This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Summation of Series Involving Bessel Functions and Order Derivatives of Bessel Functions

Yilin Chen [email protected] Institute of Cosmology, Department of Physics and Astronomy,
Tufts University, Medford, Massachusetts 02155, USA
Abstract

In this note, we derive the closed-form expression for the summation of series n=0nJn(x)Jn/n\sum_{n=0}^{\infty}nJ_{n}(x)\partial J_{n}/\partial n, which is found in the calculation of entanglement entropy in 2-d bosonic free field, in terms of Y0Y_{0}, J0J_{0} and an integral involving these two Bessel functions. Further, we point out the integral can be expressed as a Meijer G function.

I Introduction

In this note, we find that the sum of a series involving Bessel functions and the order derivatives of Bessel functions:

P(x)n=0nJn(x)Jn(x)n\displaystyle P(x)\equiv\sum_{n=0}^{\infty}nJ_{n}(x)\frac{\partial J_{n}(x)}{\partial n} (1)

can be expressed in a closed-form.

The motivation of finding this sum rule arises from the study of entanglement entropy in two dimensional bosonic free field. In Calabrese_2004 , the authors provide a way to compute such entanglement entropy. The key point is the Green’s function in the nn-sheeted geometry Gn(𝐫,𝐫)G_{n}(\mathbf{r},\mathbf{r}). It obeys the Helmholtz equation in polar coordinates and can be expressed as

Gn(r,θ;m2)=12nπk=0εk0λ𝑑λJk/n2(λr)λ2+m2,\displaystyle G_{n}(r,\theta;m^{2})=\frac{1}{2n\pi}\sum_{k=0}^{\infty}\varepsilon_{k}\int_{0}^{\infty}\lambda d\lambda\frac{J^{2}_{k/n}(\lambda r)}{\lambda^{2}+m^{2}}, (2)

where ε0=1\varepsilon_{0}=1 or εn=2\varepsilon_{n}=2 otherwise. With the Green’s function in the nn-sheeted geometry, the Rényi entropy can be expressed as

Trρn=exp(12a2m2𝑑m2d2r(Gn(r,θ;m2)nG1(r,θ;m2))).\displaystyle\Tr\rho^{n}=\exp{-\frac{1}{2}\int_{a^{2}}^{m^{2}}dm^{{}^{\prime}2}\int d^{2}r\left(G_{n}(r,\theta;m^{{}^{\prime}2})-nG_{1}(r,\theta;m^{{}^{\prime}2})\right)}. (3)

Then the von Neumann entropy

S=Trρlogρ=nTrρn|n=1=12a2m2𝑑m2d2r(nGn(r,θ;m2)|n=1G1(r,θ;m2)).\displaystyle S=-\Tr\rho\log\rho=\left.-\frac{\partial}{\partial n}\Tr\rho^{n}\right|_{n=1}=\frac{1}{2}\int_{a^{2}}^{m^{2}}dm^{{}^{\prime}2}\int d^{2}r\left(\left.\frac{\partial}{\partial n}G_{n}(r,\theta;m^{{}^{\prime}2})\right|_{n=1}-G_{1}(r,\theta;m^{{}^{\prime}2})\right). (4)

It is not hard to see the summation over the product of Bessel functions in (2) playing an important role. In the last step calculating the von Neumann entropy, the derivative with respect to nn requires the order derivatives and the summation now becomes

nk=0εkJk/n2(λr)|n=1=2k=0εkkn2Jk/n(λr)Jk/n(λr)(k/n)|n=1=4P(λr).\displaystyle\left.\frac{\partial}{\partial n}\sum_{k=0}^{\infty}\varepsilon_{k}J^{2}_{k/n}(\lambda r)\right|_{n=1}=\left.2\sum_{k=0}^{\infty}\varepsilon_{k}\frac{-k}{n^{2}}J_{k/n}(\lambda r)\frac{\partial J_{k/n}(\lambda r)}{\partial(k/n)}\right|_{n=1}=-4P(\lambda r). (5)

II Derivation of P(x)P(x)

Let us start with this formula found in Order

xJν2(t)t𝑑t=12ν12νn=0εnJν+n2(x),\displaystyle\int^{\infty}_{x}\frac{J^{2}_{\nu}(t)}{t}dt=\frac{1}{2\nu}-\frac{1}{2\nu}\sum_{n=0}^{\infty}\varepsilon_{n}J^{2}_{\nu+n}(x), (6)

where ε0=1\varepsilon_{0}=1 and εn=1\varepsilon_{n}=1 otherwise. By multiplying ν\nu on both sides and taking the derivative with respect to ν\nu, we have

xJν2(t)+2νJν(t)J^ν(t)t𝑑t=n=0εnJν+n(x)J^ν+n(x)=2n=1Jν+n(x)J^ν+n(x)Jν(x)J^ν(x),\displaystyle\int^{\infty}_{x}\frac{J^{2}_{\nu}(t)+2\nu J_{\nu}(t)\hat{J}_{\nu}(t)}{t}dt=-\sum_{n=0}^{\infty}\varepsilon_{n}J_{\nu+n}(x)\hat{J}_{\nu+n}(x)=-2\sum_{n=1}^{\infty}J_{\nu+n}(x)\hat{J}_{\nu+n}(x)-J_{\nu}(x)\hat{J}_{\nu}(x), (7)

where J^ν=Jν/ν\hat{J}_{\nu}=\partial J_{\nu}/\partial\nu. Then we set ν\nu\in\mathbb{N} and sum over ν\nu form 0 to \infty. (7) becomes

xν=0Jν2(t)+2P(t)t𝑑t+ν=0Jν(x)J^ν(x)=2ν=0n=1Jν+n(x)J^ν+n(x).\displaystyle\int^{\infty}_{x}\frac{\sum_{\nu=0}^{\infty}J^{2}_{\nu}(t)+2P(t)}{t}dt+\sum^{\infty}_{\nu=0}J_{\nu}(x)\hat{J}_{\nu}(x)=-2\sum^{\infty}_{\nu=0}\sum^{\infty}_{n=1}J_{\nu+n}(x)\hat{J}_{\nu+n}(x). (8)

Notice that the RHS gives 2P(x)-2P(x). From (3.2) in Order , the second term in the LHS of (8) gives

ν=0Jν(x)J^ν(x)=12xJ02(t)t𝑑t+12J0(x)J^0(x),\displaystyle\sum^{\infty}_{\nu=0}J_{\nu}(x)\hat{J}_{\nu}(x)=-\frac{1}{2}\int^{\infty}_{x}\frac{J^{2}_{0}(t)}{t}dt+\frac{1}{2}J_{0}(x)\hat{J}_{0}(x), (9)

and also

ν=0Jν2(t)=12(ν=Jν2(t)+J02(t))=J02(t)+12.\displaystyle\sum_{\nu=0}^{\infty}J^{2}_{\nu}(t)=\frac{1}{2}\left(\sum_{\nu=-\infty}^{\infty}J^{2}_{\nu}(t)+J^{2}_{0}(t)\right)=\frac{J^{2}_{0}(t)+1}{2}. (10)

Thus, (8) reduces to

x(J02(t)+12+2P(t))dtt12xJ02(t)t𝑑t+12J0(x)J^0(x)=2P(x).\displaystyle\int^{\infty}_{x}\left(\frac{J^{2}_{0}(t)+1}{2}+2P(t)\right)\frac{dt}{t}-\frac{1}{2}\int^{\infty}_{x}\frac{J^{2}_{0}(t)}{t}dt+\frac{1}{2}J_{0}(x)\hat{J}_{0}(x)=-2P(x). (11)

After taking the derivative with respect to xx and substituting J^0(x)=π2Y0(x)\hat{J}_{0}(x)=\frac{\pi}{2}Y_{0}(x) (8.486(1) in GR ), we have the differential equation

P(x)P(x)x=14xπ8(J0(x)Y0(x)).\displaystyle P^{\prime}(x)-\frac{P(x)}{x}=\frac{1}{4x}-\frac{\pi}{8}(J_{0}(x)Y_{0}(x))^{\prime}. (12)

This equation can be easily solved by the method of variation of parameters. The solution

P(x)\displaystyle P(x) =x(x(14t2π8(J0(t)Y0(t)))𝑑t+C)\displaystyle=-x\left(\int^{\infty}_{x}\left(\frac{1}{4t^{2}}-\frac{\pi}{8}(J_{0}(t)Y_{0}(t))^{\prime}\right)dt+C\right)
=x(14xπ8tJ0(t)Y0(t)|xπ8xJ0(t)Y0(t)t2𝑑t+C)\displaystyle=-x\left(\frac{1}{4x}-\left.\frac{\pi}{8t}J_{0}(t)Y_{0}(t)\right|_{x}^{\infty}-\frac{\pi}{8}\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt+C\right)
=18(2+πJ0(x)Y0(x)πxxJ0(t)Y0(t)t2𝑑t+Cx).\displaystyle=-\frac{1}{8}\left(2+\pi J_{0}(x)Y_{0}(x)-\pi x\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt+Cx\right). (13)

To determine the integral constant CC, we can analyse the asymptotic behavior of P(x)P(x) at large xx. When xx\to\infty, we have P(x)18(2+Cx)P(x)\sim-\frac{1}{8}(2+Cx), which means when xx is sufficiently large, P(x)P(x) is approximately a linear function and the slope is CC. However, the asymptotic form of J^n\hat{J}_{n} can be written as Order

J^n(x)π2xsin(xnπ2π4)(x).\displaystyle\hat{J}_{n}(x)\sim\sqrt{\frac{\pi}{2x}}\sin\left(x-\frac{n\pi}{2}-\frac{\pi}{4}\right)\ \ (x\to\infty). (14)

Combining with the asymptotic approximation of JnJ_{n} in (III), it is easy to find that P(x)ax+bbP(x)\sim\frac{a}{x}+b\sim b when xx\to\infty, where aa and bb are constants. More detailed discussion about the asymptotic behavior can be found in the next section. So the integral constant C=0C=0 and finally we obtain a closed-form

P(x)=18(2+πJ0(x)Y0(x)πxxJ0(t)Y0(t)t2𝑑t).\displaystyle P(x)=-\frac{1}{8}\left(2+\pi J_{0}(x)Y_{0}(x)-\pi x\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt\right). (15)

Also, we can evaluate the integral (see Appendix), which can be expressed by a Meijer G function

xJ0(t)Y0(t)t2dt=12πG1320(x2|112,12,12).\displaystyle\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt=-\frac{1}{2\sqrt{\pi}}G^{20}_{13}\left(x^{2}\middle|\begin{array}[]{c}1\\ -\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\end{array}\right). (18)

Hence, we have an another expression

P(x)=18(2+πJ0(x)Y0(x)+πx2G1320(x2|112,12,12)).\displaystyle P(x)=-\frac{1}{8}\left(2+\pi J_{0}(x)Y_{0}(x)+\frac{\sqrt{\pi}x}{2}G^{20}_{13}\left(x^{2}\middle|\begin{array}[]{c}1\\ -\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\end{array}\right)\right). (21)

III Asymptotic Approximation of P(x)P(x) and Regularization of Green’s Functions

We now obtain the asymptotic approximation of P(x)P(x) at large xx. The asymptotic behavior can be helpful to analyze the behavior of the combination of Green’s functions Gn(r,θ;m2)/n|n=1G1(r,θ;m2)\left.\partial G_{n}(r,\theta;m^{{}^{\prime}2})/\partial n\right|_{n=1}-G_{1}(r,\theta;m^{{}^{\prime}2}), especially the divergence and the regulariztion of it.

Obviously, when xx\to\infty, the last two terms in (15), involving J0J_{0} and Y0Y_{0}, go to zero fast (at the order of O(x1)O(x^{-1})). So we have

limxP(x)=14.\displaystyle\lim_{x\to\infty}P(x)=-\frac{1}{4}. (22)

This is not a good news for us because P(x)P(x) as a part of the integrand in Gn(r,θ;m2)/n|n=1\left.\partial G_{n}(r,\theta;m^{{}^{\prime}2})/\partial n\right|_{n=1}, the non-zero limits highly increases the probability that we have a divergent integral. Indeed, the integral is actually divergent.

However, things are not so bad. We define

Q(x)\displaystyle Q(x)\equiv 4P(x)k=0Jk2(x)=4P(x)1\displaystyle-4P(x)-\sum_{k=0}^{\infty}J_{k}^{2}(x)=-4P(x)-1
=12(πJ0(x)Y0(x)πxxJ0(t)Y0(t)t2𝑑t).\displaystyle=\frac{1}{2}\left(\pi J_{0}(x)Y_{0}(x)-\pi x\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt\right). (23)

We can rewrite the combination of Green’s functions in terms of Q(x)Q(x):

nGn(r,θ;m2)|n=1G1(r,θ;m2)=12π0Q(λr)λ2+m2λ𝑑λ.\displaystyle\left.\frac{\partial}{\partial n}G_{n}(r,\theta;m^{{}^{\prime}2})\right|_{n=1}-G_{1}(r,\theta;m^{{}^{\prime}2})=\frac{1}{2\pi}\int_{0}^{\infty}\frac{Q(\lambda r)}{\lambda^{2}+m^{{}^{\prime}2}}\lambda d\lambda. (24)

It is easy to check that Q(x)Q(x) vanishes when xx approaches to infinity. By introducing asymptotic approximations for J0(x)J_{0}(x) and Y0(x)Y_{0}(x) at large xx

Jn(x)2πxcos(xnπ2π4),\displaystyle J_{n}(x)\sim\sqrt{\frac{2}{\pi x}}\cos\left(x-\frac{n\pi}{2}-\frac{\pi}{4}\right),
Yn(x)2πxsin(xnπ2π4),\displaystyle Y_{n}(x)\sim\sqrt{\frac{2}{\pi x}}\sin\left(x-\frac{n\pi}{2}-\frac{\pi}{4}\right), (25)

we have πJ0(x)Y0(x)cos(2x)/x\pi J_{0}(x)Y_{0}(x)\sim-\cos(2x)/x. Substituting this approximation into the integral and integrating by part, we derive the asymptotic approximation for the second term in Q(x)Q(x), which gives

xJ0(t)Y0(t)t2𝑑txcos(2t)t3𝑑t=sin(x)2x332xsin(2t)t4𝑑t\displaystyle\int_{x}^{\infty}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt\sim-\int_{x}^{\infty}\frac{\cos(2t)}{t^{3}}dt=\frac{\sin(x)}{2x^{3}}-\frac{3}{2}\int_{x}^{\infty}\frac{\sin(2t)}{t^{4}}dt
O(x3).\displaystyle\sim O(x^{-3}). (26)

Comparing to the first term, we can neglect the second term when xx is sufficiently large. Thus, the asymptotic approximation of Q(x)Q(x) turns

Q(x)cos(2x)x.\displaystyle Q(x)\sim-\frac{\cos(2x)}{x}. (27)

Also, we can evaluate the value at x=0x=0. By using L’Hopital rule, we find

limx0\displaystyle\lim_{x\to 0} 11/x(J0(x)Y0(x)xxJ0(t)Y0(t)t2𝑑t)\displaystyle\frac{1}{1/x}\left(\frac{J_{0}(x)Y_{0}(x)}{x}-\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt\right)
=limx011/x2(x(J0(x)Y0(x))J0(x)Y0(x)x2+J0(x)Y0(x)x2)\displaystyle=\lim_{x\to 0}\frac{-1}{1/x^{2}}\left(\frac{x(J_{0}(x)Y_{0}(x))^{\prime}-J_{0}(x)Y_{0}(x)}{x^{2}}+\frac{J_{0}(x)Y_{0}(x)}{x^{2}}\right)
=limx0x(J0(x)Y0(x)).\displaystyle=-\lim_{x\to 0}x(J_{0}(x)Y_{0}(x))^{\prime}. (28)

Using identities (8.471 and 8.477 in GR )

Zn(x)=12(Zn1(x)Zn+1(x)),\displaystyle Z^{\prime}_{n}(x)=\frac{1}{2}(Z_{n-1}(x)-Z_{n+1}(x)),
Jn(x)Yn+1(x)Jn+1(x)Yn(x)=2πx,\displaystyle J_{n}(x)Y_{n+1}(x)-J_{n+1}(x)Y_{n}(x)=-\frac{2}{\pi x},

where ZZ denotes JJ or YY, we have

limx0x(J0(x)Y0(x))\displaystyle-\lim_{x\to 0}x(J_{0}(x)Y_{0}(x))^{\prime} =limx0x(J1(x)Y0(x)+J0(x)Y1(x))\displaystyle=\lim_{x\to 0}x(J_{1}(x)Y_{0}(x)+J_{0}(x)Y_{1}(x))
=limx0x(2J1(x)Y0(x)2πx)\displaystyle=\lim_{x\to 0}x\left(2J_{1}(x)Y_{0}(x)-\frac{2}{\pi x}\right)
=2π.\displaystyle=-\frac{2}{\pi}. (29)

Thus, Q(0)=1Q(0)=-1. Moreover, no singularity at the origin (of course, no singularity at other place as well) and the simple asymptotic form of Q(x)Q(x) tell us the combination in (24) is convergent. Also, by using the identity (7.811 5) in GR1 and the relation (9.31 1) in GR to deal with the Meijer G function, one can evaluate the combination exactly

nGn(r,θ;m2)|n=1G1(r,θ;m2)=116π(πmrG1330(m2r2|112,12,12)4K02(mr)).\displaystyle\left.\frac{\partial}{\partial n}G_{n}(r,\theta;m^{{}^{\prime}2})\right|_{n=1}-G_{1}(r,\theta;m^{{}^{\prime}2})=\frac{1}{16\pi}\left(\sqrt{\pi}m^{\prime}rG_{13}^{30}\left(m^{{}^{\prime}2}r^{2}\middle|\begin{array}[]{c}1\\ -\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\\ \end{array}\right)-4K^{2}_{0}\left(m^{\prime}r\right)\right). (32)

Furthermore, we can also obtain

d2r(nGn(r,θ;m2)|n=1G1(r,θ;m2))=16m2,\displaystyle\int d^{2}r\left(\left.\frac{\partial}{\partial n}G_{n}(r,\theta;m^{{}^{\prime}2})\right|_{n=1}-G_{1}(r,\theta;m^{{}^{\prime}2})\right)=-\frac{1}{6m^{{}^{\prime}2}}, (33)

which agrees the result in Calabrese_2004 . Because the radial integral is definitely a Mellin transform so this result can be found in Mellin transform table in tables .

IV Conclusions and Remarks

We study a summation of series involving Bessel functions and the order derivatives of Bessel functions, which arises in the study of entanglement entropy in two dimensional bosonic free field. We find a closed-form expression of such summation which can be expressed simply in terms of J0J_{0}, Y0Y_{0} and a Meijer G function. Further, we study the asymptotic behavior of this summation of series and finally we find a simple expression for the combination of Green’s functions in (32).

The expression in (32) and also P(x)P(x), Q(x)Q(x) might be useful for calculating entanglement entropies in different fields. For instance, if the field is coupled with a potential such that the equation of motion is no longer a homogeneous Helmholtz equation and the Green’s equation becomes

(𝐫2+m2f(𝐫))Gn(𝐫,𝐫)=δ(𝐫𝐫).\displaystyle(-\nabla^{2}_{\mathbf{r}}+m^{2}-f(\mathbf{r}))G_{n}(\mathbf{r},\mathbf{r^{\prime}})=\delta(\mathbf{r}-\mathbf{r^{\prime}}). (34)

Generally, the exact solution would not be found easily. However, the equation can be solved perturbatively by applying the resolvent formalism

Gn(𝐫,𝐫)=G~0(𝐫,𝐫)+G~1(𝐫,𝐫)+,\displaystyle G_{n}(\mathbf{r},\mathbf{r^{\prime}})=\tilde{G}_{0}(\mathbf{r},\mathbf{r^{\prime}})+\tilde{G}_{1}(\mathbf{r},\mathbf{r^{\prime}})+..., (35)

where

G~0(𝐫,𝐫)=G~(𝐫,𝐫),\displaystyle\tilde{G}_{0}(\mathbf{r},\mathbf{r^{\prime}})=\tilde{G}(\mathbf{r},\mathbf{r^{\prime}}),
G~1(𝐫,𝐫)=(G~fG~)(𝐫,𝐫),\displaystyle\tilde{G}_{1}(\mathbf{r},\mathbf{r^{\prime}})=(\tilde{G}\circ f\circ\tilde{G})(\mathbf{r},\mathbf{r^{\prime}}),
\displaystyle...
G~i(𝐫,𝐫)=(G~fG~fG~)(𝐫,𝐫),\displaystyle\tilde{G}_{i}(\mathbf{r},\mathbf{r^{\prime}})=(\tilde{G}\circ f\circ\tilde{G}\circ...\circ f\circ\tilde{G})(\mathbf{r},\mathbf{r^{\prime}}), (36)

where G~\tilde{G} is the Green’s function with f=0f=0 and (Gnf)(𝐫)=G(𝐫,𝐫)f(𝐫)d2r(G_{n}\circ f)(\mathbf{r})=\int G(\mathbf{r},\mathbf{r^{\prime}})f(\mathbf{r^{\prime}})d^{2}r. In this method, the exact Green’s function can be also written as (see Appendix B)

Gn(𝐫,𝐫)=l=0i+j=0lBi,j,l[f](2ω)i(2ω¯)jG~n(1+i+j+l2)(𝐫,𝐫).\displaystyle G_{n}(\mathbf{r},\mathbf{r^{\prime}})=\sum_{l=0}^{\infty}\sum_{i+j=0}^{l}B_{i,j,l}[f](2\partial_{\omega})^{i}(2\partial_{\bar{\omega}})^{j}\tilde{G}_{n}^{\left(1+\frac{i+j+l}{2}\right)}(\mathbf{r},\mathbf{r^{\prime}}). (37)

This method is well developed in dikii1955zeta ; dikii1958trace for Sturm-Liouville problems. More details can be found in gelfand ; SEELEY . Furthermore, we can apply the Green’s function to calculate the entanglement entropy

nGn(r,θ;m2)|n=1G1(r,θ;m2)\displaystyle\left.\frac{\partial}{\partial n}G_{n}(r,\theta;m^{{}^{\prime}2})\right|_{n=1}-G_{1}(r,\theta;m^{{}^{\prime}2})
=l=0i+j=0l{Bi,j,l[f](2ω)i(2ω¯)j[nG~n(1+i+j+l2)(𝐫,𝐫)|n=1G~1(1+i+j+l2)(𝐫,𝐫)]}𝐫=𝐫.\displaystyle=\sum_{l=0}^{\infty}\sum_{i+j=0}^{l}\left\{B_{i,j,l}[f](2\partial_{\omega})^{i}(2\partial_{\bar{\omega}})^{j}\left[\left.\frac{\partial}{\partial n}\tilde{G}_{n}^{\left(1+\frac{i+j+l}{2}\right)}(\mathbf{r},\mathbf{r^{\prime}})\right|_{n=1}-\tilde{G}_{1}^{\left(1+\frac{i+j+l}{2}\right)}(\mathbf{r},\mathbf{r^{\prime}})\right]\right\}_{\mathbf{r}=\mathbf{r^{\prime}}}. (38)

For those terms with i=ji=j in the summation, it is easy to figure out by using Q(x)Q(x), i.e.

(4ωω¯)i[nG~n(1+i+l/2)(𝐫,𝐫)|n=1G~1(1+i+l/2)(𝐫,𝐫)]𝐫=𝐫=12π0(λ)2i+1(λ2+m2)1+i+l/2Q(λr)𝑑λ.\displaystyle(4\partial_{\omega}\partial_{\bar{\omega}})^{i}\left[\left.\frac{\partial}{\partial n}\tilde{G}_{n}^{\left(1+i+l/2\right)}(\mathbf{r},\mathbf{r^{\prime}})\right|_{n=1}-\tilde{G}_{1}^{\left(1+i+l/2\right)}(\mathbf{r},\mathbf{r^{\prime}})\right]_{\mathbf{r}=\mathbf{r^{\prime}}}=\frac{1}{2\pi}\int_{0}^{\infty}\frac{-(-\lambda)^{2i+1}}{\left(\lambda^{2}+m^{{}^{\prime}2}\right)^{1+i+l/2}}Q(\lambda r)d\lambda. (39)

However, the remaining terms where iji\neq j are still a problem that we can not solve easily. So how to deal with other terms can be a topic for further study.

Appendix A Evaluation of xJ0(t)Y0(t)/t2𝑑t\int^{\infty}_{x}J_{0}(t)Y_{0}(t)/t^{2}dt

The definition of Meijer G function is following:

Gp,qm,n(z|a1,,apb1,,bq)=12πiLj=1mΓ(bjs)j=1nΓ(1aj+s)j=m+1qΓ(1bj+s)j=n+1pΓ(ajs)zsds,\displaystyle G_{p,q}^{\,m,n}\!\left(z\;\middle|\,{\begin{matrix}a_{1},\dots,a_{p}\\ b_{1},\dots,b_{q}\end{matrix}}\right)={\frac{1}{2\pi i}}\int_{L}{\frac{\prod_{j=1}^{m}\Gamma(b_{j}-s)\prod_{j=1}^{n}\Gamma(1-a_{j}+s)}{\prod_{j=m+1}^{q}\Gamma(1-b_{j}+s)\prod_{j=n+1}^{p}\Gamma(a_{j}-s)}}\,z^{s}\,ds, (40)

where the integral contour LL can be found in (9.302) in GR . This is a Mellin-Barnes type integral which can be viewed as an inverse Mellin transform. The Mellin transform of this function can be written as

(Gp,qm,n(z|a1,,apb1,,bq))(s)=j=1mΓ(bj+s)j=1nΓ(1ajs)j=m+1qΓ(1bjs)j=n+1pΓ(aj+s)\displaystyle\mathcal{M}\left(G_{p,q}^{\,m,n}\!\left(z\;\middle|\,{\begin{matrix}a_{1},\dots,a_{p}\\ b_{1},\dots,b_{q}\end{matrix}}\right)\right)(s)=\frac{\prod_{j=1}^{m}\Gamma(b_{j}+s)\prod_{j=1}^{n}\Gamma(1-a_{j}-s)}{\prod_{j=m+1}^{q}\Gamma(1-b_{j}-s)\prod_{j=n+1}^{p}\Gamma(a_{j}+s)} (41)

First, we apply Mellin transform and use the multiplicative convolution formula of Mellin transform tables

(xJ0(t)Y0(t)t2𝑑t)(s)=(0u(1xt)J0(t)Y0(t)tdtt)(s)\displaystyle\mathcal{M}\left(\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt\right)(s)=\mathcal{M}\left(\int^{\infty}_{0}u\left(1-\frac{x}{t}\right)\frac{J_{0}(t)Y_{0}(t)}{t}\frac{dt}{t}\right)(s)
=(u(1x))(s)(J0(x)Y0(x)x)(s),\displaystyle=\mathcal{M}\left(u\left(1-x\right)\right)(s)\mathcal{M}\left(\frac{J_{0}(x)Y_{0}(x)}{x}\right)(s), (42)

where u(x)u(x) is Heaviside step function. From tables , we have

(u(1x))(s)\displaystyle\mathcal{M}\left(u\left(1-x\right)\right)(s) =1s=Γ(s/2)2Γ(s/2+1),\displaystyle=\frac{1}{s}=\frac{\Gamma(s/2)}{2\Gamma(s/2+1)},
(J0(x)Y0(x))(s)\displaystyle\mathcal{M}\left(J_{0}(x)Y_{0}(x)\right)(s) =2s1π1Γ2(s/2)Γ(1s)Γ2(1s/2)cos(s/2)π\displaystyle=-2^{s-1}\pi^{-1}\frac{\Gamma^{2}(s/2)\Gamma(1-s)}{\Gamma^{2}(1-s/2)}\cos(s/2)\pi
=12πΓ2(s/2)Γ(1s/2)Γ((1+s)/2).\displaystyle=-\frac{1}{2\sqrt{\pi}}\frac{\Gamma^{2}(s/2)}{\Gamma(1-s/2)\Gamma((1+s)/2)}. (43)

If we set

(J0(x)Y0(x))(s)=F(s),\displaystyle\mathcal{M}\left(J_{0}(x)Y_{0}(x)\right)(s)=F(s), (44)

then according to the property of Mellin transform, we have

(J0(x)Y0(x)x)(s)=F(s1).\displaystyle\mathcal{M}\left(\frac{J_{0}(x)Y_{0}(x)}{x}\right)(s)=F(s-1). (45)

Thus, the Mellin transform of the original integral turns

(xJ0(t)Y0(t)t2𝑑t)(s)=14πΓ2(s/21/2)Γ(s/2)Γ(3/2s/2)Γ(s/2)Γ(s/2+1).\displaystyle\mathcal{M}\left(\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt\right)(s)=-\frac{1}{4\sqrt{\pi}}\frac{\Gamma^{2}(s/2-1/2)\Gamma(s/2)}{\Gamma(3/2-s/2)\Gamma(s/2)\Gamma(s/2+1)}. (46)

By using the property of Mellin transform

(f(ta))(s)=1aF(sa),\displaystyle\mathcal{M}\left(f(t^{a})\right)(s)=\frac{1}{a}F(\frac{s}{a}), (47)

and comparing to the Mellin transform of the Meijer G function in (41), it is easy to check

xJ0(t)Y0(t)t2dt=G1320(x2|112,12,12).\displaystyle\int^{\infty}_{x}\frac{J_{0}(t)Y_{0}(t)}{t^{2}}dt=G^{20}_{13}\left(x^{2}\middle|\begin{array}[]{c}1\\ -\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\end{array}\right). (50)

Appendix B Derivation of (37)

We can derive this form in complex plane. By setting ω=x+iy\omega=x+iy, the Laplace operator becomes 𝐫2=4ωω¯\nabla^{2}_{\mathbf{r}}=4\partial_{\omega}\partial_{\bar{\omega}}. Now the potential f=f(ω,ω¯)f=f(\omega,\bar{\omega}) and it is real, i.e. f=f¯f=\bar{f}. The Green’s function Gn(𝐫,𝐫)G_{n}(\mathbf{r},\mathbf{r^{\prime}}) is the integral kernel of the resolvent (4ωω¯+m2f)1\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}-f\right)^{-1}.

The expansion of the resolvent operator in powers of (4ωω¯+m2)1\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1} gives

(4ωω¯+m2f)1=(4ωω¯+m2)1+(4ωω¯+m2)1f(4ωω¯+m2)1+\displaystyle\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}-f\right)^{-1}=\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1}+\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1}f\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1}+... (51)

Then following the chapter 5 in the paper dikii1958trace , the commutator of the resolvent (4ωω¯+m2)1\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1} and ff shows

(4ωω¯+m2)1f\displaystyle(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2})^{-1}f
=f(4ωω¯+m2)1+4(4ωω¯+m2)1(ωfω¯+ω¯fω)(4ωω¯+m2)1.\displaystyle\ =f(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2})^{-1}+4(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2})^{-1}(\partial_{\omega}f\partial_{\bar{\omega}}+\partial_{\bar{\omega}}f\partial_{\omega})(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2})^{-1}. (52)

By recurring the commutator, we can finally factor out all ff and its derivatives and leave the resolvent (4ωω¯+m2)1\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1} and differential operators ω\partial_{\omega} and ω¯\partial_{\bar{\omega}}. Hence, the full resolvent can be expressed as

(4ωω¯+m2f)1=l=0i+j=0lBi,j,l[f](2ω)i(2ω¯)j(4ωω¯+m2)1i+j+l2,\displaystyle\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}-f\right)^{-1}=\sum_{l=0}^{\infty}\sum_{i+j=0}^{l}B_{i,j,l}[f](2\partial_{\omega})^{i}(2\partial_{\bar{\omega}})^{j}\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}\right)^{-1-\frac{i+j+l}{2}}, (53)

where i+j+li+j+l is always even. By acting (4ωω¯+m2f)\left(-4\partial_{\omega}\partial_{\bar{\omega}}+m^{2}-f\right) on each side, we have the recurrence relations to determine the coefficients:

{B0,0,01,Bi,j,l=0fori,j,l<0,Bi,j,l=4ωω¯Bi,j,l2+2ωBi,j1,l1+2ω¯Bi1,j,l1+fBi,j,l2.\displaystyle\left\{\begin{array}[]{ll}&B_{0,0,0}\equiv 1,\ \ B_{i,j,l}=0\ \ \text{for}\ i,j,l<0,\\ &B_{i,j,l}=4\partial_{\omega}\partial_{\bar{\omega}}B_{i,j,l-2}+2\partial_{\omega}B_{i,j-1,l-1}+2\partial_{\bar{\omega}}B_{i-1,j,l-1}+fB_{i,j,l-2}.\end{array}\right. (56)

Also, we need an additional constraint, Bi,j,l=B¯j,i,lB_{i,j,l}=\bar{B}_{j,i,l}, to keep the resolvent real.

To connect the resolvents and the Green’s functions, we can consider function basis in the nn-sheeted geometry {eik/nθJ|k/n|(λr)|k,λ>0,λ}\{e^{ik/n\theta}J_{|k/n|}(\lambda r)|k\in\mathbb{Z},\lambda>0,\lambda\in\mathbb{R}\}. Hence, the Delta function can be constructed

1rδ(rr)δ(θθ)=12nπk=0eik/n(θθ)J|k/n|(λr)J|k/n|(λr)λ𝑑λ.\displaystyle\frac{1}{r}\delta(r-r^{\prime})\delta(\theta-\theta^{\prime})=\frac{1}{2n\pi}\sum_{k=-\infty}^{\infty}\int_{0}^{\infty}e^{ik/n(\theta-\theta^{\prime})}J_{|k/n|}(\lambda r)J_{|k/n|}(\lambda r^{\prime})\lambda d\lambda. (57)

Then we can plug this expression into (53) and we have the form in (37)

Gn(𝐫,𝐫)=l=0i+j=0lBi,j,l[f](2ω)i(2ω¯)jG~n(1+i+j+l2)(𝐫,𝐫),\displaystyle G_{n}(\mathbf{r},\mathbf{r^{\prime}})=\sum_{l=0}^{\infty}\sum_{i+j=0}^{l}B_{i,j,l}[f](2\partial_{\omega})^{i}(2\partial_{\bar{\omega}})^{j}\tilde{G}_{n}^{\left(1+\frac{i+j+l}{2}\right)}(\mathbf{r},\mathbf{r^{\prime}}), (58)

where

G~n(1+i+j+l2)(𝐫,𝐫)\displaystyle\tilde{G}_{n}^{\left(1+\frac{i+j+l}{2}\right)}(\mathbf{r},\mathbf{r^{\prime}}) =(G~nG~n)(𝐫,𝐫)\displaystyle=\left(\tilde{G}_{n}\circ...\circ\tilde{G}_{n}\right)(\mathbf{r},\mathbf{r^{\prime}})
=12nπk=eik/n(θθ)0J|k/n|(λr)J|k/n|(λr)(λ2+m2)(1+i+j+l2)λ𝑑λ.\displaystyle=\frac{1}{2n\pi}\sum_{k=-\infty}^{\infty}e^{ik/n(\theta-\theta^{\prime})}\int_{0}^{\infty}\frac{J_{|k/n|}(\lambda r)J_{|k/n|}(\lambda r^{\prime})}{(\lambda^{2}+m^{2})^{\left(1+\frac{i+j+l}{2}\right)}}\lambda d\lambda. (59)

References

  • (1) Pasquale Calabrese and John Cardy. Entanglement entropy and quantum field theory. Journal of Statistical Mechanics: Theory and Experiment, 2004(06):P06002, jun 2004.
  • (2) T. M. Dunster. On the order derivatives of bessel functions. Constructive Approximation, 46(1):47–68, Aug 2017.
  • (3) I.S. GRADSHTEYN and I.M. RYZHIK. 8-9 - special functions. In I.S. GRADSHTEYN and I.M. RYZHIK, editors, Table of Integrals, Series, and Products, pages 904 – 1080. Academic Press, 1980.
  • (4) 6–7 - definite integrals of special functions. In Alan Jeffrey, Daniel Zwillinger, I.S. Gradshteyn, and I.M. Ryzhik, editors, Table of Integrals, Series, and Products (Seventh Edition), pages 631–857. Academic Press, Boston, seventh edition edition, 2007.
  • (5) F. Oberhettinger. Tables of Mellin Transforms. Springer Berlin Heidelberg, 2012.
  • (6) Leonid A Dikii. The zeta function of an ordinary differential equation on a finite interval. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 19(4):187–200, 1955.
  • (7) Leonid A Dikii. Trace formulas for sturm–liouville differential operators. Uspekhi Matematicheskikh Nauk, 13(3):111–143, 1958.
  • (8) I M Gel'fand and L A Dikii. ASYMPTOTIC BEHAVIOUR OF THE RESOLVENT OF STURM-LIOUVILLE EQUATIONS AND THE ALGEBRA OF THE KORTEWEG-DE VRIES EQUATIONS. Russian Mathematical Surveys, 30(5):77–113, oct 1975.
  • (9) R.T Seeley. The index of elliptic systems of singular integral operators. Journal of Mathematical Analysis and Applications, 7(2):289–309, 1963.