This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Taylor Resolution Over Complete Intersections

Aleksandra Sobieska
Abstract.

The Taylor resolution is a fundamental object in the study of free resolutions over the polynomial ring, due to its explicit formula, cellular/combinatorial structure, and applicability to any and all monomial ideals. This paper generalizes the Taylor resolution to complete intersection rings via the Eisenbud–Shamash construction.

1. Introduction

The Taylor resolution [Tay66] universally resolves any monomial ideal over the polynomial ring; it generalizes the Koszul complex, has straightforward cellular support, and is eminently computable. Indeed, it is often among the first constructions one learns to build a free resolution. Its combinatorial and explicit nature have influenced many advances in commutative algebra, some of which can be found in [HH90, Lyu88, EK90, Eis95, BS98, BW02, MS05, Pee11] and the references therein.

Resolutions over singular rings are typically infinite and more complicated. Results for special types of rings – complete intersections [Gul74, Gul80, Eis80, Avr89, AGP97, AB00, EP16], Golod rings [Gol62, HRW99, GPW00, BJ07], Koszul algebras [Frö99, AE92, Roo95] – and/or special types of modules – the ground field [Tat57, Pri70, ML63, Frö75, Ani82, RS98] – have been developed, but still much remains to be understood. Some surveys on infinite free resolutions can be found in [Avr98, MP15].

In this article, we generalize the Taylor resolution to complete intersection rings. The fundamental idea behind this construction is to produce the homotopies from the Eisenbud–Shamash construction entirely in terms of combinatorial data (essentially ratios of lcms). In providing an explicit formula for the system of homotopies, we show that no higher homotopies are necessary to write the complete resolution. Because the entries are easily expressed as ratios of lcm\operatorname{lcm}s, this method generates a body of examples of infinite free resolutions, and provides combinatorial recipes for matrix factorizations. Finally, it is worth noting that, in addition to generalizing the Taylor resolution of monomial ideals to complete intersections, this construction recovers the well-known Tate resolution [Tat57] as well as the resolution over monomial complete intersections in [Iye97].

The main result can be found in Definition 3.1 and Theorem 3.2. We provide an example of how this construction provides a direct way to resolve a monomial ideal over a complete intersection.

Example 1.1.

Let Q=𝕜[x,y,z]Q=\mathbbm{k}[x,y,z] and I=x2,y2,z2I={\langle x^{2},y^{2},z^{2}\rangle}, and 𝔞=x2z+xy2{\mathfrak{a}}={\langle x^{2}z+xy^{2}\rangle} and R=Q/𝔞R=Q/{\mathfrak{a}}. The Taylor resolution of II over RR given by Theorem 3.2 is

𝐅:φ5R(6)R(7)3φ4R(5)3R(6)φ3R(3)R(4)3φ2R(2)3φ1R0{\mathbf{F}}:\cdots\xrightarrow{\varphi_{5}}\begin{array}[]{c}R(-6)\\ \oplus\\ R(-7)^{3}\end{array}\xrightarrow{\varphi_{4}}\begin{array}[]{c}R(-5)^{3}\\ \oplus\\ R(-6)\end{array}\xrightarrow{\varphi_{3}}\begin{array}[]{c}R(-3)\\ \oplus\\ R(-4)^{3}\end{array}\xrightarrow{\varphi_{2}}R(-2)^{3}\xrightarrow{\varphi_{1}}R\rightarrow 0

where F2i1=R(3i+3)R(3i+2)3F_{2i-1}=R(-3i+3)\oplus R(-3i+2)^{3} for i2i\geq 2 and F2i=R(3i+1)3R(3i)F_{2i}=R(-3i+1)^{3}\oplus R(-3i), the initial maps are

φ1={blockarray}4>c<1&23{block}[3r]>c<x2y2z2 and φ2={blockarray}5>c<&121323{block}[r|3r]>c<zy2z201xx20z2200x2y23,\varphi_{1}=\blockarray{*{4}{>{\scriptstyle}c}<{}}1&23\\ \block{[*{3}r]>{\scriptstyle}c<{}}x^{2}y^{2}z^{2}\emptyset\\ \text{ and }\varphi_{2}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}zy^{2}z^{2}01\\ x-x^{2}0z^{2}2\\ 00-x^{2}-y^{2}3\\ ,

and the tail of the resolution is periodic with maps

φ2i1={blockarray}5>c<1&23123{block}[3r|r]>c<x2y2z20\BAhhlinexz0z21200zy21300xx223 and φ2i={blockarray}5>c<&121323{block}[r|3r]>c<zy2z201xx20z2200x2y23\BAhhline00xz123\varphi_{2i-1}=\blockarray{*{5}{>{\scriptstyle}c}<{}}1&23123\\ \block{[*{3}r|r]>{\scriptstyle}c<{}}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{x^{2}}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{y^{2}}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{z^{2}}0\emptyset\\ \BAhhline{----}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{x}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{-z}0\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{z^{2}}12\\ 00\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{-z}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{-y^{2}}13\\ 00\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{-x}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{x^{2}}23\\ \text{ and }\varphi_{2i}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{z}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{y^{2}}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{z^{2}}01\\ \color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{x}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{-x^{2}}0\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{z^{2}}2\\ 00\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{-x^{2}}\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{-y^{2}}3\\ \BAhhline{----}00\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{-x}\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}{z}123\\

for i2i\geq 2.

We can see all the maps from the classic Taylor resolution inside the differentials of 𝐅{\mathbf{F}} (written in blue). As with the Taylor resolution, rows and columns indexed with subsets of {1,2,3}\{1,2,3\} corresponding to subsets of the generators of II, and there is a non-zero entry in the matrix factorization when the row label is a subset of the column label with just one element missing.

The entries accounting for the singularity of RR are placed in prescribed spots (written in red) via the expression x2z+y2x=zx2+xy2x^{2}z+y^{2}x=z\cdot x^{2}+x\cdot y^{2}, which gives the generator of 𝔞{\mathfrak{a}} as a combination of the first and second generators of II. Therefore, there is a non-zero entry in the matrix factorization when the row label is a union of the column label and either {1}\{1\} or {2}\{2\}. The formula for the entry is a ratio of lcm’s of subsets of generators of II, similar to the Taylor resolution.

123123121213132323112233\emptyset
(a) The Taylor resolution as a directed graph
123123121213132323112233\emptyset
(b) The matrix factorization as a directed graph
Figure 1. A graphical description of the matrix factorization

Figure 1(a) shows the summands (represented by vertices) and non-zero differential arrows (represented by blue arrows) from the Taylor resolution. In Figure 1(b), the original directed graph is rearranged into a bipartite graph with even-cardinality subsets on one side and odd-cardinality subsets on the other. With the addition of the eight red arrows either from a vertex SS to {1}S\{1\}\cup S or from SS to {2}S\{2\}\cup S, we can encapsulate the induced matrix factorization with a edge-colored, directed bipartite graph, where each edge represents a nonzero entry – the blue edges give a “Taylor” entry and the red edges give a “lift” entry.

Acknowledgements: The author would like to thank Daniel Erman for many illuminating conversations during all stages of this article’s development. Most, if not all, computations were aided by Macaulay2 [GS].

2. Background

Notation.

For a positive integer rr, use [r][r] to denote the set {1,2,,r}\{1,2,\ldots,r\}. We will occasionally identify the singleton set {s}\{s\} and ss when s[r]s\in[r], especially when appearing in long and teeny subscripts.

2.1. The Taylor Resolution

Let Q=𝕜[x1,,xn]Q=\mathbbm{k}[x_{1},\ldots,x_{n}] be a polynomial ring over a field and IQI\subseteq Q be a monomial ideal I=m1,,mrI=\langle m_{1},\ldots,m_{r}\rangle. For a set S={j1,,jk}[r]S=\{j_{1},\ldots,j_{k}\}\subseteq[r] with j1<<jkj_{1}<\ldots<j_{k}, let mS=lcm(mj1,,mjk)m_{S}=\operatorname{lcm}(m_{j_{1}},\ldots,m_{j_{k}}), and use vSv_{S} to denote degreemS\operatorname{degree}m_{S}.

Definition 2.1 ([Tay66]).

The Taylor resolution Q/IQ/I for a monomial ideal I=m1,,mrI=\ \langle m_{1},\ldots,m_{r}\rangle is given by (Tk,τk)(T_{k},\tau_{k}), where

Tk=S[r],|S|=kQ(vS)T_{k}=\bigoplus\limits_{S\subseteq[r],\ |S|=k}Q(-v_{S})

and

τk(εS)=siS(1)kimSmSsiεSsi for S={s1,,sk}.\tau_{k}(\varepsilon_{S})=\sum\limits_{s_{i}\in S}(-1)^{k-i}\frac{m_{S}}{m_{S-s_{i}}}\varepsilon_{S-s_{i}}\text{ for }S=\{s_{1},\ldots,s_{k}\}.

The resolution 𝐓{\mathbf{T}} is highly non-minimal, but is always a resolution for any monomial ideal II.

Example 2.2.

Let Q=𝕜[x,y,z]Q=\mathbbm{k}[x,y,z] and I=xy,xz,yzI=\langle xy,xz,yz\rangle. The Taylor resolution of Q/IQ/I over QQ is given by

0Q(3)τ3Q(3)3τ2Q(2)3τ1Q00\rightarrow Q(-3)\xrightarrow{\tau_{3}}Q(-3)^{3}\xrightarrow{\tau_{2}}Q(-2)^{3}\xrightarrow{\tau_{1}}Q\rightarrow 0

where we label and order the basis elements as follows:

  1. (1)

    basis for T0=QT_{0}=Q: {ε}\{{\varepsilon}_{\emptyset}\}

  2. (2)

    basis for T1=Q(2)3T_{1}=Q(-2)^{3}: {ε1,ε2,ε3}\{{\varepsilon}_{1},{\varepsilon}_{2},{\varepsilon}_{3}\}

  3. (3)

    basis for T2=Q(3)3T_{2}=Q(-3)^{3}: {ε12,ε13,ε23}\{{\varepsilon}_{12},{\varepsilon}_{13},{\varepsilon}_{23}\}

  4. (4)

    basis for T3=Q(3)T_{3}=Q(-3): {ε123}\{{\varepsilon}_{123}\}.

The differentials for 𝐓{\mathbf{T}} are

τ1={blockarray}4>c<1&23{block}[3r]>l<xyxzyz,τ2={blockarray}4>c<12&1323{block}[3r]>l<zz01y0y20xx3, and τ3={blockarray}2>c<123{block}[r]>l<1&12113123.\tau_{1}=\blockarray{*{4}{>{\scriptstyle}c}<{}}1&23\\ \block{[*{3}r]>{\scriptstyle}l<{}}xyxzyz\emptyset\\ ,\>\tau_{2}=\blockarray{*{4}{>{\scriptstyle}c}<{}}12&1323\\ \block{[*{3}r]>{\scriptstyle}l<{}}zz01\\ -y0y2\\ 0-x-x3\\ ,\text{ and }\tau_{3}=\blockarray{*{2}{>{\scriptstyle}c}<{}}123\\ \block{[r]>{\scriptstyle}l<{}}1&12\\ -113\\ 123\\ .

2.2. A System of Homotopies

Let 𝔞=a1,,ac{\mathfrak{a}}={\langle a_{1},\ldots,a_{c}\rangle} be generated by a regular sequence a1,,aca_{1},\ldots,a_{c} in QQ and R=Q/𝔞R=Q/{\mathfrak{a}}. The following definitions and constructions are due to Shamash [Sha69] in the c=1c=1 case, and to Eisenbud [Eis80, Eis77] when c2c\geq 2. We give a summary of the necessary background with some finer details omitted to suit our particular setting; a full treatment can be found in [Avr98, Chapter 3] [EP16, Section 4.1].

Definition 2.3.

Let 𝐆{\mathbf{G}} be a complex of free QQ-modules. Let 𝐮=(u1,,uc){\mathbf{u}}=(u_{1},\ldots,u_{c}), where each ui0u_{i}\geq 0 is an integer; use 𝐞t{\mathbf{e}_{t}} to denote the ttth standard basis vector of length cc and 𝟎{\mathbf{0}} to denote the zero vector. Set |𝐮|=iui|{\mathbf{u}}|=\sum_{i}u_{i}. A system of higher homotopies σ\sigma for a1,,aca_{1},\ldots,a_{c} on 𝐆{\mathbf{G}} is a collection of maps

σ𝐮:𝐆𝐆[2|𝐮|+1]\sigma_{\mathbf{u}}:{\mathbf{G}}\rightarrow{\mathbf{G}}[-2|{\mathbf{u}}|+1]

on the modules in 𝐆{\mathbf{G}} where the three following conditions are satisfied:

  1. (i)

    σ𝟎\sigma_{\mathbf{0}} is the differential on 𝐆{\mathbf{G}},

  2. (ii)

    for each j[c]j\in[c], the map σ𝟎σ𝐞j+σ𝐞jσ𝟎\sigma_{\mathbf{0}}\sigma_{\mathbf{e}_{j}}+\sigma_{\mathbf{e}_{j}}\sigma_{\mathbf{0}} is multiplication by aja_{j} on 𝐆{\mathbf{G}}, and

  3. (iii)

    if |𝐮|2|{\mathbf{u}}|\geq 2, then

    𝐛+𝐛=𝐮σ𝐛σ𝐛=0.\sum\limits_{{\mathbf{b}}+{\mathbf{b}}^{\prime}={\mathbf{u}}}\sigma_{\mathbf{b}}\sigma_{{\mathbf{b}}^{\prime}}=0.
Construction 2.4.

Consider the divided power algebra Q{y1,,yc}Qy1(i1)y2(i2)yc(ic)Q\{y_{1},\ldots,y_{c}\}\cong\oplus Qy_{1}^{(i_{1})}y_{2}^{(i_{2})}\cdots y_{c}^{(i_{c})} on variables y1,,ycy_{1},\ldots,y_{c} of degree 22, and the polynomial ring Q[t1,,tc]Q[t_{1},\ldots,t_{c}], where we treat the monomials in Q{y1,,yc}Q\{y_{1},\ldots,y_{c}\} and in Q[t1,,tc]Q[t_{1},\ldots,t_{c}] as dual to each other. In this way, we can prescribe an action of Q[t1,,tc]Q[t_{1},\ldots,t_{c}] on Q{y1,,yc}Q\{y_{1},\ldots,y_{c}\} by

tjyj(i)=yj(i1).t_{j}y_{j}^{(i)}=y_{j}^{(i-1)}.

For a system of homotopies σ\sigma on 𝐆{\mathbf{G}}, the graded free RR-module

Φ(𝐆)Q{y1,,yc}𝐆R\Phi({\mathbf{G}})\coloneqq Q\{y_{1},\ldots,y_{c}\}\otimes{\mathbf{G}}\otimes R

with differential

φt𝐮σ𝐮R\varphi\coloneqq\sum t^{\mathbf{u}}\otimes\sigma_{\mathbf{u}}\otimes R

is called the Shamash construction or Eisenbud–Shamash construction.

Theorem 2.5.

[Sha69, Eis80] If 𝐆{\mathbf{G}} is a QQ-free resolution of a finitely generated module NN, then Φ(𝐆)\Phi({\mathbf{G}}) is an RR-free resolution of NN.

More information on divided power algebras can be found in [Eis95, Appendix 2]. For the reader who is satisfied to restrict to the characteristic zero case, the divided power algebra and the symmetric algebra behave roughly equivalently.

Example 2.6.

Let Q=𝕜[x1,x2]Q=\mathbbm{k}[x_{1},x_{2}] and R=Q/x15R=Q/{\langle x_{1}^{5}\rangle}. We will use the Shamash construction to write a (minimal) resolution of R/x12,x22R/{\langle x_{1}^{2},x_{2}^{2}\rangle}. The Taylor resolution

𝐓:0Q(4)τ2Q(2)2τ1Q0{\mathbf{T}}:0\rightarrow Q(-4)\xrightarrow{\tau_{2}}Q(-2)^{2}\xrightarrow{\tau_{1}}Q\rightarrow 0

resolves Q/x12,x22Q/{\langle x_{1}^{2},x_{2}^{2}\rangle} minimally. The maps

σ1,0:Q[x130]Q(2)2 and σ1,1:Q(2)2[0x13]Q(4)\sigma_{1,0}:Q\xrightarrow{{\left[\begin{array}[]{c}x_{1}^{3}\\ 0\end{array}\right]}}Q(-2)^{2}\quad\text{ and }\quad\sigma_{1,1}:Q(-2)^{2}\xrightarrow{{\left[\begin{array}[]{cc}0&-x_{1}^{3}\end{array}\right]}}Q(-4)

form a system of homotopies on 𝐆{\mathbf{G}} for x5x^{5}, though from here on out, we will drop the first index from the subscript to avoid notational clutter. Identifying Q(d)RQ(-d)\otimes R with R(d)R(-d), we construct the Shamash resolution of Q/x12,x22Q/{\langle x_{1}^{2},x_{2}^{2}\rangle} as an RR-module:

Qy(2)RQy(1)R(4)[σ0τ2]Qy(1)R(2)2[τ1σ1]Qy(1)RQR(4)[σ0τ2]QR(2)2[τ1]QR0\cdots\rightarrow\begin{array}[]{c}Qy^{(2)}\otimes R\\ \bigoplus\\ Qy^{(1)}\otimes R(-4)\end{array}\xrightarrow{{\left[\begin{array}[]{c|c}\sigma_{0}&\tau_{2}\end{array}\right]}}Qy^{(1)}\otimes R(-2)^{2}\xrightarrow{{\left[\begin{array}[]{c}\tau_{1}\\ \hline\cr\sigma_{1}\end{array}\right]}}\begin{array}[]{c}Qy^{(1)}\otimes R\\ \bigoplus\\ Q\otimes R(-4)\end{array}\xrightarrow{{\left[\begin{array}[]{c|c}\sigma_{0}&\tau_{2}\end{array}\right]}}Q\otimes R(-2)^{2}\xrightarrow{{\left[\begin{array}[]{c}\tau_{1}\end{array}\right]}}Q\otimes R\rightarrow 0

Note that Qy(d)R(k)Qy^{(d)}\otimes R(-k) can be identified with R(5dk)R(-5d-k), so we could in fact rewrite the constituent modules in the resolution above as R(5i+1)R(5i)R(-5i+1)\oplus R(-5i) in homological degrees 2i2i and R(5i+3)2R(-5i+3)^{2} in homological degrees 2i12i-1, when i>0i>0.

More generally, if deg(aj)=dj\deg(a_{j})=d_{j}, then we can identify Qy1(p1)y2(p2)yc(pc)Q(k)RQy_{1}^{(p_{1})}y_{2}^{(p_{2})}\cdots y_{c}^{(p_{c})}\otimes Q(-k)\otimes R with R(ki=1cpidi)R(-k-\sum\limits_{i=1}^{c}p_{i}d_{i}) in the Shamash construction to obtain the correct twist.

3. Taylor Resolutions Over Complete Intersections

Let I=m1,,mrI={\langle m_{1},\ldots,m_{r}\rangle} be a monomial ideal in QQ and 𝔞=a1,,ac{\mathfrak{a}}={\langle a_{1},\ldots,a_{c}\rangle} be generated by a regular sequence in QQ with 𝔞I{\mathfrak{a}}\subseteq I. This means that each ai=fi,1m1++fi,rmra_{i}=f_{i,1}m_{1}+\cdots+f_{i,r}m_{r} for some f1,,frQf_{1},\ldots,f_{r}\in Q, though such an expression is not inherently unique without first fixing a monomial ordering on QQ. Once these fi,j{f_{i,j}} are fixed, the following construction will produce a system σ\sigma of higher homotopies for a1,,aca_{1},\ldots,a_{c} on 𝐓{\mathbf{T}}, where 𝐓{\mathbf{T}} is the Taylor resolution of Q/IQ/I.

Definition 3.1.

Let 𝐮=(u1,,uc){\mathbf{u}}=(u_{1},\ldots,u_{c}), where each ui0u_{i}\geq 0 is an integer; use 𝐞i{\mathbf{e}_{i}} to denote the iith standard vector of length cc and 𝟎{\mathbf{0}} to denote the zero vector. Set |𝐮|=iui|{\mathbf{u}}|=\sum_{i}u_{i}. Define a system of maps

σu:𝐓𝐓[2|𝐮|+1]\sigma_{u}:{\mathbf{T}}\rightarrow{\mathbf{T}}[-2|{\mathbf{u}}|+1]

in the following way:

  • for S={s1,,sk}[r]S=\{s_{1},\ldots,s_{k}\}\subseteq[r],

    σ𝟎(εS)=siS(1)kimSmSsiεSsi,\sigma_{\mathbf{0}}({\varepsilon_{S}})=\sum\limits_{s_{i}\in S}(-1)^{k-i}\frac{m_{S}}{m_{S-s_{i}}}\varepsilon_{S-s_{i}},

    that is, σ𝟎=τ\sigma_{\mathbf{0}}=\tau,

  • for S={s1,,sk}[r]S=\{s_{1},\ldots,s_{k}\}\subseteq[r] and S¯=[r]S{\overline{S}}=[r]-S,

    σ𝐞i(εS)=tS¯(1)kpt,S1fi,tmtmSmStεSt\sigma_{\mathbf{e}_{i}}({\varepsilon_{S}})=\sum\limits_{t\in{\overline{S}}}(-1)^{k-p_{t,S}-1}\frac{f_{i,t}m_{t}m_{S}}{m_{S\cup t}}{\varepsilon_{S\cup t}}

    where pt,Sp_{t,S} is the position of tt in St{S\cup t}, that is, St={s1,,spt,S1,t,spt,S,,sk}{S\cup t}=\{s_{1},\ldots,s_{p_{t,S}-1},t,s_{p_{t,S}},\ldots,s_{k}\},

  • and

    σ𝐮=0\sigma_{\mathbf{u}}=0

    for all other 𝐮c{\mathbf{u}}\in\mathbbm{N}^{c}, i.e. if |𝐮|2|{\mathbf{u}}|\geq 2.

Theorem 3.2.

The maps σ\sigma given in Definition 3.1 form a system of higher homotopies for a1,,aca_{1},\ldots,a_{c} on the Taylor complex 𝐓{\mathbf{T}}. Therefore, when the Shamash construction is applied to the system of higher homotopies for a1,,aca_{1},\ldots,a_{c} on 𝐓{\mathbf{T}}, these maps furnish a resolution Φ\Phi of R/IR/I.

The existence of a system of higher homotopies is guaranteed by [Sha69, Eis80] Eisenbud and Shamash, so the main content of the theorem is, first, that no higher homotopies are necessary with the proposed σ𝐞i\sigma_{\mathbf{e}_{i}}, and, second, that the terms in the differentials are a simple combination of the fi,jf_{i,j} and, as in the Taylor resolution, a ratio of LCMs of the mim_{i}. Therefore, once expressions for the aja_{j} in terms of the mim_{i} are chosen, the resulting resolution is extremely computable and completely prescribed – no further choices are necessary. In the hypersurface case, this resolution automatically produces a matrix factorization that can be stated purely combinatorially, just in terms of subsets and least common multiples. Some overlap can be found in [Iye97] and [AB00], but the result here uses different, less technical methods to provide more combinatorially-minded results.

Proof.

The proof method is straightforward: the three criteria from Definition 2.3 must be checked.

(i) is satisfied by the definition of σ𝟎\sigma_{\mathbf{0}}.

To check (iii), first note that σ𝐛σ𝐛=0\sigma_{\mathbf{b}}\sigma_{{\mathbf{b}}^{\prime}}=0 if 𝐛+𝐛>2{\mathbf{b}}+{\mathbf{b}}^{\prime}>2, since, in this case, at least one of |𝐛|,|𝐛|>2|{\mathbf{b}}|,|{\mathbf{b}}^{\prime}|>2. Therefore the only time that 𝐛+𝐛=𝐮σ𝐛σ𝐛\sum\limits_{{\mathbf{b}}+{\mathbf{b}}^{\prime}={\mathbf{u}}}\sigma_{\mathbf{b}}\sigma_{{\mathbf{b}}^{\prime}} is not trivially zero is when |𝐮|=2|{\mathbf{u}}|=2. This occurs in two cases: when 𝐮=2𝐞i{\mathbf{u}}=2{\mathbf{e}_{i}} and when 𝐮=𝐞i+𝐞j{\mathbf{u}}={\mathbf{e}_{i}}+{\mathbf{e}_{j}}.

In the case when 𝐮=2𝐞i{\mathbf{u}}=2{\mathbf{e}_{i}}, we have

𝐛+𝐛=2𝐞iσ𝐛σ𝐛=σ2𝐞iσ𝟎+σ𝐞iσ𝐞i+σ𝟎σ2𝐞i=σ𝐞iσ𝐞i,\sum\limits_{{\mathbf{b}}+{\mathbf{b}}^{\prime}=2{\mathbf{e}_{i}}}\sigma_{\mathbf{b}}\sigma_{{\mathbf{b}}^{\prime}}=\sigma_{2{\mathbf{e}_{i}}}\sigma_{\mathbf{0}}+\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{i}}+\sigma_{\mathbf{0}}\sigma_{2{\mathbf{e}_{i}}}=\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{i}},

so we must check that σ𝐞iσ𝐞i=0\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{i}}=0. Indeed, we see that

σ𝐞i(σ𝐞i(εS))\displaystyle\sigma_{\mathbf{e}_{i}}(\sigma_{\mathbf{e}_{i}}({\varepsilon_{S}})) =σ𝐞i(tS¯(1)kpt,S1fi,tmtmSmStεSt)\displaystyle=\sigma_{\mathbf{e}_{i}}\left(\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{i,t}}m_{t}m_{S}}{m_{S\cup t}}{\varepsilon_{S\cup t}}\right)
=tS¯(1)kpt,S1fi,tmtmSmStσ𝐞i(εSt)\displaystyle=\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{i,t}}m_{t}m_{S}}{m_{S\cup t}}\sigma_{\mathbf{e}_{i}}({\varepsilon_{S\cup t}})
=tS¯(1)kpt,S1fi,tmtmSmSt(qSt¯(1)k+1pq,St1fi,qmStmqmStqεStq)\displaystyle=\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{i,t}}m_{t}m_{S}}{m_{S\cup t}}\left(\sum\limits_{q\in{\overline{S\cup t}}}(-1)^{k+1-p_{q,{S\cup t}}-1}\frac{{f_{i,q}}m_{S\cup t}m_{q}}{m_{S\cup t\cup q}}{\varepsilon}_{S\cup t\cup q}\right)
=tS¯qSt¯(1)pt,Spq,St1fi,tfi,qmtmqmSmStqεStq\displaystyle=\sum\limits_{t\in{\overline{S}}}\sum\limits_{q\in{\overline{S\cup t}}}(-1)^{-{p_{t,S}}-p_{q,{S\cup t}}-1}\frac{{f_{i,t}}{f_{i,q}}m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon}_{S\cup t\cup q}
=t<qt,qS¯((1)pt,Spq,St1+(1)pq,Spt,Sq1)fi,tfi,qmtmqmSmStqεStq.\displaystyle=\sum\limits_{\begin{subarray}{c}t<q\\ t,q\in{\overline{S}}\end{subarray}}\left((-1)^{-{p_{t,S}}-p_{q,{S\cup t}}-1}+(-1)^{-{p_{q,S}}-p_{t,{S\cup q}}-1}\right)\frac{{f_{i,t}}{f_{i,q}}m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon}_{S\cup t\cup q}.

Because t<qt<q, we have that pt,Sq=pt,Sp_{t,{S\cup q}}={p_{t,S}} but pq,St=pq,S+1p_{q,{S\cup t}}={p_{q,S}}+1, so we can adjust the final sum to

t<qt,qS¯((1)pt,S(pq,S+1)1+(1)pq,Spt,S1)fi,tfi,qmtmqmSmStqεStq,\sum\limits_{\begin{subarray}{c}t<q\\ t,q\in{\overline{S}}\end{subarray}}\left((-1)^{-{p_{t,S}}-(p_{q,S}+1)-1}+(-1)^{-{p_{q,S}}-p_{t,S}-1}\right)\frac{{f_{i,t}}{f_{i,q}}m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon}_{S\cup t\cup q},

which then reduces to 0.

In the case when 𝐮=𝐞i+𝐞j{\mathbf{u}}={\mathbf{e}_{i}}+{\mathbf{e}_{j}}, we have

𝐛+𝐛=𝐞i+𝐞jσ𝐛σ𝐛=σ𝐞i+𝐞jσ𝟎+σ𝐞iσ𝐞j+σ𝐞jσ𝐞i+σ𝟎σ𝐞i+𝐞j=σ𝐞iσ𝐞j+σ𝐞jσ𝐞i,\sum\limits_{{\mathbf{b}}+{\mathbf{b}}^{\prime}={\mathbf{e}_{i}}+{\mathbf{e}_{j}}}\sigma_{\mathbf{b}}\sigma_{{\mathbf{b}}^{\prime}}=\sigma_{{\mathbf{e}_{i}}+{\mathbf{e}_{j}}}\sigma_{\mathbf{0}}+\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{j}}+\sigma_{\mathbf{e}_{j}}\sigma_{\mathbf{e}_{i}}+\sigma_{\mathbf{0}}\sigma_{{\mathbf{e}_{i}}+{\mathbf{e}_{j}}}=\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{j}}+\sigma_{\mathbf{e}_{j}}\sigma_{\mathbf{e}_{i}},

so we must check that σ𝐞iσ𝐞j+σ𝐞jσ𝐞i=0\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{j}}+\sigma_{\mathbf{e}_{j}}\sigma_{\mathbf{e}_{i}}=0. First we see that

σ𝐞i(σ𝐞j(εS))\displaystyle\sigma_{\mathbf{e}_{i}}(\sigma_{\mathbf{e}_{j}}({\varepsilon_{S}})) =σ𝐞i(tS¯(1)kpt,S1fj,tmtmSmStεSt)\displaystyle=\sigma_{\mathbf{e}_{i}}\left(\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t}}{\varepsilon_{S\cup t}}\right)
=tS¯(1)kpt,S1fj,tmtmSmStσ𝐞i(εSt)\displaystyle=\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t}}\sigma_{\mathbf{e}_{i}}({\varepsilon_{S\cup t}})
=tS¯(1)kpt,S1fj,tmtmSmSt(qSt¯(1)k+1pq,St1fi,qmqmStmStqεStq)\displaystyle=\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t}}\left(\sum\limits_{q\in{\overline{S\cup t}}}(-1)^{k+1-{p_{q,S\cup t}}-1}\frac{{f_{i,q}}m_{q}m_{S\cup t}}{m_{S\cup t\cup q}}{\varepsilon}_{S\cup t\cup q}\right)
=tS¯qSt¯(1)pt,Spq,St1fj,tfi,qmtmqmSmStqεStq\displaystyle=\sum\limits_{t\in{\overline{S}}}\sum\limits_{q\in{\overline{S\cup t}}}(-1)^{-{p_{t,S}}-{p_{q,S\cup t}}-1}\frac{{f_{j,t}}{f_{i,q}}m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon_{S\cup t\cup q}}
=t<qt,qS¯((1)pt,Spq,St1fj,tfi,q+(1)pq,Spt,Sq1fj,qfi,t)mtmqmSmStqεStq\displaystyle=\sum\limits_{\begin{subarray}{c}t<q\\ t,q\in{\overline{S}}\end{subarray}}\left((-1)^{-{p_{t,S}}-{p_{q,S\cup t}}-1}{f_{j,t}}{f_{i,q}}+(-1)^{-{p_{q,S}}-{p_{t,S\cup q}}-1}{f_{j,q}}{f_{i,t}}\right)\frac{m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon_{S\cup t\cup q}}
=t<qt,qS¯((1)pt,S(pq,S+1)1fj,tfi,q+(1)pq,Spt,S1fj,qfi,t)mtmqmSmStqεStq\displaystyle=\sum\limits_{\begin{subarray}{c}t<q\\ t,q\in{\overline{S}}\end{subarray}}\left((-1)^{-{p_{t,S}}-({p_{q,S}}+1)-1}{f_{j,t}}{f_{i,q}}+(-1)^{-{p_{q,S}}-{p_{t,S}}-1}{f_{j,q}}{f_{i,t}}\right)\frac{m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon_{S\cup t\cup q}}
=t<qt,qS¯(1)pt,Spq,S(fj,tfi,qfj,qfi,t)mtmqmSmStqεStq.\displaystyle=\sum\limits_{\begin{subarray}{c}t<q\\ t,q\in{\overline{S}}\end{subarray}}(-1)^{-{p_{t,S}}-{p_{q,S}}}\left({f_{j,t}}{f_{i,q}}-{f_{j,q}}{f_{i,t}}\right)\frac{m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon_{S\cup t\cup q}}.

A similar computation shows that

σ𝐞j(σ𝐞i(εS))\displaystyle\sigma_{\mathbf{e}_{j}}(\sigma_{\mathbf{e}_{i}}({\varepsilon_{S}})) =t<qt,qS¯(1)pt,Spq,S(fi,tfj,qfj,tfi,q)mtmqmSmStqεStq.\displaystyle=\sum\limits_{\begin{subarray}{c}t<q\\ t,q\in{\overline{S}}\end{subarray}}(-1)^{-{p_{t,S}}-{p_{q,S}}}\left({f_{i,t}}{f_{j,q}}-{f_{j,t}}{f_{i,q}}\right)\frac{m_{t}m_{q}m_{S}}{m_{S\cup t\cup q}}{\varepsilon_{S\cup t\cup q}}.

Combining the two computations, we see that σ𝐞iσ𝐞j+σ𝐞jσ𝐞i=0\sigma_{\mathbf{e}_{i}}\sigma_{\mathbf{e}_{j}}+\sigma_{\mathbf{e}_{j}}\sigma_{\mathbf{e}_{i}}=0.

It remains to check (ii). We compute

σ𝟎(σ𝐞j(εS))\displaystyle\sigma_{\mathbf{0}}(\sigma_{\mathbf{e}_{j}}({\varepsilon_{S}})) =σ𝟎(tS¯(1)kpt,S1fj,tmtmSmStεSt)\displaystyle=\sigma_{\mathbf{0}}\left(\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t}}{\varepsilon_{S\cup t}}\right)
=tS¯(1)kpt,S1fj,tmtmSmStσ𝟎(εSt)\displaystyle=\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t}}\sigma_{\mathbf{0}}\left({\varepsilon_{S\cup t}}\right)
=tS¯(1)kpt,S1fj,tmtmSmSt(si<tsiSt(1)k+1imStmStsiεStsi\displaystyle=\sum\limits_{t\in{\overline{S}}}(-1)^{k-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t}}\left(\sum\limits_{\begin{subarray}{c}s_{i}<t\\ s_{i}\in{S\cup t}\end{subarray}}(-1)^{k+1-i}\frac{m_{S\cup t}}{m_{S\cup t-s_{i}}}{\varepsilon}_{S\cup t-s_{i}}\right.
+(1)k+1pt,SmStmSεS+si>tsiSt(1)k+1(i+1)mStmStsiεStsi)\displaystyle\hskip 90.3375pt\left.+(-1)^{k+1-{p_{t,S}}}\frac{m_{S\cup t}}{m_{S}}{\varepsilon_{S}}+\sum\limits_{\begin{subarray}{c}s_{i}>t\\ s_{i}\in{S\cup t}\end{subarray}}(-1)^{k+1-(i+1)}\frac{m_{S\cup t}}{m_{S\cup t-s_{i}}}{\varepsilon}_{S\cup t-s_{i}}\right)
=(tS¯si<tsiS(1)pt,Sifj,tmtmSmStsi)+tS¯fj,tmtεS+\displaystyle=\left(\sum\limits_{t\in{\overline{S}}}\sum\limits_{\begin{subarray}{c}s_{i}<t\\ s_{i}\in S\end{subarray}}(-1)^{-{p_{t,S}}-i}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t-s_{i}}}\right)+\sum\limits_{t\in{\overline{S}}}{f_{j,t}}m_{t}{\varepsilon_{S}}+
+(tS¯si>tsiS(1)pt,Si1fj,tmtmSmStsiεStsi)\displaystyle\hskip 90.3375pt+\left(\sum\limits_{t\in{\overline{S}}}\sum\limits_{\begin{subarray}{c}s_{i}>t\\ s_{i}\in S\end{subarray}}(-1)^{-{p_{t,S}}-i-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S\cup t-s_{i}}}{\varepsilon}_{S\cup t-s_{i}}\right)

Similarly we can see that

σ𝐞j(σ𝟎(εS))\displaystyle\sigma_{\mathbf{e}_{j}}(\sigma_{\mathbf{0}}({\varepsilon_{S}})) =(siSt<sitS¯(1)ipt,Sfj,tmtmSmSsitεSsit)+siSfj,simsiεS\displaystyle=\left(\sum\limits_{s_{i}\in S}\sum\limits_{\begin{subarray}{c}t<s_{i}\\ t\in{\overline{S}}\end{subarray}}(-1)^{-i-{p_{t,S}}}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S-s_{i}\cup t}}{\varepsilon}_{S-s_{i}\cup t}\right)+\sum\limits_{s_{i}\in S}f_{j,s_{i}}m_{s_{i}}{\varepsilon_{S}}
+(siSt>sitS¯(1)ipt,S1fj,tmtmSmSsitεSsit).\displaystyle\hskip 90.3375pt+\left(\sum\limits_{s_{i}\in S}\sum\limits_{\begin{subarray}{c}t>s_{i}\\ t\in{\overline{S}}\end{subarray}}(-1)^{-i-{p_{t,S}}-1}\frac{{f_{j,t}}m_{t}m_{S}}{m_{S-s_{i}\cup t}}{\varepsilon}_{S-s_{i}\cup t}\right).

Adding the two expressions together, we see that the parenthesized double sums cancel, and we are left with

σ𝟎(σ𝐞j(εS))+σ𝐞j(σ𝟎(εS))=tS¯fj,tmtεS+siSfj,simsiεS=i=1rfj,imiεS=ajεS.\sigma_{\mathbf{0}}(\sigma_{\mathbf{e}_{j}}({\varepsilon_{S}}))+\sigma_{\mathbf{e}_{j}}(\sigma_{\mathbf{0}}({\varepsilon_{S}}))=\sum\limits_{t\in{\overline{S}}}{f_{j,t}}m_{t}{\varepsilon_{S}}+\sum\limits_{s_{i}\in S}f_{j,s_{i}}m_{s_{i}}{\varepsilon_{S}}=\sum\limits_{i=1}^{r}f_{j,i}m_{i}{\varepsilon_{S}}=a_{j}{\varepsilon_{S}}.

A few remarks should be made about the resolution 𝐅{\mathbf{F}}. Due to its origin in the Taylor resolution, 𝐅{\mathbf{F}} is universal for all monomial ideals II in QQ containing 𝔞{\mathfrak{a}}. The same uniformity that characterizes the Taylor resolution is also present in 𝐅{\mathbf{F}} – these resolutions for two ideals generated by rr monomials will have the same ranks in all their free modules. However, this provides a quick bound to the Betti numbers of II. This bound could be calculated without explicit knowledge of the homotopies (see [Avr98, Proposition 3.3.5]) but, for the sake of completeness, we include the specific computation here.

Corollary 3.3.

The total Betti numbers βi\beta_{i} of R/IR/I for a monomial ideal II in a complete intersection RR satisfy the inequality

β2mj=0m(r2j)(c+mj1c1) and β2m+1j=0m(r2j+1)(c+mj1c1).\beta_{2m}\leq\sum\limits_{j=0}^{m}\binom{r}{2j}\binom{c+m-j-1}{c-1}\quad\text{ and }\quad\beta_{2m+1}\leq\sum\limits_{j=0}^{m}\binom{r}{2j+1}\binom{c+m-j-1}{c-1}.
Proof.

This follows from a quick rank calculation of the modules in FF in the even and odd cases. To wit,

F2m=j=0|𝐮|=mjmQ𝐲(𝐮)T2jR,F_{2m}=\bigoplus\limits_{\begin{subarray}{c}j=0\\ |{\mathbf{u}}|=m-j\end{subarray}}^{m}Q\mathbf{y}^{(\mathbf{u})}\otimes T_{2j}\otimes R,

where we use multinomial notation 𝐲𝐮=y1(u1)yc(uc)\mathbf{y}^{\mathbf{u}}=y_{1}^{(u_{1})}\cdots y_{c}^{(u_{c})}. Since rankT2j=(r2j)\operatorname{rank}T_{2j}=\binom{r}{2j} and there are (c+mj1c1)\binom{c+m-j-1}{c-1} monomials of degree mjm-j in the yy’s, we can see that

rankF2m=j=0m(r2j)(c+mj1c1),\operatorname{rank}F_{2m}=\sum\limits_{j=0}^{m}\binom{r}{2j}\binom{c+m-j-1}{c-1},

which immediately gives the bound for β2m\beta_{2m}. The bound for β2m+1\beta_{2m+1} can be found analogously. ∎

Remark 3.4.

Per [Avr98, Remark (p.33)], the minimality of 𝐅{\mathbf{F}} is closely linked to the minimality of 𝐓{\mathbf{T}}, with an extra caveat: 𝐅{\mathbf{F}} is minimal if and only if 𝐓{\mathbf{T}} is minimal and 𝔞𝔪I{\mathfrak{a}}\subseteq{\mathfrak{m}}I. In our particular maps, the necessity that fi,j𝔪{f_{i,j}}\in{\mathfrak{m}} comes from

σ𝐞i(ε)=t=1r(1)011fi,tmtmmtεt=t=1rfi,tεt.\sigma_{\mathbf{e}_{i}}({\varepsilon}_{\emptyset})=\sum\limits_{t=1}^{r}(-1)^{0-1-1}\frac{{f_{i,t}}m_{t}m_{\emptyset}}{m_{t}}{\varepsilon}_{t}=\sum\limits_{t=1}^{r}{f_{i,t}}{\varepsilon}_{t}.

Since the fi,t{f_{i,t}} appear as entries in the maps of 𝐅{\mathbf{F}}, they must be in 𝔪{\mathfrak{m}} for 𝐅{\mathbf{F}} to be minimal. On the other hand, the coefficient of εSt{\varepsilon_{S\cup t}} in σ𝐞i(εS)\sigma_{\mathbf{e}_{i}}({\varepsilon_{S}}) is always a multiple of fi,t{f_{i,t}}, so fi,t𝔪{f_{i,t}}\in{\mathfrak{m}} is enough to ensure that 𝐅{\mathbf{F}} is minimal.

Example 3.5 (Resolution of the Ground Field).

When I=x1,,xnI={\langle x_{1},\ldots,x_{n}\rangle}, 𝐅{\mathbf{F}} recovers the Tate complex [Tat57] resolving 𝕜\mathbbm{k} over RR, since the Taylor resolution coincides with the Koszul resolution of 𝕜\mathbbm{k}, and the Tate resolution can be obtained by applying the Shamash construction to the Koszul complex. By Remark 3.4, the resolution is minimal, assuming degai>1\deg a_{i}>1 for a1,,aca_{1},\ldots,a_{c}.

Example 3.6 (Resolution of 𝔪b{\mathfrak{m}}^{b}).

If 𝔞{\mathfrak{a}} is a regular sequence of degree dd, then 𝐅{\mathbf{F}} gives a resolution of 𝔪b{\mathfrak{m}}^{b} for any power 1bd1\leq b\leq d. This resolution is nonminimal when b2b\geq 2, since in this case the Taylor resolution does not minimally resolve 𝔪b{\mathfrak{m}}^{b} over QQ.

The simplest case is when 𝔞{\mathfrak{a}} is generated by a single monomial aa. Here, at least one of the mim_{i} in II must divide aa, but it is more interesting to examine a case when more than one mim_{i} divides aa to see how the choice of expressing aa in terms of the mim_{i} affects the homotopy.

Example 3.7 (Codimension 11 Monomial 𝔞{\mathfrak{a}} Case).

Let Q=𝕜[x,y,z]Q=\mathbbm{k}[x,y,z], a=xyza=xyz, and I=xy,xz,yzI=\langle xy,xz,yz\rangle. The Taylor resolution of II over QQ is given in Example 2.2.

Writing xyz=zxy+0xz+0yzxyz=z\cdot xy+0\cdot xz+0\cdot yz, the homotopy σσ𝟏\sigma\coloneqq\sigma_{\mathbf{1}} has the following behavior:

σ0={blockarray}2>c<{block}[r]>l<z&10203,σ1={blockarray}4>c<1&23{block}[3r]>l<0xz01200yz1300023, and σ2={blockarray}4>c<12&1323{block}[3r]>l<00xyz123\sigma_{0}=\blockarray{*{2}{>{\scriptstyle}c}<{}}\emptyset\\ \block{[r]>{\scriptstyle}l<{}}z&1\\ 02\\ 03\\ ,\>\sigma_{1}=\blockarray{*{4}{>{\scriptstyle}c}<{}}1&23\\ \block{[*{3}r]>{\scriptstyle}l<{}}0-xz012\\ 00-yz13\\ 00023\\ ,\text{ and }\sigma_{2}=\blockarray{*{4}{>{\scriptstyle}c}<{}}12&1323\\ \block{[*{3}r]>{\scriptstyle}l<{}}00xyz123\\

Therefore a resolution of II over RQ/aR\coloneqq Q/\langle a\rangle is

𝐅:φ5R(6)4φ4R(5)3R(3)φ3R(3)4φ2R(2)3φ1R0{\mathbf{F}}:\cdots\xrightarrow{\varphi_{5}}R(-6)^{4}\xrightarrow{\varphi_{4}}\begin{array}[]{c}R(-5)^{3}\\ \oplus\\ R(-3)\end{array}\xrightarrow{\varphi_{3}}R(-3)^{4}\xrightarrow{\varphi_{2}}R(-2)^{3}\xrightarrow{\varphi_{1}}R\rightarrow 0

where F2i=R(3i)4F_{2i}=R(-3i)^{4} and F2i1=R(3i+1)3R(3(i1))F_{2i-1}=R(-3i+1)^{3}\oplus R(-3(i-1)) for i2i\geq 2, the initial maps are

φ1={blockarray}4>c<1&23{block}[3r]>c<xyxzyz and φ2={blockarray}5>c<&121323{block}[r|3r]>c<zzz010y0y200xx3,\varphi_{1}=\blockarray{*{4}{>{\scriptstyle}c}<{}}1&23\\ \block{[*{3}r]>{\scriptstyle}c<{}}xyxzyz\emptyset\\ \text{ and }\varphi_{2}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}zzz01\\ 0-y0y2\\ 00-x-x3\\ ,

and the (non-minimal) tail of the resolution is periodic with maps

φ2i1={blockarray}5>c<1&23123{block}[3r|r]>c<xyxzyz0\BAhhline0xz011200yz113000123 and φ2i={blockarray}5>c<&121323{block}[r|3r]>c<zzz010y0y200xx3\BAhhline000xyz123\varphi_{2i-1}=\blockarray{*{5}{>{\scriptstyle}c}<{}}1&23123\\ \block{[*{3}r|r]>{\scriptstyle}c<{}}xyxzyz0\emptyset\\ \BAhhline{----}0-xz0112\\ 00-yz-113\\ 000123\\ \text{ and }\varphi_{2i}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}zzz01\\ 0-y0y2\\ 00-x-x3\\ \BAhhline{----}000xyz123\\

for i2i\geq 2.

The vertical lines in the maps are visual dividers indicating the origin of the constituent blocks (whether they come from σ𝟎\sigma_{\mathbf{0}} or σ𝟏\sigma_{\mathbf{1}}). Note that the domains of φ2i1\varphi_{2i-1} and φ2i\varphi_{2i} are indexed by the odd and even subsets of {1,2,3}\{1,2,3\} respectively. This division of domains into even and odd subsets will always appear in the tail of the resolution in the c=1c=1 case.

Note that writing xyz=0xy+yxz+0yzxyz=0\cdot xy+y\cdot xz+0\cdot yz, we get a different homotopy and therefore a resolution with the same modules as 𝐅{\mathbf{F}} but different differentials:

φ2={blockarray}5>c<&121323{block}[r|3r]>c<0zz01yy0y200xx3,φ2i1={blockarray}5>c<1&23123{block}[3r|r]>c<xyxzyz0\BAhhlinexy0011200011300yz123 and φ2i={blockarray}5>c<&121323{block}[r|3r]>c<0zz01yy0y200xx3\BAhhline00xyz0123\varphi^{\prime}_{2}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}0zz01\\ y-y0y2\\ 00-x-x3\\ ,\varphi^{\prime}_{2i-1}=\blockarray{*{5}{>{\scriptstyle}c}<{}}1&23123\\ \block{[*{3}r|r]>{\scriptstyle}c<{}}xyxzyz0\emptyset\\ \BAhhline{----}xy00112\\ 000-113\\ 00-yz123\\ \text{ and }\varphi^{\prime}_{2i}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}0zz01\\ y-y0y2\\ 00-x-x3\\ \BAhhline{----}00-xyz0123\\

for i2i\geq 2.

Finally, writing xyz=0xy+0xz+xyzxyz=0\cdot xy+0\cdot xz+x\cdot yz to yields a third resolution with maps

φ2′′={blockarray}5>c<&121323{block}[r|3r]>c<0zz010y0y2x0xx3,φ2i1′′={blockarray}5>c<1&23123{block}[3r|r]>c<xyxzyz0\BAhhline000112xy001130xz0123 and φ2i′′={blockarray}5>c<&121323{block}[r|3r]>c<0zz010y0y2x0xx3\BAhhline0xyz00123\varphi^{\prime\prime}_{2}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}0zz01\\ 0-y0y2\\ x0-x-x3\\ ,\varphi^{\prime\prime}_{2i-1}=\blockarray{*{5}{>{\scriptstyle}c}<{}}1&23123\\ \block{[*{3}r|r]>{\scriptstyle}c<{}}xyxzyz0\emptyset\\ \BAhhline{----}000112\\ xy00-113\\ 0xz0123\\ \text{ and }\varphi^{\prime\prime}_{2i}=\blockarray{*{5}{>{\scriptstyle}c}<{}}\emptyset&121323\\ \block{[r|*{3}r]>{\scriptstyle}c<{}}0zz01\\ 0-y0y2\\ x0-x-x3\\ \BAhhline{----}0xyz00123\\

for i2i\geq 2.

Examples 3.7 shows that the universality of 𝐓{\mathbf{T}} does not quite carry over; there are some choices to be made that change the form of the resolution 𝐅{\mathbf{F}}. However, characteristic of 𝕜\mathbbm{k} permitting, we can create a sort of “average homotopy” 13(σ+σ+σ′′)\frac{1}{3}(\sigma+\sigma^{\prime}+\sigma^{\prime\prime}), which is also a system of homotopies for xyzxyz on 𝐓{\mathbf{T}}, and liberates us from making a choice of how to express xyzxyz in terms of the generators of II. It is straightforward to check that a convex combination of systems of higher homotopies will also create a system of higher homotopies, so this averaging scheme can be generalized. The idea of taking an average of all possibilities to create a choice-free resolution also appears in [EMO19].

Example 3.8 (Codimension 11 Polynomial 𝔞{\mathfrak{a}} Case).

Take Q=𝕜[x,y]Q=\mathbbm{k}[x,y], I=x2,y2I={\langle x^{2},y^{2}\rangle}, and 𝔞=x2y+xy2{\mathfrak{a}}={\langle x^{2}y+xy^{2}\rangle}, so that f1,1=yf_{1,1}=y and f1,2=xf_{1,2}=x. Then the resolution of II over R=Q/𝔞R=Q/{\mathfrak{a}} is

𝐅:φ5R(6)R(7)φ4R(5)2φ3R(3)R(4)φ2R(2)2φ1R0{\mathbf{F}}:\cdots\xrightarrow{\varphi_{5}}R(-6)\oplus R(-7)\xrightarrow{\varphi_{4}}R(-5)^{2}\xrightarrow{\varphi_{3}}R(-3)\oplus R(-4)\xrightarrow{\varphi_{2}}R(-2)^{2}\xrightarrow{\varphi_{1}}R\rightarrow 0

where

φ1={blockarray}3>c<1&2{block}[2r]>c<x2y2,φ2i={blockarray}3>c<&12{block}[r|r]>c<yy21xx22, and φ2i+1={blockarray}3>c<1&2{block}[rr]>c<x2y2\BAhhlinexy12\varphi_{1}=\blockarray{*{3}{>{\scriptstyle}c}<{}}1&2\\ \block{[*{2}r]>{\scriptstyle}c<{}}x^{2}y^{2}\emptyset\\ ,\quad\varphi_{2i}=\blockarray{*{3}{>{\scriptstyle}c}<{}}\emptyset&12\\ \block{[r|r]>{\scriptstyle}c<{}}yy^{2}1\\ x-x^{2}2\\ ,\text{ and }\varphi_{2i+1}=\blockarray{*{3}{>{\scriptstyle}c}<{}}1&2\\ \block{[rr]>{\scriptstyle}c<{}}x^{2}y^{2}\emptyset\\ \BAhhline{--}x-y12\\

for i1i\geq 1.

Example 3.9 (Codimension 22 Polynomial 𝔞{\mathfrak{a}} Case).

Take Q=𝕜[x,y,z,w]Q=\mathbbm{k}[x,y,z,w], I=x2,y2,z2,w2I={\langle x^{2},y^{2},z^{2},w^{2}\rangle} and 𝔞=x3+y3,z3+w3{\mathfrak{a}}={\langle x^{3}+y^{3},z^{3}+w^{3}\rangle}. The homotopies for x3+y3x^{3}+y^{3} are

σ10,0={blockarray}2>c<{block}[r]>l<x&1y20304,σ10,1={blockarray}5>c<1&234{block}[4r]>l<yx001200x013000x1400y023000y24000034,σ10,2={blockarray}7>c<12&1314232434{block}[6r]>l<0y0x0012300y0x012400000x13400000y234,σ10,3={blockarray}5>c<123&124134234{block}[4r]>l<00yx1234,\sigma_{{10},0}=\blockarray{*{2}{>{\scriptstyle}c}<{}}\emptyset\\ \block{[r]>{\scriptstyle}l<{}}x&1\\ y2\\ 03\\ 04\\ ,\sigma_{{10},1}=\blockarray{*{5}{>{\scriptstyle}c}<{}}1&234\\ \block{[*{4}r]>{\scriptstyle}l<{}}y-x0012\\ 00-x013\\ 000-x14\\ 00-y023\\ 000-y24\\ 000034\\ ,\sigma_{{10},2}=\blockarray{*{7}{>{\scriptstyle}c}<{}}12&1314232434\\ \block{[*{6}r]>{\scriptstyle}l<{}}0-y0x00123\\ 00-y0x0124\\ 00000x134\\ 00000y234\\ ,\sigma_{{10},3}=\blockarray{*{5}{>{\scriptstyle}c}<{}}123&124134234\\ \block{[*{4}r]>{\scriptstyle}l<{}}00y-x1234\\ ,

while the homotopies for z3+w3z^{3}+w^{3} are

σ01,0={blockarray}2>c<{block}[r]>l<0&102z3w4,σ01,1={blockarray}5>c<1&234{block}[4r]>l<000012z00013w000140z00230w002400wz34,σ01,2={blockarray}7>c<12&1314232434{block}[6r]>l<z00000123w000001240wz000134000wz0234,σ01,3={blockarray}5>c<123&124134234{block}[4r]>l<wz001234.\sigma_{{01},0}=\blockarray{*{2}{>{\scriptstyle}c}<{}}\emptyset\\ \block{[r]>{\scriptstyle}l<{}}0&1\\ 02\\ z3\\ w4\\ ,\sigma_{{01},1}=\blockarray{*{5}{>{\scriptstyle}c}<{}}1&234\\ \block{[*{4}r]>{\scriptstyle}l<{}}000012\\ z00013\\ w00014\\ 0z0023\\ 0w0024\\ 00w-z34\\ ,\sigma_{{01},2}=\blockarray{*{7}{>{\scriptstyle}c}<{}}12&1314232434\\ \block{[*{6}r]>{\scriptstyle}l<{}}z00000123\\ w00000124\\ 0w-z000134\\ 000w-z0234\\ ,\sigma_{{01},3}=\blockarray{*{5}{>{\scriptstyle}c}<{}}123&124134234\\ \block{[*{4}r]>{\scriptstyle}l<{}}w-z001234\\ .

The modules in the resolution take the form

𝐅:φ6R(8)12R(9)8φ5R(6)3R(7)12R(8)φ4R(5)8R(6)4φ3R(3)2R(4)6φ2R(2)4φ1R0{\mathbf{F}}:\cdots\xrightarrow{\varphi_{6}}\begin{array}[]{c}R(-8)^{12}\\ \bigoplus\\ R(-9)^{8}\end{array}\xrightarrow{\varphi_{5}}\begin{array}[]{c}R(-6)^{3}\\ \bigoplus\\ R(-7)^{12}\\ \bigoplus\\ R(-8)\end{array}\xrightarrow{\varphi_{4}}\begin{array}[]{c}R(-5)^{8}\\ \bigoplus\\ R(-6)^{4}\end{array}\xrightarrow{\varphi_{3}}\begin{array}[]{c}R(-3)^{2}\\ \bigoplus\\ R(-4)^{6}\end{array}\xrightarrow{\varphi_{2}}R(-2)^{4}\xrightarrow{\varphi_{1}}R\rightarrow 0

and a schematic for the differentials is illustrated below. To save some notational hassle, we will shorten notation by using σ\sigma and σ~\widetilde{\sigma} for σ10\sigma_{10} and σ01\sigma_{01}, respectively. To visually distinguish the pieces, we color the blocks from τ\tau, σ\sigma, and σ~{\widetilde{\sigma}} with blue, orange, and red, respectively.

τ1\tau_{1}φ1=\varphi_{1}=σ0\sigma_{0}σ~0{\widetilde{\sigma}}_{0}τ2\tau_{2}φ2=\varphi_{2}=
σ0\sigma_{0}σ~0{\widetilde{\sigma}}_{0}τ2\tau_{2}σ0\sigma_{0}σ~0{\widetilde{\sigma}}_{0}τ2\tau_{2}σ2\sigma_{2}σ~2{\widetilde{\sigma}}_{2}τ4\tau_{4}φ4=\varphi_{4}=
τ1\tau_{1}σ1\sigma_{1}τ1\tau_{1}σ~1{\widetilde{\sigma}}_{1}τ3\tau_{3}φ3=\varphi_{3}=
τ1\tau_{1}τ1\tau_{1}τ1\tau_{1}σ1\sigma_{1}σ~1{\widetilde{\sigma}}_{1}τ3\tau_{3}σ1\sigma_{1}σ~1{\widetilde{\sigma}}_{1}τ3\tau_{3}σ3\sigma_{3}σ~3{\widetilde{\sigma}}_{3}φ5=\varphi_{5}=

References

  • [AB00] Luchezar L. Avramov and Ragnar-Olaf Buchweitz. Homological algebra modulo a regular sequence with special attention to codimension two. J. Algebra, 230(1):24–67, 2000.
  • [AE92] Luchezar L. Avramov and David Eisenbud. Regularity of modules over a Koszul algebra. J. Algebra, 153(1):85–90, 1992.
  • [AGP97] Luchezar L. Avramov, Vesselin N. Gasharov, and Irena V. Peeva. Complete intersection dimension. Inst. Hautes Études Sci. Publ. Math., (86):67–114 (1998), 1997.
  • [Ani82] David J. Anick. A counterexample to a conjecture of Serre. Ann. of Math. (2), 115(1):1–33, 1982.
  • [Avr89] L. L. Avramov. Modules of finite virtual projective dimension. Invent. Math., 96(1):71–101, 1989.
  • [Avr98] Luchezar L. Avramov. Infinite free resolutions. In Six lectures on commutative algebra (Bellaterra, 1996), volume 166 of Progr. Math., pages 1–118. Birkhäuser, Basel, 1998.
  • [BJ07] Alexander Berglund and Michael Jöllenbeck. On the Golod property of Stanley-Reisner rings. J. Algebra, 315(1):249–273, 2007.
  • [BS98] Dave Bayer and Bernd Sturmfels. Cellular resolutions of monomial modules. J. Reine Angew. Math., 502:123–140, 1998.
  • [BW02] E. Batzies and V. Welker. Discrete Morse theory for cellular resolutions. J. Reine Angew. Math., 543:147–168, 2002.
  • [Eis77] David Eisenbud. Enriched free resolutions and change of rings. In Séminaire d’Algèbre Paul Dubreil, 29ème année (Paris, 1975–1976), volume 586 of Lecture Notes in Math., pages 1–8. Springer, Berlin, 1977.
  • [Eis80] David Eisenbud. Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc., 260(1):35–64, 1980.
  • [Eis95] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
  • [EK90] Shalom Eliahou and Michel Kervaire. Minimal resolutions of some monomial ideals. J. Algebra, 129(1):1–25, 1990.
  • [EMO19] John Eagon, Ezra Miller, and Erika Ordog. Minimal resolutions of monomial ideals, 2019.
  • [EP16] David Eisenbud and Irena Peeva. Minimal free resolutions over complete intersections, volume 2152 of Lecture Notes in Mathematics. Springer, Cham, 2016.
  • [Frö75] Ralph Fröberg. Determination of a class of Poincaré series. Math. Scand., 37(1):29–39, 1975.
  • [Frö99] R. Fröberg. Koszul algebras. In Advances in commutative ring theory (Fez, 1997), volume 205 of Lecture Notes in Pure and Appl. Math., pages 337–350. Dekker, New York, 1999.
  • [Gol62] E. S. Golod. Homologies of some local rings. Dokl. Akad. Nauk SSSR, 144:479–482, 1962.
  • [GPW00] Vesselin Gasharov, Irena Peeva, and Volkmar Welker. Rationality for generic toric rings. Math. Z., 233(1):93–102, 2000.
  • [GS] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry.
  • [Gul74] Tor H. Gulliksen. A change of ring theorem with applications to Poincaré series and intersection multiplicity. Math. Scand., 34:167–183, 1974.
  • [Gul80] T. H. Gulliksen. On the deviations of a local ring. Math. Scand., 47(1):5–20, 1980.
  • [HH90] Melvin Hochster and Craig Huneke. Tight closure, invariant theory, and the Briançon-Skoda theorem. J. Amer. Math. Soc., 3(1):31–116, 1990.
  • [HRW99] J. Herzog, V. Reiner, and V. Welker. Componentwise linear ideals and Golod rings. Michigan Math. J., 46(2):211–223, 1999.
  • [Iye97] Srikanth Iyengar. Free resolutions and change of rings. J. Algebra, 190(1):195–213, 1997.
  • [Lyu88] Gennady Lyubeznik. A new explicit finite free resolution of ideals generated by monomials in an RR-sequence. J. Pure Appl. Algebra, 51(1-2):193–195, 1988.
  • [ML63] Saunders Mac Lane. Homology. Die Grundlehren der mathematischen Wissenschaften, Band 114. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
  • [MP15] Jason McCullough and Irena Peeva. Infinite graded free resolutions. In Commutative algebra and noncommutative algebraic geometry. Vol. I, volume 67 of Math. Sci. Res. Inst. Publ., pages 215–257. Cambridge Univ. Press, New York, 2015.
  • [MS05] Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra, volume 227 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.
  • [Pee11] Irena Peeva. Graded syzygies, volume 14 of Algebra and Applications. Springer-Verlag London, Ltd., London, 2011.
  • [Pri70] Stewart B. Priddy. Koszul resolutions. Trans. Amer. Math. Soc., 152:39–60, 1970.
  • [Roo95] Jan-Erik Roos. On the characterisation of Koszul algebras. Four counterexamples. C. R. Acad. Sci. Paris Sér. I Math., 321(1):15–20, 1995.
  • [RS98] Jan-Erik Roos and Bernd Sturmfels. A toric ring with irrational Poincaré-Betti series. C. R. Acad. Sci. Paris Sér. I Math., 326(2):141–146, 1998.
  • [Sha69] Jack Shamash. The Poincaré series of a local ring. J. Algebra, 12:453–470, 1969.
  • [Tat57] John Tate. Homology of Noetherian rings and local rings. Illinois J. Math., 1:14–27, 1957.
  • [Tay66] Diana Kahn Taylor. IDEALS GENERATED BY MONOMIALS IN AN R-SEQUENCE. ProQuest LLC, Ann Arbor, MI, 1966. Thesis (Ph.D.)–The University of Chicago.