2r_{i}}\oint\limits_{D_{\lambda}}\frac{\overline{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})})}}{w_{\beta_{i}}^{r_{i}+s_{i}}\prod\limits_{\gamma\neq\beta_{i},\delta}w_{\gamma}}

      where si=I(βiδ)s_{i}=I(\beta_{i}\neq\delta)

      Unless βi=δ\beta_{i}=\delta and ri=1r_{i}=1, we could simply write this,

      DλPiα(𝐰)¯γδwγ=λ2riDλ(βi)Qiα(𝐰(βi))¯γβi,δwγ|wβi|=λ1wβiri+si=0\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}_{i}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\lambda^{2r_{i}}\oint\limits_{D^{(\beta_{i})}_{\lambda}}\frac{\overline{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})})}}{\prod\limits_{\gamma\neq\beta_{i},\delta}w_{\gamma}}\oint\limits_{|w_{\beta_{i}}|=\lambda}\frac{1}{w_{\beta_{i}}^{r_{i}+s_{i}}}=0

      as ri+si>1r_{i}+s_{i}>1

      For the case when βi=δ\beta_{i}=\delta and ri=1r_{i}=1, we could invoke Case II and assume without loss of generality that βi|1δ\beta_{i|1}\neq\delta. That would allow us to write,

      DλPiα(𝐰)¯γδwγ=λ4Dλ(βi|1)Qiα(𝐰(βi|1,βi|2))¯wβi|2γβi|1,δwγ|wβi|1|=λ1wβi|12=0\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}_{i}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\lambda^{4}\oint\limits_{D^{(\beta_{i|1})}_{\lambda}}\frac{\overline{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i|1},\beta_{i|2})})}}{w_{\beta_{i|2}}\prod\limits_{\gamma\neq\beta_{i|1},\delta}w_{\gamma}}\oint\limits_{|w_{\beta_{i|1}}|=\lambda}\frac{1}{w^{2}_{\beta_{i|1}}}=0

      This of course leads to

      DλPα(𝐰)¯γδwγ=iDλPiα(𝐰)¯γδwγ=0 α,δ\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=\sum\limits_{i}\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}_{i}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=0\text{ }\forall\alpha,\delta
    3. (c)

      For the other identities,

      DλPiα(𝐰)wδγwγ=Dλ(βi)Qiα(𝐰(βi))wδsiγβiwγ|wβi|=λwβiri+si1=0 α,δ.\oint\limits_{D_{\lambda}}\frac{P^{\alpha}_{i}(\mathbf{w})}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}=\oint\limits_{D^{(\beta_{i})}_{\lambda}}\frac{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})})}{w_{\delta}^{s_{i}}\prod\limits_{\gamma\neq\beta_{i}}w_{\gamma}}\oint\limits_{|w_{\beta_{i}}|=\lambda}w_{\beta_{i}}^{r_{i}+s_{i}-1}=0\text{ }\forall\alpha,\delta.

      where si=I(βiδ)s_{i}=I(\beta_{i}\neq\delta)

      That implies,

      DλPα(𝐰)wδγwγ=iDλPiα(𝐰)wδγwγ=0 α,δ\oint\limits_{D_{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}=\sum\limits_{i}\oint\limits_{D_{\lambda}}\frac{P^{\alpha}_{i}(\mathbf{w})}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}=0\text{ }\forall\alpha,\delta
    4. (d)

      By a similar argument,

      DλPiα(𝐰)¯wδγwγ=λ2riDλ(βi)Qiα(𝐰(βi))¯wδsγβiwγ|wβi|=λ1wβirisi+1=0 α,δ.\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}_{i}(\mathbf{w})}}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}=\lambda^{2r_{i}}\oint\limits_{D^{(\beta_{i})}_{\lambda}}\frac{\overline{Q^{\alpha}_{i}(\mathbf{w}^{(\beta_{i})})}}{w_{\delta}^{s}\prod\limits_{\gamma\neq\beta_{i}}w_{\gamma}}\oint\limits_{|w_{\beta_{i}}|=\lambda}\frac{1}{w_{\beta_{i}}^{r_{i}-s_{i}+1}}=0\text{ }\forall\alpha,\delta.
  3. 3.

    Also it’s easy to check that,

    Dλ(Piα(𝐰)¯)Pjα(𝐰)γwγ=λri+rjDλ(βi,βj)Qiα(w(βi))¯Qjα(w(βj))γβi,βjwγ\displaystyle\oint\limits_{D_{\lambda}}\frac{(\overline{P^{\alpha}_{i}(\mathbf{w})})P^{\alpha}_{j}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=\lambda^{r_{i}+r_{j}}\oint\limits_{D^{(\beta_{i},\beta_{j})}_{\lambda}}\frac{\overline{Q^{\alpha}_{i}(w^{(\beta_{i})})}Q^{\alpha}_{j}(w^{(\beta_{j})})}{\prod\limits_{\gamma\neq\beta_{i},\beta_{j}}w_{\gamma}} |wβi|=λ1wβiri+1|wβj|=λwβjrj1\displaystyle\oint\limits_{|w_{\beta_{i}}|=\lambda}\frac{1}{w_{\beta_{i}}^{r_{i}+1}}\oint\limits_{|w_{\beta_{j}}|=\lambda}w_{\beta_{j}}^{r_{j}-1}
    =0, α,i\displaystyle=0,\text{ }\forall\alpha,i


    which means that,

    Dλ(Pα(𝐰)¯)Pα(𝐰)γwγ=i,jDλ(Piα(𝐰)¯)Pjα(𝐰)γwγ=0 α.\oint\limits_{D_{\lambda}}\frac{(\overline{P^{\alpha}(\mathbf{w})})P^{\alpha}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=\sum\limits_{i,j}\oint\limits_{D_{\lambda}}\frac{(\overline{P^{\alpha}_{i}(\mathbf{w})})P^{\alpha}_{j}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=0\text{ }\forall\alpha.

Lemma 3.2.

Let ff\in\mathscr{F} and let f0,fPf_{0},f_{P} and fAf_{A} be the core, principal and analytic components of ff. If DλD_{\lambda} is equipped with an exterior probability νλ\nu_{\lambda}, then it has following properties

  1. 1.

    E(fP)=E(fA)=E(fP¯)=E(fA¯)=0E(f_{P})=E(f_{A})=E(\overline{f_{P}})=E(\overline{f_{A}})=0

  2. 2.

    fA,fP=fP,fA=0\langle f_{A},f_{P}\rangle=\langle f_{P},f_{A}\rangle=0

  3. 3.

    fP2=fp,fp=Tr(η)λ2\|f_{P}\|^{2}=\langle f_{p},f_{p}\rangle=\frac{Tr(\eta)}{\lambda^{2}}

  4. 4.

    fA2=λ2Tr(𝒟)\|f_{A}\|^{2}=\lambda^{2}Tr(\mathscr{D})

Proof.

We can look to prove the desired results utilising Proposition 3.1.

  1. 1.
    1. (a)

      We’ll start by showing the principal component has vanishing expectation.

      E(fPα)=1(2πi)nβDληβαwβγwγ=1(2πi)nβηβαDλ(β)1γβwγ|wβ|=λ1wβ2=0,α\displaystyle E(f_{P}^{\alpha})=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\oint\limits_{D_{\lambda}}\frac{\eta_{\beta}^{\alpha}}{w_{\beta}\prod\limits_{\gamma}w_{\gamma}}=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\eta_{\beta}^{\alpha}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{\prod\limits_{\gamma\neq\beta}w_{\gamma}}\oint\limits_{|w_{\beta}|=\lambda}\frac{1}{w_{\beta}^{2}}=0,\forall\alpha
    2. (b)

      and the same is true for its conjugate.

      E(fPα¯)=1(2πi)nβDληβα¯wβ¯γwγ=1(2πi)n1λ2βηβα¯Dλ(β)1γβwγ|wβ|=λ1=0,α\displaystyle E(\overline{f_{P}^{\alpha}})=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\oint\limits_{D_{\lambda}}\frac{\overline{\eta_{\beta}^{\alpha}}}{\overline{w_{\beta}}\prod\limits_{\gamma}w_{\gamma}}=\frac{1}{(2\pi i)^{n}}\frac{1}{\lambda^{2}}\sum\limits_{\beta}\overline{\eta_{\beta}^{\alpha}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{\prod\limits_{\gamma\neq\beta}w_{\gamma}}\oint\limits_{|w_{\beta}|=\lambda}1=0,\forall\alpha
    3. (c)

      Similar calculation can be done for the analytic component as well, with identical outcome.

      E(fA)=1(2πi)nβDλfA(𝐰)γwγ=fA(0)=0\displaystyle E(f_{A})=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\oint\limits_{D_{\lambda}}\frac{f_{A}(\mathbf{w})}{\prod\limits_{\gamma}w_{\gamma}}=f_{A}(0)=0

      as fAf_{A} is analytic at 0.

    4. (d)

      And the same holds for its conjugate again.

      E(fAα¯)=1(2πi)nβDλ𝒟αβwβ+Pα(𝐰)¯γwγ\displaystyle E(\overline{f_{A}^{\alpha}})=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\oint\limits_{D_{\lambda}}\frac{\overline{\mathscr{D}^{\alpha\beta}w_{\beta}+P^{\alpha}(\mathbf{w})}}{\prod\limits_{\gamma}w_{\gamma}} =λ2(2πi)nβ𝒟αβ¯Dλ(β)1γβwγ|wβ|=λ1wβ2\displaystyle=\frac{\lambda^{2}}{(2\pi i)^{n}}\sum\limits_{\beta}\overline{\mathscr{D}^{\alpha\beta}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{\prod\limits_{\gamma\neq\beta}w_{\gamma}}\oint\limits_{|w_{\beta}|=\lambda}\frac{1}{w_{\beta}^{2}}
      +1(2πi)nDλPα(𝐰)¯γwγ=0,α\displaystyle+\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{\prod\limits_{\gamma}w_{\gamma}}=0,\forall\alpha
  2. 2.
    1. (a)

      Now we would turn our attention to the inner product between analytic and principal components.

      fA,fP\displaystyle\langle f_{A},f_{P}\rangle =1(2πi)nβδαDλ(𝒟αβwβ+Pα(𝐰)¯)(ηδα/wδ)γwγ\displaystyle=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta}\sum\limits_{\alpha}\oint\limits_{D_{\lambda}}\frac{(\overline{\mathscr{D}^{\alpha\beta}w_{\beta}+P^{\alpha}(\mathbf{w})})(\eta_{\delta}^{\alpha}/w_{\delta})}{\prod\limits_{\gamma}w_{\gamma}}
      =λ2(2πi)nβδα𝒟αβ¯ηδαDλ(β)1wδsγβwγ|wβ|=λ1wβ3s\displaystyle=\frac{\lambda^{2}}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta}\sum\limits_{\alpha}\overline{\mathscr{D}^{\alpha\beta}}\eta_{\delta}^{\alpha}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{w_{\delta}^{s}\prod\limits_{\gamma\neq\beta}w_{\gamma}}\oint\limits_{|w_{\beta}|=\lambda}\frac{1}{w_{\beta}^{3-s}}
      +1(2πi)nδαηδαDλPα(𝐰)¯wδγwγ=0\displaystyle+\frac{1}{(2\pi i)^{n}}\sum\limits_{\delta}\sum\limits_{\alpha}\eta_{\delta}^{\alpha}\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}=0

      where s=I(βδ)s=I(\beta\neq\delta)

    2. (b)

      Change of order, doesn’t make a difference to the outcome, of course.

      fP,fA\displaystyle\langle f_{P},f_{A}\rangle =1(2πi)nβδDλ(𝒟αβwβ+Pα(𝐰))(ηδα/wδ¯)γwγ\displaystyle=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta}\oint\limits_{D_{\lambda}}\frac{(\mathscr{D}^{\alpha\beta}w_{\beta}+P^{\alpha}(\mathbf{w}))(\overline{\eta_{\delta}^{\alpha}/w_{\delta}})}{\prod\limits_{\gamma}w_{\gamma}}
      =1λ21(2πi)nβδα𝒟αβηδα¯Dλ(β)wδsγβwγ|wβ|=λwβs+1\displaystyle=\frac{1}{\lambda^{2}}\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta}\sum\limits_{\alpha}\mathscr{D}^{\alpha\beta}\overline{\eta_{\delta}^{\alpha}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{w_{\delta}^{s}}{\prod\limits_{\gamma\neq\beta}w_{\gamma}}\oint\limits_{|w_{\beta}|=\lambda}w_{\beta}^{s+1}
      +1λ21(2πi)nδαηδα¯DλPα(𝐰)γδwγ=0\displaystyle+\frac{1}{\lambda^{2}}\frac{1}{(2\pi i)^{n}}\sum\limits_{\delta}\sum\limits_{\alpha}\overline{\eta_{\delta}^{\alpha}}\oint\limits_{D_{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}=0

      where s=I(βδ)s=I(\beta\neq\delta)

  3. 3.

    Finally we’ll concentrate on the self interaction terms.

    1. (a)

      First for the principal component.

      fP2\displaystyle\|f_{P}\|^{2} =fP,fP=1(2πi)nβδαDλ(ηβα/wβ¯)(ηδα/wδ)γwγ\displaystyle=\langle f_{P},f_{P}\rangle=\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta}\sum\limits_{\alpha}\oint\limits_{D_{\lambda}}\frac{(\overline{\eta_{\beta}^{\alpha}/w_{\beta}})(\eta_{\delta}^{\alpha}/w_{\delta})}{\prod\limits_{\gamma}w_{\gamma}}
      =1λ21(2πi)nβδβαηβα¯ηδαDλ|(β)1wδγwγ|wβ|=λwβ\displaystyle=\frac{1}{\lambda^{2}}\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta\neq\beta}\sum\limits_{\alpha}\overline{\eta_{\beta}^{\alpha}}\eta_{\delta}^{\alpha}\oint\limits_{D^{|(\beta)}_{\lambda}}\frac{1}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}\oint\limits_{|w_{\beta}|=\lambda}w_{\beta}
      +1λ21(2πi)nβαηβα¯ηβαDλ1γwγ\displaystyle+\frac{1}{\lambda^{2}}\frac{1}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\alpha}\overline{\eta_{\beta}^{\alpha}}\eta_{\beta}^{\alpha}\oint\limits_{D_{\lambda}}\frac{1}{\prod\limits_{\gamma}w_{\gamma}}
      =0+1λ2βαηβα¯ηβα=Tr(ηη)λ2\displaystyle=0+\frac{1}{\lambda^{2}}\sum\limits_{\beta}\sum\limits_{\alpha}\overline{\eta_{\beta}^{\alpha}}\eta_{\beta}^{\alpha}=\frac{Tr(\eta^{*}\eta)}{\lambda^{2}}
    2. (b)

      And then for the analytic one.

      fA,fA\displaystyle\langle f_{A},f_{A}\rangle =1(2πi)nαDλ(β𝒟αβwβ+Pα(𝐰))(δ𝒟αδwδ+Pα(𝐰))¯γwγ\displaystyle=\frac{1}{(2\pi i)^{n}}\sum\limits_{\alpha}\oint\limits_{D_{\lambda}}\frac{(\sum\limits_{\beta}\mathscr{D}^{\alpha\beta}w_{\beta}+P^{\alpha}(\mathbf{w}))\overline{(\sum\limits_{\delta}\mathscr{D}^{\alpha\delta}w_{\delta}+P^{\alpha}(\mathbf{w}))}}{\prod\limits_{\gamma}w_{\gamma}}
      =λ2(2πi)nβδβα𝒟αβ𝒟αδ¯Dλ(β)1wδγwγ|wβ=λ|wβ\displaystyle=\frac{\lambda^{2}}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\delta\neq\beta}\sum\limits_{\alpha}\mathscr{D}^{\alpha\beta}\overline{\mathscr{D}^{\alpha\delta}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}\oint\limits_{|w_{\beta}=\lambda|}w_{\beta}
      +λ2(2πi)nβα𝒟αβ𝒟αβ¯Dλ1γwγ+λ2(2πi)nδα𝒟αδ¯DλPα(𝐰)wδγwγ\displaystyle+\frac{\lambda^{2}}{(2\pi i)^{n}}\sum\limits_{\beta}\sum\limits_{\alpha}\mathscr{D}^{\alpha\beta}\overline{\mathscr{D}^{\alpha\beta}}\oint\limits_{D_{\lambda}}\frac{1}{\prod\limits_{\gamma}w_{\gamma}}+\frac{\lambda^{2}}{(2\pi i)^{n}}\sum\limits_{\delta}\sum\limits_{\alpha}\overline{\mathscr{D}^{\alpha\delta}}\oint\limits_{D^{\lambda}}\frac{P^{\alpha}(\mathbf{w})}{w_{\delta}\prod\limits_{\gamma}w_{\gamma}}
      +1(2πi)nδα𝒟αβDλPα(𝐰)¯γδwγ+1(2πi)nαDλ(Pα(w)¯)Pα(w)γwγ\displaystyle+\frac{1}{(2\pi i)^{n}}\sum\limits_{\delta}\sum\limits_{\alpha}\mathscr{D}^{\alpha\beta}\oint\limits_{D_{\lambda}}\frac{\overline{P^{\alpha}(\mathbf{w})}}{\prod\limits_{\gamma\neq\delta}w_{\gamma}}+\frac{1}{(2\pi i)^{n}}\sum\limits_{\alpha}\oint\limits_{D_{\lambda}}\frac{(\overline{P^{\alpha}(w)})P^{\alpha}(w)}{\prod\limits_{\gamma}w_{\gamma}}
      =λ2βα𝒟αβ𝒟αβ¯=λ2Tr(𝒟𝒟)\displaystyle=\lambda^{2}\sum\limits_{\beta}\sum\limits_{\alpha}\mathscr{D}^{\alpha\beta}\overline{\mathscr{D}^{\alpha\beta}}=\lambda^{2}Tr(\mathscr{D}^{*}\mathscr{D})

With these results, we can now embark on proving the desired relation between the variance of a meromorphic function over a poly-disc around its singular pole.

Theorem 3.3.

For a meromorphic function ff\in\mathscr{F} such that there is a single pole at 0 of order at most 1, the variance of ff over the Unit Lens \mathscr{L} using exterior probability μλn\mu^{n}_{\lambda} is given by,

Vλ(f)=f,fE(f)2=Tr(ηη)λ2+λ2Tr(𝒟𝒟)V_{\lambda}(f)=\langle f,f\rangle-\|E(f)\|^{2}=\frac{Tr(\eta^{*}\eta)}{\lambda^{2}}+\lambda^{2}Tr(\mathscr{D}^{*}\mathscr{D})
Proof.

Self interaction of ff can be written as

f,f\displaystyle\langle f,f\rangle =f0,f0+fP,fP+fA,fA+f0,fP+fP,f0+f0,fA+fA,f0+fP,fA+fA,fP\displaystyle=\langle f_{0},f_{0}\rangle+\langle f_{P},f_{P}\rangle+\langle f_{A},f_{A}\rangle+\langle f_{0},f_{P}\rangle+\langle f_{P},f_{0}\rangle+\langle f_{0},f_{A}\rangle+\langle f_{A},f_{0}\rangle+\langle f_{P},f_{A}\rangle+\langle f_{A},f_{P}\rangle
=E(f)2+fP2+fA2+f0E(fP)+E(fP)f0+f0E(fA)+E(fA)f0+fP,fA+fA,fP\displaystyle=\|E(f)\|^{2}+\|f_{P}\|^{2}+\|f_{A}\|^{2}+f_{0}^{*}E(f_{P})+E(f_{P})^{*}f_{0}+f_{0}^{*}E(f_{A})+E(f_{A})^{*}f_{0}+\langle f_{P},f_{A}\rangle+\langle f_{A},f_{P}\rangle
=E(f)2+Tr(ηη)λ2+λ2Tr(𝒟𝒟)\displaystyle=\|E(f)\|^{2}+\frac{Tr(\eta^{*}\eta)}{\lambda^{2}}+\lambda^{2}Tr(\mathscr{D}^{*}\mathscr{D})

This would imply

Vλ(f)=Tr(ηη)λ2+λ2Tr(𝒟𝒟)V_{\lambda}(f)=\frac{Tr(\eta^{*}\eta)}{\lambda^{2}}+\lambda^{2}Tr(\mathscr{D}^{*}\mathscr{D})

Corollary.

If σλ\sigma_{\lambda} is the standard error of ff under the exterior probability, then λσλTr(ηη)\lambda\sigma_{\lambda}\geq\sqrt{Tr(\eta^{*}\eta)}

4 Generalisation on a Complex manifold

Let K=(,𝒜)K=\big{(}\mathscr{M},\mathscr{A}\big{)} be a complex manifold of dimension nn where 𝒜\mathscr{A} is a holomorphic structure.

Let Dλ={wn|wα|λ,α}D_{\lambda}=\{w\in\mathbb{C}^{n}\mid|w_{\alpha}|\leq\lambda,\forall\alpha\} be a closed poly-disc in n\mathbb{C}^{n}.

Definition 4.1.

For p0p_{0}\in\mathscr{M} and λ>0\lambda>0, Let S=Sλ=z1(Dλ)S=S_{\lambda}=z^{-1}(D_{\lambda}) for some (z,U)𝒜(z,U)\in\mathscr{A} and 𝒵(Sλ)={z=gzg is holomorphism on z(U)}\mathscr{Z}(S_{\lambda})=\{z^{\prime}=g\circ z\mid\text{g is holomorphism on }z(U)\}. We’d refer to (Sλ,𝒵(Sλ))\big{(}S_{\lambda},\mathscr{Z}(S_{\lambda})\big{)} as a poly-disc on \mathscr{M} around p0p_{0}

Remark.

For a poly-disc SλS_{\lambda} under a morph zz, let 𝒮λ=z1(λn)\mathscr{S}_{\lambda}=z^{-1}(\mathscr{E}^{n}_{\lambda}). Since λn\mathscr{E}^{n}_{\lambda} is a σ\sigma-algebra and zz is bijective, we can conclude that 𝒮λ\mathscr{S}_{\lambda} is a σ\sigma-algebra z𝒵(Sλ)\forall z\in\mathscr{Z}(S_{\lambda}).

Remark.

(Sλ,𝒮λ)(S_{\lambda},\mathscr{S}_{\lambda}) is a measurable space for every morph, z𝒵(Sλ)z\in\mathscr{Z}(S_{\lambda}).

Proposition 4.1.

If νλ:𝒮λ\nu_{\lambda}:\mathscr{S}_{\lambda}\mapsto\mathbb{C} is defined as νλ(A)=μλn(z(A)),A𝒮λ, under a morph z\nu_{\lambda}(A)=\mu^{n}_{\lambda}(z(A)),\forall A\in\mathscr{S}_{\lambda},\text{ under a morph }z, then νλ\nu_{\lambda} is σ\sigma-additive and hence a complex measure on (Sλ,𝒮λ)(S_{\lambda},\mathscr{S}_{\lambda})

Proof.

Let {Ai}i=1\{A_{i}\}_{i=1}^{\infty} be.a sequence of pairwise disjoint sets in 𝒮λ\mathscr{S}_{\lambda}. Since the underlying morph zz is bijective, that would mean that {z(Ai)}i=1\{z(A_{i})\}_{i=1}^{\infty} are also pairwise disjoint. Also, z(i=1Ai)=i=1z(Ai)z(\bigsqcup\limits_{i=1}^{\infty}A_{i})=\bigsqcup\limits_{i=1}^{\infty}z(A_{i}). That would naturally yield

νλ(i=1Ai)=μλ(z(i=1Ai))=μλ(i=1z(Ai))=i=1μλ(z(Ai))=i=1νλ(Ai)\nu_{\lambda}(\bigsqcup\limits_{i=1}^{\infty}A_{i})=\mu_{\lambda}(z(\bigsqcup\limits_{i=1}^{\infty}A_{i}))=\mu_{\lambda}(\bigsqcup\limits_{i=1}^{\infty}z(A_{i}))=\sum\limits_{i=1}^{\infty}\mu_{\lambda}(z(A_{i}))=\sum\limits_{i=1}^{\infty}\nu_{\lambda}(A_{i})

Definition 4.2.

For a manifold \mathscr{M} and p0p_{0}\in\mathscr{M}, An Unit Lens is the Filtration of probability spaces defined by ={(Sλ,𝒮λ,νλ)}λ0\mathscr{L}=\{(S_{\lambda},\mathscr{S}_{\lambda},\nu_{\lambda})\}_{\lambda\downarrow 0} indexed by a scale parameter λ\lambda.

Let’s fix a poly-disc SλS_{\lambda} and a particular morph zz. Let p0=z1(0)Sλp_{0}=z^{-1}(0)\in S_{\lambda}. Let 𝒫\mathscr{P} be the vector space of all meromorphic function ψ:k\psi:\mathscr{M}\mapsto\mathbb{C}^{k} which has a pole of at most order 1 at p0p_{0} i.e ψz=ψz1:nk\psi_{z}=\psi\circ z^{-1}:\mathbb{C}^{n}\mapsto\mathbb{C}^{k} is analytic everywhere except for a (potential) pole at z(p0)=0z(p_{0})=0.

Remark.

νλ\nu_{\lambda} induces an Expectation E()E(\cdot) and an inner product ,\langle\cdot,\cdot\rangle on 𝒫\mathscr{P} as

  • E(ψ)=Sλψ𝑑νλ=Dλψz𝑑μλnE(\psi)=\int\limits_{S_{\lambda}}\psi d\nu_{\lambda}=\int\limits_{D_{\lambda}}\psi_{z}d\mu^{n}_{\lambda},

  • ψ,ϕ=Sλψϕ𝑑νλ=Dλψzϕz𝑑μλn\langle\psi,\phi\rangle=\int\limits_{S_{\lambda}}\psi^{*}\phi d\nu_{\lambda}=\int\limits_{D_{\lambda}}\psi^{*}_{z}\phi_{z}d\mu^{n}_{\lambda}

Remark.

We can write ψz=ψz1\psi_{z}=\psi\circ z^{-1} as a sum of its core(ψ0\psi_{0}), principal(ψP\psi_{P}) and analytic(ψA\psi_{A}) components. Let ηz\eta_{z} denote the corresponding matrix of residues and 𝒟z\mathscr{D}_{z} be the Jacobian of the analytic component at z=0z=0.

Lemma 4.2.

For any given ψ𝒫\psi\in\mathscr{P}, if η\eta and η\eta^{\prime} denote the residue matrix under two different morphs z,z𝒵(Sλ)z,z^{\prime}\in\mathscr{Z}(S_{\lambda}) respectively, then α\forall\alpha,

ηβα=ηγαzβzγ\eta^{\alpha}_{\beta}=\eta^{\prime\alpha}_{\gamma}\frac{\partial z_{\beta}}{\partial z^{\prime}_{\gamma}}

In other words, ηβα\eta^{\alpha}_{\beta} transforms contra-variantly on β\beta.

Proof.

Since both zz and zz^{\prime} are morphs for SλS_{\lambda}, we can define g=zz1:DλDλg=z^{\prime}\circ z^{-1}:D_{\lambda}\mapsto D_{\lambda}, holomorphic with g(0)=0g(0)=0.

Let Hβγ=zβzγ=(g1)(0)H^{\gamma}_{\beta}=\frac{\partial z_{\beta}}{\partial z^{\prime}_{\gamma}}=(g^{-1})^{\prime}(0) be the Jacobian matrix for the coordinate transform at z=0z=0. So we can write, dwβ=Hβγdgγdw_{\beta}=H^{\gamma}_{\beta}dg_{\gamma}.

Now,

ηβα\displaystyle\eta^{\alpha}_{\beta} =1(2πi)nDλψz(𝐰)μβwμμdwμ=1(2πi)nDλψz(g(𝐰))μβwμμdwμ\displaystyle=\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}\frac{\psi_{z}(\mathbf{w})}{\prod\limits_{\mu\neq\beta}w_{\mu}}\prod\limits_{\mu}dw_{\mu}=\frac{1}{(2\pi i)^{n}}\oint\limits_{D_{\lambda}}\frac{\psi_{z}^{\prime}(g(\mathbf{w}))}{\prod\limits_{\mu\neq\beta}w_{\mu}}\prod\limits_{\mu}dw_{\mu}
=1(2πi)nDλ(β)1μβwμμβdwμ|wβ|=λ(ψ0+𝒟αγgγ+Pα(g(𝐰))+ηγαgγ)𝑑wβ\displaystyle=\frac{1}{(2\pi i)^{n}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{\prod\limits_{\mu\neq\beta}w_{\mu}}\prod\limits_{\mu\neq\beta}dw_{\mu}\oint\limits_{|w_{\beta}|=\lambda}(\psi^{\prime}_{0}+\mathscr{D}^{\prime\alpha\gamma}g_{\gamma}+P^{\alpha}(g(\mathbf{w}))+\frac{\eta^{\prime\alpha}_{\gamma}}{g_{\gamma}})dw_{\beta}
=1(2πi)nDλ(β)1μβwμμβdwμ|wβ|=ληγαgγ𝑑wβ\displaystyle=\frac{1}{(2\pi i)^{n}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{\prod\limits_{\mu\neq\beta}w_{\mu}}\prod\limits_{\mu\neq\beta}dw_{\mu}\oint\limits_{|w_{\beta}|=\lambda}\frac{\eta^{\prime\alpha}_{\gamma}}{g_{\gamma}}dw_{\beta}
=1(2πi)nDλ(β)1μβwμμβdwμ|wβ|=ληγαgγHβγ𝑑gγ\displaystyle=\frac{1}{(2\pi i)^{n}}\oint\limits_{D^{(\beta)}_{\lambda}}\frac{1}{\prod\limits_{\mu\neq\beta}w_{\mu}}\prod\limits_{\mu\neq\beta}dw_{\mu}\oint\limits_{|w_{\beta}|=\lambda}\frac{\eta^{\prime\alpha}_{\gamma}}{g_{\gamma}}H^{\gamma}_{\beta}dg_{\gamma}
=ηγαHβγ=ηγαzβzγ\displaystyle=\eta^{\prime\alpha}_{\gamma}H^{\gamma}_{\beta}=\eta^{\prime\alpha}_{\gamma}\frac{\partial z_{\beta}}{\partial z^{\prime}_{\gamma}}

Lemma 4.3.

For any given ψ𝒫\psi\in\mathscr{P}, if 𝒟\mathscr{D} and 𝒟\mathscr{D}^{\prime} denote the Jacobian matrix under two different morphs z,z𝒵(Sλ)z,z^{\prime}\in\mathscr{Z}(S_{\lambda}) respectively, then α\forall\alpha,

𝒟αβ=𝒟αγzγzβ\mathscr{D}^{\alpha\beta}=\mathscr{D}^{\prime\alpha\gamma}\frac{\partial z^{\prime}_{\gamma}}{\partial z_{\beta}}

In other words, 𝒟αβ\mathscr{D}^{\alpha\beta} transforms co-variantly on β\beta.

Proof.

Since both zz and zz^{\prime} are morphs for SλS_{\lambda}, we can define g=zz1:DλDλg=z^{\prime}\circ z^{-1}:D_{\lambda}\mapsto D_{\lambda}, holomorphic with g(0)=0g(0)=0.

Let Hβγ=zβzγ=(g1)(0)H^{\gamma}_{\beta}=\frac{\partial z_{\beta}}{\partial z^{\prime}_{\gamma}}=(g^{-1})^{\prime}(0) be the Jacobian matrix for the coordinate transform at z=0z=0. So we can write, dwβ=Hβγdgγdw_{\beta}=H^{\gamma}_{\beta}dg_{\gamma}.

Now,

𝒟αβ\displaystyle\mathscr{D}^{\alpha\beta} =ψAαwβ=ψAαgγgγwβ=𝒟αγzγzβ\displaystyle=\frac{\partial\psi^{\alpha}_{A}}{\partial w_{\beta}}=\frac{\partial\psi^{\alpha}_{A}}{\partial g_{\gamma}}\frac{\partial g_{\gamma}}{\partial w_{\beta}}=\mathscr{D}^{\prime\alpha\gamma}\frac{\partial z^{\prime}_{\gamma}}{\partial z_{\beta}}

This implies we can talk about η\eta and 𝒟\mathscr{D} in a coordinate-free way upto 𝒵\mathscr{Z}.

Theorem 4.4.

Let ={(Sλ,𝒮λ,νλ)}λ0\mathscr{L}=\{(S_{\lambda},\mathscr{S}_{\lambda},\nu_{\lambda})\}_{\lambda\downarrow 0} be an unit lens on a manifold \mathscr{M} and also let ψ𝒫\psi\in\mathscr{P} be a meromorphic νλ\nu_{\lambda}-measurable function on SλS_{\lambda} with a potential pole of order 1 at p0Sλp_{0}\in S_{\lambda}. If η\eta and 𝒟\mathscr{D} denote the Residue and Jacobian matrix for ψ\psi on \mathscr{L}, then

  1. (a)

    standard error of ψ\psi under the Exterior probability has a lower bound,

    λσψTr(ηη)\lambda\sigma_{\psi}\geq\sqrt{Tr(\eta^{*}\eta)}
  2. (b)

    minimum standard error is achieved at a finite scale λ=[Tr(ηη)Tr(𝒟𝒟)]14*\lambda=\big{[}\frac{Tr(\eta^{*}\eta)}{Tr(\mathscr{D}^{*}\mathscr{D})}\big{]}^{\frac{1}{4}}

Proof.
  1. (a)

    Let z𝒵λz\in\mathscr{Z}_{\lambda} and ψz=ψz1\psi_{z}=\psi\circ z^{-1}. Proof follows as consequence of corollary to Theorem 3.3 as applied on ψz\psi_{z} and the fact that η\eta and 𝒟\mathscr{D} transforms as tensors under different choice of z𝒵λz\in\mathscr{Z}_{\lambda}

  2. (b)

    By virtue of Theorem 3.3 applied on ψz\psi_{z}, we can write,

    Varλ(ψ)=Tr(ηη)λ2+λ2Tr(𝒟𝒟)Var_{\lambda}(\psi)=\frac{Tr(\eta^{*}\eta)}{\lambda^{2}}+\lambda^{2}Tr(\mathscr{D}^{*}\mathscr{D})

    Clearly, this would allow the variance to be minimised for λ2=Tr(ηη)Tr(𝒟𝒟)*\lambda^{2}=\sqrt{\frac{Tr(\eta^{*}\eta)}{Tr(\mathscr{D}^{*}\mathscr{D})}}. That leads to λ=[Tr(ηη)Tr(𝒟𝒟)]14*\lambda=\big{[}\frac{Tr(\eta^{*}\eta)}{Tr(\mathscr{D}^{*}\mathscr{D})}\big{]}^{\frac{1}{4}}.

5 Discussion and Conclusion

In the preceding sections we have been able to formalise the concept of a Lenses around a point of potential singularity with respect to a particular detectable function, equipped with a specific type of probability measure called Exterior Probability. Under this structure we’ve seen that the variance of the function, instead of freely dropping to 0 with increasingly closer measurement, has a global lower bound. In other words, too close to the point of singularity, the standard deviation tends to increase in proportion with reducing distance.

This result was reproduced for a system of lenses over a generic complex manifold, and it was shown that the variance characterisation can be described through tensors in a coordinate free way. The set of results produced in the paper is most relatable from the perspective of describing quantum scale effects in the backdrop of a generic space-time curved by gravity. The decomposition of variance into parts involving η\eta and 𝒟\mathscr{D} are also significant in that regard, as η\eta represents the quantum effects near a singularity, while 𝒟\mathscr{D} is tied with the generic smooth curvature of the manifold. They can also be thought of representing matter and force fields respectively.

If we consider the special case where η\eta is negligible or zero, then we can recover fully the classical measurement set up with the lower bound on standard error converging on zero. On the other hand, if 𝒟\mathscr{D} is zero, then we have a pure quantum system on a flat space-time. The results show that the standard error for an unbounded measurement attribute in such a system is in accordance with Heisenberg uncertainty principle.

The other connection that the present work shares with efforts towards understanding quantum gravity, is obviously in the structural similarity between the Lenses and the Strings. While both are posited as sub-structures of space-time and works as a substitution of the concept of classical point mass [10], they differ in a fundamental way as well. Strings are inter-dimensional structures that spans across a sub-space of a higher dimensional space-time. Lenses constructed as they’ve been in this paper, are intra-dimensional objects plumbing the depth available in each complex dimension for additional structure. Hence Lenses, as opposed to Strings do not require extra large dimensions to produce results consistent with quantum uncertainty.

There are several different directions in which the current results can be progressed or improved further. The results so far are based on the simplest, Unit Lens and associated Exterior probabilities. However, one might be interested to look into more generic lenses and exterior probability structures. Any such probability measures, by definition, would have to be absolutely continuous with the unit lens, and hence would allow a density to be incorporated in the results presented thus far.

Another area of potential interest could be to expand the the set up to attributes with multiple poles instead of just one, poles with higher orders. In physical terms they would be instrumental to understand many-body interactions at quantum scale with strong gravitational backdrop.

References

  • [1] John Wheeler. Quantum theory and measurement. Princeton University Press, Princeton, New Jersey, 1983.
  • [2] Andrew Gleason. Measures on the closed subspaces of a hilbert space. Indiana Univ. Math. J., 6:885–893, 1957.
  • [3] R. L. Hudson and K. R. Parthasarathy. Quantum ito’s formula and stochastic evolutions. Communications in Mathematical Physics, 93(3):301–323, 1984.
  • [4] J. v. Neumann. Allgemeine eigenwerttheorie hermitescher funktionaloperatoren. Mathematische Annalen, 102(1):49–131, 1930.
  • [5] John Neumann. Mathematical foundations of quantum mechanics. Princeton University Press, Princeton N.J, 1955.
  • [6] V. P. Belavkin. A dynamical theory of quantum measurement and spontaneous localization, 2005.
  • [7] V. P. Belavkin. Reconstruction theorem for quantum stochastic processes, 2005.
  • [8] Christopher A. Fuchs. Qbism, the perimeter of quantum bayesianism, 2010.
  • [9] E. H. Kennard. Zur quantenmechanik einfacher bewegungstypen. Zeitschrift für Physik, 44(4):326–352, 1927.
  • [10] Jaume Gomis, Ziqi Yan, and Matthew Yu. Nonrelativistic open string and yang-mills theory, 2020.