This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A two-grid Adaptive Finite Element Method for the Dirichlet Boundary Control Problem Governed by Stokes Equation

Thirupathi Gudi Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India [email protected]  and  Ramesh Ch. Sau Department of Mathematics, Chinese University of Hong Kong, Hong Kong [email protected]
Abstract.

In this article, we derive a posteriori error estimates for the Dirichlet boundary control problem governed by Stokes equation. An energy-based method has been deployed to solve the Dirichlet boundary control problem. We employ an inf-sup stable finite element discretization scheme by using 𝐏1\mathbf{P}_{1} elements(in the fine mesh) for the velocity and control variable and P0P_{0} elements(in the coarse mesh) for the pressure variable. We derive an a posteriori error estimator for the state, adjoint state, and control error. The control error estimator generalizes the standard residual type estimator of the unconstrained Dirichlet boundary control problems, by additional terms at the contact boundary addressing the non-linearity. We prove the reliability and efficiency of the estimator. Theoretical results are illustrated by some numerical experiments.

Key words and phrases:
PDE-constrained optimization; Dirichlet boundary control problem; Finite element method; Error bounds; Stokes equation
1991 Mathematics Subject Classification:
65N30; 65N15; 65N12; 65K10

1. Introduction

The study of the optimal control problems governed by partial differential equations has been a major research area in applied mathematics and its allied areas. The optimal control problem consists of finding an optimal control variable that minimizes a cost functional subject to a partial differential equation satisfied by the optimal control and an optimal state. There are many results on the finite element analysis of optimal control problems, see for example [21, 5, 24, 4]. In an optimal control problem, the control can act on the system through either a boundary condition or through an interior force. In the latter case, the control is distributed and in the former case, the control is said to be the boundary control. The choice of the boundary condition leads to several types of boundary controls e.g., Dirichlet, Neumann or Robin boundary control. We refer to [21, 28, 24, 9, 12] for the work related to distributed control and to [5, 4, 9, 12] for the work on Neumann boundary control problem.

The Dirichlet boundary control problems are important in application areas, but the problems can be difficult to analyze mathematically because in some cases the control itself solves some PDE and in other cases the physical domain has a non-smooth boundary. The study of Dirichlet control problems posed on polygonal domains can be traced back to [6], where a control constrained problem governed by a semilinear elliptic equation posed in a convex polygonal domain is studied. There are various approaches proposed in the literature. One of the popular approach is to seek control from the L2(Γ)L^{2}(\Gamma)-space. In this case, the state equation has to be understood in a ultra weak sense, since the Dirichlet boundary condition is only in L2(Γ)L^{2}(\Gamma). This ultra weak formulation is easy to implement and usually results in optimal controls with low regularity. Especially, when the problem is posed on a convex polygonal domain, the control yy vanishes on the corners and is thus continuous. This is because, it is determined by the normal derivative of the adjoint state, whereas in a nonconvex polygonal domain the control may have singularity around the corner point, for more details one can see [1]. An other approach, as in [7], is the Robin boundary penalization which transforms the Dirichlet control problem into a Robin boundary control problem.

One other popular approach is to find controls from the energy space, i.e., H1/2(Γ),H^{1/2}(\Gamma), we refer [30] for this approach. In [30], the Steklov-Poincaré operator was used to define the cost functional with the help of a harmonic extension of the given boundary data. The Steklov-Poincaré operator transforms the Dirichlet data into a Neumann data by using harmonic extension of the Dirichlet data; but this type of abstract operator may cause some difficulties in numerical implementation. A boundary element method for this problem is proposed and analyzed in [29].

Given any yy in the Sobolev space H1/2(Γ)H^{1/2}(\Gamma), we can construct a function uyu_{y} in the Sobolev space H1(Ω)H^{1}(\Omega) that is harmonic in Ω\Omega and agrees with yy on the boundary Γ\Gamma. This function uyu_{y} is called a harmonic extension of yy. The norm of yy in H1/2(Γ)H^{1/2}(\Gamma) can be equivalently written as the norm of the gradient of uyu_{y} in L2(Ω)L^{2}(\Omega), i.e., |y|H1/2(Γ)uy0,Ω.|y|_{H^{1/2}(\Gamma)}\equiv\left\|\nabla u_{y}\right\|_{0,\Omega}. This relation suggests that we can penalize the control yy in the H1(Ω)H^{1}(\Omega) space by adding the term y0,Ω2\left\|\nabla y\right\|_{0,\Omega}^{2} to the cost functional. Therefore, we consider the following optimization problem:

minJ(u,y)=12uud0,Ω2+λ2y0,Ω2.\text{min}~{}J(u,y)=\frac{1}{2}\left\|u-u_{d}\right\|_{0,\Omega}^{2}+\frac{\lambda}{2}\left\|\nabla y\right\|_{0,\Omega}^{2}.

The paper [10] proposed a novel method for the Dirichlet boundary control problem using the above cost functional. The method is based on the energy space, where the control belongs to the Sobolev space H1(Ω)H^{1}(\Omega). This avoids the use of the Steklov-Poincaré operator and makes the method computationally efficient. The paper [10] only considered the unconstrained case, while the constrained case was analyzed in [19]. The paper [26] presented a similar method based on the energy space. The paper [33] obtained a sharp convergence rate for the energy space method.

The literature on Stokes Dirichlet control problem considers two types of control. One is the tangential control, i.e., the control acts only in the tangential direction of the boundary (see [17]). The paper [17] used a hybridized discontinuous Galerkin (HDG) method to solve a tangential Dirichlet boundary control problem with an L2L^{2} penalty on the boundary control, without any constraints on the control. The other is the zero flux control, which means the control has no normal component to the boundary (i.e., Ω𝐲𝐧=0\int_{\partial\Omega}\mathbf{y}\cdot\mathbf{n}=0) [18]. The paper [18] studied two different boundary control regularization terms in the cost functionals: the L2L^{2} norm and the energy space seminorm. The zero flux condition is a natural consequence of the incompressibility condition and the Dirichlet boundary condition in the PDE. Therefore, the authors either chose the tangential control as the first option or imposed the zero flux condition as a constraint in the space as the second option. Many papers on Navier-Stokes Dirichlet control problem also used either tangential control or zero flux control, for example, see [15, 22]. The zero flux condition on the control affects the regularity of the control as discussed in [18]. To address this issue, we introduced the Stokes equation with mixed boundary conditions and the control acts only on the Dirichlet boundary. Our control is more general and has both tangential and normal components. We also added constraints on the control. As a result, the optimal control satisfies a simplified Signorini problem.

In this article, we propose, analyze, and test a new a posteriori error estimator for the control error. In order to derive and analyze the error estimator for the control variable, we adopt the framework presented in [27] for Signorini problem, because the control satisfies the Signorini problem. The discrete problem consists of a discrete variational inequality for the approximate control variable and the estimator is designed for controlling its energy error. The estimator reduces to the standard residual estimator for elliptic problem, if no contact occurs. The contributions by the estimator addressing the nonlinearity are related to the contact stresses, the complementarity condition. We prove reliability and efficiency of the estimator and ensuring the equivalence with the error up to oscillation terms. A key ingredient of this approach is the so-called Galerkin functional. It is a modification of the residual with respect to the corresponding linear problem with the help of a suitable approximation of the Lagrange multiplier and thus, may be seen as the residual of a linear auxiliary problem. The correction by the Lagrange multiplier is crucial for sharpness of the upper bounds in the actual contact regions. The theoretical results are corroborated by a variety of numerical tests

The rest of the article is organized as follows. In Section 2, we formulate the Dirichlet boundary control problem with pointwise control constraints. Therein, we discuss the well-posedness of the model problem and present the optimality system. In Section 3, we define the discrete control problem and present the discrete optimality system. In Section 4, we derive a posteriori error estimates with the help of some reconstruction solution. Section 5 is devoted to the numerical experiments.

2. Continuous Problem

We proceed over the precise formulation of the optimization problem in brief in this section. We need the following definitions and notations before we can begin the analysis:

2.1. Notation

Let Ω2,\Omega\subset\mathbb{R}^{2}, be a bounded polygonal domain, with boundary Ω\partial\Omega consists of three non-overlapping open subsets ΓD,ΓC\Gamma_{D},\;\Gamma_{C} and ΓN\Gamma_{N} with Ω=ΓCΓ¯DΓN\partial\Omega=\Gamma_{C}\cup\bar{\Gamma}_{D}\cup\Gamma_{N}. The one-dimensional measure of ΓC\Gamma_{C} is positive. We denote any function and any space in bold notation can be understood in the vector form e.g., 𝐱:=(x1,x2),\mathbf{x}:=(x_{1},x_{2}), 𝐋2(Ω):=[L2(Ω)]2\mathbf{L}^{2}(\Omega):=[L^{2}(\Omega)]^{2} and 𝐇1(Ω):=[H1(Ω)]2.\mathbf{H}^{1}(\Omega):=[H^{1}(\Omega)]^{2}. The norm and inner product on those spaces are defined component wise. Here and throughout, the 𝐋2(Ω)\mathbf{L}^{2}(\Omega) norm is denoted by 0,Ω\|\cdot\|_{0,\Omega} and k,Ω(k>0)\|\cdot\|_{k,\Omega}(k>0) denotes the standard norm on the Sobolev space 𝐇k(Ω)\mathbf{H}^{k}(\Omega), see for example [11]. The trace of a vector valued function 𝐱𝐇1(Ω)\mathbf{x}\in\mathbf{H}^{1}(\Omega) is defined to be 𝜸0(𝐱):=(γ0(x1),γ0(x2)),\bm{\gamma}_{0}(\mathbf{x}):=(\gamma_{0}(x_{1}),\gamma_{0}(x_{2})), where γ0:H1(Ω)L2(Γ)\gamma_{0}:H^{1}(\Omega)\rightarrow L^{2}(\Gamma) is the trace operator. Let 𝐱\mathbf{x} and 𝐲\mathbf{y} are two functions, we say that 𝐱𝐲\mathbf{x}\leq\mathbf{y} iff x1y1x_{1}\leq y_{1} and x2y2x_{2}\leq y_{2} almost everywhere in Ω.\Omega.

2.2. Dirichlet Control Problem

We consider the following constrained Dirichlet boundary control problem(in energy form [10, Section 2]) governed by the Stokes equation

minJ(𝐮,𝐲)=12𝐮𝐮d0,Ω2+ρ2𝐲0,Ω2\text{min}~{}J(\mathbf{u},\mathbf{y})=\frac{1}{2}\left\|\mathbf{u}-\mathbf{u}_{d}\right\|_{0,\Omega}^{2}+\frac{\rho}{2}\left\|\nabla\mathbf{y}\right\|_{0,\Omega}^{2} (2.1)

subject to,

Δ𝐮+p=𝐟inΩ,𝐮=0inΩ,𝐮=𝐲onΓC,𝐮=𝟎onΓD,𝐮𝐧p𝐧=𝟎onΓN,\begin{split}-\Delta\mathbf{u}+\nabla{p}&=\mathbf{f}\quad\text{in}\;\Omega,\\ \nabla\cdot{\mathbf{u}}&=0\quad\text{in}\;\Omega,\\ \bf{u}&=\mathbf{y}\quad\text{on}\;\Gamma_{C},\\ \bf{u}&=\mathbf{0}\quad\text{on}\;\Gamma_{D},\\ \frac{\partial\mathbf{u}}{\partial\mathbf{n}}-p\mathbf{n}&=\mathbf{0}\;\;\text{on}\;\;\Gamma_{N},\end{split} (2.2)

with the control 𝐲\mathbf{y} comes from the following constrained set

𝐐ad:={𝐱𝐐:𝐲a𝜸0(𝐱)𝐲b a.e. on ΓC}.\displaystyle\mathbf{Q}_{ad}:=\{\mathbf{x}\in\mathbf{Q}:\mathbf{y}_{a}\leq\bm{\gamma}_{0}(\mathbf{x})\leq\mathbf{y}_{b}\text{ a.e. on }\Gamma_{C}\}.

The interior force 𝐟𝐋2(Ω),\mathbf{f}\in\mathbf{L}^{2}(\Omega), the regularization parameter ρ>0,\rho>0, and 𝐮d𝐋2(Ω)\mathbf{u}_{d}\in\mathbf{L}^{2}(\Omega) and the space 𝐐:={𝐱𝐇1(Ω):𝜸0(𝐱)=𝟎 on ΓDΓN}.\mathbf{Q}:=\{\mathbf{x}\in\mathbf{H}^{1}(\Omega):\bm{\gamma}_{0}(\mathbf{x})=\mathbf{0}\text{ on }\Gamma_{D}\cup\Gamma_{N}\}. The constant vectors 𝐲a=(ya1,ya2)\mathbf{y}_{a}=(y^{1}_{a},y^{2}_{a}), and 𝐲b=(yb1,yb2)2\mathbf{y}_{b}=(y^{1}_{b},y^{2}_{b})\in\mathbb{R}^{2} satisfying ya1<ya2y^{1}_{a}<y^{2}_{a} and yb1<yb2y^{1}_{b}<y^{2}_{b}. Furthermore whenever ΓD\Gamma_{D} is non empty, we assume for consistency that ya1,yb10y^{1}_{a},y^{1}_{b}\leq 0 and ya2,yb20y^{2}_{a},y^{2}_{b}\geq 0 so that, the admissible set 𝐐ad\mathbf{Q}_{ad} is nonempty.

A proof of the existence of the unique solution of the control problem (2.1) can be found in [20, Theorem 2.2]. The following proposition states the first-order optimality system, a details can be found in [20, Proposition 2.3].

Proposition 2.1.

There exists a unique solution (𝐮,p,𝐲)𝐇D1(Ω)×L2(Ω)×𝐐ad(\mathbf{u},p,\mathbf{y})\in\mathbf{H}_{D}^{1}(\Omega)\times L^{2}(\Omega)\times\mathbf{Q}_{ad} for the Dirichlet control problem (2.1)\eqref{min:j} and there exists an adjoint state (ϕ,r)𝐕×L2(Ω)(\bm{\phi},r)\in\mathbf{V}\times L^{2}(\Omega) satisfying

𝐮\displaystyle\mathbf{u} =𝐰+𝐲,𝐰𝐕,\displaystyle=\mathbf{w}+\mathbf{y},\quad\mathbf{w}\in\mathbf{V}, (2.3a)
a(𝐰,𝐳)+b(𝐳,p)\displaystyle a(\mathbf{w},\mathbf{z})+b(\mathbf{z},p) =(𝐟,𝐳)a(𝐲,𝐳)forall𝐳𝐕,\displaystyle=(\mathbf{f},\mathbf{z})-a(\mathbf{y},\mathbf{z})\;\;\;{\rm for~{}all}\;\mathbf{z}\in\mathbf{V}, (2.3b)
b(𝐮,q)\displaystyle b(\mathbf{u},q) =0forallqL2(Ω),\displaystyle=0\;\quad{\rm for~{}all}\;q\in L^{2}(\Omega), (2.3c)
a(𝐳,ϕ)b(𝐳,r)\displaystyle a(\mathbf{z},\bm{\phi})-b(\mathbf{z},r) =(𝐮𝐮𝐝,𝐳)forall𝐳𝐕,\displaystyle=(\mathbf{u-u_{d}},\mathbf{z})\;\;\;{\rm for~{}all}\;\mathbf{z}\in\mathbf{V}, (2.3d)
b(ϕ,q)\displaystyle b(\bm{\phi},q) =0forallqL2(Ω),\displaystyle=0\;\quad{\rm for~{}all}\;q\in L^{2}(\Omega), (2.3e)
ρa(𝐲,𝐱𝐲)\displaystyle\rho\,a(\mathbf{y},\mathbf{x}-\mathbf{y}) a(𝐱𝐲,ϕ)b(𝐱𝐲,r)(𝐮𝐮𝐝,𝐱𝐲)𝐱𝐐ad,\displaystyle\geq a(\mathbf{x}-\mathbf{y},\bm{\phi})-b(\mathbf{x}-\mathbf{y},r)-(\mathbf{u-u_{d}},\mathbf{x}-\mathbf{y})\quad\forall\mathbf{x}\in\mathbf{Q}_{ad}, (2.3f)

where a(𝐰,𝐳)=Ω𝐰:𝐳dxa(\mathbf{w},\mathbf{z})=\int_{\Omega}\nabla{\mathbf{w}}:\nabla{\mathbf{z}}{\rm~{}dx} , b(𝐳,p)=Ωp𝐳dx,b(\mathbf{z},p)=-\int_{\Omega}p\nabla\cdot{\mathbf{z}}{\rm~{}dx}, and the matrix product A:B:=i,j=1naijbijA:B:=\sum_{i,j=1}^{n}a_{ij}b_{ij} when A=(aij)1i,jnA=(a_{ij})_{1\leq i,j\leq n} and B=(bij)1i,jn.B=(b_{ij})_{1\leq i,j\leq n}.

Remark 2.2.

It is not hard to show from the equation (2.3f), that the optimal control 𝐲\mathbf{y} is the weak solution of the following simplified Signorini problem:

ρΔ𝐲\displaystyle-\rho\Delta\mathbf{y} =𝟎inΩ,\displaystyle=\mathbf{0}\quad\text{in}\quad\Omega,
𝐲\displaystyle\mathbf{y} =𝟎onΓDΓN,\displaystyle=\mathbf{0}\quad\text{on}\quad\Gamma_{D}\cup\Gamma_{N},
𝐲a𝜸0(𝐲)\displaystyle\mathbf{y}_{a}\leq\bm{\gamma}_{0}(\mathbf{y}) 𝐲b a.e. on ΓC\displaystyle\leq\mathbf{y}_{b}\;\text{ a.e. on }\Gamma_{C}
further, the following holds for almost every xΓCx\in\Gamma_{C}:
if𝐲a<𝐲(x)<𝐲bthen(σ^(𝐲))(x)\displaystyle\text{if}\;\mathbf{y}_{a}<\mathbf{y}(x)<\mathbf{y}_{b}\quad\text{then}\quad\big{(}\hat{\sigma}(\mathbf{y})\big{)}(x) =𝟎,\displaystyle=\mathbf{0},
if𝐲a𝐲(x)<𝐲bthen(σ^(𝐲))(x)\displaystyle\text{if}\;\mathbf{y}_{a}\leq\mathbf{y}(x)<\mathbf{y}_{b}\quad\text{then}\quad\big{(}\hat{\sigma}(\mathbf{y})\big{)}(x) 𝟎,\displaystyle\geq\mathbf{0},
if𝐲a<𝐲(x)𝐲bthen(σ^(𝐲))(x)\displaystyle\text{if}\;\mathbf{y}_{a}<\mathbf{y}(x)\leq\mathbf{y}_{b}\quad\text{then}\quad\big{(}\hat{\sigma}(\mathbf{y})\big{)}(x) 𝟎,\displaystyle\leq\mathbf{0},

where σ^(𝐲):=ρ𝐲𝐧ϕ𝐧r𝐧.\hat{\sigma}(\mathbf{y}):=\rho\frac{\partial\mathbf{y}}{\partial\mathbf{n}}-\frac{\partial\bm{\phi}}{\partial\mathbf{n}}-r\mathbf{n}.

3. Discrete Problem

In this section, we discuss the discrete control problem before this we need to define some notations. Let 𝒯H\mathcal{T}_{H} be a shape-regular triangulation of the domain Ω\Omega into triangles such that T𝒯HT=Ω¯\cup_{T\in\mathcal{T}_{H}}T=\bar{\Omega} see [2, 11]. Also let 𝒯h\mathcal{T}_{h} be a refinement of 𝒯H\mathcal{T}_{H} by connecting all the midpoints of 𝒯H.\mathcal{T}_{H}. Denote the set of all interior edges of 𝒯h\mathcal{T}_{h} by hi.\mathcal{E}_{h}^{i}. The set of all Dirichlet, Neumann and Contact boundary edges of 𝒯h\mathcal{T}_{h} are denoted by hb,D,\mathcal{E}_{h}^{b,D}, hb,N\mathcal{E}_{h}^{b,N} and hb,C\mathcal{E}_{h}^{b,C} respectively and define h=hihb,Dhb,Nhb,C.\mathcal{E}_{h}=\mathcal{E}_{h}^{i}\cup\mathcal{E}_{h}^{b,D}\cup\mathcal{E}_{h}^{b,N}\cup\mathcal{E}_{h}^{b,C}. A typical triangle is denoted by TT and its diameter by hTh_{T}. Set h=maxT𝒯hhTh=\max_{T\in\mathcal{T}_{h}}h_{T}. The length of any edge ehe\in\mathcal{E}_{h} will be denoted by heh_{e}. Let 𝒱h\mathcal{V}_{h} denote the set of all the vertices of the triangles in 𝒯h\mathcal{T}_{h}. The set of vertices on Γ¯D,\overline{\Gamma}_{D}, ΓN\Gamma_{N} and ΓC\Gamma_{C} are denoted by 𝒱hD,\mathcal{V}_{h}^{D}, 𝒱hN\mathcal{V}_{h}^{N} and 𝒱hC.\mathcal{V}_{h}^{C}. Also, in the problem setting, we require the jump definitions of scalar, vector valued functions and tensors. Let us define a broken Sobolev space

H1(Ω,𝒯h)={vL2(Ω):v|TH1(T)forallT𝒯h}.H^{1}(\Omega,\mathcal{T}_{h})=\{v\in L^{2}(\Omega):v|_{T}\in H^{1}(T)\;\;{\rm for~{}all~{}}T\in\mathcal{T}_{h}\}.

For any ehie\in\mathcal{E}^{i}_{h}, there are two triangles T+T_{+} and TT_{-} such that e=T+Te=\partial T_{+}\cap\partial T_{-}. Let 𝐧+\mathbf{n}_{+} be the unit normal of ee pointing from T+T_{+} to TT_{-} and let 𝐧=𝐧+\mathbf{n}_{-}=-\mathbf{n}_{+} (cf. Fig.3.1). For any vH1(Ω,𝒯h)v\in H^{1}(\Omega,\mathcal{T}_{h}), we define the jump of vv on an edge ee by [[v]]=v+𝐧++v𝐧[\hskip-1.5pt[v]\hskip-1.5pt]=v_{+}\mathbf{n}_{+}+v_{-}\mathbf{n}_{-} where v±=v|T±.v_{\pm}=v|_{T_{\pm}}.

AABBP+P_{+}PP_{-}TT_{-}T+T_{+}𝐧e\mathbf{n}_{e}τe\tau_{e}ee.
Figure 3.1. Here TT_{-} and T+T_{+} are the two neighboring triangles that share the edge e=TT+e=\partial T_{-}\cap\partial T_{+} with initial node AA and end node BB and unit normal 𝐧e\mathbf{n}_{e}. The orientation of 𝐧e=𝐧=𝐧+\mathbf{n}_{e}=\mathbf{n}_{-}=-\mathbf{n}_{+} equals the outer normal of TT_{-}, and hence, points into T+T_{+}.

For 𝐯[H1(Ω,𝒯h)]2\mathbf{v}\in[H^{1}(\Omega,\mathcal{T}_{h})]^{2} we define the jump of 𝐯\mathbf{v} on ehi.e\in\mathcal{E}^{i}_{h}. by [[𝐯]]=𝐯+𝐧++𝐯𝐧.[\hskip-1.5pt[\mathbf{v}]\hskip-1.5pt]=\mathbf{v}_{+}\cdot\mathbf{n}_{+}+\mathbf{v}_{-}\cdot\mathbf{n}_{-}. Similarly, for tensors τ[H1(Ω,𝒯h)]2×2\tau\in[H^{1}(\Omega,\mathcal{T}_{h})]^{2\times 2}, the jump on ehie\in\mathcal{E}^{i}_{h} are defined by [[τ]]=τ+𝐧++τ𝐧.[\hskip-1.5pt[\tau]\hskip-1.5pt]=\tau_{+}\mathbf{n}_{+}+\tau_{-}\mathbf{n}_{-}. For notational convenience, we also define the jump on the boundary faces ehbe\in\mathcal{E}_{h}^{b} by modifying them appropriately. We use the definition of jump by understanding that v=0v_{-}=0 (similarly, 𝐯=0\mathbf{v}_{-}=0 and τ=0\tau_{-}=0).

Define the discrete space for velocity 𝐕h𝐕\mathbf{V}_{h}\subset\mathbf{V} by

𝐕h:={𝐯h𝐕:𝐯h|T𝐏1(T)T𝒯h},\mathbf{V}_{h}:=\{\mathbf{v}_{h}\in\mathbf{V}:\mathbf{v}_{h}|_{T}\in\mathbf{P}_{1}(T)\;\;\forall T\in\mathcal{T}_{h}\},

and the discrete space for pressure is

MH:={pHL2(Ω):pH|TP0(T)T𝒯H},M_{H}:=\{p_{H}\in L^{2}(\Omega):p_{H}|_{T}\in P_{0}(T)\;\;\forall T\in\mathcal{T}_{H}\},

and the discrete control space 𝐐h𝐐\mathbf{Q}_{h}\subset\mathbf{Q} by

𝐐h:={𝐱h𝐐:𝐱h|T𝐏1(T),T𝒯h},\mathbf{Q}_{h}:=\{\mathbf{x}_{h}\in\mathbf{Q}:\mathbf{x}_{h}|_{T}\in\mathbf{P}_{1}(T),\;\;\forall T\in\mathcal{T}_{h}\},

where 𝐏1(T)\mathbf{P}_{1}(T) is the space of polynomials of degree less than or equal to one on the triangle TT. The discrete admissible set of controls is defined by

𝐐adh:={𝐱h𝐐h:𝐲a𝐱h(z)𝐲b for all z𝒱hC}.\mathbf{Q}^{h}_{ad}:=\{\mathbf{x}_{h}\in\mathbf{Q}_{h}:\mathbf{y}_{a}\leq\mathbf{x}_{h}(z)\leq\mathbf{y}_{b}\text{ for all }z\in\mathcal{V}_{h}^{C}\}.

It is easy to check that 𝐐adh𝐐ad.\mathbf{Q}_{ad}^{h}\subset\mathbf{Q}_{ad}. Throughout the article, we assume that CC denotes a generic positive constant that is independent of the mesh parameter hh. A proof of the following proposition on the existence and uniqueness of the solution of discrete problem can be found in [20, Proposition 3.1].

Proposition 3.1 (Discrete Optimality System).

There exists unique ((𝐰h,pH),(ϕh,rH),𝐲h)(𝐕h×MH)×(𝐕h×MH)×𝐐adh((\mathbf{w}_{h},p_{H}),(\bm{\phi}_{h},r_{H}),\mathbf{y}_{h})\in\big{(}\mathbf{V}_{h}\times M_{H}\big{)}\times\big{(}\mathbf{V}_{h}\times M_{H}\big{)}\times\mathbf{Q}^{h}_{ad} satisfying the following:

𝐮h\displaystyle\mathbf{u}_{h} =𝐰h+𝐲h,𝐰h𝐕h,\displaystyle=\mathbf{w}_{h}+\mathbf{y}_{h},\quad\mathbf{w}_{h}\in\mathbf{V}_{h},
a(𝐰h,𝐳h)+b(𝐳h,pH)\displaystyle a(\mathbf{w}_{h},\mathbf{z}_{h})+b(\mathbf{z}_{h},p_{H}) =(𝐟,𝐳h)a(𝐲h,𝐳h)forall𝐳h𝐕h,\displaystyle=(\mathbf{f},\mathbf{z}_{h})-a(\mathbf{y}_{h},\mathbf{z}_{h})\;\;\;{\rm for~{}all}\;\mathbf{z}_{h}\in\mathbf{V}_{h}, (3.1a)
b(𝐮h,qH)\displaystyle b(\mathbf{u}_{h},q_{H}) =0forallqHMH,\displaystyle=0\;\quad{\rm for~{}all}\;q_{H}\in M_{H}, (3.1b)
a(𝐳h,ϕh)b(𝐳h,rH)\displaystyle a(\mathbf{z}_{h},\bm{\phi}_{h})-b(\mathbf{z}_{h},r_{H}) =(𝐮h𝐮𝐝,𝐳h)forall𝐳h𝐕h,\displaystyle=(\mathbf{u}_{h}-\mathbf{u_{d}},\mathbf{z}_{h})\;\;\;{\rm for~{}all}\;\mathbf{z}_{h}\in\mathbf{V}_{h}, (3.1c)
b(ϕh,qH)\displaystyle b(\bm{\phi}_{h},q_{H}) =0forallqHMH,\displaystyle=0\;\quad{\rm for~{}all}\;q_{H}\in M_{H}, (3.1d)
ρa(𝐲h,𝐱h𝐲h)\displaystyle\rho\,a(\mathbf{y}_{h},\mathbf{x}_{h}-\mathbf{y}_{h})\geq a(𝐱h𝐲h,ϕh)b(𝐱h𝐲h,rH)\displaystyle a(\mathbf{x}_{h}-\mathbf{y}_{h},\bm{\phi}_{h})-b(\mathbf{x}_{h}-\mathbf{y}_{h},r_{H})
(𝐮h𝐮𝐝,𝐱h𝐲h)forall𝐱h𝐐adh.\displaystyle-(\mathbf{u}_{h}-\mathbf{u_{d}},\mathbf{x}_{h}-\mathbf{y}_{h})\;\quad{\rm for~{}all}\;\mathbf{x}_{h}\in\mathbf{Q}^{h}_{ad}. (3.1e)

4. A posteriori Error Analysis

This section is devoted to a posteriori error analysis. Define reconstructions 𝐑𝐰𝐕\mathbf{R}\mathbf{w}\in\mathbf{V}, R0pL2(Ω),R_{0}p\in L^{2}(\Omega), 𝐑¯ϕ𝐕\bar{\mathbf{R}}\bm{\phi}\in\mathbf{V} and R¯0rL2(Ω),\bar{R}_{0}r\in L^{2}(\Omega), 𝐑𝐲𝐐ad\mathbf{R}\mathbf{y}\in\mathbf{Q}_{ad} by

𝐑𝐮=\displaystyle\mathbf{R}\mathbf{u}= 𝐑𝐰+𝐲h\displaystyle\mathbf{R}\mathbf{w}+\mathbf{y}_{h}
a(𝐑𝐰,𝐯)+b(𝐯,R0p)=\displaystyle a(\mathbf{R}\mathbf{w},\mathbf{v})+b(\mathbf{v},R_{0}p)= 𝐟,𝐳a(𝐲h,𝐯)forall𝐯𝐕,\displaystyle{\langle\mathbf{f},\mathbf{z}\rangle}-a(\mathbf{y}_{h},\mathbf{v})\;~{}~{}\hskip 31.2982pt{\rm for~{}all}\;\mathbf{v}\in\mathbf{V}, (4.1a)
b(𝐑𝐰,q)=\displaystyle b(\mathbf{R}\mathbf{w},q)= b(𝐲h,q)forallqL2(Ω),\displaystyle-b(\mathbf{y}_{h},q)\;~{}~{}\hskip 59.75095pt{\rm for~{}all}\;q\in L^{2}(\Omega), (4.1b)
a(𝐳,𝐑¯ϕ)b(𝐳,R0¯r)=\displaystyle a(\mathbf{z},\bar{\mathbf{R}}\bm{\phi})-b(\mathbf{z},\bar{R_{0}}r)= 𝐮h𝐮d,𝐳Wforall𝐳𝐕,\displaystyle{\langle\mathbf{u}_{h}-\mathbf{u}_{d},\mathbf{z}\rangle}_{W}\;~{}~{}\hskip 45.52458pt{\rm for~{}all}\;\mathbf{z}\in\mathbf{V}, (4.1c)
b(𝐑¯ϕ,q)=\displaystyle b(\bar{\mathbf{R}}\bm{\phi},q)= 0forallqL2(Ω).\displaystyle 0\;~{}~{}\hskip 110.96556pt{\rm for~{}all}\;q\in L^{2}(\Omega). (4.1d)
ρa(𝐑𝐲,𝐱𝐑𝐲)\displaystyle\rho a(\mathbf{R}\mathbf{y},\mathbf{x}-\mathbf{R}\mathbf{y})\geq a(𝐱𝐑𝐲,ϕh)b(𝐱𝐑𝐲,rH)\displaystyle a(\mathbf{x}-\mathbf{R}\mathbf{y},\bm{\phi}_{h})-b(\mathbf{x}-\mathbf{R}\mathbf{y},r_{H}) (4.1e)
(𝐮h𝐮d,𝐱𝐑𝐲)forall𝐱𝐐ad.\displaystyle-(\mathbf{u}_{h}-\mathbf{u}_{d},\mathbf{x}-\mathbf{R}\mathbf{y})\;~{}~{}\hskip 14.22636pt{\rm for~{}all}\;\mathbf{x}\in\mathbf{Q}_{ad}.

The well-posedness of the above system (4.1) follows from the facts that the right-hand side of (4.1a) is a bounded linear functional on 𝐕\mathbf{V}, the bilinear forms aa and bb are continuous, aa is elliptic and bb is inf-sup stable, and hence the system (4.1a)-(4.1b) has a unique solution [16, pp. 81] . Similarly, the system (4.1c)-(4.1d) is well-posed.

Subtraction of (4.1) from (2.3) yields,

a(𝐰𝐑𝐰,𝐳)+b(𝐳,pR0p)\displaystyle a(\mathbf{w}-\mathbf{R}\mathbf{w},\mathbf{z})+b(\mathbf{z},p-R_{0}p) =a(𝐲𝐲h,𝐳)forall𝐳𝐕,\displaystyle=-a(\mathbf{y}-\mathbf{y}_{h},\mathbf{z})\;\;~{}~{}{\rm for~{}all}\;\mathbf{z}\in\mathbf{V}, (4.2a)
b(𝐮𝐑𝐮,q)\displaystyle b(\mathbf{u}-\mathbf{R}\mathbf{u},q) =0forallqL2(Ω),\displaystyle=0\;~{}~{}\hskip 56.9055pt{\rm for~{}all}\;q\in L^{2}(\Omega), (4.2b)
a(𝐳,ϕ𝐑¯ϕ)+b(𝐳,R0¯rr)\displaystyle a(\mathbf{z},\bm{\phi}-\bar{\mathbf{R}}\bm{\phi})+b(\mathbf{z},\bar{R_{0}}r-r) =(𝐮𝐮h,𝐳)forall𝐳𝐕,\displaystyle=(\mathbf{u}-\mathbf{u}_{h},\mathbf{z})\;~{}~{}\hskip 8.5359pt{\rm for~{}all}\;\mathbf{z}\in\mathbf{V}, (4.2c)
b(ϕ𝐑¯ϕ,q)\displaystyle b(\bm{\phi}-\bar{\mathbf{R}}\bm{\phi},q) =0forallqL2(Ω).\displaystyle=0\;~{}~{}\hskip 68.28644pt{\rm for~{}all}\;q\in L^{2}(\Omega). (4.2d)
Theorem 4.1 (Energy error estimate of control and L2L^{2}-estimate of velocity).

There holds,

ρ(𝐑𝐲𝐲)0,Ω+𝐑𝐮𝐮0,Ω\displaystyle\rho\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y})\right\|_{0,\Omega}+\left\|\mathbf{R}\mathbf{u}-\mathbf{u}\right\|_{0,\Omega}\leq C((𝐑𝐲𝐲h)0,Ω+(𝐑𝐰𝐰h)0,Ω\displaystyle C\big{(}\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}
+(ϕh𝐑¯ϕ)0,Ω+rHR¯0r0,Ω).\displaystyle+\left\|\nabla(\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}\big{)}.
Proof.

Selecting 𝐱=𝐲\mathbf{x=y} in (4.1e), 𝐱=𝐑𝐲\mathbf{x=Ry} in (2.3f) and adding the result, we obtain

ρa(𝐑𝐲𝐲,𝐲𝐑𝐲)\displaystyle\rho a(\mathbf{R}\mathbf{y}-\mathbf{y},\mathbf{y}-\mathbf{R}\mathbf{y})\geq a(𝐲𝐑𝐲,ϕhϕ)b(𝐲𝐑𝐲,rHr)(𝐮h𝐮,𝐲𝐑𝐲)\displaystyle a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bm{\phi})-b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-r)-(\mathbf{u}_{h}-\mathbf{u},\mathbf{y}-\mathbf{R}\mathbf{y})
\displaystyle\geq a(𝐲𝐑𝐲,ϕh𝐑¯ϕ)+a(𝐲𝐲h,𝐑¯ϕϕ)+a(𝐲h𝐑𝐲,𝐑¯ϕϕ)\displaystyle a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})+a(\mathbf{y}-\mathbf{y}_{h},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})+a(\mathbf{y}_{h}-\mathbf{R}\mathbf{y},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})
b(𝐲𝐑𝐲,rHr)(𝐮h𝐮,𝐲𝐑𝐲)\displaystyle-b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-r)-(\mathbf{u}_{h}-\mathbf{u},\mathbf{y}-\mathbf{R}\mathbf{y})
\displaystyle\geq a(𝐲𝐑𝐲,ϕh𝐑¯ϕ)+a(𝐲𝐲h,𝐑¯ϕϕ)+a(𝐲h𝐑𝐲,𝐑¯ϕϕ)\displaystyle a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})+a(\mathbf{y}-\mathbf{y}_{h},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})+a(\mathbf{y}_{h}-\mathbf{R}\mathbf{y},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})
b(𝐲𝐑𝐲,rHr)(𝐮h𝐮,𝐲𝐑𝐲)\displaystyle-b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-r)-(\mathbf{u}_{h}-\mathbf{u},\mathbf{y}-\mathbf{R}\mathbf{y})
\displaystyle\geq a(𝐲𝐑𝐲,ϕh𝐑¯ϕ)b(𝐲𝐲h,rR¯0r)+a(𝐲h𝐑𝐲,𝐑¯ϕϕ)\displaystyle a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})-b(\mathbf{y}-\mathbf{y}_{h},r-\bar{R}_{0}r)+a(\mathbf{y}_{h}-\mathbf{R}\mathbf{y},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})
b(𝐲𝐑𝐲,rHr)(𝐮𝐮h,𝐲+𝐰𝐑𝐲𝐑𝐰)\displaystyle-b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-r)-(\mathbf{u}-\mathbf{u}_{h},\mathbf{y}+\mathbf{w}-\mathbf{R}\mathbf{y}-\mathbf{R}\mathbf{w})
\displaystyle\geq a(𝐲𝐑𝐲,ϕh𝐑¯ϕ)b(𝐲𝐲h,rR¯0r)+a(𝐲h𝐑𝐲,𝐑¯ϕϕ)\displaystyle a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})-b(\mathbf{y}-\mathbf{y}_{h},r-\bar{R}_{0}r)+a(\mathbf{y}_{h}-\mathbf{R}\mathbf{y},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})
b(𝐲𝐑𝐲,rHr)+𝐮𝐑𝐮0,Ω2+(𝐑𝐮𝐮h,𝐮𝐑𝐮)\displaystyle-b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-r)+\left\|\mathbf{u}-\mathbf{R}\mathbf{u}\right\|_{0,\Omega}^{2}+(\mathbf{R}\mathbf{u}-\mathbf{u}_{h},\mathbf{u}-\mathbf{R}\mathbf{u})
+(𝐮𝐮h,𝐲h𝐑𝐲).\displaystyle+(\mathbf{u}-\mathbf{u}_{h},\mathbf{y}_{h}-\mathbf{R}\mathbf{y}).

Now we have

ρ(𝐑𝐲𝐲)0,Ω2+𝐮𝐑𝐮0,Ω2\displaystyle\rho\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y})\right\|_{0,\Omega}^{2}+\left\|\mathbf{u}-\mathbf{R}\mathbf{u}\right\|_{0,\Omega}^{2}\leq a(𝐲𝐑𝐲,ϕh𝐑¯ϕ)+b(𝐲𝐲h,rR¯0r)\displaystyle-a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})+b(\mathbf{y}-\mathbf{y}_{h},r-\bar{R}_{0}r)
a(𝐲h𝐑𝐲,𝐑¯ϕϕ)+b(𝐲𝐑𝐲,rHr)\displaystyle-a(\mathbf{y}_{h}-\mathbf{R}\mathbf{y},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})+b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-r)
(𝐑𝐮𝐮h,𝐮𝐑𝐮)(𝐮𝐮h,𝐲h𝐑𝐲)\displaystyle-(\mathbf{R}\mathbf{u}-\mathbf{u}_{h},\mathbf{u}-\mathbf{R}\mathbf{u})-(\mathbf{u}-\mathbf{u}_{h},\mathbf{y}_{h}-\mathbf{R}\mathbf{y})
\displaystyle\leq a(𝐲𝐑𝐲,ϕh𝐑¯ϕ)+b(𝐑𝐲𝐲h,rR¯0r)\displaystyle-a(\mathbf{y}-\mathbf{R}\mathbf{y},\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})+b(\mathbf{R}\mathbf{y}-\mathbf{y}_{h},r-\bar{R}_{0}r)
+b(𝐲𝐑𝐲,rHR¯0r)a(𝐲h𝐑𝐲,𝐑¯ϕϕ)\displaystyle+b(\mathbf{y}-\mathbf{R}\mathbf{y},r_{H}-\bar{R}_{0}r)-a(\mathbf{y}_{h}-\mathbf{R}\mathbf{y},\bar{\mathbf{R}}\bm{\phi}-\bm{\phi})
(𝐑𝐮𝐮h,𝐮𝐑𝐮)(𝐑𝐮𝐮h,𝐲h𝐑𝐲)\displaystyle-(\mathbf{R}\mathbf{u}-\mathbf{u}_{h},\mathbf{u}-\mathbf{R}\mathbf{u})-(\mathbf{R}\mathbf{u}-\mathbf{u}_{h},\mathbf{y}_{h}-\mathbf{R}\mathbf{y})
+(𝐮𝐑𝐮,𝐲h𝐑𝐲).\displaystyle+(\mathbf{u}-\mathbf{R}\mathbf{u},\mathbf{y}_{h}-\mathbf{R}\mathbf{y}).

Applying Cauchy-Schwarz inequality and Young’s inequality we arrive at the desired estimate. ∎

Theorem 4.2 (Energy error estimate of velocity).

There holds,

(𝐮𝐑𝐮)0,Ω\displaystyle\left\|\nabla(\mathbf{u}-\mathbf{R}\mathbf{u})\right\|_{0,\Omega}\leq C((𝐑𝐲𝐲h)0,Ω+(𝐑𝐰𝐰h)0,Ω+(ϕh𝐑¯ϕ)0,Ω\displaystyle C\big{(}\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}+\left\|\nabla(\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}
+rHR¯0r0,Ω).\displaystyle+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}\big{)}.
Proof.

The splitting 𝐮=𝐰+𝐲\mathbf{u=w+y} and 𝐑𝐮=𝐑𝐰+𝐲𝐡\mathbf{Ru=Rw+y_{h}} yields

(𝐮𝐑𝐮)0,Ω(𝐰𝐑𝐰)0,Ω+(𝐲𝐲h)0,Ω.\displaystyle\left\|\nabla(\mathbf{u}-\mathbf{R}\mathbf{u})\right\|_{0,\Omega}\leq\left\|\nabla(\mathbf{w}-\mathbf{R}\mathbf{w})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}. (4.3)

Now we need to estimate the term (𝐰𝐑𝐰)0,Ω.\left\|\nabla(\mathbf{w}-\mathbf{R}\mathbf{w})\right\|_{0,\Omega}. A selection 𝐳=𝐰𝐑𝐰\mathbf{z}=\mathbf{w}-\mathbf{R}\mathbf{w} in (4.2a) provides

(𝐰𝐑𝐰)0,Ω2+b(𝐰𝐑𝐰,pR0p)=a(𝐲𝐲h,𝐰𝐑𝐰).\displaystyle\left\|\nabla(\mathbf{w}-\mathbf{R}\mathbf{w})\right\|_{0,\Omega}^{2}+b(\mathbf{w}-\mathbf{R}\mathbf{w},p-R_{0}p)=-a(\mathbf{y}-\mathbf{y}_{h},\mathbf{w}-\mathbf{R}\mathbf{w}). (4.4)

Using the fact that b(𝐰𝐑𝐰,pR0p)=b(𝐲𝐲h,pR0p)b(\mathbf{w}-\mathbf{R}\mathbf{w},p-R_{0}p)=-b(\mathbf{y}-\mathbf{y}_{h},p-R_{0}p) and appplying Cauchy-Schwarz and Young’s inequality in (4.4), we obtain

(1ϵ2)(𝐰𝐑𝐰)0,Ω21ϵ(𝐲𝐲h)0,Ω2+ϵ2pR0p0,Ω2.\displaystyle(1-\frac{\epsilon}{2})\left\|\nabla(\mathbf{w}-\mathbf{R}\mathbf{w})\right\|_{0,\Omega}^{2}\leq\frac{1}{\epsilon}\left\|\nabla(\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}^{2}+\frac{\epsilon}{2}\left\|p-R_{0}p\right\|_{0,\Omega}^{2}. (4.5)

The estimate of pR0p0,Ω\left\|p-R_{0}p\right\|_{0,\Omega} is in the following:

pR0p0,Ω\displaystyle\left\|p-R_{0}p\right\|_{0,\Omega} sup𝐯𝐕b(𝐯,pR0p)v𝐕\displaystyle\leq\sup_{\mathbf{v}\in\mathbf{V}}\frac{b(\mathbf{v},p-R_{0}p)}{\left\|v\right\|_{\mathbf{V}}}
sup𝐯𝐕a(𝐲𝐲𝐡,𝐯)a(𝐰𝐑𝐰,𝐯)v𝐕\displaystyle\leq\sup_{\mathbf{v}\in\mathbf{V}}\frac{-a(\mathbf{y}-\mathbf{y_{h}},\mathbf{v})-a(\mathbf{w}-\mathbf{R}\mathbf{w},\mathbf{v})}{\left\|v\right\|_{\mathbf{V}}}
(𝐲𝐲h)0,Ω+(𝐰𝐑𝐰)0,Ω.\displaystyle\leq\left\|\nabla(\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{w}-\mathbf{R}\mathbf{w})\right\|_{0,\Omega}. (4.6)

Using (4) in (4.5), we obtain (𝐰𝐑𝐰)0,ΩC(𝐲𝐲h)0,Ω.\left\|\nabla(\mathbf{w}-\mathbf{R}\mathbf{w})\right\|_{0,\Omega}\leq C\left\|\nabla(\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}. Hence from (4.3) we get

(𝐮𝐑𝐮)0,Ω\displaystyle\left\|\nabla(\mathbf{u}-\mathbf{R}\mathbf{u})\right\|_{0,\Omega} C(𝐲𝐲h)0,Ω\displaystyle\leq C\left\|\nabla(\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega} (4.7)

Introducing the reconstruction 𝐑𝐲\mathbf{R}\mathbf{y} in (4.7) we obtain

(𝐮𝐑𝐮)0,Ω\displaystyle\left\|\nabla(\mathbf{u}-\mathbf{R}\mathbf{u})\right\|_{0,\Omega} C((𝐲𝐑𝐲)0,Ω+(𝐑𝐲𝐲h)0,Ω).\displaystyle\leq C\big{(}\left\|\nabla(\mathbf{y}-\mathbf{R}\mathbf{y})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}\big{)}. (4.8)

Substituting the estimate of (𝐑𝐲𝐲)0,Ω\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y})\right\|_{0,\Omega}(from Theorem 4.1) in (4.8), we obtain the desired estimate. ∎

Theorem 4.3 (Energy error estimate of adjoint velocity).

There holds,

(ϕ𝐑ϕ)0,Ω\displaystyle\left\|\nabla(\bm{\phi}-\mathbf{R}\bm{\phi})\right\|_{0,\Omega}\leq C((𝐑𝐲𝐲h)0,Ω+(𝐑𝐰𝐰h)0,Ω+(ϕh𝐑¯ϕ)0,Ω\displaystyle C\big{(}\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}+\left\|\nabla(\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}
+rHR¯0r0,Ω).\displaystyle+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}\big{)}.
Proof.

Selecting 𝐳=ϕ𝐑ϕ\mathbf{z}=\bm{\phi}-\mathbf{R}\bm{\phi} in (4.2c) we have the following:

(ϕ𝐑¯ϕ)0,Ω2b(ϕ𝐑¯ϕ,rR¯0r)=(𝐮𝐮h,ϕ𝐑¯ϕ).\displaystyle\left\|\nabla(\bm{\phi}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}^{2}-b(\bm{\phi}-\bar{\mathbf{R}}\bm{\phi},r-\bar{R}_{0}r)=(\mathbf{u}-\mathbf{u}_{h},\bm{\phi}-\bar{\mathbf{R}}\bm{\phi}). (4.9)

Using the fact that b(ϕ𝐑¯ϕ,rR¯0r)=0b(\bm{\phi}-\bar{\mathbf{R}}\bm{\phi},r-\bar{R}_{0}r)=0 and applying Cauchy-Schwarz inequality in (4.9), we obtain

(ϕ𝐑¯ϕ)0,Ω\displaystyle\left\|\nabla(\bm{\phi}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega} 𝐮𝐮h0,Ω\displaystyle\leq\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0,\Omega}
𝐮𝐑𝐮0,Ω+𝐑𝐮𝐮h0,Ω\displaystyle\leq\left\|\mathbf{u}-\mathbf{Ru}\right\|_{0,\Omega}+\left\|\mathbf{Ru}-\mathbf{u}_{h}\right\|_{0,\Omega}
𝐮𝐑𝐮0,Ω+𝐑𝐰𝐰h0,Ω\displaystyle\leq\left\|\mathbf{u}-\mathbf{Ru}\right\|_{0,\Omega}+\left\|\mathbf{Rw}-\mathbf{w}_{h}\right\|_{0,\Omega}
𝐮𝐑𝐮0,Ω+(𝐑𝐰𝐰h)0,Ω.\displaystyle\leq\left\|\mathbf{u}-\mathbf{Ru}\right\|_{0,\Omega}+\left\|\nabla(\mathbf{Rw}-\mathbf{w}_{h})\right\|_{0,\Omega}. (4.10)

In the above, we have used the fact that 𝐮h=𝐰h+𝐲h\mathbf{u}_{h}=\mathbf{w}_{h}+\mathbf{y}_{h}, 𝐑𝐮=𝐑𝐰+𝐲h\mathbf{Ru}=\mathbf{Rw}+\mathbf{y}_{h} and Poincaré inequality. Using the estimates of 𝐮𝐑𝐮0,Ω\left\|\mathbf{u}-\mathbf{Ru}\right\|_{0,\Omega} from Theorem 4.1 in (4.10) we obtain the desired result. ∎

In the next theorem we state the estimate of pressure and adjoint pressure the proof can be easily derived by using the inf-sup condition.

Theorem 4.4 (Error estimate of pressure and adjoint pressure).

There holds,

pR0p0,Ω\displaystyle\left\|p-R_{0}p\right\|_{0,\Omega}\leq C((𝐑𝐲𝐲h)0,Ω+(𝐑𝐰𝐰h)0,Ω+(ϕh𝐑¯ϕ)0,Ω\displaystyle C\big{(}\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}+\left\|\nabla(\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}
+rHR¯0r0,Ω),\displaystyle+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}\big{)},

and

rR¯0r0,Ω\displaystyle\left\|r-\bar{R}_{0}r\right\|_{0,\Omega}\leq C((𝐑𝐲𝐲h)0,Ω+(𝐑𝐰𝐰h)0,Ω+(ϕh𝐑¯ϕ)0,Ω\displaystyle C\big{(}\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}+\left\|\nabla(\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}
+rHR¯0r0,Ω).\displaystyle+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}\big{)}.

Combining all the above results, Theorem 4.1-4.4, we obtain the following theorem:

Theorem 4.5.

There holds

(𝐮𝐮h)0,Ω+\displaystyle\left\|\nabla(\mathbf{u}-\mathbf{u}_{h})\right\|_{0,\Omega}+ ppH0,Ω+(ϕϕh)0,Ω+rrH0,Ω+(𝐲𝐲h)0,ΩC((𝐑𝐲𝐲h)0,Ω\displaystyle\left\|p-p_{H}\right\|_{0,\Omega}+\left\|\nabla(\bm{\phi}-\bm{\phi}_{h})\right\|_{0,\Omega}+\left\|r-r_{H}\right\|_{0,\Omega}+\left\|\nabla(\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}\leq C\big{(}\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}
+(𝐑𝐰𝐰h)0,Ω+pHR0p0,Ω+(ϕh𝐑¯ϕ)0,Ω+rHR¯0r0,Ω).\displaystyle+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}+\left\|p_{H}-R_{0}p\right\|_{0,\Omega}+\left\|\nabla(\bm{\phi}_{h}-\bar{\mathbf{R}}\bm{\phi})\right\|_{0,\Omega}+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}\big{)}.

Before going to derive the a posteriori error estimator we need to define some preliminary definitions which are given in the following: Let p𝒱hp\in\mathcal{V}_{h} be a node and ωp\omega_{p} be the node patch of pp and define hp=diamωp.h_{p}=\text{diam}\;\omega_{p}. Denote γp\gamma_{p} be the union of all sides of ω¯p\bar{\omega}_{p} and union of interior sides of ω¯p\bar{\omega}_{p} are denoted by γp,I.\gamma_{p,I}. Given any p𝒱hCp\in\mathcal{V}_{h}^{C} we subdivide the intersections between Ω\partial\Omega and ωp\partial\omega_{p} in the three following sets:

γp,C\displaystyle\gamma_{p,C} :=ΓCωp\displaystyle:=\Gamma_{C}\cap\partial\omega_{p}
γp,D\displaystyle\gamma_{p,D} :=ΓDωp\displaystyle:=\Gamma_{D}\cap\partial\omega_{p}
γp,N\displaystyle\gamma_{p,N} :=ΓNωp.\displaystyle:=\Gamma_{N}\cap\partial\omega_{p}.

We define the discrete contact stress by 𝝈^(𝐲h):=ρ𝐲hnϕhnrH𝐧,\hat{\bm{\sigma}}(\mathbf{y}_{h}):=\rho\frac{\partial\mathbf{y}_{h}}{\partial n}-\frac{\partial\bm{\phi}_{h}}{\partial n}-r_{H}\mathbf{n}, clearly it is a vector quantity so the sign of this quantity would be in the sense of componentwise. We classify the nodes on ΓC\Gamma_{C} as follows.

We classify the actual contact nodes p𝒱hCp\in\mathcal{V}_{h}^{C} with 𝐲h(p)=𝐲a(p)(=𝐲a)\mathbf{y}_{h}(p)=\mathbf{y}_{a}(p)(=\mathbf{y}_{a}) in two different categories. At so-called full-contact nodes p𝒱fCh,ap\in\mathcal{V}^{fC}_{h,a} if the discrete solution satisfies 𝐲h=𝐲a,\mathbf{y}_{h}=\mathbf{y}_{a}, 𝝈^(𝐲h):=(σ^1(𝐲h),σ^2(𝐲h))𝟎\hat{\bm{\sigma}}(\mathbf{y}_{h}):=(\hat{\sigma}_{1}(\mathbf{y}_{h}),\hat{\sigma}_{2}(\mathbf{y}_{h}))\geq\mathbf{0} on γp,C,\gamma_{p,C}, which means that the conditions of actual contact are satisfied. The remaining actual contact nodes with 𝐲h(p)=𝐲a(p)\mathbf{y}_{h}(p)=\mathbf{y}_{a}(p) are called semi-contact nodes and the set is denoted by 𝒱sCh,a.\mathcal{V}^{sC}_{h,a}.

Similarly, we classify the actual contact nodes p𝒱hCp\in\mathcal{V}_{h}^{C} with 𝐲h(p)=𝐲b(p)(=𝐲b)\mathbf{y}_{h}(p)=\mathbf{y}_{b}(p)(=\mathbf{y}_{b}) in two different categories. At so-called full-contact nodes p𝒱fCh,bp\in\mathcal{V}^{fC}_{h,b} if the discrete solution satisfies 𝐲h=𝐲b,\mathbf{y}_{h}=\mathbf{y}_{b}, 𝝈^(𝐲h)𝟎\hat{\bm{\sigma}}(\mathbf{y}_{h})\leq\mathbf{0} on γp,C,\gamma_{p,C}, which means that the conditions of actual contact are satisfied. The remaining actual contact nodes with 𝐲h(p)=𝐲b(p)\mathbf{y}_{h}(p)=\mathbf{y}_{b}(p) are called semi-contact nodes and the set is denoted by 𝒱sCh,b.\mathcal{V}^{sC}_{h,b}.

Also, we define 𝒱C={p𝒱Ch:𝐲a<𝐲h(p)<𝐲b}.\mathcal{V}_{*}^{C}=\{p\in\mathcal{V}^{C}_{h}:\mathbf{y}_{a}<\mathbf{y}_{h}(p)<\mathbf{y}_{b}\}. It is clear that

𝒱Ch=𝒱fCh,a𝒱fCh,b𝒱sCh,a𝒱sCh,b𝒱C.\mathcal{V}^{C}_{h}=\mathcal{V}^{fC}_{h,a}\cup\mathcal{V}^{fC}_{h,b}\cup\mathcal{V}^{sC}_{h,a}\cup\mathcal{V}^{sC}_{h,b}\cup\mathcal{V}_{*}^{C}.

We define the residual 𝐑h\mathbf{R}_{h} by the following:

(𝐑h,𝐱)1,1=a(𝐱,ϕh)b(𝐱,rH)(𝐮h𝐮d,𝐱)ρa(𝐲h,𝐱)for all𝐱𝐐.\displaystyle(\mathbf{R}_{h},\mathbf{x})_{-1,1}=a(\mathbf{x},\bm{\phi}_{h})-b(\mathbf{x},r_{H})-(\mathbf{u}_{h}-\mathbf{u}_{d},\mathbf{x})-\rho a(\mathbf{y}_{h},\mathbf{x})\quad\text{for~{}all}\;\mathbf{x}\in\mathbf{Q}.

Also, for the a posteriori estimator we need to define the the Lagrange multiplier 𝝀\bm{\lambda} by the following:

(𝝀,𝐱)1,1=a(𝐱,ϕh)b(𝐱,rH)(𝐮h𝐮d,𝐱)ρa(𝐑𝐲,𝐱)for all𝐱𝐐.\displaystyle(\bm{\lambda},\mathbf{x})_{-1,1}=a(\mathbf{x},\bm{\phi}_{h})-b(\mathbf{x},r_{H})-(\mathbf{u}_{h}-\mathbf{u}_{d},\mathbf{x})-\rho a(\mathbf{Ry},\mathbf{x})\quad\text{for~{}all}\;\mathbf{x}\in\mathbf{Q}.

Here, (,)1,1(\cdot,\cdot)_{-1,1} denotes the duality pairing between 𝐐\mathbf{Q} and its dual. Clearly, (𝝀,𝐱𝐑𝐲)1,10(\bm{\lambda},\mathbf{x}-\mathbf{Ry})_{-1,1}\leq 0 for all 𝐱𝐐ad.\mathbf{x}\in\mathbf{Q}_{ad}. Define the discrete Lagrange multiplier 𝝀h\bm{\lambda}_{h} by the following:

(𝝀h,𝐱h)1,1=a(𝐱h,ϕh)b(𝐱h,rH)(𝐮h𝐮d,𝐱h)ρa(𝐲h,𝐱h)for all𝐱h𝐐h.\displaystyle(\bm{\lambda}_{h},\mathbf{x}_{h})_{-1,1}=a(\mathbf{x}_{h},\bm{\phi}_{h})-b(\mathbf{x}_{h},r_{H})-(\mathbf{u}_{h}-\mathbf{u}_{d},\mathbf{x}_{h})-\rho a(\mathbf{y}_{h},\mathbf{x}_{h})\quad\text{for~{}all}\;\mathbf{x}_{h}\in\mathbf{Q}_{h}.

It is clear that, (𝝀h,𝐱h)1,1=(𝐑h,𝐱h)1,1(\bm{\lambda}_{h},\mathbf{x}_{h})_{-1,1}=(\mathbf{R}_{h},\mathbf{x}_{h})_{-1,1} for all 𝐱h𝐐had\mathbf{x}_{h}\in\mathbf{Q}^{h}_{ad} and

(𝝀h,𝐱h𝐲h)1,10for all𝐱h𝐐had.\displaystyle(\bm{\lambda}_{h},\mathbf{x}_{h}-\mathbf{y}_{h})_{-1,1}\leq 0\quad\text{for~{}all}\;\mathbf{x}_{h}\in\mathbf{Q}^{h}_{ad}.

In order to investigate 𝝀h\bm{\lambda}_{h} further, we use the partition of unity and integration by parts

(𝝀h,𝐱h)1,1=\displaystyle(\bm{\lambda}_{h},\mathbf{x}_{h})_{-1,1}= i=12p𝒱h(𝝀h,xh,i(p)ϕp𝐞i)1,1\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}(\bm{\lambda}_{h},x_{h,i}(p)\phi_{p}\mathbf{e}_{i})_{-1,1}
=\displaystyle= i=12p𝒱hωp(ΔϕhrH(𝐮h𝐮d)+ρΔ𝐲h)xh,i(p)ϕp𝐞i\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}\int_{\omega_{p}}(-\Delta\bm{\phi}_{h}-\nabla r_{H}-(\mathbf{u}_{h}-\mathbf{u}_{d})+\rho\Delta\mathbf{y}_{h})\cdot x_{h,i}(p)\phi_{p}\mathbf{e}_{i}
+i=12p𝒱hγp,I[[ϕh+rH𝕀ρ𝐲h]]xh,i(p)ϕp𝐞i\displaystyle+\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}\int_{\gamma_{p,I}}[\hskip-1.5pt[\nabla\bm{\phi}_{h}+r_{H}\mathbb{I}-\rho\nabla\mathbf{y}_{h}]\hskip-1.5pt]\cdot x_{h,i}(p)\phi_{p}\mathbf{e}_{i}
i=12p𝒱Chγp,C𝝈^(𝐲h)xh,i(p)ϕp𝐞i,\displaystyle-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}^{C}_{h}}\int_{\gamma_{p,C}}\hat{\bm{\sigma}}(\mathbf{y}_{h})\cdot x_{h,i}(p)\phi_{p}\mathbf{e}_{i},

where {𝐞1,𝐞2}\{\mathbf{e}_{1},\mathbf{e}_{2}\} standard basis of 2,\mathbb{R}^{2}, and ϕp\phi_{p} is the Lagrange basis at node pp. This motivates the representation (𝝀h,𝐱h)1,1=i=12(λh,i,xh,i)1,1.(\bm{\lambda}_{h},\mathbf{x}_{h})_{-1,1}=\sum_{i=1}^{2}(\lambda_{h,i},x_{h,i})_{-1,1}.

Now for the a posteriori estimator we replace the residual 𝐑h\mathbf{R}_{h} by a Galerkin functional, whose abstract definition is given by

(𝐆h,𝐱)1,1:=ρa(𝐑𝐲𝐲h,𝐱)+(𝝀𝝀~h,𝐱)1,1\displaystyle(\mathbf{G}_{h},\mathbf{x})_{-1,1}:=\rho a(\mathbf{Ry}-\mathbf{y}_{h},\mathbf{x})+(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\mathbf{x})_{-1,1} (4.11)

for all 𝐱𝐐,\mathbf{x}\in\mathbf{Q}, where 𝝀~h\tilde{\bm{\lambda}}_{h} is an approximation of 𝝀h\bm{\lambda}_{h} and it depends on the discrete solution, data and reflects the properties of 𝝀,\bm{\lambda}, details can be found in [14]. We call it quasi-discrete contact force density.

By using the partition of unity we have the following definition of 𝝀~h,\tilde{\bm{\lambda}}_{h}, for all 𝝍𝐐\bm{\psi}\in\mathbf{Q}:

(𝝀~h,𝝍)1,1:=i=12(λ~h,i,ψi)1,1=i=12p𝒱hC(λ~ph,i,ψiϕp)1,1\displaystyle(\tilde{\bm{\lambda}}_{h},\bm{\psi})_{-1,1}:=\sum_{i=1}^{2}(\tilde{\lambda}_{h,i},\psi_{i})_{-1,1}=\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{\lambda}^{p}_{h,i},\psi_{i}\phi_{p})_{-1,1} (4.12)

and it adjusts the local contributions so that, on one hand, the Galerkin functional is prepared for the derivation of an upper bound, and on the other hand, tries to maximize the cancellation within 𝐆h.\mathbf{G}_{h}.

For semi-contact nodes p𝒱sCh:=𝒱sCh,a𝒱sCh,b,p\in\mathcal{V}^{sC}_{h}:=\mathcal{V}^{sC}_{h,a}\cup\mathcal{V}^{sC}_{h,b}, we define

(λ~ph,i,ψiϕp)1,1:=(Rh,i,ϕp)1,1mp(ψi)=sp,imp(ψi)γp,Cϕp,\displaystyle(\tilde{\lambda}^{p}_{h,i},\psi_{i}\phi_{p})_{-1,1}:=(R_{h,i},\phi_{p})_{-1,1}m_{p}(\psi_{i})=s_{p,i}m_{p}(\psi_{i})\int_{\gamma_{p,C}}\phi_{p},

where sp,i:=(λh,i,ϕp)1,1γp,Cϕp,s_{p,i}:=\frac{(\lambda_{h,i},\phi_{p})_{-1,1}}{\int_{\gamma_{p,C}}\phi_{p}}, i=1,2.i=1,2. The constant sp,is_{p,i} is the nodal value of the discrete contact force density obtained by lumping the boundary mass matrix and mp(ψi)m_{p}(\psi_{i}) is defined below. Sign of sp,is_{p,i} is the following:
i) For pΓCp\in\Gamma_{C} with yh,i(p)=yiay_{h,i}(p)=y^{i}_{a} then sp,i0.s_{p,i}\leq 0.
ii) For pΓCp\in\Gamma_{C} with yh,i(p)=yiby_{h,i}(p)=y^{i}_{b} then sp,i0.s_{p,i}\geq 0.
iii) For p𝒱Cp\in\mathcal{V}_{*}^{C} then sp,i=0.s_{p,i}=0.

For full-contact nodes p𝒱fCh:=𝒱fCh,a𝒱fCh,b,p\in\mathcal{V}^{fC}_{h}:=\mathcal{V}^{fC}_{h,a}\cup\mathcal{V}^{fC}_{h,b}, we define

(λ~ph,i,ψiϕp)1,1:=\displaystyle(\tilde{\lambda}^{p}_{h,i},\psi_{i}\phi_{p})_{-1,1}:= (R~h,i,ϕp)1,1mp(ψi)γp,Cσ^i(𝐲h)ψiϕp\displaystyle(\tilde{R}_{h,i},\phi_{p})_{-1,1}m_{p}(\psi_{i})-\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\psi_{i}\phi_{p}
=\displaystyle= sp,imp(ψi)γp,Cϕpγp,Cσ^i(𝐲h)(ψimp(ψi))ϕp,\displaystyle s_{p,i}m_{p}(\psi_{i})\int_{\gamma_{p,C}}\phi_{p}-\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})(\psi_{i}-m_{p}(\psi_{i}))\phi_{p},

where,

(R~h,i,θ)1,1:=(Rh,i,θ)1,1+ΓCσ^i(𝐲h)θ.\displaystyle(\tilde{R}_{h,i},\theta)_{-1,1}:=(R_{h,i},\theta)_{-1,1}+\int_{\Gamma_{C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\theta.

We need to specify the choices of mp(ψi)m_{p}(\psi_{i}) for semi- and full-contact nodes.

For full-contact nodes p𝒱fCh,bp\in\mathcal{V}^{fC}_{h,b} we use

mp(ψi)=maxeγp,Ceψiϕpeϕp\displaystyle m_{p}(\psi_{i})=\max_{e\subset\gamma_{p,C}}\frac{\int_{e}\psi_{i}\phi_{p}}{\int_{e}\phi_{p}} (4.13)

and for full-contact nodes p𝒱fCh,ap\in\mathcal{V}^{fC}_{h,a} we use

mp(ψi)=mineγp,Ceψiϕpeϕp.\displaystyle m_{p}(\psi_{i})=\min_{e\subset\gamma_{p,C}}\frac{\int_{e}\psi_{i}\phi_{p}}{\int_{e}\phi_{p}}. (4.14)

This choice is important for the derivation of the upper bound, see for instance (LABEL:fourth_term) and (LABEL:sixth_term).

For semi-contact nodes p𝒱sCh,a𝒱sCh,b,p\in\mathcal{V}^{sC}_{h,a}\cup\mathcal{V}^{sC}_{h,b}, we set

mp(ψi)=γ~p,Cψiϕpγ~p,Cϕp,\displaystyle m_{p}(\psi_{i})=\frac{\int_{\tilde{\gamma}_{p,C}}\psi_{i}\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}}, (4.15)

where γ~p,C\tilde{\gamma}_{p,C} is a strict subset of γp,C.\gamma_{p,C}. Now we are ready to derive the a posteriori error estimators.

Theorem 4.6 (A posteriori error estimator).

It holds,

(𝐲𝐲h)0,Ω+\displaystyle\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\Omega}+ (𝐮𝐮h)0,Ω+ppH0,Ω+(ϕϕh)0,Ω\displaystyle\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\Omega}+\lVert p-p_{H}\rVert_{0,\Omega}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\Omega}
+rrH0,Ω+𝝀𝝀~h1,Ω(η(𝐮,p)+η(ϕ,r)+η𝐲),\displaystyle+\lVert r-r_{H}\rVert_{0,\Omega}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}\lesssim\big{(}\eta_{(\mathbf{u},p)}+\eta_{(\bm{\phi},r)}+\eta_{\mathbf{y}}\big{)},

where the estimators are defined as

η(𝐮,p)2=\displaystyle\eta_{(\mathbf{u},p)}^{2}= T𝒯hhT2𝐟+Δ𝐮hpH20,T+ehihe12[[pH𝕀𝐮h]]0,e2\displaystyle\sum_{T\in\mathcal{T}_{h}}h_{T}^{2}\lVert\mathbf{f}+\Delta\mathbf{u}_{h}-\nabla p_{H}\rVert^{2}_{0,T}+\sum_{e\in\mathcal{E}_{h}^{i}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[p_{H}\mathbb{I}-\nabla{\mathbf{u}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}
+ehb,Nhe12[[pH𝕀𝐮h]]0,e2+T𝒯h𝐮h0,T2\displaystyle+\sum_{e\in\mathcal{E}_{h}^{b,N}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[p_{H}\mathbb{I}-\nabla{\mathbf{u}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}+\sum_{T\in\mathcal{T}_{h}}\left\|\nabla\cdot\mathbf{u}_{h}\right\|_{0,T}^{2}

and

η(ϕ,r)2=\displaystyle\eta_{(\bm{\phi},r)}^{2}= T𝒯hhT2Δϕh+rH+𝐮h𝐮d20,T+ehihe12[[rH𝕀+ϕh]]0,e2\displaystyle\sum_{T\in\mathcal{T}_{h}}h_{T}^{2}\lVert\Delta\bm{\phi}_{h}+\nabla r_{H}+\mathbf{u}_{h}-\mathbf{u}_{d}\rVert^{2}_{0,T}+\sum_{e\in\mathcal{E}_{h}^{i}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[r_{H}\mathbb{I}+\nabla{\bm{\phi}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}
+ehb,Nhe12[[rH𝕀+ϕh]]0,e2+T𝒯hϕh0,T2\displaystyle+\sum_{e\in\mathcal{E}_{h}^{b,N}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[r_{H}\mathbb{I}+\nabla{\bm{\phi}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}+\sum_{T\in\mathcal{T}_{h}}\left\|\nabla\cdot\bm{\phi}_{h}\right\|_{0,T}^{2}
η𝐲2=\displaystyle\eta_{\mathbf{y}}^{2}= p𝒱h(hp2𝓡(𝐲h)20,ωpη𝐲a+hp𝓙I(𝐲h)0,γp,I2η𝐲b)+p𝒱Ch𝒱fChhp𝝈^(𝐲h)0,γp,C2η𝐲c\displaystyle\sum_{p\in\mathcal{V}_{h}}\big{(}\underbrace{h_{p}^{2}\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|^{2}_{0,\omega_{p}}}_{\eta_{\mathbf{y}}^{a}}+\underbrace{h_{p}\left\|\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}^{2}}_{\eta_{\mathbf{y}}^{b}}\big{)}+\sum_{p\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}}\underbrace{h_{p}\left\|\hat{\bm{\sigma}}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}^{2}}_{\eta_{\mathbf{y}}^{c}}
+i=12[p𝒱sCh,asp,idap,iη𝐲d+p𝒱sCh,bsp,idbp,iη𝐲e],\displaystyle+\sum_{i=1}^{2}\big{[}\sum_{p\in\mathcal{V}^{sC}_{h,a}}\underbrace{s_{p,i}d^{a}_{p,i}}_{\eta_{\mathbf{y}}^{d}}+\sum_{p\in\mathcal{V}^{sC}_{h,b}}\underbrace{s_{p,i}d^{b}_{p,i}}_{\eta_{\mathbf{y}}^{e}}\big{]},

where, 𝓡(𝐲h):=(1(𝐲h),2(𝐲h))=ΔϕhrH(𝐮h𝐮d)+ρΔ𝐲h,\bm{\mathcal{R}}(\mathbf{y}_{h}):=(\mathcal{R}_{1}(\mathbf{y}_{h}),\mathcal{R}_{2}(\mathbf{y}_{h}))=-\Delta\bm{\phi}_{h}-\nabla r_{H}-(\mathbf{u}_{h}-\mathbf{u}_{d})+\rho\Delta\mathbf{y}_{h}, 𝓙I(𝐲h):=(𝒥I1(𝐲h),𝒥I2(𝐲h))=[[ϕh+rH𝕀ρ𝐲h]],\bm{\mathcal{J}}^{I}(\mathbf{y}_{h}):=(\mathcal{J}^{I}_{1}(\mathbf{y}_{h}),\mathcal{J}^{I}_{2}(\mathbf{y}_{h}))=[\hskip-1.5pt[\nabla\bm{\phi}_{h}+r_{H}\mathbb{I}-\rho\nabla\mathbf{y}_{h}]\hskip-1.5pt], dap,i=γ~p,C(yiayh,i)ϕp.d^{a}_{p,i}=\int_{\tilde{\gamma}_{p,C}}(y^{i}_{a}-y_{h,i})\phi_{p}. and dbp,i=γ~p,C(yibyh,i)ϕp,d^{b}_{p,i}=\int_{\tilde{\gamma}_{p,C}}(y^{i}_{b}-y_{h,i})\phi_{p}, 𝕀\mathbb{I} be the 2×22\times 2 identity matrix. and the set γ~p,C\tilde{\gamma}_{p,C} is a strict subset of γp,C.\gamma_{p,C}.

Proof.

From Theorem 4.5, we have

(𝐲𝐲h)0,Ω+\displaystyle\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\Omega}+ (𝐮𝐮h)0,Ω+ppH0,Ω+(ϕϕh)0,Ω+𝝀𝝀~h1,Ω\displaystyle\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\Omega}+\lVert p-p_{H}\rVert_{0,\Omega}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\Omega}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}
+rrH0,Ω(𝐑𝐲𝐲h)0,Ω+𝝀𝝀~h1,Ω+(𝐑𝐰𝐰h)0,Ω\displaystyle+\lVert r-r_{H}\rVert_{0,\Omega}\lesssim\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}+\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}
+pHR0p0,Ω+(𝐑¯ϕϕh)0,Ω+rHR¯0r0,Ω.\displaystyle+\left\|p_{H}-R_{0}p\right\|_{0,\Omega}+\left\|\nabla(\bar{\mathbf{R}}\bm{\phi}-\bm{\phi}_{h})\right\|_{0,\Omega}+\left\|r_{H}-\bar{R}_{0}r\right\|_{0,\Omega}. (4.16)

The a posteriori error analysis in [25, Theorem 3.1] and [3, Section 7] gives the following error estimators of state and adjoint state variables:

(𝐑𝐮𝐮h)20,Ω+pHR0p20,Ω\displaystyle\left\|\nabla(\mathbf{R}\mathbf{u}-\mathbf{u}_{h})\right\|^{2}_{0,\Omega}+\left\|p_{H}-R_{0}p\right\|^{2}_{0,\Omega}\lesssim T𝒯hhT2𝐟+Δ𝐮hpH20,T+ehihe12[[pH𝕀𝐮h]]0,e2\displaystyle\sum_{T\in\mathcal{T}_{h}}h_{T}^{2}\lVert\mathbf{f}+\Delta\mathbf{u}_{h}-\nabla p_{H}\rVert^{2}_{0,T}+\sum_{e\in\mathcal{E}_{h}^{i}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[p_{H}\mathbb{I}-\nabla{\mathbf{u}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}
+ehb,Nhe12[[pH𝕀𝐮h]]0,e2+T𝒯h𝐮h0,T2\displaystyle+\sum_{e\in\mathcal{E}_{h}^{b,N}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[p_{H}\mathbb{I}-\nabla{\mathbf{u}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}+\sum_{T\in\mathcal{T}_{h}}\left\|\nabla\cdot\mathbf{u}_{h}\right\|_{0,T}^{2} (4.17)
(𝐑¯ϕϕh)20,Ω+rHR¯0r20,Ω\displaystyle\left\|\nabla(\bar{\mathbf{R}}\bm{\phi}-\bm{\phi}_{h})\right\|^{2}_{0,\Omega}+\left\|r_{H}-\bar{R}_{0}r\right\|^{2}_{0,\Omega}\lesssim T𝒯hhT2Δϕh+rH+𝐮h𝐮d20,T+ehihe12[[rH𝕀+ϕh]]0,e2\displaystyle\sum_{T\in\mathcal{T}_{h}}h_{T}^{2}\lVert\Delta\bm{\phi}_{h}+\nabla r_{H}+\mathbf{u}_{h}-\mathbf{u}_{d}\rVert^{2}_{0,T}+\sum_{e\in\mathcal{E}_{h}^{i}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[r_{H}\mathbb{I}+\nabla{\bm{\phi}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}
+ehb,Nhe12[[rH𝕀+ϕh]]0,e2+T𝒯hϕh0,T2.\displaystyle+\sum_{e\in\mathcal{E}_{h}^{b,N}}\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[r_{H}\mathbb{I}+\nabla{\bm{\phi}_{h}}]\hskip-1.5pt]\rVert_{0,e}^{2}+\sum_{T\in\mathcal{T}_{h}}\left\|\nabla\cdot\bm{\phi}_{h}\right\|_{0,T}^{2}. (4.18)

We denote the right hand side of (4) by η2(𝐮,p)\eta^{2}_{(\mathbf{u},p)} and the right hand side of (4) by η2(ϕ,r).\eta^{2}_{(\bm{\phi},r)}. The splitting 𝐑𝐮=𝐑𝐰+𝐲h\mathbf{Ru}=\mathbf{Rw}+\mathbf{y}_{h} and 𝐮h=𝐰h+𝐲h,\mathbf{u}_{h}=\mathbf{w}_{h}+\mathbf{y}_{h}, yields (𝐑𝐮𝐮h)0,Ω=(𝐑𝐰𝐰h)0,Ω.\left\|\nabla(\mathbf{R}\mathbf{u}-\mathbf{u}_{h})\right\|_{0,\Omega}=\left\|\nabla(\mathbf{R}\mathbf{w}-\mathbf{w}_{h})\right\|_{0,\Omega}. Thus we have estimates for all the last four terms of (4). Therefore we only need to estimate (𝐑𝐲𝐲h)0,Ω+𝝀𝝀~h1,Ω.\left\|\nabla(\mathbf{R}\mathbf{y}-\mathbf{y}_{h})\right\|_{0,\Omega}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}. Estimator for the control variable needs some special care. To find an upper bound of the term (𝐑𝐲𝐲h)0,Ω,\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\Omega}, we choose 𝐱=𝐑𝐲𝐲h\mathbf{x}=\mathbf{Ry}-\mathbf{y}_{h} in (4.11)

ρ(𝐑𝐲𝐲h)0,Ω2\displaystyle\rho\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\Omega}^{2} =ρa(𝐑𝐲𝐲h,𝐑𝐲𝐲h)\displaystyle=\rho\;a(\mathbf{Ry}-\mathbf{y}_{h},\mathbf{Ry}-\mathbf{y}_{h})
=𝐆h(𝐑𝐲𝐲h)(𝝀𝝀~h,𝐑𝐲𝐲h)1,1\displaystyle=\mathbf{G}_{h}(\mathbf{Ry}-\mathbf{y}_{h})-(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}
𝐆h1(𝐑𝐲𝐲h)0,Ω(𝝀𝝀~h,𝐑𝐲𝐲h)1,1.\displaystyle\leq\left\|\mathbf{G}_{h}\right\|_{-1}\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\Omega}-(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}. (4.19)

Applying the Young’s inequality in (4.19), we get the following estimates:

ρ2(𝐑𝐲𝐲h)0,Ω2\displaystyle\frac{\rho}{2}\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\Omega}^{2}\leq 12ρ𝐆h21(𝝀𝝀~h,𝐑𝐲𝐲h)1,1.\displaystyle\frac{1}{2\rho}\left\|\mathbf{G}_{h}\right\|^{2}_{-1}-(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}. (4.20)

Also, using (4.11) one can easily derive

𝝀𝝀~h1,Ω2(2+2ρ)𝐆h214(𝝀𝝀~h,𝐑𝐲𝐲h)1,1.\displaystyle\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}^{2}\leq(2+\frac{2}{\rho})\left\|\mathbf{G}_{h}\right\|^{2}_{-1}-4(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}. (4.21)

Adding (4.20) and (4.21), we get

(𝐑𝐲𝐲h)0,Ω2+𝝀𝝀~h1,Ω2(2+2ρ+1ρ2)𝐆h21(4+2ρ)(𝝀𝝀~h,𝐑𝐲𝐲h)1,1.\displaystyle\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\Omega}^{2}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}^{2}\leq(2+\frac{2}{\rho}+\frac{1}{\rho^{2}})\left\|\mathbf{G}_{h}\right\|^{2}_{-1}-(4+\frac{2}{\rho})(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}. (4.22)

From the equation (4.22) it is clear that the error in control and contact force densities are bounded by the dual norm of the Galerkin functional 𝐆h1\left\|\mathbf{G}_{h}\right\|_{-1} and the duality pairing between the contact force densities and the controls.

First, we estimate the term 𝐆h1.\left\|\mathbf{G}_{h}\right\|_{-1}. Using the definition of 𝐆h\mathbf{G}_{h} in (4.11), with 𝝍𝐐\bm{\psi}\in\mathbf{Q}, we obtain

(𝐆h,𝝍)1,1=\displaystyle(\mathbf{G}_{h},\bm{\psi})_{-1,1}= ρa(𝐑𝐲𝐲h,𝝍)+(𝝀𝝀~h,𝝍)1,1\displaystyle\rho a(\mathbf{Ry}-\mathbf{y}_{h},\bm{\psi})+(\bm{\lambda}-\tilde{\bm{\lambda}}_{h},\bm{\psi})_{-1,1}
=\displaystyle= ρa(𝐑𝐲𝐲h,𝝍)+a(𝝍,ϕh)b(𝝍,rH)(𝐮h𝐮d,𝝍)\displaystyle\rho a(\mathbf{Ry}-\mathbf{y}_{h},\bm{\psi})+a(\bm{\psi},\bm{\phi}_{h})-b(\bm{\psi},r_{H})-(\mathbf{u}_{h}-\mathbf{u}_{d},\bm{\psi})
ρa(𝐑𝐲,𝝍)(𝝀~h,𝝍)1,1\displaystyle-\rho a(\mathbf{Ry},\bm{\psi})-(\tilde{\bm{\lambda}}_{h},\bm{\psi})_{-1,1}
=\displaystyle= a(𝝍,ϕh)b(𝝍,rH)(𝐮h𝐮d,𝝍)ρa(𝐲h,𝝍)(𝝀~h,𝝍)1,1\displaystyle a(\bm{\psi},\bm{\phi}_{h})-b(\bm{\psi},r_{H})-(\mathbf{u}_{h}-\mathbf{u}_{d},\bm{\psi})-\rho a(\mathbf{y}_{h},\bm{\psi})-(\tilde{\bm{\lambda}}_{h},\bm{\psi})_{-1,1}
=\displaystyle= (𝐑h,𝝍)1,1(𝝀~h,𝝍)1,1\displaystyle(\mathbf{R}_{h},\bm{\psi})_{-1,1}-(\tilde{\bm{\lambda}}_{h},\bm{\psi})_{-1,1}
=\displaystyle= i=12(Rh,i,ψi)1,1i=12(λ~h,i,ψi)1,1\displaystyle\sum_{i=1}^{2}(R_{h,i},\psi_{i})_{-1,1}-\sum_{i=1}^{2}(\tilde{\lambda}_{h,i},\psi_{i})_{-1,1}
=\displaystyle= i=12p𝒱h(Rh,i,ψiϕp)1,1i=12p𝒱hC(λ~ph,i,ψiϕp)1,1\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}(R_{h,i},\psi_{i}\phi_{p})_{-1,1}-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{\lambda}^{p}_{h,i},\psi_{i}\phi_{p})_{-1,1}
=\displaystyle= i=12p𝒱h𝒱hC(Rh,i,(ψimp(ψi))ϕp)1,1\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}\setminus\mathcal{V}_{h}^{C}}(R_{h,i},(\psi_{i}-m_{p}(\psi_{i}))\phi_{p})_{-1,1}
+i=12p𝒱hC(Rh,i,(ψimp(ψi))ϕp)1,1i=12p𝒱hC(λ~ph,i,ψiϕp)1,1\displaystyle+\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(R_{h,i},(\psi_{i}-m_{p}(\psi_{i}))\phi_{p})_{-1,1}-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{\lambda}^{p}_{h,i},\psi_{i}\phi_{p})_{-1,1}
=\displaystyle= i=12p𝒱h𝒱hC(Rh,i,(ψimp(ψi))ϕp)1,1\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}\setminus\mathcal{V}_{h}^{C}}(R_{h,i},(\psi_{i}-m_{p}(\psi_{i}))\phi_{p})_{-1,1}
+i=12p𝒱hC(R~h,i,(ψimp(ψi))ϕp)1,1\displaystyle+\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{R}_{h,i},(\psi_{i}-m_{p}(\psi_{i}))\phi_{p})_{-1,1}
i=12p𝒱hCΓCσ^i(𝐲h)(ψimp(ψi))ϕpi=12p𝒱hC(λ~ph,i,ψiϕp)1,1\displaystyle-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}\int_{\Gamma_{C}}\hat{\sigma}_{i}(\mathbf{y}_{h})(\psi_{i}-m_{p}(\psi_{i}))\phi_{p}-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{\lambda}^{p}_{h,i},\psi_{i}\phi_{p})_{-1,1}
=\displaystyle= i=12p𝒱h𝒱hC(Rh,i,(ψimp(ψi))ϕp)1,1\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}\setminus\mathcal{V}_{h}^{C}}(R_{h,i},(\psi_{i}-m_{p}(\psi_{i}))\phi_{p})_{-1,1}
+i=12p𝒱hC(R~h,i,(ψimp(ψi))ϕp)1,1\displaystyle+\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{R}_{h,i},(\psi_{i}-m_{p}(\psi_{i}))\phi_{p})_{-1,1}
i=12p𝒱hC𝒱fChΓCσ^i(𝐲h)(ψimp(ψi))ϕp.\displaystyle-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{\Gamma_{C}}\hat{\sigma}_{i}(\mathbf{y}_{h})(\psi_{i}-m_{p}(\psi_{i}))\phi_{p}. (4.23)

Here, we set mp(ψi)=0m_{p}(\psi_{i})=0 for Dirichlet and Neumann nodes. We exploited (Rh,i,ϕp)1,1=0(R_{h,i},\phi_{p})_{-1,1}=0 for all non-contact nodes and we inserted the definition of 𝝀~h.\tilde{\bm{\lambda}}_{h}. Inserting definition of Rh,iR_{h,i} and R~h,i\tilde{R}_{h,i} in (4.23), we get

(𝐆h,𝝍)1,1=\displaystyle(\mathbf{G}_{h},\bm{\psi})_{-1,1}= i=12p𝒱hωpi(𝐲h)(ψimp(ψi))ϕp\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}\int_{\omega_{p}}\mathcal{R}_{i}(\mathbf{y}_{h})(\psi_{i}-m_{p}(\psi_{i}))\phi_{p}
+i=12p𝒱hγp,I𝒥Ii(𝐲h)(ψimp(ψi))ϕp\displaystyle+\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}\int_{\gamma_{p,I}}\mathcal{J}^{I}_{i}(\mathbf{y}_{h})(\psi_{i}-m_{p}(\psi_{i}))\phi_{p}
i=12p𝒱Ch𝒱fChΓCσ^i(𝐲h)(ψimp(ψi))ϕp.\displaystyle-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}}\int_{\Gamma_{C}}\hat{\sigma}_{i}(\mathbf{y}_{h})(\psi_{i}-m_{p}(\psi_{i}))\phi_{p}. (4.24)

where i(𝐲h)=Δϕh,ixirH(uh,iud,i)+ρΔyh,i\mathcal{R}_{i}(\mathbf{y}_{h})=-\Delta\phi_{h,i}-\frac{\partial}{\partial x_{i}}r_{H}-(u_{h,i}-u_{d,i})+\rho\Delta y_{h,i} and 𝒥Ii(𝐲h)=[[ϕh,i+(rH0)ρ𝐲h]].\mathcal{J}^{I}_{i}(\mathbf{y}_{h})=[\hskip-1.5pt[\nabla\phi_{h,i}+\begin{pmatrix}r_{H}\\ 0\end{pmatrix}^{\prime}-\rho\nabla\mathbf{y}_{h}]\hskip-1.5pt]. For all nodes p𝒱h(𝒱Dh𝒱Ch𝒱Nh)p\in\mathcal{V}_{h}\setminus(\mathcal{V}^{D}_{h}\cup\mathcal{V}^{C}_{h}\cup\mathcal{V}^{N}_{h}) we choose the constants

mp(ψi)=ωpψiϕpωPϕp.\displaystyle m_{p}(\psi_{i})=\frac{\int_{\omega_{p}}\psi_{i}\phi_{p}}{\int_{\omega_{P}}\phi_{p}}. (4.25)

The mean value (4.25) satisfies the following L2L^{2}- approximation properties:

ψimp(ψi)0,ωp\displaystyle\left\|\psi_{i}-m_{p}(\psi_{i})\right\|_{0,\omega_{p}} Chpψi0,ωp,\displaystyle\leq Ch_{p}\left\|\nabla\psi_{i}\right\|_{0,\omega_{p}},
ψimp(ψi)0,γp\displaystyle\left\|\psi_{i}-m_{p}(\psi_{i})\right\|_{0,\gamma_{p}} Chp12ψi0,ωp\displaystyle\leq Ch_{p}^{\frac{1}{2}}\left\|\nabla\psi_{i}\right\|_{0,\omega_{p}}

can be found in [31, Lemma 3.1, Proposition 4.2]. For Dirichlet and Neumann nodes we have at least one edge eγp,Ce\subset\gamma_{p,C}, where the test function ψi\psi_{i} is zero, therefore we can deduce ψi0,ωpChpψi0,ωp\left\|\psi_{i}\right\|_{0,\omega_{p}}\leq Ch_{p}\left\|\nabla\psi_{i}\right\|_{0,\omega_{p}} directly from the Poincaré-Friedrichs inequality. The above L2L^{2}- approximation properties hold also for the constants mp(ψi)m_{p}(\psi_{i}) defined in (4.14), (4.13) and (4.15) see [31, Lemma 3.1, Proposition 4.2]. Using the above estimates and applying the Cauchy-Schwarz inequality in (4) we arrive at

(𝐆h,𝝍)1,1=\displaystyle(\mathbf{G}_{h},\bm{\psi})_{-1,1}= i=12p𝒱hhpi(𝐲h)0,ωpψi0,ωp\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}h_{p}\left\|\mathcal{R}_{i}(\mathbf{y}_{h})\right\|_{0,\omega_{p}}\left\|\nabla\psi_{i}\right\|_{0,\omega_{p}}
+i=12p𝒱hh12p𝒥Ii(𝐲h)0,γp,Iψi0,ωp\displaystyle+\sum_{i=1}^{2}\sum_{p\in\mathcal{V}_{h}}h^{\frac{1}{2}}_{p}\left\|\mathcal{J}^{I}_{i}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}\left\|\nabla\psi_{i}\right\|_{0,\omega_{p}}
i=12p𝒱Ch𝒱fChhp12σ^i(𝐲h)0,γp,Cψi0,ωp\displaystyle-\sum_{i=1}^{2}\sum_{p\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}}h_{p}^{\frac{1}{2}}\left\|\hat{\sigma}_{i}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}\left\|\nabla\psi_{i}\right\|_{0,\omega_{p}}
(p𝒱h(hp2(𝐲h)20,ωp+hp𝒥I(𝐲h)0,γp,I2)\displaystyle\lesssim\left(\sum_{p\in\mathcal{V}_{h}}\big{(}h_{p}^{2}\left\|\mathcal{R}(\mathbf{y}_{h})\right\|^{2}_{0,\omega_{p}}+h_{p}\left\|\mathcal{J}^{I}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}^{2}\big{)}\right.
+p𝒱Ch𝒱fChhp𝝈^(𝐲h)0,γp,C2)12𝝍.\displaystyle\left.+\sum_{p\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}}h_{p}\left\|\hat{\bm{\sigma}}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}^{2}\right)^{\frac{1}{2}}\left\|\nabla\bm{\psi}\right\|. (4.26)

Thus from (4), we have

𝐆h1(p𝒱h(hp2𝓡(𝐲h)20,ωp+hp𝓙I(𝐲h)0,γp,I2)+p𝒱Ch𝒱fChhp𝝈^(𝐲h)0,γp,C2)12\displaystyle\left\|\mathbf{G}_{h}\right\|_{-1}\lesssim\left(\sum_{p\in\mathcal{V}_{h}}\big{(}h_{p}^{2}\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|^{2}_{0,\omega_{p}}+h_{p}\left\|\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}^{2}\big{)}+\sum_{p\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}}h_{p}\left\|\hat{\bm{\sigma}}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}^{2}\right)^{\frac{1}{2}} (4.27)

where, 𝓡(𝐲h):=(1(𝐲h),2(𝐲h))=ΔϕhrH(𝐮h𝐮d)+ρΔ𝐲h\bm{\mathcal{R}}(\mathbf{y}_{h}):=(\mathcal{R}_{1}(\mathbf{y}_{h}),\mathcal{R}_{2}(\mathbf{y}_{h}))=-\Delta\bm{\phi}_{h}-\nabla r_{H}-(\mathbf{u}_{h}-\mathbf{u}_{d})+\rho\Delta\mathbf{y}_{h} and 𝓙I(𝐲h):=(𝒥I1(𝐲h),𝒥I2(𝐲h))=[[ϕh+rH𝕀ρ𝐲h]].\bm{\mathcal{J}}^{I}(\mathbf{y}_{h}):=(\mathcal{J}^{I}_{1}(\mathbf{y}_{h}),\mathcal{J}^{I}_{2}(\mathbf{y}_{h}))=[\hskip-1.5pt[\nabla\bm{\phi}_{h}+r_{H}\mathbb{I}-\rho\nabla\mathbf{y}_{h}]\hskip-1.5pt].

Now, we need to find the upper bound of the term (𝝀~h𝝀,𝐑𝐲𝐲h)1,1.(\tilde{\bm{\lambda}}_{h}-\bm{\lambda},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}. We can write

(𝝀~h𝝀,𝐑𝐲𝐲h)1,1=(𝝀~h,𝐑𝐲𝐲h)1,1+(𝝀,𝐲h𝐑𝐲)1,1.\displaystyle(\tilde{\bm{\lambda}}_{h}-\bm{\lambda},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}=(\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}+(\bm{\lambda},\mathbf{y}_{h}-\mathbf{Ry})_{-1,1}. (4.28)

From the equation (4.1e), we have (𝝀,𝐱𝐑𝐲)1,10(\bm{\lambda},\mathbf{x}-\mathbf{Ry})_{-1,1}\leq 0 for all x𝐐ad,x\in\mathbf{Q}_{ad}, taking 𝐱=𝐲h\mathbf{x}=\mathbf{y}_{h} we have (𝝀,𝐲h𝐑𝐲)1,10.(\bm{\lambda},\mathbf{y}_{h}-\mathbf{Ry})_{-1,1}\leq 0. Thus it is enough to estimate the term (𝝀~h,𝐑𝐲𝐲h)1,1.(\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}. From the definition of the quasi discrete contact force density (4.12)-(4.15), we have

(𝝀~h,𝐑𝐲𝐲h)1,1=\displaystyle(\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}= i=12p𝒱Ch(λ~h,ip,(Ri𝐲yh,i)ϕp)1,1\displaystyle\sum_{i=1}^{2}\sum_{p\in\mathcal{V}^{C}_{h}}(\tilde{\lambda}_{h,i}^{p},(R_{i}\mathbf{y}-y_{h,i})\phi_{p})_{-1,1}
=\displaystyle= i=12[p𝒱sCh,asp,imp(Ri𝐲yh,i)γp,Cϕp+p𝒱sCh,bsp,imp(Ri𝐲yh,i)γp,Cϕp\displaystyle\sum_{i=1}^{2}\left[\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p}+\sum_{p\in\mathcal{V}^{sC}_{h,b}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p}\right.
+p𝒱fCh,asp,imp(Ri𝐲yh,i)γp,Cϕp+p𝒱fCh,bsp,imp(Ri𝐲yh,i)γp,Cϕp\displaystyle\left.+\sum_{p\in\mathcal{V}^{fC}_{h,a}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p}+\sum_{p\in\mathcal{V}^{fC}_{h,b}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p}\right.
p𝒱fCh,aγp,Cσ^i(𝐲h)(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp\displaystyle\left.-\sum_{p\in\mathcal{V}^{fC}_{h,a}}\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}\right.
p𝒱fCh,bγp,Cσ^i(𝐲h)(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp].\displaystyle\left.-\sum_{p\in\mathcal{V}^{fC}_{h,b}}\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}\right]. (4.29)

We need to bound each term in the right hand side of (4).
First term:

p𝒱sCh,asp,imp(Ri𝐲yh,i)γp,Cϕp\displaystyle\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p} =p𝒱sCh,asp,iγp,Cϕpγ~p,C(Ri𝐲yh,i)ϕpγ~p,Cϕp\displaystyle=\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}\int_{\gamma_{p,C}}\phi_{p}\frac{\int_{\tilde{\gamma}_{p,C}}(R_{i}\mathbf{y}-y_{h,i})\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}}
=p𝒱sCh,asp,iγp,Cϕpγ~p,C(Ri𝐲yia)ϕpγ~p,Cϕp\displaystyle=\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}\int_{\gamma_{p,C}}\phi_{p}\frac{\int_{\tilde{\gamma}_{p,C}}(R_{i}\mathbf{y}-y^{i}_{a})\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}}
+p𝒱sCh,asp,iγp,Cϕpγ~p,C(yiayh,i)ϕpγ~p,Cϕp\displaystyle+\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}\int_{\gamma_{p,C}}\phi_{p}\frac{\int_{\tilde{\gamma}_{p,C}}(y^{i}_{a}-y_{h,i})\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}}
p𝒱sCh,asp,iγp,Cϕpγ~p,C(yiayh,i)ϕpγ~p,Cϕp=p𝒱sCh,asp,idap,i,\displaystyle\leq\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}\int_{\gamma_{p,C}}\phi_{p}\frac{\int_{\tilde{\gamma}_{p,C}}(y^{i}_{a}-y_{h,i})\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}}=\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}d^{a}_{p,i},

where dap,i=γ~p,C(yiayh,i)ϕp.d^{a}_{p,i}=\int_{\tilde{\gamma}_{p,C}}(y^{i}_{a}-y_{h,i})\phi_{p}. In the above we exploit sp,i0,s_{p,i}\leq 0, Ri𝐲yia0R_{i}\mathbf{y}-y^{i}_{a}\geq 0 and γp,Cϕpγ~p,Cϕp\frac{\int_{\gamma_{p,C}}\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}} is a constant independent of hph_{p} if γ~p,C\tilde{\gamma}_{p,C} is always a fixed fraction of γp,C.{\gamma}_{p,C}.

Second term: A similar arguments from the first term we have

p𝒱sCh,bsp,imp(Ri𝐲yh,i)γp,Cϕp\displaystyle\sum_{p\in\mathcal{V}^{sC}_{h,b}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p} p𝒱sCh,bsp,idbp,i,\displaystyle\leq\sum_{p\in\mathcal{V}^{sC}_{h,b}}s_{p,i}d^{b}_{p,i},

where dbp,i=γ~p,C(yibyh,i)ϕp.d^{b}_{p,i}=\int_{\tilde{\gamma}_{p,C}}(y^{i}_{b}-y_{h,i})\phi_{p}.

Third term: For full contact nodes p𝒱fCh,a,p\in\mathcal{V}^{fC}_{h,a}, we have Ri𝐲yia=yh,iR_{i}\mathbf{y}\geq y^{i}_{a}=y_{h,i} on γp,C\gamma_{p,C} which implies Ri𝐲yh,i0R_{i}\mathbf{y}-y_{h,i}\geq 0 on γp,C\gamma_{p,C} and therefore mp(Ri𝐲yh,i)0.m_{p}(R_{i}\mathbf{y}-y_{h,i})\geq 0. As further sp,i0s_{p,i}\leq 0 we have sp,imp(Ri𝐲yh,i)0.s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\leq 0. Hence,

p𝒱fCh,asp,imp(Ri𝐲yh,i)γp,Cϕp0.\displaystyle\sum_{p\in\mathcal{V}^{fC}_{h,a}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p}\leq 0.

Fourth term: Similar to the third term for p𝒱fCh,bp\in\mathcal{V}^{fC}_{h,b} we have sp,i0s_{p,i}\geq 0 and Ri𝐲yh,i0R_{i}\mathbf{y}-y_{h,i}\leq 0 and hence mp(Ri𝐲yh,i)0.m_{p}(R_{i}\mathbf{y}-y_{h,i})\leq 0. Therefore

p𝒱fCh,bsp,imp(Ri𝐲yh,i)γp,Cϕp0.\displaystyle\sum_{p\in\mathcal{V}^{fC}_{h,b}}s_{p,i}m_{p}(R_{i}\mathbf{y}-y_{h,i})\int_{\gamma_{p,C}}\phi_{p}\leq 0.

Fifth term:

\displaystyle- γp,Cσ^i(𝐲h)(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp\displaystyle\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}
=eγp,Cσ^i(𝐲h)|ee(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp.\displaystyle=\sum_{e\subset\gamma_{p,C}}-\hat{\sigma}_{i}(\mathbf{y}_{h})|_{e}\int_{e}\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}.

Here we have used the fact that σ^i(𝐲h)|e\hat{\sigma}_{i}(\mathbf{y}_{h})|_{e} is piecewise constant on each edge. Since p𝒱fCh,ap\in\mathcal{V}^{fC}_{h,a} we have σ^i(𝐲h)|e0-\hat{\sigma}_{i}(\mathbf{y}_{h})|_{e}\leq 0 and using the definition of mpm_{p} from (4.14) we get

e(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp0.\int_{e}\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}\geq 0.

Hence,

γp,Cσ^i(𝐲h)(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp0.\displaystyle-\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}\leq 0.

Sixth term: Similar to the fourth term for p𝒱fCh,bp\in\mathcal{V}^{fC}_{h,b} we have σ^i(𝐲h)|e0-\hat{\sigma}_{i}(\mathbf{y}_{h})|_{e}\geq 0 and using the definition of mpm_{p} from (4.13) we get

e(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp0.\int_{e}\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}\leq 0.

Hence,

γp,Cσ^i(𝐲h)(Ri𝐲yh,imp(Ri𝐲yh,i))ϕp0.\displaystyle-\int_{\gamma_{p,C}}\hat{\sigma}_{i}(\mathbf{y}_{h})\big{(}R_{i}\mathbf{y}-y_{h,i}-m_{p}(R_{i}\mathbf{y}-y_{h,i})\big{)}\phi_{p}\leq 0.

Using the all the above estimates from First term to Sixth term, in the right hand side of the equation (4), we obtain

(𝝀~h,𝐑𝐲𝐲h)1,1\displaystyle(\tilde{\bm{\lambda}}_{h},\mathbf{Ry}-\mathbf{y}_{h})_{-1,1}\leq i=12[p𝒱sCh,asp,idap,i+p𝒱sCh,bsp,idbp,i].\displaystyle\sum_{i=1}^{2}\big{[}\sum_{p\in\mathcal{V}^{sC}_{h,a}}s_{p,i}d^{a}_{p,i}+\sum_{p\in\mathcal{V}^{sC}_{h,b}}s_{p,i}d^{b}_{p,i}\big{]}. (4.30)

Substituting (4.27), (4.28), and (4.30) in the right hand side of (4.22), we obtain the following upper bound of control error:

(𝐑𝐲𝐲h)0,Ω2+\displaystyle\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\Omega}^{2}+ 𝝀𝝀~h1,Ω2p𝒱h(hp2𝓡(𝐲h)20,ωpη𝐲a+hp𝓙I(𝐲h)0,γp,I2η𝐲b)\displaystyle\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\Omega}^{2}\lesssim\sum_{p\in\mathcal{V}_{h}}\big{(}\underbrace{h_{p}^{2}\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|^{2}_{0,\omega_{p}}}_{\eta_{\mathbf{y}}^{a}}+\underbrace{h_{p}\left\|\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}^{2}}_{\eta_{\mathbf{y}}^{b}}\big{)}
+p𝒱Ch𝒱fChhp𝝈^(𝐲h)0,γp,C2η𝐲c+i=12[p𝒱sCh,asp,idap,iη𝐲d+p𝒱sCh,bsp,idbp,iη𝐲e].\displaystyle+\sum_{p\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}}\underbrace{h_{p}\left\|\hat{\bm{\sigma}}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}^{2}}_{\eta_{\mathbf{y}}^{c}}+\sum_{i=1}^{2}\big{[}\sum_{p\in\mathcal{V}^{sC}_{h,a}}\underbrace{s_{p,i}d^{a}_{p,i}}_{\eta_{\mathbf{y}}^{d}}+\sum_{p\in\mathcal{V}^{sC}_{h,b}}\underbrace{s_{p,i}d^{b}_{p,i}}_{\eta_{\mathbf{y}}^{e}}\big{]}. (4.31)

Denote the right hand side of (4) to be η2𝐲.\eta^{2}_{\mathbf{y}}. Thus substituting the estimates (4), (4), and (4) in (4), we prove Theorem 4.6. ∎

Remark 4.7.

The term η𝐲e\eta_{\mathbf{y}}^{e} reminds of a complementarity condition. In fact, for a semi-contact node sp,idp,ibs_{p,i}d_{p,i}^{b} would be a complementarity condition with respect to the quasi-discrete contact force density (λ~h,ip,(ybiyh,i)ϕp)1,1(\tilde{\lambda}_{h,i}^{p},(y_{b}^{i}-y_{h,i})\phi_{p})_{-1,1} if γ~p,C\tilde{\gamma}_{p,C} was replaced by γp,C\gamma_{p,C}. Thus we refer to η𝐲d\eta_{\mathbf{y}}^{d} and η𝐲e\eta_{\mathbf{y}}^{e} as complementarity residual and call η𝐲c\eta_{\mathbf{y}}^{c} contact stress residual. The contributions η𝐲c,\eta_{\mathbf{y}}^{c}, η𝐲d\eta_{\mathbf{y}}^{d} are localized to semi-contact nodes and nodes which are not actually in contact. In the unconstrained case, we have η𝐲d=η𝐲e=0\eta_{\mathbf{y}}^{d}=\eta_{\mathbf{y}}^{e}=0 and η𝐲c\eta_{\mathbf{y}}^{c} has contributions from all potential contact nodes such that η𝐲\eta_{\mathbf{y}} is a residual error estimator for linear elliptic boundary value problems where the potential contact boundary is replaced by a Neumann boundary with zero Neumann data.

Theorem 4.8 (Local Efficiency).

Let 𝒯e\mathcal{T}_{e} be the set of two triangles sharing the edge ehi.e\in\mathcal{E}_{h}^{i}. Then, it hold

hT𝐟+Δ𝐮hpH0,T\displaystyle h_{T}\lVert\mathbf{f}+\Delta\mathbf{u}_{h}-\nabla p_{H}\rVert_{0,T}\lesssim ((𝐮𝐮h)0,T+ppH0,T\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert p-p_{H}\rVert_{0,T}
+osc(𝐟,T)),\displaystyle+osc(\mathbf{f},T)\big{)},
hTΔϕh+rH+𝐮h𝐮d0,T\displaystyle h_{T}\lVert\Delta\bm{\phi}_{h}+\nabla r_{H}+\mathbf{u}_{h}-\mathbf{u}_{d}\rVert_{0,T}\lesssim ((𝐮𝐮h)0,T+(ϕϕh)0,T\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,T}
+rrH0,T+osc(𝐮d,T)),\displaystyle+\lVert r-r_{H}\rVert_{0,T}+osc(\mathbf{u}_{d},T)\big{)},
hp𝓡(𝐲h)0,ωp\displaystyle h_{p}\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|_{0,\omega_{p}}\lesssim ((𝐮𝐮h)0,ωp+ρ(𝐲𝐲h)0,ωp\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}
+(ϕϕh)0,ωp+rrH0,ωp\displaystyle+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+osc(𝐮d,ωp))\displaystyle+osc(\mathbf{u}_{d},\omega_{p})\big{)} (4.32)
he12[[pHI𝐮h]]0,e\displaystyle\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[p_{H}I-\nabla{\mathbf{u}_{h}}]\hskip-1.5pt]\rVert_{0,e}\lesssim T𝒯e((𝐮𝐮h)0,T+ppH0,T\displaystyle\sum_{T\in\mathcal{T}_{e}}\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert p-p_{H}\rVert_{0,T}
+osc(𝐟,T)),\displaystyle+osc(\mathbf{f},T)\big{)},
h12[[rHI+ϕh]]0,e\displaystyle\lVert h^{\frac{1}{2}}[\hskip-1.5pt[r_{H}I+\nabla{\bm{\phi}_{h}}]\hskip-1.5pt]\rVert_{0,e}\lesssim T𝒯e((𝐮𝐮h)0,T+(ϕϕh)0,T\displaystyle\sum_{T\in\mathcal{T}_{e}}\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,T}
+rrH0,T+osc(𝐮d,T)),\displaystyle+\lVert r-r_{H}\rVert_{0,T}+osc(\mathbf{u}_{d},T)\big{)},
hp12𝓙I(𝐲h)0,γp,I\displaystyle\lVert h_{p}^{\frac{1}{2}}\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\rVert_{0,\gamma_{p,I}}\lesssim (𝐮𝐮h)0,T+(ϕϕh)0,ωp\displaystyle\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}
+rrH0,ωp+ρ(𝐲𝐲h)0,ωp\displaystyle+\lVert r-r_{H}\rVert_{0,\omega_{p}}+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}
+osc(𝐮d,ωp),\displaystyle+osc(\mathbf{u}_{d},\omega_{p}), (4.33)
𝐮h0,T\displaystyle\left\|\nabla\cdot\mathbf{u}_{h}\right\|_{0,T}\lesssim (𝐮𝐮h)0,T\displaystyle\left\|\nabla(\mathbf{u}-\mathbf{u}_{h})\right\|_{0,T}
ϕh0,T\displaystyle\left\|\nabla\cdot\bm{\phi}_{h}\right\|_{0,T}\lesssim (ϕϕh)0,T.\displaystyle\left\|\nabla(\bm{\phi}-\bm{\phi}_{h})\right\|_{0,T}.

Further, for any Neumann boundary edge ehb,Ne\in\mathcal{E}_{h}^{b,N}, it hold

he12[[pHI𝐮h]]0,e\displaystyle\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[p_{H}I-\nabla{\mathbf{u}_{h}}]\hskip-1.5pt]\rVert_{0,e}\lesssim ((𝐮𝐮h)0,T+ppH0,T+osc(𝐟,T)),\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert p-p_{H}\rVert_{0,T}+osc(\mathbf{f},T)\big{)},
he12[[rHI+ϕh]]0,e\displaystyle\lVert h_{e}^{\frac{1}{2}}[\hskip-1.5pt[r_{H}I+\nabla{\bm{\phi}_{h}}]\hskip-1.5pt]\rVert_{0,e}\lesssim ((𝐮𝐮h)0,T+(ϕϕh)0,T+rrH0,T\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,T}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,T}+\lVert r-r_{H}\rVert_{0,T}
+osc(𝐮d,T)).\displaystyle+osc(\mathbf{u}_{d},T)\big{)}.

In the contact zone, for p𝒱Ch𝒱fChp\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h}

h12p𝝈^(𝐲h)\displaystyle h^{\frac{1}{2}}_{p}\lVert\hat{\bm{\sigma}}(\mathbf{y}_{h})\rVert 0,γp,C((𝐮𝐮h)0,ωp+(ϕϕh)0,ωp{}_{0,\gamma_{p,C}}\lesssim\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}
+rrH0,ωp+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp\displaystyle+\lVert r-r_{H}\rVert_{0,\omega_{p}}+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}
+osc(𝐮d,ωp)),\displaystyle+osc(\mathbf{u}_{d},\omega_{p})\big{)}, (4.34)

for p𝒱sCh,ap\in\mathcal{V}^{sC}_{h,a}

i=12sp,idap,i\displaystyle\sum_{i=1}^{2}s_{p,i}d^{a}_{p,i}\lesssim ((𝐮𝐮h)0,ωp+(ϕϕh)0,ωp+rrH0,ωp\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp+osc(𝐮d,ωp))2\displaystyle+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}+osc(\mathbf{u}_{d},\omega_{p})\big{)}^{2} (4.35)

for p𝒱sCh,bp\in\mathcal{V}^{sC}_{h,b}

i=12sp,idbp,i\displaystyle\sum_{i=1}^{2}s_{p,i}d^{b}_{p,i}\lesssim ((𝐮𝐮h)0,ωp+(ϕϕh)0,ωp+rrH0,ωp\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp+osc(𝐮d,ωp))2\displaystyle+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}+osc(\mathbf{u}_{d},\omega_{p})\big{)}^{2} (4.36)

where oscillation of a given function 𝐟,𝐮d𝐋2(T)\mathbf{f},\mathbf{u}_{d}\in\mathbf{L}^{2}(T) is defined by

osc(𝐟,T)=hTmin𝐟h𝐏0(T)𝐟𝐟h0,T,osc(𝐮d,T)=hTmin𝐠h𝐏0(T)𝐮d𝐠h0,T,osc(\mathbf{f},T)=h_{T}\min_{\mathbf{f}_{h}\in\mathbf{P}_{0}(T)}\left\|\mathbf{f}-\mathbf{f}_{h}\right\|_{0,T},osc(\mathbf{u}_{d},T)=h_{T}\min_{\mathbf{g}_{h}\in\mathbf{P}_{0}(T)}\left\|\mathbf{u}_{d}-\mathbf{g}_{h}\right\|_{0,T},

and similarly, we define the oscillation, osc(𝐮d,ωp)=hTmin𝐠h𝐏0(ωp)𝐮d𝐠h0,ωp.osc(\mathbf{u}_{d},\omega_{p})=h_{T}\min_{\mathbf{g}_{h}\in\mathbf{P}_{0}(\omega_{p})}\left\|\mathbf{u}_{d}-\mathbf{g}_{h}\right\|_{0,\omega_{p}}.

Proof.

The local efficiencies in the above theorem can be deduced by the standard bubble function techniques in [32], except the terms (4), (4), and (4). First, we will prove the efficiency (4). We make use of the relation between the Galerkin functional and the quantity of interest which here is the boundary stress. It directly follows from the definition of the Galerkin functional (4.11), (2.3f) and (4.1e) that

𝐆h1,ωp\displaystyle\left\|\mathbf{G}_{h}\right\|_{-1,\omega_{p}} (𝐑𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp\displaystyle\lesssim\left\|\nabla(\mathbf{Ry}-\mathbf{y}_{h})\right\|_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}
(𝐲𝐲h)0,ωp+(𝐮𝐮h)0,ωp+(ϕϕh)0,ωp\displaystyle\lesssim\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}
+rrH0,ωp+𝝀𝝀~h1,ωp.\displaystyle+\lVert r-r_{H}\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}. (4.37)

Let p¯𝒱Ch𝒱fCh\bar{p}\in\mathcal{V}^{C}_{h}\setminus\mathcal{V}^{fC}_{h} be an arbitrary but fixed node. In the following ss denotes a side which belongs to γp¯,C\gamma_{\bar{p},C}. We take the corresponding side bubble function ξs:=psϕp.\xi_{s}:=\prod_{p\in s}\phi_{p}. Test the function ξs𝐞1\xi_{s}\mathbf{e}_{1} in the equation (4.23), we get

p𝒱hC𝒱fChΓCσ^1(𝐲h)ξsϕp=\displaystyle\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{\Gamma_{C}}\hat{\sigma}_{1}(\mathbf{y}_{h})\xi_{s}\phi_{p}= (𝐆h,ξs𝐞1)1,1+p𝒱h𝒱hC(Rh,1,ξsϕp)1,1\displaystyle-(\mathbf{G}_{h},\xi_{s}\mathbf{e}_{1})_{-1,1}+\sum_{p\in\mathcal{V}_{h}\setminus\mathcal{V}_{h}^{C}}(R_{h,1},\xi_{s}\phi_{p})_{-1,1}
+p𝒱hC(R~h,1,(ξsmp(ξs))ϕp)1,1+p𝒱hC𝒱fChΓCσ^1(𝐲h)mp(ξs)ϕp\displaystyle+\sum_{p\in\mathcal{V}_{h}^{C}}(\tilde{R}_{h,1},(\xi_{s}-m_{p}(\xi_{s}))\phi_{p})_{-1,1}+\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{\Gamma_{C}}\hat{\sigma}_{1}(\mathbf{y}_{h})m_{p}(\xi_{s})\phi_{p}
=(𝐆h,ξs𝐞1)1,1+p𝒱hωs1(𝐲h)ξsϕp\displaystyle=-(\mathbf{G}_{h},\xi_{s}\mathbf{e}_{1})_{-1,1}+\sum_{p\in\mathcal{V}_{h}}\int_{\omega_{s}}\mathcal{R}_{1}(\mathbf{y}_{h})\xi_{s}\phi_{p}
p𝒱hsCsp,1mp(ξs)γp,Cϕpp𝒱hfC(R~h,1,ϕp)1,1mp(ξs)\displaystyle-\sum_{p\in\mathcal{V}_{h}^{sC}}s_{p,1}m_{p}(\xi_{s})\int_{\gamma_{p,C}}\phi_{p}-\sum_{p\in\mathcal{V}_{h}^{fC}}(\tilde{R}_{h,1},\phi_{p})_{-1,1}m_{p}(\xi_{s}) (4.38)

If the side ss is not contained in any patch γp,C\gamma_{p,C} of semi- or full-contact nodes pp, the two last terms are zero and we can proceed similar to the case of (4.32) and (4.33). Otherwise, in order to get rid of the last two terms, we replace ξs\xi_{s} by a suitable function θs\theta_{s} such that mp(θs)=0m_{p}(\theta_{s})=0 for all semi- and full-contact nodes. The value of mp(.)m_{p}(.) for a semi-contact node pp depends on γ~p,C\tilde{\gamma}_{p,C} which is a strict subset of γp,C\gamma_{p,C} compare (4.15). If γp,C\gamma_{p,C} consists of two intervals we choose the inner third of γp,C\gamma_{p,C} containing pp as γ~p,C.\tilde{\gamma}_{p,C}.

p2p_{2}ssp=p1p=p_{1}s1s_{1}s2s_{2}sMs_{M}
Figure 4.1. Subgrid of boundary patch γp,C\gamma_{p,C}

For example in Fig. 4.1, the dark blue region is γ~p,C\tilde{\gamma}_{p,C} for p=p1p=p_{1}. A side ss has two nodes p1,p2p_{1},p_{2}. We denote the sides of the subgrid containing pip_{i} by sis_{i} and the middle part by sMs_{M}, see Fig. 4.1. For the function θs\theta_{s} we make the following ansatz

θs=i=12aiξi+aMξM,\displaystyle\theta_{s}=\sum_{i=1}^{2}a_{i}\xi_{i}+a_{M}\xi_{M}, (4.39)

where ξi\xi_{i} and ξM\xi_{M} are side bubble functions to sis_{i} and sMs_{M}. The coefficients a1,a2,aMa_{1},a_{2},a_{M} are determined so that s1=p𝒱hC𝒱fChsθsϕp,\int_{s}1=\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{s}\theta_{s}\phi_{p}, and siθsϕpi=0\int_{s_{i}}\theta_{s}\phi_{p_{i}}=0 for pip_{i} full-contact or semi-contact nodes. As p¯\bar{p} is not a full-contact node there is at least one contribution in the right hand side of the first condition. Inserting the ansatz (4.39) in the aforementioned conditions, we get a solvable system of three equations with three coefficients (degrees of freedom) a1,a2,aMa_{1},a_{2},a_{M}. At this point the special choice of mp(ϕ)=γ~p,Cϕϕpγ~p,Cϕpm_{p}(\phi)=\frac{\int_{\tilde{\gamma}_{p,C}}\phi\phi_{p}}{\int_{\tilde{\gamma}_{p,C}}\phi_{p}} as mean value on γ~p,C\tilde{\gamma}_{p,C} for semi-contact nodes becomes important because the choice mp(ϕ)=γp,Cϕϕpγp,Cϕpm_{p}(\phi)=\frac{\int_{\gamma_{p,C}}\phi\phi_{p}}{\int_{\gamma_{p,C}}\phi_{p}} as mean value over the whole patch γp,C\gamma_{p,C} would lead to a contradiction of the conditions. In the second condition sis_{i} would be replaced by ss and the condition sθsϕpi=0\int_{s}\theta_{s}\phi_{p_{i}}=0 for all pip_{i} of the side ss would imply p𝒱hC𝒱fChsθsϕp=0\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{s}\theta_{s}\phi_{p}=0 such that the first condition could not be fulfilled. As we assumed that the mesh is made of simplices, σ^1(𝐲h)\hat{\sigma}_{1}(\mathbf{y}_{h}) is constant on ss. Consequently, mp(θs)=0m_{p}(\theta_{s})=0 implies mp(σ^1(𝐲h)θs)=0m_{p}(\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s})=0 and it follows from the first condition

σ^1(𝐲h)0,s2=p𝒱hC𝒱fChsσ^1(𝐲h)σ^1(𝐲h)θsϕp.\displaystyle\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,s}^{2}=\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{s}\hat{\sigma}_{1}(\mathbf{y}_{h})\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s}\phi_{p}. (4.40)

Putting together (4.40), (4.38) with test function σ^1(𝐲h)θs\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s} instead of ξs\xi_{s} and exploiting the conditions mp(σ^1(𝐲h)θs)=0m_{p}(\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s})=0 for all contact nodes we end up with

σ^1(𝐲h)0,s2\displaystyle\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,s}^{2} =p𝒱hC𝒱fChsσ^1(𝐲h)σ^1(𝐲h)θsϕp\displaystyle=\sum_{p\in\mathcal{V}_{h}^{C}\setminus\mathcal{V}^{fC}_{h}}\int_{s}\hat{\sigma}_{1}(\mathbf{y}_{h})\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s}\phi_{p}
=(𝐆h,σ^1(𝐲h)θs𝐞1)1,1+ωs1(𝐲h)σ^1(𝐲h)θs\displaystyle=-(\mathbf{G}_{h},\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s}\mathbf{e}_{1})_{-1,1}+\int_{\omega_{s}}\mathcal{R}_{1}(\mathbf{y}_{h})\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s}
𝐆h1,ωp¯σ^1(𝐲h)θs1,ωs+1(𝐲h)0,ωsσ^1(𝐲h)θs1,ωs\displaystyle\lesssim\left\|\mathbf{G}_{h}\right\|_{-1,\omega_{\bar{p}}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s}\right\|_{1,\omega_{s}}+\left\|\mathcal{R}_{1}(\mathbf{y}_{h})\right\|_{0,\omega_{s}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\theta_{s}\right\|_{1,\omega_{s}}
𝐆h1,ωp¯hs12σ^1(𝐲h)0,s+hs121(𝐲h)0,ωsσ^1(𝐲h)0,s\displaystyle\lesssim\left\|\mathbf{G}_{h}\right\|_{-1,\omega_{\bar{p}}}h_{s}^{-\frac{1}{2}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,s}+h_{s}^{\frac{1}{2}}\left\|\mathcal{R}_{1}(\mathbf{y}_{h})\right\|_{0,\omega_{s}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,s} (4.41)

where hs:=diam(s).h_{s}:=diam(s). In the last line of (4.41) we used the properties of the bubble functions on the subgrid and the fact that γ~p,C\tilde{\gamma}_{p,C} is a fixed portion of γp,C\gamma_{p,C} so that hs=chsih_{s}=ch_{s_{i}} for a mesh-independent constant cc. We divide by hs12σ^1(𝐲h)0,sh_{s}^{-\frac{1}{2}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,s} leading to

hs12σ^1(𝐲h)0,s𝐆h1,ωp¯+hs𝓡(𝐲h)0,ωs.\displaystyle h_{s}^{\frac{1}{2}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,s}\lesssim\left\|\mathbf{G}_{h}\right\|_{-1,\omega_{\bar{p}}}+h_{s}\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|_{0,\omega_{s}}. (4.42)

By means of the triangle inequality, the shape-regularity, hshph_{s}\approx h_{p} and the upper bounds (4.37) and (4.32) of 𝐆h1,ωp¯\left\|\mathbf{G}_{h}\right\|_{-1,\omega_{\bar{p}}}and 𝓡(𝐲h)0,ωs,\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|_{0,\omega_{s}}, we get

hs12σ^1(𝐲h)0,γp,C\displaystyle h_{s}^{\frac{1}{2}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}} (𝐮𝐮h)0,ωp+(ϕϕh)0,ωp+rrH0,ωp\displaystyle\lesssim\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp+osc(𝐮d,ωp).\displaystyle+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}+osc(\mathbf{u}_{d},\omega_{p}). (4.43)

Similarly, one can derive

hs12σ^2(𝐲h)0,γp,C\displaystyle h_{s}^{\frac{1}{2}}\left\|\hat{\sigma}_{2}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}} (𝐮𝐮h)0,ωp+(ϕϕh)0,ωp+rrH0,ωp\displaystyle\lesssim\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp+osc(𝐮d,ωp)\displaystyle+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}+osc(\mathbf{u}_{d},\omega_{p}) (4.44)

Adding (4) and (4), we get the desired result (4).

Now we turn back to the terms (4) and (4). The proof of both (4) and (4) proceeds similarly so we will give a sketch of the proof of (4) here and details can be found in[27, Sec. 5.2]. To prove (4), we derive a lower bound of the local error in terms of the local contributions of sp,1dbp,1.s_{p,1}d^{b}_{p,1}. If sp,1=0s_{p,1}=0 or (y1byh,1)(q)=0(y^{1}_{b}-y_{h,1})(q)=0 for all neighbouring nodes of pp we have sp,1dbp,1=0s_{p,1}d^{b}_{p,1}=0. Therefore, we assume sp,1>0s_{p,1}>0 and (y1byh,1)(q)>0(y^{1}_{b}-y_{h,1})(q)>0 for at least one node on γp,C\gamma_{p,C}. Let q^\hat{q} be a node which fulfills (y1byh,1)(q^)(y1byh,1)(q)(y^{1}_{b}-y_{h,1})(\hat{q})\geq(y^{1}_{b}-y_{h,1})(q) for all neighboring nodes qq of pp. Due to sp,1>0s_{p,1}>0 we have (y1byh,1)(p)=0.(y^{1}_{b}-y_{h,1})(p)=0. As we consider boundary meshes of triangles and intervals the discrete functions are piecewise linear. Using Taylor series expansion of (y1byh,1)(y^{1}_{b}-y_{h,1}) about p,p, we get

(y1byh,1)(q^)=|e^(y1byh,1)(q^p)hp|e^(y1byh,1)τ\displaystyle(y^{1}_{b}-y_{h,1})(\hat{q})=\nabla|_{\hat{e}}(y^{1}_{b}-y_{h,1})\cdot(\hat{q}-p)\lesssim h_{p}\nabla|_{\hat{e}}(y^{1}_{b}-y_{h,1})\cdot\tau (4.45)

where e^γp,C\hat{e}\subset\gamma_{p,C} is an edge containing the nodes q^\hat{q} and pp and τ\tau is the unit tangential vector pointing from pp to q^.\hat{q}. The following estimate of (4.45) follows from [27, Sec. 5.2]:

(y1byh,1)(q^)\displaystyle(y^{1}_{b}-y_{h,1})(\hat{q}) hp12𝓙I(𝐲h)0,γp,I.\displaystyle\lesssim h_{p}^{\frac{1}{2}}\lVert\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\rVert_{0,\gamma_{p,I}}.

Since, (y1byh,1)(q)(y1byh,1)(q^)(y^{1}_{b}-y_{h,1})(q)\leq(y^{1}_{b}-y_{h,1})(\hat{q}) for all qγp,Cq\in\gamma_{p,C} , we can conclude that

dbp,1=γ~p,C(y1byh,1)ϕph32p𝓙I(𝐲h)0,γp,I.\displaystyle d^{b}_{p,1}=\int_{\tilde{\gamma}_{p,C}}(y^{1}_{b}-y_{h,1})\phi_{p}\lesssim h^{\frac{3}{2}}_{p}\lVert\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\rVert_{0,\gamma_{p,I}}. (4.46)

Now,

sp,1dbp,1\displaystyle s_{p,1}d^{b}_{p,1} =ωp1(𝐲h)ϕp+γp,I𝒥I1(𝐲h)ϕpγp,Cσ^1(𝐲h)ϕpγp,Cϕpγ~p,C(y1byh,1)ϕp\displaystyle=\frac{\int_{\omega_{p}}\mathcal{R}_{1}(\mathbf{y}_{h})\phi_{p}+\int_{\gamma_{p,I}}\mathcal{J}^{I}_{1}(\mathbf{y}_{h})\phi_{p}-\int_{\gamma_{p,C}}\hat{\sigma}_{1}(\mathbf{y}_{h})\phi_{p}}{\int_{\gamma_{p,C}}\phi_{p}}\cdot\int_{\tilde{\gamma}_{p,C}}(y^{1}_{b}-y_{h,1})\phi_{p}
(hp1(𝐲h)0,ωp+hp12𝒥I1(𝐲h)0,γp,I+hp12σ^1(𝐲h)0,γp,C)h1pγ~p,C(y1byh,1)ϕp\displaystyle\lesssim\big{(}h_{p}\left\|\mathcal{R}_{1}(\mathbf{y}_{h})\right\|_{0,\omega_{p}}+h_{p}^{\frac{1}{2}}\left\|\mathcal{J}^{I}_{1}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}+h_{p}^{\frac{1}{2}}\left\|\hat{\sigma}_{1}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}\big{)}\cdot h^{-1}_{p}\cdot\int_{\tilde{\gamma}_{p,C}}(y^{1}_{b}-y_{h,1})\phi_{p}
(hp𝓡(𝐲h)0,ωp+hp12𝓙I(𝐲h)0,γp,I+hp12𝝈^(𝐲h)0,γp,C)h12p𝓙I(𝐲h)0,γp,I\displaystyle\lesssim\big{(}h_{p}\left\|\bm{\mathcal{R}}(\mathbf{y}_{h})\right\|_{0,\omega_{p}}+h_{p}^{\frac{1}{2}}\left\|\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,I}}+h_{p}^{\frac{1}{2}}\left\|\hat{\bm{\sigma}}(\mathbf{y}_{h})\right\|_{0,\gamma_{p,C}}\big{)}\cdot h^{\frac{1}{2}}_{p}\lVert\bm{\mathcal{J}}^{I}(\mathbf{y}_{h})\rVert_{0,\gamma_{p,I}}

Applying Cauchy-Schwarz inequality, (4), (4.32) and (4.33) we obtain

sp,1dbp,1\displaystyle s_{p,1}d^{b}_{p,1}\lesssim ((𝐮𝐮h)0,ωp+(ϕϕh)0,ωp+rrH0,ωp\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp+osc(𝐮d,ωp))2.\displaystyle+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}+osc(\mathbf{u}_{d},\omega_{p})\big{)}^{2}.

Thus, one can obtain the upper bound of sp,2dbp,2.s_{p,2}d^{b}_{p,2}. Hence, for p𝒱sCh,bp\in\mathcal{V}^{sC}_{h,b} we have

i=12sp,idbp,i\displaystyle\sum_{i=1}^{2}s_{p,i}d^{b}_{p,i}\lesssim ((𝐮𝐮h)0,ωp+(ϕϕh)0,ωp+rrH0,ωp\displaystyle\big{(}\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\omega_{p}}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\omega_{p}}+\lVert r-r_{H}\rVert_{0,\omega_{p}}
+ρ(𝐲𝐲h)0,ωp+𝝀𝝀~h1,ωp+osc(𝐮d,ωp))2.\displaystyle+\rho\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\omega_{p}}+\left\|\bm{\lambda}-\tilde{\bm{\lambda}}_{h}\right\|_{-1,\omega_{p}}+osc(\mathbf{u}_{d},\omega_{p})\big{)}^{2}.

Similarly, we can prove (4). ∎

5. Numerical Experiments

The aim of the given section is to numerically illustrate the theoretical results derived in Sections 3 and 4, respectively. We conduct two experiments with two model problems, one is a smooth solution on square mesh the other is a non-smooth solution on a non-convex domain. We construct the model problems with known solutions. The numerical experiments are performed on two model problems using MATLAB(version R2021a) software. For the computational simplicity, we slightly modify the cost functional JJ, denoted by J~\tilde{J}, by

J~(𝐰,𝐱)=12𝐰𝐮d2+ρ2(𝐱𝐲d)2\displaystyle\tilde{J}(\mathbf{w},\mathbf{x})=\frac{1}{2}\|\mathbf{w}-\mathbf{u}_{d}\|^{2}+\frac{\rho}{2}\|\nabla(\mathbf{x}-\mathbf{y}_{d})\|^{2} (5.1)

subject to PDE,

Δ𝐰+p=𝐟inΩ,𝐰=0inΩ,𝐰=𝐱onΓC,𝐰=𝟎onΓD,\begin{split}-\Delta\mathbf{w}+\nabla{p}&=\mathbf{f}\quad\text{in}\;\Omega,\\ \nabla\cdot{\mathbf{w}}&=0\quad\text{in}\;\Omega,\\ \bf{w}&=\mathbf{x}\quad\text{on}\;\Gamma_{C},\\ \bf{w}&=\mathbf{0}\quad\text{on}\;\Gamma_{D},\end{split} (5.2)

the set of controls is given by,

𝐐ad:={𝐱𝐇D1(Ω):𝐲a𝜸0(𝐱)𝐲b a.e. on ΓC},\mathbf{Q}_{ad}:=\{\mathbf{x}\in\mathbf{H}_{D}^{1}(\Omega):\mathbf{y}_{a}\leq\bm{\gamma}_{0}(\mathbf{x})\leq\mathbf{y}_{b}\text{ a.e. on }\Gamma_{C}\},

where the space 𝐇1D(Ω)\mathbf{H}^{1}_{D}(\Omega) consists of 𝐇1(Ω)\mathbf{H}^{1}(\Omega) functions with vanishing trace on ΓD.\Gamma_{D}. The function 𝐲d\mathbf{y}_{d} is given, and Ω=ΓCΓ¯D\partial\Omega=\Gamma_{C}\cup\bar{\Gamma}_{D}. Then the minimization problem reads: Find (𝐮,𝐲)𝐇D1(Ω)×𝐐ad(\mathbf{u},\mathbf{y})\in\mathbf{H}_{D}^{1}(\Omega)\times\mathbf{Q}_{ad} satisfies (5.2) such that

J~(𝐮,𝐲)=min(𝐯,𝐱)𝐇D1(Ω)×𝐐adJ~(𝐯,𝐱).\displaystyle\tilde{J}(\mathbf{u},\mathbf{y})=\min_{(\mathbf{v},\mathbf{x})\in\mathbf{H}_{D}^{1}(\Omega)\times\mathbf{Q}_{ad}}\tilde{J}(\mathbf{v},\mathbf{x}).

The corresponding discrete optimality system is given by

𝐮h=𝐰h+𝐲h,𝐰h𝐕h,a(𝐰h,𝐳h)+b(𝐳h,pH)=(𝐟,𝐳h)a(𝐲h,𝐳h)forall𝐳h𝐕h,b(𝐮h,qH)=0forallqHMH,a(𝐳h,ϕh)b(𝐳h,rH)=(𝐮h𝐮𝐝,𝐳h)forall𝐳h𝐕h,b(ϕh,qH)=0forallqHMH,ρa(𝐲h,𝐱h𝐲h)a(𝐱h𝐲h,ϕh)b(𝐱h𝐲h,rH)(𝐮h𝐮𝐝,𝐱h𝐲h)+ρa(𝐲d,𝐱h𝐲h)forall𝐱h𝐐had,\begin{split}\mathbf{u}_{h}&=\mathbf{w}_{h}+\mathbf{y}_{h},\quad\mathbf{w}_{h}\in\mathbf{V}_{h},\\ a(\mathbf{w}_{h},\mathbf{z}_{h})+b(\mathbf{z}_{h},p_{H})&=(\mathbf{f},\mathbf{z}_{h})-a(\mathbf{y}_{h},\mathbf{z}_{h})\;\;\;{\rm for~{}all}\;\mathbf{z}_{h}\in\mathbf{V}_{h},\\ b(\mathbf{u}_{h},q_{H})&=0\;\quad{\rm for~{}all}\;q_{H}\in M_{H},\\ a(\mathbf{z}_{h},\bm{\phi}_{h})-b(\mathbf{z}_{h},r_{H})&=(\mathbf{u}_{h}-\mathbf{u_{d}},\mathbf{z}_{h})\;\;\;{\rm for~{}all}\;\mathbf{z}_{h}\in\mathbf{V}_{h},\\ b(\bm{\phi}_{h},q_{H})&=0\;\quad{\rm for~{}all}\;q_{H}\in M_{H},\\ \rho\,a(\mathbf{y}_{h},\mathbf{x}_{h}-\mathbf{y}_{h})\geq&a(\mathbf{x}_{h}-\mathbf{y}_{h},\bm{\phi}_{h})-b(\mathbf{x}_{h}-\mathbf{y}_{h},r_{H})\\ &-(\mathbf{u}_{h}-\mathbf{u_{d}},\mathbf{x}_{h}-\mathbf{y}_{h})+\rho a(\mathbf{y}_{d},\mathbf{x}_{h}-\mathbf{y}_{h})\;\quad{\rm for~{}all}\;\mathbf{x}_{h}\in\mathbf{Q}^{h}_{ad},\end{split} (5.3)

where, 𝐕h:={𝐯h𝐇01(Ω):𝐯h|T𝐏1(T)T𝒯h}\mathbf{V}_{h}:=\{\mathbf{v}_{h}\in\mathbf{H}_{0}^{1}(\Omega):\mathbf{v}_{h}|_{T}\in\mathbf{P}_{1}(T)\;\;\forall T\in\mathcal{T}_{h}\} and 𝐐had=𝐐h𝐐ad.\mathbf{Q}^{h}_{ad}=\mathbf{Q}_{h}\cap\mathbf{Q}_{ad}. The set 𝐐h\mathbf{Q}_{h} is defined by 𝐐h={𝐱h𝐇1D(Ω):𝐱h|T𝐏1(T),T𝒯h}.\mathbf{Q}_{h}=\{\mathbf{x}_{h}\in\mathbf{H}^{1}_{D}(\Omega):\mathbf{x}_{h}|_{T}\in\mathbf{P}_{1}(T),\;\;\forall T\in\mathcal{T}_{h}\}. The discrete control space MH={pHL2(Ω):pH|TP0(T),T𝒯H}M_{H}=\{p_{H}\in L^{2}(\Omega):p_{H}|_{T}\in P_{0}(T),\;\forall T\in\mathcal{T}_{H}\}. We solve the above discrete optimality (5.3) system using primal-dual active set strategy [23, Section 2].

To illustrate the primal-dual active set strategy algorithm, let us define some notations. Let the dimension of 𝐕h\mathbf{V}_{h} and 𝐐h\mathbf{Q}_{h} be denoted by 2n2n and 2m2m, respectively. Also, let the dimension of discrete pressure space MHM_{H} to be κ.\kappa. Let 𝒱hD\mathcal{V}_{h}^{D} and 𝒱hC\mathcal{V}_{h}^{C} denote the set of vertices on Γ¯D\overline{\Gamma}_{D} and the set of vertices interior to ΓC,\Gamma_{C}, in the fine mesh 𝒯h\mathcal{T}_{h}, respectively. The active and inactive sets corresponding to the bilateral constraints are

𝒜kb\displaystyle\mathcal{A}^{k}_{b} :=\displaystyle:= {i𝒱hC|𝝁ik+(𝐲hk𝐲b)i>0},\displaystyle\{i\in\mathcal{V}_{h}^{C}\;|\;\bm{\mu}_{i}^{k}+(\mathbf{y}_{h}^{k}-\mathbf{y}_{b})_{i}>0\},
𝒜ka\displaystyle\mathcal{A}^{k}_{a} :=\displaystyle:= {i𝒱hC|𝝁ik+(𝐲hk𝐲a)i<0},\displaystyle\{i\in\mathcal{V}_{h}^{C}\;|\;\bm{\mu}_{i}^{k}+(\mathbf{y}_{h}^{k}-\mathbf{y}_{a})_{i}<0\},
k\displaystyle\mathcal{I}^{k} :=\displaystyle:= {i𝒱hC|𝝁ik+(𝐲hk𝐲b)i0𝝁ik+(𝐲hk𝐲a)i},\displaystyle\{i\in\mathcal{V}_{h}^{C}\;|\;\bm{\mu}_{i}^{k}+(\mathbf{y}_{h}^{k}-\mathbf{y}_{b})_{i}\leq 0\leq\bm{\mu}_{i}^{k}+(\mathbf{y}_{h}^{k}-\mathbf{y}_{a})_{i}\},

where 𝐲hk\mathbf{y}_{h}^{k} is the kthk^{th} iterate of 𝐲h,\mathbf{y}_{h}, and 𝝁2m\bm{\mu}\in\mathbb{R}^{2m} is the Lagrange multiplier. We denote by II, an identity matrix of size 2m×2m2m\times 2m. Moreover, 𝒱Ih\mathcal{V}^{I}_{h} denotes the set of all interior nodes in 𝒯h\mathcal{T}_{h}. Let ϕi\bm{\phi}_{i} are basis functions of VhV_{h} and Qh.Q_{h}. Also, let χi\chi_{i} are basis function of MH.M_{H}. We define the following matrices and vectors:

Ai,j\displaystyle A_{i,j} :=\displaystyle:= K𝒯hKϕi:ϕj,Mi,j:=K𝒯hKϕiϕj,Bj,k:=K𝒯hKϕjχk,\displaystyle\sum_{K\in\mathcal{T}_{h}}\int_{K}\nabla\bm{\phi}_{i}:\nabla\bm{\phi}_{j},\quad M_{i,j}:=\sum_{K\in\mathcal{T}_{h}}\int_{K}\bm{\phi}_{i}\cdot\bm{\phi}_{j},\quad B_{j,k}:=\sum_{K\in\mathcal{T}_{h}}\int_{K}\nabla\cdot\bm{\phi}_{j}\;\chi_{k},
F1j\displaystyle F^{1}_{j} :=\displaystyle:= K𝒯hK𝐟ϕj,F2j:=K𝒯hK𝐮dϕj,L=ρA+M.\displaystyle\sum_{K\in\mathcal{T}_{h}}\int_{K}\mathbf{f}\cdot\bm{\phi}_{j},\quad F^{2}_{j}:=\sum_{K\in\mathcal{T}_{h}}\int_{K}\mathbf{u}_{d}\cdot\bm{\phi}_{j},\quad L=\rho A+M.

Now the primal-dual active set algorithm for the Dirichlet boundary control problem (5.1) reads as:

Step 1.:

Initialize 𝐲0h\mathbf{y}^{0}_{h} 𝝁0\bm{\mu}^{0} and set k=0k=0.

Step 2.:

Set the active and inactive sets (𝒜ka,𝒜kb,k\mathcal{A}^{k}_{a},\mathcal{A}^{k}_{b},\mathcal{I}^{k}).

Step 3.:

Solve

A2n×2n[𝐰hk+1]2n×1+A2n×2m[𝐲hk+1]2m×1+B2n×κ[pk+1H]κ×1\displaystyle A_{2n\times 2n}\left[\mathbf{w}_{h}^{k+1}\right]_{2n\times 1}+A_{2n\times 2m}\left[\mathbf{y}_{h}^{k+1}\right]_{2m\times 1}+B_{2n\times\kappa}[p^{k+1}_{H}]_{\kappa\times 1} =\displaystyle= [F1]2n×1,\displaystyle[F^{1}]_{2n\times 1},
BTκ×2n[𝐰hk+1]2n×1+BTκ×2m[𝐲hk+1]2m×1\displaystyle B^{T}_{\kappa\times 2n}[\mathbf{w}_{h}^{k+1}]_{2n\times 1}+B^{T}_{\kappa\times 2m}[\mathbf{y}_{h}^{k+1}]_{2m\times 1} =\displaystyle= [𝟎]κ×1\displaystyle[\mathbf{0}]_{\kappa\times 1}
A2n×2n[ϕhk+1]2n×1B2n×κ[rk+1H]κ×1M2n×2n[𝐰hk+1]2n×1M2n×2m[𝐲hk+1]2m×1\displaystyle A_{2n\times 2n}\left[\bm{\phi}_{h}^{k+1}\right]_{2n\times 1}-B_{2n\times\kappa}[r^{k+1}_{H}]_{\kappa\times 1}-M_{2n\times 2n}\left[\mathbf{w}_{h}^{k+1}\right]_{2n\times 1}-M_{2n\times 2m}\left[\mathbf{y}_{h}^{k+1}\right]_{2m\times 1} =\displaystyle= [F2]2n×1,\displaystyle-[F^{2}]_{2n\times 1},
BTκ×2n[ϕk+1]2n×1\displaystyle B^{T}_{\kappa\times 2n}[\bm{\phi}^{k+1}]_{2n\times 1} =\displaystyle= [𝟎]κ×1\displaystyle[\mathbf{0}]_{\kappa\times 1}
L2m×2m[𝐲hk+1]2m×1A2m×2n[ϕhk+1]2n×1+B2m×κ[rk+1H]κ×1+M2m×2n[𝐰hk+1]2n×1+\displaystyle L_{2m\times 2m}\left[\mathbf{y}_{h}^{k+1}\right]_{2m\times 1}-A_{2m\times 2n}\left[\bm{\phi}_{h}^{k+1}\right]_{2n\times 1}+B_{2m\times\kappa}[r^{k+1}_{H}]_{\kappa\times 1}+M_{2m\times 2n}\left[\mathbf{w}_{h}^{k+1}\right]_{2n\times 1}+
I2m×2m[𝝁k+1]2m×1=[F2]2m×1\displaystyle I_{2m\times 2m}\left[\bm{\mu}^{k+1}\right]_{2m\times 1}=[F^{2}]_{2m\times 1} +\displaystyle+ ρA2m×2m[qd]2m×1,\displaystyle\rho A_{2m\times 2m}\left[q_{d}\right]_{2m\times 1},
[𝐲hk+1]2m×1\displaystyle\left[\mathbf{y}_{h}^{k+1}\right]_{2m\times 1} =\displaystyle= 𝐲aon𝒜ka\displaystyle\mathbf{y}_{a}\;\;\mbox{on}\;\;\mathcal{A}^{k}_{a}
[𝐲hk+1]2m×1\displaystyle\left[\mathbf{y}_{h}^{k+1}\right]_{2m\times 1} =\displaystyle= 𝐲bon𝒜kb,\displaystyle\mathbf{y}_{b}\;\;\mbox{on}\;\;\mathcal{A}^{k}_{b},
[𝝁k+1]2m×1\displaystyle\left[\bm{\mu}^{k+1}\right]_{2m\times 1} =\displaystyle= 𝟎onk𝒱Ih.\displaystyle\mathbf{0}\;\;\mbox{on}\;\;\mathcal{I}^{k}\cup\mathcal{V}^{I}_{h}.
Step 4.:

Stop using the criterion 𝒜k+1=𝒜k\mathcal{A}^{k+1}=\mathcal{A}^{k} and k+1=k\mathcal{I}^{k+1}=\mathcal{I}^{k} or 𝐲hk+1𝐲hkL(Ω)<ϵ\left\|\mathbf{y}_{h}^{k+1}-\mathbf{y}_{h}^{k}\right\|_{L^{\infty}(\Omega)}<\epsilon for ϵ>0\epsilon>0, or set k=k+1k=k+1 and return to Step 2.

In each of our model problems, we compute the error and estimator, which are defined as follows:

Error:=(𝐲𝐲h)0,Ω+(𝐮𝐮h)0,Ω+ppH0,Ω+(ϕϕh)0,Ω+rrH0,Ω,\displaystyle\textbf{Error}:=\lVert\nabla(\mathbf{y}-\mathbf{y}_{h})\rVert_{0,\Omega}+\lVert\nabla(\mathbf{u}-\mathbf{u}_{h})\rVert_{0,\Omega}+\lVert p-p_{H}\rVert_{0,\Omega}+\lVert\nabla(\bm{\phi}-\bm{\phi}_{h})\rVert_{0,\Omega}+\lVert r-r_{H}\rVert_{0,\Omega}, (5.5)

and,

Estimator:=η(𝐮,p)+η(ϕ,r)+η𝐲,\displaystyle\textbf{Estimator}:=\eta_{(\mathbf{u},p)}+\eta_{(\bm{\phi},r)}+\eta_{\mathbf{y}}, (5.6)

where η(𝐮,p),\eta_{(\mathbf{u},p)}, η(ϕ,r)\eta_{(\bm{\phi},r)} and η𝐲\eta_{\mathbf{y}} are defined in Theorem 4.6.

For the adaptive algorithm, we use the following paradigm:

𝑆𝑜𝑙𝑣𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑀𝑎𝑟𝑘𝑅𝑒𝑓𝑖𝑛𝑒.\displaystyle{\it Solve\rightarrow Estimate\rightarrow Mark\rightarrow Refine}.

First, we compute the discrete solutions (𝐮h,pH,ϕh,rH,𝐲h\mathbf{u}_{h},p_{H},\bm{\phi}_{h},r_{H},\mathbf{y}_{h}) using the above-described primal-dual active set algorithm. Then in the second step using the discrete solution, we compute the error estimator (Estimator = η(𝐮,p)+η(ϕ,r)+η𝐲\eta_{(\mathbf{u},p)}+\eta_{(\bm{\phi},r)}+\eta_{\mathbf{y}}) over each element. We use the Dörlfer marking technique [13] with bulk parameter θ=0.3\theta=0.3 for the mark step. Then the marked elements are refined using the newest vertex bisection algorithm [8] to obtain a new mesh and the algorithm is repeated. The convergence rate for Estimator is defined as follows:

rate of convergence():=log(Estimator+1/Estimator)log(N/N+1),\displaystyle\text{rate of convergence}(\ell):=\frac{\log(\textbf{Estimator}_{\ell+1}/\textbf{Estimator}_{\ell})}{\log(N_{\ell}/N_{\ell+1})},

for :=1,2,3,\ell:=1,2,3,\cdots, where Estimator\textbf{Estimator}_{\ell} and NN_{\ell} denotes the estimator and number of degrees of freedom at \ellth level respectively. Similarly, one can define the rate of convergence for Error.

Example 5.1.

In this example we consider the optimal control problem (5.1) with the computational domain Ω=(0,1)2\Omega=(0,1)^{2} and ΓD=(0,1)×{0},\Gamma_{D}=(0,1)\times\{0\}, ΓC=Ω\ΓD\Gamma_{C}=\partial\Omega\backslash\Gamma_{D}. We choose the constants ρ=102,\rho=10^{-2}, 𝐲a=(4,2),\mathbf{y}_{a}=(-4,-2), and 𝐲b=(2,2.5).\mathbf{y}_{b}=(2,2.5). The state and adjoint state variables are given by

𝐮=𝐲=(exp(x)(ycos(y)+sin(y))exp(x)ysin(y)),p=sin(2πx)sin(2πy),\displaystyle{\bf u}={\bf y}=\left(\begin{array}[]{c}-\exp(x)(y\cos(y)+\sin(y))\\ \exp(x)y\sin(y)\end{array}\right),~{}~{}~{}p=\sin(2\pi x)\sin(2\pi y),

and

ϕ=((sin(πx))2sin(πy)cos(πy)(sin(πy))2sin(πx)cos(πx)),r=sin(2πx)sin(2πy).\displaystyle\bm{\phi}=\left(\begin{array}[]{c}(\sin(\pi x))^{2}\sin(\pi y)\cos(\pi y)\\ -(\sin(\pi y))^{2}\sin(\pi x)\cos(\pi x)\end{array}\right),~{}~{}~{}r=\sin(2\pi x)\sin(2\pi y).

We choose 𝐮\mathbf{u} and ϕ\bm{\phi} such that 𝐮=ϕ=0inΩ\nabla\cdot{\mathbf{u}}=\nabla\cdot{\bm{\phi}}=0\quad\text{in}\;\Omega and ϕ=𝟎onΩ.\bm{\phi}=\mathbf{0}~{}~{}\text{on}~{}~{}\partial\Omega. The data of the problem are chosen such that 𝐟=Δ𝐮+p,𝐮d=𝐮+Δϕ+rand𝐲d=𝐲\mathbf{f}=-\Delta\mathbf{u}+\nabla{p},~{}\mathbf{u}_{d}=\mathbf{u}+\Delta\bm{\phi}+\nabla{r}~{}\text{and}~{}\mathbf{y}_{d}=\mathbf{y}.

We have used the above-described primal-dual active set algorithm to solve the optimal control problem. Figure 5.1(A) and Figure 5.1(B) show the coarse and refine meshes respectively. Figure 5.1(C) shows the convergence of error and estimator in terms of the number of degrees of freedom. It is clear from Figure 5.1(C), that the Estimator and the Error show the optimal rate of convergence. Here the optimal rate of convergence means the rate of convergence is 0.50.5 with respect to the number of degrees of freedom(NN).

Refer to caption
(a) Coarse mesh 𝒯H\mathcal{T}_{H}
Refer to caption
(b) Refined mesh 𝒯h\mathcal{T}_{h}
Refer to caption
(c) Convergence history (unit square domain)
Figure 5.1.
Example 5.2.

In this example we consider the optimal control problem (5.1) with the L-shaped domain Ω=(1,1)2([0,1]×[1,0])\Omega=(-1,1)^{2}\setminus([0,1]\times[-1,0]), ΓC=Ω,\Gamma_{C}=\partial\Omega, and the exact solutions

𝐮=𝐲=rα((1+α)sin(θ)ω(θ)+cos(θ)ω(θ)(1+α)cos(θ)ω(θ)+sin(θ)ω(θ)),\displaystyle{\bf u}={\bf y}=r^{\alpha}\left(\begin{array}[]{c}(1+\alpha)\sin(\theta)\omega(\theta)+\cos(\theta)\omega^{\prime}(\theta)\\ -(1+\alpha)\cos(\theta)\omega(\theta)+\sin(\theta)\omega^{\prime}(\theta)\end{array}\right),
p=rα1((1+α)2ω(θ)+ω(θ))/(1α),\displaystyle p=-r^{\alpha-1}((1+\alpha)^{2}\omega^{\prime}(\theta)+\omega{{}^{\prime\prime\prime}}(\theta))/(1-\alpha),

where

ω(θ)=\displaystyle\omega(\theta)= 1/(1+α)sin(α+1)θ)cos(αw)cos((α+1)θ)\displaystyle 1/(1+\alpha)\sin(\alpha+1)\theta)\cos(\alpha w)-\cos((\alpha+1)\theta)
+1/(1+α)sin(α1)θ)cos(αω)cos((α1)θ)\displaystyle+1/(1+\alpha)\sin(\alpha-1)\theta)\cos(\alpha\omega)-\cos((\alpha-1)\theta)

and α=856399/1572864\alpha=856399/1572864 and w=3π/2w=3\pi/2. The adjoint variables ϕ,r{\bm{\phi}},~{}r are considered the same as in Example 5.1. The data of the problem is chosen such that 𝐟=Δ𝐮+p,𝐮d=𝐮+Δϕ+rand𝐲d=𝐲\mathbf{f}=-\Delta\mathbf{u}+\nabla{p},~{}\mathbf{u}_{d}=\mathbf{u}+\Delta\bm{\phi}+\nabla{r}~{}\text{and}~{}\mathbf{y}_{d}=\mathbf{y}. The constants ρ=102,𝐲a=(3,3),\rho=10^{-2},\;\mathbf{y}_{a}=(-3,-3), and 𝐲b=(4,4).\mathbf{y}_{b}=(4,4).

This problem is defined on the L-shaped domain, and the derivative of the solution (𝐮,p)({\bf u},p) has a singularity at the origin. It is well known that for this problem the uniform refinements will not provide an optimal convergence rate. We have a similar observation from Figure 5.2, for uniform refinements convergence rate with respect to the number of degrees of freedom (NN) is 0.330.33 Hence, one can use the adaptive algorithm to improve the convergence rate. Figure 5.3(A) and Figure 5.3(B) show the adaptive coarse and refined meshes respectively. Figure 5.3(C) shows the adaptive convergence of error and estimator in terms of the number of degrees of freedom(NN). We see that the convergence rate has been improved from 0.330.33 (Figure 5.2) to 0.500.50 (Figure 5.3(C)). Thus the optimal convergence is achieved using the adaptive algorithm for the error in energy norm in the state and adjoint state velocity, control approximation, in L2L2- norm of pressure and adjoint pressure variables. Hence, the optimal convergence for the a posteriori estimator(Estimator) and the total error(Error), which are defined in (5.5) and (5.6). Here, the optimal convergence means the rate of convergence is 0.50.5 with respect to the number of degrees of freedom(NN).

Refer to caption
Figure 5.2. Convergence history on uniform mesh (L-shape domain).
Refer to caption
(a) Adaptive coarse mesh 𝒯H\mathcal{T}_{H}
Refer to caption
(b) Adaptive refine mesh 𝒯h\mathcal{T}_{h}
Refer to caption
(c) Convergence history(L-shape domain)
Figure 5.3.

6. Conclusions

In this article, we propose, analyze, and test an a posteriori error estimator for the Dirichlet boundary control problem governed by Stokes equation. We develop an inf-sup stable finite element discretization scheme by using 𝐏1\mathbf{P}_{1} elements(in the fine mesh) for the velocity and control variable and P0P_{0} elements(in the coarse mesh) for the pressure variable. The optimal control satisfies a bilateral Signorini contact problem, thus the discrete optimality system consists of a discrete variational inequality for the approximate control variable. We derive and analyze the error estimator for the control variable and the estimator is designed for controlling its energy error. The estimator reduces to the standard residual estimator for elliptic problem, if no contact occurs. The contributions by the estimator addressing the nonlinearity are related to the contact stresses and the complementarity condition. We prove the reliability and efficiency of the estimator and ensure the equivalence with the error up to oscillation terms. Our numerical experiments confirm the theoretical results.

References

  • Apel et al. [2015] T. Apel, M. Mateos, J. Pfefferer, and A. Rösch. On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains. SIAM J. Control Optim., 53(6):3620–3641, 2015.
  • Brenner and Scott [2008] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Texts in Applied Mathematics. Springer, New York, third edition, 2008.
  • Carstensen et al. [2012] C. Carstensen, M. Eigel, R. H. W. Hoppe, and C. Löbhard. A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl., 5(4):509–558, 2012.
  • Casas and Dhamo [2012] E. Casas and V. Dhamo. Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations. Comput. Optim. Appl., 52(3):719–756, 2012.
  • Casas and Mateos [2008] E. Casas and M. Mateos. Error estimates for the numerical approximation of Neumann control problems. Comput. Optim. Appl., 39(3):265–295, 2008.
  • Casas and Raymond [2006] E. Casas and J.-P. Raymond. Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations. SIAM J. Control Optim., 45(5):1586–1611, 2006.
  • Casas et al. [2009] E. Casas, M. Mateos, and J.-P. Raymond. Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var., 15(4):782–809, 2009.
  • Chen and Zhang [2010] L. Chen and C. Zhang. A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. J. Comput. Math., 28(6):767–789, 2010.
  • Chowdhury et al. [2015] S. Chowdhury, T. Gudi, and A. K. Nandakumaran. A framework for the error analysis of discontinuous finite element methods for elliptic optimal control problems and applications to C0C^{0} IP methods. Numer. Funct. Anal. Optim., 36(11):1388–1419, 2015.
  • Chowdhury et al. [2017] S. Chowdhury, T. Gudi, and A. K. Nandakumaran. Error bounds for a Dirichlet boundary control problem based on energy spaces. Math. Comp., 86(305):1103–1126, 2017.
  • Ciarlet [1978] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4.
  • Dond et al. [2019] A. K. Dond, T. Gudi, and R. C. Sau. An error analysis of discontinuous finite element methods for the optimal control problems governed by Stokes equation. Numer. Funct. Anal. Optim., 40(4):421–460, 2019.
  • Dörfler [1996] W. Dörfler. A convergent adaptive algorithm for poisson’s equation. SIAM Journal on Numerical Analysis, 33(3):1106–1124, 1996.
  • Fierro and Veeser [2003] F. Fierro and A. Veeser. A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal., 41(6):2032–2055, 2003.
  • Fursikov et al. [1998] A. V. Fursikov, M. D. Gunzburger, and L. S. Hou. Optimal Dirichlet control and inhomogeneous boundary value problems for the unsteady Navier-Stokes equations. In Control and partial differential equations (Marseille-Luminy, 1997), volume 4 of ESAIM Proc., pages 97–116. Soc. Math. Appl. Indust., Paris, 1998.
  • Girault and Raviart [1979] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokes equations. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1979.
  • Gong et al. [2020a] W. Gong, W. Hu, M. Mateos, J. R. Singler, and Y. Zhang. Analysis of a hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system. ESAIM Math. Model. Numer. Anal., 54(6):2229–2264, 2020a.
  • Gong et al. [2020b] W. Gong, M. Mateos, J. R. Singler, and Y. Zhang. Analysis and approximations of Dirichlet boundary control of Stokes flows in the energy space. https://arxiv.org/abs/2011.08221., 2020b.
  • Gudi and Sau [2020] T. Gudi and R. C. Sau. Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem. ESAIM Control Optim. Calc. Var., 26:Paper No. 78, 19, 2020.
  • Gudi and Sau [2023] T. Gudi and R. C. Sau. A two level finite element method for Stokes constrained Dirichlet boundary control problem. Comput. Math. Appl., 129:126–135, 2023.
  • Günther and Hinze [2011] A. Günther and M. Hinze. Elliptic control problems with gradient constraints—variational discrete versus piecewise constant controls. Comput. Optim. Appl., 49(3):549–566, 2011.
  • Gunzburger et al. [1991] M. D. Gunzburger, L. S. Hou, and T. P. Svobodny. Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér., 25(6):711–748, 1991.
  • Hintermüller et al. [2002] M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.
  • Hinze [2005] M. Hinze. A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl., 30(1):45–61, 2005.
  • Houston et al. [2005] P. Houston, D. Schötzau, and T. P. Wihler. Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput., 22/23:347–370, 2005.
  • Karkulik [2020] M. Karkulik. A finite element method for elliptic Dirichlet boundary control problems. Comput. Methods Appl. Math., 20(4):827–843, 2020.
  • Krause et al. [2015] R. Krause, A. Veeser, and M. Walloth. An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Numer. Math., 130(1):151–197, 2015.
  • Meyer and Rösch [2004] C. Meyer and A. Rösch. Superconvergence properties of optimal control problems. SIAM J. Control Optim., 43(3):970–985, 2004.
  • Of et al. [2010] G. Of, T. X. Phan, and O. Steinbach. Boundary element methods for Dirichlet boundary control problems. Math. Methods Appl. Sci., 33(18):2187–2205, 2010.
  • Of et al. [2015] G. Of, T. X. Phan, and O. Steinbach. An energy space finite element approach for elliptic Dirichlet boundary control problems. Numer. Math., 129(4):723–748, 2015.
  • Veeser and Verfürth [2009] A. Veeser and R. Verfürth. Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal., 47(3):2387–2405, 2009.
  • Verfürth [1995] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley-Teubner, Chichester, 1995.
  • Winkler [2020] M. Winkler. Error estimates for variational normal derivatives and Dirichlet control problems with energy regularization. Numer. Math., 144(2):413–445, 2020.