This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Tighter Relation Between Hereditary Discrepancy and Determinant Lower Bound

Haotian Jiang
University of Washington, Seattle, USA. [email protected].
   Victor Reis University of Washington, Seattle, USA. [email protected].

In seminal work, Lovász, Spencer, and Vesztergombi [European J. Combin., 1986] proved a lower bound for the hereditary discrepancy of a matrix Am×nA\in\mathbb{R}^{m\times n} in terms of the maximum |det(B)|1/k|\det(B)|^{1/k} over all k×kk\times k submatrices BB of AA. We show algorithmically that this determinant lower bound can be off by at most a factor of O(log(m)log(n))O(\sqrt{\log(m)\cdot\log(n)}), improving over the previous bound of O(log(mn)log(n))O(\log(mn)\cdot\sqrt{\log(n)}) given by Matoušek [Proc. of the AMS, 2013]. Our result immediately implies 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(12)O(log(m)log(n))max(𝗁𝖾𝗋𝖽𝗂𝗌𝖼(1),𝗁𝖾𝗋𝖽𝗂𝗌𝖼(2))\mathsf{herdisc}(\mathcal{F}_{1}\cup\mathcal{F}_{2})\leq O(\sqrt{\log(m)\cdot\log(n)})\cdot\max(\mathsf{herdisc}(\mathcal{F}_{1}),\mathsf{herdisc}(\mathcal{F}_{2})), for any two set systems 1,2\mathcal{F}_{1},\mathcal{F}_{2} over [n][n] satisfying |12|=m|\mathcal{F}_{1}\cup\mathcal{F}_{2}|=m. Our bounds are tight up to constants when m=O(poly(n))m=O(\mathrm{poly}(n)) due to a construction of Pálvölgyi [Discrete Comput. Geom., 2010] or the counterexample to Beck’s three permutation conjecture by Newman, Neiman and Nikolov [FOCS, 2012].

1 Introduction

Given a matrix Am×nA\in\mathbb{R}^{m\times n}, the discrepancy of AA is 𝖽𝗂𝗌𝖼(A):=min𝐱{1,+1}nA𝐱\mathsf{disc}(A):=\min_{\mathbf{x}\in\{-1,+1\}^{n}}\|A\mathbf{x}\|_{\infty}. The hereditary discrepancy of AA is defined as 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A):=maxS[n]𝖽𝗂𝗌𝖼(AS)\mathsf{herdisc}(A):=\max_{S\subseteq[n]}\mathsf{disc}(A_{S}), where ASA_{S} denotes the restriction of the matrix AA to columns in SS. For a set system \mathcal{F}, 𝖽𝗂𝗌𝖼()\mathsf{disc}(\mathcal{F}) and 𝗁𝖾𝗋𝖽𝗂𝗌𝖼()\mathsf{herdisc}(\mathcal{F}) are defined to be 𝖽𝗂𝗌𝖼(A)\mathsf{disc}(A_{\mathcal{F}}) and 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)\mathsf{herdisc}(A_{\mathcal{F}}), where AA_{\mathcal{F}} is the incidence matrix of \mathcal{F}.

In seminal work, Lovász, Spencer, and Vesztergombi [LSV86] introduced a powerful tool, known as the determinant lower bound, for bounding hereditary discrepancy:

𝖽𝖾𝗍𝖫𝖡(A):=maxkmax(S,T)[m]×[n]|S|=|T|=k|det(AS,T)|1/k,\displaystyle\mathsf{detLB}(A):=\max_{k\in\mathbb{N}}\max_{\begin{subarray}{c}(S,T)\subseteq[m]\times[n]\\ |S|=|T|=k\end{subarray}}|\det(A_{S,T})|^{1/k},

where AS,TA_{S,T} denotes the restriction of AA to rows in SS and columns in TT. In particular, they showed that 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)12𝖽𝖾𝗍𝖫𝖡(A)\mathsf{herdisc}(A)\geq\frac{1}{2}\mathsf{detLB}(A) for any matrix AA. A reverse relation was established by Matousěk [Mat13], who showed that 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)O(log(mn)log(n))𝖽𝖾𝗍𝖫𝖡(A)\mathsf{herdisc}(A)\leq O(\log(mn)\sqrt{\log(n)})\cdot\mathsf{detLB}(A). However, Matousěk’s bound does not match the largest known gap of Θ(log(n))\Theta(\log(n)) between 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)\mathsf{herdisc}(A) and 𝖽𝖾𝗍𝖫𝖡(A)\mathsf{detLB}(A), given by a construction of Pálvölgyi [Pál10] or the counter-example to Beck’s three permutation conjecture [NNN12].

Our main result is the following improvement over Matousěk’s bound in [Mat13].

Theorem 1.1.

Given a matrix Am×nA\in\mathbb{R}^{m\times n}, one can efficiently find 𝐱{+1,1}n\mathbf{x}\in\{+1,-1\}^{n} such that A𝐱O(log(m)log(n)𝖽𝖾𝗍𝖫𝖡(A))\|A\mathbf{x}\|_{\infty}\leq O(\sqrt{\log(m)\cdot\log(n)}\cdot\mathsf{detLB}(A)).

Restricting to an arbitrary subset of the columns of AA, one immediately obtains the following:

Corollary 1.2.

For any matrix Am×nA\in\mathbb{R}^{m\times n}, 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)O(log(m)log(n)𝖽𝖾𝗍𝖫𝖡(A))\mathsf{herdisc}(A)\leq O(\sqrt{\log(m)\cdot\log(n)}\cdot\mathsf{detLB}(A)).

In light of the examples in [Pál10, NNN12] where 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)Ω(logn)𝖽𝖾𝗍𝖫𝖡(A)\mathsf{herdisc}(A)\geq\Omega(\log n)\cdot\mathsf{detLB}(A), Theorem 1.1 is tight up to constants whenever m=𝗉𝗈𝗅𝗒(n)m=\mathsf{poly}(n). For the case where m𝗉𝗈𝗅𝗒(n)m\gg\mathsf{poly}(n), one cannot hope to improve the log(m)\sqrt{\log(m)} dependence on mm in Theorem 1.1. In particular, the set system =2[n]\mathcal{F}=2^{[n]} has 𝗁𝖾𝗋𝖽𝗂𝗌𝖼()=n\mathsf{herdisc}(\mathcal{F})=n, 𝖽𝖾𝗍𝖫𝖡()=n\mathsf{detLB}(\mathcal{F})=\sqrt{n} and therefore 𝗁𝖾𝗋𝖽𝗂𝗌𝖼()log(m)𝖽𝖾𝗍𝖫𝖡()\mathsf{herdisc}(\mathcal{F})\geq\sqrt{\log(m)}\cdot\mathsf{detLB}(\mathcal{F}). It remains an open problem, however, whether one can improve the logn\sqrt{\log n} factor in the later regime.

Hereditary discrepancy of union of set systems.

A question of V. Sós (see [LSV86]) asks whether 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(12)\mathsf{herdisc}(\mathcal{F}_{1}\cup\mathcal{F}_{2}) can be estimated in terms of 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(1)\mathsf{herdisc}(\mathcal{F}_{1}) and 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(2)\mathsf{herdisc}(\mathcal{F}_{2}), for any set systems 1\mathcal{F}_{1} and 2\mathcal{F}_{2} over [n][n]. This is, however, not possible without any dependence on m=|12|m=|\mathcal{F}_{1}\cup\mathcal{F}_{2}| or nn, as first shown by an example of Hoffman (Proposition 4.11 in [Mat09]). This can also be seen from the examples in [Pál10, NNN12]. In [KMV05], it was shown that 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(12)O(log(n))𝗁𝖾𝗋𝖽𝗂𝗌𝖼(1)\mathsf{herdisc}(\mathcal{F}_{1}\cup\mathcal{F}_{2})\leq O(\log(n))\cdot\mathsf{herdisc}(\mathcal{F}_{1}) when 2\mathcal{F}_{2} contains a single set. For more general set systems, Matousěk [Mat13] proved that 𝗁𝖾𝗋𝖽𝗂𝗌𝖼()O(tlog(mn)log(n))maxi[t](𝗁𝖾𝗋𝖽𝗂𝗌𝖼(i))\mathsf{herdisc}(\mathcal{F})\leq O(\sqrt{t}\log(mn)\sqrt{\log(n)})\cdot\max_{i\in[t]}(\mathsf{herdisc}(\mathcal{F}_{i})), where =1t\mathcal{F}=\mathcal{F}_{1}\cup\cdots\cup\mathcal{F}_{t} and m=||m=|\mathcal{F}|.

Theorem 1.1 together with Lemma 4 in [Mat13] immediately imply the following improvement of this result, whose proof is the same as in [Mat13]. For t=2t=2 and m=𝗉𝗈𝗅𝗒(n)m=\mathsf{poly}(n), this bound is tight up to constants.

Theorem 1.3.

Let \mathcal{F} be a system of mm sets on [n][n] such that =12t\mathcal{F}=\mathcal{F}_{1}\cup\mathcal{F}_{2}\cup\cdots\cup\mathcal{F}_{t}. Then,

𝗁𝖾𝗋𝖽𝗂𝗌𝖼()O(tlog(m)log(n))maxi[t](𝗁𝖾𝗋𝖽𝗂𝗌𝖼(i)).\displaystyle\mathsf{herdisc}(\mathcal{F})\leq O\left(\sqrt{t\log(m)\log(n)}\right)\cdot\max_{i\in[t]}(\mathsf{herdisc}(\mathcal{F}_{i})).

Approximating hereditary discrepancy.

It was shown in [CNN11] that 𝖽𝗂𝗌𝖼(A)\mathsf{disc}(A) cannot be approximated in polynomial time for an arbitrary matrix A{0,1}m×nA\in\{0,1\}^{m\times n}. The more robust notion of hereditary discrepancy, however, can be approximated within a polylog factor. The best-known result in this direction is a O(log(min(m,n))log(m))O(\log(\min(m,n))\cdot\sqrt{\log(m)})-approximation to hereditary discrepancy via the γ2\gamma_{2}-norm [MNT14]. When m=𝗉𝗈𝗅𝗒(n)m=\mathsf{poly}(n), this approximation factor is O(log3/2(n))O(\log^{3/2}(n)).

Our result in Theorem 1.1 suggests a potential approach of approximating hereditary discrepancy by approximating the determinant lower bound. There has been a recent line of work in approximating the maximum k×kk\times k subdeterminant for a given matrix AA. For k=min(m,n)k=\min(m,n), Nikolov [Nik15] gave a 2O(k)2^{O(k)}-approximation; for general values of kk, Anari and Vuong [AV20] showed a kO(k)k^{O(k)}-approximation algorithm. If these results can be strengthened to a 2O(k)2^{O(k)}-approximation algorithm for general values of kk, then together with Theorem 1.1, one would obtain the first O(log(n))O(\log(n))-approximation algorithm for hereditary discrepancy when m=𝗉𝗈𝗅𝗒(n)m=\mathsf{poly}(n).

Overview of proof of Theorem 1.1.

We follow the approaches in [Ban10] and [Mat13]. The key notion to prove Theorem 1.1 is that of hereditary partial vector discrepancy, which is defined as follows. Given a matrix Am×nA\in\mathbb{R}^{m\times n} with entries aija_{ij} for i[m]i\in[m] and j[n]j\in[n], we consider the following SDP for a subset S[n]S\subseteq[n] and a parameter λ0\lambda\geq 0:

jSaij𝐯j22λ2i[m],\displaystyle\Big{\|}\sum_{j\in S}a_{ij}\mathbf{v}_{j}\Big{\|}_{2}^{2}\leq\lambda^{2}\quad\forall i\in[m], 𝖲𝖣𝖯(A,S,λ)\mathsf{SDP}(A,S,\lambda)
j=1n𝐯j22|S|/2,\displaystyle\sum_{j=1}^{n}\|\mathbf{v}_{j}\|_{2}^{2}\geq|S|/2,
𝐯j221jS,\displaystyle\|\mathbf{v}_{j}\|_{2}^{2}\leq 1\quad\forall j\in S,
𝐯j22=0j[n]S.\displaystyle\|\mathbf{v}_{j}\|_{2}^{2}=0\quad\forall j\in[n]\setminus S.

Define the partial vector discrepancy of AA, denoted as 𝗉𝗏𝖽𝗂𝗌𝖼(A)\mathsf{pvdisc}(A), to be the smallest value of λ\lambda such that 𝖲𝖣𝖯(A,[n],λ)\mathsf{SDP}(A,[n],\lambda) is feasible, and hereditary partial vector discrepancy 𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A)\mathsf{herpvdisc}(A) to be the smallest λ\lambda such that 𝖲𝖣𝖯(A,S,λ)\mathsf{SDP}(A,S,\lambda) is feasible for any subset S[n]S\subseteq[n].

Using the above definition, we show in Lemma 2.1 of Section 2.1 that the above SDP can be rounded efficiently to obtain a coloring with discrepancy at most O(log(m)log(n)𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A))O(\sqrt{\log(m)\log(n)}\cdot\mathsf{herpvdisc}(A)). We then prove in Lemma 2.3 of Section 2.2 that 𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A)O(𝖽𝖾𝗍𝖫𝖡(A))\mathsf{herpvdisc}(A)\leq O(\mathsf{detLB}(A)), from which Theorem 1.1 immediately follows. We conjecture that 𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A)\mathsf{herpvdisc}(A) is the same as 𝖽𝖾𝗍𝖫𝖡(A)\mathsf{detLB}(A) up to constants (Conjecture 2.4).

Notations and preliminaries.

Given a matrix Am×nA\in\mathbb{R}^{m\times n}, its rows will be denoted by 𝐚1,,𝐚mn\mathbf{a}_{1},\dots,\mathbf{a}_{m}\in\mathbb{R}^{n}. Define AS,TA_{S,T} to be the matrix with rows restricted to some subset S[m]S\subseteq[m] and columns restricted to some T[n]T\subseteq[n], and AS:=A[m],SA_{S}:=A_{[m],S}.

Theorem 1.4 (Freedman’s Inequality, Theorem 1.6 in [Fre75]).

Consider a real-valued martingale sequence {Xt}t0\{X_{t}\}_{t\geq 0} such that X0=0X_{0}=0, and 𝔼[Xt+1|t]=0\mathbb{E}[X_{t+1}|\mathcal{F}_{t}]=0 for all tt, where {t}t0\{\mathcal{F}_{t}\}_{t\geq 0} is the filtration defined by the martingale. Assume that the sequence is uniformly bounded, i.e., |Xt|M|X_{t}|\leq M almost surely for all tt. Now define the predictable quadratic variation process of the martingale to be Wt=j=1t𝔼[Xj2|j1]W_{t}=\sum_{j=1}^{t}\mathbb{E}[X_{j}^{2}|\mathcal{F}_{j-1}] for all t1t\geq 1. Then for all 0\ell\geq 0 and σ2>0\sigma^{2}>0 and any stopping time τ\tau, we have

[|j=0τXj|Wτσ2for some stopping time τ]2exp(2/2σ2+M/3).\mathbb{P}\Big{[}\Big{|}\sum_{j=0}^{\tau}X_{j}\Big{|}\geq\ell\wedge W_{\tau}\leq\sigma^{2}\text{for some stopping time }\tau\Big{]}\leq 2\exp\Big{(}-\frac{\ell^{2}/2}{\sigma^{2}+M\ell/3}\Big{)}.

2 Proof of Theorem 1.1

2.1 The Algorithm

The main result of this subsection is the following lemma.

Lemma 2.1.

Given a matrix Am×nA\in\mathbb{R}^{m\times n}, there exists a randomized algorithm that w.h.p. constructs a coloring 𝐱{+1,1}n\mathbf{x}\in\{+1,-1\}^{n} such that A𝐱O(log(m)log(n)𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A))\|A\mathbf{x}\|_{\infty}\leq O(\sqrt{\log(m)\log(n)}\cdot\mathsf{herpvdisc}(A)). This implies that 𝗁𝖾𝗋𝖽𝗂𝗌𝖼(A)O(log(m)log(n)𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A))\mathsf{herdisc}(A)\leq O(\sqrt{\log(m)\log(n)}\cdot\mathsf{herpvdisc}(A)).

The algorithm in Lemma 2.1 is given in Algorithm 1. This algorithm is a variant of the random walk in [Ban10], using the SDP for hereditary partial vector discrepancy.

Algorithm 1 HerpvdiscRounding(A)\textsc{HerpvdiscRounding}(A)
1:λ𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A)\lambda\leftarrow\mathsf{herpvdisc}(A) \triangleright The value of λ\lambda can be approximated with a binary search
2:𝐱0𝟎n\mathbf{x}_{0}\leftarrow\mathbf{0}\in\mathbb{R}^{n}, S0[n]S_{0}\leftarrow[n], s1/m2n2s\leftarrow 1/m^{2}n^{2}, T200log(n)/s2T\leftarrow 200\log(n)/s^{2}
3:for t=1,2,,Tt=1,2,\cdots,T do
4:     𝐯1,,𝐯n𝖲𝖣𝖯(A,St1,λ)\mathbf{v}_{1},\cdots,\mathbf{v}_{n}\leftarrow\mathsf{SDP}(A,S_{t-1},\lambda)
5:     Sample 𝐫{1,+1}n\mathbf{r}\in\{-1,+1\}^{n} uniformly at random
6:     for i[n]i\in[n] do xt(i)xt1(i)+s𝐫,𝐯ix_{t}(i)\leftarrow x_{t-1}(i)+s\cdot\langle\mathbf{r},\mathbf{v}_{i}\rangle
7:     end for
8:     StSt1S_{t}\leftarrow S_{t-1}
9:     for i[n]St1i\in[n]\setminus S_{t-1} do
10:         if |xt(i)|11/n|x_{t}(i)|\geq 1-1/n then
11:              StSt{i}S_{t}\leftarrow S_{t}\setminus\{i\}
12:         end if
13:     end for
14:end for
15:Round 𝐱T\mathbf{x}_{T} to a vector 𝐱{1,+1}n\mathbf{x}\in\{-1,+1\}^{n}
16:Return 𝐱\mathbf{x}

Since Lemma 2.1 is invariant under rescaling of the matrix AA, we may assume without loss of generality that that maxi,j|ai,j|=1\max_{i,j}|a_{i,j}|=1. Given a coloring 𝐱[1,1]n\mathbf{x}\in[-1,1]^{n}, we say an element i[n]i\in[n] is alive if |x(i)|<11/n|x(i)|<1-1/n. The following lemma from [Ban10] states that the number of alive elements halves after O(1/s2)O(1/s^{2}) steps.

Lemma 2.2 (Lemma 4.1 of [Ban10]).

Let 𝐲[1,+1]n\mathbf{y}\in[-1,+1]^{n} be an arbitrary fractional coloring with at most kk alive variables. Let 𝐳\mathbf{z} be the fractional coloring obtained by running algorithm 1 with 𝐱0=𝐲\mathbf{x}_{0}^{\prime}=\mathbf{y} for T=16/s2T^{\prime}=16/s^{2} steps. Then the probability that 𝐳\mathbf{z} has at least k/2k/2 alive variables is at most 1/41/4.

Proof of Lemma 2.1.

We first argue that after T=400log(n)/s2T=400\log(n)/s^{2} steps, no element is alive with high probability. Divide the time horizon into epochs of size 16/s216/s^{2}. For each epoch, Lemma 2.2 states that regardless of the past, the number of alive elements decreases by at least half with probability at least 3/43/4. It follows that no element is alive with high probability after 25log(n)25\log(n) epochs. Note that when no element is alive for the coloring 𝐱T\mathbf{x}_{T}, one can round it to a full coloring without changing the discrepancy of each set by more than 11.

Next we prove that with high probability, the discrepancy of each row of AA is at most O(log(m)log(n))λO(\sqrt{\log(m)\log(n)})\cdot\lambda. We consider any j[m]j\in[m], and denote 𝖽𝗂𝗌𝖼t(j)=𝐚j,𝐱t\mathsf{disc}_{t}(j)=\langle\mathbf{a}_{j},\mathbf{x}_{t}\rangle the discrepancy of row jj at the end of time step t[T]t\in[T]. Note that 𝔼[𝖽𝗂𝗌𝖼t(j)𝖽𝗂𝗌𝖼t1(j)|𝖽𝗂𝗌𝖼t1(j)]=0\mathbb{E}[\mathsf{disc}_{t}(j)-\mathsf{disc}_{t-1}(j)|\mathsf{disc}_{t-1}(j)]=0 and 𝔼[(𝖽𝗂𝗌𝖼t(j)𝖽𝗂𝗌𝖼t1(j))2|𝖽𝗂𝗌𝖼t1(j)]λ2s2\mathbb{E}[(\mathsf{disc}_{t}(j)-\mathsf{disc}_{t-1}(j))^{2}|\mathsf{disc}_{t-1}(j)]\leq\lambda^{2}s^{2}. It follows from Freedman’s inequality (Theorem 1.4) that

[|𝖽𝗂𝗌𝖼T(j)|10log(m)log(n)λ]1/m2.\displaystyle\mathbb{P}\left[|\mathsf{disc}_{T}(j)|\geq 10\sqrt{\log(m)\log(n)}\cdot\lambda\right]\leq 1/m^{2}.

So by the union bound, the discrepancy of the obtained coloring is at most O(log(m)log(n)𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A))O(\sqrt{\log(m)\log(n)}\cdot\mathsf{herpvdisc}(A)) with high probability. This completes the proof of Lemma 2.1. ∎

2.2 Bounding Partial Vector Discrepancy

In this subsection, we prove the following lemma which upper bounds partial vector discrepancy in terms of the determinant lower bound. The proof can be seen as a simplification of Lemma 8 in [Mat13], which gives a corresponding upper bound for vector discrepancy that is weaker by a factor of logn\sqrt{\log n} due to a bucketing argument that is not needed here.

Lemma 2.3.

For any Am×nA\in\mathbb{R}^{m\times n}, we have 𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A)O(𝖽𝖾𝗍𝖫𝖡(A)).\mathsf{herpvdisc}(A)\leq O(\mathsf{detLB}(A)).

Proof.

Recall that 𝗉𝗏𝖽𝗂𝗌𝖼(A)2\mathsf{pvdisc}(A)^{2} is the optimal value of the SDP given by

mint\displaystyle\min\ t
j=1naij𝐯j22ti[m]\displaystyle\Big{\|}\sum_{j=1}^{n}a_{ij}\mathbf{v}_{j}\Big{\|}_{2}^{2}\leq t\quad\forall i\in[m]
j=1n𝐯j22n/2\displaystyle\sum_{j=1}^{n}\|\mathbf{v}_{j}\|_{2}^{2}\geq n/2
𝐯j221j[n].\displaystyle\|\mathbf{v}_{j}\|_{2}^{2}\leq 1\quad\forall j\in[n].

By denoting Xij:=𝐯i,𝐯jX_{ij}:=\langle\mathbf{v}_{i},\mathbf{v}_{j}\rangle, we may rewrite this SDP as follows:

mint\displaystyle\min\ t
𝐚i𝐚i,Xti[m]\displaystyle\langle\mathbf{a}_{i}\mathbf{a}_{i}^{\top},X\rangle\leq t\quad\forall i\in[m]
In,Xn/2\displaystyle\langle I_{n},X\rangle\geq n/2
𝐞j𝐞j,X1j[n]\displaystyle\langle\mathbf{e}_{j}\mathbf{e}_{j}^{\top},X\rangle\leq 1\quad\forall j\in[n]
X0,\displaystyle X\succeq 0,

where 𝐞j\mathbf{e}_{j} denotes the vector with 11 on the jj-th coordinate and 0 elsewhere. The dual formulation of the above SDP is given by the following:

maxnγj=1nzj\displaystyle\max\quad n\gamma-\sum_{j=1}^{n}z_{j}
i=1mwi𝐚i𝐚i+j=1nzj𝐞j𝐞j2γIn\displaystyle\sum_{i=1}^{m}w_{i}\mathbf{a}_{i}\mathbf{a}_{i}^{\top}+\sum_{j=1}^{n}z_{j}\mathbf{e}_{j}\mathbf{e}_{j}^{\top}\succeq 2\gamma\cdot I_{n}
i=1mwi=1\displaystyle\sum_{i=1}^{m}w_{i}=1
𝐰,𝐳0.\displaystyle\mathbf{w},\mathbf{z}\geq 0.

Denote λ:=𝗉𝗏𝖽𝗂𝗌𝖼(A)\lambda:=\mathsf{pvdisc}(A). By Slater’s condition, there exists a feasible dual solution (𝐰,𝐳,γ)(\mathbf{w},\mathbf{z},\gamma) such that 𝐰,𝐳0\mathbf{w},\mathbf{z}\geq 0 and nγj=1nzj=λ2n\gamma-\sum_{j=1}^{n}z_{j}=\lambda^{2}. Indeed, the dual has a feasible interior point (for example, wi=1/m,zj=1w_{i}=1/m,z_{j}=1 and γ=0\gamma=0) and is bounded, since we may rewrite the first constraint as

i=1mwi𝐚i𝐚ij=1n(2γzj)𝐞j𝐞j,\displaystyle\sum_{i=1}^{m}w_{i}\mathbf{a}_{i}\mathbf{a}_{i}^{\top}\succeq\sum_{j=1}^{n}(2\gamma-z_{j})\cdot\mathbf{e}_{j}\mathbf{e}_{j}^{\top}, (1)

which implies

nγj=1nzjnγ12j=1nzj12𝗍𝗋[i=1m𝐚i𝐚i].n\gamma-\sum_{j=1}^{n}z_{j}\leq n\gamma-\frac{1}{2}\sum_{j=1}^{n}z_{j}\leq\frac{1}{2}\mathsf{tr}\Big{[}\sum_{i=1}^{m}\mathbf{a}_{i}\mathbf{a}_{i}^{\top}\Big{]}.

Let A~\tilde{A} be the matrix obtained from AA by multiplying the ii-th row by wi\sqrt{w_{i}} and J[n]J\subseteq[n] be the set of columns for which zj<32γz_{j}<\frac{3}{2}\gamma. Note that |J|13n|J|\geq\frac{1}{3}n, for otherwise j=1nzj>23n32γ=nγ\sum_{j=1}^{n}z_{j}>\frac{2}{3}n\cdot\frac{3}{2}\gamma=n\gamma. Since for each jJj\in J we have 2γzj12γ2\gamma-z_{j}\geq\frac{1}{2}\gamma, for any vector 𝐱J\mathbf{x}\in\mathbb{R}^{J} it follows by (1):

𝐱A~JA~J𝐱12γ𝐱22λ22n𝐱22.\displaystyle\mathbf{x}^{\top}\widetilde{A}_{J}^{\top}\widetilde{A}_{J}\mathbf{x}\geq\frac{1}{2}\gamma\cdot\|\mathbf{x}\|_{2}^{2}\geq\frac{\lambda^{2}}{2n}\cdot\|\mathbf{x}\|_{2}^{2}.

This implies that all eigenvalues of A~JA~J\widetilde{A}_{J}^{\top}\widetilde{A}_{J} are at least λ2/2n\lambda^{2}/2n, so that det(A~JA~J)(λ2/2n)|J|\det(\widetilde{A}_{J}^{\top}\widetilde{A}_{J})\geq(\lambda^{2}/2n)^{|J|}. In the other direction, the Cauchy-Binet formula also gives

det(A~JA~J)\displaystyle\det(\widetilde{A}_{J}^{\top}\widetilde{A}_{J}) =I[m]|I|=|J|det(A~I,J)2=I[m]|I|=|J|det(AI,J)2iIwi\displaystyle=\sum_{\begin{subarray}{c}I\subseteq[m]\\ |I|=|J|\end{subarray}}\det(\widetilde{A}_{I,J})^{2}=\sum_{\begin{subarray}{c}I\subseteq[m]\\ |I|=|J|\end{subarray}}\det(A_{I,J})^{2}\prod_{i\in I}w_{i}
𝖽𝖾𝗍𝖫𝖡(A)2|J|I[m]|I|=|J|iIwi𝖽𝖾𝗍𝖫𝖡(A)2|J|1|J|!(i=1mwi)|J|,\displaystyle\leq\mathsf{detLB}(A)^{2|J|}\cdot\sum_{\begin{subarray}{c}I\subseteq[m]\\ |I|=|J|\end{subarray}}\prod_{i\in I}w_{i}\leq\mathsf{detLB}(A)^{2|J|}\cdot\frac{1}{|J|!}\Big{(}\sum_{i=1}^{m}w_{i}\Big{)}^{|J|},

where the last inequality follows as each term iIwi\prod_{i\in I}w_{i} appears |J|!|J|! times in (i=1mwi)|J|\Big{(}\sum_{i=1}^{m}w_{i}\Big{)}^{|J|}. Since i=1mwi=1\sum_{i=1}^{m}w_{i}=1, we conclude

𝖽𝖾𝗍𝖫𝖡(A)2|J|1|J|!det(A~JA~J)(λ2/2n)|J|,\mathsf{detLB}(A)^{2|J|}\cdot\frac{1}{|J|!}\geq\det(\widetilde{A}_{J}^{\top}\widetilde{A}_{J})\geq(\lambda^{2}/2n)^{|J|},

from which 𝖽𝖾𝗍𝖫𝖡(A)Ω(λ|J|/n)=Ω(λ)=Ω(𝗉𝗏𝖽𝗂𝗌𝖼(A))\mathsf{detLB}(A)\geq\Omega(\lambda\cdot\sqrt{|J|/n})=\Omega(\lambda)=\Omega(\mathsf{pvdisc}(A)). Applying this result to all subsets S[n]S\subseteq[n] of the columns of AA proves the lemma. ∎

We conjecture that the above Lemma 2.3 is tight up to constants.

Conjecture 2.4.

For any matrix Am×nA\in\mathbb{R}^{m\times n}, we have 𝖽𝖾𝗍𝖫𝖡(A)=Θ(𝗁𝖾𝗋𝗉𝗏𝖽𝗂𝗌𝖼(A))\mathsf{detLB}(A)=\Theta(\mathsf{herpvdisc}(A)).

Acknowledgments

We thank the anonymous reviewers of SOSA 2022 for insightful comments. We also thank Aleksandar Nikolov, Nikhil Bansal and Mehtaab Sawhney for helpful discussions.

References

  • [AV20] Nima Anari and Thuy-Duong Vuong. An extension of plücker relations with applications to subdeterminant maximization. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
  • [Ban10] Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 3–10. IEEE, 2010.
  • [CNN11] Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for minimizing discrepancy. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1607–1614. SIAM, 2011.
  • [Fre75] David A Freedman. On tail probabilities for martingales. the Annals of Probability, 3(1):100–118, 1975.
  • [KMV05] Jeong Han Kim, Jiří Matoušek, and Van H Vu. Discrepancy after adding a single set. Combinatorica, 25(4):499, 2005.
  • [LSV86] László Lovász, Joel Spencer, and Katalin Vesztergombi. Discrepancy of set-systems and matrices. European Journal of Combinatorics, 7(2):151–160, 1986.
  • [Mat09] Jiri Matousek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science & Business Media, 2009.
  • [Mat13] Jiří Matoušek. The determinant bound for discrepancy is almost tight. Proceedings of the American Mathematical Society, 141(2):451–460, 2013.
  • [MNT14] Jiří Matoušek, Aleksandar Nikolov, and Kunal Talwar. Factorization norms and hereditary discrepancy. arXiv preprint arXiv:1408.1376, 2014.
  • [Nik15] Aleksandar Nikolov. Randomized rounding for the largest simplex problem. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 861–870, 2015.
  • [NNN12] Alantha Newman, Ofer Neiman, and Aleksandar Nikolov. Beck’s three permutations conjecture: A counterexample and some consequences. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 253–262. IEEE, 2012.
  • [Pál10] Dömötör Pálvölgyi. Indecomposable coverings with concave polygons. Discrete & Computational Geometry, 44(3):577–588, 2010.