This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\publyear

24 \papernumber2171

\finalVersionForARXIV

A Strong Gram Classification of Non-negative Unit Forms of
Dynkin Type 𝔸r\mathbb{A}_{r}

Jesús Arturo Jiménez González
Instituto de Matemáticas
UNAM
Address of correspondence: Instituto de Matemáticas, Mexico City, Mexico.

Received April 2022;  revised February 2024.
   Mexico
[email protected]
Abstract

An integral quadratic form q:nq:\mathbb{Z}^{n}\to\mathbb{Z} is usually identified with a bilinear form 𝕓ˇq:n×n\widecheck{\mathbbm{b}}_{q}:\mathbb{Z}^{n}\times\mathbb{Z}^{n}\to\mathbb{Z} satisfying q(x)=𝕓ˇq(x,x)q(x)=\widecheck{\mathbbm{b}}_{q}(x,x) for any vector xx in n\mathbb{Z}^{n}, and such that its Gram matrix with respect to the canonical basis of n\mathbb{Z}^{n} is upper triangular. Two integral quadratic forms are called strongly (resp. weakly) Gram congruent if their corresponding upper triangular bilinear forms (resp. their symmetrizations) are equivalent. If qq is unitary, such upper triangular bilinear form is unimodular, and one considers the associated Coxeter transformation and its characteristic polynomial, the so-called Coxeter polynomial of qq with this identification. Two strongly Gram congruent quadratic unit forms are weakly Gram congruent and have the same Coxeter polynomial.

Here we show that the converse of this statement holds for the connected non-negative case of Dynkin type 𝔸r\mathbb{A}_{r} (r1r\geq 1) and arbitrary corank, and use this characterization to complete a combinatorial classification of such quadratic forms started in [Fundamenta Informaticae 184(1):49–82, 2021] and [Fundamenta Informaticae 185(3):221–246, 2022].

keywords:
Integral quadratic form, Gram congruence, Dynkin type, Coxeter polynomial, edge-bipartite graph, quiver, incidence matrix, signed line graph. 2020 MSC: 15A63, 15A21, 15B36, 05C22, 05C50, 05C76, 05B20.
volume: 191issue: 1

                                                                      To the memory of Prof. Daniel Simson

A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type 𝔸r\mathbb{A}_{r}

Introduction

An integral quadratic form q(x1,,xn)=1ijnqijxixjq(x_{1},\ldots,x_{n})=\sum_{1\leq i\leq j\leq n}q_{ij}x_{i}x_{j} is an integer homogeneous polynomial (qijq_{ij}\in\mathbb{Z}) of degree two on n1n\geq 1 integer variables x1,,xnx_{1},\ldots,x_{n}, more generally considered as a function q:nq:\mathbb{Z}^{n}\to\mathbb{Z} whose associated map

𝕓q:n×n,\mathbbm{b}_{q}:\mathbb{Z}^{n}\times\mathbb{Z}^{n}\to\mathbb{Z},

given for (column) vectors x,ynx,y\in\mathbb{Z}^{n} by 𝕓q(x,y)=q(x+y)q(x)q(y)\mathbbm{b}_{q}(x,y)=q(x+y)-q(x)-q(y), is a bilinear form, usually called polarization of qq. The form qq is said to be positive (resp. non-negative) if q(x)>0q(x)>0 (resp. q(x)0q(x)\geq 0) for any non-zero vector xnx\in\mathbb{Z}^{n}, that is, whenever the polarization 𝕓q\mathbbm{b}_{q} is a positive (semi-) definite form, since q(x)=12𝕓q(x,x)q(x)=\frac{1}{2}\mathbbm{b}_{q}(x,x) for any xx in n\mathbb{Z}^{n}. Recall that two integral bilinear forms 𝕓\mathbbm{b} and 𝕓\mathbbm{b}^{\prime} are called equivalent if there is a \mathbb{Z}-invertible matrix BB such that 𝕓(x,y)=𝕓(Bx,By)\mathbbm{b}^{\prime}(x,y)=\mathbbm{b}(Bx,By) for any x,ynx,y\in\mathbb{Z}^{n}.

Integral quadratic forms appear frequently, sometimes implicitly, in Lie theory, in the representation theory of groups, algebras, posets and bocses, in cluster theory, and in the spectral graph theory of signed graphs, to mention some examples. Their usefulness, in representation theory alone, which is our main motivation, has prompted extensive original research for some decades now. For instance:

  • In the early stages of the representation theory of associative algebras of finite dimension, after the work of Gabriel [23]: Bernstein, Gelfand and Ponomarev [9], Ovsienko [49] (see also [21] and [53]), Dlab and Ringel [17, 18], Ringel [53], Bongartz [12, 13], de la Peña [51, 50], Brüstle, de la Peña, Skowroński [14].

  • Usually in a graphical context, considering arithmetical properties and classification problems of quadratic forms: Barot [2, 3], Barot and de la Peña [6, 7, 8] von Höhne [28, 29, 30], Dean and de la Peña [16], Happel [27], Dräxler and de la Peña [19, 20].

  • Within Lenzing’s Coxeter formalism of bilinear forms [38]: Lenzing and Reiten [39], Mróz [44, 45], Mróz and de la Peña [46, 47].

  • In a graphical context, considering morsifications, Weyl and isotropy groups, certain mesh geometries of orbits of roots, and classification problems: Simson [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68], Kosakowska [37], and Simson and collaborators: Bocian and Felisiak [10, 11], Gąsiorek and Zając [25, 26], Kasjan [35, 36], Makuracki and Zyglarski [42, 43], Zając [69, 70].

  • Within the context of quasi-Cartan matrices, defined by Barot, Geiss and Zelevinsky in [4] for the study of cluster algebras: Simson [66], Makuracki and Mróz [40, 41] and Perez, Abarca and Rivera [52].

Let us fix some of the notation and terminology used in the paper. We denote by 𝕄n()\mathbb{M}_{n}(\mathbb{Z}) the set of n×nn\times n matrices with integer coefficients. The identity matrix of size nn is denoted by 𝐈𝐝n\mathbf{Id}_{n}, or simply by 𝐈𝐝\mathbf{Id} for adequate size. Recall that M𝕄n()M\in\mathbb{M}_{n}(\mathbb{Z}) is \mathbb{Z}-invertible if and only if det(M)=±1\det(M)=\pm 1. The transpose of a matrix MM is denoted by M𝐭𝐫M^{\mathbf{tr}}, and if MM is \mathbb{Z}-invertible then M𝐭𝐫:=(M1)𝐭𝐫M^{-\mathbf{tr}}:=(M^{-1})^{\mathbf{tr}}. Here all matrices have integer coefficients, and as usual, we identify a m×nm\times n matrix MM with the linear transformation M:nmM:\mathbb{Z}^{n}\to\mathbb{Z}^{m} given by xMxx\mapsto Mx. We denote by 𝐈𝐦(M)\mathbf{Im}(M) and 𝐊𝐞𝐫(M)\mathbf{Ker}(M) the column space of MM and the null right space of MM, respectively. We say that the matrix KK is a kernel matrix of MM if its columns consists of a basis of 𝐊𝐞𝐫(M)\mathbf{Ker}(M). The column vector with nn entries, all of them equal to 11, is denoted by 𝟙n\mathbbm{1}_{n}, or simply by 𝟙\mathbbm{1} for appropriate size. For matrices MtM_{t} of size m×ntm\times n_{t} for t=1,,rt=1,\ldots,r the m×nm\times n matrix with columns those of M1,,MrM_{1},\ldots,M_{r}, in that order, is denoted by [M1,M2,,Mr1,Mr][M_{1},M_{2},\ldots,M_{r-1},M_{r}], where n=t=1rntn=\sum_{t=1}^{r}n_{t}. For arbitrary matrices N1,,NrN_{1},\ldots,N_{r}, take

N1N2Nr:=(N1000N2000Nr).N_{1}\oplus N_{2}\oplus\ldots\oplus N_{r}:=\begin{pmatrix}N_{1}&0&\cdots&0\\ 0&N_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&N_{r}\end{pmatrix}.

The canonical basis of n\mathbb{Z}^{n} is denoted by 𝐞1,,𝐞n\mathbf{e}_{1},\ldots,\mathbf{e}_{n}. For a permutation ρ\rho of the set {1,,n}\{1,\ldots,n\}, the matrix P(ρ)P(\rho) satisfying P(ρ)𝐞t=𝐞ρ(t)P(\rho)\mathbf{e}_{t}=\mathbf{e}_{\rho(t)} for t=1,,nt=1,\ldots,n is called permutation matrix of ρ\rho.

The matrix with integer coefficients G𝕓=[𝕓(𝐞i,𝐞j)]i,j=1nG_{\mathbbm{b}}=[\mathbbm{b}(\mathbf{e}_{i},\mathbf{e}_{j})]_{i,j=1}^{n} is called Gram matrix of an integral bilinear form 𝕓:n×n\mathbbm{b}:\mathbb{Z}^{n}\times\mathbb{Z}^{n}\to\mathbb{Z}, with respect to the canonical basis of n\mathbb{Z}^{n}. By symmetric Gram matrix GqG_{q} of an integral quadratic form qq we mean the Gram matrix Gq=G𝕓qG_{q}=G_{\mathbbm{b}_{q}} of the polarization 𝕓q\mathbbm{b}_{q} of qq (notice that GqG_{q} is symmetric and has integer coefficients). We also consider the (unique) bilinear form 𝕓ˇq:n×n\widecheck{\mathbbm{b}}_{q}:\mathbb{Z}^{n}\times\mathbb{Z}^{n}\to\mathbb{Z} such that q(x)=𝕓ˇq(x,x)q(x)=\widecheck{\mathbbm{b}}_{q}(x,x) for all xnx\in\mathbb{Z}^{n}, and such that its Gram matrix with respect to the canonical basis of n\mathbb{Z}^{n}, denoted by Gˇq\widecheck{G}_{q}, is upper triangular. Note that Gq=Gˇq+Gˇq𝐭𝐫G_{q}=\widecheck{G}_{q}+\widecheck{G}_{q}^{\mathbf{tr}}. We say that qq is a unit form (or a unitary integral quadratic form) if q(𝐞i)=1q(\mathbf{e}_{i})=1 for i=1,,ni=1,\ldots,n. In that case, Gˇq\widecheck{G}_{q} is a \mathbb{Z}-invertible matrix (since it is upper triangular with all diagonal coefficients equal to 11), and is called the standard morsification of qq in Simson’s terminology [57, 61]. Two unit forms qq and qq^{\prime} are called weakly Gram congruent if their polarizations are equivalent, that is, if there is a \mathbb{Z}-invertible matrix BB such that Gq=B𝐭𝐫GqBG_{q^{\prime}}=B^{\mathbf{tr}}G_{q}B (or equivalently, q=qBq^{\prime}=qB). Similarly, qq and qq^{\prime} are called strongly Gram congruent if their standard morsifications are equivalent, that is, if there is a \mathbb{Z}-invertible matrix BB such that Gˇq=B𝐭𝐫GˇqB\widecheck{G}_{q^{\prime}}=B^{\mathbf{tr}}\widecheck{G}_{q}B. Then we write qBqq\sim^{B}q^{\prime} and qBqq\approx^{B}q^{\prime} for the weak and strong cases respectively (or simply qqq\sim q^{\prime} and qqq\approx q^{\prime}). The weak Gram classification of connected non-negative unit forms is due to Barot and de la Peña [6] and Simson [62] (see also [70]), in terms of a unique pair (Δ,c)(\Delta,c) where Δ\Delta is a Dynkin diagram 𝔸r\mathbb{A}_{r}, 𝔻s\mathbb{D}_{s}, 𝔼t\mathbb{E}_{t} (for r1r\geq 1, s4s\geq 4 or t{6,7,8}t\in\{6,7,8\}) and c0c\geq 0 is the corank of the quadratic form qq, that is, the rank of the kernel of the symmetric Gram matrix GqG_{q}. Here we deal with the strong Gram classification problem of connected non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r} for r1r\geq 1.

For a unit form qq, consider the matrix with integer coefficients Φq=Gˇq𝐭𝐫Gˇq1\Phi_{q}=-\widecheck{G}_{q}^{\mathbf{tr}}\widecheck{G}_{q}^{-1}, called Coxeter matrix of qq. The characteristic polynomial of Φq\Phi_{q}, denoted by φq(λ)\varphi_{q}(\lambda), is called Coxeter polynomial of qq. It is well known, and can be easily shown, that if qqq\approx q^{\prime}, then qqq\sim q^{\prime} and φq=φq\varphi_{q}=\varphi_{q^{\prime}} (cf. [33, Lemma 4.6]). The validity of the converse of this claim in this, or in partial or equivalent forms, is a question raised by Simson for at least a decade (see [61]). Here we give a formulation in terms of non-negative unit forms (see also [34, Problem A]), which correspond to non-negative loop-less bigraphs as in [61], or to non-negative symmetric quasi-Cartan matrices as in [4]. Generalizations of these problems may be found, for instance, in terms of Cox-regular bigraphs in [45, Problem 1.3], or of symmetrizable quasi-Cartan matrices in [66] (see also [61, 62, 63]).

Problem 1 (Simson’s Coxeter Spectral Characterization Question).
If two connected non-negative unit forms are weakly Gram congruent and have the same Coxeter polynomial, are they strongly Gram congruent?

Problem 2 (Simson’s Strong Gram Classification Problems).

  • i)

    Classify all non-negative unit forms up to the strong Gram congruence. This includes (and up to Problem 1, is exhausted by) the determination of all Coxeter polynomials per weak Gram congruence class.

  • ii)

    Given two non-negative unit forms qq and qq^{\prime} that are strongly Gram congruent, find a \mathbb{Z}-invertible matrix BB such that qBqq\approx^{B}q^{\prime}.

Solutions to these problems for special classes of quadratic forms are known. For instance, the positive case was completed recently by Simson [64, 67, 68] (see further examples and related problems in [45]). An alternative proof for positive unit forms of Dynkin type 𝔸r\mathbb{A}_{r} was given by the author in [33]. Here we present affirmative solutions to Problems 1 and 2 for connected non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r} (for r1r\geq 1) and arbitrary corank, with the combinatorial methods presented in [32], and developed to this end in [33, 34].

\scriptstyle\bullet \scriptstyle\bullet \scriptstyle{\cdots} \scriptstyle\bullet \scriptstyle\bullet \scriptstyle\bullet \scriptstyle{\cdots} \scriptstyle\bullet \scriptstyle\bullet \scriptstyle{\cdots}\scriptstyle{\cdots} \scriptstyle\bullet \scriptstyle\bullet \scriptstyle\bullet \scriptstyle{\cdots} \scriptstyle\bullet \scriptstyle\bullet \scriptstyle\bullet \scriptstyle\bullet \scriptstyle{\cdots} \scriptstyle\bullet \scriptstyle\bullet \scriptstyle\bullet }\textstyle{\left.\begin{matrix}\\ \\ \\ \end{matrix}\right\}}2𝕕-arrows\textstyle{{}^{2\mathbbm{d}\text{-arrows}}}π1-arrows\textstyle{\overbrace{\qquad\qquad\qquad}^{\pi_{\ell}-1\text{-arrows}}}π1-arrows\textstyle{\overbrace{\qquad\qquad\qquad}^{\pi_{\ell-1}\text{-arrows}}}π2-arrows\textstyle{\overbrace{\qquad\qquad\qquad\qquad}^{\pi_{2}\text{-arrows}}}π1-arrows\textstyle{\overbrace{\qquad\qquad\qquad\qquad\qquad\quad}^{\pi_{1}\text{-arrows}}}
Figure 1: For a partition π=(π1,π2,,π)\pi=(\pi_{1},\pi_{2},\ldots,\pi_{\ell}) of m2m\geq 2, and a non-negative integer 𝕕\mathbbm{d}, depiction of the standard (π,𝕕)(\pi,\mathbbm{d})-extension quiver 𝔸𝕕[π]\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] with mm vertices, cycle type π\pi and degree of degeneracy 𝕕\mathbbm{d} (see Definition 1.10). It has n=m++2(𝕕1)n=m+\ell+2(\mathbbm{d}-1) arrows: m1m-1 arrows in the upper row (going from left to right, numbered from 11 to m1m-1), 1\ell-1 arrows in the second row (going from right to left, numbered from mm to m+2m+\ell-2), and 2𝕕2\mathbbm{d} alternating parallel arrows, numbered from m+1m+\ell-1 to m++2(𝕕1)m+\ell+2(\mathbbm{d}-1). The associated quadratic form q𝔸𝕕[π]q_{\vec{\mathbb{A}}^{\mathbbm{d}}[\pi]} is called standard (π,𝕕)(\pi,\mathbbm{d})-extension of q𝔸m1q_{\mathbb{A}_{m-1}}, see (1).

Recall that two connected non-negative unit forms are weakly Gram congruent if and only if they have the same Dynkin type and the same corank (see [6] or [70]), or equivalently, the same Dynkin type and the same number of variables. Simson determined in [62] representatives of the weak Gram congruence classes of connected non-negative unit forms, the so-called canonical extensions, showing that any such form having Dynkin type Δ\Delta is weakly Gram congruent to a unique canonical extension of the unit form qΔq_{\Delta}, see [62, Theorems 1.12 and 2.12] and [70, Theorem 1.8] (recall that the quadratic form qΔq_{\Delta} associated to a graph Δ\Delta is determined by GqΔ:=2𝐈𝐝Adj(Δ)G_{q_{\Delta}}:=2\mathbf{Id}-\mathrm{Adj}(\Delta), where Adj(Δ)\mathrm{Adj}(\Delta) denotes the symmetric adjacency matrix of Δ\Delta). A family of representatives for the corresponding strong Gram classes of Dynkin type 𝔸r\mathbb{A}_{r} was proposed in [34, Definition 5.2] (see Figure 1 and 1.3 below). There they are called standard extensions of the unit form q𝔸rq_{\mathbb{A}_{r}}, and here we confirm that they are representatives of strong Gram congruence in the following classification theorem.

Theorem 1

Every connected non-negative unit form of Dynkin type 𝔸r\mathbb{A}_{r} for r1r\geq 1 is strongly Gram congruent to a unique standard extension of the unit form q𝔸rq_{\mathbb{A}_{r}}.

Alternatively, the following formulation of Theorem 1 answers directly Problem 1.

Theorem 2

Let qq and q~\widetilde{q} be weakly Gram congruent connected non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r} for r1r\geq 1. Then qq and q~\widetilde{q} are strongly Gram congruent if and only if they have the same Coxeter polynomial.

Using Theorem 2, and the results on Coxeter polynomials of [34] (based on [33, Theorem A]), we complete the following descriptive theorem of non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r} up to the strong Gram congruence (cf. [34, Problem B]). We need the following general notions. Let q:nq:\mathbb{Z}^{n}\to\mathbb{Z} be a unit form, with symmetric Gram matrix GqG_{q} and Coxeter matrix Φq\Phi_{q}.

  • A partition π\pi of an integer m1m\geq 1, denoted by πm\pi\vdash m, is a non-increasing sequence of positive integers π=(π1,,π(π))\pi=(\pi_{1},\ldots,\pi_{\ell(\pi)}) such that m=t=1(π)πtm=\sum_{t=1}^{\ell(\pi)}\pi_{t}. The integer (π)\ell(\pi) is called the length of π\pi, and the set of partitions of mm is denoted by 𝒫(m)\mathcal{P}(m).

  • The kernel of GqG_{q} in n\mathbb{Z}^{n} is called radical of qq, denoted by 𝐫𝐚𝐝(q)\mathbf{rad}(q), and its elements are called radical vectors of qq. The rank of 𝐫𝐚𝐝(q)\mathbf{rad}(q) is called corank of qq, and is denoted by 𝐜𝐨𝐫𝐤(q)\mathbf{cork}(q). The reduced corank 𝐜𝐨𝐫𝐤re(q)\mathbf{cork}_{re}(q) of qq is the rank of the kernel of the restriction 𝕣ˇq\widecheck{\mathbbm{r}}_{q} of 𝕓ˇq\widecheck{\mathbbm{b}}_{q} to its radical (see details in 2.1 below).

  • The Coxeter number 𝐂(q)\mathbf{C}(q) of qq is the minimal t>0t>0 such that Φqt=𝐈𝐝\Phi_{q}^{t}=\mathbf{Id}, if such tt exists, and 𝐂(q):=\mathbf{C}(q):=\infty otherwise. The reduced Coxeter number 𝐂re(q)\mathbf{C}_{re}(q) is the minimal t>0t>0 such that Φqt𝐈𝐝\Phi_{q}^{t}-\mathbf{Id} is a nilpotent matrix (such tt always exists if qq is non-negative, cf. [55]). The degree of degeneracy of qq is the integer 𝕕q0\mathbbm{d}_{q}\geq 0 such that 2𝕕q=𝐜𝐨𝐫𝐤(q)𝐜𝐨𝐫𝐤re(q)2\mathbbm{d}_{q}=\mathbf{cork}(q)-\mathbf{cork}_{re}(q), which is a non-negative even number since it is the rank of a skew-symmetric form (namely, the restriction 𝕣ˇq\widecheck{\mathbbm{r}}_{q} of 𝕓ˇq\widecheck{\mathbbm{b}}_{q} to the radical 𝐫𝐚𝐝(q)\mathbf{rad}(q) of qq, see (13) and further details in 2.1 below).

Theorem 3

Let 𝐔𝐐𝐮𝐚𝐝𝔸c(n)\mathbf{UQuad}_{\mathbb{A}}^{c}(n) denote the set of connected non-negative unit forms in n1n\geq 1 variables having corank c0c\geq 0 and Dynkin type 𝔸nc\mathbb{A}_{n-c}. Taking m:=nc+12m:=n-c+1\geq 2, there is a function 𝐜𝐭:𝐔𝐐𝐮𝐚𝐝𝔸c(n)𝒫(m)\mathbf{ct}:\mathbf{UQuad}_{\mathbb{A}}^{c}(n)\to\mathcal{P}(m), called the cycle type of a unit form in 𝐔𝐐𝐮𝐚𝐝𝔸c(n)\mathbf{UQuad}_{\mathbb{A}}^{c}(n), which induces a bijection,

[𝐔𝐐𝐮𝐚𝐝𝔸c(n)/]𝐜𝐭𝒫1c(m),\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 37.96234pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-37.96234pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{[\mathbf{UQuad}_{\mathbb{A}}^{c}(n)/\approx]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 59.04567pt\raise 5.15279pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15279pt\hbox{$\scriptstyle{\mathbf{ct}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 91.96234pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 61.96234pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 91.96234pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{P}^{c}_{1}(m)}$}}}}}}}\ignorespaces}}}}\ignorespaces,

where 𝒫1c(m)\mathcal{P}^{c}_{1}(m) denotes the set of partitions of mm whose length is conditioned by cc as follows,

𝒫1c(m):={πm0c((π)1)0mod2}.\mathcal{P}^{c}_{1}(m):=\{\pi\vdash m\mid 0\leq c-(\ell(\pi)-1)\equiv 0\mod 2\}.

Moreover, if 𝐜𝐭(q)=(π1,,π)\mathbf{ct}(q)=(\pi_{1},\ldots,\pi_{\ell}) for q𝐔𝐐𝐮𝐚𝐝𝔸c(n)q\in\mathbf{UQuad}_{\mathbb{A}}^{c}(n), then the following hold.

  • i)

    The Coxeter polynomial of qq is φq(λ)=(λ1)c1t=1(λπt1)\varphi_{q}(\lambda)=(\lambda-1)^{c-1}\prod_{t=1}^{\ell}(\lambda^{\pi_{t}}-1).

  • ii)

    The Coxeter number of qq is 𝐂(q)=π1\mathbf{C}(q)=\pi_{1} if =1\ell=1, and 𝐂(q)=\mathbf{C}(q)=\infty otherwise.

  • iii)

    The reduced Coxeter number of qq is 𝐂re(q)=lcm(π)\mathbf{C}_{re}(q)=\mathrm{lcm}(\pi).

  • iv)

    The geometric multiplicity of 11 as eigenvalue of Φq\Phi_{q} is 𝐜𝐨𝐫𝐤(q)=c\mathbf{cork}(q)=c.

  • v)

    The reduced corank 𝐜𝐨𝐫𝐤re(q)\mathbf{cork}_{re}(q) of qq is 1\ell-1, and the algebraic multiplicity of 11 as eigenvalue of Φq\Phi_{q} is 𝐜𝐨𝐫𝐤(q)+𝐜𝐨𝐫𝐤re(q)\mathbf{cork}(q)+\mathbf{cork}_{re}(q).

A solution for the positive and principal cases (coranks zero and one) of Theorem 2, within our combinatorial framework, was shown in [33, Theorems A and B] by means of certain (admissible) flations at the level of loop-less quivers. Here we pursue an alternative strategy which we sketch as follows (see details in Section 4). Let qq be a unit form in 𝐔𝐐𝐮𝐚𝐝𝔸c(n)\mathbf{UQuad}_{\mathbb{A}}^{c}(n). We fix a unique standard extension q\vec{q} such that qqq\sim\vec{q} and φq=φq\varphi_{q}=\varphi_{\vec{q}} (see Definition 3.3 and Remark 1.17 below), and proceed in three main steps, for which, for a n×nn\times n matrix BB, we consider the matrix B:=Gˇq1B𝐭𝐫GˇqB^{*}:=\widecheck{G}_{\vec{q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{q}.

  • Step 1. Find a matrix BB such that, among other technical conditions (see Definition 3.3(a)(a)), satisfies

    q=qB,andq=qB.\vec{q}=qB,\quad\text{and}\quad q=\vec{q}B^{*}.

It can be shown that for corank zero or one, the matrix BB of Step 1 determines itself a strong Gram congruence qBqq\approx^{B}\vec{q} (cf. Lemma 4.22). In general, analyzing how far BB is from being a strong Gram congruence, we arrive to the following correction steps.

  • Step 2. Find a matrix MM such that the matrix B+MB+M is \mathbb{Z}-invertible, and satisfies the same conditions of Step 1:

    q=q(B+M),andq=q(B+M).\vec{q}=q(B+M),\quad\text{and}\quad q=\vec{q}(B+M)^{*}.
  • Step 3. Find a matrix CC such that [(B+M)C][(B+M)C]=𝐈𝐝[(B+M)C]^{*}[(B+M)C]=\mathbf{Id}.

Clearly, the condition NN=𝐈𝐝N^{*}N=\mathbf{Id} for a square matrix NN implies that NN is \mathbb{Z}-invertible and qNqq\approx^{N}\vec{q}. The goal of this paper is to constructively exhibit the existence of matrices BB, MM and CC. A solution to Step 1 is given in Section 1, using the specific structure of standard extensions, see Proposition1.23. Steps 2 and 3 are simple correction algorithms that work in a much general context (see Remark 4.17). However, their justification is long and technical at some points, and requires a special condition that can be easily verified for standard extension (see Lemma 2.13 and Corollary 4.15). Steps 2 and 3 are shown in Sections 2 and 3, see Propositions 2.17 and 3.13 and their implementable formulations as Algorithms 3 and 4, respectively. The proofs to our main theorems, comments on generalizations and suggestions for an implementation are collected in Section 4.

1 A combinatorial realization

In this section we summarize the needed combinatorial notions and results introduced in [32] and developed in [33, 34] for the Coxeter analysis of non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r}, namely, structural walks, incidence vectors, the inverse of a quiver and standard quivers.

1.1 Basic notions

Let Q=(Q0,Q1,𝐬,𝐭)Q=(Q_{0},Q_{1},\mathbf{s},\mathbf{t}) be a quiver, that is, Q0Q_{0} and Q1Q_{1} are finite sets (whose elements are called vertices and arrows of QQ, respectively), and 𝐬,𝐭:Q1Q0\mathbf{s},\mathbf{t}:Q_{1}\to Q_{0} are functions assigning to each arrow ii of QQ a source vertex 𝐬(i)Q0\mathbf{s}(i)\in Q_{0} and a target vertex 𝐭(i)Q0\mathbf{t}(i)\in Q_{0}. Throughout the paper we assume that both sets Q0Q_{0} and Q1Q_{1} are totally ordered (see Remark 1.1 below). Moreover, taking m=|Q0|m=|Q_{0}| and n=|Q1|n=|Q_{1}| we usually identify the set of vertices Q0Q_{0} with the set {1,,m}\{1,\ldots,m\}, and the set of arrows Q1Q_{1} with the set {1,,n}\{1,\ldots,n\}. The m×nm\times n incidence matrix I(Q)I(Q) of QQ has as ii-th column the difference 𝐞𝐬(i)𝐞𝐭(i)m\mathbf{e}_{\mathbf{s}(i)}-\mathbf{e}_{\mathbf{t}(i)}\in\mathbb{Z}^{m}. The symmetric Gram matrix of QQ is defined by GQ=I(Q)𝐭𝐫I(Q)G_{Q}=I(Q)^{\mathbf{tr}}I(Q), and its upper triangular Gram matrix GˇQ\widecheck{G}_{Q} is the unique upper triangular matrix satisfying GˇQ+GˇQ𝐭𝐫=GQ\widecheck{G}_{Q}+\widecheck{G}_{Q}^{\mathbf{tr}}=G_{Q}. Notice that if QQ has no loop, then GˇQ\widecheck{G}_{Q} is \mathbb{Z}-invertible, and that if QQ is connected then 𝐊𝐞𝐫I(Q)𝐭𝐫\mathbf{Ker}I(Q)^{\mathbf{tr}} is generated by the single vector 𝟙m\mathbbm{1}_{m} (see [34, Theorem 3.3(ii)(ii)]).

The integral quadratic form qQq_{Q} associated to a quiver QQ with mm vertices and nn arrows, as defined in [32], is given by

qQ(x)=12I(Q)x2,for xn,q_{Q}(x)=\frac{1}{2}||I(Q)x||^{2},\qquad\text{for $x\in\mathbb{Z}^{n}$,} (1)

where y2:=y𝐭𝐫y||y||^{2}:=y^{\mathbf{tr}}y denotes the squared Euclidean norm of a vector ymy\in\mathbb{Z}^{m}. By definition, we have GqQ=GQG_{q_{Q}}=G_{Q}, which implies that GˇqQ=GˇQ\widecheck{G}_{q_{Q}}=\widecheck{G}_{Q}.

Remark 1.1

Let QQ be a connected loop-less quiver. For any permutation ρ\rho of the set of vertices Q0Q_{0}, denote by ρQ=(Q0,Q1,𝐬~,𝐭~)\rho\cdot Q=(Q_{0},Q_{1},\widetilde{\mathbf{s}},\widetilde{\mathbf{t}}) the quiver obtained from QQ by permuting its vertices via ρ\rho (that is, 𝐬~(i)=ρ(𝐬(i))\widetilde{\mathbf{s}}(i)=\rho(\mathbf{s}(i)) and 𝐭~(i)=ρ(𝐭(i))\widetilde{\mathbf{t}}(i)=\rho(\mathbf{t}(i)) for any arrow iQ1i\in Q_{1}). Denote by Qop=(Q0,Q1,𝐬op,𝐭op)Q^{op}=(Q_{0},Q_{1},\mathbf{s}^{op},\mathbf{t}^{op}) the quiver obtained from QQ by reversing the orientation of all of its arrows (that is, 𝐬op=𝐭\mathbf{s}^{op}=\mathbf{t} and 𝐭op=𝐬\mathbf{t}^{op}=\mathbf{s}).

  • i)

    Then I(ρQ)=P(ρ)I(Q)I(\rho\cdot Q)=P(\rho)I(Q) and I(Qop)=(1)I(Q)I(Q^{op})=(-1)I(Q).

  • ii)

    We have qQ=qρQ=qρQopq_{Q}=q_{\rho\cdot Q}=q_{\rho\cdot Q^{op}}, and consequently GˇQ=GˇρQ=QˇρQop\widecheck{G}_{Q}=\widecheck{G}_{\rho\cdot Q}=\widecheck{Q}_{\rho\cdot Q^{op}}.

Proof 1.2

Observe that if iQ1i\in Q_{1}, then

I(ρQ)𝐞i\displaystyle I(\rho\cdot Q)\mathbf{e}_{i} =\displaystyle= 𝐞𝐬~(i)𝐞𝐭~(i)=𝐞ρ𝐬(i)𝐞ρ𝐭(i)\displaystyle\mathbf{e}_{\widetilde{\mathbf{s}}(i)}-\mathbf{e}_{\widetilde{\mathbf{t}}(i)}=\mathbf{e}_{\rho\mathbf{s}(i)}-\mathbf{e}_{\rho\mathbf{t}(i)}
=\displaystyle= P(ρ)(𝐞𝐬(i)𝐞𝐭((i)))=P(ρ)I(Q)𝐞i,\displaystyle P(\rho)(\mathbf{e}_{\mathbf{s}(i)}-\mathbf{e}_{\mathbf{t}((i))})=P(\rho)I(Q)\mathbf{e}_{i},

and

I(Qop)𝐞i=𝐞𝐬op(i)𝐞𝐭op(i)=(1)(𝐞𝐬(i)𝐞𝐭(i))=(1)I(Q).I(Q^{op})\mathbf{e}_{i}=\mathbf{e}_{\mathbf{s}^{op}(i)}-\mathbf{e}_{\mathbf{t}^{op}(i)}=(-1)(\mathbf{e}_{\mathbf{s}(i)}-\mathbf{e}_{\mathbf{t}(i)})=(-1)I(Q).

Then (i)(i) holds. The claim on quadratic forms in (ii)(ii) follows from (i)(i) and (1), since

qQ(x)=12I(Q)x2=12P(ρ)I(Q)x2=12(1)P(ρ)I(Q)x2.q_{Q}(x)=\frac{1}{2}||I(Q)x||^{2}=\frac{1}{2}||P(\rho)I(Q)x||^{2}=\frac{1}{2}||(-1)P(\rho)I(Q)x||^{2}.

The claim on standard morsifications is clear from the first part of (ii)(ii).

In the following result we interpret the weak and strong Gram congruences within this combinatorial realization (compare with [34, Lemma 6.1]).

Theorem 1.3

If QQ is a connected loop-less quiver with mm vertices and nn arrows, then qQq_{Q} is a connected non-negative unit form of Dynkin type 𝔸m1\mathbb{A}_{m-1} and corank c=nm+1c=n-m+1. Moreover, if qq is a connected non-negative unit form in n1n\geq 1 variables, with Dynkin type 𝔸m1\mathbb{A}_{m-1} for m2m\geq 2 and corank c0c\geq 0, then there is a connected loop-less quiver QQ with nn arrows and m=nc+1m=n-c+1 vertices such that q=qQq=q_{Q}. Assuming that Q~\widetilde{Q} is also a connected loop-less quiver:

  • i)

    We have qQ=qQ~q_{Q}=q_{\widetilde{Q}} if and only if there is a permutation matrix PP and a sign ϵ{±1}\epsilon\in\{\pm 1\} such that I(Q~)=ϵPI(Q)I(\widetilde{Q})=\epsilon PI(Q).

  • ii)

    We have qQqQ~q_{Q}\sim q_{\widetilde{Q}} if and only if (|Q0|,|Q1|)=(|Q~0|,|Q~1|)(|Q_{0}|,|Q_{1}|)=(|\widetilde{Q}_{0}|,|\widetilde{Q}_{1}|), which holds if and only if there is a permutation matrix PP, a sign ϵ{±1}\epsilon\in\{\pm 1\} and a \mathbb{Z}-invertible matrix BB satisfying I(Q~)=ϵPI(Q)BI(\widetilde{Q})=\epsilon PI(Q)B.

  • iii)

    We have qQqQ~q_{Q}\approx q_{\widetilde{Q}} if and only if there is a permutation matrix PP, a sign ϵ{±1}\epsilon\in\{\pm 1\} and a (\mathbb{Z}-invertible) matrix BB satisfying I(Q~)=ϵPI(Q)BI(\widetilde{Q})=\epsilon PI(Q)B and GˇQ~=B𝐭𝐫GˇQB\widecheck{G}_{\widetilde{Q}}=B^{\mathbf{tr}}\widecheck{G}_{Q}B.

Proof 1.4

The main claim follows from [32, Theorem 5.5], see also [33, Proposition 3.15 and Corollary 3.6]. The existence of PP and ϵ\epsilon in claim (i)(i) follows from [32, Corollary 7.3], see [34, Lemma 6.1(i)(i)] and Remark 1.1(i)(i). The converse follows from Remark 1.1(ii)(ii) above.

To show (ii)(ii), recall first that two non-negative connected unit forms are weakly Gram congruent if and only if they have the same Dynkin type and same corank (see the main corollary in [6]), or equivalently, the same number of variables and the same Dynkin type. By the main part of the theorem, qQq_{Q} is a connected unit form on |Q1||Q_{1}| variables and Dynkin type 𝔸|Q0|1\mathbb{A}_{|Q_{0}|-1}. This shows that qQqQ~q_{Q}\sim q_{\widetilde{Q}} if and only if (|Q0|,|Q1|)=(|Q~0|,|Q~1|)(|Q_{0}|,|Q_{1}|)=(|\widetilde{Q}_{0}|,|\widetilde{Q}_{1}|). For the second equivalence in (ii)(ii), it was shown in [34, Lemma 6.1(ii)(ii)] that if qQqQ~q_{Q}\sim q_{\widetilde{Q}}, then there is a permutation matrix PP, a sign ϵ{±1}\epsilon\in\{\pm 1\} and a \mathbb{Z}-invertible matrix BB satisfying I(Q~)=ϵPI(Q)BI(\widetilde{Q})=\epsilon PI(Q)B (note that the sign ϵ\epsilon might be “included” in matrix BB, as in [34, Lemma 6.1(ii)(ii)]). The converse is clear, since ϵ2=1\epsilon^{2}=1 and P𝐭𝐫P=𝐈𝐝P^{\mathbf{tr}}P=\mathbf{Id}, and therefore

GqQ~=GQ~=I(Q~)𝐭𝐫I(Q~)=[ϵPI(Q)B]𝐭𝐫[ϵPI(Q)B]=B𝐭𝐫I(Q)𝐭𝐫I(Q)B=B𝐭𝐫GqQB.G_{q_{\widetilde{Q}}}=G_{\widetilde{Q}}=I(\widetilde{Q})^{\mathbf{tr}}I(\widetilde{Q})=[\epsilon PI(Q)B]^{\mathbf{tr}}[\epsilon PI(Q)B]=B^{\mathbf{tr}}I(Q)^{\mathbf{tr}}I(Q)B=B^{\mathbf{tr}}G_{q_{Q}}B.

Similarly, the necessity in claim (iii)(iii) was shown in [34, Lemma 6.1(iii)(iii)], and the sufficiency is clear from definition.

Based on Theorem 1.3, we propose two characterizations of strong Gram congruence between quadratic forms associated to connected loop-less quivers in Theorem 4.1 below. The proof and hints for its implementation, which will take the rest of the paper to complete, depend on the following matrices (cf. [34, Theorem 3.3]). If QQ has mm vertices and nn arrows, take

ΦQ:=𝐈𝐝nI(Q)𝐭𝐫I(Q)GˇQ1andΛQ:=𝐈𝐝mI(Q)GˇQ1I(Q)𝐭𝐫.\Phi_{Q}:=\mathbf{Id}_{n}-I(Q)^{\mathbf{tr}}I(Q)\widecheck{G}^{-1}_{Q}\quad\text{and}\quad\Lambda_{Q}:=\mathbf{Id}_{m}-I(Q)\widecheck{G}_{Q}^{-1}I(Q)^{\mathbf{tr}}. (2)

These are called the Coxeter-Gram matrix of QQ and the Coxeter-Laplacian of QQ, respectively. Basic properties of ΦQ\Phi_{Q} and ΛQ\Lambda_{Q}, and their relation with the Coxeter matrix ΦqQ\Phi_{q_{Q}} of qQq_{Q}, are collected in the following observation.

Remark 1.5

Let QQ be a connected loop-less quiver with nn arrows and mm vertices, and with incidence matrix I(Q)I(Q). Then,

  • a)

    ΦQ=ΦqQ\Phi_{Q}=\Phi_{q_{Q}}.

  • b)

    ΛQ\Lambda_{Q} is a permutation matrix.

  • c)

    φqQ(λ)=(λ1)nmpΛQ(λ)\varphi_{q_{Q}}(\lambda)=(\lambda-1)^{n-m}p_{\Lambda_{Q}}(\lambda), where pΛQ(λ)p_{\Lambda_{Q}}(\lambda) denotes the characteristic polynomial of ΛQ\Lambda_{Q}.

  • d)

    ΛQ𝐭𝐫I(Q)=I(Q)ΦQ𝐭𝐫\Lambda_{Q}^{\mathbf{tr}}I(Q)=I(Q)\Phi_{Q}^{\mathbf{tr}}.

  • e)

    ΛQI(Q)=I(Q)ΦQ𝐭𝐫\Lambda_{Q}I(Q)=I(Q)\Phi_{Q}^{-\mathbf{tr}}.

Proof 1.6

Claims (a,b,c)(a,b,c) were shown in [34, Theorem 3.3 and Corollary 4.3]. Claim (d)(d) is clear, since

ΛQ𝐭𝐫I(Q)=I(Q)I(Q)[I(Q)GˇQ1]𝐭𝐫I(Q)=I(Q)ΦQ𝐭𝐫.\Lambda_{Q}^{\mathbf{tr}}I(Q)=I(Q)-I(Q)[I(Q)\widecheck{G}_{Q}^{-1}]^{\mathbf{tr}}I(Q)=I(Q)\Phi_{Q}^{\mathbf{tr}}.

Claim (e)(e) follows from (b)(b) and (d)(d), since

ΛQI(Q)=ΛQ[I(Q)ΦQ𝐭𝐫]ΦQ𝐭𝐫=ΛQΛQ𝐭𝐫I(Q)ΦQ𝐭𝐫=I(Q)ΦQ𝐭𝐫.\Lambda_{Q}I(Q)=\Lambda_{Q}[I(Q)\Phi_{Q}^{\mathbf{tr}}]\Phi_{Q}^{-\mathbf{tr}}=\Lambda_{Q}\Lambda_{Q}^{\mathbf{tr}}I(Q)\Phi_{Q}^{-\mathbf{tr}}=I(Q)\Phi_{Q}^{-\mathbf{tr}}.

Loosely speaking, due to Remark 1.5(b)(b) and (d,e)(d,e), the (inverse transpose) Coxeter-Gram matrix acts on the columns of the incidence matrix I(Q)I(Q), and such action is recorded in the Coxeter-Laplacian ΛQ\Lambda_{Q} of QQ.

1.2 Walks and incidence vectors

By walk of a quiver QQ we mean an alternating sequence of vertices and arrows of QQ,

w=(v0,i1,v1,i2,v2,,v1,i,v),w=(v_{0},i_{1},v_{1},i_{2},v_{2},\ldots,v_{\ell-1},i_{\ell},v_{\ell}),

starting with a vertex 𝐬(w):=v0\mathbf{s}(w):=v_{0} called the source of ww, and ending with a vertex 𝐭(w):=v\mathbf{t}(w):=v_{\ell} called the target of ww, and satisfying {𝐬(it),𝐭(it)}={vt1,vt}\{\mathbf{s}(i_{t}),\mathbf{t}(i_{t})\}=\{v_{t-1},v_{t}\} for t=1,,t=1,\ldots,\ell. The integer (w):=0\ell(w):=\ell\geq 0 is the length of ww, and if (w)=0\ell(w)=0 (that is, if w=(v0)w=(v_{0})), then ww is called a trivial walk. A walk ww in QQ of length (w)=1\ell(w)=1 has either the shape w=(𝐬(i),i,𝐭(i))w=(\mathbf{s}(i),i,\mathbf{t}(i)) or w=(𝐭(i),i,𝐬(i))w=(\mathbf{t}(i),i,\mathbf{s}(i)) for an arrow iQ1i\in Q_{1}. In the first case we use the notation w=i+1w=i^{+1}, and in the second w=i1w=i^{-1}. Viewing an arbitrary walk ww of positive length as concatenation of walks of length one, we use the notation

w=i1ϵ1i2ϵ2iϵ,with ϵt{±1}, for t=1,,,w=i_{1}^{\epsilon_{1}}i_{2}^{\epsilon_{2}}\cdots i_{\ell}^{\epsilon_{\ell}},\quad\text{with $\epsilon_{t}\in\{\pm 1\}$, for $t=1,\ldots,\ell$,}

where 𝐭(itϵt)=𝐬(it+1ϵt+1)\mathbf{t}(i_{t}^{\epsilon_{t}})=\mathbf{s}(i_{t+1}^{\epsilon_{t+1}}) for t=1,1t=1\ldots,\ell-1. A walk ww as above is called minimally descending, if for t=1,,1t=1,\ldots,\ell-1 the difference itit+1i_{t}-i_{t+1} is positive and it is the minimal positive difference possible, that is,

itit+1=minj{itj(itj)>0 and itϵtj is a walk in Q}.i_{t}-i_{t+1}=\min\limits_{j}\{i_{t}-j\mid\text{$(i_{t}-j)>0$ and $i_{t}^{\epsilon_{t}}j$ is a walk in $Q$}\}.

A minimally descending walk ww is called a (descending) structural walk, if whenever a concatenation of the form www′′w^{\prime}ww^{\prime\prime} is minimally descending, then both ww^{\prime} and w′′w^{\prime\prime} are trivial walks. Such walks are determined by their sources (or targets), and we will use the notation αQ(v)\alpha^{-}_{Q}(v) for the structural walk having vertex vv as source. Take ξQ:Q0Q0\xi^{-}_{Q}:Q_{0}\to Q_{0} given by

ξQ(v):=𝐭(αQ(v)).\xi^{-}_{Q}(v):=\mathbf{t}(\alpha^{-}_{Q}(v)). (3)

The definitions of minimally ascending walk and (ascending) structural walk are analogous, and so are the notions of αQ+(v)\alpha^{+}_{Q}(v) and ξQ+\xi^{+}_{Q}. It can be easily shown that ξQ\xi_{Q}^{-} and ξQ+\xi^{+}_{Q} are inverse to each other, since

αQ+(ξQ(v))=αQ(v)1,\alpha^{+}_{Q}(\xi^{-}_{Q}(v))=\alpha^{-}_{Q}(v)^{-1}, (4)

where w1w^{-1} denotes the reverse of walk ww (see [34, Lemma 3.1]). The mapping ξQ\xi^{-}_{Q} is referred to as permutation of vertices of the quiver QQ determined by the ordering of its arrows. The cycle type of QQ is given by the sequence

𝐜𝐭(Q)=(π1,,π),\mathbf{ct}(Q)=(\pi_{1},\ldots,\pi_{\ell}), (5)

where π1π2,π>0\pi_{1}\geq\pi_{2}\geq\ldots,\pi_{\ell}>0 are the cardinalities of the ξQ\xi^{-}_{Q}-orbits on Q0Q_{0}. Then 𝐜𝐭(Q)\mathbf{ct}(Q) is a partition of |Q0|=m|Q_{0}|=m, and we take 𝐜𝐭(qQ):=𝐜𝐭(Q)\mathbf{ct}(q_{Q}):=\mathbf{ct}(Q), which is well-defined by Theorem 1.3(i)(i). We stress that the cycle type 𝐜𝐭(Q)\mathbf{ct}(Q) depends on the numbering of the arrows in QQ, see Example 2.8 below. For a walk w=i1ϵ1i2ϵ2iϵw=i_{1}^{\epsilon_{1}}i_{2}^{\epsilon_{2}}\cdots i_{\ell}^{\epsilon_{\ell}} of QQ, define the incidence vector 𝐢𝐧𝐜¯(w)n\underline{\mathbf{inc}}(w)\in\mathbb{Z}^{n} of ww as

𝐢𝐧𝐜¯(w)=t=1ϵt𝐞it.\underline{\mathbf{inc}}(w)=\sum_{t=1}^{\ell}\epsilon_{t}\mathbf{e}_{i_{t}}. (6)

The following simple identity is fundamental for our analysis (cf. [34, Remark 3.2]),

I(Q)𝐢𝐧𝐜¯(w)=𝐞𝐬(w)𝐞𝐭(w).I(Q)\underline{\mathbf{inc}}(w)=\mathbf{e}_{\mathbf{s}(w)}-\mathbf{e}_{\mathbf{t}(w)}. (7)

By (1), it implies that q(𝐢𝐧𝐜¯(w)){0,1}q(\underline{\mathbf{inc}}(w))\in\{0,1\} (that is, 𝐢𝐧𝐜¯(w)\underline{\mathbf{inc}}(w) is a {0,1}\{0,1\}-root of qQq_{Q}) for any walk ww of QQ, and the converse also holds (cf. [32, Lemma 6.1]). Consequently, {0,1}\{0,1\}-roots of qQq_{Q} can be treated combinatorially via the walks of quiver QQ. This also implies that I(Q)GˇQ1I(Q)\widecheck{G}_{Q}^{-1} is also the incidence matrix of a quiver, called the (standard) inverse of QQ and denoted by QQ^{\dagger}. In [34] we take a constructive route, and derive QQ^{\dagger} (denoted by Q1Q^{-1} in [33] and [34]) directly from the structural walks of QQ, as follows.

For every arrow ii in QQ, there are exactly two descending structural walks containing arrow ii, one in the positive direction i+1i^{+1}, and the other one in the opposite direction i1i^{-1}. Denote them respectively by αQ(v)\alpha^{-}_{Q}(v) and αQ(w)\alpha^{-}_{Q}(w) for some vertices vv and ww, and define 𝐭(i):=𝐭(αQ(v))\mathbf{t}^{\dagger}(i):=\mathbf{t}(\alpha^{-}_{Q}(v)) and 𝐬(i):=𝐭(αQ(w))\mathbf{s}^{\dagger}(i):=\mathbf{t}(\alpha^{-}_{Q}(w)). In [33, Proposition 4.4 and Corollary 4.5] we show that Q=(Q0,Q1,𝐬,𝐭)Q^{\dagger}=(Q_{0},Q_{1},\mathbf{s}^{\dagger},\mathbf{t}^{\dagger}) is also a connected loop-less quiver, satisfying

I(Q)=I(Q)GˇQ1.I(Q^{\dagger})=I(Q)\widecheck{G}_{Q}^{-1}. (8)

This approach is useful for several reasons. Among others, the results of [34] depend on the following facts.

Lemma 1.7

Let QQ be a connected loop-less quiver with m2m\geq 2 vertices and n1n\geq 1 arrows. Consider the structural walks αQ±(v)\alpha^{\pm}_{Q}(v) of QQ (for vQ0v\in Q_{0}), and take av±=𝐢𝐧𝐜¯(αQ±(v))a_{v}^{\pm}=\underline{\mathbf{inc}}(\alpha^{\pm}_{Q}(v)).

  • i)

    For any vQ0v\in Q_{0} we have av=aξQ(v)+-a_{v}^{-}=a_{\xi^{-}_{Q}(v)}^{+}.

  • ii)

    If QQ^{\dagger} is the inverse quiver of QQ, then I(Q)𝐭𝐫=[a1+,a2+,,am1+,am+]I(Q^{\dagger})^{\mathbf{tr}}=[a_{1}^{+},a_{2}^{+},\cdots,a_{m-1}^{+},a_{m}^{+}].

  • iii)

    We have v=1mav=0=v=1mav+\sum_{v=1}^{m}a_{v}^{-}=0=\sum_{v=1}^{m}a_{v}^{+}.

Proof 1.8

Claim (i)(i) was shown in [34, Remark 2.1], since ξQ(v)=𝐭(αQ(v))\xi^{-}_{Q}(v)=\mathbf{t}(\alpha^{-}_{Q}(v)). Claim (ii)(ii) was shown in [34, Lemma 2.3]. Since I(Q)𝐞i=𝐞𝐬(i)𝐞𝐭(i)I(Q)\mathbf{e}_{i}=\mathbf{e}_{\mathbf{s}(i)}-\mathbf{e}_{\mathbf{t}(i)}, then 𝟙m𝐭𝐫I(Q)=0\mathbbm{1}_{m}^{\mathbf{tr}}I(Q)=0 for any quiver QQ, that is, I(Q)𝐭𝐫𝟙m=0I(Q)^{\mathbf{tr}}\mathbbm{1}_{m}=0. By (ii)(ii), this implies that v=1mav+=0\sum_{v=1}^{m}a_{v}^{+}=0, and using (i)(i) we get v=1mav=0\sum_{v=1}^{m}a_{v}^{-}=0. This shows (iii)(iii).

Combining equations (7), (8) and Lemma 1.7(ii)(ii), with a straightforward calculation we get the following combinatorial expression for the Coxeter-Laplacian ΛQ\Lambda_{Q} of Q,

ΛQ=P(ξQ),\Lambda_{Q}=P(\xi^{-}_{Q}), (9)

see details in [34, Theorem 3.3]. Some basic notions and result will be illustrated with a couple of running examples.

Example 1.9

Consider the following integral quadratic forms q1,q0q_{1},q_{0} on four variables:

q1(x1,x2,x3,x4)=x1(x1x2x3+2x4)+x2(x2x3x4)+x3(x3x4)+x4(x4),q_{1}(x_{1},x_{2},x_{3},x_{4})=x_{1}(x_{1}-x_{2}-x_{3}+2x_{4})+x_{2}(x_{2}-x_{3}-x_{4})+x_{3}(x_{3}-x_{4})+x_{4}(x_{4}),
q0(x1,x2,x3,x4)=x1(x1x2+2x3x4)+x2(x2x3x4)+x3(x3x4)+x4(x4),q_{0}(x_{1},x_{2},x_{3},x_{4})=x_{1}(x_{1}-x_{2}+2x_{3}-x_{4})+x_{2}(x_{2}-x_{3}-x_{4})+x_{3}(x_{3}-x_{4})+x_{4}(x_{4}),

with corresponding standard morsifications given by the upper triangular matrices

Gˇq1=(11^1^2011^1^0011^0001)andGˇq0=(11^21^011^1^0011^0001)\widecheck{G}_{q_{1}}=\begin{pmatrix}1&\widehat{1}&\widehat{1}&2\\ 0&1&\widehat{1}&\widehat{1}\\ 0&0&1&\widehat{1}\\ 0&0&0&1\end{pmatrix}\qquad\text{and}\qquad\widecheck{G}_{q_{0}}=\begin{pmatrix}1&\widehat{1}&2&\widehat{1}\\ 0&1&\widehat{1}&\widehat{1}\\ 0&0&1&\widehat{1}\\ 0&0&0&1\end{pmatrix}

Consider also the following (connected, loop-less) quivers with corresponding incidence matrices,

Q1=
1331422
I(Q1)=(1^011^011^011^01)Q0=
1431322
I(Q0)=(1^01^10101^11^10)
Q^{1}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-7.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.5pt\raise-16.80444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-28.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise-7.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise-2.15277pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise 7.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise 2.15277pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-7.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.53673pt\raise-22.06pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.22038pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\quad I(Q^{1})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}\widehat{1}&0&1&\widehat{1}\\ 0&1&\widehat{1}&0\\ 1&\widehat{1}&0&1\end{smallmatrix}\right)$}\quad Q^{0}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 9.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-7.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-9.5pt\raise-16.80444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-28.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise-7.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise-2.15277pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise 7.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise 2.15277pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-7.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.53673pt\raise-22.06pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.22038pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\quad I(Q^{0})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}\widehat{1}&0&\widehat{1}&1\\ 0&1&0&\widehat{1}\\ 1&\widehat{1}&1&0\end{smallmatrix}\right)$}

A direct calculation shows that qi=qQiq_{i}=q_{Q^{i}} for i=1,0i=1,0. By Theorem 1.3, the quadratic forms qiq_{i} are connected non-negative unit forms of Dynkin type 𝔸2\mathbb{A}_{2} and corank 22, satisfying q1q0q_{1}\sim q_{0} (indeed, if σ3,4\sigma_{3,4} is the transposition of 33 and 44 in {1,2,3,4}\{1,2,3,4\} then q1P(0σ3,4)q0q_{1}\sim^{P(0\sigma_{3,4})}q_{0}). The corresponding inverse quivers (8) are given as follows,

(Q1)=
1313242
I((Q1))=(1^1^1^1^01011010)(Q0)=
1312423
I((Q0))=(1^1^01^0111101^0).
(Q^{1})^{\dagger}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 11.65277pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-7.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}}$}}}}}}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise 7.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise 2.15277pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise-7.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise-2.15277pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-7.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.65277pt\raise-16.80444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern-2.15277pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 2.15277pt\raise-16.80444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 2.15277pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\quad I((Q^{1})^{\dagger})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}\widehat{1}&\widehat{1}&\widehat{1}&\widehat{1}\\ 0&1&0&1\\ 1&0&1&0\end{smallmatrix}\right)$}\quad(Q^{0})^{\dagger}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 11.65277pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-7.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}}$}}}}}}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.5111pt\raise 5.25555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 7.2611pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-7.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.65277pt\raise-16.80444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern-2.15277pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 2.15277pt\raise-16.80444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 2.15277pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 19.53673pt\raise-22.06pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.22038pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces}}}}\ignorespaces\quad I((Q^{0})^{\dagger})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}\widehat{1}&\widehat{1}&0&\widehat{1}\\ 0&1&1&1\\ 1&0&\widehat{1}&0\end{smallmatrix}\right).$}

1.3 Standard quivers

For any partition π=(π1,,π)\pi=(\pi_{1},\ldots,\pi_{\ell}) of an integer m2m\geq 2, and any non-negative integer 𝕕\mathbbm{d}, consider the connected loop-less quivers 𝔸𝕕[π]\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] and 𝕊𝕕[π]\vec{\mathbb{S}}^{\mathbbm{d}}[\pi] with mm vertices and n=m++2(𝕕1)n=m+\ell+2(\mathbbm{d}-1) arrows, given as follows (see [34, Definition 5.2] and Figure 1 above).

Definition 1.10

Fix m2m\geq 2, a partition π=(π1,,π)\pi=(\pi_{1},\ldots,\pi_{\ell}) of mm and an integer 𝕕0\mathbbm{d}\geq 0. Take vt:=m(π1++πt)v_{t}:=m-(\pi_{1}+\ldots+\pi_{t}) for t=0,,t=0,\ldots,\ell.

  • i)

    Let 𝔸m\vec{\mathbb{A}}_{m} be the quiver with mm vertices (𝔸m)0={1,,m}(\vec{\mathbb{A}}_{m})_{0}=\{1,\ldots,m\} and m1m-1 arrows (𝔸m)1={i1,,im1}(\vec{\mathbb{A}}_{m})_{1}=\{i_{1},\ldots,i_{m-1}\} such that 𝐬(it)=t\mathbf{s}(i_{t})=t and 𝐭(it)=t+1\mathbf{t}(i_{t})={t+1} for t=1,,m1t=1,\ldots,m-1. Then the quiver 𝔸m𝕕[π]=𝔸𝕕[π]\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi]=\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] is obtained from 𝔸m\vec{\mathbb{A}}_{m} by adding 1+2𝕕\ell-1+2\mathbbm{d} arrows j1,,j1,k1,,k2𝕕j_{1},\ldots,j_{\ell-1},k_{1},\ldots,k_{2\mathbbm{d}} in the following way. Define 𝐬(jt):=vt1\mathbf{s}(j_{t}):=v_{t-1} and 𝐭(jt):=vt\mathbf{t}(j_{t}):=v_{t} for t=1,,1t=1,\ldots,\ell-1. Moreover, taking α:=im1\alpha:=i_{m-1} if =1\ell=1, and α:=j1\alpha:=j_{\ell-1} if >1\ell>1, define 𝐬(kt):=𝐬(αϵt)\mathbf{s}(k_{t}):=\mathbf{s}(\alpha^{\epsilon_{t}}) and 𝐭(kt):=𝐭(αϵt)\mathbf{t}(k_{t}):=\mathbf{t}(\alpha^{\epsilon_{t}}) for t=1,,2𝕕t=1,\ldots,2\mathbbm{d}, where ϵt=(1)t\epsilon_{t}=(-1)^{t}. The set of vertices (𝔸m)0(\vec{\mathbb{A}}_{m})_{0} has the natural order 1<2<<m1<2<\ldots<m, and the set of arrows (𝔸m)1(\vec{\mathbb{A}}_{m})_{1} is ordered as follows: i1<i2<<im1<j1<<j1<k1<<k2𝕕i_{1}<i_{2}<\ldots<i_{m-1}<j_{1}<\ldots<j_{\ell-1}<k_{1}<\ldots<k_{2\mathbbm{d}}.

  • ii)

    Let 𝕊m\vec{\mathbb{S}}_{m} be the quiver with mm vertices (𝕊m)0={1,,m}(\vec{\mathbb{S}}_{m})_{0}=\{1,\ldots,m\} and m1m-1 arrows (𝕊m)1={i1,,im1}(\vec{\mathbb{S}}_{m})_{1}=\{i_{1},\ldots,i_{m-1}\} such that 𝐬(it)=1\mathbf{s}(i_{t})=1 and 𝐭(it)=t+1\mathbf{t}(i_{t})={t+1} for t=1,,m1t=1,\ldots,m-1. Then the quiver 𝕊m𝕕[π]=𝕊𝕕[π]\vec{\mathbb{S}}_{m}^{\mathbbm{d}}[\pi]=\vec{\mathbb{S}}^{\mathbbm{d}}[\pi] is obtained from 𝕊m\vec{\mathbb{S}}_{m} by adding 1+2𝕕\ell-1+2\mathbbm{d} arrows j1,,j1,k1,,k2𝕕j_{1},\ldots,j_{\ell-1},k_{1},\ldots,k_{2\mathbbm{d}} in the following way. Define 𝐬(jt):=1\mathbf{s}(j_{t}):=1 and 𝐭(jt):=vt+1\mathbf{t}(j_{t}):=v_{t}+1 for t=1,,1t=1,\ldots,\ell-1. Moreover, taking α:=im1\alpha:=i_{m-1} if =1\ell=1 and α:=j1\alpha:=j_{\ell-1} if >1\ell>1, define 𝐬(kt):=𝐬(α)=1\mathbf{s}(k_{t}):=\mathbf{s}(\alpha)=1 and 𝐭(kt):=𝐭(α)\mathbf{t}(k_{t}):=\mathbf{t}(\alpha) for t=1,,2𝕕t=1,\ldots,2\mathbbm{d}. As before, the set of vertices (𝕊m)0(\vec{\mathbb{S}}_{m})_{0} has the natural order 1<2<<m1<2<\ldots<m, and the set of arrows (𝕊m)1(\vec{\mathbb{S}}_{m})_{1} is ordered as follows: i1<i2<<im1<j1<<j1<k1<<k2𝕕i_{1}<i_{2}<\ldots<i_{m-1}<j_{1}<\ldots<j_{\ell-1}<k_{1}<\ldots<k_{2\mathbbm{d}}.

The quiver Q=𝔸m𝕕[π]=𝔸𝕕[π]\vec{Q}=\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi]=\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] constructed in (i)(i) is called standard (π,𝕕)(\pi,\mathbbm{d})-extension quiver of cycle type π\pi and degeneracy degree 𝕕\mathbbm{d} (see Corollary 2.11), or simply standard quiver. The corresponding quadratic form qQq_{\vec{Q}} is referred to as standard (π,𝕕)(\pi,\mathbbm{d})-extension of the unit form q𝔸m1q_{\mathbb{A}_{m-1}}, or simply as standard extension of q𝔸m1q_{\mathbb{A}_{m-1}}. The quiver 𝕊m𝕕[π]=𝕊𝕕[π]\vec{\mathbb{S}}_{m}^{\mathbbm{d}}[\pi]=\vec{\mathbb{S}}^{\mathbbm{d}}[\pi] constructed in (ii)(ii) is the inverse of Q\vec{Q} (see [34, Remark 5.3]).

Since we fixed linear orders on the sets of vertices and the set of arrows of 𝔸𝕕[π]\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] and 𝕊𝕕[π]\vec{\mathbb{S}}^{\mathbbm{d}}[\pi], these quivers fix incidence matrices, given explicitly in Remark 1.20 below.

Corollary 1.11

For any partition π\pi of m2m\geq 2 and any non-negative integer 𝕕\mathbbm{d}, the quadratic forms qQq_{\vec{Q}} for Q{𝔸𝕕[π],𝕊𝕕[π]}\vec{Q}\in\{\vec{\mathbb{A}}^{\mathbbm{d}}[\pi],\vec{\mathbb{S}}^{\mathbbm{d}}[\pi]\} are non-negative unit forms of Dynkin type 𝔸m1\mathbb{A}_{m-1} and corank (π)+𝕕1\ell(\pi)+\mathbbm{d}-1.

Proof 1.12

Apply Theorem 1.3.

In the following technical observation we show that the cycle type of qQq_{\vec{Q}} for a standard quiver Q=𝔸𝕕[π]\vec{Q}=\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] is precisely π\pi. One of its consequences, Corollary 1.15 below, is used implicitly in the proof of [34, Theorem 6.3].

Remark 1.13

Let Q=𝔸𝕕[π]\vec{Q}=\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] be the standard (π,𝕕)(\pi,\mathbbm{d})-extension quiver for a partition π\pi of m2m\geq 2 and 𝕕0\mathbbm{d}\geq 0. Recall from Definition 1.10 that the number of vertices (resp. arrows) of Q\vec{Q} is mm (resp. n=m+(π)+2(𝕕1)n=m+\ell(\pi)+2(\mathbbm{d}-1)).

  • a)

    Consider the permutation of vertices ξ:=ξQ\xi:=\xi^{-}_{\vec{Q}} determined by Q\vec{Q}, take π=(π1,,π)\pi=(\pi_{1},\ldots,\pi_{\ell}) and vt:=m(π1++πt)v_{t}:=m-(\pi_{1}+\ldots+\pi_{t}) for t=0,,t=0,\ldots,\ell. Then

    ξ(v)={v+1,if v{v0,v1,,v2,v1},vt+1+1,if v=vt for some t{0,,1}.\xi(v)=\left\{\begin{array}[]{l l}v+1,&\text{if $v\notin\{v_{0},v_{1},\ldots,v_{\ell-2},v_{\ell-1}\}$},\\ v_{t+1}+1,&\text{if $v=v_{t}$ for some $t\in\{0,\ldots,\ell-1\}$}.\end{array}\right.
  • b)

    The cycle type of qQq_{\vec{Q}} is π\pi.

Proof 1.14

By definition (3), we have ξ(v)=𝐭(αQ(v))\xi(v)=\mathbf{t}(\alpha^{-}_{\vec{Q}}(v)).

Assume first that 𝕕=0\mathbbm{d}=0. Denote by ivi_{v} the unique arrow in Q\vec{Q} with 𝐬(iv)=v\mathbf{s}(i_{v})=v and 𝐭(iv)=v+1\mathbf{t}(i_{v})=v+1, and by jtj_{t} the unique arrow in Q\vec{Q} with 𝐬(jt)=vt1\mathbf{s}(j_{t})=v_{t-1} and 𝐭(jt)=vt\mathbf{t}(j_{t})=v_{t} for t=1,,1t=1,\ldots,\ell-1 (these are all the arrows of Q\vec{Q}, since 𝕕=0\mathbbm{d}=0). Then a direct calculation shows that if v{v0,v1,,v1}v\notin\{v_{0},v_{1},\ldots,v_{\ell-1}\}, then αQ(v)=iv+1\alpha_{\vec{Q}}^{-}(v)=i_{v}^{+1}, and therefore ξ(v)=𝐭(iv)=v+1\xi(v)=\mathbf{t}(i_{v})=v+1. Now, if v=vtv=v_{t} for some t{0,1,,2}t\in\{0,1,\ldots,\ell-2\}, then αQ(v)=jt+1+1ivt+1+1\alpha_{\vec{Q}}^{-}(v)=j_{t+1}^{+1}i_{v_{t+1}}^{+1}, and therefore ξ(vt)=𝐭(ivt+1)=vt+1+1\xi(v_{t})=\mathbf{t}(i_{v_{t+1}})=v_{t+1}+1. Moreover, if v=v1v=v_{\ell-1}, then

αQ(v)=j11j21j11im11im21i21i11.\alpha_{\vec{Q}}^{-}(v)=j_{\ell-1}^{-1}j_{\ell-2}^{-1}\cdots j_{1}^{-1}i_{m-1}^{-1}i_{m-2}^{-1}\cdots i_{2}^{-1}i_{1}^{-1}.

In particular, ξ(v)=𝐭(i11)=𝐬(i1)=1=v+1\xi(v_{\ell})=\mathbf{t}(i_{1}^{-1})=\mathbf{s}(i_{1})=1=v_{\ell}+1. This shows (a)(a) for 𝕕0\mathbbm{d}\geq 0, since ξ\xi is unchanged by adding pairs of (anti-) parallel arrows (see [34, Remark 5.1]).

To show (b)(b), recall that 𝐜𝐭(Q)\mathbf{ct}(Q) is defined as the sequence of cardinalities of the ξ\xi-orbits on Q0\vec{Q}_{0}, ordered non-increasingly (5), which equals π\pi by (a)(a).

Corollary 1.15

Let π\pi and π\pi^{\prime} be partitions of m2m\geq 2 and m2m^{\prime}\geq 2 respectively, and take 𝕕,𝕕0\mathbbm{d},\mathbbm{d}^{\prime}\geq 0.

  • a)

    We have q𝔸m𝕕[π]q𝔸m𝕕[π]q_{\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi]}\sim q_{\vec{\mathbb{A}}_{m^{\prime}}^{\mathbbm{d}^{\prime}}[\pi^{\prime}]} if and only if (m,(π)+2𝕕)=(m,(π)+2𝕕)(m,\ell(\pi)+2\mathbbm{d})=(m^{\prime},\ell(\pi^{\prime})+2\mathbbm{d}^{\prime}).

  • b)

    The following conditions are equivalent:

    • b1)

      (π,𝕕)=(π,𝕕)(\pi,\mathbbm{d})=(\pi^{\prime},\mathbbm{d}^{\prime}).

    • b2)

      𝔸m𝕕[π]=𝔸m𝕕[π]\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi]=\vec{\mathbb{A}}_{m^{\prime}}^{\mathbbm{d}^{\prime}}[\pi^{\prime}].

    • b3)

      q𝔸m𝕕[π]=q𝔸m𝕕[π]q_{\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi]}=q_{\vec{\mathbb{A}}_{m^{\prime}}^{\mathbbm{d}^{\prime}}[\pi^{\prime}]}.

    • b4)

      q𝔸m𝕕[π]q𝔸m𝕕[π]q_{\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi]}\approx q_{\vec{\mathbb{A}}_{m^{\prime}}^{\mathbbm{d}^{\prime}}[\pi^{\prime}]}

Proof 1.16

Take Q=𝔸m𝕕[π]\vec{Q}=\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi] and Q=𝔸m𝕕[π]\vec{Q}^{\prime}=\vec{\mathbb{A}}_{m^{\prime}}^{\mathbbm{d}^{\prime}}[\pi^{\prime}], and recall that |Q0|=m|\vec{Q}_{0}|=m and |Q1|=m+(π)+2(𝕕1)|\vec{Q}_{1}|=m+\ell(\pi)+2(\mathbbm{d}-1) (and similarly, |Q0|=m|\vec{Q}^{\prime}_{0}|=m^{\prime} and |Q1|=m+(π)+2(𝕕1)|\vec{Q}^{\prime}_{1}|=m^{\prime}+\ell(\pi^{\prime})+2(\mathbbm{d}^{\prime}-1), see Definition 1.10). Then (a)(a) holds, since qQqQq_{\vec{Q}}\sim q_{\vec{Q}^{\prime}} if and only if (|Q0|,|Q1|)=(|Q0|,|Q1|)(|\vec{Q}_{0}|,|\vec{Q}_{1}|)=(|\vec{Q}^{\prime}_{0}|,|\vec{Q}^{\prime}_{1}|) by Theorem 1.3(ii)(ii), since both Q\vec{Q} and Q\vec{Q}^{\prime} are loop-less and connected quivers.

To show (b)(b), observe that (b1)(b1) implies (b2)(b2) by Defnition 1.10, and that evidently (b4)(b4) follows from (b3)(b3), which follows from (b2)(b2). To complete the proof assume that (b4)(b4) holds. In particular, qQqQq_{\vec{Q}}\sim q_{\vec{Q}^{\prime}}, and by (a)(a) we have m=mm=m^{\prime} and (π)+2𝕕=(π)+2𝕕\ell(\pi)+2\mathbbm{d}=\ell(\pi^{\prime})+2\mathbbm{d}^{\prime}. Moreover, 𝐜𝐭(qQ)=𝐜𝐭(qQ)\mathbf{ct}(q_{\vec{Q}})=\mathbf{ct}(q_{\vec{Q}^{\prime}}) by [34, Theorem 6.3], and by Remark 1.13 we have π=𝐜𝐭(Q)=𝐜𝐭(Q)=π\pi=\mathbf{ct}(\vec{Q})=\mathbf{ct}(\vec{Q}^{\prime})=\pi^{\prime}. Then (π)=(π)\ell(\pi)=\ell(\pi^{\prime}), which shows that (π,𝕕)=(π,𝕕)(\pi,\mathbbm{d})=(\pi^{\prime},\mathbbm{d}^{\prime}), that is, (b1)(b1) holds.

Similar claims, not needed for our discussion, hold for the inverse quivers 𝕊𝕕[π]\vec{\mathbb{S}}^{\mathbbm{d}}[\pi]. In the following result, the mentioned non-negative integer 𝕕\mathbbm{d} is the so-called degree of degeneracy of qQq_{Q}, cf. 2.1 and Corollaries 2.92.11 below.

Remark 1.17

Let QQ be a connected loop-less quiver. Then there is a unique standard quiver Q\vec{Q} with the same number of vertices and arrows as QQ such that 𝐜𝐭(Q)=𝐜𝐭(Q)\mathbf{ct}(\vec{Q})=\mathbf{ct}(Q), namely, Q=𝔸𝕕[𝐜𝐭(Q)]\vec{Q}=\vec{\mathbb{A}}^{\mathbbm{d}}[\mathbf{ct}(Q)] for some integer 𝕕>0\mathbbm{d}>0. Moreover, in this case there is a permutation ρ\rho of Q0Q_{0} such that ΛρQ=ΛQ\Lambda_{\rho\cdot Q}=\Lambda_{\vec{Q}}.

Proof 1.18

Take π=𝐜𝐭(Q)\pi=\mathbf{ct}(Q) and =(π)\ell=\ell(\pi). Recall that if n=|Q1|n=|Q_{1}| and m=|Q0|m=|Q_{0}| then the corank of qQq_{Q} is given by c=n(m1)c=n-(m-1) (see Theorem 1.3). Since π𝒫1c(m)\pi\in\mathcal{P}_{1}^{c}(m) by [34, Proposition 4.5], then there is a non-negative integer 𝕕\mathbbm{d} such that 2𝕕=c(1)=n(m1)(1)2\mathbbm{d}=c-(\ell-1)=n-(m-1)-(\ell-1). Take Q=𝔸𝕕[π]\vec{Q}=\vec{\mathbb{A}}^{\mathbbm{d}}[\pi]. Since π\pi is a partition of mm, the standard quiver Q\vec{Q} has mm vertices, and by Definition 1.10 it also has m++2(𝕕1)=nm+\ell+2(\mathbbm{d}-1)=n arrows. By Remark 1.13, 𝐜𝐭(Q)=π=𝐜𝐭(Q)\mathbf{ct}(\vec{Q})=\pi=\mathbf{ct}(Q). The uniqueness of Q\vec{Q} follows from Corollary 1.15(b)(b).

To show the existence of such permutation ρ\rho, recall from Remark 1.5(b)(b) that there are permutations ξ\xi and ξ\vec{\xi} of the sets Q0Q_{0} and Q0\vec{Q}_{0} such that ΛQ=P(ξ)\Lambda_{Q}=P(\xi) and ΛQ=P(ξ)\Lambda_{\vec{Q}}=P(\vec{\xi}), and therefore 𝐜𝐭(ξ)=𝐜𝐭(Q)=𝐜𝐭(Q)=𝐜𝐭(ξ)\mathbf{ct}(\xi)=\mathbf{ct}(Q)=\mathbf{ct}(\vec{Q})=\mathbf{ct}(\vec{\xi}), cf. (5). By Lemma 4.5, ξ\xi and ξ\vec{\xi} are conjugate permutations, that is, there is a permutation ρ\rho such that ξ=ρξρ1\vec{\xi}=\rho\xi\rho^{-1}, or matricially,

ΛQ=P(ξ)=P(ρ)P(ξ)P(ρ1)=P(ρ)ΛQP(ρ1).\Lambda_{\vec{Q}}=P(\vec{\xi})=P(\rho)P(\xi)P(\rho^{-1})=P(\rho)\Lambda_{Q}P(\rho^{-1}).

Using Remark 1.1(i,ii)(i,ii) and the definition of Coxeter-Laplacian (2), we conclude that

ΛρQ\displaystyle\Lambda_{\rho\cdot Q} =\displaystyle= 𝐈𝐝mI(ρQ)GˇρQI(ρQ)𝐭𝐫=𝐈𝐝mP(ρ)I(Q)GˇQI(Q)𝐭𝐫P(ρ)𝐭𝐫\displaystyle\mathbf{Id}_{m}-I(\rho\cdot Q)\widecheck{G}_{\rho\cdot Q}I(\rho\cdot Q)^{\mathbf{tr}}=\mathbf{Id}_{m}-P(\rho)I(Q)\widecheck{G}_{Q}I(Q)^{\mathbf{tr}}P(\rho)^{\mathbf{tr}}
=\displaystyle= P(ρ)[𝐈𝐝mI(Q)GˇQI(Q)𝐭𝐫]P(ρ1)=P(ρ)ΛQP(ρ1)=ΛQ.\displaystyle P(\rho)[\mathbf{Id}_{m}-I(Q)\widecheck{G}_{Q}I(Q)^{\mathbf{tr}}]P(\rho^{-1})=P(\rho)\Lambda_{Q}P(\rho^{-1})=\Lambda_{\vec{Q}}.
Example 1.19

The Coxeter-Laplacians ΛQi\Lambda_{Q^{i}} of the quivers Q1Q^{1} and Q0Q^{0} of Example 1.9 are given by

ΛQ1=(001100010)andΛQ0=(100010001),\Lambda_{Q^{1}}=\begin{pmatrix}0&0&1\\ 1&0&0\\ 0&1&0\end{pmatrix}\qquad\text{and}\qquad\Lambda_{Q^{0}}=\begin{pmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{pmatrix},

see (2). In particular, the cycle types of the quadratic forms qiq_{i} are 𝐜𝐭(q1)=(3)\mathbf{ct}(q_{1})=(3) and 𝐜𝐭(q0)=(1,1,1)\mathbf{ct}(q_{0})=(1,1,1), cf. (5) and (9). The standard quivers associated to Q1Q^{1} and Q0Q^{0}, as in Remark 1.17, are given as follows,

Q1=1122343I(Q1)=(10001^11^101^11^)Q0=1122343I(Q0)=(1001^1^11^101^10)\vec{Q}^{1}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 7.26108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-7.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise 5.25555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 53.03323pt\raise 5.25555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 69.78323pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 45.78271pt\raise-8.58824pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 53.03323pt\raise-6.04999pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 53.03323pt\raise-23.01941pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 69.78384pt\raise-15.04655pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 69.78323pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}}$}}}}}}}\ignorespaces}}}}\ignorespaces\quad I(\vec{Q}^{1})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}1&0&0&0\\ \widehat{1}&1&\widehat{1}&1\\ 0&\widehat{1}&1&\widehat{1}\end{smallmatrix}\right)$}\quad\vec{Q}^{0}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 7.26108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-7.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise 5.25555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 53.03323pt\raise 5.25555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 69.78323pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 45.78271pt\raise-6.43547pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 53.03323pt\raise-14.40833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise-15.26941pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 7.26056pt\raise-7.29655pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 69.78323pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}}$}}}}}}}\ignorespaces}}}}\ignorespaces\quad I(\vec{Q}^{0})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}1&0&0&\widehat{1}\\ \widehat{1}&1&\widehat{1}&1\\ 0&\widehat{1}&1&0\end{smallmatrix}\right)$}

Note that ΛQi=ΛQi\Lambda_{Q^{i}}=\Lambda_{\vec{Q}^{i}} for i=1,0i=1,0. The corresponding inverse quivers (8) are given by

(Q1)=2112343I((Q1))=(11111^00001^1^1^)(Q0)=2112343I((Q0))=(11111^001^01^1^0)(\vec{Q}^{1})^{\dagger}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 7.26108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}}$}}}}}}}{\hbox{\kern-7.26108pt\raise-22.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 11.68149pt\raise-6.20222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.26108pt\raise-4.31834pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise-17.66pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.26108pt\raise-22.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise-26.96555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 31.26169pt\raise-30.28017pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise-41.7822pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 31.26169pt\raise-34.58571pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 31.26108pt\raise-22.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}}$}}}}}}}\ignorespaces}}}}\ignorespaces\quad I((\vec{Q}^{1})^{\dagger})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}1&1&1&1\\ \widehat{1}&0&0&0\\ 0&\widehat{1}&\widehat{1}&\widehat{1}\end{smallmatrix}\right)$}\quad(\vec{Q}^{0})^{\dagger}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 7.26108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-3.0pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 31.26108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{2}}$}}}}}}}{\hbox{\kern-7.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 10.92735pt\raise-11.54889pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 33.22038pt\raise-4.80444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise-29.66pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 14.51108pt\raise-38.96555pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{3}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 31.26169pt\raise-42.28017pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}\ignorespaces\ignorespaces{\hbox{\kern 2.16603pt\raise-4.13356pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{4}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 28.37471pt\raise 0.9523pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 31.26108pt\raise-34.91556pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}_{3}}$}}}}}}}\ignorespaces}}}}\ignorespaces\quad I((\vec{Q}^{0})^{\dagger})=\raisebox{-5.0pt}{$\left(\begin{smallmatrix}1&1&1&1\\ \widehat{1}&0&0&\widehat{1}\\ 0&\widehat{1}&\widehat{1}&0\end{smallmatrix}\right)$}

It will be convenient to have explicit formulas for the incidence matrices of the standard quivers and their inverses. The proof of the following remark is clear from Definition 1.10.

Remark 1.20

Take a partition π=(π1,,π)\pi=(\pi_{1},\ldots,\pi_{\ell}) of m2m\geq 2, an integer 𝕕0\mathbbm{d}\geq 0, and denote by Q\vec{Q} the standard quiver 𝔸𝕕[π]\vec{\mathbb{A}}^{\mathbbm{d}}[\pi]. Take n=m1+2𝕕+(1)n=m-1+2\mathbbm{d}+(\ell-1) and vt:=m(π1++πt)v_{t}:=m-(\pi_{1}+\ldots+\pi_{t}) for t=0,,t=0,\ldots,\ell.

  • a)

    If =1\ell=1, then n=m1+2𝕕n=m-1+2\mathbbm{d}. Taking x:=𝐞m1𝐞mx:=\mathbf{e}_{m-1}-\mathbf{e}_{m} we have

    I(Q)=[I(𝔸m),x,x,,x,x2𝕕 columns].I(\vec{Q})=[I(\vec{\mathbb{A}}_{m}),\underbrace{-x,x,\cdots,-x,x}_{\text{$2\mathbbm{d}$ columns}}].

    If >1\ell>1, taking xt:=𝐞vt1𝐞vtx_{t}:=\mathbf{e}_{v_{t-1}}-\mathbf{e}_{v_{t}} for t=1,,1t=1,\ldots,\ell-1 we have

    I(Q)=[I(𝔸m),x1,x2,,x1,x1,x1,,x1,x12𝕕 columns].I(\vec{Q})=[I(\vec{\mathbb{A}}_{m}),x_{1},x_{2},\cdots,x_{\ell-1},\underbrace{-x_{\ell-1},x_{\ell-1},\cdots,-x_{\ell-1},x_{\ell-1}}_{\text{$2\mathbbm{d}$ columns}}].
  • b)

    If =1\ell=1, for v{1,,m}v\in\{1,\ldots,m\} we have

    I(Q)𝐭𝐫𝐞v={𝟙n,if v=1,𝐞v1,if 1<v<m,𝐞m1j=mn𝐞j,if v=m.I(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v}=\left\{\begin{array}[]{l l}\mathbbm{1}_{n},&\text{if $v=1$},\\ -\mathbf{e}_{v-1},&\text{if $1<v<m$},\\ -\mathbf{e}_{m-1}-\sum_{j=m}^{n}\mathbf{e}_{j},&\text{if $v=m$}.\end{array}\right.

    If >1\ell>1, take zt:=𝐞vt+𝐞m1+tz_{t}:=\mathbf{e}_{v_{t}}+\mathbf{e}_{m-1+t} for t=1,,1t=1,\ldots,\ell-1. For v{1,,m}v\in\{1,\ldots,m\} we have

    I(Q)𝐭𝐫𝐞v={𝟙n,if v=1,𝐞v1,if v{vt+1}t=1,,,zt,if v=vt+1 for some t=1,,2,z1j=m+1n𝐞j,if v=v1+1.I(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v}=\left\{\begin{array}[]{l l}\mathbbm{1}_{n},&\text{if $v=1$},\\ -\mathbf{e}_{v-1},&\text{if $v\notin\{v_{t}+1\}_{t=1,\ldots,\ell}$},\\ -z_{t},&\text{if $v=v_{t}+1$ for some $t=1,\ldots,\ell-2$},\\ -z_{\ell-1}-\sum_{j=m+\ell-1}^{n}\mathbf{e}_{j},&\text{if $v=v_{\ell-1}+1$}.\end{array}\right.

For instance, the standard quivers include all (inverse) generalized Kronecker quivers, as indicated in the following useful observation.

Remark 1.21

For n1n\geq 1, consider the (generalized) Kronecker quiver 𝕂n\mathbb{K}_{n} with two vertices and nn arrows in the same direction,

𝕂n= 12n1n ;𝕂2n= 122n12n ;𝕂2n+1= 122n2n+1 .\mathbb{K}_{n}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.86108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\crcr}}}\ignorespaces{\hbox{\kern-5.86108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.11108pt\raise 26.78326pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise 21.52771pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.11108pt\raise 16.01941pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise 10.76385pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 15.23608pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cdots}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 9.8436pt\raise-5.5083pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{n-1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise-10.76385pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 12.76027pt\raise-17.02077pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{n}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise-21.52771pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.86108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}}$}}}}}}}\ignorespaces}}}}\ignorespaces;\qquad\mathbb{K}_{2n^{\prime}}^{\dagger}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.86108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\crcr}}}\ignorespaces{\hbox{\kern-5.86108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.11108pt\raise 26.78326pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise 21.52771pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 5.86108pt\raise 10.76385pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.11108pt\raise 16.01941pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 15.23608pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cdots}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 7.54361pt\raise-5.5083pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2n^{\prime}-1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise-10.76385pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 5.86108pt\raise-21.52771pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 10.46027pt\raise-16.27216pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2n^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.86108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}}$}}}}}}}\ignorespaces}}}}\ignorespaces;\qquad\mathbb{K}_{2n^{\prime}+1}^{\dagger}=\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.86108pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\crcr}}}\ignorespaces{\hbox{\kern-5.86108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.11108pt\raise 26.78326pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise 21.52771pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 5.86108pt\raise 10.76385pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.11108pt\raise 16.01941pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 15.23608pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\cdots}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 5.86108pt\raise-10.76385pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 10.46027pt\raise-5.5083pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.25555pt\hbox{$\scriptstyle{2n^{\prime}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 5.98804pt\raise-15.98048pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.9639pt\hbox{$\scriptstyle{2n^{\prime}+1}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.86108pt\raise-21.52771pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.86108pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\vbox{\hbox{$\scriptstyle\bullet$}}}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Observe that if nn is even (n=2nn=2n^{\prime} for n>0n^{\prime}>0) then 𝕂n=𝕊n1[(1,1)]\mathbb{K}_{n}=\vec{\mathbb{S}}^{n^{\prime}-1}[(1,1)] and its inverse is given by 𝕂n=𝔸n1[(1,1)]\mathbb{K}_{n}^{\dagger}=\vec{\mathbb{A}}^{n^{\prime}-1}[(1,1)]. On the other hand, if nn is odd (n=2n+1n=2n^{\prime}+1 for n0n^{\prime}\geq 0) then 𝕂n=𝕊n[(2)]\mathbb{K}_{n}=\vec{\mathbb{S}}^{n^{\prime}}[(2)] and its inverse is given by 𝕂n=𝔸n[(2)]\mathbb{K}_{n}^{\dagger}=\vec{\mathbb{A}}^{n^{\prime}}[(2)]. Moreover, assume that n=2𝕕+1n=2\mathbbm{d}+1 for some integer 𝕕1\mathbbm{d}\geq 1.

  • a)

    Take bt=𝐞t+𝐞t+1nb_{t}=\mathbf{e}_{t}+\mathbf{e}_{t+1}\in\mathbb{Z}^{n} and bt=𝐞t+𝐞t+1nb^{\prime}_{t}=-\mathbf{e}_{t}+\mathbf{e}_{t+1}\in\mathbb{Z}^{n} for t=1,,2𝕕t=1,\dots,2\mathbbm{d}. Then the set {b1,b2𝕕}\{b_{1},\ldots b_{2\mathbbm{d}}\} is a basis of the kernel of I(𝕂n)I(\mathbb{K}_{n}^{\dagger}), and for 1t,tn1\leq t,t^{\prime}\leq n we have

    bt𝐭𝐫bt={1,if t=t1,1,if t=t+1,0,otherwise.b^{\mathbf{tr}}_{t}b^{\prime}_{t^{\prime}}=\left\{\begin{array}[]{l l}1,&\text{if $t^{\prime}=t-1$},\\ -1,&\text{if $t^{\prime}=t+1$},\\ 0,&\text{otherwise}.\end{array}\right.
  • b)

    Take ct=(1)btnc_{t}=(-1)b_{t}\in\mathbb{Z}^{n} if t{1,,2𝕕}t\in\{1,\ldots,2\mathbbm{d}\} is even, and c2u+1=r=0ub2r+1nc_{2u+1}=\sum_{r=0}^{u}b_{2r+1}\in\mathbb{Z}^{n} if t=2u+1{1,,2𝕕}t=2u+1\in\{1,\ldots,2\mathbbm{d}\} is odd, and let K=[c1,,c2𝕕]K=[c_{1},\dots,c_{2\mathbbm{d}}] be the n×2𝕕n\times 2\mathbbm{d} matrix with columns the vectors c1,,c2𝕕c_{1},\ldots,c_{2\mathbbm{d}}. Then KK is a kernel matrix for I(𝕂n)I(\mathbb{K}_{n}^{\dagger}), and

    K𝐭𝐫Gˇ𝕂nK=W1W1𝕕 times,where W1=(0110).K^{\mathbf{tr}}\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}K=\underbrace{W_{1}\oplus\ldots\oplus W_{1}}_{\text{$\mathbbm{d}$ times}},\qquad\text{where $W_{1}=\left(\begin{matrix}0&1\\ -1&0\end{matrix}\right)$.}
Proof 1.22

The shape of the corresponding standard quiver 𝔸n1[(1,1)]\vec{\mathbb{A}}^{n^{\prime}-1}[(1,1)] and 𝔸n[(2)]\vec{\mathbb{A}}^{n^{\prime}}[(2)] is clear from definition. That they are the inverse of the Kronecker quiver 𝕂n\mathbb{K}_{n} (for n=2nn=2n^{\prime} and n=2n+1n=2n^{\prime}+1 respectively), follows from [34, Remark 5.3].

Claim (a)(a) is straightforward. In particular, the matrix KK of the point (b)(b) is a kernel matrix of I(𝕂n)I(\mathbb{K}_{n}^{\dagger}). Observe that the (2𝕕+1)×(2𝕕+1)(2\mathbbm{d}+1)\times(2\mathbbm{d}+1) matrix Gˇ𝕂n\widecheck{G}_{\mathbb{K}_{n}^{\dagger}} is given by

Gˇ𝕂n=(12^22^22012^22^2^0012^2200012^2^000012000001),\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}=\left(\begin{matrix}1&\widehat{2}&2&\widehat{2}&2&\cdots&2\\ 0&1&\widehat{2}&2&\widehat{2}&\cdots&\widehat{2}\\ 0&0&1&\widehat{2}&2&\cdots&2\\ 0&0&0&1&\widehat{2}&\cdots&\widehat{2}\\ 0&0&0&0&1&\cdots&2\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&0&0&\cdots&1\end{matrix}\right),

where 2^:=2\widehat{2}:=-2, and that bt=Gˇ𝕂nbtb^{\prime}_{t}=\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}b_{t} for t=1,,2𝕕t=1,\ldots,2\mathbbm{d}. Then, for 1t,tn1\leq t,t^{\prime}\leq n we have

ct𝐭𝐫Gˇ𝕂nct={1,if t is odd and t=t+1,1,if t is even and t=t1,0,otherwise.c^{\mathbf{tr}}_{t}\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}c_{t^{\prime}}=\left\{\begin{array}[]{l l}1,&\text{if $t$ is odd and $t^{\prime}=t+1$},\\ -1,&\text{if $t$ is even and $t^{\prime}=t-1$},\\ 0,&\text{otherwise}.\end{array}\right. (10)

Indeed, if both tt and tt^{\prime} are even, then by the definition ct=(1)btc_{t}=(-1)b_{t} and using (a)(a), we get ct𝐭𝐫Gˇ𝕂nct=0c^{\mathbf{tr}}_{t}\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}c_{t^{\prime}}=0. A similarly claim holds if both tt and tt^{\prime} are odd. Assume that tt is even and tt^{\prime} is odd. Using (a)(a) we get

ct𝐭𝐫Gˇ𝕂nct=(1)bt𝐭𝐫(b1+b3++bt)={(1)bt𝐭𝐫bt1+(1)bt𝐭𝐫bt+1=0,if t<t,(1)bt𝐭𝐫bt1=1,if t=t1,0,otherwise.c^{\mathbf{tr}}_{t}\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}c_{t^{\prime}}=(-1)b_{t}^{\mathbf{tr}}(b^{\prime}_{1}+b^{\prime}_{3}+\ldots+b^{\prime}_{t^{\prime}})=\left\{\begin{array}[]{l l}(-1)b_{t}^{\mathbf{tr}}b^{\prime}_{t-1}+(-1)b_{t}^{\mathbf{tr}}b^{\prime}_{t+1}=0,&\text{if $t<t^{\prime}$},\\ (-1)b_{t}^{\mathbf{tr}}b^{\prime}_{t-1}=-1,&\text{if $t^{\prime}=t-1$},\\ 0,&\text{otherwise}.\end{array}\right.

Similarly, if tt is odd and tt^{\prime} is even, then

ct𝐭𝐫Gˇ𝕂nct=(b1+b3++bt)𝐭𝐫(1)bt={bt1𝐭𝐫(1)bt+bt+1𝐭𝐫(1)bt=0,if t>t,bt𝐭𝐫(1)bt+1=1,if t=t+1,0,otherwise.c^{\mathbf{tr}}_{t}\widecheck{G}_{\mathbb{K}_{n}^{\dagger}}c_{t^{\prime}}=(b_{1}+b_{3}+\ldots+b_{t})^{\mathbf{tr}}(-1)b^{\prime}_{t^{\prime}}=\left\{\begin{array}[]{l l}b_{t^{\prime}-1}^{\mathbf{tr}}(-1)b^{\prime}_{t^{\prime}}+b_{t^{\prime}+1}^{\mathbf{tr}}(-1)b^{\prime}_{t^{\prime}}=0,&\text{if $t>t^{\prime}$},\\ b_{t}^{\mathbf{tr}}(-1)b^{\prime}_{t+1}=1,&\text{if $t^{\prime}=t+1$},\\ 0,&\text{otherwise}.\end{array}\right.

These identities show equation (10), which is a coefficientwise expression of the direct sum of 𝕕\mathbbm{d} copies of W1W_{1}. This completes the proof.

1.4 The Coxeter-Laplacian

Our proposed solution to Problem 2(ii)(ii) starts with an explicit combinatorial construction, that uses the structural walks of QQ given above, cf. Step 1 on page Introduction.

Proposition 1.23

Let QQ be a connected loop-less quiver with m2m\geq 2 vertices and n1n\geq 1 arrows, and such that ΛQ=ΛQ\Lambda_{Q}=\Lambda_{\vec{Q}} for a standard quiver Q\vec{Q} with the same number of vertices and arrows as QQ. Then there is a (not necessarily \mathbb{Z}-invertible) n×nn\times n matrix BB such that

I(Q)B=I(Q)andI(Q)B𝐭𝐫=I(Q).I(Q)B=I(\vec{Q})\qquad\text{and}\qquad I(\vec{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}).
Proof 1.24

If such standard quiver Q\vec{Q} exists then 𝐜𝐭(Q)=𝐜𝐭(Q)\mathbf{ct}(Q)=\mathbf{ct}(\vec{Q}), see (5) and (9). Therefore, Q\vec{Q} is the unique standard quiver Q=𝔸𝕕[π]\vec{Q}=\vec{\mathbb{A}}^{\mathbbm{d}}[\pi] with π=𝐜𝐭(Q)\pi=\mathbf{ct}(\vec{Q}), see Remark 1.17 and Corollary 1.15. Consider the vectors av±:=𝐢𝐧𝐜¯(αQ±(v))a_{v}^{\pm}:=\underline{\mathbf{inc}}(\alpha_{Q}^{\pm}(v)) in n\mathbb{Z}^{n} as in Lemma 1.7, with n=m1+2𝕕+(1)n=m-1+2\mathbbm{d}+(\ell-1). By hypothesis we have ΛQ=ΛQ\Lambda_{Q}=\Lambda_{\vec{Q}}, which implies that ξ:=ξQ=ξQ\xi:=\xi^{-}_{Q}=\xi^{-}_{\vec{Q}} by (9). Consider the description of ξ\xi given in Remark 1.13.

Case =1\ell=1. In this case, we have necessarily π=(m)\pi=(m). Take the matrices

B11\displaystyle B_{1}^{1} =\displaystyle= [a1,a2,,am1],\displaystyle[a_{1}^{-},a_{2}^{-},\cdots,a_{m-1}^{-}],
B3\displaystyle B_{3} =\displaystyle= [am1,am1,,am1,am12𝕕 columns],and\displaystyle[\underbrace{-a_{m-1}^{-},a_{m-1}^{-},\cdots,-a_{m-1}^{-},a_{m-1}^{-}}_{\text{$2\mathbbm{d}$ columns}}],\quad\text{and}
B\displaystyle B =\displaystyle= [B11,B3].\displaystyle[B_{1}^{1},B_{3}]. (11)

Clearly, BB is a n×nn\times n matrix since n=m1+2𝕕n=m-1+2\mathbbm{d}. In the following steps we show that BB satisfies the wanted conditions.

  • Step 1. We have I(Q)B=I(Q)I(Q)B=I(\vec{Q}). Indeed, recall from Remark 1.20(a)(a) that I(Q)I(\vec{Q}) has the following shape

    I(Q)=[I(𝔸m),x,x,,x,x2𝕕 columns],I(\vec{Q})=[I(\vec{\mathbb{A}}_{m}),\underbrace{-x,x,\cdots,-x,x}_{\text{$2\mathbbm{d}$ columns}}],

    where x=𝐞m1𝐞mx=\mathbf{e}_{m-1}-\mathbf{e}_{m}.

    By definition of αQ(v)\alpha_{Q}^{-}(v) we have 𝐬(αQ(v))=v\mathbf{s}(\alpha_{Q}^{-}(v))=v, and by (3), 𝐭(αQ(v))=ξ(v)\mathbf{t}(\alpha_{Q}^{-}(v))=\xi(v) for any v{1,,m}v\in\{1,\ldots,m\}. By Remark 1.13, ξ(v)=v+1\xi(v)=v+1 if v<mv<m, and ξ(m)=1\xi(m)=1. Thus, using (7), for 1i=v<m1\leq i=v<m we get

    I(Q)B𝐞i=I(Q)av=I(Q)𝐢𝐧𝐜¯(αQ(v))=𝐞v𝐞v+1=I(𝔸m)𝐞i.I(Q)B\mathbf{e}_{i}=I(Q)a^{-}_{v}=I(Q)\underline{\mathbf{inc}}(\alpha^{-}_{Q}(v))=\mathbf{e}_{v}-\mathbf{e}_{v+1}=I(\vec{\mathbb{A}}_{m})\mathbf{e}_{i}.

    Moreover, I(Q)B𝐞m1=I(Q)am1=𝐞m1𝐞m=xI(Q)B\mathbf{e}_{m-1}=I(Q)a^{-}_{m-1}=\mathbf{e}_{m-1}-\mathbf{e}_{m}=x, and for min=m1+2𝕕m\leq i\leq n=m-1+2\mathbbm{d} we have

    I(Q)B𝐞i=±I(Q)am1=±x,I(Q)B\mathbf{e}_{i}=\pm I(Q)a^{-}_{m-1}=\pm x,

    with signs corresponding to the parity of ii. Altogether, for 1in1\leq i\leq n we have I(Q)B𝐞i=I(Q)𝐞iI(Q)B\mathbf{e}_{i}=I(\vec{Q})\mathbf{e}_{i}, hence our claim.

  • Step 2. We have BI(Q)𝐭𝐫=I(Q)𝐭𝐫BI(\vec{Q}^{\dagger})^{\mathbf{tr}}=I(Q^{\dagger})^{\mathbf{tr}}. Indeed, using Remark 1.20(b)(b) and Lemma 1.7, we get

    BI(Q)𝐭𝐫𝐞1=B𝟙n=i=1m1ai+j=1𝕕(am1am1)=am=aξ(m)+=a1+.BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{1}=B\mathbbm{1}_{n}=\sum_{i=1}^{m-1}a^{-}_{i}+\sum_{j=1}^{\mathbbm{d}}(a^{-}_{m-1}-a^{-}_{m-1})=-a_{m}^{-}=a_{\xi(m)}^{+}=a_{1}^{+}.

    Moreover, for 1<i=v<m1<i=v<m we have

    BI(Q)𝐭𝐫𝐞i=B𝐞v1=av1=aξ(v1)+=av+.BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{i}=-B\mathbf{e}_{v-1}=-a_{v-1}^{-}=a_{\xi(v-1)}^{+}=a_{v}^{+}.

    Using again Lemma 1.7(i)(i) we get

    BI(Q)𝐭𝐫𝐞m=B𝐞m1j=mnB𝐞j=am1=aξ(m1)+=am+.BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{m}=-B\mathbf{e}_{m-1}-\sum_{j=m}^{n}B\mathbf{e}_{j}=-a_{m-1}^{-}=a_{\xi(m-1)}^{+}=a_{m}^{+}.

    By Lemma 1.7(ii)(ii) we conclude that BI(Q)𝐭𝐫𝐞i=ai+=I(Q)𝐭𝐫𝐞iBI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{i}=a^{+}_{i}=I(Q^{\dagger})^{\mathbf{tr}}\mathbf{e}_{i} for 1in1\leq i\leq n. Hence, the case =1\ell=1 holds.

Case >1\ell>1. For t=1,,1t=1,\ldots,\ell-1 fix arbitrary walks δ(t)\delta(t) from vtv_{t} to vt+1v_{t}+1 (recall that vt:=m(π1++πt)v_{t}:=m-(\pi_{1}+\ldots+\pi_{t}) for t=0,,mt=0,\ldots,m), and take dt=𝐢𝐧𝐜¯(δ(t))d_{t}=\underline{\mathbf{inc}}(\delta(t)). Consider the matrices

B1t\displaystyle B_{1}^{t} =\displaystyle= [av+1t+1,av+1t+2,,avt1π+1t1 columns],for t=1,,,\displaystyle[\underbrace{a_{v_{\ell+1-t}+1}^{-},a_{v_{\ell+1-t}+2}^{-},\cdots,a_{v_{\ell-t}-1}^{-}}_{\text{$\pi_{\ell+1-t}-1$ columns}}],\qquad\text{for $t=1,\ldots,\ell$,}
B1\displaystyle B_{1} =\displaystyle= [B11,d1,B12,d2,B13,,B11,d1,B1m1 columns],\displaystyle[\underbrace{B_{1}^{1},d_{\ell-1},B_{1}^{2},d_{\ell-2},B_{1}^{3},\cdots,B_{1}^{\ell-1},d_{1},B_{1}^{\ell}}_{\text{$m-1$ columns}}],
B2\displaystyle B_{2} =\displaystyle= [y1,y2,,y11 columns],\displaystyle[\underbrace{y_{1},y_{2},\cdots,y_{\ell-1}}_{\text{$\ell-1$ columns}}],
B3\displaystyle B_{3} =\displaystyle= [y1,y1,,y1,y12𝕕 columns],and\displaystyle[\underbrace{-y_{\ell-1},y_{\ell-1},\cdots,-y_{\ell-1},y_{\ell-1}}_{\text{$2\mathbbm{d}$ columns}}],\quad\text{and}
B\displaystyle B =\displaystyle= [B1,B2,B3],\displaystyle[B_{1},B_{2},B_{3}], (12)

where yt:=avt1dt=𝐢𝐧𝐜¯(αQ(vt1)δ(t)1)y_{t}:=a_{v_{t-1}}^{-}-d_{t}=\underline{\mathbf{inc}}(\alpha_{Q}^{-}(v_{t-1})\delta(t)^{-1}) for t=1,,1t=1,\ldots,\ell-1. Clearly, BB is a n×nn\times n matrix since n=m1+2𝕕+(1)n=m-1+2\mathbbm{d}+(\ell-1). Again, we show that BB satisfies the wanted conditions in two steps.

  • Step 1. We have I(Q)B=I(Q)I(Q)B=I(\vec{Q}). By construction, the vv-th column of B1B_{1} (for 1v<m1\leq v<m) is given by 𝐢𝐧𝐜¯(γ)\underline{\mathbf{inc}}(\gamma) for a walk γ\gamma in QQ with 𝐬(γ)=v\mathbf{s}(\gamma)=v and 𝐭(γ)=v+1\mathbf{t}(\gamma)=v+1 (indeed, if v=vtv=v_{t} for some t=1,,1t=1,\ldots,\ell-1, then γ=δ(t)\gamma=\delta(t), otherwise γ=αQ(v)\gamma=\alpha_{Q}^{-}(v)). In particular, using (7),

    I(Q)B1=I(𝔸m).I(Q)B_{1}=I(\vec{\mathbb{A}}_{m}).

    Again by (7), for t=1,,1t=1,\ldots,\ell-1 we have I(Q)yt=I(Q)𝐢𝐧𝐜¯(αQ(vt1)δ(t)1)=𝐞vt1𝐞vt=xtI(Q)y_{t}=I(Q)\underline{\mathbf{inc}}(\alpha_{Q}^{-}(v_{t-1})\delta(t)^{-1})=\mathbf{e}_{v_{t-1}}-\mathbf{e}_{v_{t}}=x_{t}, which implies that

    I(Q)B=[I(𝔸m),x1,,x1,x1,x1,,x1,x12𝕕 columns]=I(Q),I(Q)B=[I(\vec{\mathbb{A}}_{m}),x_{1},\cdots,x_{\ell-1},\underbrace{-x_{\ell-1},x_{\ell-1},\cdots,-x_{\ell-1},x_{\ell-1}}_{\text{$2\mathbbm{d}$ columns}}]=I(\vec{Q}),

    by Remark 1.20(a)(a).

  • Step 2. We have BI(Q)𝐭𝐫=I(Q)𝐭𝐫BI(\vec{Q}^{\dagger})^{\mathbf{tr}}=I(Q^{\dagger})^{\mathbf{tr}}. Indeed, using Remark 1.20(b)(b) and Lemma 1.7 we get

    BI(Q)𝐭𝐫𝐞1\displaystyle BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{1} =\displaystyle= B𝟙n=v=1,,mvv1,,vav+t=11dt+t=11(avt1dt)+j=1𝕕(y1y1)\displaystyle B\mathbbm{1}_{n}=\sum_{\begin{subarray}{c}v=1,\ldots,m\\ v\neq v_{1},\ldots,v_{\ell}\end{subarray}}a^{-}_{v}+\sum_{t=1}^{\ell-1}d_{t}+\sum_{t=1}^{\ell-1}(a_{v_{t-1}}^{-}-d_{t})+\sum_{j=1}^{\mathbbm{d}}(y_{\ell-1}-y_{\ell-1})
    =\displaystyle= v=1,,mvv1av=av1=aξ(v1)+=av+1+=a1+,\displaystyle\sum_{\begin{subarray}{c}v=1,\ldots,m\\ v\neq v_{\ell-1}\end{subarray}}a_{v}^{-}=-a_{v_{\ell-1}}^{-}=a_{\xi(v_{\ell-1})}^{+}=a_{v_{\ell}+1}^{+}=a_{1}^{+},

    since v=0v_{\ell}=0. Moreover, for v{1,,m}{vt+1}t=1,,v\in\{1,\ldots,m\}-\{v_{t}+1\}_{t=1,\ldots,\ell} we have

    BI(Q)𝐭𝐫𝐞v=B𝐞v1=av1=aξ(v1)+=av+.BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v}=-B\mathbf{e}_{v-1}=-a_{v-1}^{-}=a_{\xi(v-1)}^{+}=a_{v}^{+}.

    If v=vt+1v=v_{t}+1 for some t{1,,2}t\in\{1,\ldots,{\ell-2}\}, we have (recall that zt:=𝐞vt+𝐞m1+tz_{t}:=\mathbf{e}_{v_{t}}+\mathbf{e}_{m-1+t} for t=1,,1t=1,\ldots,\ell-1),

    BI(Q)𝐭𝐫𝐞v\displaystyle BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v} =\displaystyle= Bzt=B(𝐞vt1+𝐞m1+t)=dt(avt1dt)\displaystyle-Bz_{t}=-B(\mathbf{e}_{v_{t-1}}+\mathbf{e}_{m-1+t})=-d_{t}-(a_{v_{t-1}}^{-}-d_{t})
    =\displaystyle= avt1=aξ(vt1)+=avt+1+=av+.\displaystyle-a_{v_{t-1}}^{-}=a_{\xi(v_{t-1})}^{+}=a_{v_{t}+1}^{+}=a_{v}^{+}.

    Finally,

    BI(Q)𝐭𝐫𝐞v1+1\displaystyle BI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v_{\ell-1}+1} =\displaystyle= Bz1j=m+1nB𝐞j\displaystyle-Bz_{\ell-1}-\sum_{j=m+\ell-1}^{n}B\mathbf{e}_{j}
    =\displaystyle= B(𝐞v1+𝐞m+2)j=1𝕕(y1y1)\displaystyle-B(\mathbf{e}_{v_{\ell-1}}+\mathbf{e}_{m+\ell-2})-\sum_{j=1}^{\mathbbm{d}}(y_{\ell-1}-y_{\ell-1})
    =\displaystyle= d1(av2d1)=av2=aξ(v2)+=av1+1+.\displaystyle-d_{\ell-1}-(a_{v_{\ell-2}}^{-}-d_{\ell-1})=a_{v_{\ell-2}}^{-}=a_{\xi(v_{\ell-2})}^{+}=a_{v_{\ell-1}+1}^{+}.

    We conclude that BI(Q)𝐭𝐫𝐞v=av+=I(Q)𝐭𝐫𝐞vBI(\vec{Q}^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v}=a^{+}_{v}=I(Q^{\dagger})^{\mathbf{tr}}\mathbf{e}_{v} for all 1vm1\leq v\leq m, by Lemma 1.7(ii)(ii).

Example 1.25

Let us apply Proposition 1.23 (keeping the notation of its proof) to the running Example 1.9. First we take the descending structural walks of quiver Q1Q^{1}:

αQ1(1)=4121,\textstyle{\alpha^{-}_{Q^{1}}(1)=4^{-1}2^{-1},}αQ1(2)=3111,\textstyle{\alpha^{-}_{Q^{1}}(2)=3^{-1}1^{-1},}αQ1(3)=4+13+12+11+1,\textstyle{\alpha^{-}_{Q^{1}}(3)=4^{+1}3^{+1}2^{+1}1^{+1},}B1=(01^11^1^00001^11^1^000).\textstyle{B^{\prime}_{1}=\begin{pmatrix}0&\widehat{1}&1&\widehat{1}\\ \widehat{1}&0&0&0\\ 0&\widehat{1}&1&\widehat{1}\\ \widehat{1}&0&0&0\end{pmatrix}.}

The cycle type of Q1Q^{1} has length (𝐜𝐭(Q1))=1\ell(\mathbf{ct}(Q^{1}))=1 (cf. Example 1.19). Then the matrix B1B_{1}^{\prime} obtained in Proposition 1.23, given by B1=[a1,a2,a2,a2]B_{1}^{\prime}=[a^{-}_{1},a_{2}^{-},-a_{2}^{-},a_{2}^{-}], is shown explicitly above. On the other hand, the cycle type of Q0Q^{0} has length (𝐜𝐭(Q0))=3\ell(\mathbf{ct}(Q^{0}))=3, and its descending structural walks are given by

αQ0(1)=4+12+11+1,\textstyle{\alpha^{-}_{Q^{0}}(1)=4^{+1}2^{+1}1^{+1},}αQ0(2)=413121,\textstyle{\alpha^{-}_{Q^{0}}(2)=4^{-1}3^{-1}2^{-1},}αQ0(3)=3+111,\textstyle{\alpha^{-}_{Q^{0}}(3)=3^{+1}1^{-1},}B0=(001^0011^1^0011^1002^).\textstyle{B^{\prime}_{0}=\begin{pmatrix}0&0&\widehat{1}&0\\ 0&1&\widehat{1}&\widehat{1}\\ 0&0&1&\widehat{1}\\ 1&0&0&\widehat{2}\end{pmatrix}.}

We need arbitrary walks δ(t):vtvt+1\delta(t):v_{t}\to v_{t}+1 in Q0Q^{0} for t=1,,1=2t=1,\ldots,\ell-1=2, which we choose to be δ(1)=2+1\delta(1)=2^{+1} and δ(2)=4+1\delta(2)=4^{+1} (note that v0=3v_{0}=3, v1=2v_{1}=2, v2=1v_{2}=1 and v3=0v_{3}=0, since 𝐜𝐭(Q0)=(1,1,1)\mathbf{ct}(Q^{0})=(1,1,1)). The matrix B0B_{0}^{\prime} obtained in Proposition 1.23, given by B0=[d2,d1,a3d1,a2d2]B_{0}^{\prime}=[d_{2},d_{1},a^{-}_{3}-d_{1},a^{-}_{2}-d_{2}], is shown above. A direct computation shows that I(Qi)Bi=I(Qi)I(Q^{i})B^{\prime}_{i}=I(\vec{Q}^{i}) and I((Qi))(Bi)𝐭𝐫=I((Qi))I((\vec{Q}^{i})^{\dagger})(B^{\prime}_{i})^{\mathbf{tr}}=I((Q^{i})^{\dagger}) for i=1,0i=1,0, see Example 1.19 for the description of quivers Qi\vec{Q}^{i} and their inverses.

2 Radicals and invertibility assumption

In this section we analyze some strong Gram invariants within the radical of a non-negative unit form (Lemmas 2.4 and 2.6) in order to prove our invertibility-correction algorithm Proposition 2.17 (see Algorithm 3).

2.1 The reduced radical

Recall that a subgroup XX of m\mathbb{Z}^{m} is called pure if whenever axXax\in X for some xmx\in\mathbb{Z}^{m} and some non-zero aa\in\mathbb{Z}, then xXx\in X. For any unit form qq consider the following subgroups of n\mathbb{Z}^{n},

𝐫𝐚𝐝(q)\displaystyle\mathbf{rad}(q) =\displaystyle= {xny𝐭𝐫Gqx=0 for all y in n}={xnGqx=0},\displaystyle\{x\in\mathbb{Z}^{n}\mid\text{$y^{\mathbf{tr}}G_{q}x=0$ for all $y$ in $\mathbb{Z}^{n}$}\}=\{x\in\mathbb{Z}^{n}\mid\text{$G_{q}x=0$}\},
𝐫𝐚𝐝re(q)\displaystyle\mathbf{rad}_{re}(q) =\displaystyle= {x𝐫𝐚𝐝(q)y𝐭𝐫Gˇqx=0 for all y𝐫𝐚𝐝(q)}.\displaystyle\{x\in\mathbf{rad}(q)\mid\text{$y^{\mathbf{tr}}\widecheck{G}_{q}x=0$ for all $y\in\mathbf{rad}(q)$}\}.

These are pure subgroups of n\mathbb{Z}^{n}. The group 𝐫𝐚𝐝(q)\mathbf{rad}(q) is called the radical of qq, and we will refer to 𝐫𝐚𝐝re(q)\mathbf{rad}_{re}(q) as the reduced radical of qq. The rank 𝐜𝐨𝐫𝐤re(q)\mathbf{cork}_{re}(q) of the reduced radical 𝐫𝐚𝐝re(q)\mathbf{rad}_{re}(q) of qq will be called reduced corank of qq. The restriction of the standard morsification 𝕓ˇq\widecheck{\mathbbm{b}}_{q} to the radical of qq is denoted by 𝕣ˇq\widecheck{\mathbbm{r}}_{q}. To be precise, let k:𝐫𝐚𝐝(q)nk:\mathbf{rad}(q)\to\mathbb{Z}^{n} be the inclusion of the radical of qq in n\mathbb{Z}^{n}, and take

𝕣ˇq(x,y):=𝕓ˇq(k(x),k(y))for x,y𝐫𝐚𝐝(q).\widecheck{\mathbbm{r}}_{q}(x,y):=\widecheck{\mathbbm{b}}_{q}(k(x),k(y))\quad\text{for $x,y\in\mathbf{rad}(q)$.}

Clearly, 𝕣ˇq\widecheck{\mathbbm{r}}_{q} is a skew-symmetric bilinear form. In particular, its rank is an even non-negative number, 𝐫𝐤(𝕣ˇq):=2𝕕\mathbf{rk}(\widecheck{\mathbbm{r}}_{q}):=2\mathbbm{d} for some 𝕕0\mathbbm{d}\geq 0 (cf. [24, XI, §4]), and we call 𝕕q:=𝕕\mathbbm{d}_{q}:=\mathbbm{d} the degree of degeneracy of qq. Note that

𝐜𝐨𝐫𝐤(q)=2𝕕q+𝐜𝐨𝐫𝐤re(q).\mathbf{cork}(q)=2\mathbbm{d}_{q}+\mathbf{cork}_{re}(q). (13)

Observe also that the reduced corank 𝐜𝐨𝐫𝐤re(q)\mathbf{cork}_{re}(q) and the degree of degeneracy 𝕕q\mathbbm{d}_{q} are strong Gram invariants of qq (see Lemma 4.13 below). To the best of the author’s knowledge, these notions are new in the literature on integral bilinear and quadratic forms. Fixing a \mathbb{Z}-basis of 𝐫𝐚𝐝(q)\mathbf{rad}(q) we get matricial forms KK of kk and WqW_{q} of 𝕣ˇq\widecheck{\mathbbm{r}}_{q} given by

Wq=K𝐭𝐫GˇqK.W_{q}=K^{\mathbf{tr}}\widecheck{G}_{q}K. (14)

Let us illustrate these notions.

Example 2.1

Consider the quadratic forms q1q^{1} and q0q^{0} of Example 1.9. A basis of the radical 𝐫𝐚𝐝(qi)\mathbf{rad}(q_{i}) is given in the columns of the matrix KiK_{i} below, and the restriction 𝕣ˇqi\widecheck{\mathbbm{r}}_{q_{i}} of the standard morsification of qiq_{i} to its radical, under such basis, is given by the matrix WqiW_{q_{i}} as in (14), for i=0,1i=0,1,

K1=(11101001^),Wq1=(011^0),𝐜𝐨𝐫𝐤re(q1)=0,𝕕q1=1.K_{1}=\begin{pmatrix}1&1\\ 1&0\\ 1&0\\ 0&\widehat{1}\end{pmatrix},\qquad W_{q_{1}}=\begin{pmatrix}0&1\\ \widehat{1}&0\end{pmatrix},\qquad\begin{matrix}\mathbf{cork}_{re}(q_{1})=0,\\ \mathbbm{d}_{q_{1}}=1.\end{matrix}
K0=(11^100110),Wq0=(0000),𝐜𝐨𝐫𝐤re(q0)=2,𝕕q0=0.K_{0}=\begin{pmatrix}1&\widehat{1}\\ 1&0\\ 0&1\\ 1&0\end{pmatrix},\qquad W_{q_{0}}=\begin{pmatrix}0&0\\ 0&0\end{pmatrix},\qquad\begin{matrix}\mathbf{cork}_{re}(q_{0})=2,\\ \mathbbm{d}_{q_{0}}=0.\end{matrix}

Being the nullity of WqiW_{q_{i}}, the respective reduced coranks are given by 𝐜𝐨𝐫𝐤re(q1)=0\mathbf{cork}_{re}(q_{1})=0 and 𝐜𝐨𝐫𝐤re(q0)=2\mathbf{cork}_{re}(q_{0})=2, and by (13) the corresponding degrees of degeneracy are 𝕕q1=1\mathbbm{d}_{q_{1}}=1 and 𝕕q0=0\mathbbm{d}_{q_{0}}=0.

Recall that 𝟙m\mathbbm{1}_{m} denotes the vector in m\mathbb{Z}^{m} with all entries equal to 11.

Lemma 2.2

Let QQ be a connected loop-less quiver with mm vertices. Then the image of the incidence matrix I(Q)I(Q), as a linear transformation I(Q):nmI(Q):\mathbb{Z}^{n}\to\mathbb{Z}^{m}, is the set

𝐈𝐦I(Q)={xm𝟙m𝐭𝐫x=0},\mathbf{Im}I(Q)=\{x\in\mathbb{Z}^{m}\mid\mathbbm{1}^{\mathbf{tr}}_{m}x=0\},

which is a pure subgroup of m\mathbb{Z}^{m}.

Proof 2.3

Assume first that QQ is a tree, that is, that QQ has m1m-1 arrows. By [33, Propositions 3.13 and 3.8], there is a \mathbb{Z}-invertible (m1)×(m1)(m-1)\times(m-1) matrix BB such that I(Q)=I(S)BI(Q)=I(S)B, where SS is a maximal star with center a vertex vv, that is, the columns of I(S)I(S) are given by ±(𝐞v𝐞v)\pm(\mathbf{e}_{v}-\mathbf{e}_{v^{\prime}}) for v{1,,m}{v}v^{\prime}\in\{1,\ldots,m\}-\{v\}. These columns are a basis of the group C:={xm𝟙m𝐭𝐫x=0}C:=\{x\in\mathbb{Z}^{m}\mid\mathbbm{1}^{\mathbf{tr}}_{m}x=0\}, which shows that 𝐈𝐦I(Q)=C\mathbf{Im}I(Q)=C.

Now, take an arbitrary loop-less quiver QQ with mm vertices. Since 𝟙m𝐭𝐫I(Q)=0\mathbbm{1}_{m}^{\mathbf{tr}}I(Q)=0, we have 𝐈𝐦I(Q)C\mathbf{Im}I(Q)\subseteq C. Choose a spanning tree Q~\widetilde{Q} of QQ. Clearly, the image of I(Q~)I(\widetilde{Q}) is a subset of the image of I(Q)I(Q), since I(Q~)I(\widetilde{Q}) is obtained from I(Q)I(Q) by deleting those columns indexed by the elements of the set Q1Q~1Q_{1}-\widetilde{Q}_{1}. Thus, by the first part of the proof, we have C𝐈𝐦I(Q)C\subseteq\mathbf{Im}I(Q), hence 𝐈𝐦I(Q)=C\mathbf{Im}I(Q)=C. Clearly, if axCax\in C for some non-zero aa\in\mathbb{Z}, then 𝟙m𝐭𝐫(ax)=a(𝟙m𝐭𝐫x)=0\mathbbm{1}^{\mathbf{tr}}_{m}(ax)=a(\mathbbm{1}_{m}^{\mathbf{tr}}x)=0. Since a0a\neq 0, we have xCx\in C, that is, CC is a pure subgroup of m\mathbb{Z}^{m}.

The following is a useful characterization of the reduced radical in case of non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r}.

Lemma 2.4

Let QQ be a connected loop-less quiver with inverse quiver QQ^{\dagger}, Coxeter-Gram matrix ΦQ\Phi_{Q} and Coxeter-Laplacian ΛQ\Lambda_{Q}. Then

𝐫𝐚𝐝(qQ)\displaystyle\mathbf{rad}(q_{Q}) =\displaystyle= {xnΦQ𝐭𝐫x=x},\displaystyle\{x\in\mathbb{Z}^{n}\mid\Phi^{\mathbf{tr}}_{Q}x=x\},
𝐫𝐚𝐝re(qQ)\displaystyle\mathbf{rad}_{re}(q_{Q}) =\displaystyle= {I(Q)𝐭𝐫ynym and ΛQ𝐭𝐫y=y}.\displaystyle\{I(Q^{\dagger})^{\mathbf{tr}}y\in\mathbb{Z}^{n}\mid\text{$y\in\mathbb{Z}^{m}$ and $\Lambda^{\mathbf{tr}}_{Q}y=y$}\}.
Proof 2.5

The first identity is easy to verify, since GQx=(GˇQ+GˇQ𝐭𝐫)x=0G_{Q}x=(\widecheck{G}_{Q}+\widecheck{G}_{Q}^{\mathbf{tr}})x=0 if and only if GˇQx=GˇQ𝐭𝐫\widecheck{G}_{Q}x=-\widecheck{G}_{Q}^{\mathbf{tr}}, that is, if and only if x=ΦQ𝐭𝐫xx=\Phi_{Q}^{\mathbf{tr}}x.

For the second identity, recall from (8) that I(Q)=I(Q)GˇQ1I(Q^{\dagger})=I(Q)\widecheck{G}_{Q}^{-1}, and observe that if ΛQ𝐭𝐫y=y\Lambda_{Q}^{\mathbf{tr}}y=y then

I(Q)I(Q)𝐭𝐫y=(𝐈𝐝ΛQ𝐭𝐫)y=0,I(Q)I(Q^{\dagger})^{\mathbf{tr}}y=(\mathbf{Id}-\Lambda^{\mathbf{tr}}_{Q})y=0,

that is, I(Q)𝐭𝐫y𝐊𝐞𝐫I(Q)I(Q^{\dagger})^{\mathbf{tr}}y\in\mathbf{Ker}I(Q). Moreover, for any x𝐫𝐚𝐝(qQ)=𝐊𝐞𝐫I(Q)x\in\mathbf{rad}(q_{Q})=\mathbf{Ker}I(Q) we have

x,I(Q)𝐭𝐫yQ\displaystyle\langle x,I(Q^{\dagger})^{\mathbf{tr}}y\rangle_{Q} =\displaystyle= x𝐭𝐫GˇQI(Q)𝐭𝐫y=x𝐭𝐫GˇQ𝐭𝐫I(Q)𝐭𝐫y\displaystyle x^{\mathbf{tr}}\widecheck{G}_{Q}I(Q^{\dagger})^{\mathbf{tr}}y=-x^{\mathbf{tr}}\widecheck{G}^{\mathbf{tr}}_{Q}I(Q^{\dagger})^{\mathbf{tr}}y
=\displaystyle= [I(Q)GˇQx]𝐭𝐫y=[I(Q)x]𝐭𝐫y=0,\displaystyle-[I(Q^{\dagger})\widecheck{G}_{Q}x]^{\mathbf{tr}}y=-[I(Q)x]^{\mathbf{tr}}y=0,

which means that I(Q)𝐭𝐫y𝐫𝐚𝐝re(qQ)I(Q^{\dagger})^{\mathbf{tr}}y\in\mathbf{rad}_{re}(q_{Q}).

On the other hand, take an arbitrary xx in 𝐫𝐚𝐝re(qQ)\mathbf{rad}_{re}(q_{Q}) and choose a kernel matrix KK of I(Q)I(Q). Then x𝐭𝐫GˇQK=0x^{\mathbf{tr}}\widecheck{G}_{Q}K=0, and since 𝐈𝐦I(Q)\mathbf{Im}I(Q) is pure (Lemma 2.2), by Remark 4.3(e) below there is a vector ymy\in\mathbb{Z}^{m} such that

x𝐭𝐫GˇQ=y𝐭𝐫I(Q),that is,x=I(Q)𝐭𝐫y.x^{\mathbf{tr}}\widecheck{G}_{Q}=y^{\mathbf{tr}}I(Q),\quad\text{that is,}\quad x=I(Q^{\dagger})^{\mathbf{tr}}y.

Moreover, we have I(Q)x=0I(Q)x=0, which implies that (𝐈𝐝ΛQ𝐭𝐫)y=I(Q)I(Q)𝐭𝐫y=0(\mathbf{Id}-\Lambda_{Q}^{\mathbf{tr}})y=I(Q)I(Q^{\dagger})^{\mathbf{tr}}y=0. We conclude that x=I(Q)𝐭𝐫yx=I(Q^{\dagger})^{\mathbf{tr}}y for some ymy\in\mathbb{Z}^{m} with ΛQ𝐭𝐫y=y\Lambda_{Q}^{\mathbf{tr}}y=y.

2.2 Bases for the reduced radical

Let v11,,v1v^{1}_{1},\ldots,v^{1}_{\ell} be representative vertices of the ξQ\xi^{-}_{Q}-orbits in Q0Q_{0}, with orbit sizes π1π2π\pi_{1}\geq\pi_{2}\geq\ldots\geq\pi_{\ell}. The cycle type of QQ, as given in (5), is the partition 𝐜𝐭(Q)=(π1,,π)\mathbf{ct}(Q)=(\pi_{1},\ldots,\pi_{\ell}) of the integer m=|Q0|m=|Q_{0}| (cf. [34, Definition 4.2]). For t=1,,t=1,\ldots,\ell consider the concatenated walks

βt=αQ(vt1)αQ(vt2)αQ(vtπt),\beta_{t}=\alpha^{-}_{Q}(v^{1}_{t})\alpha^{-}_{Q}(v^{2}_{t})\cdots\alpha^{-}_{Q}(v^{\pi_{t}}_{t}), (15)

where vtr+1=ξQ(vtr)v^{r+1}_{t}=\xi^{-}_{Q}(v^{r}_{t}) for r=1,,πt1r=1,\ldots,\pi_{t}-1, and vt1=ξQ(vtπt)v^{1}_{t}=\xi^{-}_{Q}(v^{\pi_{t}}_{t}). This is indeed a walk, since 𝐭(αQ(vtr))=ξQ(vtr)=vtr+1=𝐬(αQ(vtr+1))\mathbf{t}(\alpha^{-}_{Q}(v_{t}^{r}))=\xi^{-}_{Q}(v_{t}^{r})=v_{t}^{r+1}=\mathbf{s}(\alpha^{-}_{Q}(v_{t}^{r+1})) if 1r<πt1\leq r<\pi_{t}. Alternatively, taking 𝟙[t]\mathbbm{1}_{[t]} as the vector in m\mathbb{Z}^{m} with entry in position vv given by 11 if vv is in the ξQ\xi^{-}_{Q}-orbit of vt1v_{t}^{1}, and 0 otherwise (for t=1,,t=1,\ldots,\ell), then using Lemma 1.7(i,ii)(i,ii) we have

𝐢𝐧𝐜¯(βt)=I(Q)𝐭𝐫𝟙[t],for t=1,,.\underline{\mathbf{inc}}(\beta_{t})=-I(Q^{\dagger})^{\mathbf{tr}}\mathbbm{1}_{[t]},\quad\text{for $t=1,\ldots,\ell$}. (16)
Lemma 2.6

The set β{t0}:={𝐢𝐧𝐜¯(β1),,𝐢𝐧𝐜¯(βt01),𝐢𝐧𝐜¯(βt0+1),,𝐢𝐧𝐜¯(β)}\beta\{t_{0}\}:=\{\underline{\mathbf{inc}}(\beta_{1}),\ldots,\underline{\mathbf{inc}}(\beta_{t_{0}-1}),\underline{\mathbf{inc}}(\beta_{t_{0}+1}),\ldots,\underline{\mathbf{inc}}(\beta_{\ell})\} is a basis of 𝐫𝐚𝐝re(qQ)\mathbf{rad}_{re}(q_{Q}) for any t0{1,,}t_{0}\in\{1,\ldots,\ell\}.

Proof 2.7

First observe that the vectors 𝟙[1],,𝟙[]\mathbbm{1}_{[1]},\ldots,\mathbbm{1}_{[\ell]} of m\mathbb{Z}^{m} are a basis of the eigenspace of ΛQ𝐭𝐫\Lambda_{Q}^{\mathbf{tr}} corresponding to the eigenvalue 11, since ΛQ\Lambda_{Q} is the permutation matrix of ξQ\xi^{-}_{Q}, see (9). Hence, by (16), Lemma 2.4, and since

t=1𝐢𝐧𝐜¯(βt)=I(Q)𝐭𝐫𝟙m=0,\sum_{t=1}^{\ell}\underline{\mathbf{inc}}(\beta_{t})=-I(Q^{\dagger})^{\mathbf{tr}}\mathbbm{1}_{m}=0,

the set β{t0}\beta\{t_{0}\} generates 𝐫𝐚𝐝re(qQ)\mathbf{rad}_{re}(q_{Q}), for any t0{1,,}t_{0}\in\{1,\ldots,\ell\}.

Take now integers λ1,,λ\lambda_{1},\ldots,\lambda_{\ell} such that t=1λt𝐢𝐧𝐜¯(βt)=0\sum_{t=1}^{\ell}\lambda_{t}\underline{\mathbf{inc}}(\beta_{t})=0. That is, if y:=t=1λt𝟙[t]y:=\sum_{t=1}^{\ell}\lambda_{t}\mathbbm{1}_{[t]} then 0=y𝐭𝐫I(Q)0=y^{\mathbf{tr}}I(Q^{\dagger}). In particular, t=1λt𝐢𝐧𝐜¯(βt)=0\sum_{t=1}^{\ell}\lambda_{t}\underline{\mathbf{inc}}(\beta_{t})=0 if and only if all λt\lambda_{t} are equal, since the left null space of I(Q)I(Q^{\dagger}) is generated by 𝟙m𝐭𝐫\mathbbm{1}_{m}^{\mathbf{tr}} (see [34, Theorem 3.3(ii)(ii)]). This shows that if λt0=0\lambda^{\prime}_{t_{0}}=0, and

0=i=1,,tt0λt𝐢𝐧𝐜¯(βt)=t=1λt𝐢𝐧𝐜¯(βt),0=\sum_{\begin{subarray}{c}i=1,\ldots,\ell\\ t\neq t_{0}\end{subarray}}\lambda_{t}^{\prime}\underline{\mathbf{inc}}(\beta_{t})=\sum_{t=1}^{\ell}\lambda^{\prime}_{t}\underline{\mathbf{inc}}(\beta_{t}),

then λt=0\lambda_{t}^{\prime}=0 for t=1,,t=1,\ldots,\ell, which completes the proof.

Example 2.8

Recall the description of the Coxeter-Laplacians ΛQ1\Lambda_{Q^{1}} and ΛQ0\Lambda_{Q^{0}} of the quivers Q1Q^{1} and Q0Q^{0} of Example 1.9, given in Example 1.19. In the first case we have ΛQ1𝐭𝐫y=y\Lambda_{Q^{1}}^{\mathbf{tr}}y=y iff y=a𝟙3y=a\mathbbm{1}_{3} for some aa\in\mathbb{Z}, and in this case

I((Q1))𝐭𝐫y=aGˇQ1𝐭𝐫I(Q1)𝐭𝐫𝟙3=0.I((Q^{1})^{\dagger})^{\mathbf{tr}}y=a\widecheck{G}_{Q^{1}}^{-\mathbf{tr}}I(Q^{1})^{\mathbf{tr}}\mathbbm{1}_{3}=0.

By Lemma 2.4, we have 𝐫𝐚𝐝re(q1)=0\mathbf{rad}_{re}(q_{1})=0 (see Example 2.1). In the second case ΛQ0𝐭𝐫y=y\Lambda_{Q^{0}}^{\mathbf{tr}}y=y for all y3y\in\mathbb{Z}^{3}. Following the procedure (15), we find the walks

β1=αQ0(1)=4+12+11+1,β2=αQ0(2)=413121andβ3=αQ0(3)=3+111,\beta_{1}=\alpha_{Q^{0}}^{-}(1)=4^{+1}2^{+1}1^{+1},\qquad\beta_{2}=\alpha_{Q^{0}}^{-}(2)=4^{-1}3^{-1}2^{-1}\quad\text{and}\quad\beta_{3}=\alpha_{Q^{0}}^{-}(3)=3^{+1}1^{-1},

(cf. Example 1.25). Alternatively, consider the inverse quiver (Q0)(Q^{0})^{\dagger} of (Q0)(Q^{0}) given in Example 1.19, and observe that the columns of the matrix I((Q0))𝐭𝐫-I((Q^{0})^{\dagger})^{\mathbf{tr}} are precisely the incidence vectors 𝐢𝐧𝐜¯(βt)\underline{\mathbf{inc}}(\beta_{t}) of the walks β1,β2,β3\beta_{1},\beta_{2},\beta_{3}, see (16). Note that the basis of 𝐫𝐚𝐝(q0)=𝐫𝐚𝐝re(q0)\mathbf{rad}(q_{0})=\mathbf{rad}_{re}(q_{0}) chosen in Example 2.1 (as columns of K0K_{0}) corresponds to the basis β{2}={𝐢𝐧𝐜¯(β1),𝐢𝐧𝐜¯(β3)}\beta\{2\}=\{\underline{\mathbf{inc}}(\beta_{1}),\underline{\mathbf{inc}}(\beta_{3})\} of Lemma 2.6.

As direct consequence of Lemma 2.6 we have the following results.

Corollary 2.9

Let qq be a connected non-negative unit form of Dynkin type 𝔸r\mathbb{A}_{r}, corank cc and cycle type 𝐜𝐭(q)\mathbf{ct}(q). Then the reduced corank of qq is 𝐜𝐨𝐫𝐤re(q)=(𝐜𝐭(q))1\mathbf{cork}_{re}(q)=\ell(\mathbf{ct}(q))-1, and the degree of degeneracy of qq is 𝕕q=12[c(𝐜𝐭(q))+1]\mathbbm{d}_{q}=\frac{1}{2}[c-\ell(\mathbf{ct}(q))+1].

Proof 2.10

By Lemma 2.6, the rank of 𝐫𝐚𝐝re(q)\mathbf{rad}_{re}(q), the so-called reduced corank of qq, is 𝐜𝐨𝐫𝐤re(q)=(𝐜𝐭(q))1\mathbf{cork}_{re}(q)=\ell(\mathbf{ct}(q))-1. Then the claim on the degree of degeneracy follows from (13).

Corollary 2.11

The degree of degeneracy of the standard (π,𝕕)(\pi,\mathbbm{d})-extension of q𝔸m1q_{\mathbb{A}_{m-1}} is 𝕕\mathbbm{d}.

Proof 2.12

Take Q:=𝔸m𝕕[π]\vec{Q}:=\vec{\mathbb{A}}_{m}^{\mathbbm{d}}[\pi] for a partition π\pi of m2m\geq 2, and 𝕕0\mathbbm{d}\geq 0. By Remark 1.13, the form q:=qQq:=q_{\vec{Q}} has cycle type 𝐜𝐭(q)=π\mathbf{ct}(q)=\pi and corank 𝐜𝐨𝐫𝐤(q)=(π)+2𝕕1\mathbf{cork}(q)=\ell(\pi)+2\mathbbm{d}-1. By Corollary 2.9 we have 𝕕q=12[𝐜𝐨𝐫𝐤(q)(π)+1]=𝕕\mathbbm{d}_{q}=\frac{1}{2}[\mathbf{cork}(q)-\ell(\pi)+1]=\mathbbm{d}, as claimed.

Recall that in the text, matrices, linear transformations and their images and kernels are taken over \mathbb{Z}. A matrix or linear transformation MM will be called pure if so is the group 𝐈𝐦(M)\mathbf{Im}(M). Similarly, a bilinear form 𝕓:n×n\mathbbm{b}:\mathbb{Z}^{n}\times\mathbb{Z}^{n}\to\mathbb{Z} will be called pure if so is the adjoint transformation x[𝕓(x,):n]x\mapsto[\mathbbm{b}(x,-):\mathbb{Z}^{n}\to\mathbb{Z}], or equivalently, if its Gram matrix G𝕓G_{\mathbbm{b}} is pure (under any choice of basis). The following result is a simple and important observation: the upper triangular bilinear form of any standard extension of q𝔸rq_{\mathbb{A}_{r}} has pure restriction to its radical. After completing the proof of our main results we will be able to prove that this observation holds for any connected non-negative unit form of Dynkin type 𝔸r\mathbb{A}_{r} (Corollary 4.15).

Lemma 2.13

The standard morsification of every standard extension of a unit form of Dynkin type 𝔸r\mathbb{A}_{r} (r1r\geq 1) has pure restriction to its radical.

Proof 2.14

Consider a standard quiver Q=Am𝕕[π]\vec{Q}=\vec{A}_{m}^{\mathbbm{d}}[\pi] with π\pi a partition of m2m\geq 2 with length =(π)\ell=\ell(\pi), and take q=qQq=q_{\vec{Q}}. Then qq is a connected non-negative unit form of Dynkin type 𝔸m1\mathbb{A}_{m-1} in n=m++2(𝕕1)n=m+\ell+2(\mathbbm{d}-1) variables with corank 𝐜𝐨𝐫𝐤(q)=2𝕕+1\mathbf{cork}(q)=2\mathbbm{d}+\ell-1 (Corollary 1.11) and reduced corank 𝐜𝐨𝐫𝐤re(q)=1\mathbf{cork}_{re}(q)=\ell-1 (Lemma 2.6). We fix a kernel matrix K=[K,K′′]K=[K^{\prime},K^{\prime\prime}] of I(Q)I(\vec{Q}) in the following way. Take the n×(1)n\times(\ell-1) matrix K′′K^{\prime\prime} whose columns are a basis of 𝐫𝐚𝐝re(q)\mathbf{rad}_{re}(q), see for instance Lemma 2.6. If 𝕕=0\mathbbm{d}=0, then K=K′′K=K^{\prime\prime}. If 𝕕>0\mathbbm{d}>0, observe that the last 2𝕕+12\mathbbm{d}+1 arrows of the standard quiver Q\vec{Q} determine the inverse Kronecker quiver 𝕂2𝕕+1\mathbb{K}^{\dagger}_{2\mathbbm{d}+1}. Consider the inclusion ι:2𝕕+1n\iota:\mathbb{Z}^{2\mathbbm{d}+1}\to\mathbb{Z}^{n} of 2𝕕+1\mathbb{Z}^{2\mathbbm{d}+1} into the last 2𝕕+12\mathbbm{d}+1 entries of n\mathbb{Z}^{n}, and take the n×2𝕕n\times 2\mathbbm{d} matrix K=[ι(c1),,ι(c2𝕕)]K^{\prime}=[\iota(c_{1}),\ldots,\iota(c_{2\mathbbm{d}})] with c1,,c𝕕c_{1},\ldots,c_{\mathbbm{d}} the vectors constructed in Remark 1.21(b)(b), where we showed the second equality identity in (17) below (the first identity can be easily shown, since 𝕂2𝕕+1\mathbb{K}^{\dagger}_{2\mathbbm{d}+1} is a subquiver of Q\vec{Q}):

(K)𝐭𝐫GˇQ(K)=[c1,,c𝕕]𝐭𝐫Gˇ𝕂2𝕕+1[c1,,c𝕕]=t=1𝕕(0110).(K^{\prime})^{\mathbf{tr}}\widecheck{G}_{\vec{Q}}(K^{\prime})=[c_{1},\ldots,c_{\mathbbm{d}}]^{\mathbf{tr}}\widecheck{G}_{\mathbb{K}^{\dagger}_{2\mathbbm{d}+1}}[c_{1},\ldots,c_{\mathbbm{d}}]=\bigoplus_{t=1}^{\mathbbm{d}}\begin{pmatrix}0&1\\ -1&0\end{pmatrix}. (17)

Then the subspace of n\mathbb{Z}^{n} generated by the columns of KK^{\prime} has zero intersection with the reduced radical of qq, which implies that the n×𝐜𝐨𝐫𝐤(q)n\times\mathbf{cork}(q) matrix KK is indeed a kernel matrix of I(Q)I(\vec{Q}).

Now, relative to the fixed basis KK, the restriction 𝕣ˇq\widecheck{\mathbbm{r}}_{q} of 𝕓ˇq\widecheck{\mathbbm{b}}_{q} to the radical 𝐫𝐚𝐝(q)\mathbf{rad}(q) has Gram matrix Wq=K𝐭𝐫GˇQKW_{q}=K^{\mathbf{tr}}\widecheck{G}_{\vec{Q}}K, see (14). Since the kernel of 𝕣ˇq\widecheck{\mathbbm{r}}_{q} is the reduced radical of qq, see (13), the quotient of 𝕣ˇq\widecheck{\mathbbm{r}}_{q} by its kernel has Gram matrix (K)𝐭𝐫GˇQ(K)(K^{\prime})^{\mathbf{tr}}\widecheck{G}_{\vec{Q}}(K^{\prime}), which is \mathbb{Z}-invertible by (17). That is, 𝕣ˇq\widecheck{\mathbbm{r}}_{q} is a pure bilinear form, as claimed.

2.3 Adding for invertibility

Here we show how to correct the non-invertibility of the matrices obtained in Proposition 1.23. We need the following preliminary observation.

Lemma 2.15

Let QQ and Q~\widetilde{Q} be connected loop-less quivers with mm vertices and nn arrows. Assume that ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\widetilde{Q}}, and that there is a matrix BB such that I(Q~)B𝐭𝐫=I(Q)I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}). Then BB restricts to an isomorphism B|𝐫𝐚𝐝re:𝐫𝐚𝐝re(qQ~)𝐫𝐚𝐝re(qQ)B|_{\mathbf{rad}_{re}}:\mathbf{rad}_{re}(q_{\widetilde{Q}})\to\mathbf{rad}_{re}(q_{Q}).

Proof 2.16

Since ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\widetilde{Q}}, and since the matrix I(Q)𝐭𝐫I(Q^{\dagger})^{\mathbf{tr}} has as columns the vectors 𝐢𝐧𝐜¯(αQ+(v))\underline{\mathbf{inc}}(\alpha^{+}_{Q}(v)) for vQ0v\in Q_{0} (see Lemma 1.7(ii)(ii)), by Lemma 2.4 and (16), the equation BI(Q~)𝐭𝐫=I(Q)𝐭𝐫BI(\widetilde{Q}^{\dagger})^{\mathbf{tr}}=I(Q^{\dagger})^{\mathbf{tr}} implies that the transformation BB sends the bases for 𝐫𝐚𝐝re(qQ~)\mathbf{rad}_{re}(q_{\widetilde{Q}}) constructed in Lemma 2.6, to the corresponding bases of 𝐫𝐚𝐝re(qQ)\mathbf{rad}_{re}(q_{Q}). Hence the claim.

For a slightly more general version of the following proposition, see Remark 4.17 below.

Proposition 2.17

Let QQ be a connected loop-less quiver. If there is a square matrix BB such that

I(Q)B=I(Q)andI(Q)B𝐭𝐫=I(Q),I(Q)B=I(\vec{Q})\qquad\text{and}\qquad I(\vec{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}),

where Q\vec{Q} is a standard quiver with same number of vertices and arrows as QQ, then there is a matrix MM such that B+MB+M is \mathbb{Z}-invertible and satisfies

I(Q)[B+M]=I(Q)andI(Q)[B+M]𝐭𝐫=I(Q).I(Q)[B+M]=I(\vec{Q})\qquad\text{and}\qquad I(\vec{Q}^{\dagger})[B+M]^{\mathbf{tr}}=I(Q^{\dagger}).
Proof 2.18

Let KK be a kernel matrix for I(Q)I(Q), and assume that K=[K,K′′]K=[K^{\prime},K^{\prime\prime}] where the last 1\ell-1 columns K′′K^{\prime\prime} of KK are a basis of the reduced radical 𝐫𝐚𝐝re(qQ)\mathbf{rad}_{re}(q_{Q}). Take similarly a kernel matrix K\vec{K} of I(Q)I(\vec{Q}) written as K=[K,K′′]\vec{K}=[\vec{K}^{\prime},\vec{K}^{\prime\prime}], and define K:=GˇQKK^{\dagger}:=\widecheck{G}_{Q}K and K:=GˇQK\vec{K}^{\dagger}:=\widecheck{G}_{\vec{Q}}\vec{K}, which are kernel matrices of I(Q)I(Q^{\dagger}) and I(Q)I(\vec{Q}^{\dagger}) respectively. Since I(Q)(BK)=I(Q)K=0I(Q)(B\vec{K})=I(\vec{Q})\vec{K}=0, there is a unique matrix LL such that BK=KLB\vec{K}=KL. The matrices LL and W=K𝐭𝐫GˇQK\vec{W}=\vec{K}^{\mathbf{tr}}\widecheck{G}_{\vec{Q}}\vec{K} have the following shapes

L=(L10L2L3)andW=(W000),L=\begin{pmatrix}L_{1}&0\\ L_{2}&L_{3}\end{pmatrix}\quad\text{and}\quad\vec{W}=\begin{pmatrix}\vec{W}^{\prime}&0\\ 0&0\end{pmatrix},

where L3L_{3} is \mathbb{Z}-invertible (Lemma 2.15), and by (17) in the proof of Lemma 2.13, W\vec{W}^{\prime} is a \mathbb{Z}-invertible skew-symmetric matrix (since it corresponds to the restriction of 𝕓ˇqQ\widecheck{\mathbbm{b}}_{q_{\vec{Q}}} to its radical, modulo its kernel: the reduced radical). Define M=KYK𝐭𝐫M=KY\vec{K}^{\dagger\mathbf{tr}} for some matrix Y=(Y1Y3Y2Y4)Y=\left(\begin{smallmatrix}Y_{1}&Y_{3}\\ Y_{2}&Y_{4}\end{smallmatrix}\right), and notice that

I(Q)(B+M)=I(Q)B+I(Q)KYK𝐭𝐫=I(Q),I(Q)(B+M)=I(Q)B+I(Q)KY\vec{K}^{\dagger\mathbf{tr}}=I(\vec{Q}),

and

I(Q)(B+M)𝐭𝐫=I(Q)B𝐭𝐫+I(Q)KY𝐭𝐫K𝐭𝐫=I(Q).I(\vec{Q}^{\dagger})(B+M)^{\mathbf{tr}}=I(\vec{Q}^{\dagger})B^{\mathbf{tr}}+I(\vec{Q}^{\dagger})K^{\dagger}Y^{\mathbf{tr}}K^{\mathbf{tr}}=I(Q^{\dagger}).

Since K𝐭𝐫=K𝐭𝐫GˇQ\vec{K}^{\dagger\mathbf{tr}}=-\vec{K}^{\mathbf{tr}}\widecheck{G}_{\vec{Q}} and K𝐭𝐫K=K𝐭𝐫GˇQK=W\vec{K}^{\dagger\mathbf{tr}}\vec{K}=-\vec{K}^{\mathbf{tr}}\widecheck{G}_{\vec{Q}}\vec{K}=-\vec{W}, we have

(B+M)K=BK+KYK𝐭𝐫K=K(LYW)=K(L1Y1W0L2Y2WL3).(B+M)\vec{K}=B\vec{K}+KY\vec{K}^{\dagger\mathbf{tr}}\vec{K}=K(L-Y\vec{W})=K\begin{pmatrix}L_{1}-Y_{1}\vec{W}^{\prime}&0\\ L_{2}-Y_{2}\vec{W}^{\prime}&L_{3}\end{pmatrix}.

Taking Y1=(L1𝐈𝐝)(W)1Y_{1}=(L_{1}-\mathbf{Id})(\vec{W}^{\prime})^{-1} and Y2=L2(W)1Y_{2}=L_{2}(\vec{W}^{\prime})^{-1} (with Y3Y_{3} and Y4Y_{4} arbitrary, say equal to zero), we get

(B+M)K=K(LYW),(B+M)\vec{K}=K(L-Y\vec{W}),

with (LYW)=(𝐈𝐝00L3)(L-Y\vec{W})=\left(\begin{smallmatrix}\mathbf{Id}&0\\ 0&L_{3}\end{smallmatrix}\right) a \mathbb{Z}-invertible matrix. Then the restriction

(B+M)|𝐫𝐚𝐝:𝐫𝐚𝐝(qQ)𝐫𝐚𝐝(qQ),(B+M)|_{\mathbf{rad}}:\mathbf{rad}(q_{\vec{Q}})\to\mathbf{rad}(q_{Q}),

is an isomorphism, which implies that (B+M)(B+M) is \mathbb{Z}-invertible by Corollary 4.11(ii)(ii).

Example 2.19

Consider the quivers QiQ^{i} of Example 1.9, and the matrices BiB^{\prime}_{i} satisfying the assumptions of Proposition 2.17, as given in Example 1.25 (for i=1,0i=1,0). Observe that det(B1)=0\det(B_{1}^{\prime})=0 and det(B0)=1\det(B_{0}^{\prime})=1, so we apply Proposition 2.17 only for the case i=1i=1. Besides the kernel matrix K1K_{1} of I(Q1)I(Q_{1}) given in Example 2.1, we fix the following kernel matrix for the corresponding standard quiver Q1\vec{Q}^{1} (cf. Example 1.19),

K1=(001011^01^),B1K1=K1(0000)=K1L.\vec{K}_{1}=\begin{pmatrix}0&0\\ 1&0\\ 1&\widehat{1}\\ 0&\widehat{1}\end{pmatrix},\qquad B_{1}^{\prime}\vec{K}_{1}=K_{1}\begin{pmatrix}0&0\\ 0&0\end{pmatrix}=K_{1}L.

Observe that B1K1=0B^{\prime}_{1}\vec{K}_{1}=0, and therefore the matrix LL (using the notation of the proof of Proposition 2.17) is the 2×22\times 2 zero matrix. Note also that W:=K1𝐭𝐫GˇQ1K1=(011^0)\vec{W}:=\vec{K}_{1}^{\mathbf{tr}}\widecheck{G}_{\vec{Q}^{1}}\vec{K}_{1}=\left(\begin{smallmatrix}0&1\\ \widehat{1}&0\end{smallmatrix}\right). Then, as defined in the proof of Proposition 2.17, the matrix YY is given by Y=(L𝐈𝐝2)W1=W𝐭𝐫=WY=(L-\mathbf{Id}_{2})\vec{W}^{-1}=-\vec{W}^{\mathbf{tr}}=\vec{W}. Taking M1:=K1Y(K1)𝐭𝐫M_{1}:=K_{1}Y(\vec{K}_{1}^{\dagger})^{\mathbf{tr}} where K1:=GˇQ1K1\vec{K}_{1}^{\dagger}:=\widecheck{G}_{\vec{Q^{1}}}\vec{K}_{1}, we get

M1=(0101^0011^0011^01^10)andB1:=B1+M1=(0012^1^011^01^22^1^1^10).M_{1}=\begin{pmatrix}0&1&0&\widehat{1}\\ 0&0&1&\widehat{1}\\ 0&0&1&\widehat{1}\\ 0&\widehat{1}&1&0\end{pmatrix}\qquad\text{and}\qquad B_{1}:=B_{1}^{\prime}+M_{1}=\begin{pmatrix}0&0&1&\widehat{2}\\ \widehat{1}&0&1&\widehat{1}\\ 0&\widehat{1}&2&\widehat{2}\\ \widehat{1}&\widehat{1}&1&0\end{pmatrix}.

Note that det(B1)=±1\det(B_{1})=\pm 1, as claimed in Proposition 2.17. In fact, a direct computation shows that q1B1q1q_{1}\approx^{B_{1}}\vec{q}_{1}.

3 A model for pseudo-endomorphisms

In this section we provide a method to modify a \mathbb{Z}-invertible matrix satisfying the equations of Proposition 1.23 (called pseudo-morphisms) into a strong Gram congruence. It depends on a special decomposition of skew-symmetric matrices, presented first in Lemma 3.1(b)(b).

3.1 Decompositions of skew-symmetric matrices

Recall that if ZZ is a skew-symmetric c×cc\times c matrix, then there exists a \mathbb{Z}-invertible matrix PP such that P𝐭𝐫ZPP^{\mathbf{tr}}ZP is in canonical form, that is, there are positive integers d1,d2,,drd_{1},d_{2},\ldots,d_{r} such that

P𝐭𝐫ZP=d1(0110)d2(0110)dr(0110)𝟎,P^{\mathbf{tr}}ZP=d_{1}\left(\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right)\oplus d_{2}\left(\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right)\oplus\ldots\oplus d_{r}\left(\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right)\oplus\mathbf{0},

for a square zero matrix 𝟎\mathbf{0} of size c2rc-2r, and where dtd_{t} divides dt+1d_{t+1} for t=1,,r1t=1,\ldots,r-1 (see for instance [48, Theorem IV.1]). Such expression is usually called the skew normal form of ZZ. Observe that ZZ is pure if and only if dt=1d_{t}=1 for t=1,,rt=1,\ldots,r.

Lemma 3.1

Let ZZ and WW be skew-symmetric c×cc\times c matrices.

  • a)

    If WW is \mathbb{Z}-invertible, then there is a matrix YY such that Z=Y𝐭𝐫WYZ=Y^{\mathbf{tr}}WY.

  • b)

    If WW is pure, then there is a matrix YY such that Z=YY𝐭𝐫+Y𝐭𝐫WYZ=Y-Y^{\mathbf{tr}}+Y^{\mathbf{tr}}WY.

Proof 3.2

Take W~=R𝐭𝐫WR\widetilde{W}=R^{\mathbf{tr}}WR for some \mathbb{Z}-invertible matrix RR. If claims (a)(a) and (b)(b) hold for W~\widetilde{W} and arbitrary ZZ, then they also hold for WW and arbitrary ZZ. Indeed, if Z~:=R1ZR𝐭𝐫\widetilde{Z}:=R^{-1}ZR^{-\mathbf{tr}}, then for each case (a)(a) or (b)(b) there is a matrix Y~\widetilde{Y} such that either

Z~=Y~𝐭𝐫W~Y~,orZ~=Y~Y~𝐭𝐫+Y~𝐭𝐫W~Y~,\widetilde{Z}=\widetilde{Y}^{\mathbf{tr}}\widetilde{W}\widetilde{Y},\quad\text{or}\quad\widetilde{Z}=\widetilde{Y}-\widetilde{Y}^{\mathbf{tr}}+\widetilde{Y}^{\mathbf{tr}}\widetilde{W}\widetilde{Y},

respectively. Take Y:=RY~R𝐭𝐫Y:=R\widetilde{Y}R^{\mathbf{tr}}. Then Y~=R1YR𝐭𝐫\widetilde{Y}=R^{-1}YR^{-\mathbf{tr}}, and

(a)\displaystyle(a) Z\displaystyle Z =RZ~R𝐭𝐫=R[Y~𝐭𝐫W~Y~]R𝐭𝐫=Y𝐭𝐫WY,\displaystyle=R\widetilde{Z}R^{\mathbf{tr}}=R[\widetilde{Y}^{\mathbf{tr}}\widetilde{W}\widetilde{Y}]R^{\mathbf{tr}}=Y^{\mathbf{tr}}WY,
(b)\displaystyle(b) Z\displaystyle Z =RZ~R𝐭𝐫=R[Y~Y~𝐭𝐫+Y~𝐭𝐫W~Y~]R𝐭𝐫=YY𝐭𝐫+Y𝐭𝐫WY.\displaystyle=R\widetilde{Z}R^{\mathbf{tr}}=R[\widetilde{Y}-\widetilde{Y}^{\mathbf{tr}}+\widetilde{Y}^{\mathbf{tr}}\widetilde{W}\widetilde{Y}]R^{\mathbf{tr}}=Y-Y^{\mathbf{tr}}+Y^{\mathbf{tr}}WY.

Therefore, we may assume that WW is in skew normal form. In particular, if WW is \mathbb{Z}-invertible then WW𝐭𝐫=W𝐭𝐫W=𝐈𝐝c=WWWW^{\mathbf{tr}}=W^{\mathbf{tr}}W=\mathbf{Id}_{c}=-WW.

To show (a)(a), observe that if WW is \mathbb{Z}-invertible then c=2rc=2r for some r1r\geq 1 and W=i=1rW1W=\bigoplus_{i=1}^{r}W_{1}, where W1=(0110)W_{1}=\left(\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right). Take a \mathbb{Z}-invertible matrix PP such that P𝐭𝐫ZP=i=1rdiW1P^{\mathbf{tr}}ZP=\bigoplus_{i=1}^{r}d_{i}W_{1} (not necessarily in skew normal form), and consider the diagonal c×cc\times c matrix S=diag(1,d1,1,d2,,1,dr)S=\mathrm{diag}(1,d_{1},1,d_{2},\ldots,1,d_{r}). Then

P𝐭𝐫ZP=i=1rdiW1=SWS,that is,Z=Y𝐭𝐫WYwhere Y=SP1.P^{\mathbf{tr}}ZP=\bigoplus_{i=1}^{r}d_{i}W_{1}=SWS,\quad\text{that is,}\quad Z=Y^{\mathbf{tr}}WY\quad\text{where $Y=SP^{-1}$}.

To show (b)(b), assume first that WW is \mathbb{Z}-invertible and take Z~:=Z+W\widetilde{Z}:=Z+W, which is also skew-symmetric. By part (a)(a) there is a matrix Y~\widetilde{Y} such that Z~=Y~𝐭𝐫WY~\widetilde{Z}=\widetilde{Y}^{\mathbf{tr}}W\widetilde{Y}. Taking Y:=Y~WY:=\widetilde{Y}-W, we get

Z\displaystyle Z =\displaystyle= Z~W=(Y+W)𝐭𝐫W(Y+W)W\displaystyle\widetilde{Z}-W=(Y+W)^{\mathbf{tr}}W(Y+W)-W
=\displaystyle= Y𝐭𝐫WY+Y𝐭𝐫WW+W𝐭𝐫WY+W𝐭𝐫WWW\displaystyle Y^{\mathbf{tr}}WY+Y^{\mathbf{tr}}WW+W^{\mathbf{tr}}WY+W^{\mathbf{tr}}WW-W
=\displaystyle= YY𝐭𝐫+Y𝐭𝐫WY,\displaystyle Y-Y^{\mathbf{tr}}+Y^{\mathbf{tr}}WY,

as wanted. In the pure case, W=(W000)W=\begin{pmatrix}W^{\prime}&0\\ 0&0\end{pmatrix} where WW^{\prime} is \mathbb{Z}-invertible (since WW is in its skew normal form). Taking

Z:=(Z1Z2𝐭𝐫Z2Z3)andY:=(Y10Y2Y3),Z:=\begin{pmatrix}Z_{1}&-Z_{2}^{\mathbf{tr}}\\ Z_{2}&Z_{3}\end{pmatrix}\quad\text{and}\quad Y:=\begin{pmatrix}Y_{1}&0\\ Y_{2}&Y_{3}\end{pmatrix},

then YY𝐭𝐫+Y𝐭𝐫WY=(Y1Y1𝐭𝐫+Y1𝐭𝐫WY1Y2𝐭𝐫Y2Y3Y3𝐭𝐫)Y-Y^{\mathbf{tr}}+Y^{\mathbf{tr}}WY=\begin{pmatrix}Y_{1}-Y_{1}^{\mathbf{tr}}+Y_{1}^{\mathbf{tr}}W^{\prime}Y_{1}&-Y_{2}^{\mathbf{tr}}\\ Y_{2}&Y_{3}-Y_{3}^{\mathbf{tr}}\end{pmatrix}. Using the first part of the proof of (b)(b), since Z1Z_{1} is skew-symmetric and WW^{\prime} is \mathbb{Z}-invertible, we may find Y1Y_{1} such that Z1=Y1Y1𝐭𝐫+Y1𝐭𝐫WY1Z_{1}=Y_{1}-Y_{1}^{\mathbf{tr}}+Y_{1}^{\mathbf{tr}}W^{\prime}Y_{1}. Take Y2=Z2Y_{2}=Z_{2}, and take any matrix Y3Y_{3} such that Z3=Y3Y3𝐭𝐫Z_{3}=Y_{3}-Y_{3}^{\mathbf{tr}}. Then Z=YY𝐭𝐫+Y𝐭𝐫WYZ=Y-Y^{\mathbf{tr}}+Y^{\mathbf{tr}}WY, which completes the proof.

3.2 Pseudo-morphisms

Let us formalize some of the notions already used in the paper.

Definition 3.3

Consider connected loop-less quivers QQ and Q~\widetilde{Q} with mm vertices and nn arrows.

  • a)

    A square matrix BB satisfying

    I(Q)B=I(Q~)andI(Q~)B𝐭𝐫=I(Q),I(Q)B=I(\widetilde{Q})\qquad\text{and}\qquad I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}),

    is referred to as pseudo-morphism from QQ to Q~\widetilde{Q}. These relations are expressed with the notation QBQ~Q\doteq^{B}\widetilde{Q}, or simply by QQ~Q\doteq\widetilde{Q} if such matrix BB exists.

  • b)

    If QBQQ\doteq^{B}Q we call BB a pseudo-endomorphism of QQ. The set of pseudo-endomorphisms of QQ will be denoted by End(Q)\mathrm{End}_{\doteq}(Q), that is,

    End(Q)={B𝕄n()I(Q)B=I(Q)=I(Q)B},where B:=GˇQ1B𝐭𝐫GˇQ, see (8).\mathrm{End}_{\doteq}(Q)=\{B\in\mathbb{M}_{n}(\mathbb{Z})\mid I(Q)B=I(Q)=I(Q)B^{*}\},\quad\text{where $B^{*}:=\widecheck{G}_{Q}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q}$, see~{}(\ref{EQQ3})}.
  • c)

    For matrices ZZ, ZZ^{\prime} and WW in 𝕄c()\mathbb{M}_{c}(\mathbb{Z}) we will use the notation

    ZWZ:=Z+ZZWZ.Z\circledast_{W}Z^{\prime}:=Z+Z^{\prime}-ZWZ^{\prime}.
Remark 3.4

Let 𝐐𝐮𝐢𝐯\mathbf{Quiv} denote the set of connected loop-less quivers with at least two vertices. For QQ and Q~\widetilde{Q} in 𝐐𝐮𝐢𝐯\mathbf{Quiv}, denote by Hom(Q,Q~)\mathrm{Hom}_{\doteq}(Q,\widetilde{Q}) the set of pseudo-morphisms from QQ to Q~\widetilde{Q}. Then (𝐐𝐮𝐢𝐯,Hom)(\mathbf{Quiv},\mathrm{Hom}_{\doteq}), together with the product of matrices, is a category. Moreover, the following hold if QQ and Q~\widetilde{Q} have the same number of vertices and arrows.

  • a)

    If QQ~Q\doteq\widetilde{Q} then ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\widetilde{Q}}.

  • b)

    If QBQ~Q\doteq^{B}\widetilde{Q} then Q~BQ\widetilde{Q}\doteq^{B^{*}}Q, where B=GˇQ~1B𝐭𝐫GˇQB^{*}=\widecheck{G}_{\widetilde{Q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q}.

In particular, \doteq is an equivalence relation on the set 𝐐𝐮𝐢𝐯\mathbf{Quiv}.

Proof 3.5

Let QBQ~Q\doteq^{B}\widetilde{Q} and Q~CQ~~\widetilde{Q}\doteq^{C}\widetilde{\widetilde{Q}} be pseudo-morphisms. Then

I(Q)(BC)=(I(Q)B)C=I(Q~)C=I(Q~~),I(Q)(BC)=(I(Q)B)C=I(\widetilde{Q})C=I(\widetilde{\widetilde{Q}}),

and

I(Q~~)(BC)𝐭𝐫=(I(Q~~)C𝐭𝐫)B𝐭𝐫=I(Q~)B𝐭𝐫=I(Q),I(\widetilde{\widetilde{Q}}^{\dagger})(BC)^{\mathbf{tr}}=(I(\widetilde{\widetilde{Q}}^{\dagger})C^{\mathbf{tr}})B^{\mathbf{tr}}=I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}),

that is, QBCQ~~Q\doteq^{BC}\widetilde{\widetilde{Q}}. Note that the identity matrix serves as neutral element of the monoid Hom(Q,Q)\mathrm{Hom}_{\doteq}(Q,Q), and the associativity of the matrix product shows that (𝐐𝐮𝐢𝐯,Hom)(\mathbf{Quiv},\mathrm{Hom}_{\doteq}) is a category.

To show (a)(a), assume that QBQ~Q\doteq^{B}\widetilde{Q} for a matrix BB. By definition of ΛQ~\Lambda_{\widetilde{Q}}, see (2), and since I(Q~)=I(Q~)GˇQ~1I(\widetilde{Q}^{\dagger})=I(\widetilde{Q})\widecheck{G}_{\widetilde{Q}}^{-1}, see (8), we have

ΛQ~\displaystyle\Lambda_{\widetilde{Q}} =\displaystyle= 𝐈𝐝I(Q~)I(Q~)𝐭𝐫=𝐈𝐝I(Q~)[I(Q)B]𝐭𝐫\displaystyle\mathbf{Id}-I(\widetilde{Q}^{\dagger})I(\widetilde{Q})^{\mathbf{tr}}=\mathbf{Id}-I(\widetilde{Q}^{\dagger})[I(Q)B]^{\mathbf{tr}}
=\displaystyle= 𝐈𝐝[I(Q~)B𝐭𝐫]I(Q)𝐭𝐫=𝐈𝐝I(Q)I(Q)𝐭𝐫=ΛQ.\displaystyle\mathbf{Id}-[I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}]I(Q)^{\mathbf{tr}}=\mathbf{Id}-I(Q^{\dagger})I(Q)^{\mathbf{tr}}=\Lambda_{Q}.

To prove (b)(b), using (8) we get

I(Q~)B=I(Q~)GˇQ~(GˇQ~1B𝐭𝐫GˇQ)=I(Q~)B𝐭𝐫GˇQ=I(Q)GˇQ=I(Q).I(\widetilde{Q})B^{*}=I(\widetilde{Q}^{\dagger})\widecheck{G}_{\widetilde{Q}}(\widecheck{G}_{\widetilde{Q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q})=I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}\widecheck{G}_{Q}=I(Q^{\dagger})\widecheck{G}_{Q}=I(Q).

Moreover, using (a)(a), (8) and Remark 1.5(e)(e), we have

I(Q)(B)𝐭𝐫\displaystyle I(Q^{\dagger})(B^{*})^{\mathbf{tr}} =\displaystyle= I(Q)GˇQ1(GˇQ𝐭𝐫BGˇQ~𝐭𝐫)=[I(Q)ΦQ𝐭𝐫]BGˇQ~𝐭𝐫=ΛQI(Q)BGˇQ~𝐭𝐫\displaystyle I(Q)\widecheck{G}_{Q}^{-1}(\widecheck{G}_{Q}^{\mathbf{tr}}B\widecheck{G}_{\widetilde{Q}}^{-\mathbf{tr}})=-[I(Q)\Phi_{Q}^{-\mathbf{tr}}]B\widecheck{G}_{\widetilde{Q}}^{-\mathbf{tr}}=-\Lambda_{Q}I(Q)B\widecheck{G}_{\widetilde{Q}}^{-\mathbf{tr}}
=\displaystyle= ΛQ~I(Q~)GˇQ~𝐭𝐫=I(Q~)ΦQ~𝐭𝐫GˇQ~𝐭𝐫=I(Q~)GˇQ~1GˇQ~𝐭𝐫GˇQ~𝐭𝐫=I(Q~).\displaystyle-\Lambda_{\widetilde{Q}}I(\widetilde{Q})\widecheck{G}_{\widetilde{Q}}^{-\mathbf{tr}}=-I(\widetilde{Q})\Phi_{\widetilde{Q}}^{-\mathbf{tr}}\widecheck{G}_{\widetilde{Q}}^{-\mathbf{tr}}=I(\widetilde{Q})\widecheck{G}_{\widetilde{Q}}^{-1}\widecheck{G}_{\widetilde{Q}}^{\mathbf{tr}}\widecheck{G}_{\widetilde{Q}}^{-\mathbf{tr}}=I(\widetilde{Q}^{\dagger}).

That is, Q~BQ\widetilde{Q}\doteq^{B^{*}}Q.

Note that \doteq is a reflective relation since Q𝐈𝐝QQ\doteq^{\mathbf{Id}}Q, and it is transitive by the first part of the proof. Since the symmetry of \doteq was shown in (b)(b), we conclude that \doteq is an equivalence relation.

With the notation introduced in Definition 3.3, Propositions 1.23 and 2.17 may be summarized as follows:

Corollary 3.6

If QQ is a connected loop-less quiver with ΛQ=ΛQ\Lambda_{Q}=\Lambda_{\vec{Q}} for a standard quiver Q\vec{Q} with the same number of arrows as QQ, then there is a \mathbb{Z}-invertible matrix BB such that QBQQ\doteq^{B}\vec{Q}.

Lemma 3.7

Let QQ be a connected loop-less quiver with mm vertices and nn arrows, fix a kernel matrix KK for I(Q)I(Q), and take K:=GˇQKK^{\dagger}:=\widecheck{G}_{Q}K. If c:=nm+1c:=n-m+1, then the function

𝕄c()\textstyle{\mathbb{M}_{c}(\mathbb{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Υ\scriptstyle{\Upsilon}End(Q)\textstyle{\mathrm{End}_{\doteq}(Q)}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Υ(Z):=𝐈𝐝+KZK𝐭𝐫,\textstyle{\Upsilon(Z):=\mathbf{Id}+KZK^{\dagger\mathbf{tr}},}

is a bijection, with inverse denoted by Ξ\Xi. Moreover, if BB and BB^{\prime} are pseudo-endomorphisms of QQ, and W:=K𝐭𝐫GˇQKW:=K^{\mathbf{tr}}\widecheck{G}_{Q}K, then

  • a)

    Ξ(BB)=Ξ(B)WΞ(B)\Xi(BB^{\prime})=\Xi(B)\circledast_{W}\Xi(B^{\prime}), where W\circledast_{W} is as in Definition 3.3(c)(c).

  • b)

    We have Ξ(𝐈𝐝n)=0\Xi(\mathbf{Id}_{n})=0, and BB is \mathbb{Z}-invertible if and only if there is a matrix ZZ with Ξ(B)WZ=0\Xi(B)\circledast_{W}Z=0 (or equivalently, ZWΞ(B)=0Z\circledast_{W}\Xi(B)=0).

Proof 3.8

Let c=nm+1c=n-m+1 be the corank of qQq_{Q}. Then KK and KK^{\dagger} are n×cn\times c matrices, and for any Z𝕄c()Z\in\mathbb{M}_{c}(\mathbb{Z}), we have

I(Q)Υ(Z)=I(Q)[𝐈𝐝+KZK𝐭𝐫]=I(Q)+I(Q)K(ZK𝐭𝐫)=I(Q),I(Q)\Upsilon(Z)=I(Q)[\mathbf{Id}+KZK^{\dagger\mathbf{tr}}]=I(Q)+I(Q)K(ZK^{\dagger\mathbf{tr}})=I(Q),

and

I(Q)Υ(Z)𝐭𝐫=I(Q)[𝐈𝐝+KZ𝐭𝐫K𝐭𝐫]=I(Q)+I(Q)K(Z𝐭𝐫K𝐭𝐫)=I(Q),I(Q^{\dagger})\Upsilon(Z)^{\mathbf{tr}}=I(Q^{\dagger})[\mathbf{Id}+K^{\dagger}Z^{\mathbf{tr}}K^{\mathbf{tr}}]=I(Q^{\dagger})+I(Q^{\dagger})K^{\dagger}(Z^{\mathbf{tr}}K^{\mathbf{tr}})=I(Q^{\dagger}),

since I(Q)=I(Q)GˇQ1I(Q^{\dagger})=I(Q)\widecheck{G}_{Q}^{-1} and K=GˇQKK^{\dagger}=\widecheck{G}_{Q}K. This shows, as claimed, that Υ(Z)\Upsilon(Z) belongs to End(Q)\mathrm{End}_{\doteq}(Q).

Now, if BB is a pseudo-endomorphism of QQ, then BB may be expressed uniquely as

B=𝐈𝐝+KZK𝐭𝐫=Υ(Z),B=\mathbf{Id}+KZK^{\dagger\mathbf{tr}}=\Upsilon(Z),

for a c×cc\times c matrix ZZ. Indeed, we have I(Q)(B𝐈𝐝)=0I(Q)(B-\mathbf{Id})=0, which implies that there is a unique c×nc\times n matrix LL such that B𝐈𝐝=KLB-\mathbf{Id}=KL (since the kernel matrix KK of I(Q)I(Q) has rank cc). On the other hand, (KL)I(Q)𝐭𝐫=(B𝐈𝐝)I(Q)𝐭𝐫=0(KL)I(Q^{\dagger})^{\mathbf{tr}}=(B-\mathbf{Id})I(Q^{\dagger})^{\mathbf{tr}}=0 implies that LI(Q)𝐭𝐫=0LI(Q^{\dagger})^{\mathbf{tr}}=0 since the columns of KK are linearly independent, thus there is a unique matrix ZZ such that L=ZK𝐭𝐫L=ZK^{\dagger\mathbf{tr}}. Then the mapping Ξ(B):=Z\Xi(B):=Z is well defined, by the uniqueness of ZZ. That is, Ξ(Υ(Z))=Z\Xi(\Upsilon(Z))=Z, and clearly

Υ(Ξ(B))=𝐈𝐝+KΞ(B)K𝐭𝐫=B,\Upsilon(\Xi(B))=\mathbf{Id}+K\Xi(B)K^{\dagger\mathbf{tr}}=B,

which proves that Υ\Upsilon is a bijection with inverse Ξ\Xi.

To show (a)(a) take Ξ(B):=Z\Xi(B):=Z and Ξ(B):=Z\Xi(B^{\prime}):=Z^{\prime}. Then

BB\displaystyle BB^{\prime} =\displaystyle= Υ(Z)Υ(Z)=(𝐈𝐝+KZK𝐭𝐫)(𝐈𝐝+KZK𝐭𝐫)\displaystyle\Upsilon(Z)\Upsilon(Z^{\prime})=(\mathbf{Id}+KZK^{\dagger\mathbf{tr}})(\mathbf{Id}+KZ^{\prime}K^{\dagger\mathbf{tr}})
=\displaystyle= 𝐈𝐝+K[Z+Z+ZK𝐭𝐫KZ]K𝐭𝐫=𝐈𝐝+K[Z+ZZWZ]K𝐭𝐫\displaystyle\mathbf{Id}+K[Z+Z^{\prime}+ZK^{\dagger\mathbf{tr}}KZ^{\prime}]K^{\dagger\mathbf{tr}}=\mathbf{Id}+K[Z+Z^{\prime}-ZWZ^{\prime}]K^{\dagger\mathbf{tr}}
=\displaystyle= 𝐈𝐝+K[ZWZ]K𝐭𝐫,\displaystyle\mathbf{Id}+K[Z\circledast_{W}Z^{\prime}]K^{\dagger\mathbf{tr}},

since K𝐭𝐫K=(K𝐭𝐫GˇQ𝐭𝐫)K=WK^{\dagger\mathbf{tr}}K=(K^{\mathbf{tr}}\widecheck{G}_{Q}^{\mathbf{tr}})K=-W (recall that (GˇQ+GˇQ𝐭𝐫)K=0(\widecheck{G}_{Q}+\widecheck{G}_{Q}^{\mathbf{tr}})K=0). Claim (b)(b) follows from the uniqueness of Ξ()\Xi(-), since clearly Ξ(𝐈𝐝)=0\Xi(\mathbf{Id})=0.

Remark 3.9

Let QQ be a connected loop-less quiver, and take a kernel matrix KK for I(Q)I(Q). If W:=K𝐭𝐫GˇQKW:=K^{\mathbf{tr}}\widecheck{G}_{Q}K, then the binary operation W:𝕄c()×𝕄c()𝕄c()\circledast_{W}:\mathbb{M}_{c}(\mathbb{Z})\times\mathbb{M}_{c}(\mathbb{Z})\to\mathbb{M}_{c}(\mathbb{Z}) given in Definition 3.3(c)(c) makes (𝕄c(),W)(\mathbb{M}_{c}(\mathbb{Z}),\circledast_{W}) a monoid with identity element the zero matrix 0𝕄c()0\in\mathbb{M}_{c}(\mathbb{Z}).

Proof 3.10

Use the associativity of End(Q)\mathrm{End}_{\doteq}(Q) (Remark 3.4) and apply Lemma 3.7(a,b)(a,b).

3.3 Multiplying for strong Gram congruence

For a pseudo-morphism QBQ~Q\doteq^{B}\widetilde{Q} we have often considered the matrix B:=GˇQ~1B𝐭𝐫GˇQB^{*}:=\widecheck{G}_{\widetilde{Q}^{-1}}B^{\mathbf{tr}}\widecheck{G}_{Q} (see for instance Theorem 4.1(ii)(ii) or Remark 3.4). Here we consider further properties of this star operation,

Hom(Q,Q~)()Hom(Q~,Q),\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 27.52504pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-27.52504pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}_{\doteq}(Q,\widetilde{Q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.63615pt\raise 6.96529pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.21529pt\hbox{$\scriptstyle{(-)^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 81.52504pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.52504pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 81.52504pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Hom}_{\doteq}(\widetilde{Q},Q)}$}}}}}}}\ignorespaces}}}}\ignorespaces,

see Remark 3.4(b)(b).

Lemma 3.11

Let QQ and Q~\widetilde{Q} be connected loop-less quivers with the same number of vertices and arrows. Assume that QBQ~Q\doteq^{B}\widetilde{Q}, and take B:=GˇQ~1B𝐭𝐫GˇQB^{*}:=\widecheck{G}_{\widetilde{Q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q}.

  • a)

    If Q=Q~Q=\widetilde{Q} then we have Ξ(B)=(1)Ξ(B)𝐭𝐫\Xi(B^{*})=(-1)\Xi(B)^{\mathbf{tr}}.

  • b)

    Both matrices Ξ(BB)\Xi(B^{*}B) and Ξ(BB)\Xi(BB^{*}) are skew-symmetric.

  • c)

    If BB is \mathbb{Z}-invertible then Q~B1Q\widetilde{Q}\doteq^{B^{-1}}Q and

    (B)1=GˇQ1B𝐭𝐫GˇQ~=:(B1).(B^{*})^{-1}=\widecheck{G}_{Q}^{-1}B^{-\mathbf{tr}}\widecheck{G}_{\widetilde{Q}}=:(B^{-1})^{*}.
Proof 3.12

To show (a)(a) assume that Q=Q~Q=\widetilde{Q}, and take Z:=Ξ(B)Z:=\Xi(B). Note that

B\displaystyle B^{*} =\displaystyle= GˇQ1B𝐭𝐫GˇQ=GˇQ1(𝐈𝐝+KZK𝐭𝐫)𝐭𝐫GˇQ\displaystyle\widecheck{G}_{Q}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q}=\widecheck{G}_{Q}^{-1}(\mathbf{Id}+KZK^{\dagger\mathbf{tr}})^{\mathbf{tr}}\widecheck{G}_{Q}
=\displaystyle= 𝐈𝐝+GˇQ1KZ𝐭𝐫K𝐭𝐫GˇQ=𝐈𝐝+K(Z𝐭𝐫)K𝐭𝐫=Υ(Z𝐭𝐫),\displaystyle\mathbf{Id}+\widecheck{G}_{Q}^{-1}K^{\dagger}Z^{\mathbf{tr}}K^{\mathbf{tr}}\widecheck{G}_{Q}=\mathbf{Id}+K(-Z^{\mathbf{tr}})K^{\dagger\mathbf{tr}}=\Upsilon(-Z^{\mathbf{tr}}),

that is, Ξ(B)=Ξ(Υ(Ξ(B)𝐭𝐫))=Ξ(B)𝐭𝐫\Xi(B^{*})=\Xi(\Upsilon(-\Xi(B)^{\mathbf{tr}}))=-\Xi(B)^{\mathbf{tr}}.

To show (b)(b) take Z:=Ξ(BB)Z:=\Xi(B^{*}B). Since BB=𝐈𝐝+K~ZK~𝐭𝐫B^{*}B=\mathbf{Id}+\widetilde{K}Z\widetilde{K}^{\dagger\mathbf{tr}} and K~=GˇQ~K\widetilde{K}^{\dagger}=\widecheck{G}_{\widetilde{Q}}K, we have

K~ZK~𝐭𝐫=GˇQ~K~ZK~𝐭𝐫=GˇQ~(BB𝐈𝐝)=B𝐭𝐫GˇQBGˇQ~,\widetilde{K}^{\dagger}Z\widetilde{K}^{\dagger\mathbf{tr}}=\widecheck{G}_{\widetilde{Q}}\widetilde{K}Z\widetilde{K}^{\dagger\mathbf{tr}}=\widecheck{G}_{\widetilde{Q}}(B^{*}B-\mathbf{Id})=B^{\mathbf{tr}}\widecheck{G}_{Q}B-\widecheck{G}_{\widetilde{Q}},

and therefore,

K~Z𝐭𝐫K~𝐭𝐫=(K~ZK~𝐭𝐫)𝐭𝐫=B𝐭𝐫GˇQ𝐭𝐫BGˇQ~𝐭𝐫.\widetilde{K}^{\dagger}Z^{\mathbf{tr}}\widetilde{K}^{\dagger\mathbf{tr}}=(\widetilde{K}^{\dagger}Z\widetilde{K}^{\dagger\mathbf{tr}})^{\mathbf{tr}}=B^{\mathbf{tr}}\widecheck{G}_{Q}^{\mathbf{tr}}B-\widecheck{G}_{\widetilde{Q}}^{\mathbf{tr}}.

Since I(Q)B=I(Q~)I(Q)B=I(\widetilde{Q}) we get

K~[Z+Z𝐭𝐫]K~𝐭𝐫=B𝐭𝐫GQBGQ~=(I(Q)B)𝐭𝐫(I(Q)B)I(Q~)𝐭𝐫I(Q~)=0.\widetilde{K}^{\dagger}[Z+Z^{\mathbf{tr}}]\widetilde{K}^{\dagger\mathbf{tr}}=B^{\mathbf{tr}}G_{Q}B-G_{\widetilde{Q}}=(I(Q)B)^{\mathbf{tr}}(I(Q)B)-I(\widetilde{Q})^{\mathbf{tr}}I(\widetilde{Q})=0.

In particular, Z+Z𝐭𝐫=0Z+Z^{\mathbf{tr}}=0 since the columns of K~\widetilde{K}^{\dagger} are linearly independent. The case BBBB^{*} can be shown in a similar way.

For (c)(c), using that I(Q)B=I(Q~)I(Q)B=I(\widetilde{Q}) and I(Q~)B𝐭𝐫=I(Q)I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}), if BB is \mathbb{Z}-invertible then

I(Q~)B1=I(Q)andI(Q)B𝐭𝐫=I(Q~),I(\widetilde{Q})B^{-1}=I(Q)\qquad\text{and}\qquad I(Q^{\dagger})B^{-\mathbf{tr}}=I(\widetilde{Q}^{\dagger}),

that is, Q~B1Q\widetilde{Q}\doteq^{B^{-1}}Q. The last claim of (c)(c) is immediate.

For a more general version of the following proposition, see Remark 4.17 below.

Proposition 3.13

Let QQ be a connected loop-less quiver. If there is a \mathbb{Z}-invertible matrix BB such that

I(Q)B=I(Q)andI(Q)B𝐭𝐫=I(Q),I(Q)B=I(\vec{Q})\qquad\text{and}\qquad I(\vec{Q}^{\dagger})B^{\mathbf{tr}}=I(Q^{\dagger}),

where Q\vec{Q} is a standard quiver with same number of vertices and arrows as QQ, then there is a matrix CC such that I(Q)[BC]=I(Q)I(Q)[BC]=I(\vec{Q}) and [BC][BC]=𝐈𝐝[BC]^{*}[BC]=\mathbf{Id}.

Proof 3.14

With the notation of Definition 3.3, we have QBQQ\doteq^{B}\vec{Q}. Fix kernel matrices KK and K\vec{K} of I(Q)I(Q) and I(Q)I(\vec{Q}), respectively.

Take B:=BB\overrightarrow{B}:=B^{*}B, Z:=Ξ(B)Z:=\Xi(\overrightarrow{B}) and Z:=Ξ(B1)\vec{Z}:=\Xi(\overrightarrow{B}^{-1}), where Ξ\Xi is the function constructed in Lemma 3.7 with respect to K\vec{K}. By Lemma 3.7(a)(a), we have ZWZ=0\vec{Z}\circledast_{\vec{W}}Z=0 where W=K𝐭𝐫GˇQK\vec{W}=\vec{K}^{\mathbf{tr}}\widecheck{G}_{\vec{Q}}\vec{K}. By Lemma 3.11(b,c)(b,c), the matrices ZZ and Z\vec{Z} are skew-symmetric. By Lemma 3.1(b)(b), there is a matrix YY such that Z=(Y𝐭𝐫)WY\vec{Z}=(-Y^{\mathbf{tr}})\circledast_{\vec{W}}Y, since W\vec{W} is a pure skew-symmetric matrix by Lemma 2.13, cf. (14). Consider the pseudo-endomorphism C=Υ(Y𝐭𝐫)=𝐈𝐝KY𝐭𝐫K𝐭𝐫C=\Upsilon(-Y^{\mathbf{tr}})=\mathbf{Id}-\vec{K}Y^{\mathbf{tr}}\vec{K}^{\dagger\mathbf{tr}} of Q\vec{Q}, which is \mathbb{Z}-invertible by Lemma 3.7(b)(b), since

(Y𝐭𝐫)W[YWZ]=[(Y𝐭𝐫)WY]WZ=ZWZ=0,(-Y^{\mathbf{tr}})\circledast_{\vec{W}}[Y\circledast_{\vec{W}}Z]=[(-Y^{\mathbf{tr}})\circledast_{\vec{W}}Y]\circledast_{\vec{W}}Z=\vec{Z}\circledast_{\vec{W}}Z=0,

using the associativity of W\circledast_{\vec{W}} (Remark 3.9). Observe that

BC=(BC)(BC)=C(BB)C=CBC.\overrightarrow{BC}=(BC)^{*}(BC)=C^{*}(B^{*}B)C=C^{*}\overrightarrow{B}C.

In particular, BC=𝐈𝐝\overrightarrow{BC}=\mathbf{Id} if and only if (CC)B=𝐈𝐝(CC^{*})\overrightarrow{B}=\mathbf{Id} since CC is \mathbb{Z}-invertible. Applying Lemma 3.7(a,b)(a,b) we get

Ξ[(CC)B]=[(Y𝐭𝐫)WY]WZ=ZWZ=0,\Xi[(CC^{*})\overrightarrow{B}]=[(-Y^{\mathbf{tr}})\circledast_{\vec{W}}Y]\circledast_{\vec{W}}Z=\vec{Z}\circledast_{\vec{W}}Z=0,

since Ξ(C)=(Y𝐭𝐫)\Xi(C)=(-Y^{\mathbf{tr}}), and Ξ(C)=Y\Xi(C^{*})=Y by Lemma 3.11(a)(a). Thus, we have BC=(BC)(BC)=𝐈𝐝\overrightarrow{BC}=(BC)^{*}(BC)=\mathbf{Id}, as wanted.

Example 3.15

We now apply Proposition 3.13 to the quiver Q0Q^{0} of Example 1.9 (recall from Example 2.19 that we have already found a matrix B1B_{1} such that q1B1q1q_{1}\approx^{B_{1}}\vec{q}_{1}). Consider the \mathbb{Z}-invertible matrix B0:=B0B_{0}:=B_{0}^{\prime} given in Example 1.25 satisfying Q0B0Q0Q^{0}\doteq^{B_{0}}\vec{Q}^{0}. Following the notation of the proof of Proposition 3.13 we get

B0=(001^0011^1^0011^1002^),B0=(11^101011^11^21^01^11)andB01=(111^01^21^11^101011^1).B_{0}=\begin{pmatrix}0&0&\widehat{1}&0\\ 0&1&\widehat{1}&\widehat{1}\\ 0&0&1&\widehat{1}\\ 1&0&0&\widehat{2}\end{pmatrix},\qquad\vec{B}_{0}=\begin{pmatrix}1&\widehat{1}&1&0\\ 1&0&1&\widehat{1}\\ 1&\widehat{1}&2&\widehat{1}\\ 0&\widehat{1}&1&1\end{pmatrix}\qquad\text{and}\qquad\vec{B}^{-1}_{0}=\begin{pmatrix}1&1&\widehat{1}&0\\ \widehat{1}&2&\widehat{1}&1\\ \widehat{1}&1&0&1\\ 0&1&\widehat{1}&1\end{pmatrix}.\qquad

Taking Z:=(01^10)\vec{Z}:=\left(\begin{smallmatrix}0&\widehat{1}\\ 1&0\end{smallmatrix}\right) we have

B01=Υ(Z)=𝐈𝐝4+K0ZK0𝐭𝐫=(10010110)(01^10)(1^11010).\vec{B}_{0}^{-1}=\Upsilon(\vec{Z})=\mathbf{Id}_{4}+\vec{K}_{0}\vec{Z}\vec{K}_{0}^{\dagger\mathbf{tr}}=\begin{pmatrix}1&0\\ 0&1\\ 0&1\\ 1&0\end{pmatrix}\begin{pmatrix}0&\widehat{1}\\ 1&0\end{pmatrix}\begin{pmatrix}\widehat{1}&1&&1\\ 0&&1&0\end{pmatrix}.

By Lemma 3.1(b)(b), there is a matrix YY such that W=(Y𝐭𝐫)WY\vec{W}=(-Y^{\mathbf{tr}})\circledast_{\vec{W}}Y. Indeed, note that W:=K0𝐭𝐫GˇQ0K0=0\vec{W}:=\vec{K}^{\mathbf{tr}}_{0}\widecheck{G}_{\vec{Q}^{0}}\vec{K}_{0}=0, therefore (Y𝐭𝐫)WY=YY𝐭𝐫(-Y^{\mathbf{tr}})\circledast_{\vec{W}}Y=Y-Y^{\mathbf{tr}}, so we may simply take Y:=(0010)Y:=\left(\begin{smallmatrix}0&0\\ 1&0\end{smallmatrix}\right). As in the proof above, we take

C:=Υ(Y𝐭𝐫)=𝐈𝐝4K0Y𝐭𝐫K0𝐭𝐫=(111^0010000100111)andB0C=(001^00001^01^21^11^12^).C:=\Upsilon(-Y^{\mathbf{tr}})=\mathbf{Id}_{4}-\vec{K}_{0}Y^{\mathbf{tr}}\vec{K}_{0}^{\dagger\mathbf{tr}}=\begin{pmatrix}1&1&\widehat{1}&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&1&-1&1\end{pmatrix}\quad\text{and}\quad B_{0}C=\begin{pmatrix}0&0&\widehat{1}&0\\ 0&0&0&\widehat{1}\\ 0&\widehat{1}&2&\widehat{1}\\ 1&\widehat{1}&1&\widehat{2}\end{pmatrix}.

A direct calculation shows that q0B0Cq0q_{0}\approx^{B_{0}C}\vec{q}_{0}, as claimed in Proposition 3.13.

4 Main proofs, concluding remarks and algorithms

This section collects all preliminary results to prove the main technical theorem of the paper (Theorem 4.1), which connects the Coxeter-Laplacian with the existence of strong Gram congruences, and suggests implementable algorithms to solve Simson’s Problem 2(ii)(ii). The section ends with those results of general interest used along the paper, and with some comments on generalizations and future work.

4.1 Main results

The following is a combinatorial version of Theorem 2 in terms of the Coxeter-Laplacian of a quiver.

Theorem 4.1

The following are equivalent for connected loop-less quivers QQ and Q~\widetilde{Q} with the same number of vertices and arrows:

  • i)

    The Coxeter-Laplacians of QQ and Q~\widetilde{Q} coincide, ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\widetilde{Q}}.

  • ii)

    There is a (not necessarily \mathbb{Z}-invertible) matrix BB such that QBQ~Q\doteq^{B}\widetilde{Q}.

  • iii)

    There is a (\mathbb{Z}-invertible) matrix BB such that I(Q)B=I(Q~)I(Q)B=I(\widetilde{Q}) and GˇQ~=B𝐭𝐫GˇQB\widecheck{G}_{\widetilde{Q}}=B^{\mathbf{tr}}\widecheck{G}_{Q}B.

Proof 4.2

Assume first that BB satisfies (iii)(iii) and recall that I(Q)=I(Q)GˇQ1I(Q^{\dagger})=I(Q)\widecheck{G}_{Q}^{-1} for any connected loop-less quiver QQ, see (8). Since 1=det(GˇQ~)=det(B𝐭𝐫GˇQB)=det(B)21=\det(\widecheck{G}_{\widetilde{Q}})=\det(B^{\mathbf{tr}}\widecheck{G}_{Q}B)=\det(B)^{2}, then BB is \mathbb{Z}-invertible and

I(Q~)B𝐭𝐫=I(Q~)[GˇQ~1B𝐭𝐫GˇQ]GˇQ1=I(Q~)B1GˇQ1=I(Q)GˇQ1=I(Q).I(\widetilde{Q}^{\dagger})B^{\mathbf{tr}}=I(\widetilde{Q})[\widecheck{G}_{\widetilde{Q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q}]\widecheck{G}_{Q}^{-1}=I(\widetilde{Q})B^{-1}\widecheck{G}_{Q}^{-1}=I(Q)\widecheck{G}_{Q}^{-1}=I(Q^{\dagger}).

That is, QBQ~Q\doteq^{B}\widetilde{Q}, and (ii)(ii) holds. That (ii)(ii) implies (i)(i) was shown in Remark 3.4(a)(a).

Assume that ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\widetilde{Q}}. By Remark 1.17, there is a standard quiver Q\vec{Q} with the same number of vertices and arrows as QQ, and such that 𝐜𝐭(Q)=𝐜𝐭(Q)\mathbf{ct}(Q)=\mathbf{ct}(\vec{Q}). By permuting the vertices of QQ and Q~\widetilde{Q} if necessary, we may assume that ΛQ=ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\vec{Q}}=\Lambda_{\widetilde{Q}} (see Remarks 1.1 and 1.17; recall that in Definition 1.10 we fixed linear orders on Q0\vec{Q}_{0} and Q1\vec{Q}_{1}).

By Proposition 1.23 there is a matrix BB^{\prime} such that QBQQ\doteq^{B^{\prime}}\vec{Q}, and by Proposition 2.17 there is a matrix MM such that B+MB^{\prime}+M is \mathbb{Z}-invertible and QB+MQQ\doteq^{B^{\prime}+M}\vec{Q}. Moreover, using Proposition 3.13 we find a matrix CC such that if B:=(B+M)CB:=(B^{\prime}+M)C, then I(Q)B=I(Q)I(Q)B=I(\vec{Q}) and BB=𝐈𝐝B^{*}B=\mathbf{Id}. Similarly, since ΛQ~=ΛQ\Lambda_{\widetilde{Q}}=\Lambda_{\vec{Q}}, we may find a matrix B~\widetilde{B} such that I(Q~)B~=I(Q)I(\widetilde{Q})\widetilde{B}=I(\vec{Q}) and B~B~=𝐈𝐝\widetilde{B}^{*}\widetilde{B}=\mathbf{Id} (in particular, B~\widetilde{B} is \mathbb{Z}-invertible since it is a square matrix with det(B~)=±1\det(\widetilde{B})=\pm 1). This means that GˇQ=B𝐭𝐫GˇQB\widecheck{G}_{\vec{Q}}=B^{\mathbf{tr}}\widecheck{G}_{Q}B and GˇQ=B~𝐭𝐫GˇQ~B~\widecheck{G}_{\vec{Q}}=\widetilde{B}^{\mathbf{tr}}\widecheck{G}_{\widetilde{Q}}\widetilde{B}, and therefore, I(Q)(BB~1)=I(Q~)I(Q)(B\widetilde{B}^{-1})=I(\widetilde{Q}) and

GˇQ~=(BB~1)𝐭𝐫GˇQ(BB~1),\widecheck{G}_{\widetilde{Q}}=(B\widetilde{B}^{-1})^{\mathbf{tr}}\widecheck{G}_{Q}(B\widetilde{B}^{-1}),

which completes the proof.

Let us now derive Theorems 1, 2 and 3 from Theorem 4.1.

Proof of Theorem 1:
Let qq be a connected non-negative unit form in n1n\geq 1 variables and of Dynkin type 𝔸r\mathbb{A}_{r} for r1r\geq 1. Using Theorem 1.3 we find a connected loop-less quiver QQ with m=r+1m=r+1 vertices and nn arrows such that q=qQq=q_{Q}. Consider the cycle type 𝐜𝐭(q)=𝐜𝐭(Q)\mathbf{ct}(q)=\mathbf{ct}(Q) and degree of degeneracy 𝕕q\mathbbm{d}_{q} of qq. Take Q=A𝕕q[𝐜𝐭(q)]\vec{Q}=\vec{A}^{\mathbbm{d}_{q}}[\mathbf{ct}(q)], which is also a connected loop-less quiver with m=r+1m=r+1 vertices and nn arrows (see Definition 1.10). Since 𝐜𝐭(Q)=𝐜𝐭(Q)\mathbf{ct}(Q)=\mathbf{ct}(\vec{Q}) by Remark 1.17, we may assume that ΛQ=ΛQ\Lambda_{Q}=\Lambda_{\vec{Q}} (by replacing QQ by the quiver ρQ\rho\cdot Q for some permutation ρ\rho of the set of vertices Q0Q_{0}, see Remark 1.1). By Theorem 4.1 there is a matrix BB such that I(Q)B=I(Q)I(Q)B=I(\vec{Q}) and GˇQ=B𝐭𝐫GˇQB\widecheck{G}_{\vec{Q}}=B^{\mathbf{tr}}\widecheck{G}_{Q}B. Taking q:=qQ\vec{q}:=q_{\vec{Q}}, by definition we have GˇQ=Gˇq\widecheck{G}_{Q}=\widecheck{G}_{q} and GˇQ=Gˇq\widecheck{G}_{\vec{Q}}=\widecheck{G}_{\vec{q}}, and therefore, qBqq\approx^{B}\vec{q}. The uniqueness of q\vec{q} follows from the uniqueness of the standard quiver Q\vec{Q} with cycle type 𝐜𝐭(q)\mathbf{ct}(q), mm vertices and nn arrows, cf. Corollary 1.15(b)(b). \QED

Proof of Theorem 2:
Let qq and q~\widetilde{q} be weakly Gram congruent connected non-negative unit forms in nn variables and of Dynkin type 𝔸r\mathbb{A}_{r}. If qq and q~\widetilde{q} are strongly Gram congruent, then φq=φq~\varphi_{q}=\varphi_{\widetilde{q}}, see for instance [33, Lemma 4.6].

Assume conversely that φq=φq~\varphi_{q}=\varphi_{\widetilde{q}}. Since qq~q\sim\widetilde{q}, then qq and q~\widetilde{q} have the same corank c=𝐜𝐨𝐫𝐤(q)=𝐜𝐨𝐫𝐤(q~)c=\mathbf{cork}(q)=\mathbf{cork}(\widetilde{q}). Using Theorem 1.3 we find quivers QQ and Q~\widetilde{Q} such that q=qQq=q_{Q} and q~=qQ~\widetilde{q}=q_{\widetilde{Q}}, both of which have m=r+1m=r+1 vertices and nn arrows. By Remark 1.5(b)(b) we have

φqQ(λ)=(λ1)c1pΛQ(λ)=(λ1)c1pΛQ~(λ)=φqQ~(λ).\varphi_{q_{Q}}(\lambda)=(\lambda-1)^{c-1}p_{\Lambda_{Q}}(\lambda)=(\lambda-1)^{c-1}p_{\Lambda_{\widetilde{Q}}}(\lambda)=\varphi_{q_{\widetilde{Q}}}(\lambda).

Therefore, the Coxeter-Laplacians ΛQ\Lambda_{Q} and ΛQ~\Lambda_{\widetilde{Q}} are co-spectral. By Lemma 4.5 below, the matrices ΛQ\Lambda_{Q} and ΛQ~\Lambda_{\widetilde{Q}} are conjugate, that is, there is a permutation matrix P(ρ)P(\rho) such that ΛQ~=P(ρ)𝐭𝐫ΛQP(ρ)\Lambda_{\widetilde{Q}}=P(\rho)^{\mathbf{tr}}\Lambda_{Q}P(\rho). Thus, by Theorem 1.3(i)(i) and replacing QQ by ρQ\rho\cdot Q if necessary, we may assume that ΛQ=ΛQ~\Lambda_{Q}=\Lambda_{\widetilde{Q}}, see Remark 1.1. We conclude that qq~q\approx\widetilde{q} by Theorem 1.3(iii)(iii), and using the equivalence of (i)(i) and (iii)(iii) in Theorem 4.1.\QED

Proof of Theorem 3:
The construction of the cycle type 𝐜𝐭\mathbf{ct} is given in [34, Definition 4.2], see also (5) above, where it is shown that 𝐜𝐭:[𝐔𝐐𝐮𝐚𝐝𝔸c(n)/]𝒫1c(m)\mathbf{ct}:[\mathbf{UQuad}_{\mathbb{A}}^{c}(n)/\approx]\to\mathcal{P}_{1}^{c}(m) is well-defined and surjective. The injectivity of 𝐜𝐭\mathbf{ct} is direct consequence of Theorem 2, and the properties (iiii)(i-iii) were shown in [34, Theorem 6.3 and Corollary 6.4]. Claim (iv)(iv) is clear from definition, see Lemma 2.4.

That the reduced corank of qq is 𝐜𝐨𝐫𝐤re(q)=1\mathbf{cork}_{re}(q)=\ell-1, where \ell is the length of 𝐜𝐭(q)\mathbf{ct}(q), was shown in Corollary 2.9. That the multiplicity of 11 as a root of φq\varphi_{q} is c+(1)c+(\ell-1) can be easily derived from the shape of φq\varphi_{q}, cf. [34, Remark 7.1(b)(b)]. That is, the algebraic multiplicity of 11 as eigenvalue of Φq\Phi_{q} is 𝐜𝐨𝐫𝐤(q)+𝐜𝐨𝐫𝐤re(q)\mathbf{cork}(q)+\mathbf{cork}_{re}(q), which shows (v)(v). \QED

4.2 Some general results

On pure subgroups and orthogonal matrices

We collect some well-known facts about pure subgroups, giving a sketch of the proofs.

Lemma 4.3

The following are equivalent for a subgroup XX of m\mathbb{Z}^{m}.

  • a)

    The group XX is pure.

  • b)

    The quotient m/X\mathbb{Z}^{m}/X is free.

  • c)

    There is a subgroup YY of m\mathbb{Z}^{m} such that m=XY\mathbb{Z}^{m}=X\oplus Y.

  • d)

    The canonical inclusion XmX\hookrightarrow\mathbb{Z}^{m} has a left inverse.

  • e)

    If f:Amf:A\to\mathbb{Z}^{m} is any morphism of abelian groups with 𝐈𝐦(f)=X\mathbf{Im}(f)=X, then for any morphism h:ABh:A\to B of abelian groups with h(𝐊𝐞𝐫(f))=0h(\mathbf{Ker}(f))=0 there is a morphism g:mBg:\mathbb{Z}^{m}\to B (not necessarily unique) such that h=gfh=gf.

Proof 4.4

Assume that XX is pure. If y¯:=y+Xm/X\bar{y}:=y+X\in\mathbb{Z}^{m}/X satisfies ay¯=0a\bar{y}=0 for some non-zero aa\in\mathbb{Z}, then ayXay\in X, hence yXy\in X, that is, y¯=0\bar{y}=0. This shows that m/X\mathbb{Z}^{m}/X is a torsion free (finitely generated) abelian group, thus free. Assume that m/X\mathbb{Z}^{m}/X is free, and fix a basis y¯1,,y¯d\bar{y}_{1},\ldots,\bar{y}_{d} of m/X\mathbb{Z}^{m}/X with y¯t=yt+X\bar{y}_{t}=y_{t}+X and ytmy_{t}\in\mathbb{Z}^{m} for t=1,,dt=1,\ldots,d. Take Y=y1,,ydY=\langle y_{1},\ldots,y_{d}\rangle the subgroup of m\mathbb{Z}^{m} generated by y1,,ydy_{1},\ldots,y_{d}, and verify that m=XY\mathbb{Z}^{m}=X\oplus Y. Assume that m=XY\mathbb{Z}^{m}=X\oplus Y, and take the inclusion σX:Xm\sigma_{X}:X\to\mathbb{Z}^{m}. Then the projection πX:XYX\pi_{X}:X\oplus Y\to X satisfies πXσX=𝐈𝐝X\pi_{X}\sigma_{X}=\mathbf{Id}_{X}, that is, σX\sigma_{X} is left invertible. Assume that σX\sigma_{X} has a left inverse π:mX\pi:\mathbb{Z}^{m}\to X, and that axXax\in X for a non-zero aa\in\mathbb{Z}. Then ax=π(ax)=aπ(x)ax=\pi(ax)=a\pi(x), which implies that x=π(x)x=\pi(x), that is, xXx\in X, and XX is a pure subgroup of m\mathbb{Z}^{m}. These arguments show that the statements (ad)(a-d) are equivalent.

Assume now that (d)(d) holds, and take functions ff and hh as in claim (e)(e). Denote by f~\widetilde{f} the restriction of ff to its image, f~:A𝐈𝐦(f)\widetilde{f}:A\to\mathbf{Im}(f). Then f=σXf~f=\sigma_{X}\widetilde{f}, and therefore f~=πf\widetilde{f}=\pi f, where σX:Xm\sigma_{X}:X\to\mathbb{Z}^{m} is the canonical inclusion, and π\pi is a left inverse of σX\sigma_{X}. Since f~\widetilde{f} is a cokernel of the inclusion 𝐊𝐞𝐫(f)A\mathbf{Ker}(f)\hookrightarrow A, there is h~:𝐈𝐦(f)B\widetilde{h}:\mathbf{Im}(f)\to B such that h=h~f~h=\widetilde{h}\widetilde{f}. Then the following diagram is commutative,

𝐊𝐞𝐫(f)\textstyle{\mathbf{Ker}(f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}f~\scriptstyle{\widetilde{f}}h\scriptstyle{h}m\textstyle{\mathbb{Z}^{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}𝐈𝐦(f)\textstyle{\mathbf{Im}(f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h~\scriptstyle{\widetilde{h}}B\textstyle{B}

Take g:=h~πg:=\widetilde{h}\pi and observe that gf=h~πf=h~f~=hgf=\widetilde{h}\pi f=\widetilde{h}\widetilde{f}=h, as wanted. Finally, assume that (e)(e) holds, and take f=σXf=\sigma_{X} and h=𝐈𝐝Xh=\mathbf{Id}_{X}. Since 𝐊𝐞𝐫(f)=0\mathbf{Ker}(f)=0 then h(𝐊𝐞𝐫(f))=0h(\mathbf{Ker}(f))=0, and by hypothesis there is g:mXg:\mathbb{Z}^{m}\to X such that 𝐈𝐝X=gf=fσX\mathbf{Id}_{X}=gf=f\sigma_{X}. This shows the equivalence of claims (d)(d) and (e)(e), completing the proof.

Recall that two permutation matrices PP and PP^{\prime} are called conjugate if there is a permutation matrix RR such that P=R𝐭𝐫PRP^{\prime}=R^{\mathbf{tr}}PR.

Lemma 4.5

The following are equivalent for permutations ξ\xi and ξ\xi^{\prime} of the set {1,,m}\{1,\ldots,m\}.

  • i)

    P(ξ)P(\xi) and P(ξ)P(\xi^{\prime}) are conjugate permutation matrices.

  • ii)

    The matrices P(ξ)P(\xi) and P(ξ)P(\xi^{\prime}) are co-spectral.

  • iii)

    The cycle types 𝐜𝐭(ξ)\mathbf{ct}(\xi) and 𝐜𝐭(ξ)\mathbf{ct}(\xi^{\prime}) coincide.

  • iv)

    ξ\xi and ξ\xi^{\prime} are conjugate permutations.

Proof 4.6

If P(ξ)P(\xi) and P(ξ)P(\xi^{\prime}) are conjugate permutation matrices, then they are similar matrices and their spectra coincide. Recall that the characteristic polynomial of P(ξ)P(\xi) is given by

pP(ξ)(λ)=t=1(λπt1),p_{P(\xi)}(\lambda)=\prod_{t=1}^{\ell}(\lambda^{\pi_{t}}-1),

where π=(π1,,π)\pi=(\pi_{1},\ldots,\pi_{\ell}) is the cycle type 𝐜𝐭(ξ)=π\mathbf{ct}(\xi)=\pi of ξ\xi (cf. [54, §2.2] or [34]). If P(ξ)P(\xi) and P(ξ)P(\xi^{\prime}) are co-spectral, then the cycle types of ξ\xi and ξ\xi^{\prime} coincide (cf. [34, Algorithm 2 and Remark 7.4]). In this case, ξ\xi and ξ\xi^{\prime} are conjugate permutations (see [54, Proposition 2.33]), which in turn shows that P(ξ)P(\xi) and P(ξ)P(\xi^{\prime}) are conjugate permutation matrices.

On non-negative integral quadratic forms

Let ZZ be a free finitely generated abelian group. By integral quadratic form qq on ZZ we mean a function q:Zq:Z\to\mathbb{Z} satisfying q(ax)=a2q(x)q(ax)=a^{2}q(x) for any aa\in\mathbb{Z} and xZx\in Z, and such that its polarization 𝕓q:Z×Z\mathbbm{b}_{q}:Z\times Z\to\mathbb{Z}, given by 𝕓q(x,y):=q(x+y)q(x)q(y)\mathbbm{b}_{q}(x,y):=q(x+y)-q(x)-q(y), is a (symmetric) bilinear form. The symmetric matrix of 𝕓q\mathbbm{b}_{q} with respect to a fixed basis of ZZ is denoted by GqG_{q}. Since the determinant of GqG_{q} is independent of the chosen basis, it is referred to as determinant det(q)\det(q) of qq. The radical of qq is the kernel (or right null space) of GqG_{q}. Since q(x)=0q(x)=0 for any x𝐫𝐚𝐝(q)x\in\mathbf{rad}(q), the induced function q/𝐫𝐚𝐝(q):Z/𝐫𝐚𝐝(q)q/\mathbf{rad}(q):Z/\mathbf{rad}(q)\to\mathbb{Z} is well defined.

Lemma 4.7

Let q:Zq:Z\to\mathbb{Z} be an integral quadratic form.

  • i)

    The form qq has zero radical (that is, 𝐫𝐚𝐝(q)=0\mathbf{rad}(q)=0) if and only if det(q)0\det(q)\neq 0.

  • ii)

    If Z~\widetilde{Z} is a free finitely generated abelian group, and B:Z~ZB:\widetilde{Z}\to Z is a linear transformation, then qB:Z~qB:\widetilde{Z}\to\mathbb{Z} is an integral quadratic form.

  • iii)

    If Z~\widetilde{Z} is a free finitely generated abelian group, q~:Z~\widetilde{q}:\widetilde{Z}\to\mathbb{Z} is a function and B~:ZZ~\widetilde{B}:Z\to\widetilde{Z} is a surjective linear transformation such that q=q~B~q=\widetilde{q}\widetilde{B}, then q~\widetilde{q} is an integral quadratic form.

  • iv)

    The radical 𝐫𝐚𝐝(q)\mathbf{rad}(q) is a pure subgroup of ZZ, and the function q/𝐫𝐚𝐝(q):Z/𝐫𝐚𝐝(q)q/\mathbf{rad}(q):Z/\mathbf{rad}(q)\to\mathbb{Z} is an integral quadratic form with radical zero.

  • v)

    If qq is non-negative, then xZx\in Z is a radical vector of qq if and only if q(x)=0q(x)=0.

Proof 4.8

Fix a basis (𝐞1,,𝐞n)(\mathbf{e}_{1},\ldots,\mathbf{e}_{n}) of ZZ, and let GqG_{q} be the Gram matrix of 𝕓q\mathbbm{b}_{q} with respect to such basis. Then det(Gq)=0\det(G_{q})=0 if and only if there is a trivial integral linear combination of the rows of GqG_{q}, that is, if there is a vector z=(z1,,zn)nz=(z_{1},\ldots,z_{n})\in\mathbb{Z}^{n} such that Gqz=0G_{q}z=0 (indeed, use Gaussian elimination over the rational numbers, then multiply any solution by a common multiple of the denominators to get integer coefficients). Then claim (i)(i) is clear, since x=i=1nzi𝐞iZx=\sum_{i=1}^{n}z_{i}\mathbf{e}_{i}\in Z is a radical vector of qq.

For (ii)(ii) take q~:=qB\widetilde{q}:=qB. The polarization of q~\widetilde{q} is given by 𝕓q~(x~,y~)=𝕓q(Bx~,By~)\mathbbm{b}_{\widetilde{q}}(\widetilde{x},\widetilde{y})=\mathbbm{b}_{q}(B\widetilde{x},B\widetilde{y}) for vectors x~,y~Z~\widetilde{x},\widetilde{y}\in\widetilde{Z}. Then the bilinearity of 𝕓q~\mathbbm{b}_{\widetilde{q}} follows from the linearity of BB and the bilinearity of 𝕓q\mathbbm{b}_{q}. Moreover, for any aa\in\mathbb{Z} and x~Z~\widetilde{x}\in\widetilde{Z} we have

q~(ax~)=q(Bax~)=q(aBx~)=a2q(Bx~)=a2q~(x~),\widetilde{q}(a\widetilde{x})=q(Ba\widetilde{x})=q(aB\widetilde{x})=a^{2}q(B\widetilde{x})=a^{2}\widetilde{q}(\widetilde{x}),

since BB is linear and qq is an integral quadratic form.

To show (iii)(iii) observe that the polarization of q~\widetilde{q} has the following shape, for vectors x~,y~Z~\widetilde{x},\widetilde{y}\in\widetilde{Z} and vectors x,yZx,y\in Z such that B~x=x~\widetilde{B}x=\widetilde{x} and B~y=y~\widetilde{B}y=\widetilde{y},

𝕓q~(x~,y~)=𝕓q~(B~x,B~y)=𝕓q(x,y).\mathbbm{b}_{\widetilde{q}}(\widetilde{x},\widetilde{y})=\mathbbm{b}_{\widetilde{q}}(\widetilde{B}x,\widetilde{B}y)=\mathbbm{b}_{q}(x,y).

Then a standard calculation, using that B~\widetilde{B} is linear and surjective and that 𝕓q\mathbbm{b}_{q} is bilinear, shows that 𝕓q~\mathbbm{b}_{\widetilde{q}} is bilinear. Moreover, for arbitrary aa\in\mathbb{Z} and x~Z~\widetilde{x}\in\widetilde{Z}, there is xZx\in Z such that B~x=x~\widetilde{B}x=\widetilde{x} (since B~\widetilde{B} is surjective), and we have

q~(ax~)=q~(aB~x)=q~(B~(ax))=q(ax)=a2q(x)=a2q~(B~x)=a2q~(x~),\widetilde{q}(a\widetilde{x})=\widetilde{q}(a\widetilde{B}x)=\widetilde{q}(\widetilde{B}(ax))=q(ax)=a^{2}q(x)=a^{2}\widetilde{q}(\widetilde{B}x)=a^{2}\widetilde{q}(\widetilde{x}),

since qq is a quadratic form and B~\widetilde{B} is linear.

To show (iv)(iv), since 𝐫𝐚𝐝(q)\mathbf{rad}(q) is the kernel of 𝕓q\mathbbm{b}_{q} then it is a pure subgroup of ZZ. Moreover, observe that x𝐫𝐚𝐝(q)x\in\mathbf{rad}(q) if and only if q(x+y)=q(y)q(x+y)=q(y) for any yZy\in Z, which shows that the induced function q/𝐫𝐚𝐝(q)q/\mathbf{rad}(q) is well defined. If B~:ZZ/𝐫𝐚𝐝(q)\widetilde{B}:Z\to Z/\mathbf{rad}(q) is the canonical surjection, then q=(q/𝐫𝐚𝐝(q))(B~)q=(q/\mathbf{rad}(q))(\widetilde{B}) and q~\widetilde{q} is an integral quadratic form by (iii)(iii).

The proof of (v)(v) is a simple generalization of [33, Lemma 2.1(b)(b)]. Indeed, if x𝐫𝐚𝐝(q)x\in\mathbf{rad}(q) then q(x)=12x𝐭𝐫Gqx=0q(x)=\frac{1}{2}x^{\mathbf{tr}}G_{q}x=0 (here we identify the elements xZx\in Z with their coordinate vectors in n\mathbb{Z}^{n} in the fixed basis). Conversely, if qq is non-negative and q(x)=0q(x)=0, then for an arbitrary mm\in\mathbb{Z} and a basis 𝐞1,,𝐞n\mathbf{e}_{1},\ldots,\mathbf{e}_{n} of ZZ we have

0q(mx+𝐞i)=m𝕓q(x,𝐞i)+q(𝐞i).0\leq q(mx+\mathbf{e}_{i})=m\mathbbm{b}_{q}(x,\mathbf{e}_{i})+q(\mathbf{e}_{i}).

Since mm is arbitrary, then 𝕓q(x,𝐞i)=0\mathbbm{b}_{q}(x,\mathbf{e}_{i})=0, and this holds for any i{1,,n}i\in\{1,\ldots,n\}. That is, x𝐫𝐚𝐝(q)x\in\mathbf{rad}(q).

Lemma 4.9

Let q:Zq:Z\to\mathbb{Z} be a non-negative integral quadratic form, B:Z~ZB:\widetilde{Z}\to Z a linear transformation, and take q~:=qB\widetilde{q}:=qB. Then BB is an isomorphism if and only if the following conditions hold,

  • a)

    the transformation BB restricts to an isomorphism B|𝐫𝐚𝐝:𝐫𝐚𝐝(q~)𝐫𝐚𝐝(q)B|_{\mathbf{rad}}:\mathbf{rad}(\widetilde{q})\to\mathbf{rad}(q);

  • b)

    the determinants of q/𝐫𝐚𝐝(q)q/\mathbf{rad}(q) and q~/𝐫𝐚𝐝(q~)\widetilde{q}/\mathbf{rad}(\widetilde{q}) coincide.

Proof 4.10

By Lemma 4.7(ii)(ii), q~=qB\widetilde{q}=qB is an integral quadratic form, which is clearly non-negative. By non-negativity, BB restricts to a transformation B|𝐫𝐚𝐝:𝐫𝐚𝐝(q~)𝐫𝐚𝐝(q)B|_{\mathbf{rad}}:\mathbf{rad}(\widetilde{q})\to\mathbf{rad}(q). Indeed, if x~𝐫𝐚𝐝(q~)\widetilde{x}\in\mathbf{rad}(\widetilde{q}) then q(B(x~))=q~(x~)=0q(B(\widetilde{x}))=\widetilde{q}(\widetilde{x})=0, and by Lemma 4.7(v)(v) the vector B(x~)B(\widetilde{x}) is in the radical of qq. In particular, BB induces a linear transformation [B]:Z~/𝐫𝐚𝐝(q~)Z/𝐫𝐚𝐝(q)[B]:\widetilde{Z}/\mathbf{rad}(\widetilde{q})\to Z/\mathbf{rad}(q) such that the following diagram commutes,

Z~/𝐫𝐚𝐝(q~)\textstyle{\widetilde{Z}/\mathbf{rad}(\widetilde{q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q~/𝐫𝐚𝐝(q~)\scriptstyle{\widetilde{q}/\mathbf{rad}(\widetilde{q})}[B]\scriptstyle{[B]}.\textstyle{\mathbb{Z}.}Z/𝐫𝐚𝐝(q)\textstyle{Z/\mathbf{rad}(q)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q/𝐫𝐚𝐝(q)\scriptstyle{q/\mathbf{rad}(q)}

Assume first that BB is an isomorphism. Then q=q~B1q=\widetilde{q}B^{-1} and since q~\widetilde{q} is also non-negative, the restriction B1|𝐫𝐚𝐝:𝐫𝐚𝐝(q)𝐫𝐚𝐝(q~)B^{-1}|_{\mathbf{rad}}:\mathbf{rad}(q)\to\mathbf{rad}(\widetilde{q}) is inverse of B|𝐫𝐚𝐝B|_{\mathbf{rad}}. Since 𝐫𝐚𝐝(q)\mathbf{rad}(q) is a direct summand of ZZ, and so is 𝐫𝐚𝐝(q~)\mathbf{rad}(\widetilde{q}) of Z~\widetilde{Z} (Lemma 4.3), then [B][B] is an isomorphism between free finitely generated abelian groups, which implies that det(q~/𝐫𝐚𝐝(q~))=det(q/𝐫𝐚𝐝(q))det([B])=det(q/𝐫𝐚𝐝(q))\det(\widetilde{q}/\mathbf{rad}(\widetilde{q}))=\det(q/\mathbf{rad}(q))\det([B])=\det(q/\mathbf{rad}(q)). This shows that (a)(a) and (b)(b) hold.

For the converse, by Lemma 4.7(i,v)(i,v) we have det(q/𝐫𝐚𝐝(q))0\det(q/\mathbf{rad}(q))\neq 0 and det(q~/𝐫𝐚𝐝(q~))0\det(\widetilde{q}/\mathbf{rad}(\widetilde{q}))\neq 0. By (b)(b), this implies that det([B])=±1\det([B])=\pm 1, that is, that [B][B] is an isomorphism. Assume now that 0=Bx~0=B\widetilde{x} for some x~Z~\widetilde{x}\in\widetilde{Z}. Then [B](x~+𝐫𝐚𝐝(q~))=0[B](\widetilde{x}+\mathbf{rad}(\widetilde{q}))=0, which implies that x~𝐫𝐚𝐝(q~)\widetilde{x}\in\mathbf{rad}(\widetilde{q}) since [B][B] is injective. Since B|𝐫𝐚𝐝B|_{\mathbf{rad}} is injective by (a)(a), we have x~=0\widetilde{x}=0, that is, BB is injective. Take now xZx\in Z arbitrary. Since [B][B] is surjective, there is x~Z~\widetilde{x}\in\widetilde{Z} such that B(x~+𝐫𝐚𝐝(q~))=x+𝐫𝐚𝐝(q)B(\widetilde{x}+\mathbf{rad}(\widetilde{q}))=x+\mathbf{rad}(q), that is, xBx~𝐫𝐚𝐝(q)x-B\widetilde{x}\in\mathbf{rad}(q) since B(𝐫𝐚𝐝(q~))𝐫𝐚𝐝(q)B(\mathbf{rad}(\widetilde{q}))\subseteq\mathbf{rad}(q). Using that B|𝐫𝐚𝐝B|_{\mathbf{rad}} is surjective, again by (a)(a) there is y~𝐫𝐚𝐝(q~)\widetilde{y}\in\mathbf{rad}(\widetilde{q}) such that By~=xBx~B\widetilde{y}=x-B\widetilde{x}, that is, x=B(x~+y~)x=B(\widetilde{x}+\widetilde{y}). This shows the surjectivity of BB, completing the proof.

Corollary 4.11

Let qq and q~\widetilde{q} be connected non-negative unit forms in the same number of variables. Then the following hold:

  • i)

    The forms qq and q~\widetilde{q} have the same Dynkin type if and only if the determinants of q/𝐫𝐚𝐝(q)q/\mathbf{rad}(q) and q~/𝐫𝐚𝐝(q~)\widetilde{q}/\mathbf{rad}(\widetilde{q}) coincide.

  • ii)

    If qq and q~\widetilde{q} have the same Dynkin type and q~=qB\widetilde{q}=qB for an integer matrix BB, then BB is \mathbb{Z}-invertible if and only if BB restricts to an isomorphism B|𝐫𝐚𝐝:𝐫𝐚𝐝(q~)𝐫𝐚𝐝(q)B|_{\mathbf{rad}}:\mathbf{rad}(\widetilde{q})\to\mathbf{rad}(q).

Proof 4.12

To show (i)(i) assume first that qq and q~\widetilde{q} have the same Dynkin type. Then they are weakly Gram congruent since they have the same number of variables, that is, there is a \mathbb{Z}-invertible matrix BB with q~=qB\widetilde{q}=qB. By Lemma 4.9(b)(b) the determinants of q/𝐫𝐚𝐝(q)q/\mathbf{rad}(q) and q~/𝐫𝐚𝐝(q~)\widetilde{q}/\mathbf{rad}(\widetilde{q}) coincide. Conversely, assume that qq and q~\widetilde{q} have different Dynkin types, say Δ\Delta and Δ~\widetilde{\Delta}. By [5, Theorem 3.15], the forms q/𝐫𝐚𝐝(q)q/\mathbf{rad}(q) and qΔq_{\Delta} are equivalent, therefore, they have the same determinant. The same holds for q~/𝐫𝐚𝐝(q~)\widetilde{q}/\mathbf{rad}(\widetilde{q}) and qΔ~q_{\widetilde{\Delta}}. Since qq and q~\widetilde{q} have the same number of variables, and ΔΔ~\Delta\neq\widetilde{\Delta}, then det(qΔ)det(qΔ~)\det(q_{\Delta})\neq\det(q_{\widetilde{\Delta}}) (see for instance [66, Corollary 3.10(b)(b)]), which shows that the determinants of q/𝐫𝐚𝐝(q)q/\mathbf{rad}(q) and q~/𝐫𝐚𝐝(q~)\widetilde{q}/\mathbf{rad}(\widetilde{q}) are different.

Claim (ii)(ii) follows from (i)(i) and Lemma 4.9(b)(b).

Lemma 4.13

Let qq and q~\widetilde{q} be non-negative unit forms with qBq~q\approx^{B}\widetilde{q} for a n×nn\times n matrix BB. Then BB restricts to isomorphisms

B|𝐫𝐚𝐝\displaystyle B|_{\mathbf{rad}} :\displaystyle: 𝐫𝐚𝐝(q~)𝐫𝐚𝐝(q),\displaystyle\mathbf{rad}(\widetilde{q})\to\mathbf{rad}(q),
B|𝐫𝐚𝐝re\displaystyle B|_{\mathbf{rad}_{re}} :\displaystyle: 𝐫𝐚𝐝re(q~)𝐫𝐚𝐝re(q).\displaystyle\mathbf{rad}_{re}(\widetilde{q})\to\mathbf{rad}_{re}(q).

In particular, the standard morsification 𝕓ˇq\widecheck{\mathbbm{b}}_{q} has pure restriction 𝕣ˇq\widecheck{\mathbbm{r}}_{q} to its radical if and only if 𝕓ˇq~\widecheck{\mathbbm{b}}_{\widetilde{q}} has pure restriction 𝕣ˇq~\widecheck{\mathbbm{r}}_{\widetilde{q}} to its radical.

Proof 4.14

That B|𝐫𝐚𝐝B|_{\mathbf{rad}} is an isomorphism was shown in Lemma 4.9. The second isomorphism holds since 𝕓ˇq~(x,y)=𝕓ˇq(Bx,By)\widecheck{\mathbbm{b}}_{\widetilde{q}}(x,y)=\widecheck{\mathbbm{b}}_{q}(Bx,By) for any x,ynx,y\in\mathbb{Z}^{n}, and BB is \mathbb{Z}-invertible. The claim on pure restriction is clear since both B|𝐫𝐚𝐝B|_{\mathbf{rad}} and B|𝐫𝐚𝐝reB|_{\mathbf{rad}_{re}} are isomorphisms, and 𝐫𝐚𝐝re(q)\mathbf{rad}_{re}(q) is the kernel of the restriction 𝕣ˇq\widecheck{\mathbbm{r}}_{q} of 𝕓ˇq\widecheck{\mathbbm{b}}_{q} to its radical.

Some consequences

The following technical observation, basic for our work, seems to hold for more general contexts (for other Dynkin types and for other unimodular morsifications). The author was not able to find any related results in the literature, nor any more general proofs.

Corollary 4.15

Let qq be a connected non-negative unit form of Dynkin type 𝔸r\mathbb{A}_{r} for r1r\geq 1. Then the associated upper triangular bilinear form 𝕓ˇq\widecheck{\mathbbm{b}}_{q} (the standard morsification of qq) has pure restriction to its radical.

Proof 4.16

Follows from Lemma 4.13, Theorem 1 and Lemma 2.13.

Remark 4.17

In the proofs of Propositions 2.17 and 3.13, the only needed condition of the standard quiver Q\vec{Q} is that the upper triangular bilinear form 𝕓ˇqQ\widecheck{\mathbbm{b}}_{q_{\vec{Q}}} has pure restriction to its radical (Lemma 2.13). As consequence of Corollary 4.15, the same constructions of Propositions 2.17 or 3.13 hold when replacing Q\vec{Q} for an arbitrary quiver Q~\widetilde{Q} satisfying QBQ~Q\doteq^{B}\widetilde{Q} for a square or a \mathbb{Z}-invertible matrix BB, respectively.

Observe that a loop-less quiver QQ and its inverse QQ^{\dagger} have the same Coxeter polynomial. Indeed, using that I(Q)=I(Q)GˇQ1I(Q^{\dagger})=I(Q)\widecheck{G}_{Q}^{-1} and that GˇQ=GˇQ1\widecheck{G}_{Q^{\dagger}}=\widecheck{G}_{Q}^{-1} (cf. [33, Proposition 4.4]), a direct calculation yields ΦQ𝐭𝐫=ΦQ\Phi_{Q}^{\mathbf{tr}}=\Phi_{Q^{\dagger}}. Then the following result, consequence of Theorem 2, helps us find explicit congruences between the upper and lower triangular Gram matrices for the class of unit forms considered in this paper (see [31] for related problems).

Corollary 4.18

Let qq be a connected non-negative unit form of Dynkin type 𝔸r\mathbb{A}_{r} for some r1r\geq 1, consider the upper triangular Gram matrix Gˇq\widecheck{G}_{q} and take q:=qGˇq1q^{\dagger}:=q\widecheck{G}_{q}^{-1}. Then qq^{\dagger} is a connected unit form with qqq^{\dagger}\approx q. Moreover, any strong Gram congruence qBqq\approx^{B}q^{\dagger} determines a congruence

C𝐭𝐫GˇqC=Gˇq𝐭𝐫,C^{\mathbf{tr}}\widecheck{G}_{q}C=\widecheck{G}_{q}^{\mathbf{tr}},

by taking C=BGˇqC=B\widecheck{G}_{q}.

Proof 4.19

By Theorem 1.3, there is a connected loop-less quiver QQ such that q=qQq=q_{Q}. Taking QQ^{\dagger} as in (8), that is, I(Q)=I(Q)GˇQ1I(Q^{\dagger})=I(Q)\widecheck{G}_{Q}^{-1}, then

qQ(x)=12I(Q)x2=12I(Q)GˇQ1x2=qQ(GˇQ1x)=q(x).q_{Q^{\dagger}}(x)=\frac{1}{2}||I(Q^{\dagger})x||^{2}=\frac{1}{2}||I(Q)\widecheck{G}_{Q}^{-1}x||^{2}=q_{Q}(\widecheck{G}_{Q}^{-1}x)=q^{\dagger}(x).

Therefore, using again Theorem 1.3, qq^{\dagger} is a non-negative connected unit form of Dynkin type 𝔸\mathbb{A}. Clearly, qGˇq1qq\sim^{\widecheck{G}^{-1}_{q}}q^{\dagger}, and since Gˇq\widecheck{G}_{q} is upper triangular then so is its inverse, which shows that Gˇq=Gˇq1\widecheck{G}_{q^{\dagger}}=\widecheck{G}_{q}^{-1}. Note that

Φq=Gˇq𝐭𝐫Gˇq1=Gˇq𝐭𝐫Gˇq=(Gˇq𝐭𝐫Gˇq1)𝐭𝐫=Φq𝐭𝐫.\Phi_{q^{\dagger}}=-\widecheck{G}_{q^{\dagger}}^{\mathbf{tr}}\widecheck{G}_{q^{\dagger}}^{-1}=-\widecheck{G}_{q}^{-\mathbf{tr}}\widecheck{G}_{q}=(-\widecheck{G}_{q}^{\mathbf{tr}}\widecheck{G}_{q}^{-1})^{\mathbf{tr}}=\Phi_{q}^{\mathbf{tr}}.

In particular, the Coxeter polynomials of qq and qq^{\dagger} coincide. Then qqq\approx q^{\dagger} by Theorem 2. Finally, if qBqq\approx^{B}q^{\dagger} and we take C=BGˇqC=B\widecheck{G}_{q}, then

C𝐭𝐫GˇqC=Gˇq𝐭𝐫B𝐭𝐫GˇqBGˇq=Gˇq𝐭𝐫Gˇq1Gˇq=Gˇq𝐭𝐫,C^{\mathbf{tr}}\widecheck{G}_{q}C=\widecheck{G}_{q}^{\mathbf{tr}}B^{\mathbf{tr}}\widecheck{G}_{q}B\widecheck{G}_{q}=\widecheck{G}_{q}^{\mathbf{tr}}\widecheck{G}_{q}^{-1}\widecheck{G}_{q}=\widecheck{G}_{q}^{\mathbf{tr}},

as claimed.

We end this section with a numerical strong Gram classification of non-negative connected unit forms of Dynkin type 𝔸r\mathbb{A}_{r} and some comments on the number of corresponding classes. Recall that 𝐔𝐐𝐮𝐚𝐝𝔸c(n)\mathbf{UQuad}^{c}_{\mathbb{A}}(n) denotes the set of connected non-negative unit forms on n1n\geq 1 variables having Dynkin type 𝔸nc\mathbb{A}_{n-c} and corank c0c\geq 0.

Corollary 4.20

Let q,q:nq,q^{\prime}:\mathbb{Z}^{n}\to\mathbb{Z} be non-negative connected unit forms of Dynkin type 𝔸r\mathbb{A}_{r}, r1r\geq 1. Then qqq\approx q^{\prime} if and only if 𝐜𝐭(q)=𝐜𝐭(q)\mathbf{ct}(q)=\mathbf{ct}(q^{\prime}). Moreover,

|𝐔𝐐𝐮𝐚𝐝𝔸c(n)/|={1,if c=0,n2,if c=1,(n1)2+1512,if c=2.|\mathbf{UQuad}^{c}_{\mathbb{A}}(n)/\approx|=\left\{\begin{array}[]{c l}1,&\text{if $c=0$},\\ \left\lfloor\frac{n}{2}\right\rfloor,&\text{if $c=1$},\\ \left\lfloor\frac{(n-1)^{2}+15}{12}\right\rfloor,&\text{if $c=2$}.\end{array}\right.
Proof 4.21

Observe first that 𝐜𝐨𝐫𝐤(q)=𝐜𝐨𝐫𝐤(q)=nr\mathbf{cork}(q)=\mathbf{cork}(q^{\prime})=n-r, and since 𝐃𝐲𝐧(q)=𝐃𝐲𝐧(q)=𝔸r\mathbf{Dyn}(q)=\mathbf{Dyn}(q^{\prime})=\mathbb{A}_{r}, then qq and qq^{\prime} are weakly Gram congruent (cf. [6]). Then the main claim follows directly by Theorem 3, where it is shown that

|[𝐔𝐐𝐮𝐚𝐝𝔸c(n)/]|=|𝒫1c(m)|,where 𝒫1c(m):={πm0c((π)1)0mod2}.|[\mathbf{UQuad}^{c}_{\mathbb{A}}(n)/\approx]|=|\mathcal{P}^{c}_{1}(m)|,\quad\text{where $\mathcal{P}^{c}_{1}(m):=\{\pi\vdash m\mid 0\leq c-(\ell(\pi)-1)\equiv 0\mod 2\}$.}

Denoting by p(m)p_{\ell}(m) the number of partition of mm having exactly \ell parts, then

|𝒫1c(m)|=𝕕=0c/2pc2𝕕+1(m).|\mathcal{P}^{c}_{1}(m)|=\sum_{\mathbbm{d}=0}^{\lfloor c/2\rfloor}p_{c-2\mathbbm{d}+1}(m). (18)

Using that p1(m)=1p_{1}(m)=1 and p2(m)=m/2p_{2}(m)=\lfloor m/2\rfloor for all m2m\geq 2, and that m=nc+1m=n-c+1, we get the claimed values of |𝐔𝐐𝐮𝐚𝐝𝔸c(n)/||\mathbf{UQuad}^{c}_{\mathbb{A}}(n)/\approx| for c=0,1c=0,1. If c=2c=2 then |𝒫12(m)|=p3(n1)+p1(n1)|\mathcal{P}^{2}_{1}(m)|=p_{3}(n-1)+p_{1}(n-1). It can be easily shown that this coincides with the number of partitions of n1n-1 into 33 or fewer distinct parts, a number known to be given by (n1)2/12+5/4\lfloor(n-1)^{2}/12+5/4\rfloor, cf. entry A014591A014591 in [71].

In general, the value of |𝒫1c(m)||\mathcal{P}^{c}_{1}(m)| can be found using (18) and the well-known recursive formula for p(m)p_{\ell}(m), see for instance [1, pp. 345–348],

p(m)=p1(m1)+p(m),p_{\ell}(m)=p_{\ell-1}(m-1)+p_{\ell}(m-\ell),

subject to the starting conditions p0(0)=1p_{0}(0)=1 and p(m)=0p_{\ell}(m)=0 if 0\ell\leq 0, m0m\leq 0 and +m<0\ell+m<0.

Comments on generalizations and future work

Following Simson’s work, there are many interesting problems to consider in the setting of non-negative unit forms of arbitrary corank, for instance: the computation of isotropy mini-groups and Weyl group actions, the description of morsifications, Coxeter-translation quivers and mesh geometries, and applications to quadratic forms associated to posets. The combinatorial framework explored here is certainly useful for the analysis of such problems, at least for the class of connected non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r}.

As already mentioned in [32], the ideas presented here may be generalized to cover the Dynkin type 𝔻s\mathbb{D}_{s} for s4s\geq 4, replacing loop-less quivers by certain loop-less bidirected graphs (in the sense of Zaslavsky [74], see also [73]), satisfying certain cycle condition (cf. [32, §8]). Most of the constructions and results are similar to those for quivers, the main challenge now being the choice of an adequate family of representatives of strong Gram congruence (the corresponding standard unit forms of Dynkin type 𝔻s\mathbb{D}_{s}). By admitting loops we include semi-unit forms, as well as a class of non-unitary connected non-negative quadratic forms to be classified yet. The seminal paper by Cameron, Goethals, Seidel and Shult [15], connecting classical root systems with the spectral analysis of signed graphs, contains fundamental ideas suitable for further generalizations (see also [73]).

In the following lemma we consider some of the ideas that originated the results of this paper, presented in a slightly more general context.

Lemma 4.22

Let q,q~:nq,\widetilde{q}:\mathbb{Z}^{n}\to\mathbb{Z} be non-negative connected unit forms with 𝐜𝐨𝐫𝐤(q~)1\mathbf{cork}(\widetilde{q})\leq 1. Then the following are equivalent for a matrix B𝕄n()B\in\mathbb{M}_{n}(\mathbb{Z}),

  • a)

    BB is \mathbb{Z}-invertible and qBq~q\approx^{B}\widetilde{q};

  • b)

    BB satisfies q~=qB\widetilde{q}=qB and Gq~BB=Gq~G_{\widetilde{q}}B^{*}B=G_{\widetilde{q}}, where B:=Gˇq~1B𝐭𝐫GˇqB^{*}:=\widecheck{G}_{\widetilde{q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{q}.

Proof 4.23

Note first that if (a)(a) holds then q~=qB\widetilde{q}=qB and, by definition of qBq~q\approx^{B}\widetilde{q}, we have BB=𝐈𝐝B^{*}B=\mathbf{Id}. Assume now that (b)(b) holds, which does not require the matrix BB to be \mathbb{Z}-invertible. Note that q~=qB\widetilde{q}=qB implies that B𝐭𝐫GqB=Gq~B^{\mathbf{tr}}G_{q}B=G_{\widetilde{q}}, which shows that the matrix M:=B𝐭𝐫GˇqBGˇq~M:=B^{\mathbf{tr}}\widecheck{G}_{q}B-\widecheck{G}_{\widetilde{q}} is skew-symmetric (recall that Gq=Gˇq+Gˇq𝐭𝐫G_{q}=\widecheck{G}_{q}+\widecheck{G}^{\mathbf{tr}}_{q} and similarly for q~\widetilde{q}). Hence, the rank of MM is a non-negative even number (cf. [24, XI, §4]). Since Gˇq~\widecheck{G}_{\widetilde{q}} is \mathbb{Z}-invertible, then the rank of N:=Gˇq~1M=BB𝐈𝐝nN:=\widecheck{G}_{\widetilde{q}}^{-1}M=B^{*}B-\mathbf{Id}_{n} is also a non-negative even number. However, the condition Gq~BB=Gq~G_{\widetilde{q}}B^{*}B=G_{\widetilde{q}} guarantees that the columns of NN are radical vectors of q~\widetilde{q}, since

Gq~N=Gq~[BB𝐈𝐝n]=0.G_{\widetilde{q}}N=G_{\widetilde{q}}[B^{*}B-\mathbf{Id}_{n}]=0.

Then 𝐫𝐤(N)𝐜𝐨𝐫𝐤(q~)1\mathbf{rk}(N)\leq\mathbf{cork}(\widetilde{q})\leq 1, which shows that N=0=MN=0=M, that is, B𝐭𝐫GˇqB=Gˇq~B^{\mathbf{tr}}\widecheck{G}_{q}B=\widecheck{G}_{\widetilde{q}}. In particular, det(B)=±1\det(B)=\pm 1 and qBq~q\approx^{B}\widetilde{q}, as claimed.

In our context of Dynkin type 𝔸r\mathbb{A}_{r} via connected loop-less quivers, any matrix BB satisfying the condition (a)(a) of Definition 3.3, namely QBQ~Q\doteq^{B}\widetilde{Q}, satisfies qQ~=qQBq_{\widetilde{Q}}=q_{Q}B and GQ~BB=GQ~G_{\widetilde{Q}}B^{*}B=G_{\widetilde{Q}}. In particular, if 𝐜𝐨𝐫𝐤(qQ~)1\mathbf{cork}(q_{\widetilde{Q}})\leq 1, then BB determines a strong Gram congruence qQBqQ~q_{Q}\approx^{B}q_{\widetilde{Q}}, as claimed in the introduction (see comments after Step 1 on page Introduction).

4.3 Hints for an implementation

We end the paper with some ideas and suggestions for an implementation of our main results, solving Problem 2(ii)(ii) for the class of connected non-negative unit forms of Dynkin type 𝔸r\mathbb{A}_{r}. All algorithms are straightforward, and make use of well-known methods as least squares and depth-first search. The main construction is presented in Algorithm 1 (resp. Algorithm 2), where for a connected non-negative unit form of Dynkin type 𝔸m1\mathbb{A}_{m-1} (resp. a connected loop-less quiver on mm vertices) we compute a matrix that determines a strong Gram congruence to the corresponding standard unit form (resp. standard quiver) representative of class, see Theorem 1 and Definition 3.3. This construction is based on the correction Algorithms 3 and 4, corresponding to Propositions 2.17 and 3.13 respectively, and on further auxiliary methods given in Algorithms 5, 6 and 7. An algorithmic approach to the skew normal form may be found in [72] or [48, Theorem IV.1].

Algorithm 1

Standard solution for quadratic forms.

Input: A connected non-negative unit form qq in nn variables and of Dynkin type 𝔸r\mathbb{A}_{r} for r1r\geq 1.

Output: A n×nn\times n matrix BB such that

Gˇq=B𝐭𝐫GˇqB,\widecheck{G}_{\vec{q}}=B^{\mathbf{tr}}\widecheck{G}_{q}B,

where q\vec{q} is the standard non-negative unit form weakly congruent to qq and satisfying φq=φq\varphi_{\vec{q}}=\varphi_{q}.

Step 1. Find a quiver QQ with nn arrows and m=r+1m=r+1 vertices such that q=qQq=q_{Q} (see [34, Algorithm 1]).

Step 2. Apply Algorithm 2 below to find a matrix BB satisfying GˇQ=B𝐭𝐫GˇρQB\widecheck{G}_{\vec{Q}}=B^{\mathbf{tr}}\widecheck{G}_{\rho\cdot Q}B, where Q\vec{Q} is a standard quiver and ρ\rho is a permutation such that ΛρQ=ΛQ\Lambda_{\rho\cdot Q}=\Lambda_{\vec{Q}} (cf. Remark 1.1). Since Gˇq=GˇQ\widecheck{G}_{q}=\widecheck{G}_{Q}, then BB is the wanted strong Gram congruence matrix, by taking q:=qQ\vec{q}:=q_{\vec{Q}}. Return matrix BB.

Algorithm 2

Standard solution for quivers.

Input: A connected loop-less quiver QQ with n1n\geq 1 arrows and m2m\geq 2 vertices.

Output: A permutation ρ\rho of Q0={1,,m}Q_{0}=\{1,\ldots,m\} and a n×nn\times n matrix BB such that I(ρQ)B=I(Q)I(\rho\cdot Q)B=I(\vec{Q}), and

GˇQ=B𝐭𝐫GˇQB,\widecheck{G}_{\vec{Q}}=B^{\mathbf{tr}}\widecheck{G}_{Q}B,

where Q\vec{Q} is the standard quiver with 𝐜𝐭(Q)=𝐜𝐭(Q)\mathbf{ct}(\vec{Q})=\mathbf{ct}(Q) and same number of arrows as QQ.

Step 1. Compute the permutation of vertices ξQ\xi^{-}_{Q} of QQ. [Hint: determine the structural walks αQ(v)\alpha_{Q}^{-}(v) for v=1,,mv=1,\ldots,m, see definition (3), or compute directly the Coxeter-Laplacian ΛQ\Lambda_{Q} of QQ using (9)].

Step 2. Compute the cycle type 𝐜𝐭(Q)\mathbf{ct}(Q) of QQ by considering the cardinalities of the orbits of ξQ\xi^{-}_{Q} (see also [34, Algorithm 2]), and let \ell be the length of 𝐜𝐭(Q)\mathbf{ct}(Q).

Step 3. Consider the degree of degeneracy 𝕕=12(c+1)\mathbbm{d}=\frac{1}{2}(c-\ell+1) of qQq_{Q}, where c=nm+1c=n-m+1 is the corank of qQq_{Q}, and take the standard quiver Q:=𝔸𝕕[𝐜𝐭(Q)]\vec{Q}:=\vec{\mathbb{A}}^{\mathbbm{d}}[\mathbf{ct}(Q)].

Step 4. Determine a permutation ρ\rho such that ξQρ=ξ(Q)\xi^{-}_{Q}\circ\rho=\xi^{-}(\vec{Q}).

Step 5. Take Q~:=ρQ\widetilde{Q}:=\rho\cdot Q By Step 4 we have ΛQ~=ΛQ\Lambda_{\widetilde{Q}}=\Lambda_{\vec{Q}}. Find a matrix BB^{\prime} such that I(Q~)B=I(Q)I(\widetilde{Q})B^{\prime}=I(\vec{Q}) and I(Q)(B)=I(Q~)I(\vec{Q})(B^{\prime})^{*}=I(\widetilde{Q}), that is, Q~BQ\widetilde{Q}\doteq^{B^{\prime}}\vec{Q} [Hint: using the structural walks of Step 1 and apply equations (11) and (12) from the proof of Proposition 1.23; we also need to find arbitrary connecting walks δ(t)\delta(t), for which we may use, for instance, a depth-first search algorithm].

Step 6. Apply Algorithm 3 below to the matrix BB^{\prime} of Step 5 to find a matrix MM such that B+MB^{\prime}+M is \mathbb{Z}-invertible and Q~B+MQ\widetilde{Q}\doteq^{B^{\prime}+M}\vec{Q}.

Step 7. Apply Algorithm 4 below to the matrix B+MB^{\prime}+M of Step 6 to find a matrix CC such that if B:=(B+M)CB:=(B^{\prime}+M)C, then I(Q~)B=I(Q)I(\widetilde{Q})B=I(\vec{Q}) and [B][B]=𝐈𝐝[B]^{*}[B]=\mathbf{Id}, as wanted. Return the pair (ρ,B)(\rho,B).

Using Corollary 4.15, the following correction Algorithms 3 and 4, based on the proofs of Propositions 2.17 and 3.13 respectively, work for arbitrary connected loop-less quivers QQ and Q~\widetilde{Q} with same number of vertices and arrows (see Remark 4.17).

Algorithm 3

Invertible pseudo-morphism.

Input: Two connected loop-less quivers QQ and Q~\widetilde{Q} with the same number of arrows nn, and a n×nn\times n matrix BB such that QBQ~Q\doteq^{B}\widetilde{Q}.

Output: A n×nn\times n matrix MM such that B+MB+M is \mathbb{Z}-invertible and QB+MQ~Q\doteq^{B+M}\widetilde{Q}.

Step 1. Fix kernel matrices KK and K~\widetilde{K} of I(Q)I(Q) and I(Q~)I(\widetilde{Q}) respectively, and consider the skew-symmetric matrices W=K𝐭𝐫GˇQKW=K^{\mathbf{tr}}\widecheck{G}_{Q}K and W~=K~𝐭𝐫GˇQ~K~\widetilde{W}=\widetilde{K}^{\mathbf{tr}}\widecheck{G}_{\widetilde{Q}}\widetilde{K}.

Step 2. Make sure that the kernel matrix KK has the shape K=[K,K′′]K=[K^{\prime},K^{\prime\prime}], where K′′K^{\prime\prime} is a kernel matrix of the reduced radical 𝐫𝐚𝐝re(qQ)\mathbf{rad}_{re}(q_{Q}), and assume that K~\widetilde{K} has a similar shape K~=[K~,K~′′]\widetilde{K}=[\widetilde{K}^{\prime},\widetilde{K}^{\prime\prime}].

Step 3. Find a matrix LL such that BK~=KLB\widetilde{K}=KL (for instance, using a least squares algorithm). As indicated by the partitions K=[K,K′′]K=[K^{\prime},K^{\prime\prime}] and K~=[K~,K~′′]\widetilde{K}=[\widetilde{K}^{\prime},\widetilde{K}^{\prime\prime}], the matrices LL and W~\widetilde{W} have the following shapes,

L=(L10L2L3)andW~=(W~000).L=\begin{pmatrix}L_{1}&0\\ L_{2}&L_{3}\end{pmatrix}\quad\text{and}\quad\widetilde{W}=\begin{pmatrix}\widetilde{W}^{\prime}&0\\ 0&0\end{pmatrix}.

By Corollary 4.15, the matrix W~\widetilde{W}^{\prime} is \mathbb{Z}-invertible.

Step 4. Take Y1:=(L1𝐈𝐝)(W~)1Y_{1}:=(L_{1}-\mathbf{Id})(\widetilde{W}^{\prime})^{-1} and Y2:=L2(W~)1Y_{2}:=L_{2}(\widetilde{W}^{\prime})^{-1}. Take also Y:=(Y10Y20)Y:=\begin{pmatrix}Y_{1}&0\\ Y_{2}&0\end{pmatrix} and M:=KYK~𝐭𝐫M:=KY\widetilde{K}^{\dagger\mathbf{tr}}, where K~:=GˇQ~K~\widetilde{K}^{\dagger}:=\widecheck{G}_{\widetilde{Q}}\widetilde{K}. Then B+MB+M satisfies the claim, as in Proposition 2.17. Return matrix MM.

Algorithm 4

Strong congruence matrix.

Input: Two connected loop-less quivers QQ and Q~\widetilde{Q} with the same number of arrows nn, and a \mathbb{Z}-invertible n×nn\times n matrix BB such that QBQ~Q\doteq^{B}\widetilde{Q}.

Output: A \mathbb{Z}-invertible n×nn\times n matrix CC such that I(Q)(BC)=I(Q~)I(Q)(BC)=I(\widetilde{Q}) and (BC)(BC)=𝐈𝐝(BC)^{*}(BC)=\mathbf{Id}.

Step 1. Fix kernel matrices KK and K~\widetilde{K} of I(Q)I(Q) and I(Q~)I(\widetilde{Q}) as in Steps 1 and 2 of Algorithm 3.

Step 2. Take B:=GˇQ~1B𝐭𝐫GˇQB^{*}:=\widecheck{G}_{\widetilde{Q}}^{-1}B^{\mathbf{tr}}\widecheck{G}_{Q}, and use Algorithm 5 below to compute Z:=Ξ(BB)Z:=\Xi(B^{*}B) and Z~:=Ξ((BB)1)\widetilde{Z}:=\Xi((B^{*}B)^{-1}).

Step 3. Apply Algorithm 6 below to the matrix Z~\widetilde{Z} of Step 2 in order to find a matrix YY such that

Z~=YY𝐭𝐫+Y𝐭𝐫W~Y,\widetilde{Z}=Y-Y^{\mathbf{tr}}+Y^{\mathbf{tr}}\widetilde{W}Y,

where W~:=K~𝐭𝐫GˇQ~K~\widetilde{W}:=\widetilde{K}^{\mathbf{tr}}\widecheck{G}_{\widetilde{Q}}\widetilde{K}.

Step 4. Define C:=𝐈𝐝K~Y𝐭𝐫K~𝐭𝐫C:=\mathbf{Id}-\widetilde{K}Y^{\mathbf{tr}}\widetilde{K}^{\dagger\mathbf{tr}} where YY is the matrix of Step 3, and K~:=GˇQ~K~\widetilde{K}^{\dagger}:=\widecheck{G}_{\widetilde{Q}}\widetilde{K}. Then BCBC satisfies the claim as in the proof of Proposition 3.13. Return matrix CC.

The following are auxiliary constructions for Algorithm 4.

Algorithm 5

Construction of the bijection Ξ\Xi of Lemma 3.7.

Input: A connected loop-less quiver QQ with nn arrows, a fixed n×cn\times c kernel matrix KK of I(Q)I(Q), and a pseudo-endomorphism BB of QQ.

Output: A c×cc\times c matrix Z:=Ξ(B)Z:=\Xi(B) such that B=𝐈𝐝+KZK𝐭𝐫B=\mathbf{Id}+KZK^{\dagger\mathbf{tr}}, where K:=GˇQKK^{\dagger}:=\widecheck{G}_{Q}K.

Step 1. Find a solution LL to the equation B𝐈𝐝=KLB-\mathbf{Id}=KL (for instance, using a least squares algorithm).

Step 2. Find similarly a solution ZZ to the equation L=ZK𝐭𝐫L=ZK^{\dagger\mathbf{tr}} where LL is the matrix of Step 1. Return matrix ZZ.

Algorithm 6

Special decomposition of a skew-symmetric matrix.

Input: A pair (Z,W)(Z,W) of skew-symmetric c×cc\times c matrices, where WW is pure and in skew normal form.

Output: A c×cc\times c matrix YY such that Z=Y𝐭𝐫Y+Y𝐭𝐫WYZ=Y^{\mathbf{tr}}-Y+Y^{\mathbf{tr}}WY.

Step 1. Assume first that WW is \mathbb{Z}-invertible and take Z~:=Z+W\widetilde{Z}:=Z+W. Using Algorithm 7 below we find a matrix Y~\widetilde{Y} such that Z~=Y~𝐭𝐫WY~\widetilde{Z}=\widetilde{Y}^{\mathbf{tr}}W\widetilde{Y}, and take Y:=Y~WY:=\widetilde{Y}-W (see the first part of the proof of Lemma 3.1(b)(b)).

Step 2. Assume now that WW is not \mathbb{Z}-invertible. Then W=W𝟎W=W^{\prime}\oplus\mathbf{0} for a \mathbb{Z}-invertible skew-symmetric matrix WW^{\prime} and 𝟎\mathbf{0} a zero matrix of adequate size, and ZZ has the following shape

Z=(Z1Z2𝐭𝐫Z2Z3).Z=\begin{pmatrix}Z_{1}&-Z_{2}^{\mathbf{tr}}\\ Z_{2}&Z_{3}\end{pmatrix}.

Step 3. Since Z1Z_{1} and WW^{\prime} are skew-symmetric, and WW^{\prime} is \mathbb{Z}-invertible, using Step 1 we find a matrix Y1Y_{1} such that Z1=Y1Y1𝐭𝐫+Y1𝐭𝐫WY1Z_{1}=Y_{1}-Y_{1}^{\mathbf{tr}}+Y^{\mathbf{tr}}_{1}W^{\prime}Y_{1}.

Step 4. Take Y2:=Z2Y_{2}:=Z_{2}, and let Y3Y_{3} be the upper triangular part of Z3Z_{3} (so that Z3=Y3Y3𝐭𝐫Z_{3}=Y_{3}-Y_{3}^{\mathbf{tr}}, since Z3Z_{3} is also skew-symmetric). Take

Y:=(Y10Y2Y3).Y:=\begin{pmatrix}Y_{1}&0\\ Y_{2}&Y_{3}\end{pmatrix}.

Then YY satisfies the claim, as in the proof of Lemma 3.1. Return matrix YY.

Algorithm 7

Direct factorization of a skew-symmetric matrix.

Input: A pair (Z,W)(Z,W) of skew-symmetric c×cc\times c matrices, where WW is \mathbb{Z}-invertible and in skew normal form.

Output: A c×cc\times c matrix YY such that Z=Y𝐭𝐫WYZ=Y^{\mathbf{tr}}WY.

Step 1. Since WW is \mathbb{Z}-invertible then c=2rc=2r for some r0r\geq 0. Find a matrix PP such that

P𝐭𝐫Z~P=f1(0110)fr(0110),P^{\mathbf{tr}}\widetilde{Z}P=f_{1}\begin{pmatrix}0&1\\ -1&0\end{pmatrix}\oplus\ldots\oplus f_{r}\begin{pmatrix}0&1\\ -1&0\end{pmatrix},

for integers f1,,frf_{1},\ldots,f_{r} (the product P𝐭𝐫Z~PP^{\mathbf{tr}}\widetilde{Z}P not necessarily in skew normal form).

Step 2. Consider the 2r×2r2r\times 2r matrix S=diag(1,d1,1,d2,,1,dr)S=\mathrm{diag}(1,d_{1},1,d_{2},\ldots,1,d_{r}) and return Y:=SP1Y:=SP^{-1}.

Acknowledgements.
Thanks to the anonymous referees for their careful revision and useful suggestions. Thanks to the Instituto de Matemáticas UNAM, Mexico, for financial support. Part of this paper was completed during a research stay at the Faculty of Mathematics and Computer Science of Nicolaus Copernicus University in Toruń within project University Centre of Excellence “Dynamics, Mathematical Analysis and Artificial Intelligence”. The author expresses his gratitude to NCU for the hospitality and for providing excellent working conditions.

References

  • [1] Arndt J, Matters Computational: Ideas, Algorithms, Source Code, Springer 2011. doi:10.1007/978-3-642-14764-7.
  • [2] Barot M. A characterization of positive unit forms, Bol. Soc. Mat. Mexicana (3), 1999. Vol. 5, pp. 87–93.
  • [3] Barot M. A characterization of positive unit forms, II, Bol. Soc. Mat. Mexicana (3), 2001. Vol. 7, pp. 13–22.
  • [4] Barot M, Geiss C, and Zelevinsky A. Cluster algebras of finite type and positive symmetrizable matrices. J. London Math. Soc., 2006. 73:545–564. doi:10.1112/S0024610706022769.
  • [5] Barot M, Jiménez González JA, and de la Peña JA. Quadratic Forms: Combinatorics and Numerical Results, Algebra and Applications, Vol. 25 Springer Nature Switzerland AG 2018. doi:10.1007/978-3-030-05627-8.
  • [6] Barot M, and de la Peña JA. The Dynkin type of a non-negative unit form, Expo. Math. 1999. 17:339–348.
  • [7] Barot M, and de la Peña JA. Algebras whose Euler form is non-negative, Colloquium Mathematicum 1999. 79:119–131. doi:10.4064/cm-79-1-119-131.
  • [8] Barot M, and de la Peña JA. Root-induced integral quadratic forms, Linear Algebra Appl. 2006. 412:291–302. doi:10.1016/j.laa.2005.06.030.
  • [9] Bernstein IN, and Gelfand IM, and Ponomarev VA. Coxeter functors and Gabriel’s theorem, Russian Math. Surveys 1973. 28:17–32.
  • [10] Bocian R, Felisiak M, and Simson D. On Coxeter Type Classification of Loop-Free Edge-Bipartite Graphs and Matrix Morsifications, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013. pp. 115–118. doi:10.1109/SYNASC.2013.22.
  • [11] Bocian R, Felisiak M, and Simson D. Numeric and mesh algorithms for the Coxeter spectral study of positive edge-bipartite graphs and their isotropy groups. Journal of Computational and Applied Mathematics 2014. 259:815–827. doi:10.1016/j.cam.2013.07.013.
  • [12] Bongartz K. Algebras and quadratic forms. J. London Math. Soc. (2), 1983. 28(3):461–469.
  • [13] Bongartz K. Quadratic forms and finite representation type. In: Malliavin MP. (eds) Séminaire d’Algébre Paul Dubreil et Marie-Paule Malliavin. Lecture Notes in Mathematics, 2006. vol. 1146. Springer, Berlin, Heidelberg. doi:10.1007/BFb0074545.
  • [14] Brüstle T, de la Peña JA, and Skowroński A. Tame algebras and Tits quadratic forms, Advances in Mathematics 2011. 226:887–951. doi:10.1016/j.aim.2010.07.007.
  • [15] Cameron PJ, Goethals JM, Seidel JJ, and Shult EE. Line graphs, Root Systems, and Elliptic Geometry, J. Algebra 1976. 43:305–327. doi:10.1016/0021-8693(76)90162-9.
  • [16] Dean A, and de la Peña JA. Algorithms for weakly nonnegative quadratic forms, Linear Algebra Appl. 1996. 235:35–46. doi:10.1016/0024-3795(94)00109-X.
  • [17] Dlab V, and Ringel CM. Indecomposable representations of graphs and algebras. Memoirs AMS 1976. Vol. 6, 173. doi:10.1090/memo/0173.
  • [18] Dlab V, and Ringel CM. A module theoretical interpretation of properties of the root systems. Proc. Conf. on Ring Theory (Antwerp, 1978), Marcel Dekker (1979).
  • [19] Dräxler P, and de la Peña JA. The homological quadratic form of a biextension algebra. Archiv der Mathematik 1999. 72:9–21. doi:10.1007/s000130050297.
  • [20] Dräxler P, and de la Peña JA. Tree algebras with non-negative Tits form. Communications in Algebra 2000. 28(8):3993–4012. doi:10.1080/00927870008827071.
  • [21] Dräxler, Drozd YA, Golovachtshuc NS, Ovsienko SA, and Zeldych MM. Towards the classification of sincere weakly positive unit forms. European Journal of Combinatorics 1995. 16(1):1–16. doi:10.1016/0195-6698(95)90084-5.
  • [22] Felisiak M, and Simson D. Applications of matrix morsifications to Coxeter spectral study of loop-free edge-bipartite graphs, Discrete Applied Mathematics 10 September 2015. 192:49–64. doi:10.1016/j.dam.2014.05.002.
  • [23] Gabriel P. Unzerlegbare Darstellungen I, Man. Math., 1972. 6:71–103. doi:10.1007/BF01298413.
  • [24] Gantmacher FR. The Theory of Matrices, Vols. 1 and 2, Chelsea Publishing Company, New York, N.Y. 1960. ISBN:978-0-8218-1376-8, 10:0821813935, 13:978-0821813935.
  • [25] Gąsiorek M, Simson D, and Zając K. Algorithmic computation of principal posets using Maple and Python. Algebra and Discrete Math. 2014. 17:33–69. URL. http://dspace.nbuv.gov.ua/handle/ 123456789/152339.
  • [26] Gąsiorek M, Simson D, and Zając K. A Gram classification of non-negative corank-two loop-free edge-bipartite graphs. Linear Algebra Appl. 2016. 500:88–118. doi:10.1016/j.laa.2016.03.007.
  • [27] Happel D. The converse of Drozd’s theorem on quadratic forms, Communications in Algebra 1995. 23(2):737–738. doi:10.1080/00927879508825243.
  • [28] von Höhne H-J. On weakly positive unit forms, Comment. Math. Helvetici 1988. 63:312–336. doi:10.1007/BF02566771.
  • [29] von Höhne H-J. Edge reduction for unit forms, Archiv der Mathematik, Vol. 1995. 65:300–302. doi:10.1007/BF01195540.
  • [30] von Höhne H-J. On weakly non-negative unit forms and tame algebras, Proc. London Math. Soc. (3) 1996. 73:47–67. doi:10.1112/plms/s3-73.1.47.
  • [31] Horn RA, and Sergeichuk VV. Congruences of a square matrix and its transpose, Linear Algebra Appl. 2004. 389:347–353. doi:10.1016/j.laa.2004.03.010.
  • [32] Jiménez González JA. Incidence graphs and non-negative integral quadratic forms. Journal of Algebra 2018. 513:208–245. doi:10.1016/j.jalgebra.2018.07.020.
  • [33] Jiménez González JA. A graph theoretical framework for the strong Gram classification of non-negative unit forms of Dynkin type 𝔸n\mathbb{A}_{n}. Fundamenta Informaticae 2012. 184(1):49–82. doi:10.3233/FI-2021-2092.
  • [34] Jiménez González JA. Coxeter invariants for non-negative unit forms of Dynkin type ArA_{r}. Fundamenta Informaticae 2022. 185(3):221–246. doi:10.3233/FI-222109.
  • [35] Kasjan S, and Simson D. Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, I. Mesh root systems. Fundamenta Informaticae 2015. 139(2):153–184. doi:10.3233/FI-2015-1230.
  • [36] Kasjan S, and Simson D. Mesh algorithms for Coxeter spectral classification of Cox-regular edge-bipartite graphs with loops, II. Application to Coxeter spectral analysis. Fundamenta Informaticae 2015. 139:185–209. doi:10.3233/FI-2015-1231.
  • [37] Kosakowska J. Inflation algorithms for positive and principal edge-bipartite graphs and unit quadratic forms, Fundamenta Informaticae 2012. 119(2):149–162. doi:10.3233/FI-2012-731.
  • [38] Lenzing H. A KK-theoretical study of canonical algebras. In: R. Bautista, et al. (Eds.), Representations of Algebras, Seventh International Conference, Cocoyoc, Mexico, 1994, in: CMS Conf. Proc., American Mathematical Society, Providence, RI. 1996. vol. 18, pp. 433–454.
  • [39] Lenzing H, and Reiten I. Hereditary noetherian categories of positive Euler characteristic. Math. Z. 2006. 254:133–171. doi:10.1007/s00209-006-0938-6.
  • [40] Makuracki B, and Mróz A. Root systems and inflations of non-negative quasi-Cartan matrices, Linear Algebra Appl. 2019. 580:128–165. doi:10.1016/j.laa.2019.06.006.
  • [41] Makuracki B, and Mróz, A. Coefficients of non-negative quasi-Cartan matrices, their symmetrizers and Gram matrices, Discrete Applied Mathematics 2021. 303:108–121. doi:10.1016/j.dam.2020.05.022.
  • [42] Makuracki B, and Simson, D. A Gram classification of principal Cox-regular edge-bipartite graphs via inflation algorithm, Discrete Applied Mathematics 253, 25–36 (2019)
  • [43] Makuracki B, Simson D, and Zyglarski B. Inflation algorithm for Cox-regular positive edge-bipartite graphs with loops, Fundamenta Informaticae 2017. 153(4):367–398. doi:10.3233/FI-2017-1545.
  • [44] Mróz A. Congruences of edge-bipartite graphs with applications to Grothendieck group recognition I. Inflation algorithm revisited, Fundamenta Informaticae 2016. 146(2):121–144. doi:10.3233/FI-2016-1377.
  • [45] Mróz A. Congruences of edge-bipartite graphs with applications to Grothendieck group recognition II. Coxeter type study, Fundamenta Informaticae 2016. 146(2):145–177. doi:10.3233/FI-2016-1378.
  • [46] Mróz A, and de la Peña JA. Tubes in derived categories and cyclotomic factors of the Coxeter polynomial of an algebra, Journal of Algebra 2014. 420:242–260. doi:10.1016/j.jalgebra.2014.08.017.
  • [47] Mróz A, and de la Peña JA. Periodicity in bilinear lattices and the Coxeter formalism, Linear Algebra Appl. 2016. 493:227–260. doi:10.1016/j.laa.2015.11.021.
  • [48] Newman M. Integral matrices, Academic Press 1972. ISBN:0080873588, 9780080873589.
  • [49] Ovsienko SA. Integral weakly positive forms, in Schur matrix problems and quadratic forms, Inst. Mat. Akad. Nauk. Ukr. S.S.R., Inst. Mat. Kiev (in Russian), 1979. pp. 106–126.
  • [50] de la Peña JA. Algebras with hypercritical Tits form. Topics in Algebra, Banach Center Publications, PWN-Polish Scientific Publishers, Warsaw, 1990. 26(1):353–369.
  • [51] de la Peña JA. Quadratic forms and the representation type of an algebra. Engänzungsreihe 90–103. Bielefeld 1990.
  • [52] Perez C, Abarca M, and Rivera D. Cubic algorithm to compute the Dynkin type of positive definite quasi-Cartan matrices, Fundamenta Informaticae 2018. 158(4):369–384. doi:10.3233/FI-2018-1653.
  • [53] Ringel CM. Tame algebras and integral quadratic forms, Springer LNM, 1984. vol. 1099. doi:10.1007/BFb0072870.
  • [54] Rotman JJ. A first course in abstract algebra with applications, 3rd Ed., Upper Saddle River, New Jersey 07458, Pearson Prentice Hall 2006. ISBN-10:0201763907, 13:978-0201763904.
  • [55] Sato M. Periodic Coxeter matrices and their associated quadratic forms. Linear Algebra Appl. 2005. 406:99–108. doi:10.1016/j.laa.2005.03.036.
  • [56] Simson D. Mesh algorithms for solving principal Diophantine equations, sand-glass tubes and tori of roots. Fundamenta Informaticae 2011. 109(4):425–462. doi:10.3233/FI-2011-520.
  • [57] Simson D. Mesh geometries of root orbits of integral quadratic forms, J. Pure Appl. Algebras 2011. 215(1):13–34. doi:10.1016/j.jpaa.2010.02.029.
  • [58] Simson D. Algorithms determining matrix morsifications, Weyl orbits, Coxeter polynomials and mesh geometries of roots for Dynkin diagrams, Fundamenta Informaticae 2013. 123(4):447–490. doi:10.3233/FI-2013-820.
  • [59] Simson D. A framework for Coxeter spectral analysis of edge-bipartite graphs, their rational morsifications and mesh geometries of root orbits, Fundamenta Informaticae 2013. 124(3):309–338. doi:10.3233/FI-2013-836.
  • [60] Simson, D. Toroidal algorithms for mesh geometries for Root orbits of the Dynkin diagram D4D_{4}, Fundamenta Informaticae 2013. 124(3):339–364. doi:10.3233/FI-2013-837.
  • [61] Simson D. A Coxeter Gram classification of positive simply laced edge-bipartite graphs. SIAM J. Discrete Math., 2013. 27:827–854. doi:10.1137/110843721.
  • [62] Simson D. Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs I. A Gram classification. Fundamenta Informaticae 2016. 145(1):19–48. doi:10.3233/FI-2016-1345.
  • [63] Simson D. Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs II. Isotropy mini-groups. Fundamenta Informaticae 2016. 145(1):49–80. doi:10.3233/FI-2016-1346.
  • [64] Simson D. A Coxeter spectral classification of positive edge-bipartite graphs I. Dynkin types n\mathcal{B}_{n}, 𝒞n\mathcal{C}_{n}, 4\mathcal{F}_{4}, 𝒢2\mathcal{G}_{2}, 𝔼6\mathbb{E}_{6}, 𝔼7\mathbb{E}_{7}, 𝔼8\mathbb{E}_{8}. Linear Algebra Appl. 2018. 557:105–133. doi:0.1016/j.laa.2018.07.013.
  • [65] Simson D. Symbolic computations of strong Gram congruences for positive Cox-regular edge-bipartite graphs with loops, Linear Algebra Appl., 2019. 557:90–143. doi:10.1016/j.laa.2019.02.023.
  • [66] Simson D. A computational technique in Coxeter spectral study of symmetrizable integer Cartan matrices. Linear Algebra Appl., 2020. 586:190–238. doi:10.1016/j.laa.2019.10.015.
  • [67] Simson D. A Coxeter spectral classification of positive edge-bipartite graphs II. Dynkin type 𝔻n\mathbb{D}_{n}. Linear Algebra Appl. 2021. 612:223–272. doi:10.1016/j.laa.2020.11.001.
  • [68] Simson D. Weyl orbits of matrix morsifications and a Coxeter spectral classification of positive signed graphs and quasi-Cartan matrices of Dynkin type 𝔸n\mathbb{A}_{n}. Advances in Mathematics 404, 108389 (2022)
  • [69] Simson D, and Zając K. A Framework for Coxeter Spectral Classification of Finite Posets and Their Mesh Geometries of Roots, Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Vol. 2013, Article ID: 743734, 22 pages.
  • [70] Simson D, and Zając K. Inflation algorithm for loop-free non-negative edge-bipartite graphs of corank at least two, Linear Algebra Appl. 2017. 524, 109–152. doi:10.1016/j.laa.2017.02.021.
  • [71] Sloane NJA. The On-Line Encyclopedia of Integer Sequences, (2009). URL: http://oeis.org/classic/?blank=1.
  • [72] Veblen O, and Franklin P. On matrices whose elements are integers. Annals of Mathematics, Second Series, 1921. 23:(1):1–15. doi:10.2307/1967777.
  • [73] Zaslavsky T. The geometry of root systems and signed graphs, Amer. Math. Monthly 1981. 88(2):88–105. doi:10.2307/2321133.
  • [74] Zaslavsky T. Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications: Mysore, 2008, in Ramanujan Math. Soc. Lect. Notes Ser., Vol. 13, Ramanujan Math. Soc., Mysore, 2010, pp. 207–229. doi:10.48550/arXiv.1303.3083.