This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A systematic analysis of transverse momentum spectra of J/ψJ/\psi mesons
in high energy collisions

Xu-Hong Zhang1,{}^{1,}111[email protected]; [email protected]    Fu-Hu Liu1,{}^{1,}222Corresponding author: [email protected]; [email protected]    Khusniddin K. Olimov2,{}^{2,}333Corresponding author: [email protected] 1{}^{1}Institute of Theoretical Physics & Collaborative Innovation Center of Extreme Optics & State Key Laboratory of
Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
2{}^{2}Laboratory of High Energy Physics, Physical-Technical Institute of SPA “Physics-Sun” of Uzbek Academy of Sciences,
Chingiz Aytmatov str. 2b2^{b}, Tashkent 100084, Uzbekistan
Abstract

Abstract: We aggregate the transverse momentum spectra of J/ψJ/\psi mesons produced in high energy gold-gold (Au-Au), deuteron-gold (dd-Au), lead-lead (Pb-Pb), proton-lead (pp-Pb), and proton-(anti)proton (pp-p(p¯)p(\overline{p})) collisions measured by several collaborations at the Relativistic Heavy Ion collider (RHIC), the Tevatron Proton-Antiproton Collider, and the Large Hadron Collider (LHC). The collision energy (the center-of-mass energy) gets involved in a large range from dozens of GeV to 13 TeV (the top LHC energy). We consider two participant or contributor partons, a charm quark and an anti-charm quark, in the production of J/ψJ/\psi. The probability density of each quark is described by means of the modified Tsallis–Pareto-type function (the TP-like function) while considering that both quarks make suitable contributions to the J/ψJ/\psi transverse momentum spectrum. Therefore, the convolution of two TP-like functions is applied to represent the J/ψJ/\psi spectrum. We adopt the mentioned convolution function to fit the experimental data and find out the trends of the power exponent, effective temperature, and of the revised index with changing the centrality, rapidity, and collision energy. Beyond that, we capture the characteristic of J/ψJ/\psi spectrum, which is of great significance to better understand the production mechanism of J/ψJ/\psi in high energy collisions.

Keywords: Transverse momentum spectrum, J/ψJ/\psi meson, TP-like function, convolution

PACS: 12.40.Ee, 13.85.Hd, 24.10.Pa

I Introduction

Quantum chromodynamics (QCD) is the standard dynamics theory and an important part of the standard model, which is applicable in the study of heavy quark pair production and correlation 1; 2; 3; 4; 5; 6 such as the transverse momentum spectra, nuclear modification factor, azimuthal correlation, anisotropic flow, and so on. QCD is a kind of non-Abelian gauge field theory 6a, which implies that the strong interactions between quarks have three basic characteristics. Firstly, it can explain the asymptotic freedom characteristics proposed in the inelastic electron-proton and electron-deuteron scattering 6b. Secondly, it can explain the color confinement which shows quarks and anti-quarks cannot be separated due to very strong interactions. Lastly, it can explain the spontaneous break of the symmetry of the chirality. Understanding these characteristics is of great necessity for researchers to study the interactions among particles and their mechanisms of evolution, structure, and decay 6c; 6d; 6e; 6f; 6g.

The heavy flavor quarkonium is a bound state formed by the heavy flavor quark and anti-quark 7. It plays an important role in the theoretical research of QCD. In hadron induced high energy collisions, the generation of heavy quarkonium can be divided into two processes: One is the appearance of heavy quark pairs and the other one is the evolution of heavy quark pairs into hadrons. The former process can be calculated and analyzed by the perturbative QCD theory 9a; 9b; 9c. Particularly, due to the peculiar reason of the heavy quarkonium, in which the relativistic effect can be neglected, some special theories such as the non-relativistic QCD theory 9d; 9e; 9f can be used to calculate and analyze the production process.

As the basic theory of strong interactions of particles 1; 2; 3; 4; 5; 6, QCD predicts that the hadronic matter can be heated to a very high temperature when it experiences very strong interactions. Then, the system will go through a phase transition from the hadron matter to quark-gluon plasma (QGP) in the process 10; 11; 12. The experiment of relativistic heavy ion collisions is the only way of achieving a QCD phase transition in laboratory conditions 12a; 12b; 12c. Nevertheless, the lifetime of the produced QGP experiencing this phase transition can only reach the order of 10 fm/cc (from a few to dozens of fm/cc12d; 12e, which cannot be directly observed in experiments. To detect QGP and study its properties, one has to use an indirect method. For example, one may study the spectrum properties of heavy quarkoniums to obtain the excitation degree (temperature) of emission source which is related to the information on QGP.

J/ψJ/\psi meson is the bound state of charm and anti-charm (cc¯c\overline{c}) quarks, where the constituent mass of charm quark is about 1.6 GeV/c2c^{2} 7. As the first heavy quarkonium discovered experimentally, it has been extensively studied in high energy collisions. In addition, the constraint of J/ψJ/\psi is considered as an important signal for the generation of QGP 13; 14; 15; 15a; 15b. The yield of J/ψJ/\psi in electron-positron collisions is higher than that in nuclear collisions 15c; 15d, so the decay of J/ψJ/\psi in nuclear collisions is an ideal way and medium for studying the hadron spectrum and finding new particles. Υ\it\Upsilon meson is a bound state of bottom and anti-bottom (bb¯b\overline{b}) quarks, where the constituent mass of bottom quark is about 4.6 GeV/c2c^{2} 7. The masses of both J/ψJ/\psi and Υ\it\Upsilon are very large, which leads to the change scale of energy (momentum) in the collision process to the order of GeV (GeV/cc) when we study their structural properties. In addition, c+c¯c+\overline{c} and b+b¯b+\overline{b} can form new J/ψJ/\psi and Υ\it\Upsilon respectively, which can be researched by non-relativistic approach 9d; 9e; 9f.

We note that the theories and models based on QCD and related idea are complex in the calculation process 9a; 9b; 9c; 9d; 9e; 9f. The complex calculation limits the applications of these theories and models in comparison with experimental data. We hope that we could use a simple idea and formalism to describe uniformly the spectra of various particles, in particular the spectra of heavy quarkoniums such as J/ψJ/\psi due to its abundant early production in the collisions and wide transverse momentum distribution. In the framework of the multi-source thermal model 16; 17; 18; 18a, we have used the idea of quark composition describing tentatively and uniformly the spectra of various particles in our recent work 64; 64a. It is interesting for us to test further the idea systematically, but the idea of two contributor quarks or partons is used due to the fact that some particles such as leptons have no quark composition. Of course, the quark composition and two contributor quarks for heavy quarkoniums are the same.

In this paper, we test systematically the idea of two contributor partons which contribute to the transverse momentum spectrum of J/ψJ/\psi. The experimental data are collected from gold-gold (Au-Au) 19; 20, deuteron-gold (dd-Au) 21, lead-lead (Pb-Pb) 22; 23, proton-lead (pp-Pb) 24; 25; 26; 27, and proton-(anti)proton (pp-p(p¯)p(\overline{p})) collisions 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38 over an energy range from dozens of GeV at the Relativistic Heavy Ion Collider (RHIC) to 13 TeV at the Larger Hadron Collider (LHC). Among the RHIC and LHC, there is the Tevatron Proton-Antiproton Collider from which we cited the data in pp-p¯\overline{p} collisions at 1.96 TeV. These studies are useful for us to understand one of the three basic characteristics of QCD, the color confinement due to the very strong interactions among quarks and anti-quarks.

II Formalism and method

According to the multi-source thermal model 16; 17; 18; 18a, we may think that a few emission sources are formed in high energy collisions. For nuclear fragments from the projectile and target in nucleus-nucleus collisions, the sources can be nucleons and nucleon clusters. For produced particles such as pions, kaons, and J/ψJ/\psi, the sources can be participant or contributor quarks or gluons, though the contributors c+c¯c+\overline{c} may be from gluon fusion at the first. The properties of sources can be described by different statistics such as the Boltzmann-Gibbs, Fermi-Dirac, Bose-Einstein, and Tsallis statistics. There are some relations among these statistics due to the fact that they may result in similar or different distributions while describing the spectra of particles.

The Tsallis distribution describes the transverse momentum (pTp_{\rm T}) spectra in wider range than the Boltzmann-Gibbs distribution, though the former is derived from the latter 39; 40; 41. Also, the latter is a special case of the former in which the entropy index q=1q=1. Indeed, the former is widely used in high energy collisions from a few GeV to 13 TeV (the top LHC energy) to parameterize the pTp_{\rm T} spectrum of final-state particles, which justifies its usage in the present work. The form of the Tsallis distribution is expressed as 42; 43; 44; 45; 46; 47; 48

Ed3Nd3p=12πpTd2NdpTdy=dNdy(n1)(n2)2πnT[nT+m0(n2)](1+mTm0nT)n.\displaystyle\begin{split}&E\frac{d^{3}N}{d^{3}p}=\frac{1}{2\pi p_{\rm T}}\frac{d^{2}N}{dp_{\rm T}dy}\\ &=\frac{dN}{dy}\frac{(n-1)(n-2)}{2\pi nT[nT+m_{0}(n-2)]}\bigg{(}1+\frac{m_{\rm T}-m_{0}}{nT}\bigg{)}^{-n}.\end{split} (1)

Here, EE, pp, NN, yy, m0m_{0}, mTm_{\rm T}, nn, and TT denote the energy, momentum, particle number, rapidity, rest mass, transverse mass, power exponent, and effective temperature, respectively. The transverse mass is given by mT=pT2+m02m_{\rm T}=\sqrt{p_{\rm T}^{2}+m_{0}^{2}} 49; 50; 51; 52; 53; 54. In particular, n=1/(q1)n=1/(q-1), and the entropy index qq describes the degree of equilibrium. The closer the parameter qq to 1, the more equilibrated the emission source is.

According to the form of Tsallis distribution Eq. (1), as pTm0p_{\rm T}\gg m_{0}, m0m_{0} can be ignored, followed by Ed3N/dp3pTnEd^{3}N/dp^{3}\propto p_{\rm T}^{-n}. Then it can be observed that the particles are distributed in accordance with the inverse power law. This is the distribution type of particles produced by the hard scattering process in the high energy collision process 55; 56; 57; 58 and in high pTp_{\rm T} region. In the non-relativistic limit (pTm0)(p_{\rm T}\ll m_{0}) condition, there is mTm0=pT2/2m0=ETclassicalm_{\rm T}-m_{0}=p_{\rm T}^{2}/2m_{0}=E_{\rm T}^{\rm classical}, showing Ed3N/dp3eETclassical/TEd^{3}N/dp^{3}\propto e^{-E_{\rm T}^{\rm classical}/T}, where ETclassicalE_{\rm T}^{\rm classical} is the transverse energy in the non-relativistic limit. We call this distribution the thermodynamic statistical distribution, that is the Boltzmann distribution. Here, we have only discussed the two special cases (pTm0p_{\rm T}\gg m_{0} and pTm0p_{\rm T}\ll m_{0}), though they are not used by us in the present work.

Usually, the empirical formula, the Tsallis–Pareto-type function, is adopted to outline the pTp_{\rm T} spectrum 59; 60; 61; 62; 63. The general form of the mentioned function is

f(pT)=C×pT×(1+mTm0nT)n\displaystyle f(p_{\rm T})=C\times p_{\rm T}\times\bigg{(}1+\frac{m_{\rm T}-m_{0}}{nT}\bigg{)}^{-n} (2)

which is equivalent to Eq. (1) in the form of probability density function, where CC is the parameter dependent normalization constant. As the probability density function, Eq. (2) is normalized as 0f(pT)dpT=1\int_{0}^{\infty}f(p_{\rm T})dp_{\rm T}=1. In Eq. (2), nn and TT reflect the degrees of non-equilibrium and excitation of the source respectively. Larger nn corresponds to more equilibrium, and larger TT corresponds to higher excitation.

In the lower pTp_{\rm T} range, due to the contribution of light flavor resonance decay, Eq. (2) cannot describe the spectra of light particles very well. For J/ψJ/\psi, the feed-down contribution is more complicated, which is minimal at low pTp_{\rm T} and grows with growing pTp_{\rm T}. This renders that Eq. (2) also fails to describe the J/ψJ/\psi spectra. As a result, we ought to empirically add a revised index a0a_{0} on pTp_{\rm T} to modify Eq. (2). Then the revised Eq. (2) becomes 64; 64a; 65

f(pT)=C×pTa0×(1+mTm0nT)n.\displaystyle f(p_{\rm T})=C\times p_{\rm T}^{a_{0}}\times\bigg{(}1+\frac{m_{\rm T}-m_{0}}{nT}\bigg{)}^{-n}. (3)

Both the normalization constants CC in Eqs. (2) and (3) are different, though we have used the same symbol. The two constants are also the parameter dependent. Compared to Eq. (2), Eq. (3) can be used to describe the spectrum in the entire transverse momentum range, having a broader application. For purpose of convenience, as in refs. 64; 64a; 65, we also call Eq. (3) the TP-like function in this work. In the TP-like function, the meanings of nn and TT remain unchanged as what they are in Eq. (2), though their values may be changed.

The discovery of J/ψJ/\psi provides a direct evidence for the existence of charm quarks, which makes the study of hadron structure theory presenting a new situation. We may think that in the formation of J/ψJ/\psi there are two participant or contributor (anti-)charm quarks taking part in the collisions. Let pt1p_{t1} and pt2p_{t2} denote the contributions of quarks 1 and 2 to the transverse momentum of J/ψJ/\psi respectively. The probability density function f1(pt1)f_{1}(p_{t1}) (f2(pt2)f_{2}(p_{t2})) obeyed by pt1p_{t1} (pt2p_{t2}) is assumed to be Eq. (3). We have

f1(pt1)=C1pt1a0(1+pt12+m12m1nT)n,\displaystyle f_{1}(p_{t1})=C_{1}p_{t1}^{a_{0}}\bigg{(}1+\frac{\sqrt{p_{t1}^{2}+m_{1}^{2}}-m_{1}}{nT}\bigg{)}^{-n}, (4)
f2(pt2)=C1pt2a0(1+pt22+m22m2nT)n.\displaystyle f_{2}(p_{t2})=C_{1}p_{t2}^{a_{0}}\bigg{(}1+\frac{\sqrt{p_{t2}^{2}+m_{2}^{2}}-m_{2}}{nT}\bigg{)}^{-n}. (5)

Here, the two normalization constants C1C_{1} and C2C_{2} are parameter dependent. m1m_{1} and m2m_{2} are the constituent masses of quarks 1 and 2 respectively, both are 1.6 GeV/c2c^{2} for charm and anti-charm quarks 7 used in this work. Because of the two quarks taking part in the same collisions, the parameters nn, TT, and a0a_{0} in Eqs. (4) and (5) are separately the same.

The transverse momentum distribution of J/ψJ/\psi is given by the convolution of two TP-like functions 64; 64a; 65. We have

f(pT)=0pTf1(pt1)f2(pTpt1)dpt1=0pTf2(pt2)f1(pTpt2)dpt2,\displaystyle\begin{split}f(p_{\rm T})&=\int_{0}^{p_{\rm T}}f_{1}(p_{t1})f_{2}(p_{\rm T}-p_{t1})dp_{t1}\\ &=\int_{0}^{p_{\rm T}}f_{2}(p_{t2})f_{1}(p_{\rm T}-p_{t2})dp_{t2},\end{split} (6)

where the functions f1(x)f_{1}(x) and f2(x)f_{2}(x), as well as the parameters nn, TT, and a0a_{0}, are given in Eqs. (4) and (5). It should be noted that we have used two contributors. The convolution of two-parton contributions is applicable even for the spectra of particles with complex quark composition. For example, we may use the convolution of two-parton contributions fitting the spectra of various jets 65. As the probability density function, Eq. (6) is applicable in high energy collisions with small or large system, no matter what the density of produced particles is. In addition, Eq. (6) results in similar curve as Eqs. (4) and (5) with different parameters 64; 64a, though the form of Eq. (6) is more complex due to the convolution.

In the above discussions, we assume that pT=pt1+pt2p_{\rm T}=p_{t1}+p_{t2}, which is operated to describe the relationship among pTp_{\rm T} of J/ψJ/\psi, pt1p_{t1} and pt2p_{t2} contributed by quarks 1 and 2, respectively. This treatment assumes the azimuth angle ϕ1\phi_{1} of vector pt1\vec{p}_{t1} being equal to the azimuth angle ϕ2\phi_{2} of vector pt2\vec{p}_{t2}. More generally 64; 64a; 66, if ϕ1ϕ2\phi_{1}\neq\phi_{2}, we have pT=pt12+pt22+2pt1pt2cos|ϕ1ϕ2|p_{\rm T}=\sqrt{p_{t1}^{2}+p_{t2}^{2}+2p_{t1}p_{t2}\cos|\phi_{1}-\phi_{2}|}. In particular, if pt1\vec{p}_{t1} is perpendicular to pt2\vec{p}_{t2}, i.e. |ϕ1ϕ2|=π/2|\phi_{1}-\phi_{2}|=\pi/2, we have pT=pt12+pt22p_{\rm T}=\sqrt{p_{t1}^{2}+p_{t2}^{2}}. If pt1\vec{p}_{t1} is opposite to pt2\vec{p}_{t2}, i.e. |ϕ1ϕ2|=π|\phi_{1}-\phi_{2}|=\pi, we have pT=|pt1pt2|p_{\rm T}=|p_{t1}-p_{t2}|. Our explorations show that the relationship of pT=pt1+pt2p_{\rm T}=p_{t1}+p_{t2} due to ϕ1=ϕ2\phi_{1}=\phi_{2}, i.e. Eq. (6) based on Eqs. (4) and (5), is more easy to fit the data.

If we assume other relationships, Eq. (6) is not applicable. Thus, we need to explore new form of Eq. (3), which is also the topic for us 66; 67. If the analytical expression of Eq. (6) is not available for other relationships, the Monte Carlo method can be used to obtain pt1p_{t1}, pt2p_{t2}, and pTp_{\rm T}. The pTp_{\rm T} distribution is then obtained from the statistics. For example, for the more general case of ϕ1ϕ2\phi_{1}\neq\phi_{2}, we have the expression of pT=(pt1cosϕ1+pt2cosϕ2)2+(pt1sinϕ1+pt2sinϕ2)2p_{\rm T}=\sqrt{(p_{t1}\cos\phi_{1}+p_{t2}\cos\phi_{2})^{2}+(p_{t1}\sin\phi_{1}+p_{t2}\sin\phi_{2})^{2}}. This expression can be extended to the case of three or more contributor partons if we add the third or more items in the components. For the special case of |ϕ1ϕ2|=π/2|\phi_{1}-\phi_{2}|=\pi/2, the analytical expression of Eq. (6) is changed 66; 67, and the form of Eq. (3) is also changed 67. For the special case of |ϕ1ϕ2|=π|\phi_{1}-\phi_{2}|=\pi, the analytical expression of Eq. (6) is applicable, though the form of Eq. (3) is not applicable. In the calculation, the conservations of energy and momentum should be satisfied naturally.

It is understandable that we use pT=pt1+pt2p_{\rm T}=p_{t1}+p_{t2} in the present work. From the point of view of energy, we have the relationship among the energy EE of J/ψJ/\psi, E=E1+E2E=E_{1}+E_{2}, where E1E_{1} and E2E_{2} are energies contributed by quarks 1 and 2, respectively. In term of transverse mass and rapidity, we have the relationship mTcoshy=mt1coshy1+mt2coshy2m_{T}\cosh y=m_{t1}\cosh y_{1}+m_{t2}\cosh y_{2}, where mt1=pt12+m012m_{t1}=\sqrt{p_{t1}^{2}+m_{01}^{2}}, mt2=pt22+m022m_{t2}=\sqrt{p_{t2}^{2}+m_{02}^{2}}, m01m_{01} denotes the mass of quark 1, m02m_{02} denotes the mass of quark 2, y1y_{1} denotes the rapidity of quark 1, and y2y_{2} denotes the rapidity of quark 2. In the given narrow rapidity range and neglecting the mass, we have approximately pT=pt1+pt2p_{\rm T}=p_{t1}+p_{t2}.

Although the case of ϕ1=ϕ2\phi_{1}=\phi_{2} is a special one, the relationship of pT=pt1+pt2p_{\rm T}=p_{t1}+p_{t2} and the convolution of two TP-like functions can fit easily the spectra of various particles and jets 64; 64a; 65. From our point of view, we do not think that the more general case of ϕ1ϕ2\phi_{1}\neq\phi_{2} and the special cases of |ϕ1ϕ2|=π/2|\phi_{1}-\phi_{2}|=\pi/2 and |ϕ1ϕ2|=π|\phi_{1}-\phi_{2}|=\pi are more easy to fit the spectra due to the calculation itself, though the idea is practicable. In particular, from the point of view of the contributor partons, but not the constituent quarks, the spectra of leptons and jets can be easily fitted from the relationship of pT=pt1+pt2p_{\rm T}=p_{t1}+p_{t2} and the convolution of two TP-like functions 64; 64a; 65. This confirms the validity of Eq. (6) based on two contributor sources in the framework of multi-source thermal model 16; 17; 18; 18a.

We would like to emphasize here that we have used two contributor partons as the projectile and target particles/nuclei, no matter what the final-state products are 64; 64a; 65. For J/ψJ/\psi, the two contributor partons (charm and anti-charm quarks) and the constituent quarks are coincidentally equal to each other. For baryons, the two contributor partons are not equal to the three constituent quarks. For jets, the two contributor partons are not equal to the sets of two or three constituent quarks, too. For leptons, the two contributor partons have no corresponding constituent quarks. We may consider that two light or slow contributor partons produce leptons and baryons, while two heavy or fast contributor partons produce jets, no matter what the structures of leptons, baryons, and jets are. In fact, the two contributor partons are regarded as two energy resources, but not the constituents.

III Results and discussion

III.1 Comparison with data

Figure 1 shows the transverse momentum spectra, Bd2N/(2πpTdpTdy)Bd^{2}N/(2\pi p_{\rm T}dp_{\rm T}dy), of J/ψJ/\psi produced in Au-Au collisions at center-of-mass energy per nucleon pair sNN=\sqrt{s_{\rm NN}}= (a) 39, (b) 62.4, and (c–e) 200 GeV, where BB denotes the branching ratio. The symbols in panels (a–c) represent the experimental data of pTp_{\rm T} spectra measured by the STAR Collaboration 19 in the mid-rapidity interval of |y|<1|y|<1 and in the centrality class of 0–60%\% and its subclasses of 0–20%\%, 20–40%\%, and 40–60%\%. The symbols in panels (d) and (e) represent the experimental data of pTp_{\rm T} spectra measured by the PHENIX Collaboration 20 in the rapidity intervals of (d) |y|<0.35|y|<0.35 and (e) y[1.2,2.2]y\in[1.2,2.2] and in the centrality classes of 0–20%\%, 20–40%\%, 40–60%\%, and 60–92%\%. Some data sets are scaled by multiplying or dividing different values marked in the panels for clear indication. The solid curves are our fitting results by using the convolution of two TP-like functions, i.e. Eq. (6) based on Eqs. (4) and (5). For comparison, the dot-dashed curves are our results refitted by Eq. (6) with a0=1a_{0}=1. The values of fitting parameters nn, TT, and a0a_{0} are listed in Table 1 with the normalization constant N0N_{0}, χ2\chi^{2}, and the number of degree of freedom (ndof). We use χ2\chi^{2} to characterize the fitting deviation between the experimental data and our fit function and curve. For the given data and fit function, the smaller χ2\chi^{2}, the better the fitting result, and the closer to the experimental results. If χ2<1\chi^{2}<1, it is rounded to 1 or a decimal fraction; Otherwise, it is rounded to an integer. In the case of ndof is less than or equal to 0, we use ``"``-" to mention in the table. One can see that the mentioned function with changeable a0a_{0} fits satisfactorily the experimental data in Au-Au collisions measured by the STAR and PHENIX Collaborations at the RHIC, though in many cases the fits with a0=1a_{0}=1 are comparable to those with changeable a0a_{0}.

Similar to Figure 1, Figure 2 shows the transverse momentum spectra, Bd2N/(2πpTdpTdy)Bd^{2}N/(2\pi p_{\rm T}dp_{\rm T}dy), of J/ψJ/\psi produced in dd-Au collisions at 200 GeV. The symbols represent the experimental data measured by the PHENIX Collaboration 21. Panels (a) and (b) show the spectra of J/ψμ+μJ/\psi\rightarrow\mu^{+}\mu^{-} at the backward rapidity of 2.2<y<1.2-2.2<y<-1.2 and the forward rapidity of 1.2<y<2.21.2<y<2.2 respectively, with the centrality classes of 0–20%\%, 20–40%\%, 40–60%\%, and 60–88%\%. Panel (c) shows the spectra of J/ψe+eJ/\psi\rightarrow e^{+}e^{-} at mid-rapidity |y|<0.35|y|<0.35 with the same centrality classes as panels (a) and (b). Panel (d) shows the spectra in minimum-bias collisions with rapidity intervals of 2.2<y<1.2-2.2<y<-1.2, 1.2<y<2.21.2<y<2.2, and |y|<0.35|y|<0.35. The solid curves are our fitting results by Eq. (6), and the dot-dashed curves are our results refitted by Eq. (6) with a0=1a_{0}=1. The values of fitting parameters are listed in Table 2 with N0N_{0}, χ2\chi^{2}, and ndof. One can see that the mentioned function with changeable a0a_{0} fits satisfactorily the experimental data in dd-Au collisions measured by the PHENIX Collaboration at the RHIC. In many cases, the fits with a0=1a_{0}=1 obtain several times larger χ2\chi^{2} than those with changeable a0a_{0}.

The transverse momentum spectra, d2Y/dpTdyd^{2}Y/dp_{\rm T}dy, of J/ψJ/\psi produced in Pb-Pb collisions at (a) 2.76 TeV and (b) 5.02 TeV in the rapidity interval 2.5<y<42.5<y<4 are displayed in Figure 3, where YY denotes the yields. The symbols represent the experimental data measured by the ALICE Collaboration 22; 23. Panel (a) shows the spectra for three centrality classes, 0–20%\%, 20–40%\%, and 40–90%\%. Panel (b) shows the spectra for seven centrality classes, 0–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, and 60–90%. The sold (dot-dashed) curves are our fitting results by Eq. (6) (with a0=1a_{0}=1). The values of fitting parameters are listed in Table 3 with other information. One can see that Eq. (6) (with changeable a0a_{0}) fits satisfactorily the experimental data in Pb-Pb collisions measured by the ALICE Collaboration at the LHC. In many cases, the fits with a0=1a_{0}=1 obtain several times larger χ2\chi^{2} than those with changeable a0a_{0}.

The transverse momentum spectra, (a, b, i, and j) d2σ/dpTdyd^{2}\sigma/dp_{\rm T}dy or (c–h) Bd2σ/dpTdyBd^{2}\sigma/dp_{\rm T}dy, of (a, c, e, and g) prompt J/ψJ/\psi, (b) J/ψJ/\psi from bb, (d, f, and h) nonprompt J/ψJ/\psi, or (i and j) inclusive J/ψJ/\psi produced in pp-Pb collisions at 5.02 TeV are given in Figure 4. As can be seen in the figure, panels (a–h) show the spectra for different rapidity intervals, while panels (i) and (j) show the spectra for given rapidity interval and different centrality classes. The symbols in panels (a and b), (c–f), (g and h), as well as (i and j) represent the experimental data measured by the LHCb 24, CMS 25, ATLAS 26, and ALICE Collaborations 27, respectively. The solid (dot-dashed) curves are our fitting results by Eq. (6) (with a0=1a_{0}=1). The values of fitting parameters are listed in Table 4. It should be noted here that, in Figures 4(d), 4(f), and 4(h), although nonprompt J/ψJ/\psi is produced from the fragmentation of open bottom hadron, it is also regarded as two contributors due to the fact that open bottom hadron has two contributors. This is similar to the view of point of string, in which two contributors form a string. Then, the string is broken to produce a particle, and the particle has two contributors. From Figure 4 one can see that Eq. (6) (with changeable a0a_{0}) fits satisfactorily the experimental data in pp-Pb collisions measured by several collaborations at the LHC. In many cases, the fits with a0=1a_{0}=1 obtain several times larger χ2\chi^{2} than those with changeable a0a_{0}.

In Figure 5, we show the J/ψJ/\psi transverse momentum spectra, (a–c and g–j) Bd2σ/(2πpTdpTdy)Bd^{2}\sigma/(2\pi p_{\rm T}dp_{\rm T}dy), (d and e) Bdσ/dpTBd\sigma/dp_{\rm T}, (f) dσ/dpTd\sigma/dp_{\rm T}, and (k–p) d2σ/dpTdyd^{2}\sigma/dp_{\rm T}dy in pp-p(p¯)p(\overline{p}) collisions at center-of-mass energy s=\sqrt{s}= (a) 200, (b) 500, and (c) 510 GeV, as well as (d) 1.8, (e) 1.96, (f) 2.76, (g) 5.02, and (h) 5.02 TeV, with different yy or η\eta (pseudorapidity) and other selection conditions marked in the panels. The data symbols in panels (a), (b and c), (d and e), (f), (g–j), and (k–p) are quoted from the PHENIX 28; 29; 30, STAR 31, CDF 32; 33, LHCb 34 and ALICE 35, CMS 25, and LHCb Collaborations 36; 37; 38, respectively. The solid (dot-dashed) curves are our fitting results by Eq. (6) (with a0=1a_{0}=1). The values of fitting parameters are listed in Table 5. One can see that Eq. (6) (with changeable a0a_{0}) fits satisfactorily the experimental data in pp-pp collisions measured by several collaborations at the RHIC, Tevatron, and LHC. In many cases, the fits with a0=1a_{0}=1 obtain several times larger χ2\chi^{2} than those with changeable a0a_{0}.

[Uncaptioned image]

Figure 1. Transverse momentum spectra, Bd2N/(2πpTdpTdy)Bd^{2}N/(2\pi p_{\rm T}dp_{\rm T}dy), of J/ψJ/\psi produced in high energy Au-Au collisions with various centralities. Different symbols in panels (a–c) show the spectra measured by the STAR Collaboration 19 at sNN=\sqrt{s_{\rm NN}}= (a) 39, (b) 62.4, and (c) 200 GeV with |y|<1|y|<1. Panels (d) and (e) are the spectra measured by the PHENIX Collaboration 20 at 200 GeV with |y|<0.35|y|<0.35 and y[1.2,2.2]y\in[1.2,2.2] respectively. The solid curves are our fitting results by using Eq. (6) (with changeable a0a_{0}), and the dot-dashed curves are our results refitted by Eq. (6) with unchangeable a0=1a_{0}=1.

Table 1. Left panel: Values of nn, TT, a0a_{0}, N0N_{0}, χ2\chi^{2}, and ndof corresponding to the solid curves in Figure 1 for Au-Au collisions. Right panel: Values of nn, TT, N0N_{0}, χ2\chi^{2}, and ndof corresponding to the dot-dashed curves in Figure 1 for Au-Au collisions, in which a0=1a_{0}=1.

Figure Collab. sNN\sqrt{s_{\rm NN}} (GeV) Selection nn TT (GeV) a0a_{0} N0N_{0} χ2\chi^{2}/ndof nn TT (GeV) N0N_{0} χ2\chi^{2}/ndof
Figure 1(a) STAR 3939 0–60% 2.70±0.022.70\pm 0.02 0.278±0.0010.278\pm 0.001 0.131±0.0010.131\pm 0.001 (3.43±0.31)×104(3.43\pm 0.31)\times 10^{-4} 0.2/0.2/- 1.56±0.011.56\pm 0.01 0.037±0.0010.037\pm 0.001 (3.55±0.33)×104(3.55\pm 0.33)\times 10^{-4} 0.2/0.2/-
Au-Au |y|<1|y|<1 0–20% 2.37±0.022.37\pm 0.02 0.297±0.0010.297\pm 0.001 0.150±0.0010.150\pm 0.001 (6.23±0.58)×105(6.23\pm 0.58)\times 10^{-5} 0.5/0.5/- 1.62±0.011.62\pm 0.01 0.042±0.0010.042\pm 0.001 (9.35±0.87)×105(9.35\pm 0.87)\times 10^{-5} 0.5/0.5/-
20–40% 2.87±0.022.87\pm 0.02 0.278±0.0010.278\pm 0.001 0.112±0.0010.112\pm 0.001 (3.19±0.28)×105(3.19\pm 0.28)\times 10^{-5} 0.1/0.1/- 1.65±0.011.65\pm 0.01 0.039±0.0010.039\pm 0.001 (3.19±0.30)×105(3.19\pm 0.30)\times 10^{-5} 0.3/0.3/-
40–60% 2.95±0.022.95\pm 0.02 0.252±0.0010.252\pm 0.001 0.108±0.0010.108\pm 0.001 (8.29±0.79)×106(8.29\pm 0.79)\times 10^{-6} 0.4/0.4/- 1.67±0.011.67\pm 0.01 0.036±0.0010.036\pm 0.001 (8.33±0.81)×106(8.33\pm 0.81)\times 10^{-6} 0.4/0.4/-
Figure 1(b) STAR 62.462.4 0–60% 2.86±0.022.86\pm 0.02 0.285±0.0010.285\pm 0.001 0.131±0.0010.131\pm 0.001 (9.07±0.85)×104(9.07\pm 0.85)\times 10^{-4} 0.3/0.3/- 1.60±0.011.60\pm 0.01 0.039±0.0010.039\pm 0.001 (9.40±0.91)×104(9.40\pm 0.91)\times 10^{-4} 1/1/-
Au-Au |y|<1|y|<1 0–20% 2.78±0.022.78\pm 0.02 0.275±0.0010.275\pm 0.001 0.162±0.0010.162\pm 0.001 (2.20±0.20)×104(2.20\pm 0.20)\times 10^{-4} 0.8/0.8/- 1.66±0.011.66\pm 0.01 0.043±0.0010.043\pm 0.001 (2.16±0.19)×104(2.16\pm 0.19)\times 10^{-4} 1/1/-
20–40% 2.80±0.022.80\pm 0.02 0.271±0.0010.271\pm 0.001 0.145±0.0010.145\pm 0.001 (9.00±0.86)×105(9.00\pm 0.86)\times 10^{-5} 0.4/0.4/- 1.69±0.011.69\pm 0.01 0.037±0.0010.037\pm 0.001 (8.63±0.84)×105(8.63\pm 0.84)\times 10^{-5} 0.4/0.4/-
40–60% 2.94±0.022.94\pm 0.02 0.266±0.0010.266\pm 0.001 0.150±0.0010.150\pm 0.001 (3.34±0.29)×105(3.34\pm 0.29)\times 10^{-5} 0.1/0.1/- 1.70±0.011.70\pm 0.01 0.038±0.0010.038\pm 0.001 (3.30±0.31)×105(3.30\pm 0.31)\times 10^{-5} 1/1/-
Figure 1(c) STAR 200200 0–60% 4.67±0.034.67\pm 0.03 0.169±0.0010.169\pm 0.001 0.221±0.0010.221\pm 0.001 (7.86±0.76)×103(7.86\pm 0.76)\times 10^{-3} 4/24/2 3.94±0.033.94\pm 0.03 0.064±0.0010.064\pm 0.001 (7.70±0.75)×103(7.70\pm 0.75)\times 10^{-3} 34/334/3
Au-Au |y|<1|y|<1 0–20% 4.62±0.034.62\pm 0.03 0.183±0.0010.183\pm 0.001 0.225±0.0010.225\pm 0.001 (1.07±0.09)×103(1.07\pm 0.09)\times 10^{-3} 10/210/2 3.99±0.033.99\pm 0.03 0.067±0.0010.067\pm 0.001 (1.23±0.10)×103(1.23\pm 0.10)\times 10^{-3} 29/329/3
20–40% 4.73±0.034.73\pm 0.03 0.180±0.0010.180\pm 0.001 0.221±0.0010.221\pm 0.001 (1.02±0.08)×104(1.02\pm 0.08)\times 10^{-4} 4/24/2 4.08±0.044.08\pm 0.04 0.073±0.0010.073\pm 0.001 (1.01±0.08)×104(1.01\pm 0.08)\times 10^{-4} 14/314/3
40–60% 4.76±0.034.76\pm 0.03 0.177±0.0010.177\pm 0.001 0.215±0.0010.215\pm 0.001 (2.16±0.18)×105(2.16\pm 0.18)\times 10^{-5} 3/23/2 4.12±0.044.12\pm 0.04 0.075±0.0010.075\pm 0.001 (2.05±0.19)×105(2.05\pm 0.19)\times 10^{-5} 10/310/3
Figure 1(d) PHENIX 200200 0–20% 2.23±0.022.23\pm 0.02 0.227±0.0010.227\pm 0.001 0.208±0.0010.208\pm 0.001 (2.76±0.24)×104(2.76\pm 0.24)\times 10^{-4} 8/18/1 2.28±0.022.28\pm 0.02 0.064±0.0010.064\pm 0.001 (2.74±0.25)×104(2.74\pm 0.25)\times 10^{-4} 9/29/2
Au-Au |y|<0.35|y|<0.35 20–40% 2.28±0.022.28\pm 0.02 0.225±0.0010.225\pm 0.001 0.204±0.0010.204\pm 0.001 (1.61±0.14)×104(1.61\pm 0.14)\times 10^{-4} 3/13/1 2.20±0.022.20\pm 0.02 0.062±0.0010.062\pm 0.001 (1.71±0.15)×104(1.71\pm 0.15)\times 10^{-4} 4/24/2
40–60% 2.35±0.022.35\pm 0.02 0.216±0.0010.216\pm 0.001 0.195±0.0010.195\pm 0.001 (6.17±0.59)×105(6.17\pm 0.59)\times 10^{-5} 0.7/10.7/1 2.12±0.022.12\pm 0.02 0.055±0.0010.055\pm 0.001 (6.24±0.60)×105(6.24\pm 0.60)\times 10^{-5} 1/21/2
60–92% 2.95±0.022.95\pm 0.02 0.179±0.0010.179\pm 0.001 0.170±0.0010.170\pm 0.001 (1.04±0.10)×105(1.04\pm 0.10)\times 10^{-5} 1/11/1 2.56±0.022.56\pm 0.02 0.053±0.0010.053\pm 0.001 (1.01±0.09)×105(1.01\pm 0.09)\times 10^{-5} 1/21/2
Figure 1(e) PHENIX 200200 0–20% 2.51±0.022.51\pm 0.02 0.199±0.0010.199\pm 0.001 0.217±0.0010.217\pm 0.001 (1.60±0.13)×105(1.60\pm 0.13)\times 10^{-5} 3/13/1 2.34±0.022.34\pm 0.02 0.064±0.0010.064\pm 0.001 (1.53±0.13)×105(1.53\pm 0.13)\times 10^{-5} 3/23/2
Au-Au |y|[1.2,2.2]|y|\in[1.2,2.2] 20–40% 2.54±0.022.54\pm 0.02 0.196±0.0010.196\pm 0.001 0.215±0.0010.215\pm 0.001 (7.51±0.71)×105(7.51\pm 0.71)\times 10^{-5} 8/18/1 2.30±0.022.30\pm 0.02 0.071±0.0010.071\pm 0.001 (7.46±0.73)×105(7.46\pm 0.73)\times 10^{-5} 8/28/2
40–60% 2.68±0.022.68\pm 0.02 0.194±0.0010.194\pm 0.001 0.213±0.0010.213\pm 0.001 (3.70±0.34)×105(3.70\pm 0.34)\times 10^{-5} 1/11/1 2.48±0.022.48\pm 0.02 0.060±0.0010.060\pm 0.001 (3.72±0.35)×105(3.72\pm 0.35)\times 10^{-5} 2/22/2
60–92% 3.23±0.023.23\pm 0.02 0.192±0.0010.192\pm 0.001 0.211±0.0010.211\pm 0.001 (7.16±0.69)×106(7.16\pm 0.69)\times 10^{-6} 3/13/1 2.59±0.022.59\pm 0.02 0.058±0.0010.058\pm 0.001 (7.03±0.68)×106(7.03\pm 0.68)\times 10^{-6} 6/26/2
[Uncaptioned image]

Figure 2. Transverse momentum spectra, Bd2N/(2πpTdpTdy)Bd^{2}N/(2\pi p_{\rm T}dp_{\rm T}dy), of J/ψJ/\psi produced in dd-Au collisions at 200 GeV. Panels (a) and (b) show the spectra of J/ψμ+μJ/\psi\rightarrow\mu^{+}\mu^{-} in the backward and forward rapidity regions respectively, and panel (c) shows the spectra of J/ψe+eJ/\psi\rightarrow e^{+}e^{-} at mid-rapidity |y|<0.35|y|<0.35, with different centrality classes. Panel (d) shows the spectra in minimum-bias collisions with different rapidity intervals. The symbols represent the spectra measured by the PHENIX Collaboration 21, the solid curves are our fitting results by Eq. (6), and the dot-dashed curves are our results refitted by Eq. (6) with a0=1a_{0}=1.

[Uncaptioned image]

Figure 3. Transverse momentum spectra, d2Y/dpTdyd^{2}Y/dp_{\rm T}dy, of J/ψJ/\psi produced in Pb-Pb collisions at (a) 2.76 TeV and (b) 5.02 TeV, in the rapidity interval 2.5<y<42.5<y<4 and with different centrality classes. The symbols represent the experimental data measured by the ALICE Collaboration 22; 23, the solid curves are our fitting results by Eq. (6), and the dot-dashed curves are our results refitted by Eq. (6) with a0=1a_{0}=1.

Table 2. Left panel: Values of nn, TT, a0a_{0}, N0N_{0}, χ2\chi^{2}, and ndof corresponding to the solid curves in Figure 2 for dd-Au collisions. Right panel: Values of nn, TT, N0N_{0}, χ2\chi^{2}, and ndof corresponding to the dot-dashed curves in Figure 2 for dd-Au collisions, in which a0=1a_{0}=1.

Figure Collab. sNN\sqrt{s_{\rm NN}} (GeV) Selection nn TT (GeV) a0a_{0} N0N_{0} χ2\chi^{2}/ndof nn TT (GeV) N0N_{0} χ2\chi^{2}/ndof
Figure 2(a) PHENIX 200200 0–20% 5.85±0.055.85\pm 0.05 0.310±0.0010.310\pm 0.001 0.191±0.0010.191\pm 0.001 (1.11±0.11)×105(1.11\pm 0.11)\times 10^{-5} 40/2340/23 5.35±0.055.35\pm 0.05 0.159±0.0010.159\pm 0.001 (1.06±0.09)×105(1.06\pm 0.09)\times 10^{-5} 110/24110/24
dd-Au 2.2<y<1.2-2.2<y<-1.2 20–40% 5.88±0.055.88\pm 0.05 0.301±0.0010.301\pm 0.001 0.165±0.0010.165\pm 0.001 (6.90±0.64)×106(6.90\pm 0.64)\times 10^{-6} 119/23119/23 5.63±0.055.63\pm 0.05 0.154±0.0010.154\pm 0.001 (6.89±0.67)×106(6.89\pm 0.67)\times 10^{-6} 137/24137/24
40–60% 5.92±0.055.92\pm 0.05 0.299±0.0010.299\pm 0.001 0.161±0.0010.161\pm 0.001 (4.90±0.48)×106(4.90\pm 0.48)\times 10^{-6} 31/2331/23 5.61±0.055.61\pm 0.05 0.163±0.0010.163\pm 0.001 (4.64±0.44)×106(4.64\pm 0.44)\times 10^{-6} 136/24136/24
60–88% 5.99±0.055.99\pm 0.05 0.296±0.0010.296\pm 0.001 0.160±0.0010.160\pm 0.001 (2.27±0.21)×106(2.27\pm 0.21)\times 10^{-6} 36/2236/22 5.69±0.055.69\pm 0.05 0.157±0.0010.157\pm 0.001 (2.16±0.20)×106(2.16\pm 0.20)\times 10^{-6} 128/23128/23
Figure 2(b) PHENIX 200200 0–20% 5.95±0.055.95\pm 0.05 0.311±0.0010.311\pm 0.001 0.184±0.0010.184\pm 0.001 (6.95±0.67)×106(6.95\pm 0.67)\times 10^{-6} 29/2229/22 5.20±0.055.20\pm 0.05 0.159±0.0010.159\pm 0.001 (6.59±0.64)×106(6.59\pm 0.64)\times 10^{-6} 136/23136/23
dd-Au 1.2<y<2.21.2<y<2.2 20–40% 6.08±0.056.08\pm 0.05 0.304±0.0010.304\pm 0.001 0.175±0.0010.175\pm 0.001 (5.50±0.50)×106(5.50\pm 0.50)\times 10^{-6} 42/2342/23 5.25±0.055.25\pm 0.05 0.153±0.0010.153\pm 0.001 (5.41±0.52)×106(5.41\pm 0.52)\times 10^{-6} 194/23194/23
40–60% 6.22±0.056.22\pm 0.05 0.299±0.0010.299\pm 0.001 0.172±0.0010.172\pm 0.001 (4.17±0.41)×106(4.17\pm 0.41)\times 10^{-6} 21/2221/22 5.29±0.055.29\pm 0.05 0.149±0.0010.149\pm 0.001 (4.00±0.38)×106(4.00\pm 0.38)\times 10^{-6} 123/23123/23
60–88% 6.36±0.066.36\pm 0.06 0.295±0.0010.295\pm 0.001 0.168±0.0010.168\pm 0.001 (2.18±0.20)×106(2.18\pm 0.20)\times 10^{-6} 39/2339/23 5.32±0.055.32\pm 0.05 0.145±0.0010.145\pm 0.001 (2.05±0.19)×106(2.05\pm 0.19)\times 10^{-6} 187/24187/24
Figure 2(c) PHENIX 200200 0–20% 6.00±0.056.00\pm 0.05 0.352±0.0010.352\pm 0.001 0.191±0.0010.191\pm 0.001 (1.21±0.11)×105(1.21\pm 0.11)\times 10^{-5} 27/927/9 5.31±0.055.31\pm 0.05 0.176±0.0010.176\pm 0.001 (1.16±0.10)×105(1.16\pm 0.10)\times 10^{-5} 112/10112/10
dd-Au |y|<0.35|y|<0.35 20–40% 6.05±0.056.05\pm 0.05 0.349±0.0010.349\pm 0.001 0.178±0.0010.178\pm 0.001 (9.39±0.91)×106(9.39\pm 0.91)\times 10^{-6} 26/926/9 5.35±0.055.35\pm 0.05 0.171±0.0010.171\pm 0.001 (8.54±0.83)×106(8.54\pm 0.83)\times 10^{-6} 116/10116/10
40–60% 6.25±0.056.25\pm 0.05 0.338±0.0010.338\pm 0.001 0.164±0.0010.164\pm 0.001 (5.96±0.50)×106(5.96\pm 0.50)\times 10^{-6} 18/718/7 5.40±0.055.40\pm 0.05 0.165±0.0010.165\pm 0.001 (5.44±0.52)×106(5.44\pm 0.52)\times 10^{-6} 72/872/8
60–88% 6.29±0.056.29\pm 0.05 0.331±0.0010.331\pm 0.001 0.157±0.0010.157\pm 0.001 (2.93±0.27)×106(2.93\pm 0.27)\times 10^{-6} 10/710/7 5.44±0.055.44\pm 0.05 0.161±0.0010.161\pm 0.001 (2.55±0.24)×106(2.55\pm 0.24)\times 10^{-6} 70/870/8
Figure 2(d) PHENIX 200200 2.2<y<1.2-2.2<y<-1.2 5.89±0.055.89\pm 0.05 0.310±0.0010.310\pm 0.001 0.148±0.0010.148\pm 0.001 (5.37±0.48)×106(5.37\pm 0.48)\times 10^{-6} 50/2350/23 5.25±0.055.25\pm 0.05 0.157±0.0010.157\pm 0.001 (5.25±0.50)×106(5.25\pm 0.50)\times 10^{-6} 206/24206/24
dd-Au 0–100% 1.2<y<2.21.2<y<2.2 5.96±0.055.96\pm 0.05 0.315±0.0010.315\pm 0.001 0.139±0.0010.139\pm 0.001 (3.92±0.37)×106(3.92\pm 0.37)\times 10^{-6} 42/2342/23 5.25±0.055.25\pm 0.05 0.157±0.0010.157\pm 0.001 (3.93±0.37)×106(3.93\pm 0.37)\times 10^{-6} 200/24200/24
|y|<0.35|y|<0.35 6.01±0.056.01\pm 0.05 0.362±0.0010.362\pm 0.001 0.139±0.0010.139\pm 0.001 (6.67±0.65)×106(6.67\pm 0.65)\times 10^{-6} 28/928/9 4.89±0.044.89\pm 0.04 0.163±0.0010.163\pm 0.001 (6.23±0.60)×106(6.23\pm 0.60)\times 10^{-6} 188/10188/10

Table 3. Left panel: Values of nn, TT, a0a_{0}, N0N_{0}, χ2\chi^{2}, and ndof corresponding to the solid curves in Figure 3 for Pb-Pb collisions. Right panel: Values of nn, TT, N0N_{0}, χ2\chi^{2}, and ndof corresponding to the dot-dashed curves in Figure 3 for Pb-Pb collisions, in which a0=1a_{0}=1.

Figure Collab. sNN\sqrt{s_{\rm NN}} (TeV) Selection nn TT (GeV) a0a_{0} N0N_{0} χ2\chi^{2}/ndof nn TT (GeV) N0N_{0} χ2\chi^{2}/ndof
Figure 3(a) ALICE 2.762.76 0–20% 5.35±0.055.35\pm 0.05 0.409±0.0010.409\pm 0.001 0.140±0.0010.140\pm 0.001 (2.15±0.20)×101(2.15\pm 0.20)\times 10^{1} 14/914/9 4.89±0.044.89\pm 0.04 0.202±0.0010.202\pm 0.001 (2.10±0.18)×101(2.10\pm 0.18)\times 10^{1} 45/1045/10
Pb-Pb 2.5<y<42.5<y<4 20–40% 5.37±0.055.37\pm 0.05 0.407±0.0010.407\pm 0.001 0.137±0.0010.137\pm 0.001 (9.70±0.95)×100(9.70\pm 0.95)\times 10^{0} 14/914/9 4.91±0.044.91\pm 0.04 0.200±0.0010.200\pm 0.001 (8.88±0.86)×100(8.88\pm 0.86)\times 10^{0} 70/1070/10
40–90% 5.39±0.055.39\pm 0.05 0.407±0.0010.407\pm 0.001 0.135±0.0010.135\pm 0.001 (1.61±0.14)×100(1.61\pm 0.14)\times 10^{0} 39/939/9 4.93±0.044.93\pm 0.04 0.197±0.0010.197\pm 0.001 (1.45±0.12)×100(1.45\pm 0.12)\times 10^{0} 64/1064/10
Figure 3(b) ALICE 5.025.02 0–10% 5.65±0.055.65\pm 0.05 0.431±0.0010.431\pm 0.001 0.141±0.0010.141\pm 0.001 (5.69±0.55)×102(5.69\pm 0.55)\times 10^{2} 47/647/6 5.24±0.055.24\pm 0.05 0.215±0.0010.215\pm 0.001 (5.18±0.50)×102(5.18\pm 0.50)\times 10^{2} 138/7138/7
Pb-Pb 2.5<y<42.5<y<4 10–20% 5.68±0.055.68\pm 0.05 0.430±0.0010.430\pm 0.001 0.141±0.0010.141\pm 0.001 (3.34±0.32)×102(3.34\pm 0.32)\times 10^{2} 23/623/6 4.91±0.044.91\pm 0.04 0.212±0.0010.212\pm 0.001 (3.26±0.31)×102(3.26\pm 0.31)\times 10^{2} 108/7108/7
20–30% 5.70±0.055.70\pm 0.05 0.429±0.0010.429\pm 0.001 0.140±0.0010.140\pm 0.001 (2.23±0.20)×102(2.23\pm 0.20)\times 10^{2} 40/640/6 4.76±0.044.76\pm 0.04 0.211±0.0010.211\pm 0.001 (2.12±0.19)×102(2.12\pm 0.19)\times 10^{2} 107/7107/7
30–40% 4.56±0.044.56\pm 0.04 0.428±0.0010.428\pm 0.001 0.139±0.0010.139\pm 0.001 (1.12±0.10)×102(1.12\pm 0.10)\times 10^{2} 40/640/6 4.42±0.044.42\pm 0.04 0.210±0.0010.210\pm 0.001 (1.09±0.09)×102(1.09\pm 0.09)\times 10^{2} 119/7119/7
40–50% 4.57±0.044.57\pm 0.04 0.427±0.0010.427\pm 0.001 0.136±0.0010.136\pm 0.001 (6.67±0.65)×101(6.67\pm 0.65)\times 10^{1} 34/634/6 4.34±0.044.34\pm 0.04 0.207±0.0010.207\pm 0.001 (6.51±0.63)×101(6.51\pm 0.63)\times 10^{1} 86/786/7
50–60% 4.58±0.044.58\pm 0.04 0.426±0.0010.426\pm 0.001 0.135±0.0010.135\pm 0.001 (3.67±0.35)×101(3.67\pm 0.35)\times 10^{1} 57/657/6 4.17±0.044.17\pm 0.04 0.204±0.0010.204\pm 0.001 (3.39±0.32)×101(3.39\pm 0.32)\times 10^{1} 136/7136/7
60–90% 4.60±0.044.60\pm 0.04 0.425±0.0010.425\pm 0.001 0.135±0.0010.135\pm 0.001 (1.01±0.08)×101(1.01\pm 0.08)\times 10^{1} 160/6160/6 4.13±0.064.13\pm 0.06 0.202±0.0010.202\pm 0.001 (8.84±0.86)×100(8.84\pm 0.86)\times 10^{0} 267/7267/7
[Uncaptioned image]

Figure 4. Transverse momentum spectra, (a, b, i, and j) d2σ/dpTdyd^{2}\sigma/dp_{\rm T}dy or (c–h) Bd2σ/dpTdyBd^{2}\sigma/dp_{\rm T}dy, of (a, c, e, and g) prompt J/ψJ/\psi, (b) J/ψJ/\psi from bb, (d, f, and h) nonprompt J/ψJ/\psi, or (i and j) inclusive J/ψJ/\psi produced in pp-Pb collisions at 5.02 TeV. Panels (a–h) show the spectra for different rapidity intervals, while panels (i) and (j) show the spectra for given rapidity interval and different centrality classes. The symbols in panels (a and b), (c–f), (g and h), as well as (i and j) represent the experimental data measured by the LHCb 24, CMS 25, ATLAS 26, and ALICE 27 Collaborations, respectively. The solid curves are our fitting results by Eq. (6), and the dot-dashed curves are our results refitted by Eq. (6) with a0=1a_{0}=1.

Table 4. Left panel: Values of nn, TT, a0a_{0}, σ0\sigma_{0}, χ2\chi^{2}, and ndof corresponding to the solid curves in Figure 4 for pp-Pb collisions. Right panel: Values of nn, TT, σ0\sigma_{0}, χ2\chi^{2}, and ndof corresponding to the dot-dashed curves in Figure 4 for pp-Pb collisions, in which a0=1a_{0}=1.

Figure Collab. sNN\sqrt{s_{\rm NN}} (TeV) Selection nn TT (GeV) a0a_{0} σ0\sigma_{0} (μ\mub) χ2\chi^{2}/ndof nn TT (GeV) σ0\sigma_{0} (μ\mub) χ2\chi^{2}/ndof
Figure 4(a) LHCb 5.025.02 1.5<y<2.01.5<y<2.0 4.55±0.034.55\pm 0.03 0.598±0.0020.598\pm 0.002 0.172±0.0010.172\pm 0.001 (5.97±0.57)×102(5.97\pm 0.57)\times 10^{2} 2/42/4 4.27±0.044.27\pm 0.04 0.278±0.0010.278\pm 0.001 (5.97±0.58)×102(5.97\pm 0.58)\times 10^{2} 41/541/5
pp-Pb 2.0<y<2.52.0<y<2.5 4.63±0.034.63\pm 0.03 0.612±0.0020.612\pm 0.002 0.172±0.0010.172\pm 0.001 (5.46±0.51)×102(5.46\pm 0.51)\times 10^{2} 7/47/4 4.30±0.044.30\pm 0.04 0.284±0.0010.284\pm 0.001 (5.15±0.50)×102(5.15\pm 0.50)\times 10^{2} 110/5110/5
2.5<y<3.02.5<y<3.0 5.06±0.045.06\pm 0.04 0.622±0.0020.622\pm 0.002 0.164±0.0010.164\pm 0.001 (4.90±0.42)×102(4.90\pm 0.42)\times 10^{2} 5/45/4 4.42±0.044.42\pm 0.04 0.287±0.0010.287\pm 0.001 (4.57±0.44)×102(4.57\pm 0.44)\times 10^{2} 114/5114/5
3.0<y<3.53.0<y<3.5 5.84±0.045.84\pm 0.04 0.622±0.0020.622\pm 0.002 0.153±0.0010.153\pm 0.001 (4.03±0.39)×102(4.03\pm 0.39)\times 10^{2} 9/49/4 4.79±0.044.79\pm 0.04 0.289±0.0010.289\pm 0.001 (3.74±0.36)×102(3.74\pm 0.36)\times 10^{2} 104/5104/5
3.5<y<4.03.5<y<4.0 6.03±0.046.03\pm 0.04 0.624±0.0020.624\pm 0.002 0.127±0.0010.127\pm 0.001 (3.37±0.30)×102(3.37\pm 0.30)\times 10^{2} 10/410/4 5.09±0.055.09\pm 0.05 0.292±0.0010.292\pm 0.001 (3.21±0.30)×102(3.21\pm 0.30)\times 10^{2} 85/585/5
Figure 4(b) LHCb 5.025.02 1.5<y<2.01.5<y<2.0 4.01±0.034.01\pm 0.03 0.679±0.0020.679\pm 0.002 0.226±0.0010.226\pm 0.001 (9.00±0.88)×101(9.00\pm 0.88)\times 10^{1} 3/43/4 3.64±0.033.64\pm 0.03 0.299±0.0010.299\pm 0.001 (8.47±0.83)×101(8.47\pm 0.83)\times 10^{1} 9/59/5
pp-Pb 2.0<y<2.52.0<y<2.5 4.06±0.034.06\pm 0.03 0.680±0.0020.680\pm 0.002 0.215±0.0010.215\pm 0.001 (8.11±0.75)×101(8.11\pm 0.75)\times 10^{1} 11/411/4 3.69±0.033.69\pm 0.03 0.302±0.0010.302\pm 0.001 (7.74±0.75)×101(7.74\pm 0.75)\times 10^{1} 24/524/5
2.5<y<3.02.5<y<3.0 4.73±0.034.73\pm 0.03 0.688±0.0020.688\pm 0.002 0.210±0.0010.210\pm 0.001 (6.93±0.63)×101(6.93\pm 0.63)\times 10^{1} 4/44/4 3.84±0.033.84\pm 0.03 0.306±0.0010.306\pm 0.001 (6.58±0.64)×101(6.58\pm 0.64)\times 10^{1} 22/522/5
3.0<y<3.53.0<y<3.5 6.17±0.046.17\pm 0.04 0.694±0.0020.694\pm 0.002 0.210±0.0010.210\pm 0.001 (5.59±0.50)×101(5.59\pm 0.50)\times 10^{1} 6/46/4 3.89±0.033.89\pm 0.03 0.309±0.0010.309\pm 0.001 (5.27±0.51)×101(5.27\pm 0.51)\times 10^{1} 13/513/5
3.5<y<4.03.5<y<4.0 6.95±0.056.95\pm 0.05 0.697±0.0020.697\pm 0.002 0.210±0.0010.210\pm 0.001 (3.50±0.34)×101(3.50\pm 0.34)\times 10^{1} 4/44/4 4.21±0.044.21\pm 0.04 0.312±0.0010.312\pm 0.001 (3.41±0.33)×101(3.41\pm 0.33)\times 10^{1} 12/512/5
Figure 4(c) CMS 5.025.02 0.9<y<0-0.9<y<0 4.96±0.044.96\pm 0.04 0.566±0.0020.566\pm 0.002 0.254±0.0010.254\pm 0.001 (4.74±0.45)×101(4.74\pm 0.45)\times 10^{1} 25/125/1 4.86±0.044.86\pm 0.04 0.291±0.0010.291\pm 0.001 (5.32±0.51)×101(5.32\pm 0.51)\times 10^{1} 59/259/2
pp-Pb 1.5<y<0.9-1.5<y<-0.9 5.12±0.045.12\pm 0.04 0.576±0.0020.576\pm 0.002 0.250±0.0010.250\pm 0.001 (4.78±0.40)×101(4.78\pm 0.40)\times 10^{1} 18/118/1 4.91±0.054.91\pm 0.05 0.295±0.0010.295\pm 0.001 (5.42±0.52)×101(5.42\pm 0.52)\times 10^{1} 45/245/2
1.93<y<1.5-1.93<y<-1.5 5.47±0.045.47\pm 0.04 0.591±0.0020.591\pm 0.002 0.249±0.0010.249\pm 0.001 (4.74±0.45)×101(4.74\pm 0.45)\times 10^{1} 23/223/2 5.08±0.055.08\pm 0.05 0.306±0.0010.306\pm 0.001 (5.05±0.48)×101(5.05\pm 0.48)\times 10^{1} 54/354/3
2.4<y<1.93-2.4<y<-1.93 5.73±0.045.73\pm 0.04 0.593±0.0020.593\pm 0.002 0.246±0.0010.246\pm 0.001 (4.38±0.41)×101(4.38\pm 0.41)\times 10^{1} 62/362/3 5.15±0.055.15\pm 0.05 0.314±0.0010.314\pm 0.001 (4.33±0.41)×101(4.33\pm 0.41)\times 10^{1} 63/463/4
2.87<y<2.4-2.87<y<-2.4 5.95±0.045.95\pm 0.04 0.598±0.0020.598\pm 0.002 0.241±0.0010.241\pm 0.001 (4.08±0.39)×101(4.08\pm 0.39)\times 10^{1} 39/539/5 5.27±0.055.27\pm 0.05 0.317±0.0010.317\pm 0.001 (3.99±0.37)×101(3.99\pm 0.37)\times 10^{1} 41/641/6
Figure 4(d) CMS 5.025.02 0.9<y<0-0.9<y<0 4.49±0.034.49\pm 0.03 0.583±0.0020.583\pm 0.002 0.278±0.0010.278\pm 0.001 (1.24±0.10)×101(1.24\pm 0.10)\times 10^{1} 30/130/1 4.06±0.044.06\pm 0.04 0.286±0.0010.286\pm 0.001 (1.16±0.10)×101(1.16\pm 0.10)\times 10^{1} 31/231/2
pp-Pb 1.5<y<0.9-1.5<y<-0.9 4.59±0.034.59\pm 0.03 0.604±0.0020.604\pm 0.002 0.277±0.0010.277\pm 0.001 (1.10±0.11)×101(1.10\pm 0.11)\times 10^{1} 23/123/1 4.10±0.044.10\pm 0.04 0.291±0.0010.291\pm 0.001 (1.11±0.08)×101(1.11\pm 0.08)\times 10^{1} 25/225/2
1.93<y<1.5-1.93<y<-1.5 4.79±0.034.79\pm 0.03 0.623±0.0020.623\pm 0.002 0.272±0.0010.272\pm 0.001 (8.90±0.87)×100(8.90\pm 0.87)\times 10^{0} 23/223/2 4.17±0.044.17\pm 0.04 0.297±0.0010.297\pm 0.001 (8.82±0.86)×100(8.82\pm 0.86)\times 10^{0} 24/324/3
2.4<y<1.93-2.4<y<-1.93 4.93±0.034.93\pm 0.03 0.627±0.0020.627\pm 0.002 0.268±0.0010.268\pm 0.001 (7.21±0.63)×100(7.21\pm 0.63)\times 10^{0} 24/324/3 4.29±0.044.29\pm 0.04 0.302±0.0010.302\pm 0.001 (6.92±0.67)×100(6.92\pm 0.67)\times 10^{0} 35/435/4
2.87<y<2.4-2.87<y<-2.4 5.13±0.045.13\pm 0.04 0.630±0.0020.630\pm 0.002 0.262±0.0010.262\pm 0.001 (5.70±0.55)×100(5.70\pm 0.55)\times 10^{0} 18/518/5 4.39±0.044.39\pm 0.04 0.313±0.0010.313\pm 0.001 (4.96±0.48)×100(4.96\pm 0.48)\times 10^{0} 22/622/6
Figure 4(e) CMS 5.025.02 0<y<0.90<y<0.9 4.96±0.034.96\pm 0.03 0.562±0.0020.562\pm 0.002 0.254±0.0010.254\pm 0.001 (4.46±0.43)×101(4.46\pm 0.43)\times 10^{1} 23/123/1 4.90±0.044.90\pm 0.04 0.294±0.0010.294\pm 0.001 (5.49±0.53)×101(5.49\pm 0.53)\times 10^{1} 39/239/2
pp-Pb 0.9<y<1.50.9<y<1.5 5.19±0.045.19\pm 0.04 0.569±0.0020.569\pm 0.002 0.251±0.0010.251\pm 0.001 (4.84±0.40)×101(4.84\pm 0.40)\times 10^{1} 26/326/3 4.95±0.054.95\pm 0.05 0.297±0.0010.297\pm 0.001 (5.25±0.51)×101(5.25\pm 0.51)\times 10^{1} 26/426/4
1.5<y<1.931.5<y<1.93 5.43±0.045.43\pm 0.04 0.574±0.0020.574\pm 0.002 0.245±0.0010.245\pm 0.001 (4.51±0.43)×101(4.51\pm 0.43)\times 10^{1} 11/511/5 5.02±0.055.02\pm 0.05 0.304±0.0010.304\pm 0.001 (4.30±0.41)×101(4.30\pm 0.41)\times 10^{1} 23/623/6
Figure 4(f) CMS 5.025.02 0<y<0.90<y<0.9 4.43±0.034.43\pm 0.03 0.586±0.0020.586\pm 0.002 0.281±0.0010.281\pm 0.001 (1.13±0.10)×101(1.13\pm 0.10)\times 10^{1} 43/143/1 4.08±0.044.08\pm 0.04 0.287±0.0010.287\pm 0.001 (1.21±0.10)×101(1.21\pm 0.10)\times 10^{1} 47/247/2
pp-Pb 0.9<y<1.50.9<y<1.5 4.65±0.034.65\pm 0.03 0.606±0.0020.606\pm 0.002 0.279±0.0010.279\pm 0.001 (9.21±0.86)×100(9.21\pm 0.86)\times 10^{0} 42/342/3 4.10±0.044.10\pm 0.04 0.292±0.0010.292\pm 0.001 (9.20±0.90)×100(9.20\pm 0.90)\times 10^{0} 44/444/4
1.5<y<1.931.5<y<1.93 4.82±0.034.82\pm 0.03 0.619±0.0020.619\pm 0.002 0.272±0.0010.272\pm 0.001 (7.21±0.70)×100(7.21\pm 0.70)\times 10^{0} 32/532/5 4.12±0.044.12\pm 0.04 0.305±0.0010.305\pm 0.001 (7.23±0.70)×100(7.23\pm 0.70)\times 10^{0} 37/637/6
Figure 4(g) ATLAS 5.025.02 1.94<y<0-1.94<y<0 5.76±0.045.76\pm 0.04 0.583±0.0020.583\pm 0.002 0.248±0.0010.248\pm 0.001 (5.23±0.50)×101(5.23\pm 0.50)\times 10^{1} 2/12/1 5.67±0.055.67\pm 0.05 0.329±0.0010.329\pm 0.001 (5.63±0.54)×101(5.63\pm 0.54)\times 10^{1} 16/216/2
pp-Pb 0<y<1.940<y<1.94 5.85±0.045.85\pm 0.04 0.583±0.0020.583\pm 0.002 0.241±0.0010.241\pm 0.001 (5.23±0.50)×101(5.23\pm 0.50)\times 10^{1} 4/14/1 5.79±0.055.79\pm 0.05 0.337±0.0010.337\pm 0.001 (5.16±0.50)×101(5.16\pm 0.50)\times 10^{1} 21/221/2
Figure 4(h) ATLAS 5.025.02 1.94<y<0-1.94<y<0 5.35±0.045.35\pm 0.04 0.595±0.0020.595\pm 0.002 0.259±0.0010.259\pm 0.001 (2.11±0.19)×101(2.11\pm 0.19)\times 10^{1} 16/116/1 5.22±0.055.22\pm 0.05 0.319±0.0010.319\pm 0.001 (2.09±0.19)×101(2.09\pm 0.19)\times 10^{1} 18/218/2
pp-Pb 0<y<1.940<y<1.94 5.46±0.045.46\pm 0.04 0.607±0.0020.607\pm 0.002 0.257±0.0010.257\pm 0.001 (2.01±0.18)×101(2.01\pm 0.18)\times 10^{1} 28/128/1 5.29±0.055.29\pm 0.05 0.324±0.0010.324\pm 0.001 (1.99±0.18)×101(1.99\pm 0.18)\times 10^{1} 31/231/2
Figure 4(i) ALICE 5.025.02 2–10% 5.08±0.045.08\pm 0.04 0.521±0.0020.521\pm 0.002 0.184±0.0010.184\pm 0.001 (1.18±0.56)×103(1.18\pm 0.56)\times 10^{3} 3/43/4 4.87±0.044.87\pm 0.04 0.263±0.0010.263\pm 0.001 (1.15±0.10)×103(1.15\pm 0.10)\times 10^{3} 60/560/5
pp-Pb 10–20% 5.13±0.045.13\pm 0.04 0.518±0.0020.518\pm 0.002 0.184±0.0010.184\pm 0.001 (1.09±0.10)×103(1.09\pm 0.10)\times 10^{3} 2/42/4 4.90±0.044.90\pm 0.04 0.259±0.0010.259\pm 0.001 (1.09±0.09)×103(1.09\pm 0.09)\times 10^{3} 68/568/5
20–40% 5.27±0.045.27\pm 0.04 0.517±0.0020.517\pm 0.002 0.175±0.0010.175\pm 0.001 (8.94±0.87)×102(8.94\pm 0.87)\times 10^{2} 4/44/4 4.95±0.054.95\pm 0.05 0.260±0.0010.260\pm 0.001 (8.58±0.84)×102(8.58\pm 0.84)\times 10^{2} 88/588/5
40–60% 5.36±0.045.36\pm 0.04 0.515±0.0020.515\pm 0.002 0.175±0.0010.175\pm 0.001 (6.11±0.55)×102(6.11\pm 0.55)\times 10^{2} 1/41/4 4.99±0.054.99\pm 0.05 0.257±0.0010.257\pm 0.001 (5.98±0.58)×102(5.98\pm 0.58)\times 10^{2} 84/584/5
60–80% 5.36±0.045.36\pm 0.04 0.515±0.0020.515\pm 0.002 0.165±0.0010.165\pm 0.001 (3.31±0.33)×102(3.31\pm 0.33)\times 10^{2} 2/42/4 5.01±0.055.01\pm 0.05 0.257±0.0010.257\pm 0.001 (3.12±0.29)×102(3.12\pm 0.29)\times 10^{2} 80/580/5
80–100% 5.56±0.045.56\pm 0.04 0.503±0.0020.503\pm 0.002 0.153±0.0010.153\pm 0.001 (1.74±0.17)×102(1.74\pm 0.17)\times 10^{2} 9/49/4 5.03±0.055.03\pm 0.05 0.247±0.0010.247\pm 0.001 (1.62±0.14)×102(1.62\pm 0.14)\times 10^{2} 70/570/5
Figure 4(j) ALICE 5.025.02 2–10% 4.50±0.044.50\pm 0.04 0.561±0.0020.561\pm 0.002 0.205±0.0010.205\pm 0.001 (9.61±0.96)×102(9.61\pm 0.96)\times 10^{2} 10/410/4 4.40±0.044.40\pm 0.04 0.280±0.0010.280\pm 0.001 (9.06±0.89)×102(9.06\pm 0.89)\times 10^{2} 86/586/5
pp-Pb 10–20% 4.50±0.044.50\pm 0.04 0.560±0.0020.560\pm 0.002 0.198±0.0010.198\pm 0.001 (8.96±0.80)×102(8.96\pm 0.80)\times 10^{2} 6/46/4 4.46±0.044.46\pm 0.04 0.278±0.0010.278\pm 0.001 (8.61±0.84)×102(8.61\pm 0.84)\times 10^{2} 102/5102/5
20–40% 4.51±0.044.51\pm 0.04 0.559±0.0020.559\pm 0.002 0.192±0.0010.192\pm 0.001 (8.12±0.78)×102(8.12\pm 0.78)\times 10^{2} 5/45/4 4.49±0.044.49\pm 0.04 0.274±0.0010.274\pm 0.001 (8.00±0.78)×102(8.00\pm 0.78)\times 10^{2} 126/5126/5
40–60% 4.63±0.044.63\pm 0.04 0.558±0.0020.558\pm 0.002 0.183±0.0010.183\pm 0.001 (6.15±0.55)×102(6.15\pm 0.55)\times 10^{2} 4/44/4 4.52±0.044.52\pm 0.04 0.271±0.0010.271\pm 0.001 (5.91±0.57)×102(5.91\pm 0.57)\times 10^{2} 112/5112/5
60–80% 4.84±0.044.84\pm 0.04 0.555±0.0020.555\pm 0.002 0.171±0.0010.171\pm 0.001 (3.96±0.39)×102(3.96\pm 0.39)\times 10^{2} 9/49/4 4.55±0.044.55\pm 0.04 0.268±0.0010.268\pm 0.001 (3.71±0.35)×102(3.71\pm 0.35)\times 10^{2} 111/5111/5
80–100% 4.75±0.044.75\pm 0.04 0.548±0.0020.548\pm 0.002 0.144±0.0010.144\pm 0.001 (2.21±0.21)×102(2.21\pm 0.21)\times 10^{2} 8/48/4 4.58±0.044.58\pm 0.04 0.264±0.0010.264\pm 0.001 (2.06±0.19)×102(2.06\pm 0.19)\times 10^{2} 110/5110/5
[Uncaptioned image]

Figure 5. Transverse momentum spectra, (a–c and g–j) Bd2σ/(2πpTdpTdy)Bd^{2}\sigma/(2\pi p_{\rm T}dp_{\rm T}dy), (d and e) Bdσ/dpTBd\sigma/dp_{\rm T}, (f) dσ/dpTd\sigma/dp_{\rm T}, and (k–p) d2σ/dpTdyd^{2}\sigma/dp_{\rm T}dy, of J/ψJ/\psi produced in pp-p(p¯)p(\overline{p}) collisions at different energies. The data symbols in panels (a), (b and c), (d and e), (f), (g–j), and (k–p) are quoted from the PHENIX 28; 29; 30, STAR 31, CDF 32; 33, LHCb 34 and ALICE 35, CMS 25, and LHCb Collaborations 36; 37; 38, respectively. The solid curves are our fitting results by Eq. (6), and the dot-dashed curves are our results refitted by Eq. (6) with a0=1a_{0}=1.

[Uncaptioned image]

Figure 5. Continued. Panels (i–p) are presented.

Table 5. Left panel: Values of nn, TT, a0a_{0}, σ0\sigma_{0}, χ2\chi^{2}, and ndof corresponding to the solid curves in Figure 5 for pp-pp collisions. Right panel: Values of nn, TT, σ0\sigma_{0}, χ2\chi^{2}, and ndof corresponding to the dot-dashed curves in Figure 5 for pp-pp collisions, in which a0=1a_{0}=1.

Figure Collab. sNN\sqrt{s_{\rm NN}} (TeV) Selection nn TT (GeV) a0a_{0} σ0\sigma_{0} (μ\mub) χ2\chi^{2}/ndof nn TT (GeV) σ0\sigma_{0} (μ\mub) χ2\chi^{2}/ndof
Figure 5(a) PHENIX 0.2 |y|<0.35|y|<0.35 4.42±0.034.42\pm 0.03 0.240±0.0010.240\pm 0.001 0.363±0.0010.363\pm 0.001 (4.15±0.38)×102(4.15\pm 0.38)\times 10^{-2} 19/1719/17 4.25±0.044.25\pm 0.04 0.139±0.0010.139\pm 0.001 (4.15±0.40)×102(4.15\pm 0.40)\times 10^{-2} 47/1847/18
pp-pp y[1.2,2.2]y\in[1.2,2.2] 5.26±0.045.26\pm 0.04 0.239±0.0010.239\pm 0.001 0.306±0.0010.306\pm 0.001 (2.76±0.26)×102(2.76\pm 0.26)\times 10^{-2} 26/1526/15 4.23±0.044.23\pm 0.04 0.119±0.0010.119\pm 0.001 (2.65±0.25)×102(2.65\pm 0.25)\times 10^{-2} 108/16108/16
Figure 5(b) STAR 0.5 full cross section 5.99±0.045.99\pm 0.04 0.350±0.0010.350\pm 0.001 0.149±0.0010.149\pm 0.001 (1.19±0.11)×102(1.19\pm 0.11)\times 10^{2} 11/1511/15 5.89±0.055.89\pm 0.05 0.211±0.0010.211\pm 0.001 (9.36±0.91)×101(9.36\pm 0.91)\times 10^{1} 21/1621/16
pp-pp fiducial cross section 4.67±0.034.67\pm 0.03 0.389±0.0010.389\pm 0.001 0.135±0.0010.135\pm 0.001 (1.79±0.17)×101(1.79\pm 0.17)\times 10^{1} 143/15143/15 4.73±0.044.73\pm 0.04 0.212±0.0010.212\pm 0.001 (1.48±0.13)×101(1.48\pm 0.13)\times 10^{1} 156/16156/16
Figure 5(c) STAR 0.51 full cross section 4.60±0.034.60\pm 0.03 0.350±0.0010.350\pm 0.001 0.149±0.0010.149\pm 0.001 (6.58±0.65)×101(6.58\pm 0.65)\times 10^{1} 1/11/1 5.20±0.055.20\pm 0.05 0.210±0.0010.210\pm 0.001 (6.42±0.62)×101(6.42\pm 0.62)\times 10^{1} 6/26/2
pp-pp fiducial cross section 3.73±0.023.73\pm 0.02 0.368±0.0010.368\pm 0.001 0.146±0.0010.146\pm 0.001 (1.11±0.11)×101(1.11\pm 0.11)\times 10^{1} 1/11/1 4.14±0.044.14\pm 0.04 0.208±0.0010.208\pm 0.001 (8.85±0.87)×100(8.85\pm 0.87)\times 10^{0} 10/210/2
Figure 5(d) CDF 1.8 prompt J/ψJ/\psi 6.47±0.046.47\pm 0.04 0.535±0.0020.535\pm 0.002 0.174±0.0010.174\pm 0.001 (1.96±0.18)×101(1.96\pm 0.18)\times 10^{-1} 4/74/7 5.77±0.055.77\pm 0.05 0.274±0.0010.274\pm 0.001 (1.98±0.18)×101(1.98\pm 0.18)\times 10^{-1} 35/835/8
pp-p¯\overline{p} J/ψJ/\psi from bb 5.03±0.035.03\pm 0.03 0.529±0.0020.529\pm 0.002 0.191±0.0010.191\pm 0.001 (3.54±0.34)×102(3.54\pm 0.34)\times 10^{-2} 11/711/7 4.68±0.044.68\pm 0.04 0.245±0.0010.245\pm 0.001 (4.06±0.38)×102(4.06\pm 0.38)\times 10^{-2} 43/843/8
Figure 5(e) CDF 1.96 prompt J/ψJ/\psi 5.13±0.045.13\pm 0.04 0.570±0.0020.570\pm 0.002 0.285±0.0010.285\pm 0.001 (2.30±0.23)×102(2.30\pm 0.23)\times 10^{-2} 4/224/22 4.67±0.044.67\pm 0.04 0.299±0.0010.299\pm 0.001 (2.23±0.20)×102(2.23\pm 0.20)\times 10^{-2} 38/2338/23
pp-p¯\overline{p} J/ψJ/\psi from bb 6.67±0.046.67\pm 0.04 0.495±0.0020.495\pm 0.002 0.322±0.0010.322\pm 0.001 (2.05±0.20)×101(2.05\pm 0.20)\times 10^{-1} 6/226/22 5.78±0.055.78\pm 0.05 0.287±0.0010.287\pm 0.001 (1.87±0.17)×101(1.87\pm 0.17)\times 10^{-1} 57/2357/23
Figure 5(f) LHCb 2.76 2.0<y<4.52.0<y<4.5 5.03±0.045.03\pm 0.04 0.452±0.0020.452\pm 0.002 0.128±0.0010.128\pm 0.001 (2.24±0.22)×100(2.24\pm 0.22)\times 10^{0} 6/46/4 4.97±0.054.97\pm 0.05 0.252±0.0010.252\pm 0.001 (1.97±0.16)×100(1.97\pm 0.16)\times 10^{0} 59/559/5
ALICE 2.5<y<4.02.5<y<4.0 5.76±0.045.76\pm 0.04 0.505±0.0020.505\pm 0.002 0.148±0.0010.148\pm 0.001 (2.23±0.22)×100(2.23\pm 0.22)\times 10^{0} 3/33/3 5.62±0.055.62\pm 0.05 0.272±0.0010.272\pm 0.001 (2.03±0.18)×100(2.03\pm 0.18)\times 10^{0} 58/458/4
Figure 5(g) CMS 5.02 0.9<y<0-0.9<y<0 4.85±0.034.85\pm 0.03 0.540±0.0020.540\pm 0.002 0.244±0.0010.244\pm 0.001 (2.47±0.24)×101(2.47\pm 0.24)\times 10^{-1} 30/130/1 4.95±0.054.95\pm 0.05 0.292±0.0010.292\pm 0.001 (2.69±0.25)×101(2.69\pm 0.25)\times 10^{-1} 39/239/2
pp-pp 1.5<y<0.9-1.5<y<-0.9 4.97±0.044.97\pm 0.04 0.553±0.0020.553\pm 0.002 0.239±0.0010.239\pm 0.001 (2.21±0.20)×101(2.21\pm 0.20)\times 10^{-1} 24/124/1 4.99±0.054.99\pm 0.05 0.300±0.0010.300\pm 0.001 (2.39±0.22)×101(2.39\pm 0.22)\times 10^{-1} 29/229/2
1.93<y<1.5-1.93<y<-1.5 5.22±0.045.22\pm 0.04 0.557±0.0020.557\pm 0.002 0.229±0.0010.229\pm 0.001 (2.38±0.23)×101(2.38\pm 0.23)\times 10^{-1} 50/350/3 5.13±0.055.13\pm 0.05 0.308±0.0010.308\pm 0.001 (2.34±0.22)×101(2.34\pm 0.22)\times 10^{-1} 51/451/4
2.4<y<1.93-2.4<y<-1.93 5.45±0.045.45\pm 0.04 0.560±0.0020.560\pm 0.002 0.227±0.0010.227\pm 0.001 (2.13±0.19)×101(2.13\pm 0.19)\times 10^{-1} 55/555/5 5.18±0.055.18\pm 0.05 0.311±0.0010.311\pm 0.001 (2.04±0.18)×101(2.04\pm 0.18)\times 10^{-1} 59/659/6
Figure 5(h) CMS 5.02 0.9<y<0-0.9<y<0 4.39±0.034.39\pm 0.03 0.583±0.0020.583\pm 0.002 0.267±0.0010.267\pm 0.001 (5.60±0.50)×102(5.60\pm 0.50)\times 10^{-2} 67/167/1 4.29±0.044.29\pm 0.04 0.289±0.0010.289\pm 0.001 (5.56±0.54)×102(5.56\pm 0.54)\times 10^{-2} 74/274/2
pp-pp 1.5<y<0.9-1.5<y<-0.9 4.45±0.034.45\pm 0.03 0.591±0.0020.591\pm 0.002 0.264±0.0010.264\pm 0.001 (4.71±0.45)×102(4.71\pm 0.45)\times 10^{-2} 52/152/1 4.34±0.044.34\pm 0.04 0.295±0.0010.295\pm 0.001 (4.67±0.45)×102(4.67\pm 0.45)\times 10^{-2} 54/254/2
1.93<y<1.5-1.93<y<-1.5 4.56±0.034.56\pm 0.03 0.601±0.0020.601\pm 0.002 0.262±0.0010.262\pm 0.001 (3.84±0.33)×102(3.84\pm 0.33)\times 10^{-2} 48/348/3 4.39±0.044.39\pm 0.04 0.300±0.0010.300\pm 0.001 (3.87±0.37)×102(3.87\pm 0.37)\times 10^{-2} 52/452/4
2.4<y<1.93-2.4<y<-1.93 4.67±0.034.67\pm 0.03 0.616±0.0020.616\pm 0.002 0.254±0.0010.254\pm 0.001 (2.97±0.28)×102(2.97\pm 0.28)\times 10^{-2} 33/533/5 4.44±0.044.44\pm 0.04 0.313±0.0010.313\pm 0.001 (2.86±0.27)×102(2.86\pm 0.27)\times 10^{-2} 35/635/6
Figure 5(i) CMS 5.02 0<y<0.90<y<0.9 4.89±0.034.89\pm 0.03 0.542±0.0020.542\pm 0.002 0.243±0.0010.243\pm 0.001 (2.38±0.23)×101(2.38\pm 0.23)\times 10^{-1} 25/125/1 4.94±0.054.94\pm 0.05 0.293±0.0010.293\pm 0.001 (2.65±0.25)×101(2.65\pm 0.25)\times 10^{-1} 41/241/2
pp-pp 0.9<y<1.50.9<y<1.5 5.07±0.045.07\pm 0.04 0.546±0.0020.546\pm 0.002 0.239±0.0010.239\pm 0.001 (2.42±0.22)×101(2.42\pm 0.22)\times 10^{-1} 27/127/1 5.05±0.055.05\pm 0.05 0.307±0.0010.307\pm 0.001 (2.33±0.21)×101(2.33\pm 0.21)\times 10^{-1} 54/254/2
1.5<y<1.931.5<y<1.93 5.30±0.045.30\pm 0.04 0.550±0.0020.550\pm 0.002 0.239±0.0010.239\pm 0.001 (2.46±0.24)×101(2.46\pm 0.24)\times 10^{-1} 62/362/3 5.29±0.055.29\pm 0.05 0.320±0.0010.320\pm 0.001 (2.28±0.21)×101(2.28\pm 0.21)\times 10^{-1} 48/448/4
1.93<y<2.41.93<y<2.4 5.65±0.045.65\pm 0.04 0.550±0.0020.550\pm 0.002 0.238±0.0010.238\pm 0.001 (2.37±0.21)×101(2.37\pm 0.21)\times 10^{-1} 18/518/5 5.48±0.055.48\pm 0.05 0.326±0.0010.326\pm 0.001 (2.19±0.20)×101(2.19\pm 0.20)\times 10^{-1} 18/618/6
Figure 5(j) CMS 5.02 0<y<0.90<y<0.9 4.38±0.034.38\pm 0.03 0.593±0.0020.593\pm 0.002 0.269±0.0010.269\pm 0.001 (4.99±0.40)×102(4.99\pm 0.40)\times 10^{-2} 78/178/1 4.26±0.044.26\pm 0.04 0.294±0.0010.294\pm 0.001 (4.88±0.48)×102(4.88\pm 0.48)\times 10^{-2} 82/282/2
pp-pp 0.9<y<1.50.9<y<1.5 4.48±0.034.48\pm 0.03 0.597±0.0020.597\pm 0.002 0.266±0.0010.266\pm 0.001 (4.57±0.42)×102(4.57\pm 0.42)\times 10^{-2} 57/157/1 4.34±0.044.34\pm 0.04 0.299±0.0010.299\pm 0.001 (4.51±0.44)×102(4.51\pm 0.44)\times 10^{-2} 59/259/2
1.5<y<1.931.5<y<1.93 4.52±0.034.52\pm 0.03 0.599±0.0020.599\pm 0.002 0.266±0.0010.266\pm 0.001 (3.75±0.33)×102(3.75\pm 0.33)\times 10^{-2} 30/330/3 4.38±0.044.38\pm 0.04 0.302±0.0010.302\pm 0.001 (3.62±0.35)×102(3.62\pm 0.35)\times 10^{-2} 33/433/4
1.93<y<2.41.93<y<2.4 4.72±0.034.72\pm 0.03 0.603±0.0020.603\pm 0.002 0.257±0.0010.257\pm 0.001 (3.26±0.26)×102(3.26\pm 0.26)\times 10^{-2} 42/542/5 4.44±0.044.44\pm 0.04 0.304±0.0010.304\pm 0.001 (3.14±0.29)×102(3.14\pm 0.29)\times 10^{-2} 44/644/6
Figure 5(k) LHCb 7 2.0<y<2.52.0<y<2.5 5.46±0.045.46\pm 0.04 0.544±0.0020.544\pm 0.002 0.149±0.0010.149\pm 0.001 (5.69±0.56)×100(5.69\pm 0.56)\times 10^{0} 5/105/10 5.07±0.055.07\pm 0.05 0.265±0.0010.265\pm 0.001 (5.93±0.57)×100(5.93\pm 0.57)\times 10^{0} 30/1130/11
pp-pp 2.5<y<3.02.5<y<3.0 5.75±0.045.75\pm 0.04 0.563±0.0020.563\pm 0.002 0.149±0.0010.149\pm 0.001 (4.97±0.48)×100(4.97\pm 0.48)\times 10^{0} 3/103/10 5.11±0.055.11\pm 0.05 0.265±0.0010.265\pm 0.001 (5.14±0.49)×100(5.14\pm 0.49)\times 10^{0} 31/1131/11
3.0<y<3.53.0<y<3.5 6.38±0.046.38\pm 0.04 0.578±0.0020.578\pm 0.002 0.148±0.0010.148\pm 0.001 (4.37±0.43)×100(4.37\pm 0.43)\times 10^{0} 4/104/10 5.19±0.055.19\pm 0.05 0.267±0.0010.267\pm 0.001 (4.14±0.40)×100(4.14\pm 0.40)\times 10^{0} 46/1146/11
3.5<y<4.03.5<y<4.0 7.22±0.057.22\pm 0.05 0.583±0.0020.583\pm 0.002 0.148±0.0010.148\pm 0.001 (3.46±0.35)×100(3.46\pm 0.35)\times 10^{0} 4/94/9 5.27±0.055.27\pm 0.05 0.269±0.0010.269\pm 0.001 (3.05±0.28)×100(3.05\pm 0.28)\times 10^{0} 57/1057/10
4.0<y<4.54.0<y<4.5 7.86±0.057.86\pm 0.05 0.585±0.0020.585\pm 0.002 0.148±0.0010.148\pm 0.001 (2.36±0.23)×100(2.36\pm 0.23)\times 10^{0} 2/72/7 5.37±0.055.37\pm 0.05 0.271±0.0010.271\pm 0.001 (2.07±0.19)×100(2.07\pm 0.19)\times 10^{0} 44/844/8
Figure 5(l) LHCb 7 2.0<y<2.52.0<y<2.5 5.06±0.035.06\pm 0.03 0.666±0.0020.666\pm 0.002 0.226±0.0010.226\pm 0.001 (6.62±0.66)×101(6.62\pm 0.66)\times 10^{-1} 3/103/10 4.04±0.044.04\pm 0.04 0.274±0.0010.274\pm 0.001 (6.59±0.63)×101(6.59\pm 0.63)\times 10^{-1} 13/1113/11
pp-pp 2.5<y<3.02.5<y<3.0 5.37±0.045.37\pm 0.04 0.668±0.0020.668\pm 0.002 0.226±0.0010.226\pm 0.001 (5.86±0.58)×101(5.86\pm 0.58)\times 10^{-1} 3/103/10 4.10±0.044.10\pm 0.04 0.275±0.0010.275\pm 0.001 (5.64±0.55)×101(5.64\pm 0.55)\times 10^{-1} 24/1124/11
3.0<y<3.53.0<y<3.5 5.90±0.045.90\pm 0.04 0.668±0.0020.668\pm 0.002 0.226±0.0010.226\pm 0.001 (4.76±0.50)×101(4.76\pm 0.50)\times 10^{-1} 5/105/10 4.19±0.044.19\pm 0.04 0.276±0.0010.276\pm 0.001 (4.57±0.44)×101(4.57\pm 0.44)\times 10^{-1} 36/1136/11
3.5<y<4.03.5<y<4.0 6.41±0.046.41\pm 0.04 0.677±0.0020.677\pm 0.002 0.226±0.0010.226\pm 0.001 (3.01±0.29)×101(3.01\pm 0.29)\times 10^{-1} 6/96/9 4.28±0.044.28\pm 0.04 0.283±0.0010.283\pm 0.001 (2.75±0.25)×101(2.75\pm 0.25)\times 10^{-1} 35/1035/10
4.0<y<4.54.0<y<4.5 6.88±0.046.88\pm 0.04 0.681±0.0020.681\pm 0.002 0.226±0.0010.226\pm 0.001 (1.78±0.18)×101(1.78\pm 0.18)\times 10^{-1} 3/73/7 4.39±0.044.39\pm 0.04 0.285±0.0010.285\pm 0.001 (1.59±0.14)×101(1.59\pm 0.14)\times 10^{-1} 27/827/8

Table 5. Continued. The parameters for the curves in Figures 5(m), 5(n), 5(o), and 5(p) are listed.

Figure Collab. sNN\sqrt{s_{\rm NN}} (TeV) Selection nn TT (GeV) a0a_{0} σ0\sigma_{0} (μ\mub) χ2\chi^{2}/ndof nn TT (GeV) σ0\sigma_{0} (μ\mub) χ2\chi^{2}/ndof
Figure 5(m) LHCb 8 2.0<y<2.52.0<y<2.5 5.79±0.045.79\pm 0.04 0.602±0.0020.602\pm 0.002 0.149±0.0010.149\pm 0.001 (5.25±0.52)×100(5.25\pm 0.52)\times 10^{0} 4/104/10 4.72±0.044.72\pm 0.04 0.260±0.0010.260\pm 0.001 (5.15±0.50)×100(5.15\pm 0.50)\times 10^{0} 133/11133/11
pp-pp 2.5<y<3.02.5<y<3.0 6.11±0.046.11\pm 0.04 0.607±0.0020.607\pm 0.002 0.146±0.0010.146\pm 0.001 (5.11±0.48)×100(5.11\pm 0.48)\times 10^{0} 6/106/10 4.78±0.044.78\pm 0.04 0.257±0.0010.257\pm 0.001 (4.95±0.48)×100(4.95\pm 0.48)\times 10^{0} 153/11153/11
3.0<y<3.53.0<y<3.5 6.51±0.046.51\pm 0.04 0.608±0.0020.608\pm 0.002 0.141±0.0010.141\pm 0.001 (4.56±0.42)×100(4.56\pm 0.42)\times 10^{0} 6/106/10 4.97±0.054.97\pm 0.05 0.265±0.0010.265\pm 0.001 (4.41±0.42)×100(4.41\pm 0.42)\times 10^{0} 168/11168/11
3.5<y<4.03.5<y<4.0 6.86±0.046.86\pm 0.04 0.607±0.0020.607\pm 0.002 0.133±0.0010.133\pm 0.001 (3.84±0.38)×100(3.84\pm 0.38)\times 10^{0} 8/108/10 5.31±0.055.31\pm 0.05 0.270±0.0010.270\pm 0.001 (3.78±0.36)×100(3.78\pm 0.36)\times 10^{0} 157/11157/11
4.0<y<4.54.0<y<4.5 7.98±0.057.98\pm 0.05 0.613±0.0020.613\pm 0.002 0.133±0.0010.133\pm 0.001 (3.15±0.30)×100(3.15\pm 0.30)\times 10^{0} 17/1017/10 5.91±0.065.91\pm 0.06 0.276±0.0010.276\pm 0.001 (3.01±0.28)×100(3.01\pm 0.28)\times 10^{0} 181/11181/11
Figure 5(n) LHCb 8 2.0<y<2.52.0<y<2.5 4.88±0.034.88\pm 0.03 0.660±0.0020.660\pm 0.002 0.247±0.0010.247\pm 0.001 (7.10±0.66)×101(7.10\pm 0.66)\times 10^{-1} 4/104/10 4.04±0.044.04\pm 0.04 0.296±0.0010.296\pm 0.001 (7.05±0.69)×101(7.05\pm 0.69)\times 10^{-1} 42/1142/11
pp-pp 2.5<y<3.02.5<y<3.0 5.03±0.045.03\pm 0.04 0.673±0.0020.673\pm 0.002 0.242±0.0010.242\pm 0.001 (6.55±0.65)×101(6.55\pm 0.65)\times 10^{-1} 7/107/10 4.16±0.044.16\pm 0.04 0.298±0.0010.298\pm 0.001 (6.34±0.62)×101(6.34\pm 0.62)\times 10^{-1} 62/1162/11
3.0<y<3.53.0<y<3.5 5.48±0.045.48\pm 0.04 0.673±0.0020.673\pm 0.002 0.242±0.0010.242\pm 0.001 (5.20±0.47)×101(5.20\pm 0.47)\times 10^{-1} 8/108/10 4.39±0.044.39\pm 0.04 0.300±0.0010.300\pm 0.001 (5.11±0.49)×101(5.11\pm 0.49)\times 10^{-1} 58/1158/11
3.5<y<4.03.5<y<4.0 5.99±0.045.99\pm 0.04 0.681±0.0020.681\pm 0.002 0.214±0.0010.214\pm 0.001 (3.92±0.39)×101(3.92\pm 0.39)\times 10^{-1} 12/1012/10 4.67±0.044.67\pm 0.04 0.302±0.0010.302\pm 0.001 (3.73±0.35)×101(3.73\pm 0.35)\times 10^{-1} 120/11120/11
4.0<y<4.54.0<y<4.5 6.69±0.046.69\pm 0.04 0.682±0.0020.682\pm 0.002 0.214±0.0010.214\pm 0.001 (2.37±0.23)×101(2.37\pm 0.23)\times 10^{-1} 8/108/10 4.98±0.054.98\pm 0.05 0.304±0.0010.304\pm 0.001 (2.22±0.20)×101(2.22\pm 0.20)\times 10^{-1} 94/1194/11
Figure 5(o) LHCb 13 2.0<y<2.52.0<y<2.5 5.57±0.045.57\pm 0.04 0.615±0.0020.615\pm 0.002 0.145±0.0010.145\pm 0.001 (6.91±0.66)×100(6.91\pm 0.66)\times 10^{0} 21/1021/10 4.87±0.054.87\pm 0.05 0.288±0.0010.288\pm 0.001 (6.70±0.65)×100(6.70\pm 0.65)\times 10^{0} 362/11362/11
pp-pp 2.5<y<3.02.5<y<3.0 5.61±0.045.61\pm 0.04 0.619±0.0020.619\pm 0.002 0.138±0.0010.138\pm 0.001 (6.91±0.68)×100(6.91\pm 0.68)\times 10^{0} 19/1019/10 4.92±0.054.92\pm 0.05 0.292±0.0010.292\pm 0.001 (6.72±0.65)×100(6.72\pm 0.65)\times 10^{0} 360/11360/11
3.0<y<3.53.0<y<3.5 5.81±0.045.81\pm 0.04 0.623±0.0020.623\pm 0.002 0.130±0.0010.130\pm 0.001 (6.30±0.60)×100(6.30\pm 0.60)\times 10^{0} 12/1012/10 5.03±0.055.03\pm 0.05 0.294±0.0010.294\pm 0.001 (6.24±0.60)×100(6.24\pm 0.60)\times 10^{0} 320/11320/11
3.5<y<4.03.5<y<4.0 6.89±0.046.89\pm 0.04 0.658±0.0020.658\pm 0.002 0.116±0.0010.116\pm 0.001 (5.31±0.50)×100(5.31\pm 0.50)\times 10^{0} 16/1016/10 5.31±0.055.31\pm 0.05 0.296±0.0010.296\pm 0.001 (5.21±0.50)×100(5.21\pm 0.50)\times 10^{0} 243/11243/11
4.0<y<4.54.0<y<4.5 7.61±0.057.61\pm 0.05 0.661±0.0020.661\pm 0.002 0.116±0.0010.116\pm 0.001 (4.27±0.41)×100(4.27\pm 0.41)\times 10^{0} 19/1019/10 5.45±0.055.45\pm 0.05 0.297±0.0010.297\pm 0.001 (4.04±0.38)×100(4.04\pm 0.38)\times 10^{0} 153/11153/11
Figure 5(p) LHCb 13 2.0<y<2.52.0<y<2.5 4.30±0.034.30\pm 0.03 0.668±0.0020.668\pm 0.002 0.247±0.0010.247\pm 0.001 (1.22±0.11)×100(1.22\pm 0.11)\times 10^{0} 5/105/10 3.73±0.033.73\pm 0.03 0.282±0.0010.282\pm 0.001 (1.22±0.10)×100(1.22\pm 0.10)\times 10^{0} 46/1146/11
pp-pp 2.5<y<3.02.5<y<3.0 4.44±0.034.44\pm 0.03 0.669±0.0020.669\pm 0.002 0.239±0.0010.239\pm 0.001 (1.09±0.11)×100(1.09\pm 0.11)\times 10^{0} 9/109/10 3.78±0.033.78\pm 0.03 0.287±0.0010.287\pm 0.001 (1.05±0.09)×100(1.05\pm 0.09)\times 10^{0} 134/11134/11
3.0<y<3.53.0<y<3.5 4.72±0.034.72\pm 0.03 0.665±0.0020.665\pm 0.002 0.229±0.0010.229\pm 0.001 (9.41±0.90)×101(9.41\pm 0.90)\times 10^{-1} 11/1011/10 3.97±0.043.97\pm 0.04 0.289±0.0010.289\pm 0.001 (9.27±0.91)×101(9.27\pm 0.91)\times 10^{-1} 146/11146/11
3.5<y<4.03.5<y<4.0 4.92±0.044.92\pm 0.04 0.669±0.0020.669\pm 0.002 0.192±0.0010.192\pm 0.001 (7.60±0.73)×101(7.60\pm 0.73)\times 10^{-1} 10/1010/10 4.17±0.044.17\pm 0.04 0.291±0.0010.291\pm 0.001 (7.50±0.73)×101(7.50\pm 0.73)\times 10^{-1} 117/11117/11
4.0<y<4.54.0<y<4.5 5.51±0.045.51\pm 0.04 0.673±0.0020.673\pm 0.002 0.169±0.0010.169\pm 0.001 (5.35±0.52)×101(5.35\pm 0.52)\times 10^{-1} 13/1013/10 4.25±0.044.25\pm 0.04 0.292±0.0010.292\pm 0.001 (5.09±0.49)×101(5.09\pm 0.49)\times 10^{-1} 82/1182/11
[Uncaptioned image]

Figure 6. Dependences of power exponent nn (a), effective temperature TT (b), revised index a0a_{0} (c) on centrality percentage CC in Au-Au, dd-Au, Pb-Pb, and pp-Pb collisions at the RHIC and LHC. The symbols represent the parameter values listed in Tables 1–4 and extracted from Figures 1–4.