This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A systematic construction of integrable delay-difference and delay-differential analogues of soliton equations

Kenta Nakata1 and Ken-ichi Maruno2 1 Department of Pure and Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan 2 Department of Applied Mathematics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan [email protected] and [email protected]
Abstract

We propose a systematic method for constructing integrable delay-difference and delay-differential analogues of known soliton equations such as the Lotka-Volterra, Toda lattice, and sine-Gordon equations and their multi-soliton solutions. It is carried out by applying a reduction and delay-differential limit to the discrete KP or discrete two-dimensional Toda lattice equations. Each of the delay-difference and delay-differential equations has the NN-soliton solution, which depends on the delay parameter and converges to an NN-soliton solution of a known soliton equation as the delay parameter approaches 0.

: \jpa

Keywords:  delay-differential equations, delay-difference equations, soliton equations, integrable systems, multi-soliton solutions

1 Introduction

Delay-differential equations have been used as mathematical models in various fields of science and engineering such as traffic flow, population dynamics, nonlinear optics, fluid mechanics and infectious disease [1, 2]. Because of their importance in various fields, the mathematical properties of delay differential equations have been actively studied. For example, exact solutions of delay differential equations play an important role in the study of traffic flow [3, 4, 5, 6].

In recent years, there has been active research on integrability of delay differential equations. Quispel et al obtained a delay-differential equation which has a continuum limit to the first Painlevé equation [7]. This delay-differential equation was derived by a similarity reduction of the Lotka-Volterra (LV) equation, which is an integrable differential-difference equation. Levi and Winternitz also obtained delay-differential equations as reductions based on the symmetry group of the two-dimensional Toda lattice (2DTL) [8]. In addition, Grammaticos et al [9, 10] introduced delay-differential Painlevé equations by the method blending the Painlevé analysis with the singularity confinement. After their monumental works, several important studies have revealed mathematical properties of integrable (ordinary) delay-differential equations [11, 12, 13, 14, 15, 16, 17].

On the other hand, there are few examples of integrable partial delay-differential equations (the word “partial” means including multi independent variables). Villarroel and Ablowitz found the Lax pair for a delay-differential analogue of the 2DTL equation and established the inverse scattering formalism [18]. Recently, we constructed the NN-soliton solution of the delay-differential analogues of the 2DTL equation [19]. Although there have been such works, research on integrable partial delay-differential equations is not fully developed.

In this paper, we propose a systematic method for constructing integrable delay-difference and delay-differential analogues of soliton equations and their multi-soliton solutions. Our construction starts from the discrete KP equation (or discrete 2DTL equation) and uses reduction and delay-differential limit. As examples of our method, we present delay-difference and delay-differential analogues of the LV, Toda lattice (TL), and sine-Gordon (sG) equations and their exact NN-soliton solutions.

This paper is organized as follows. In the rest of this section, we show a systematic method to construct integrable delay-difference and delay-differential analogues of soliton equations. In sections 2, 3, and 4, we construct delay-difference and delay-differential analogues of the LV, TL, and sG equations and their NN-soliton solutions. Section 5 is devoted to conclusions.

1.1 A method to construct delay-analogues of soliton equations

In the rest of this section, we show how to construct integrable delay-difference and delay-differential analogues of soliton equations and their NN-soliton solutions. The first step of our method is to obtain a discrete equation by a reduction of the discrete KP equation [20, 21]

a(bc)fn+1,m,kfn,m+1,k+1+b(ca)fn,m+1,kfn+1,m,k+1\displaystyle a(b-c)f_{n+1,m,k}f_{n,m+1,k+1}+b(c-a)f_{n,m+1,k}f_{n+1,m,k+1}
+c(ab)fn,m,k+1fn+1,m+1,k=0\displaystyle\hskip 56.9055pt+c(a-b)f_{n,m,k+1}f_{n+1,m+1,k}=0 (1)

or the discrete 2DTL equation [20, 22]

abfk+1,n+1,mfk1,n,m+1+fk,n+1,mfk,n,m+1\displaystyle abf_{k+1,n+1,m}f_{k-1,n,m+1}+f_{k,n+1,m}f_{k,n,m+1}
(1+ab)fk,n+1,m+1fk,n,m=0,\displaystyle\hskip 56.9055pt-(1+ab)f_{k,n+1,m+1}f_{k,n,m}=0\,, (2)

where a,b,ca,b,c are real constants. Here we include a free parameter α\alpha to the reduction condition such as (6). By applying the reduction, we obtain a discrete equation which depends on the free parameter α\alpha, the discrete variable n,mn,m, and the time-lattice parameter δ\delta which is defined by the parameters a,b,ca,b,c such as (7). Note that the dependency on kk is removed by the reduction, and the parameter α\alpha appears as shifts of mm (such as fm+αf_{m+\alpha}). This discrete equation can be considered as a delay-difference soliton equation.

Then, we apply the delay-differential limit

δ0,mδ=t,αδ=τ=const.\delta\to 0\,,\qquad m\delta=t\,,\qquad\alpha\delta=\tau=\mathrm{const}. (3)

to the delay-difference soliton equation, where tt is the continuous time variable and τ\tau is the delay parameter. This limit yields a delay-differential equation which includes the delay parameter τ\tau as shifts of tt such as (17). We can actually check that the limit of fm+αf_{m+\alpha} is f(t+τ)f(t+\tau). This delay-differential equation can be considered as a delay-differential soliton equation.

An important point of this process is that we can obtain explicit NN-soliton solutions of the delay-difference and delay-differential soliton equations. It is carried out by reduction and delay-differential limit to the NN-soliton solution of the discrete KP or discrete 2DTL equations. In addition, we can obtain a known soliton equation and its NN-soliton solution as τ0\tau\to 0 if we properly determine the reduction at the first step of our method. Here the soliton equation which is obtained as τ0\tau\to 0 depends on the reduction. Therefore, considering various reductions at the first step of our method, we can construct various delay-difference and delay-differential analogues of soliton equations.

2 An integrable delay Lotka-Volterra equation

In this section, we show the construction of the delay-difference and delay-differential analogue of the LV equation and their NN-soliton solutions. We show the detail of our method through this section.

First, we consider the discrete KP equation (1.1) and its NN-soliton solution in the Gram determinant form [23]:

fn,m,k=det(δij+ϕiψjpiqj)1i,jN=i=1Nϕij=1Nϕjdet(δijϕjϕi+ϕjψjpiqj)1i,jN\displaystyle f_{n,m,k}=\det\left(\delta_{ij}+\frac{\phi_{i}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\frac{\prod_{i=1}^{N}\phi_{i}}{\prod_{j=1}^{N}\phi_{j}}\det\left(\delta_{ij}\frac{\phi_{j}}{\phi_{i}}+\frac{\phi_{j}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N} (4)
=det(δij+ϕjψjpiqj)1i,jN,\displaystyle\hskip 28.45274pt=\det\left(\delta_{ij}+\frac{\phi_{j}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}\,,
ϕi(n,m,k)=βi(1api)n(1bpi)m(1cpi)k,\displaystyle\phi_{i}(n,m,k)=\beta_{i}(1-ap_{i})^{-n}(1-bp_{i})^{-m}(1-cp_{i})^{-k}\,,
ψi(n,m,k)=γi(1aqi)n(1bqi)m(1cqi)k.\displaystyle\psi_{i}(n,m,k)=\gamma_{i}(1-aq_{i})^{n}(1-bq_{i})^{m}(1-cq_{i})^{k}\,.

This Gram determinant form of the NN-soliton solution can be rewritten as

fn,m,k=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle f_{n,m,k}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,, (5)
Φi(n,m,k)=βiγi(1aqi1api)n(1bqi1bpi)m(1cqi1cpi)k.\displaystyle\Phi_{i}(n,m,k)=\beta_{i}\gamma_{i}\left(\frac{1-aq_{i}}{1-ap_{i}}\right)^{n}\left(\frac{1-bq_{i}}{1-bp_{i}}\right)^{m}\left(\frac{1-cq_{i}}{1-cp_{i}}\right)^{k}\,.

Here I{1,,N}\displaystyle\sum_{I\subset\{1,\ldots,N\}} is taken to be summed over all possible combinations in the set {1,,N}\{1,\ldots,N\}. Now, we apply the following reduction condition to the discrete KP equation (1.1):

fn,m,k+1=fn+2,m+α,k,f_{n,m,k+1}=f_{n+2,m+\alpha,k}\,, (6)

where the free parameter α\alpha is a fixed real value considered as the delay. Setting c=ac=-a and δ=2b/(ab)\delta=2b/(a-b), we obtain the following discrete bilinear equation by the reduction of the discrete KP equation (1.1):

(1+δ)fnm+1+αfn1mδfn+1m+αfn2m+1fnm+αfn1m+1=0,(1+\delta)f_{n}^{m+1+\alpha}f_{n-1}^{m}-\delta f_{n+1}^{m+\alpha}f_{n-2}^{m+1}-f_{n}^{m+\alpha}f_{n-1}^{m+1}=0\,, (7)

where fnmfn,m,kf_{n}^{m}\equiv f_{n,m,k}. More precisely, applying the reduction condition (6) to equation (1.1), we have made the index k+1k+1 of ff become kk. Then we can omit the variable kk since the iterations of kk vanish. We can rewrite the bilinear equation (7) as follows by using Hirota’s D-operators:

(2sinh(Dm2)sinh(Dn2+αDm2)2δsinh(DnDm2)sinh(Dn+αDm2))fnmfnm\displaystyle\left(2\sinh\left(\frac{D_{m}}{2}\right)\sinh\left(\frac{D_{n}}{2}+\frac{\alpha D_{m}}{2}\right)-2\delta\sinh\left(\frac{D_{n}-D_{m}}{2}\right)\sinh\left(D_{n}+\frac{\alpha D_{m}}{2}\right)\right)f_{n}^{m}\cdot f_{n}^{m}
=0.\displaystyle=0\,. (8)

Here Hirota’s D-operators are defined by

Dtlg(t)h(t)=(ts)lg(t)h(s)|s=t,eDmgmhm=gm+1hm1.D^{l}_{t}{g(t)}\cdot{h(t)}=\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial s}\right)^{l}g(t)h(s)\Bigr{|}_{s=t}\,,\qquad e^{D_{m}}g_{m}\cdot h_{m}=g_{m+1}h_{m-1}\,. (9)

Next we consider the reduction of the NN-soliton solution. By applying the constraint

(1aqi1api)2(1bqi1bpi)α=1cqi1cpi\left(\frac{1-aq_{i}}{1-ap_{i}}\right)^{2}\left(\frac{1-bq_{i}}{1-bp_{i}}\right)^{\alpha}=\frac{1-cq_{i}}{1-cp_{i}} (10)

to the NN-soliton solution (4) and (5), we obtain

Φi(n,m,k+1)\displaystyle\Phi_{i}(n,m,k+1) =\displaystyle= βiγi(1aqi1api)n(1bqi1bpi)m(1cqi1cpi)k+1\displaystyle\beta_{i}\gamma_{i}\left(\frac{1-aq_{i}}{1-ap_{i}}\right)^{n}\left(\frac{1-bq_{i}}{1-bp_{i}}\right)^{m}\left(\frac{1-cq_{i}}{1-cp_{i}}\right)^{k+1} (11)
=\displaystyle= βiγi(1aqi1api)n+2(1bqi1bpi)m+α(1cqi1cpi)k\displaystyle\beta_{i}\gamma_{i}\left(\frac{1-aq_{i}}{1-ap_{i}}\right)^{n+2}\left(\frac{1-bq_{i}}{1-bp_{i}}\right)^{m+\alpha}\left(\frac{1-cq_{i}}{1-cp_{i}}\right)^{k}
=\displaystyle= Φi(n+2,m+α,k),\displaystyle\Phi_{i}(n+2,m+\alpha,k)\,,

thus the reduction condition (6) is satisfied. Setting c=ac=-a, δ=2b/(ab)\delta=2b/(a-b), k=0k=0, and replacing pip_{i} and qiq_{i} by (2pi1)/a(-2p_{i}-1)/a and (2qi1)/a(-2q_{i}-1)/a respectively, we obtain the NN-soliton solution of the bilinear equation (7) by the reduction to (4) and (5):

fnm=det(δij+Φjpiqj)1i,jN=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle f_{n}^{m}=\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,, (12)
Φi(n,m)=βiγi(1+qi1+pi)n(1+δ+δqi1+δ+δpi)m,\displaystyle\Phi_{i}(n,m)=\beta_{i}\gamma_{i}\left(\frac{1+q_{i}}{1+p_{i}}\right)^{n}\left(\frac{1+\delta+\delta q_{i}}{1+\delta+\delta p_{i}}\right)^{m}\,,
qipi=(1+qi1+pi)2(1+δ+δqi1+δ+δpi)α.\displaystyle\frac{q_{i}}{p_{i}}=\left(\frac{1+q_{i}}{1+p_{i}}\right)^{2}\left(\frac{1+\delta+\delta q_{i}}{1+\delta+\delta p_{i}}\right)^{\alpha}\,.

The delay parameter α\alpha appears in the bilinear equation (7) as shifts of the discrete time variable mm. We remark that the bilinear equation (7) and the NN-soliton solution (12) in the case of α=0\alpha=0 (thus pi=1/qip_{i}=1/q_{i}) are known as the bilinear equation of the discrete LV equation and its NN-soliton solution [24, 25]. Thus equation (7) can be seen as the bilinear equation of the delay-difference analogue of the LV equation.

By the dependent variable transformation

unm=fn+1m+αfn2m+1fnm+αfn1m+1,u_{n}^{m}=\frac{f_{n+1}^{m+\alpha}f_{n-2}^{m+1}}{f_{n}^{m+\alpha}f_{n-1}^{m+1}}\,, (13)

the bilinear equation (7) is transformed into the nonlinear delay-difference equation

unm+1+αun1munm+αun1m+1=(1+δun+1m+α)(1+δun2m+1)(1+δunm+α)(1+δun1m+1),\frac{u_{n}^{m+1+\alpha}u_{n-1}^{m}}{u_{n}^{m+\alpha}u_{n-1}^{m+1}}=\frac{(1+\delta u_{n+1}^{m+\alpha})(1+\delta u_{n-2}^{m+1})}{(1+\delta u_{n}^{m+\alpha})(1+\delta u_{n-1}^{m+1})}\,, (14)

which is the delay-difference analogue of the LV equation. If α=0\alpha=0, equation (14) is just a division of the discrete LV equation [24]:

unm+1unm=1+δun+1m1+δun1m+1,un1m+1un1m=1+δunm1+δun2m+1.\frac{u_{n}^{m+1}}{u_{n}^{m}}=\frac{1+\delta u_{n+1}^{m}}{1+\delta u_{n-1}^{m+1}}\,,\qquad\frac{u_{n-1}^{m+1}}{u_{n-1}^{m}}=\frac{1+\delta u_{n}^{m}}{1+\delta u_{n-2}^{m+1}}\,. (15)

Now, we apply the delay-differential limit

δ0,mδ=t,αδ=2τ,\delta\to 0\,,\qquad m\delta=t\,,\qquad\alpha\delta=2\tau\,, (16)

where τ\tau is a constant value called the delay parameter. The delay-differential limits of (7) and (12) are calculated respectively as follows:

Dtfn(t+τ)fn1(tτ)fn+1(t+τ)fn2(tτ)+fn(t+τ)fn1(tτ)=0,\displaystyle D_{t}{f_{n}(t+\tau)}\cdot{f_{n-1}(t-\tau)}-f_{n+1}(t+\tau)f_{n-2}(t-\tau)+f_{n}(t+\tau)f_{n-1}(t-\tau)=0\,, (17)
fn(t)=det(δij+Φjpiqj)1i,jN=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle f_{n}(t)=\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,, (18)
Φi(n,t)=βiγi(1+qi1+pi)ne(qipi)t,\displaystyle\Phi_{i}(n,t)=\beta_{i}\gamma_{i}\left(\frac{1+q_{i}}{1+p_{i}}\right)^{n}e^{(q_{i}-p_{i})t}\,,
qipi=(1+qi1+pi)2e2τ(qipi).\displaystyle\frac{q_{i}}{p_{i}}=\left(\frac{1+q_{i}}{1+p_{i}}\right)^{2}e^{2\tau(q_{i}-p_{i})}\,.

Here the bilinear equation (17) can be rewritten as

(Dtsinh(Dn2+τDt)2sinh(Dn2)sinh(Dn+τDt))fn(t)fn(t)=0.\displaystyle\left(D_{t}\sinh\left(\frac{D_{n}}{2}+\tau D_{t}\right)-2\sinh\left(\frac{D_{n}}{2}\right)\sinh\left(D_{n}+\tau D_{t}\right)\right)f_{n}(t)\cdot f_{n}(t)=0\,. (19)

The bilinear equation (17) is a delay differential-difference equation which includes the delay τ\tau as shifts of the continuous time variable tt. Putting τ=0\tau=0 (thus pi=1/qip_{i}=1/q_{i}), we can easily check that equation (17) becomes the bilinear equation of the LV equation and (18) becomes the NN-soliton solution of the LV equation [26]. Thus we claim that equation (17) is the bilinear equation of the integrable delay LV equation and the bilinear equation (7) is the fully discrete analogue of (17).

Remark 2.1.

The last relation of (18), which is the dispersion relation, is rewritten as

R(pi)=R(qi),R(p)=pe2τp(1+p)2.R(p_{i})=R(q_{i})\,,\qquad R(p)=\frac{pe^{-2\tau p}}{(1+p)^{2}}\,. (20)

According to the graph of R(p)R(p), it is easily seen that there exist pip_{i} and qiq_{i} satisfying R(pi)=R(qi)R(p_{i})=R(q_{i}) and piqip_{i}\neq q_{i}.

Remark 2.2.

We remark that soliton solutions of (17) are also obtained by Hirota’s direct method [27], which does not require any reduction. We show a few examples of deriving soliton solutions without using the soliton solutions of the discrete KP equation. Let fn(t)f_{n}(t) be 1-soliton or 2-soliton with the perturbation parameter ϵ\epsilon:

fn(t)=1+ϵP1neQ1t+ξ01,\displaystyle f_{n}(t)=1+\epsilon P_{1}^{n}e^{Q_{1}t+\xi_{01}}\,, (21)
fn(t)=1+ϵP1neQ1t+ξ01+ϵP2neQ2t+ξ02+ϵ2a12(P1P2)ne(Q1+Q2)t+ξ01+ξ02.\displaystyle f_{n}(t)=1+\epsilon P_{1}^{n}e^{Q_{1}t+\xi_{01}}+\epsilon P_{2}^{n}e^{Q_{2}t+\xi_{02}}+\epsilon^{2}a_{12}(P_{1}P_{2})^{n}e^{(Q_{1}+Q_{2})t+\xi_{01}+\xi_{02}}\,. (22)

Substituting them into the bilinear equations (19) and assuming that each of the orders of ϵ\epsilon vanishes, we have the following conditions.

F(Pi,Qi)=0(i=1,2),a12=F(P1/P2,Q1Q2)F(P1P2,Q1+Q2),F(P_{i},Q_{i})=0\quad(i=1,2)\,,\qquad a_{12}=-\frac{F(P_{1}/P_{2},Q_{1}-Q_{2})}{F(P_{1}P_{2},Q_{1}+Q_{2})}\,, (23)

where the function FF is defined by

F(P,Q)=Q(PeτQ1PeτQ)(P1P)(PeτQ1PeτQ).F(P,Q)=Q\left(\sqrt{P}e^{\tau Q}-\frac{1}{\sqrt{P}}e^{-\tau Q}\right)-\left(\sqrt{P}-\frac{1}{\sqrt{P}}\right)\left(Pe^{\tau Q}-\frac{1}{P}e^{-\tau Q}\right)\,. (24)

By computations, we can check that the solutions (21) and (22) are equivalent to the case of N=1,2N=1,2 in the NN-soliton solution (18). As we can see from this example, we can use Hirota’s direct method even if the bilinear equation includes some delays.

Let us move the discussion to the nonlinear form of the delay LV equation. Via the dependent variable transformation

un(t)=fn+1(t+τ)fn2(tτ)fn(t+τ)fn1(tτ),u_{n}(t)=\frac{f_{n+1}(t+\tau)f_{n-2}(t-\tau)}{f_{n}(t+\tau)f_{n-1}(t-\tau)}\,, (25)

the bilinear equation (17) is transformed into the nonlinear delay-differential equation

ddtlogun(t+τ)un1(tτ)=un+1(t+τ)un(t+τ)un1(tτ)+un2(tτ),\frac{\mathrm{d}}{\mathrm{d}t}\log\frac{u_{n}(t+\tau)}{u_{n-1}(t-\tau)}=u_{n+1}(t+\tau)-u_{n}(t+\tau)-u_{n-1}(t-\tau)+u_{n-2}(t-\tau)\,, (26)

which is the nonlinear form of (17). If τ=0\tau=0, equation (26) is just a subtraction of the following nonlinear forms of the LV equation [26]:

ddtlogun(t)=un+1(t)un1(t),ddtlogun1(t)=un(t)un2(t).\frac{\mathrm{d}}{\mathrm{d}t}\log u_{n}(t)=u_{n+1}(t)-u_{n-1}(t)\,,\qquad\frac{\mathrm{d}}{\mathrm{d}t}\log u_{n-1}(t)=u_{n}(t)-u_{n-2}(t)\,. (27)

Next, we derive the bilinear form of the delay LV equation (17) and the NN-soliton solution (18) directly from the semi-discrete KP equation [28]

acDtfn+1k(t)fnk+1(t)(ac)(fn+1k+1(t)fnk(t)fn+1k(t)fnk+1(t))=0.acD_{t}f_{n+1}^{k}(t)\cdot f_{n}^{k+1}(t)-(a-c)(f_{n+1}^{k+1}(t)f_{n}^{k}(t)-f_{n+1}^{k}(t)f_{n}^{k+1}(t))=0\,. (28)

We remark that the bilinear equation (28) and its solutions are derived by the continuum limit b0b\to 0, mb=tmb=t of the discrete KP equation (1.1) and its solutions.

The Wronskian solution of the semi-discrete KP equation (28) is given as follows [28]:

fnk(t)=|ϕ1(n,k,t)ϕ1(1)(n,k,t)ϕ1(N1)(n,k,t)ϕ2(n,k,t)ϕ2(1)(n,k,t)ϕ2(N1)(n,k,t)ϕN(n,k,t)ϕN(1)(n,k,t)ϕN(N1)(n,k,t)|,\displaystyle f_{n}^{k}(t)=\left|\begin{array}[]{cccc}\phi_{1}(n,k,t)&\phi_{1}^{(1)}(n,k,t)&\cdots&\phi_{1}^{(N-1)}(n,k,t)\\ \phi_{2}(n,k,t)&\phi_{2}^{(1)}(n,k,t)&\cdots&\phi_{2}^{(N-1)}(n,k,t)\\ \vdots&\vdots&\cdots&\vdots\\ \phi_{N}(n,k,t)&\phi_{N}^{(1)}(n,k,t)&\cdots&\phi_{N}^{(N-1)}(n,k,t)\end{array}\right|\,, (33)
ϕi(n,k,t)ϕi(n1,k,t)a=ϕi(n,k,t)t,ϕi(n,k,t)ϕi(n,k1,t)c=ϕi(n,k,t)t,\displaystyle\frac{\phi_{i}(n,k,t)-\phi_{i}(n-1,k,t)}{a}=\frac{\partial\phi_{i}(n,k,t)}{\partial t}\,,\quad\frac{\phi_{i}(n,k,t)-\phi_{i}(n,k-1,t)}{c}=\frac{\partial\phi_{i}(n,k,t)}{\partial t}\,,
ϕi(l)(n,k,t)lϕi(n,k,t)tl.\displaystyle\phi_{i}^{(l)}(n,k,t)\equiv\frac{\partial^{l}\phi_{i}(n,k,t)}{\partial t^{l}}\,.

The NN-soliton solution of the semi-discrete KP equation is given by choosing the elements in the Wronskian solution as

ϕi(n,k,t)=(1api)n(1cpi)kepit+ζ0i+(1aqi)n(1cqi)keqit+η0i.\displaystyle\phi_{i}(n,k,t)=(1-ap_{i})^{-n}(1-cp_{i})^{-k}e^{p_{i}t+\zeta_{0i}}+(1-aq_{i})^{-n}(1-cq_{i})^{-k}e^{q_{i}t+\eta_{0i}}\,. (34)
(i=1,2,,N)\displaystyle(i=1,2,\ldots,N)

Now, we can obtain the bilinear equation (17) by applying the reduction condition

fnk+1(t)fn+2k(t+2τ)f_{n}^{k+1}(t)\Bumpeq f_{n+2}^{k}(t+2\tau) (35)

and setting a=2a=2, c=2c=-2 to the semi-discrete KP equation (28). Here, the relation gnk(t)hnk(t)g_{n}^{k}(t)\Bumpeq h_{n}^{k}(t) is defined by

gnk(t)=(C0C1nC2keC3t)hnk(t),Cl=const..(l=0,1,2,3)g_{n}^{k}(t)=\left(C_{0}C_{1}^{n}C_{2}^{k}e^{C_{3}t}\right)h_{n}^{k}(t)\,,\quad C_{l}=\mathrm{const}.\,.\quad(l=0,1,2,3) (36)

To realize this reduction condition (C1=C2=1,C3=0C_{1}=C_{2}=1,C_{3}=0) for the NN-soliton solutions, we can apply the constraint

(1api)2(1cpi)e2τpi=(1aqi)2(1cqi)e2τqi(1-ap_{i})^{-2}(1-cp_{i})e^{2\tau p_{i}}=(1-aq_{i})^{-2}(1-cq_{i})e^{2\tau q_{i}} (37)

to (34). Replacing pip_{i} and qiq_{i} by (2pi1)/a(-2p_{i}-1)/a and (2qi1)/a(-2q_{i}-1)/a respectively and setting a=2a=2, c=2c=-2, we obtain the NN-soliton solution of the delay LV equation in the Wronskian form

fn(t)=|ϕ1(n,t)ϕ1(1)(n,t)ϕ1(N1)(n,t)ϕ2(n,t)ϕ2(1)(n,t)ϕ2(N1)(n,t)ϕN(n,t)ϕN(1)(n,t)ϕN(N1)(n,t)|,\displaystyle f_{n}(t)=\left|\begin{array}[]{cccc}\phi_{1}(n,t)&\phi_{1}^{(1)}(n,t)&\cdots&\phi_{1}^{(N-1)}(n,t)\\ \phi_{2}(n,t)&\phi_{2}^{(1)}(n,t)&\cdots&\phi_{2}^{(N-1)}(n,t)\\ \vdots&\vdots&\cdots&\vdots\\ \phi_{N}(n,t)&\phi_{N}^{(1)}(n,t)&\cdots&\phi_{N}^{(N-1)}(n,t)\end{array}\right|\,, (42)
ϕi(n,t)=(1+pi)nepit+ζ~0i+(1+qi)neqit+η~0i,(i=1,2,,N)\displaystyle\phi_{i}(n,t)=(1+p_{i})^{-n}e^{-p_{i}t+\tilde{\zeta}_{0i}}+(1+q_{i})^{-n}e^{-q_{i}t+\tilde{\eta}_{0i}}\,,\qquad(i=1,2,\ldots,N)
qipi=(1+qi1+pi)2e2τ(qipi).\displaystyle\frac{q_{i}}{p_{i}}=\left(\frac{1+q_{i}}{1+p_{i}}\right)^{2}e^{2\tau(q_{i}-p_{i})}\,.
Remark 2.3.

We can also obtain the delay LV equation from the Bäcklund transformation (BT) of the 2DTL equation [29, 27]

μDtfnk1(t)fn+1k(t)fnk1(t)fn+1k(t)+fn+1k1(t)fnk(t)=0.\mu D_{t}f_{n}^{k-1}(t)\cdot f_{n+1}^{k}(t)-f_{n}^{k-1}(t)f_{n+1}^{k}(t)+f_{n+1}^{k-1}(t)f_{n}^{k}(t)=0\,. (43)

The following derivation is much easier than the above derivation from the semi-discrete KP equation.

The NN-soliton solution in the Wronskian (Casorati determinant) form is given as

fnk(t)=|ϕ1(n,k,t)ϕ1(1)(n,k,t)ϕ1(N1)(n,k,t)ϕ2(n,k,t)ϕ2(1)(n,k,t)ϕ2(N1)(n,k,t)ϕN(n,k,t)ϕN(1)(n,k,t)ϕN(N1)(n,k,t)|,\displaystyle f_{n}^{k}(t)=\left|\begin{array}[]{cccc}\phi_{1}(n,k,t)&\phi_{1}^{(1)}(n,k,t)&\cdots&\phi_{1}^{(N-1)}(n,k,t)\\ \phi_{2}(n,k,t)&\phi_{2}^{(1)}(n,k,t)&\cdots&\phi_{2}^{(N-1)}(n,k,t)\\ \vdots&\vdots&\cdots&\vdots\\ \phi_{N}(n,k,t)&\phi_{N}^{(1)}(n,k,t)&\cdots&\phi_{N}^{(N-1)}(n,k,t)\end{array}\right|\,, (48)
ϕi(n,k,t)=pik(1μpi)nepit+ζ0i+qik(1μqi)neqit+η0i.(i=1,2,,N)\displaystyle\phi_{i}(n,k,t)=p_{i}^{k}(1-\mu p_{i})^{-n}e^{-p_{i}t+\zeta_{0i}}+q_{i}^{k}(1-\mu q_{i})^{-n}e^{-q_{i}t+\eta_{0i}}\,.\qquad(i=1,2,\ldots,N)

Applying the reduction condition

fnk1(t)fn+2k(t+2τ)f_{n}^{k-1}(t)\Bumpeq f_{n+2}^{k}(t+2\tau) (49)

and setting μ=1\mu=-1, we obtain the bilinear equation (17) and its NN-soliton solution (42).

3 An integrable delay Toda lattice equation

In this section, we construct a delay differential-difference equation that should be called an integrable delay TL equation by using our method.

We first apply the reduction condition

fn,m,k+1=fn+1,m+1+α,kf_{n,m,k+1}=f_{n+1,m+1+\alpha,k} (50)

to the discrete KP equation (1.1) and its NN-soliton solution (4). The independent variables nn and mm are considered to be the discrete space variable and discrete time variable respectively, and the parameter α\alpha is a delay parameter. Replacing pip_{i} and qiq_{i} by (1pi)/c(1-p_{i})/c and (1qi)/c(1-q_{i})/c respectively and setting αδ=(ac)/a\alpha\delta=(a-c)/a, δ=b/(bc)\delta=b/(b-c), we have

fnm+1+αfnm1αδ2fn+1m+αfn1m(1αδ2)fnm+αfnm=0,f_{n}^{m+1+\alpha}f_{n}^{m-1}-\alpha\delta^{2}f_{n+1}^{m+\alpha}f_{n-1}^{m}-(1-\alpha\delta^{2})f_{n}^{m+\alpha}f_{n}^{m}=0\,, (51)
fnm\displaystyle f_{n}^{m} =\displaystyle= det(δij+Φjpiqj)1i,jN=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,, (52)
Φi\displaystyle\Phi_{i} =\displaystyle= βiγi(qiαδpiαδ)n(1δqi1δpi)m,\displaystyle\beta_{i}\gamma_{i}\left(\frac{q_{i}-\alpha\delta}{p_{i}-\alpha\delta}\right)^{n}\left(\frac{1-\delta q_{i}}{1-\delta p_{i}}\right)^{m}\,,
qipi\displaystyle\frac{q_{i}}{p_{i}} =\displaystyle= qiαδpiαδ(1δqi1δpi)1+α.\displaystyle\frac{q_{i}-\alpha\delta}{p_{i}-\alpha\delta}\left(\frac{1-\delta q_{i}}{1-\delta p_{i}}\right)^{1+\alpha}\,.

The bilinear equation (51) is rewritten as

(2sinh(Dm2)sinh(Dm2+αDm2)2αδ2sinh(Dn2)sinh(Dn2+αDm2))fnmfnm\displaystyle\left(2\sinh\left(\frac{D_{m}}{2}\right)\sinh\left(\frac{D_{m}}{2}+\frac{\alpha D_{m}}{2}\right)-2\alpha\delta^{2}\sinh\left(\frac{D_{n}}{2}\right)\sinh\left(\frac{D_{n}}{2}+\frac{\alpha D_{m}}{2}\right)\right)f_{n}^{m}\cdot f_{n}^{m}
=0.\displaystyle=0\,. (53)

We can consider that equation (51) is the bilinear equation of the delay-difference analogue of the TL equation. We call this the delay discrete TL equation.

By the dependent variable transformation

1+Vnm=fn+1m+αfn1mfnm+αfnm,1+V_{n}^{m}=\frac{f_{n+1}^{m+\alpha}f_{n-1}^{m}}{f_{n}^{m+\alpha}f_{n}^{m}}\,, (54)

we can transform (51) into the nonlinear delay-difference equation

(1+Vnm+1+α)(1+Vnm1)(1+Vnm+α)(1+Vnm)=(1+αδ2Vn+1m+α)(1+αδ2Vn1m)(1+αδ2Vnm+α)(1+αδ2Vnm),\frac{(1+V_{n}^{m+1+\alpha})(1+V_{n}^{m-1})}{(1+V_{n}^{m+\alpha})(1+V_{n}^{m})}=\frac{(1+\alpha\delta^{2}V_{n+1}^{m+\alpha})(1+\alpha\delta^{2}V_{n-1}^{m})}{(1+\alpha\delta^{2}V_{n}^{m+\alpha})(1+\alpha\delta^{2}V_{n}^{m})}\,, (55)

which is the delay discrete TL equation.

Now, we apply the delay-differential limit

δ0,mδ=t,αδ=2τ\delta\to 0\,,\qquad m\delta=t\,,\qquad\alpha\delta=2\tau (56)

to (51) and (52), where tt is the continuous time variable and τ\tau is the delay parameter. Then we obtain

Dtfn(t+τ)fn(tτ)2τ(fn+1(t+τ)fn1(tτ)fn(t+τ)fn(tτ))=0\displaystyle D_{t}{f_{n}(t+\tau)}\cdot{f_{n}(t-\tau)}-2\tau(f_{n+1}(t+\tau)f_{n-1}(t-\tau)-f_{n}(t+\tau)f_{n}(t-\tau))=0 (57)

and

fn(t)\displaystyle f_{n}(t) =\displaystyle= det(δij+Φjpiqj)1i,jN=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,, (58)
Φi\displaystyle\Phi_{i} =\displaystyle= βiγi(qi2τpi2τ)ne(piqi)t,\displaystyle\beta_{i}\gamma_{i}\left(\frac{q_{i}-2\tau}{p_{i}-2\tau}\right)^{n}e^{(p_{i}-q_{i})t}\,,
qipi\displaystyle\frac{q_{i}}{p_{i}} =\displaystyle= qi2τpi2τe2τ(piqi).\displaystyle\frac{q_{i}-2\tau}{p_{i}-2\tau}e^{2\tau(p_{i}-q_{i})}\,.

Here the bilinear equation (57) is equivalent to

(Dtsinh(τDt)4τsinh(Dn2)sinh(Dn2+τDt))fn(t)fn(t)=0.\left(D_{t}\sinh\left(\tau D_{t}\right)-4\tau\sinh\left(\frac{D_{n}}{2}\right)\sinh\left(\frac{D_{n}}{2}+\tau D_{t}\right)\right)f_{n}(t)\cdot f_{n}(t)=0\,. (59)

Calculating the limit of this equation as τ0\tau\to 0, we obtain the bilinear TL equation [30]

(Dt24sinh2(Dn2))fn(t)fn(t)=0.\left(D^{2}_{t}-4\sinh^{2}\left(\frac{D_{n}}{2}\right)\right)f_{n}(t)\cdot f_{n}(t)=0\,. (60)

The last relation of (58) is described by (pi+1/piqi1/qi)τ+O(τ2)=0(p_{i}+1/p_{i}-q_{i}-1/q_{i})\tau+O(\tau^{2})=0, thus we have pi=1/qip_{i}=1/q_{i} as τ0\tau\to 0. Therefore, we can check that the limit of (58) as τ0\tau\to 0 is the NN-soliton solution of the TL equation [27, 31, 30]. Thus we claim that equation (57) is the bilinear equation of the delay TL equation.

Remark 3.1.

If we use the relation δ=(ac)/a\delta=(a-c)/a instead of the above one αδ=(ac)/a\alpha\delta=(a-c)/a, we obtain the bilinear equation

fnm+1+αfnm1δ2fn+1m+αfn1m(1δ2)fnm+αfnm=0f_{n}^{m+1+\alpha}f_{n}^{m-1}-\delta^{2}f_{n+1}^{m+\alpha}f_{n-1}^{m}-(1-\delta^{2})f_{n}^{m+\alpha}f_{n}^{m}=0

instead of the delay discrete TL equation (51). This equation can be considered more natural than (51), because we can obtain the discrete TL equation from it by putting α=0\alpha=0 [30]. However it does not yield a good delay-differential equation, because the order O(δ2)O(\delta^{2}) vanishes in the delay-differential limit. On the other hand, the bilinear equation (51) yields the good delay-differential equation (57), which should be called a delay TL equation.

We present the nonlinear form of the bilinear equation of the delay TL equation (57) under the dependent variable transformation

1+Vn(t)=fn+1(t+τ)fn1(tτ)fn(t+τ)fn(tτ).1+V_{n}(t)=\frac{f_{n+1}(t+\tau)f_{n-1}(t-\tau)}{f_{n}(t+\tau)f_{n}(t-\tau)}\,. (61)

By using this transformation, we can transform (57) into the delay-differential equation

(12τ)ddtlog1+Vn(t+τ)1+Vn(tτ)\displaystyle\left(\frac{1}{2\tau}\right)\frac{\mathrm{d}}{\mathrm{d}t}\log\frac{1+V_{n}(t+\tau)}{1+V_{n}(t-\tau)}
=Vn+1(t+τ)+Vn1(tτ)Vn(t+τ)Vn(tτ),\displaystyle=V_{n+1}(t+\tau)+V_{n-1}(t-\tau)-V_{n}(t+\tau)-V_{n}(t-\tau)\,, (62)

which is the nonlinear form of (57). The limit of (3) as τ0\tau\to 0 is the nonlinear form of the TL equation [27, 31, 30]:

d2dt2log(1+Vn(t))=Vn+1(t)2Vn(t)+Vn1(t).\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}\log(1+V_{n}(t))=V_{n+1}(t)-2V_{n}(t)+V_{n-1}(t)\,. (63)

We can also obtain the above result from the BT of the 2DTL equation (43):

μDtfnk1(t)fn+1k(t)fnk1(t)fn+1k(t)+fn+1k1(t)fnk(t)=0.\mu D_{t}f_{n}^{k-1}(t)\cdot f_{n+1}^{k}(t)-f_{n}^{k-1}(t)f_{n+1}^{k}(t)+f_{n+1}^{k-1}(t)f_{n}^{k}(t)=0\,. (64)

Applying the reduction condition

fnk1(t)fn+1k(t+2τ)f_{n}^{k-1}(t)\Bumpeq f_{n+1}^{k}(t+2\tau) (65)

and setting μ=1/(2τ)\mu=-1/(2\tau), we obtain the bilinear equation (57) and its NN-soliton solution

fn(t)=|ϕ1(n,t)ϕ1(1)(n,t)ϕ1(N1)(n,t)ϕ2(n,t)ϕ2(1)(n,t)ϕ2(N1)(n,t)ϕN(n,t)ϕN(1)(n,t)ϕN(N1)(n,t)|,\displaystyle f_{n}(t)=\left|\begin{array}[]{cccc}\phi_{1}(n,t)&\phi_{1}^{(1)}(n,t)&\cdots&\phi_{1}^{(N-1)}(n,t)\\ \phi_{2}(n,t)&\phi_{2}^{(1)}(n,t)&\cdots&\phi_{2}^{(N-1)}(n,t)\\ \vdots&\vdots&\cdots&\vdots\\ \phi_{N}(n,t)&\phi_{N}^{(1)}(n,t)&\cdots&\phi_{N}^{(N-1)}(n,t)\end{array}\right|\,, (70)
ϕi(n,t)=(2τ+pi)nepit+ζ~0i+(2τ+qi)neqit+η~0i,(i=1,2,,N)\displaystyle\phi_{i}(n,t)=(2\tau+p_{i})^{-n}e^{-p_{i}t+\tilde{\zeta}_{0i}}+(2\tau+q_{i})^{-n}e^{-q_{i}t+\tilde{\eta}_{0i}}\,,\qquad(i=1,2,\ldots,N)
qipi=2τ+qi2τ+pie2τ(qipi),\displaystyle\frac{q_{i}}{p_{i}}=\frac{2\tau+q_{i}}{2\tau+p_{i}}e^{2\tau(q_{i}-p_{i})}\,,

which leads to (58) by replacing pip_{i} and qiq_{i} by pi-p_{i} and qi-q_{i}. This construction of the delay TL equation does not require the delay-differential limit.

4 An integrable delay sine-Gordon equation

In this section, we find an integrable delay sG equation by the process similarly to the previous sections. It is a delay partial differential equation which can be obtained simply.

We consider the bilinear equation of the discrete 2DTL equation [20, 22]

abfk+1,n+1,mfk1,n,m+1+fk,n+1,mfk,n,m+1(1+ab)fk,n+1,m+1fk,n,m=0,\displaystyle abf_{k+1,n+1,m}f_{k-1,n,m+1}+f_{k,n+1,m}f_{k,n,m+1}-(1+ab)f_{k,n+1,m+1}f_{k,n,m}=0\,, (71)

where kk is the discrete space variable, and n,mn,m are the discrete time variables. The NN-soliton solution of (71) is given as follows [22]:

fk,n,m=det(δij+ϕiψjpiqj)1i,jN\displaystyle f_{k,n,m}=\det\left(\delta_{ij}+\frac{\phi_{i}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N} (72)
=det(δij+ϕjψjpiqj)1i,jN=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle\hskip 28.45274pt=\det\left(\delta_{ij}+\frac{\phi_{j}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,,
ϕi=βipik(1api)n(1+b/pi)m,ψi=γiqik(1aqi)n(1+b/qi)m,\displaystyle\phi_{i}=\beta_{i}p_{i}^{k}(1-ap_{i})^{-n}(1+b/p_{i})^{-m}\,,\quad\psi_{i}=\gamma_{i}q_{i}^{-k}(1-aq_{i})^{n}(1+b/q_{i})^{m}\,,
Φi=βiγi(piqi)k(1aqi1api)n(1+b/qi1+b/pi)m.\displaystyle\Phi_{i}=\beta_{i}\gamma_{i}\left(\frac{p_{i}}{q_{i}}\right)^{k}\left(\frac{1-aq_{i}}{1-ap_{i}}\right)^{n}\left(\frac{1+b/q_{i}}{1+b/p_{i}}\right)^{m}\,.

Applying the reduction condition

fk+1,nα,mβ=fk1,n+α,m+β,f_{k+1,n-\alpha,m-\beta}=f_{k-1,n+\alpha,m+\beta}\,, (73)

and setting

fnmfk,n,m=fk2,n+2α,m+2β,gnmfk+1,nα,mβ=fk1,n+α,m+β,a=b=δf_{n}^{m}\equiv f_{k,n,m}=f_{k-2,n+2\alpha,m+2\beta}\,,\quad g_{n}^{m}\equiv f_{k+1,n-\alpha,m-\beta}=f_{k-1,n+\alpha,m+\beta}\,,\quad a=b=\delta (74)

to (71) and (72) respectively, we obtain

(1+δ2)fn+1m+1fnmfn+1mfnm+1δ2gn+1+αm+βgnαm+1β=0,\displaystyle(1+\delta^{2})f_{n+1}^{m+1}f_{n}^{m}-f_{n+1}^{m}f_{n}^{m+1}-\delta^{2}g_{n+1+\alpha}^{m+\beta}g_{n-\alpha}^{m+1-\beta}=0\,, (75)
(1+δ2)gn+1m+1gnmgn+1mgnm+1δ2fn+1+αm+βfnαm+1β=0\displaystyle(1+\delta^{2})g_{n+1}^{m+1}g_{n}^{m}-g_{n+1}^{m}g_{n}^{m+1}-\delta^{2}f_{n+1+\alpha}^{m+\beta}f_{n-\alpha}^{m+1-\beta}=0 (76)

and

fnm=det(δij+Φjpiqj)1i,jN,\displaystyle f_{n}^{m}=\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}\,, (77)
Φi=βiγi(1δqi1δpi)n(1+δ/qi1+δ/pi)m,\displaystyle\Phi_{i}=\beta_{i}\gamma_{i}\left(\frac{1-\delta q_{i}}{1-\delta p_{i}}\right)^{n}\left(\frac{1+\delta/q_{i}}{1+\delta/p_{i}}\right)^{m}\,,
(piqi)2=(1δqi1δpi)2α(1+δ/qi1+δ/pi)2β.\displaystyle\left(\frac{p_{i}}{q_{i}}\right)^{2}=\left(\frac{1-\delta q_{i}}{1-\delta p_{i}}\right)^{2\alpha}\left(\frac{1+\delta/q_{i}}{1+\delta/p_{i}}\right)^{2\beta}\,.

To construct a delay-difference analogue of the sG equation, we take gnmg_{n}^{m} to be the complex conjugate of fnmf_{n}^{m}. Considering the regularity conditions fnm0f_{n}^{m}\neq 0, the NN-soliton solution is given as

fnm=det(δij+Φjpiqj)1i,jN,gnm=det(δijΦjpiqj)1i,jN,\displaystyle f_{n}^{m}=\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}\,,\quad g_{n}^{m}=\det\left(\delta_{ij}-\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}\,, (78)
Φi=1μi(1δqi1δpi)n(1+δ/qi1+δ/pi)m,\displaystyle\Phi_{i}=\sqrt{-1}\mu_{i}\left(\frac{1-\delta q_{i}}{1-\delta p_{i}}\right)^{n}\left(\frac{1+\delta/q_{i}}{1+\delta/p_{i}}\right)^{m}\,,
piqi=(1δqi1δpi)α(1+δ/qi1+δ/pi)β,\displaystyle\frac{p_{i}}{q_{i}}=-\left(\frac{1-\delta q_{i}}{1-\delta p_{i}}\right)^{\alpha}\left(\frac{1+\delta/q_{i}}{1+\delta/p_{i}}\right)^{\beta}\,,

where μi\mu_{i} is a real constant.

Setting fnm=Fnm+1Gnmf_{n}^{m}=F_{n}^{m}+\sqrt{-1}G_{n}^{m} and gnm=Fnm1Gnmg_{n}^{m}=F_{n}^{m}-\sqrt{-1}G_{n}^{m}, we can rewrite the bilinear equations (75) and (76) with

(2sinh(Dn2)sinh(Dm2)+2δ2sinh(Dn2+αDn2+βDm2)sinh(Dm2αDn2βDm2))\displaystyle\left(2\sinh\left(\frac{D_{n}}{2}\right)\sinh\left(\frac{D_{m}}{2}\right)+2\delta^{2}\sinh\left(\frac{D_{n}}{2}+\frac{\alpha D_{n}}{2}+\frac{\beta D_{m}}{2}\right)\sinh\left(\frac{D_{m}}{2}-\frac{\alpha D_{n}}{2}-\frac{\beta D_{m}}{2}\right)\right)
(FnmFnmGnmGnm)=0,\displaystyle(F_{n}^{m}\cdot F_{n}^{m}-G_{n}^{m}\cdot G_{n}^{m})=0\,, (79)
(2sinh(Dn2)sinh(Dm2)+2δ2cosh(Dn2+αDn2+βDm2)cosh(Dm2αDn2βDm2))\displaystyle\left(2\sinh\left(\frac{D_{n}}{2}\right)\sinh\left(\frac{D_{m}}{2}\right)+2\delta^{2}\cosh\left(\frac{D_{n}}{2}+\frac{\alpha D_{n}}{2}+\frac{\beta D_{m}}{2}\right)\cosh\left(\frac{D_{m}}{2}-\frac{\alpha D_{n}}{2}-\frac{\beta D_{m}}{2}\right)\right)
FnmGnm=0.\displaystyle F_{n}^{m}\cdot G_{n}^{m}=0\,. (80)

When α=β=0\alpha=\beta=0, we can find that the bilinear equations (75), (76) (and also (79), (80)) and the NN-soliton solution (78) are actually equivalent to the bilinear equations of the discrete sG equation and their NN-soliton solution [32].

To construct a nonlinear form of the delay-difference analogue of the sG equation, we consider the dependent variable transformation

fnm=exp(ρnm4+1θnm4),gnm=exp(ρnm41θnm4),f_{n}^{m}=\exp\left(\frac{\rho_{n}^{m}}{4}+\sqrt{-1}\frac{\theta_{n}^{m}}{4}\right)\,,\quad g_{n}^{m}=\exp\left(\frac{\rho_{n}^{m}}{4}-\sqrt{-1}\frac{\theta_{n}^{m}}{4}\right)\,, (81)

which is equivalent to

θnm=21loggnmfnm=4tan1GnmFnm,ρnm=2logfnmgnm=2log((Fnm)2+(Gnm)2).\theta_{n}^{m}=2\sqrt{-1}\log\frac{g_{n}^{m}}{f_{n}^{m}}=4\tan^{-1}\frac{G_{n}^{m}}{F_{n}^{m}}\,,\quad\rho_{n}^{m}=2\log f_{n}^{m}g_{n}^{m}=2\log((F_{n}^{m})^{2}+(G_{n}^{m})^{2})\,. (82)

By using this transformation, we can transform the bilinear equations (75) and (76) into the nonlinear delay-difference equation

sin(θn+1m+θnm+1θn+1m+1θnm4)\displaystyle\sin\left(\frac{\theta_{n+1}^{m}+\theta_{n}^{m+1}-\theta_{n+1}^{m+1}-\theta_{n}^{m}}{4}\right)
=δ2exp(ρn+1+αm+β+ρnαm+1βρn+1mρnm+14)sin(θn+1+αm+β+θnαm+1β+θn+1m+1+θnm4),\displaystyle=\delta^{2}\exp\left(\frac{\rho_{n+1+\alpha}^{m+\beta}+\rho_{n-\alpha}^{m+1-\beta}-\rho_{n+1}^{m}-\rho_{n}^{m+1}}{4}\right)\sin\left(\frac{\theta_{n+1+\alpha}^{m+\beta}+\theta_{n-\alpha}^{m+1-\beta}+\theta_{n+1}^{m+1}+\theta_{n}^{m}}{4}\right)\,,
(83)
sinh(ρn+1m+ρnm+1ρn+1m+1ρnm4)=δ2exp(ρn+1mρnm+1+ρn+1m+1+ρnm4)\displaystyle\sinh\left(\frac{\rho_{n+1}^{m}+\rho_{n}^{m+1}-\rho_{n+1}^{m+1}-\rho_{n}^{m}}{4}\right)=\delta^{2}\exp\left(\frac{-\rho_{n+1}^{m}-\rho_{n}^{m+1}+\rho_{n+1}^{m+1}+\rho_{n}^{m}}{4}\right)
δ2exp(ρn+1+αm+β+ρnαm+1βρn+1m+1ρnm4)cos(θn+1+αm+β+θnαm+1β+θn+1m+θnm+14)\displaystyle-\delta^{2}\exp\left(\frac{\rho_{n+1+\alpha}^{m+\beta}+\rho_{n-\alpha}^{m+1-\beta}-\rho_{n+1}^{m+1}-\rho_{n}^{m}}{4}\right)\cos\left(\frac{\theta_{n+1+\alpha}^{m+\beta}+\theta_{n-\alpha}^{m+1-\beta}+\theta_{n+1}^{m}+\theta_{n}^{m+1}}{4}\right)
δ4exp(ρn+1+αm+β+ρnαm+1βρn+1mρnm+14)sinh(ρn+1+αm+β+ρnαm+1βρn+1m+1ρnm4),\displaystyle-\delta^{4}\exp\left(\frac{\rho_{n+1+\alpha}^{m+\beta}+\rho_{n-\alpha}^{m+1-\beta}-\rho_{n+1}^{m}-\rho_{n}^{m+1}}{4}\right)\sinh\left(\frac{\rho_{n+1+\alpha}^{m+\beta}+\rho_{n-\alpha}^{m+1-\beta}-\rho_{n+1}^{m+1}-\rho_{n}^{m}}{4}\right)\,,
(84)

which is the delay-difference analogue of the sG equation. Equation (83) in the case of α=β=0\alpha=\beta=0 is the discrete sG equation [32]

sin(θn+1m+θnm+1θn+1m+1θnm4)=δ2sin(θn+1m+θnm+1+θn+1m+1+θnm4).\sin\left(\frac{\theta_{n+1}^{m}+\theta_{n}^{m+1}-\theta_{n+1}^{m+1}-\theta_{n}^{m}}{4}\right)=\delta^{2}\sin\left(\frac{\theta_{n+1}^{m}+\theta_{n}^{m+1}+\theta_{n+1}^{m+1}+\theta_{n}^{m}}{4}\right)\,. (85)

Now, let us apply the delay-differential limit

δ0,nδ=x,αδ=ξ,mδ=y,βδ=η\delta\to 0\,,\quad n\delta=x\,,\quad\alpha\delta=\xi\,,\quad m\delta=y\,,\quad\beta\delta=\eta (86)

to the bilinear equations (75), (76) and the NN-soliton solution (78). Here x,yx,y are the continuous variables, and ξ,η\xi,\eta are the delay parameters. Consequently we obtain the bilinear equations

DxDyf(x,y)f(x,y)+2(f(x,y)f(x,y)g(x+ξ,y+η)g(xξ,yη))=0,\displaystyle D_{x}D_{y}{f(x,y)}\cdot{f(x,y)}+2(f(x,y)f(x,y)-g(x+\xi,y+\eta)g(x-\xi,y-\eta))=0\,, (87)
DxDyg(x,y)g(x,y)+2(g(x,y)g(x,y)f(x+ξ,y+η)f(xξ,yη))=0,\displaystyle D_{x}D_{y}{g(x,y)}\cdot{g(x,y)}+2(g(x,y)g(x,y)-f(x+\xi,y+\eta)f(x-\xi,y-\eta))=0\,, (88)

and the NN-soliton solution

f(x,y)=det(δij+Φjpiqj)1i,jN,g(x,y)=det(δijΦjpiqj)1i,jN,\displaystyle f(x,y)=\det\left(\delta_{ij}+\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}\,,\quad g(x,y)=\det\left(\delta_{ij}-\frac{\Phi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}\,, (89)
Φi=1μiexp((piqi)x(1pi1qi)y),\displaystyle\Phi_{i}=\sqrt{-1}\mu_{i}\exp\left((p_{i}-q_{i})x-\left(\frac{1}{p_{i}}-\frac{1}{q_{i}}\right)y\right)\,,
piqi=exp(ξ(piqi)η(1pi1qi)).\displaystyle\frac{p_{i}}{q_{i}}=-\exp\left(\xi(p_{i}-q_{i})-\eta\left(\frac{1}{p_{i}}-\frac{1}{q_{i}}\right)\right)\,.

Setting f(x,y)=F(x,y)+1G(x,y)f(x,y)=F(x,y)+\sqrt{-1}G(x,y) and g(x,y)=F(x,y)1G(x,y)g(x,y)=F(x,y)-\sqrt{-1}G(x,y), we can rewrite (87) and (88) with

(DxDy4sinh2(ξDx2+ηDy2))(FFGG)=0,\displaystyle\left(D_{x}D_{y}-4\sinh^{2}\left(\frac{\xi D_{x}}{2}+\frac{\eta D_{y}}{2}\right)\right)(F\cdot F-G\cdot G)=0\,, (90)
(DxDy+4cosh2(ξDx2+ηDy2))FG=0.\displaystyle\left(D_{x}D_{y}+4\cosh^{2}\left(\frac{\xi D_{x}}{2}+\frac{\eta D_{y}}{2}\right)\right)F\cdot G=0\,. (91)

In the case of ξ=η=0\xi=\eta=0, the bilinear equations (87), (88) (and also (90), (91)) and the NN-soliton solution (89) lead to the sG equation and their NN-soliton solution [32, 33, 34].

To construct a nonlinear form of the delay-differential analogue of the sG equation, we consider the dependent variable transformation

f(x,y)=exp(ρ(x,y)4+1θ(x,y)4),g(x,y)=exp(ρ(x,y)41θ(x,y)4),f(x,y)=\exp\left(\frac{\rho(x,y)}{4}+\sqrt{-1}\frac{\theta(x,y)}{4}\right)\,,\quad g(x,y)=\exp\left(\frac{\rho(x,y)}{4}-\sqrt{-1}\frac{\theta(x,y)}{4}\right)\,, (92)

which is equivalent to

θ(x,y)=21loggf=4tan1GF,ρ(x,y)=2logfg=2log(F2+G2).\displaystyle\theta(x,y)=2\sqrt{-1}\log\frac{g}{f}=4\tan^{-1}\frac{G}{F}\,,\quad\rho(x,y)=2\log fg=2\log(F^{2}+G^{2})\,. (93)

By using this transformation, we can transform the bilinear equations (87) and (88) into the nonlinear delay-differential equation

2xyθ(x,y)=4exp(ρ(x+ξ,y+η)+ρ(xξ,yη)2ρ(x,y)4)\displaystyle\frac{\partial^{2}}{\partial x\partial y}\theta(x,y)=-4\exp\left(\frac{\rho(x+\xi,y+\eta)+\rho(x-\xi,y-\eta)-2\rho(x,y)}{4}\right)
×sin(θ(x+ξ,y+η)+θ(xξ,yη)+2θ(x,y)4),\displaystyle\times\sin\left(\frac{\theta(x+\xi,y+\eta)+\theta(x-\xi,y-\eta)+2\theta(x,y)}{4}\right)\,, (94)
2xyρ(x,y)=4+4exp(ρ(x+ξ,y+η)+ρ(xξ,yη)2ρ(x,y)4)\displaystyle\frac{\partial^{2}}{\partial x\partial y}\rho(x,y)=-4+4\exp\left(\frac{\rho(x+\xi,y+\eta)+\rho(x-\xi,y-\eta)-2\rho(x,y)}{4}\right)
×cos(θ(x+ξ,y+η)+θ(xξ,yη)+2θ(x,y)4),\displaystyle\times\cos\left(\frac{\theta(x+\xi,y+\eta)+\theta(x-\xi,y-\eta)+2\theta(x,y)}{4}\right)\,, (95)

which is the delay-differential analogue of the sG equation. In the case of ξ=η=0\xi=\eta=0, the above nonlinear equation leads to the sG equation [32, 33]:

2xyθ(x,y)=4sinθ(x,y).\frac{\partial^{2}}{\partial x\partial y}\theta(x,y)=-4\sin\theta(x,y)\,. (96)

We can obtain the above delay-differential analogue of the sG equation by a reduction of the 2DTL equation . The bilinear equation of the 2DTL equation

DxDyfk(x,y)fk(x,y)+2(fk(x,y)fk(x,y)fk+1(x,y)fk1(x,y))=0D_{x}D_{y}f_{k}(x,y)\cdot f_{k}(x,y)+2(f_{k}(x,y)f_{k}(x,y)-f_{k+1}(x,y)f_{k-1}(x,y))=0 (97)

has the following NN-soliton solution [27, 22]:

fk(x,y)=det(δij+ϕiψjpiqj)1i,jN\displaystyle f_{k}(x,y)=\det\left(\delta_{ij}+\frac{\phi_{i}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N} (98)
=det(δij+ϕjψjpiqj)1i,jN=I{1,,N}iIΦii<j,i,jI(pipj)(qiqj)(piqj)(qipj),\displaystyle\hskip 36.98866pt=\det\left(\delta_{ij}+\frac{\phi_{j}\psi_{j}}{p_{i}-q_{j}}\right)_{1\leq i,j\leq N}=\sum_{I\subset\{1,\ldots,N\}}\prod_{i\in I}\Phi_{i}\prod_{i<j,\ i,j\in I}\frac{(p_{i}-p_{j})(q_{i}-q_{j})}{(p_{i}-q_{j})(q_{i}-p_{j})}\,,
ϕi=βipikepixpi1y,ψi=γiqikeqix+qi1y,\displaystyle\phi_{i}=\beta_{i}p_{i}^{k}e^{p_{i}x-p_{i}^{-1}y}\,,\quad\psi_{i}=\gamma_{i}q_{i}^{-k}e^{-q_{i}x+q_{i}^{-1}y}\,,
Φi=βiγi(piqi)kexp((piqi)x(1pi1qi)y),\displaystyle\Phi_{i}=\beta_{i}\gamma_{i}\left(\frac{p_{i}}{q_{i}}\right)^{k}\exp\left((p_{i}-q_{i})x-\left(\frac{1}{p_{i}}-\frac{1}{q_{i}}\right)y\right)\,,

where pi,qi,βi,γip_{i},q_{i},\beta_{i},\gamma_{i} are constants. We apply the reduction condition

fk+1(xξ,yη)=fk1(x+ξ,y+η)f_{k+1}(x-\xi,y-\eta)=f_{k-1}(x+\xi,y+\eta) (99)

and set

f(x,y)fk(x,y)=fk2(x+2ξ,y+2η),\displaystyle f(x,y)\equiv f_{k}(x,y)=f_{k-2}(x+2\xi,y+2\eta)\,, (100)
g(x,y)fk+1(xξ,yη)=fk1(x+ξ,y+η).\displaystyle g(x,y)\equiv f_{k+1}(x-\xi,y-\eta)=f_{k-1}(x+\xi,y+\eta)\,. (101)

Then we obtain the bilinear equations

DxDyf(x,y)f(x,y)+2(f(x,y)f(x,y)g(x+ξ,y+η)g(xξ,yη))=0,\displaystyle D_{x}D_{y}f(x,y)\cdot f(x,y)+2(f(x,y)f(x,y)-g(x+\xi,y+\eta)g(x-\xi,y-\eta))=0\,, (102)
DxDyg(x,y)g(x,y)+2(g(x,y)g(x,y)f(x+ξ,y+η)f(xξ,yη))=0.\displaystyle D_{x}D_{y}g(x,y)\cdot g(x,y)+2(g(x,y)g(x,y)-f(x+\xi,y+\eta)f(x-\xi,y-\eta))=0\,. (103)

For the NN-soliton solution, the constraint

(piqi)2=exp(2ξ(piqi)2η(1pi1qi))\left(\frac{p_{i}}{q_{i}}\right)^{2}=\exp\left(2\xi(p_{i}-q_{i})-2\eta\left(\frac{1}{p_{i}}-\frac{1}{q_{i}}\right)\right) (104)

provides the reduction condition (99). The constraint (104) leads to

piqi=±exp(ξ(piqi)η(1pi1qi)).\frac{p_{i}}{q_{i}}=\pm\exp\left(\xi(p_{i}-q_{i})-\eta\left(\frac{1}{p_{i}}-\frac{1}{q_{i}}\right)\right)\,. (105)

To take g(x,y)g(x,y) to be the complex conjugate of f(x,y)f(x,y), we can choose

piqi=exp(ξ(piqi)η(1pi1qi))\frac{p_{i}}{q_{i}}=-\exp\left(\xi(p_{i}-q_{i})-\eta\left(\frac{1}{p_{i}}-\frac{1}{q_{i}}\right)\right) (106)

and βiγi=1μi\beta_{i}\gamma_{i}=\sqrt{-1}\mu_{i}, where μi\mu_{i} is a real constant. Thus we obtain the delay-differential analogue of the sG equation and its NN-soliton solution from the 2DTL equation. This construction of the delay sG equation does not require the delay-differential limit.

5 Conclusions

We have presented the systematic method to construct delay-difference and delay-differential analogues of soliton equations and their NN-soliton solutions.

Our construction starts from the discrete KP equation (or discrete 2DTL equation) and uses reduction and delay-differential limit. As examples, we have obtained the delay-difference and delay-differential analogues of the LV, TL, and sG equations and their NN-soliton solutions. We have also presented another construction of delay-differential analogues of soliton equations starting from the semi-discrete KP, BT of 2DTL, and 2DTL equations without applying a delay-differential limit. In the construction of them, the important thing is to integrate discrete variables with continuous variables by reduction.

In this paper, we have not discussed Lax pairs and conserved quantities of the delay soliton equations and the relationship to the delay-differential Painlevé equations. These problems remain to be revealed in future studies.

This work was partially supported by JSPS KAKENHI Grant Numbers 18K03435, 17H02856, 22K03441 and JST/CREST.

References

References

  • [1] Erneux T 2009 Applied Delay differential equations (New York: Springer)
  • [2] Rihan F A 2021 Delay differential equations and Applications to Biology (Singapore: Springer)
  • [3] Nakanishi K, Itoh A, Igarashi Y and Bando M 1997 Solvable optimal velocity models and asymptotic trajectory Phys. Rev. E 55 6519
  • [4] Hasebe K, Nakayama A and Sugiyama Y 1999 Exact solutions of differential equations with delay for dissipative systems Phys. Lett. A 259 135–139
  • [5] Tutiya Y and Kanai M 2007 Exact Shock Solution of a Coupled System of Delay Differential Equations: A Car-Following Model J. Phys. Soc. Jpn. 76 083002
  • [6] Matsuya K and Kanai M 2015 Exact solution of a delay difference equation modeling traffic flow and their ultra-discrete limit (arXiv:1509.0786)
  • [7] Quispel G R W, Capel H W and Sahadevan R 1992 Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction Phys. Lett. A 170 379–383
  • [8] Levi D and Winternitz P 1993 Symmetries and conditional symmetries of differential‐difference equations J. Math. Phys. 34 3713–3730
  • [9] Grammaticos B, Ramani A and Moreira I C 1993 Delay-differential equations and the Painlevé transcendents Physica A 196 574–590
  • [10] Ramani A, Grammaticos B and Tamizhmani K M 1993 Painlevé analysis and singularity confinement: the ultimate conjecture J. Phys. A: Math. Gen. 26 L53–L58
  • [11] Joshi N 2008 Direct ‘delay’ reductions of the Toda equation J. Phys. A: Math. Theor. 42 022001
  • [12] Joshi N and Spicer P E 2009 Direct “delay” reductions of the Toda hierarchy J. Phys. Soc. Jpn. 78 0940061
  • [13] Carstea A S 2011 Bilinear approach to delay-Painlevé equations J. Phys. A: Math. Theor. 44 105202
  • [14] Viallet C M 2014 Algebraic entropy for differential-delay equations (arXiv:1408.6161)
  • [15] Halburd R and Korhonen R 2017 Growth of meromorphic solutions of delay differential equations Proc. Amer. Math. Soc. 145 2513–2526
  • [16] Berntson B K 2018 Special solutions of bi-Riccati delay-differential equations SIGMA 14 020
  • [17] Stokes A 2020 Singularity confinement in delay-differential Painlevé equations J. Phys. A: Math. Theor. 53 435201
  • [18] Villarroel J and Ablowitz M J 1993 On the method of solution of the differential-delay Toda equation Phys. Lett. A 180 413–418
  • [19] Tsunematsu A, Nakata K, Tanaka Y and Maruno K 2021 Delay reductions of the two-dimensional Toda lattice equation (arXiv:2201.09473)
  • [20] Hirota R 1981 Discrete analogue of a generalized Toda equation J. Phys. Soc. Jpn. 50 3785–3791
  • [21] Miwa T 1982 On Hirota’s difference equations Proc. Japan Acad. A 58 9–12
  • [22] Hirota R, Ito M and Kako F 1988 Two-dimensional Toda lattice equation Prog. Theor. Phys. Suppl. 94 42–58
  • [23] Ohta Y, Hirota R, Tsujimoto S and Imai T 1993 Casorati and discrete Gram Type determinant representations of solutions to the discrete KP hierarchy J. Phys. Soc. Jpn. 62 1872–1886
  • [24] Hirota R and Tsujimoto S 1995 Conserved quantities of a class of nonlinear difference-difference equations J. Phys. Soc. Jpn. 64 3125–3127
  • [25] Maruno K, Kajiwara K, Nakao S and Oikawa M 1997 Bilinearization of discrete soliton equations and singularity confinement Phys. Lett. A 229 173–182
  • [26] Hirota R and Satsuma J 1976 NN-soliton solutions of nonlinear network equations describing a Volterra system J. Phys. Soc. Jpn. 40 891–900
  • [27] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
  • [28] Li C-X, Lafortune S and Shen S-F 2016 A semi-discrete Kadomtsev-Petviashvili equation and its coupled integrable system J. Math. Phys. 57 053503
  • [29] Ohta Y, Kajiwara K, Matsukidaira J and Satsuma J 1993 Casorati determinant solution for the relativistic Toda lattice equation J. Math. Phys. 34 5190–5204
  • [30] Hirota R 1977 Nonlinear partial difference equations II. Discrete-time Toda equation J. Phys. Soc. Jpn. 43 2074–2078
  • [31] Hirota R and Satsuma J 1976 A Variety of Nonlinear Network Equations Generated from the Bäcklund Transformation for the Toda Lattice Prog. Theor. Phys. Suppl. 59 64–100
  • [32] Hirota R 1977 Nonlinear partial difference equations III; Discrete sine-Gordon equation J. Phys. Soc. Jpn. 43 2079–2086
  • [33] Hirota R 1972 Exact solution of the Sine-Gordon equation for multiple collisions of solitons J. Phys. Soc. Jpn. 33 1459–1463
  • [34] Ablowitz M J and Segur H 1981 Solitons and the inverse scattering transform (Philadelphia, PA: SIAM)