This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

MnLargeSymbols’164 MnLargeSymbols’171

A stochastic Allen-Cahn-Navier-Stokes system
with singular potential

Andrea Di Primio, Maurizio Grasselli and Luca Scarpa Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi 9, 20133 Milano, Italy andrea.diprimio@polimi.it maurizio.grasselli@polimi.it luca.scarpa@polimi.it
Abstract.

We investigate a stochastic version of the Allen–Cahn–Navier–Stokes system in a smooth two- or three-dimensional domain with random initial data. The system consists of a Navier–Stokes equation coupled with a convective Allen–Cahn equation, with two independent sources of randomness given by general multiplicative-type Wiener noises. In particular, the Allen–Cahn equation is characterized by a singular potential of logarithmic type as prescribed by the classical thermodynamical derivation of the model. The problem is endowed with a no-slip boundary condition for the (volume averaged) velocity field, as well as a homogeneous Neumann condition for the order parameter. We first prove the existence of analytically weak martingale solutions in two and three spatial dimensions. Then, in two dimensions, we also estabilish pathwise uniqueness and the existence of a unique probabilistically-strong solution. Eventually, by exploiting a suitable generalisation of the classical De Rham theorem to stochastic processes, existence and uniqueness of a pressure is also shown.

Key words and phrases:
Allen-Cahn-Navier-Stokes system; stochastic two-phase flow; logarithmic potential; martingale solutions; pathwise uniqueness.
2020 Mathematics Subject Classification:
35Q35, 35R60, 60H15, 76T06

1. Introduction

Modeling the behavior of immiscible (or partially miscible) binary fluids is a very active area of research because of its importance, for instance, in Biology and Materials Science. A well-known and effective approach is the so-called diffuse interface method (see, e.g., [6]). This approach is based on the introduction of an order parameter (or phase field) which accounts for the presence of the fluid components in a sufficiently smooth way, that is, there is no sharp interface separating them but a sufficiently thin region where there is some mixing. More precisely, denoting by φ\varphi the relative difference between the (rescaled) concentrations of the two components, the regions {φ=1}\{\varphi=1\} and {φ=1}\{\varphi=-1\} represent the pure phases. However, they are separated by diffuse interfaces where φ\varphi can take any intermediate value, i.e. φ(1,1)\varphi\in(-1,1). The interaction between the two components is a competition between the mixing entropy and demixing effects and can be represented by a potential energy density of the form

F(φ)=θ2[(1+φ)log(1+φ)+(1φ)log(1φ)]θ02φ2,F(\varphi)=\dfrac{\theta}{2}\left[(1+\varphi)\log(1+\varphi)+(1-\varphi)\log(1-\varphi)\right]-\dfrac{\theta_{0}}{2}\varphi^{2}, (1.1)

for some 0<θ<θ00<\theta<\theta_{0}. This is known as the Flory–Huggins potential (see [37, 55]). Letting 𝒪\mathcal{O} be a (sufficiently) smooth domain of d\mathbb{R}^{d}, d=2,3d=2,3, the Helmholtz free energy associated with the order parameter is then given by

(φ)=𝒪(ε22|φ|2+F(φ))𝑑y\mathcal{E}(\varphi)=\int_{\mathcal{O}}\left(\frac{\varepsilon^{2}}{2}|\nabla\varphi|^{2}+F(\varphi)\right)dy

where the first term accounts for the surface energy separating the phases. Here ε>0\varepsilon>0 is related to the thickness of the diffuse interface. Then, the functional derivative of (φ)\mathcal{E}(\varphi) is called the chemical potential and usually denoted by μ\mu, that is,

μ=ε2Δφ+F(φ).\mu=-\varepsilon^{2}\Delta\varphi+F^{\prime}(\varphi).

We can now introduce the two basic equations which govern the evolution of φ\varphi in some time interval (0,T)(0,T): the Cahn-Hilliard equation (see [20, 19])

tφ=Δμ\partial_{t}\varphi=\Delta\mu

and the Allen-Cahn equation (see [5])

tφ=μ.\partial_{t}\varphi=-\mu.

Here we have assumed that the mobility is constant and equal to the unity. We also recall that, due to the singular behavior of the mixing entropy, the Flory-Huggins potential (1.1) is often approximated with a regular potential like

F(x)=14(x21)2,x.F(x)=\dfrac{1}{4}(x^{2}-1)^{2},\qquad x\in\mathbb{R}. (1.2)

This choice simplifies the mathematical treatment. However, when the total mass of φ\varphi is conserved (e.g. in (1.5)) one cannot ensure that φ\varphi takes its values in the physical range [1,1][-1,1]. Here we choose to keep the physically relevant potential also in view of extending our analysis to conserved Allen-Cahn equations where in (1.6) or in (1.9) μ\mu is replaced by μμ¯\mu-\bar{\mu}, μ¯\bar{\mu} being the spatial average of μ\mu (see [68], see also [42] and references therein).

When we deal with a two-component fluid mixture, the equation for the phase variable is coupled with an equation for a suitably averaged velocity 𝒖{\boldsymbol{u}} of the fluid mixture itself. A well known choice is the Navier–Stokes system subject to a capillary force, known as Korteweg force, which can be represented as μφ\mu\nabla\varphi. More precisely, in the case of an incompressible mixture and taking ε=1\varepsilon=1, constant density equal to the unity and constant viscosity ν>0\nu>0, we have

t𝒖+(𝒖)𝒖νΔ𝒖+π=μφ\displaystyle\partial_{t}{\boldsymbol{u}}+({\boldsymbol{u}}\cdot\nabla){\boldsymbol{u}}-\nu\Delta{\boldsymbol{u}}+\nabla\pi=\mu\nabla\varphi (1.3)
𝒖=0\displaystyle\nabla\cdot{\boldsymbol{u}}=0 (1.4)

coupled with

tφ+𝒖φ=Δμ\partial_{t}\varphi+{\boldsymbol{u}}\cdot\nabla\varphi=\Delta\mu (1.5)

or

tφ+𝒖φ=μ\partial_{t}\varphi+{\boldsymbol{u}}\cdot\nabla\varphi=-\mu (1.6)

in (0,T)×𝒪(0,T)\times\mathcal{O}, for some given T>0T>0. Here 𝒖{\boldsymbol{u}} represents the volume averaged velocity and π\pi stands for the pressure. System (1.3)-(1.4) coupled with (1.5) is known as Cahn–Hilliard–Navier–Stokes system, if (1.5) is replaced by (1.6) then the system is known as Allen–Cahn–Navier–Stokes system. We recall that the standard boundary conditions are no-slip for 𝒖{\boldsymbol{u}} and no-flux for (1.5) or (1.6).

Starting from the pioneering contribution [53], two-phase flow models have then been developed in several works. In particular, we refer to [48] for the Cahn–Hilliard–Navier–Stokes system and to [14] for the Allen–Cahn–Navier–Stokes system (see [4, 40, 63] for more refined models with unmatched densities and [52, 51] for general thermodynamic derivations). The corresponding mathematical analysis of such models has also experienced a remarkable development in the last decades. Concerning the Cahn–Hilliard–Navier–Stokes system with matched densities see [1, 43] and references therein (see also [2, 3, 12, 41, 44, 45] for more general models). Regarding the Allen–Cahn–Navier–Stokes system, we refer to [38, 39] for the matched case (see also references therein) and to [34, 35, 54, 57, 42, 58, 60, 61] for more refined models.

The deterministic description fails in rendering possible unpredictable oscillations at the microscopic level. These include, for example, the environmental noise due to temperature and configurational effects. The most natural way to take into account such factors was first proposed in [21] where a stochastic version of the Cahn–Hilliard equation was introduced (see also [16, 15] for nucleation effects). That equation has been analyzed under various assssumptions in a number of contributions (see, for instance, [22, 25, 24, 31, 47] and, more recently, [72, 74, 70]). We also refer to [64, 71, 73] for related stochastic optimal control problems. The stochastic Allen-Cahn equation has been investigated in the framework of regular potentials (see, for instance, [13, 50, 49, 65] for examples of well-posedness analysis, see also [18, 69] for numerical schemes and simulations). The singular potential has been analyzed in [10] (see also [9] for the double obstacle potential), while in [11] the separation property from the pure phases has been established.

Here we analyze a stochastic version of the Allen–Cahn–Navier–Stokes system characterized by two independent sources of randomness, the former acting on the fluid velocity and the latter acting on the order parameter dynamic to incorporate thermal fluctuations. More precisely, on account of (1.3)-(1.4) and (1.6), taking ν=1\nu=1 for the sake of simplicity, we consider the following system of stochastic partial differential equations

d𝒖+[Δ𝒖+(𝒖)𝒖+πμφ]dt=G1(𝒖)dW1\displaystyle{\mathrm{d}}{\boldsymbol{u}}+\left[-\Delta{\boldsymbol{u}}+({\boldsymbol{u}}\cdot\nabla){\boldsymbol{u}}+\nabla\pi-\mu\nabla\varphi\right]\,{\mathrm{d}}t=G_{1}({\boldsymbol{u}})\,{\mathrm{d}}W_{1}\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (1.7)
𝒖=0\displaystyle\nabla\cdot{\boldsymbol{u}}=0\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (1.8)
dφ+[𝒖φ+μ]dt=G2(φ)dW2\displaystyle{\mathrm{d}}\varphi+\left[{\boldsymbol{u}}\cdot\nabla\varphi+\mu\right]\,{\mathrm{d}}t=G_{2}(\varphi)\,{\mathrm{d}}W_{2}\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (1.9)
μ=Δφ+F(φ)\displaystyle\mu=-\Delta\varphi+F^{\prime}(\varphi)\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (1.10)
𝒖=0,φ𝒏=0\displaystyle{\boldsymbol{u}}=0,\quad\nabla\varphi\cdot{\boldsymbol{n}}=0\qquad on (0,T)×𝒪,\displaystyle\text{on }(0,T)\times\partial\mathcal{O}, (1.11)
𝒖(0)=𝒖0,φ(0)=φ0\displaystyle{\boldsymbol{u}}(0)={\boldsymbol{u}}_{0},\quad\varphi(0)=\varphi_{0}\qquad in 𝒪.\displaystyle\text{in }\mathcal{O}. (1.12)

Here W1W_{1} and W2W_{2} are two independent cylindrical Wiener processes on some (possibly different) separable Hilbert spaces, and GiG_{i} is a suitable stochastically integrable process with respect to WiW_{i}, for i=1,2i=1,2. Moreover, 𝒏{\boldsymbol{n}} stands for the outward normal unit vector to 𝒪\partial\mathcal{O}.

The presence of random terms in both the equations has been considered in [33] in the case of a smooth potential like (1.2) (see also [46, 76, 80] for modified models and [26, 28, 77, 79] for random terms only in the Navier-Stokes system). We also remind that the case of Cahn–Hilliard–Navier–Stokes system for a compressible fluid has been studied in [32] (see, e.g., [78, 27] for random terms only in the Navier-Stokes system in the case of regular potential).

Here, for system (1.7)–(1.12) with a potential like (1.1), we prove the existence of martingale solutions in dimension two and three, as well as pathwise uniqueness and existence of probabilistically-strong solutions in dimension two. The main difficulties on the mathematical side are two. The former is the presence of noise also in the Allen-Cahn equation with singular potential: this requires some ad hoc ideas based on a suitable compensation between the degeneracy of the noise and the blow up of F′′F^{\prime\prime} at the endpoints (see ((A3)) below). The latter is the coupling term μφ\mu\nabla\varphi in the Navier-Stokes equation. Indeed, for the Allen–Cahn equation one can recover only a L2(0,T;L2(𝒪))L^{2}(0,T;L^{2}(\mathcal{O}))-regularity for μ\mu, while for the Cahn–Hilliard equation one gets μL2(0,T;H1(𝒪))\mu\in L^{2}(0,T;H^{1}(\mathcal{O})). This results in the necessity to reformulate the first equation for the fluid in an alternative fashion, i.e., without employing μ\mu explicitly.

We recall that, in [33], the authors proved the existence of a (dissipative) martingale solution for a similar problem with a smooth potential. Then, taking advantage of the smooth potential, they used the maximum principle to show that the range of the order parameter remains confined in [1,1][-1,1]. Thus the global Lipschitz continuity of the potential and its derivatives holds. This fact was exploited to prove the weak-strong pathwise and in law uniqueness in dimension three. However, if the potential is given by (1.1), then no global Lipschitz continuity can be achieved unless one can prove that the solution stays uniformly away from the pure phases, but this is not straightforward in the stochastic case (see [11] for the single stochastic Allen–Cahn equation).

Besides the existence and uniqueness of solutions, there are still a number of issues to investigate, which will be object of future work. For example, regularity properties of the solution and existence of analytically-strong solutions are open issues. The low regularity of the chemical potential μ\mu in the Allen-Cahn equation that we have mentioned above seems to make the analysis challenging. Yet, some higher regularity properties have been shown in the deterministic case (see [42]). Their extension to the stochastic case is currently under investigation. Moreover, in the spirit of [11], it would be interesting to establish some random strict separation property from the pure phases. To do this, suitable regularity results might be needed. It also worth pointing out that system (1.7)–(1.12) is the non-conserved version of the model, meaning that the spatial average of φ\varphi is not preserved during the evolution. The deterministic conserved version is now well-understood (see [42]). Its stochastic counterpart will also be the subject of further analysis. This issue will require a tuning of the diffusion coefficient G2G_{2} (see for example [7]). Finally, we point out that also more general versions of the stochastic Cahn–Hilliard-Navier–Stokes system might be considered on account of the recent advances in the analysis of the stochastic Cahn–Hilliard equation.

The content of this work is structured as follows. In Section 2, we introduce the notation used throughout the work and state the main results. Sections 3 and 4 are devoted to the proof of existence of a martingale solutions and, in dimension two, of a probabilistically-strong solution, respectively.

2. Preliminaries and main results

2.1. Functional setting and notation

For any (real) Banach space EE, its (topological) dual is denoted by EE^{*} and the duality pairing between EE^{*} and EE by ,E,E\left\langle\cdot,\cdot\right\rangle_{E^{*},E}. If EE is a Hilbert space, then the scalar product of EE is denoted by (,)E(\cdot,\cdot)_{E}. For every couple of separable Hilbert spaces E,FE,F the space of Hilbert-Schmidt operators from EE to FF is denoted by the symbol 2(E,F)\mathscr{L}^{2}(E,F) and endowed with its canonical norm 2(E,F)\left\|\cdot\right\|_{\mathscr{L}^{2}(E,F)}. Let (Ω,,(t)t[0,T],)(\Omega,\mathscr{F},(\mathscr{F}_{t})_{t\in[0,T]},\mathbb{P}) be a filtered probability space satisfying the usual conditions (namely it is saturated and right-continuous), with T>0T>0 being a prescribed final time. We will use the symbol =\stackrel{{\scriptstyle\mathcal{L}}}{{=}} to denote identity in law for random variables. Throughout the paper, W1W_{1} and W2W_{2} are independent cylindrical Wiener process on some separable Hilbert spaces U1U_{1} and U2U_{2}, respectively. For convenience, we fix once and for all two complete orthonormal systems {uj1}j\{u^{1}_{j}\}_{j\in\mathbb{N}} on U1U_{1} and {uj2}j\{u^{2}_{j}\}_{j\in\mathbb{N}} on U2U_{2}. We denote by 𝒫\mathscr{P} the progressive sigma algebra on Ω×[0,T]\Omega\times[0,T]. For every s,r[1,+]s,r\in[1,+\infty] and for every Banach space EE the symbols Ls(Ω;E)L^{s}(\Omega;E) and Lr(0,T;E)L^{r}(0,T;E) indicate the usual spaces of strongly measurable Bochner-integrable functions on Ω\Omega and (0,T)(0,T), respectively. For all s,r[1,+)s,r\in[1,+\infty) we write L𝒫s(Ω;Lr(0,T;E))L^{s}_{\mathscr{P}}(\Omega;L^{r}(0,T;E)) to stress that measurability is intended with respect to 𝒫\mathscr{P}. For all s(1,+)s\in(1,+\infty) and for every separable and reflexive Banach space EE we also define

Lws(Ω;L(0,T;E)):={v:ΩL(0,T;E) weakly* measurable:vL(0,T;E)Ls(Ω)},L^{s}_{w}(\Omega;L^{\infty}(0,T;E^{*})):=\left\{v:\Omega\to L^{\infty}(0,T;E^{*})\text{ weakly* measurable}\,:\,\left\|v\right\|_{L^{\infty}(0,T;E^{*})}\in L^{s}(\Omega)\right\}\,,

which yields by [30, Thm. 8.20.3] the identification

Lws(Ω;L(0,T;E))=(Ls/(s1)(Ω;L1(0,T;E))).L^{s}_{w}(\Omega;L^{\infty}(0,T;E^{*}))=\left(L^{s/(s-1)}(\Omega;L^{1}(0,T;E))\right)^{*}\,.

In case of distribution-valued processes, for every s[1,+)s\in[1,+\infty), r(0,+)r\in(0,+\infty), and q(1,+]q\in(1,+\infty] we set

L𝒫s(Ω;Wr,q(0,T;E))\displaystyle L^{s}_{\mathscr{P}}(\Omega;W^{-r,q}(0,T;E^{*})) :={v:ΩWr,q(0,T;E) weakly* measurable:\displaystyle:=\left\{v:\Omega\to W^{-r,q}(0,T;E^{*})\text{ weakly* measurable}\,:\right.
vLs(Ω,t;Wr,q(0,t;E))t[0,T]}.\displaystyle\left.\qquad\qquad\qquad v\in L^{s}(\Omega,\mathscr{F}_{t};W^{-r,q}(0,t;E))\quad\forall\,t\in[0,T]\right\}.

Let d=2,3d=2,3 and consider a bounded domain 𝒪d\mathcal{O}\subset\mathbb{R}^{d} with smooth boundary 𝒪\partial\mathcal{O} and outward normal unit vector 𝒏{\boldsymbol{n}}. The spatiotemporal domains generated by 𝒪\mathcal{O} are denoted by Q:=(0,T)×𝒪Q:=(0,T)\times\mathcal{O} and Qt:=(0,t)×𝒪Q_{t}:=(0,t)\times\mathcal{O} for all t(0,T]t\in(0,T]. Moreover, we employ the classical notation Ws,p(𝒪)W^{s,p}(\mathcal{O}), where ss\in\mathbb{R} and p[1,+]p\in[1,+\infty], for the real Sobolev spaces and we denote by Ws,p(𝒪)\left\|\cdot\right\|_{W^{s,p}(\mathcal{O})} their canonical norms. We define the Hilbert space Hs(𝒪):=Ws,2(𝒪)H^{s}(\mathcal{O}):=W^{s,2}(\mathcal{O}), ss\in\mathbb{R}, endowed with its canonical norm Hs(𝒪)\left\|\cdot\right\|_{H^{s}(\mathcal{O})}, and indicate by H01(𝒪)H^{1}_{0}(\mathcal{O}) the closure of C0(𝒪)C^{\infty}_{0}({\color[rgb]{0,0,0}\mathcal{O}}) in H1(𝒪)H^{1}(\mathcal{O}). We now define the functional spaces

H:=L2(𝒪),V1:=H1(𝒪),V2:={ψH2(𝒪):𝒏ψ=0 a.e. on 𝒪},H:=L^{2}(\mathcal{O})\,,\qquad V_{1}:=H^{1}(\mathcal{O})\,,\qquad V_{2}:=\left\{\psi\in H^{2}(\mathcal{O}):\;\partial_{\boldsymbol{n}}\psi=0\text{ a.e.\leavevmode\nobreak\ on }\partial\mathcal{O}\right\}\,,

endowed with their standard norms H\left\|\cdot\right\|_{H}, V1\left\|\cdot\right\|_{V_{1}}, and V2\left\|\cdot\right\|_{V_{2}}, respectively. As usual, we identify the Hilbert space HH with its dual through the Riesz isomorphism, so that we have the variational structure

V2V1HV1V2,V_{2}\hookrightarrow V_{1}\hookrightarrow H\hookrightarrow V_{1}^{*}\hookrightarrow V_{2}^{*}\,,

with dense and compact embeddings (both in the cases d=2d=2 and d=3d=3). We will also denote by A:V1V1A:V_{1}\to V_{1}^{*} the variational realization of the Δ-\Delta with homogeneous Neumann boundary condition, namely

Aψ,ϕV1,V1=𝒪ψϕ,ψ,ϕV1.\left\langle A\psi,\phi\right\rangle_{V_{1}^{*},V_{1}}=\int_{\mathcal{O}}\nabla\psi\cdot\nabla\phi\,,\qquad\psi,\phi\in V_{1}\,.

For any Banach space EE, we use the symbol 𝑬\boldsymbol{E} for the product space EdE^{d}. We also need to define the following solenoidal vector-valued spaces

𝑯σ:={𝒗𝑪0(𝒪):𝒗=0 in 𝒪}¯𝑳2(𝒪),𝑽σ:={𝒗𝑪0(𝒪):𝒗=0 in 𝒪}¯𝑯1(𝒪).\displaystyle{\boldsymbol{H}_{\sigma}}:=\overline{\{{\boldsymbol{v}}\in{\boldsymbol{C}}^{\infty}_{0}(\mathcal{O}):\nabla\cdot{\boldsymbol{v}}=0\text{ in }\mathcal{O}\}}^{{\boldsymbol{L}}^{2}(\mathcal{O})},\quad{\boldsymbol{V}_{\sigma}}:=\overline{\{{\boldsymbol{v}}\in{\boldsymbol{C}}^{\infty}_{0}(\mathcal{O}):\nabla\cdot{\boldsymbol{v}}=0\text{ in }\mathcal{O}\}}^{{\boldsymbol{H}}^{1}(\mathcal{O})}.

The space 𝑯σ{\boldsymbol{H}_{\sigma}} is endowed with the norm 𝑯σ\left\|\cdot\right\|_{{\boldsymbol{H}_{\sigma}}} of 𝑯{\boldsymbol{H}} and its respective scalar product (,)𝑯σ(\cdot,\cdot)_{{\boldsymbol{H}_{\sigma}}}. By means of the Poincaré inequality, on the space 𝑽σ{\boldsymbol{V}_{\sigma}} we can use the norm 𝒗𝑽σ:=𝒗𝑳2(𝒪)\left\|{\boldsymbol{v}}\right\|_{{\boldsymbol{V}_{\sigma}}}:=\left\|\nabla{\boldsymbol{v}}\right\|_{{\boldsymbol{L}}^{2}(\mathcal{O})}, 𝒗𝑽σ{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}}, induced by the scalar product (,)𝑽σ(\cdot,\cdot)_{{\boldsymbol{V}_{\sigma}}}. The dd-dimensional realisation of the Δ-\Delta with homogeneous Dirichlet boundary condition 𝑳:𝑯01(𝒪)(𝑯01(𝒪)){\boldsymbol{L}}:{\boldsymbol{H}}^{1}_{0}(\mathcal{O})\to({\boldsymbol{H}}_{0}^{1}(\mathcal{O}))^{*} is defined as

𝑳𝒗,𝒘(𝑯01(Ω)),𝑯01(Ω):=(𝒗,𝒘)𝑯,𝒗,𝒘𝑯01(Ω).\left\langle{\boldsymbol{L}}{\boldsymbol{v}},{\boldsymbol{w}}\right\rangle_{({\boldsymbol{H}}^{1}_{0}(\Omega))^{*},{\boldsymbol{H}}^{1}_{0}(\Omega)}:=(\nabla{\boldsymbol{v}},\nabla{\boldsymbol{w}})_{{\boldsymbol{H}}}\,,\qquad{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{H}}^{1}_{0}(\Omega)\,.

Furthermore, we also point out that for any 𝒖(𝑯01(Ω)){\boldsymbol{u}}\in({\boldsymbol{H}}^{1}_{0}(\Omega))^{*} and 𝒗[𝒞0(Ω)]d{\boldsymbol{v}}\in\left[\mathcal{C}^{\infty}_{0}(\Omega)\right]^{d} we have

𝒖,𝒗(𝑯01(Ω)),𝑯01(Ω)=𝒖,𝒗([𝒞0(Ω)]d),[𝒞0(Ω)]d.\left\langle{\boldsymbol{u}},{\boldsymbol{v}}\right\rangle_{({\boldsymbol{H}}^{1}_{0}(\Omega))^{*},{\boldsymbol{H}}_{0}^{1}(\Omega)}=\left\langle{\boldsymbol{u}},{\boldsymbol{v}}\right\rangle_{\left(\left[\mathcal{C}^{\infty}_{0}(\Omega)\right]^{d}\right)^{*},\left[\mathcal{C}^{\infty}_{0}(\Omega)\right]^{d}}.

The Stokes operator 𝑨:𝑽σ𝑽σ{\boldsymbol{A}}:{\boldsymbol{V}_{\sigma}}\to{\boldsymbol{V}}_{\sigma}^{*} is defined as the canonical Riesz isomorphism of 𝑽σ{\boldsymbol{V}_{\sigma}}, i.e.

𝑨𝒗,𝒘𝑽σ,𝑽σ:=(𝒗,𝒘)𝑯,𝒗,𝒘𝑽σ.\left\langle{\boldsymbol{A}}{\boldsymbol{v}},{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}}^{*}_{\sigma},{\boldsymbol{V}}_{\sigma}}:=(\nabla{\boldsymbol{v}},\nabla{\boldsymbol{w}})_{{\boldsymbol{H}}}\,,\qquad{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{V}_{\sigma}}\,.

Employing the spectral properties of the operator 𝑨{\boldsymbol{A}}, as customary, we also define the family of operators 𝑨s{\boldsymbol{A}}^{s} for any ss\in\mathbb{R}. In particular, if {βk,𝒆k}k+×𝑽σ\{\beta_{k},{\boldsymbol{e}}_{k}\}_{k\in\mathbb{N}_{+}}\subset\mathbb{R}\times{\boldsymbol{V}_{\sigma}} denote the eigencouples of 𝑨{\boldsymbol{A}}, where {𝒆k}k+\{{\boldsymbol{e}}_{k}\}_{k\in\mathbb{N}_{+}} is an orthonormal basis of 𝑯σ{\boldsymbol{H}_{\sigma}} and an orthogonal basis of 𝑽σ{\boldsymbol{V}_{\sigma}}, we introduce for any s0s\geq 0 the family of Hilbert spaces

D(𝑨s):={𝒗𝑯σ:𝒗=i=1ci𝒆i and i=1βi2s|ci|2<+},D({\boldsymbol{A}}^{s}):=\left\{{\boldsymbol{v}}\in{\boldsymbol{H}_{\sigma}}:{\boldsymbol{v}}=\sum_{i=1}^{\infty}c_{i}{\boldsymbol{e}}_{i}\text{ and }\sum_{i=1}^{\infty}\beta_{i}^{2s}|c_{i}|^{2}<+\infty\right\},

and we set D(𝑨s)=D(𝑨s)D({\boldsymbol{A}}^{-s})=D({\boldsymbol{A}}^{s})^{*}. Next, for all s0s\geq 0, we define the operators

𝑨s:D(𝑨s)𝑯σ,𝒗=i=1ci𝒆i𝑨s𝒗:=i=1βisci𝒆i.{\boldsymbol{A}}^{s}:D({\boldsymbol{A}}^{s})\to{\boldsymbol{H}_{\sigma}},\qquad{\boldsymbol{v}}=\sum_{i=1}^{\infty}c_{i}{\boldsymbol{e}}_{i}\mapsto{\boldsymbol{A}}^{s}{\boldsymbol{v}}:=\sum_{i=1}^{\infty}\beta_{i}^{s}c_{i}{\boldsymbol{e}}_{i}.

Hereafter, we recall a number of standard facts:

  1. (i)

    if s=1s=1, then the Hilbert space D(𝑨)={𝒗𝑯σ:𝑨𝒗𝑯σ}=𝑯2(𝒪)𝑽σD({\boldsymbol{A}})=\{{\boldsymbol{v}}\in{\boldsymbol{H}_{\sigma}}:{\boldsymbol{A}}{\boldsymbol{v}}\in{\boldsymbol{H}_{\sigma}}\}={\boldsymbol{H}}^{2}(\mathcal{O})\cap{\boldsymbol{V}_{\sigma}} denotes the so-called part of 𝑨{\boldsymbol{A}} in 𝑯σ{\boldsymbol{H}_{\sigma}};

  2. (ii)

    if s=12s=\frac{1}{2}, then we have D(𝑨12)=𝑽σD({\boldsymbol{A}}^{\frac{1}{2}})={\boldsymbol{V}_{\sigma}} and D(𝑨12)=𝑽σD({\boldsymbol{A}}^{-\frac{1}{2}})={\boldsymbol{V}_{\sigma}^{*}};

  3. (iii)

    if s=0s=0, then 𝑨0{\boldsymbol{A}}^{0} is the identity operator in 𝑯σ{\boldsymbol{H}_{\sigma}} so that D(𝑨0)=𝑯σD({\boldsymbol{A}}^{0})={\boldsymbol{H}_{\sigma}};

  4. (iv)

    if s=1s=-1, then 𝑨1{\boldsymbol{A}}^{-1} coincides with the inverse of the Stokes operator on 𝑽σ{\boldsymbol{V}_{\sigma}^{*}} and extends it on D(𝑨1)D({\boldsymbol{A}}^{-1}).

In light of the previous considerations, using 𝑯σ{\boldsymbol{H}_{\sigma}} as pivot space, we also have the general variational structure

D(𝑨s)D(𝑨t)𝑯σD(𝑨0)D(𝑨t)D(𝑨s)D({\boldsymbol{A}}^{s})\hookrightarrow D({\boldsymbol{A}}^{t})\hookrightarrow{\boldsymbol{H}_{\sigma}}\equiv D({\boldsymbol{A}}^{0})\hookrightarrow D({\boldsymbol{A}}^{-t})\hookrightarrow D({\boldsymbol{A}}^{-s})

for any s>t>0s>t>0, with dense and compact embeddings in two and three spatial dimensions. Finally, we remind that, owing to the Korn inequality, we have

𝒗𝑽σ=𝒗𝑯2D𝒗𝑯2𝒗𝑯𝒗𝑽σ,\left\|{\boldsymbol{v}}\right\|_{{\boldsymbol{V}_{\sigma}}}=\left\|\nabla{\boldsymbol{v}}\right\|_{{\boldsymbol{H}}}\leq\sqrt{2}\left\|D{\boldsymbol{v}}\right\|_{{\boldsymbol{H}}}\leq\sqrt{2}\left\|\nabla{\boldsymbol{v}}\right\|_{{\boldsymbol{H}}}\qquad\forall\,{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}}\,,

where D𝒗=12(𝒗+(𝒗)t)D{\boldsymbol{v}}=\frac{1}{2}(\nabla{\boldsymbol{v}}+(\nabla{\boldsymbol{v}})^{t}) denotes the symmetric gradient. Furthermore, we define the usual Stokes trilinear form bb on 𝑽σ×𝑽σ×𝑽σ{\boldsymbol{V}_{\sigma}}\times{\boldsymbol{V}_{\sigma}}\times{\boldsymbol{V}_{\sigma}}

b(𝒖,𝒗,𝒘):=𝒪(𝒖)𝒗𝒘=i,j=1d𝒪uivixjwj,𝒖,𝒗,𝒘𝑽σ,b({\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{w}}):=\int_{\mathcal{O}}({\boldsymbol{u}}\cdot\nabla){\boldsymbol{v}}\cdot{\boldsymbol{w}}=\sum_{i,j=1}^{d}\int_{\mathcal{O}}u_{i}\frac{\partial v_{i}}{\partial x_{j}}w_{j}\,,\qquad{\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{V}_{\sigma}}\,,

and the associated bilinear form B:𝑽σ×𝑽σ𝑽σB:{\boldsymbol{V}_{\sigma}}\times{\boldsymbol{V}_{\sigma}}\to{\boldsymbol{V}}_{\sigma}^{*} as

B(𝒖,𝒗),𝒘𝑽σ,𝑽σ:=b(𝒖,𝒗,𝒘),𝒖,𝒗,𝒘𝑽σ.\left\langle B({\boldsymbol{u}},{\boldsymbol{v}}),{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}_{\sigma}}}:=b({\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{w}})\,,\qquad{\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{V}_{\sigma}}\,.

Let us recall that b(𝒖,𝒗,𝒘)=b(𝒖,𝒘,𝒗)b({\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{w}})=-b({\boldsymbol{u}},{\boldsymbol{w}},{\boldsymbol{v}}) for all 𝒖,𝒗,𝒘𝑽σ{\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{V}_{\sigma}}, from which it follows in particular that b(𝒖,𝒗,𝒗)=0b({\boldsymbol{u}},{\boldsymbol{v}},{\boldsymbol{v}})=0 for all 𝒖,𝒗𝑽σ{\boldsymbol{u}},{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}}. Moreover, we point out that thanks to the usual functional embeddings it holds that B:𝑽σ×𝑽σ𝑳65(𝒪)B:{\boldsymbol{V}_{\sigma}}\times{\boldsymbol{V}_{\sigma}}\to{\boldsymbol{L}}^{{\color[rgb]{0,0,0}\frac{6}{5}}}(\mathcal{O}), hence, in particular, that B:𝑽σ×𝑽σ𝑽1B:{\boldsymbol{V}_{\sigma}}\times{\boldsymbol{V}_{\sigma}}\to{\boldsymbol{V}}_{1}^{*}.
We now report for the reader’s convenience a basic embedding result and its proof. This will be useful in the forthcoming analysis.

Lemma 2.1.

Let r>1r>1 and let XX be a Banach space. For every p>1p>1, there exists α=α(p,r)(0,1)\alpha=\alpha(p,r)\in(0,1) such that W1,r(0,T;X)Wα,p(0,T;X)W^{1,r}(0,T;X)\hookrightarrow W^{\alpha,p}(0,T;X). In particular, if prp\leq r then α\alpha is any quantity in (0,1)(0,1), and if p>rp>r then α=rp\alpha=\frac{r}{p}.

Proof.

The embedding holds trivially for every α(0,1)\alpha\in(0,1) if p=rp=r. The same follows in the case 1<p<r1<p<r from the chain of embeddings

W1,r(0,T;X)W1,p(0,T;X)Wα,p(0,T;X).W^{1,r}(0,T;X)\hookrightarrow W^{1,p}(0,T;X)\hookrightarrow W^{\alpha,p}(0,T;X).

Let now p>rp>r. If α(0,1)\alpha\in(0,1), q[1,+]q\in[1,+\infty] satisfy

1p=1αq+αr,\dfrac{1}{p}=\dfrac{1-\alpha}{q}+\dfrac{\alpha}{r},

then the fractional Gagliardo-Nirenberg inequality (see [17, Theorem 1]) entails that

fWα,p(0,T)CfLq(0,T)1αfW1,r(0,T)α,\|f\|_{W^{\alpha,p}(0,T)}\leq C\|f\|_{L^{q}(0,T)}^{1-\alpha}\|f\|_{W^{1,r}(0,T)}^{\alpha},

for any fW1,r(0,T)f\in W^{1,r}(0,T). Taking into account the embedding

W1,r(0,T)C0([0,T])L(0,T),W^{1,r}(0,T)\hookrightarrow C^{0}([0,T])\hookrightarrow L^{\infty}(0,T),

valid for every r>1r>1, we infer that the right hand side of the inequality is finite for every q[1,+]q\in[1,+\infty]. Moreover, we also get

fWα,p(0,T)CfW1,r(0,T).\|f\|_{W^{\alpha,p}(0,T)}\leq C\|f\|_{W^{1,r}(0,T)}.

If we set q=+q=+\infty, then we have

α=rp.\alpha=\frac{r}{p}.

If uW1,r(0,T;X)u\in W^{1,r}(0,T;X) the claim follows applying the proved inequality to tf(t)=u(t)Xt\mapsto f(t)=\|u(t)\|_{X}. ∎

Finally, we shall make precise the rigorous interpretation of the stochastic terms (see (1.7) and (1.9)). As a cylindrical process on UiU_{i}, i=1,2i=1,2, WiW_{i} admits the following representation

Wi=k=0+bkuki,W_{i}=\sum_{k=0}^{+\infty}b_{k}u^{i}_{k}, (2.1)

where {bk}k\{b_{k}\}_{k\in\mathbb{N}} is a family of real and independent Brownian motions. However, it is well known that (2.1) does not converge in UiU_{i}, in general. That being said, it always exists a larger Hilbert space U0iU_{0}^{i}, such that UiU0iU_{i}\hookrightarrow U_{0}^{i} with Hilbert-Schmidt embedding ιi\iota_{i}, such that we can identify WiW_{i} as a Qi0Q^{0}_{i}-Wiener process on U0iU_{0}^{i}, for some trace-class operator Qi0Q^{0}_{i} (see [62, Subsections 2.5.1]). Actually, it holds that Qi0=ιiιiQ^{0}_{i}=\iota_{i}\circ\iota_{i}^{*}. In the following, we may implicitly assume this extension by simply saying that WiW_{i} is a cylindrical process on UiU_{i}. This holds also for stochastic integration with respect to WiW_{i}. The symbol

0B(s)dWi(s):=0B(s)ιi1(s)dWi(s),\int_{0}^{\cdot}B(s)\,{\mathrm{d}}W_{i}(s):=\int_{0}^{\cdot}B(s)\circ\iota_{i}^{-1}(s)\,{\mathrm{d}}W_{i}(s),

for every progressively measurable process BL2(Ω;L2(0,T;2(U,K)))B\in L^{2}(\Omega;L^{2}(0,T;\mathscr{L}^{2}(U,K))), where KK is any (real) Hilbert space. The definition is well posed and does not depend on the choice of Ui0U_{i}^{0} or ιi\iota_{i} (see [62, Subsection 2.5.2]).

2.2. Structural assumptions

The following assumptions are in order throughout the paper.

  1. (A1)

    The potential F:[1,1][0,+)F:[-1,1]\to[0,+\infty) is of class C0([1,1])C2(1,1)C^{0}([-1,1])\cap C^{2}(-1,1) with F(0)=0F^{\prime}(0)=0 and satisfies

    limx(±1)F(x)=±.\lim_{x\to(\pm 1)^{\mp}}F^{\prime}(x)=\pm\infty.

    Furthermore, there exists cF>0c_{F}>0 such that

    F′′(x)cF,x(1,1).F^{\prime\prime}(x)\geq-c_{F},\quad x\in(-1,1).
  2. (A2)

    The operator G1:𝑯σ2(U1,𝑯σ)G_{1}:{\boldsymbol{H}_{\sigma}}\to\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}}) is linearly bounded in 𝑯σ{\boldsymbol{H}_{\sigma}}, namely there exists CG1>0C_{G_{1}}>0 such that

    G1(𝒗)2(U1,𝑯σ)CG1(1+𝒗𝑯σ)\|G_{1}({\boldsymbol{v}})\|_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\leq C_{G_{1}}\left(1+\|{\boldsymbol{v}}\|_{\boldsymbol{H}_{\sigma}}\right)

    for any 𝒗𝑯σ{\boldsymbol{v}}\in{\boldsymbol{H}_{\sigma}}. Moreover, taking Y=𝑯σY={\boldsymbol{H}_{\sigma}} or Y=𝑽σY={\boldsymbol{V}_{\sigma}^{*}}, we assume that G1:Y2(U1,Y)G_{1}:Y\to\mathscr{L}^{2}(U_{1},Y) is L1L_{1}-Lipschitz-continuous for some positive constant L1L_{1}.

  3. (A3)

    Setting \mathcal{B} as the closed unit ball in L(𝒪)L^{\infty}(\mathcal{O}), the operator G2:2(U2,H)G_{2}:\mathcal{B}\to\mathscr{L}^{2}(U_{2},H) satisfies

    G2(ψ)[uk2]=gk(ψ)k+ψ,G_{2}(\psi)[u_{k}^{2}]=g_{k}(\psi)\qquad\forall\,k\in\mathbb{N}_{+}\quad\forall\,\psi\in\mathcal{B}\,,

    where the sequence {gk}k+W1,(1,1)\{g_{k}\}_{k\in\mathbb{N}_{+}}\subset W^{1,\infty}(-1,1) is such that

    gk(±1)=0,F′′gk2L(1,1)k+,g_{k}(\pm 1)=0\,,\quad F^{\prime\prime}g_{k}^{2}\in L^{\infty}(-1,1)\qquad\forall\,k\in\mathbb{N}_{+}\,,

    and

    L22:=k=1(gkW1,(1,1)2+F′′gk2L(1,1))<+.L_{2}^{2}:=\sum_{k=1}^{\infty}\left(\left\|g_{k}\right\|_{W^{1,\infty}(-1,1)}^{2}+\left\|F^{\prime\prime}g_{k}^{2}\right\|_{L^{\infty}(-1,1)}\right)<+\infty\,.

    In particular, note that this implies that G2:2(U2,H)G_{2}:\mathcal{B}\to\mathscr{L}^{2}(U_{2},H) is L2L_{2}-Lipschitz-continuous with respect to the HH-metric on \mathcal{B}, and also G2(V1)2(U2,V1)G_{2}(\mathcal{B}\cap V_{1})\subset\mathscr{L}^{2}(U_{2},V_{1}). With a slight abuse of notation, we will use the symbol

    G2:V12(U2,𝑯)\nabla G_{2}:\mathcal{B}\cap V_{1}\to\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})

    to indicate the operator

    G2(ψ)[uk2]:=gk(ψ)=gk(ψ)ψ,k+,ψV1.\nabla G_{2}(\psi)[u_{k}^{2}]:=\nabla g_{k}(\psi)=g_{k}^{\prime}(\psi)\nabla\psi\,,\quad k\in\mathbb{N}_{+}\,,\quad\psi\in\mathcal{B}\cap V_{1}\,.
Remark 2.2.

Let us point out that the physically relevant choice of FF (see (1.1)) satisfies (A1) and the compatibility condition in (A3), up to a suitable extension by right (or left) continuity at the boundary of [1,1][-1,1] and some additive constant to grant positivity (see, e.g., [70, Remark 2.3]).

Remark 2.3.

If Y=𝑯σY={\boldsymbol{H}_{\sigma}} in (A2), then linear boundedness is directly implied by Lipschitz continuity.

2.3. Main results

We first introduce suitable notions of solution for problem (1.7)-(1.11). The first is a martingale solution, the second is a probabilistically-strong solution.

Definition 2.4.

Let p1p\geq 1 and let (𝒖0,φ0)({\boldsymbol{u}}_{0},\varphi_{0}) satisfy

𝒖0\displaystyle{\boldsymbol{u}}_{0} Lp(Ω,0;𝑯σ),\displaystyle\in L^{p}(\Omega,\mathscr{F}_{0};{\boldsymbol{H}_{\sigma}})\,, (2.2)
φ0\displaystyle\varphi_{0} Lp(Ω,0;V1),F(φ0)Lp/2(Ω,0;L1(𝒪)).\displaystyle\in L^{p}(\Omega,\mathscr{F}_{0};V_{1})\,,\quad F(\varphi_{0})\in L^{p/2}(\Omega,\mathscr{F}_{0};L^{1}(\mathcal{O}))\,. (2.3)

A martingale solution to problem (1.7)-(1.11) with respect to the initial datum (𝒖0,φ0)({\boldsymbol{u}}_{0},\varphi_{0}) is a family

((Ω^,^,(^t)t[0,T],^),W^1,W^2,𝒖^,φ^),\left(\left(\widehat{\Omega},\widehat{\mathscr{F}},(\widehat{\mathscr{F}}_{t})_{t\in[0,T]},\widehat{\mathbb{P}}\right),\widehat{W}_{1},\widehat{W}_{2},\widehat{\boldsymbol{u}},\widehat{\varphi}\right)\,,

where: (Ω^,^,(^t)t[0,T],^)(\widehat{\Omega},\widehat{\mathscr{F}},(\widehat{\mathscr{F}}_{t})_{t\in[0,T]},\widehat{\mathbb{P}}) is a filtered probability space satisfying the usual conditions; W^1,W^2\widehat{W}_{1},\widehat{W}_{2} are two independent cylindrical Wiener processes on U1U_{1} and U2U_{2}, respectively; the pair of processes (𝒖^,φ^)(\widehat{\boldsymbol{u}},\widehat{\varphi}) satisfies

𝒖^Lwp(Ω^;L(0,T;𝑯σ))L𝒫p(Ω^;L2(0,T;𝑽σ)),\displaystyle\widehat{\boldsymbol{u}}\in L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}))\cap L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))\,, (2.4)
φ^L𝒫p(Ω^;C0([0,T];H))Lwp(Ω^;L(0,T;V1))L𝒫p(Ω^;L2(0,T;V2)),\displaystyle\widehat{\varphi}\in L^{p}_{\mathscr{P}}(\widehat{\Omega};C^{0}([0,T];H))\cap L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;V_{1}))\cap L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;V_{2}))\,, (2.5)
|φ^(ω,x,t)|<1 for a.a. (ω,x,t)Ω^×𝒪×(0,T),\displaystyle|\widehat{\varphi}(\omega,x,t)|<1\text{ for a.a. }(\omega,x,t)\in\widehat{\Omega}\times\mathcal{O}\times(0,T)\,, (2.6)
μ^:=Δφ^+F(φ^)L𝒫p(Ω^;L2(0,T;H)),\displaystyle\widehat{\mu}:=-\Delta\widehat{\varphi}+F^{\prime}(\widehat{\varphi})\in L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;H))\,, (2.7)
(𝒖^(0),φ^(0))=(𝒖0,φ0)on 𝑯σ×V1;\displaystyle(\widehat{\boldsymbol{u}}(0),\widehat{\varphi}(0))\stackrel{{\scriptstyle\mathcal{L}}}{{=}}({\boldsymbol{u}}_{0},\varphi_{0})\quad\text{on }{\boldsymbol{H}_{\sigma}}\times V_{1}\,; (2.8)

and, for every 𝒗𝑽σ{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}} and ψV1\psi\in V_{1}, it holds that

(𝒖^(t),𝒗)𝑯σ+0t[𝑨𝒖^(s),𝒗𝑽σ,𝑽σ+𝑩(𝒖^(s),𝒖^(s)),𝒗𝑽σ,𝑽σ𝒪μ^(s)φ^(s)𝒗]ds\displaystyle(\widehat{\boldsymbol{u}}(t),{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left[\left\langle{\boldsymbol{A}}\widehat{\boldsymbol{u}}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\left\langle{\boldsymbol{B}}(\widehat{\boldsymbol{u}}(s),\widehat{\boldsymbol{u}}(s)),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}-\int_{\mathcal{O}}\widehat{\mu}(s)\nabla\widehat{\varphi}(s)\cdot{\boldsymbol{v}}\right]\,{\mathrm{d}}s
=(𝒖^(0),𝒗)𝑯σ+(0tG1(𝒖^(s))dW^1(s),𝒗)𝑯σt[0,T],^-a.s.\displaystyle\qquad=(\widehat{\boldsymbol{u}}(0),{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\left(\int_{0}^{t}G_{1}(\widehat{\boldsymbol{u}}(s))\,{\mathrm{d}}\widehat{W}_{1}(s),{\boldsymbol{v}}\right)_{{\boldsymbol{H}_{\sigma}}}\qquad\forall\,t\in[0,T]\,,\>\>\widehat{\mathbb{P}}\text{-a.s.} (2.9)
(φ^(t),ψ)H+0t𝒪[𝒖^(s)φ^(s)+μ^(s)]ψds\displaystyle(\widehat{\varphi}(t),\psi)_{H}+\int_{0}^{t}\!\int_{\mathcal{O}}\left[\widehat{\boldsymbol{u}}(s)\cdot\nabla\widehat{\varphi}(s)+\widehat{\mu}(s)\right]\psi\,{\mathrm{d}}s
=(φ^(0),ψ)H+(0tG2(φ^(s))dW^2(s),ψ)Ht[0,T],^-a.s.\displaystyle\qquad=(\widehat{\varphi}(0),\psi)_{H}+\left(\int_{0}^{t}G_{2}(\widehat{\varphi}(s))\,{\mathrm{d}}\widehat{W}_{2}(s),\psi\right)_{H}\qquad\forall\,t\in[0,T]\,,\>\>\widehat{\mathbb{P}}\text{-a.s.} (2.10)
Definition 2.5.

Let p1p\geq 1 and let (𝒖0,φ0)({\boldsymbol{u}}_{0},\varphi_{0}) satisfy (2.2)-(2.3). A probabilistically-strong solution to problem (1.7)–(1.11) with respect to the initial datum (𝒖0,φ0)({\boldsymbol{u}}_{0},\varphi_{0}) is a pair of processes (𝒖,φ)({\boldsymbol{u}},\varphi) such that

𝒖Lwp(Ω^;L(0,T;𝑯σ))L𝒫p(Ω^;L2(0,T;𝑽σ)),\displaystyle{\boldsymbol{u}}\in L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}))\cap L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))\,, (2.11)
φL𝒫p(Ω;C0([0,T];H))Lwp(Ω;L(0,T;V1))L𝒫p(Ω;L2(0,T;V2)),\displaystyle\varphi\in L^{p}_{\mathscr{P}}(\Omega;C^{0}([0,T];H))\cap L^{p}_{w}(\Omega;L^{\infty}(0,T;V_{1}))\cap L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;V_{2}))\,, (2.12)
|φ(ω,x,t)|<1 for a.a. (ω,x,t)Ω×𝒪×(0,T),\displaystyle|{\varphi}(\omega,x,t)|<1\text{ for a.a. }(\omega,x,t)\in\Omega\times\mathcal{O}\times(0,T)\,, (2.13)
μ:=Δφ+F(φ)L𝒫p(Ω;L2(0,T;H)),\displaystyle\mu:=-\Delta\varphi+F^{\prime}(\varphi)\in L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;H))\,, (2.14)
(𝒖(0),φ(0))=(𝒖0,φ0),\displaystyle({\boldsymbol{u}}(0),\varphi(0))=({\boldsymbol{u}}_{0},\varphi_{0})\,, (2.15)

and

(𝒖(t),𝒗)𝑯σ+0t[𝑨𝒖(s),𝒗𝑽σ,𝑽σ+𝑩(𝒖(s),𝒖(s)),𝒗𝑽σ,𝑽σ𝒪μ(s)φ(s)𝒗]ds\displaystyle({\boldsymbol{u}}(t),{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left[\left\langle{\boldsymbol{A}}{\boldsymbol{u}}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\left\langle{\boldsymbol{B}}({\boldsymbol{u}}(s),{\boldsymbol{u}}(s)),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}-\int_{\mathcal{O}}\mu(s)\nabla\varphi(s)\cdot{\boldsymbol{v}}\right]\,{\mathrm{d}}s
=(𝒖0,𝒗)𝑯σ+(0tG1(𝒖(s))dW1(s),𝒗)𝑯σt[0,T],-a.s.\displaystyle\qquad=({\boldsymbol{u}}_{0},{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\left(\int_{0}^{t}G_{1}({\boldsymbol{u}}(s))\,{\mathrm{d}}W_{1}(s),{\boldsymbol{v}}\right)_{{\boldsymbol{H}_{\sigma}}}\qquad\forall\,t\in[0,T]\,,\quad\mathbb{P}\text{-a.s.} (2.16)
(φ(t),ψ)H+0t𝒪[𝒖(s)φ(s)+μ(s)]ψds\displaystyle(\varphi(t),\psi)_{H}+\int_{0}^{t}\!\int_{\mathcal{O}}\left[{\boldsymbol{u}}(s)\cdot\nabla\varphi(s)+\mu(s)\right]\psi\,{\mathrm{d}}s
=(φ0,ψ)H+(0tG2(φ(s))dW2(s),ψ)Ht[0,T],-a.s.\displaystyle\qquad=(\varphi_{0},\psi)_{H}+\left(\int_{0}^{t}G_{2}(\varphi(s))\,{\mathrm{d}}W_{2}(s),\psi\right)_{H}\qquad\forall\,t\in[0,T]\,,\quad\mathbb{P}\text{-a.s.} (2.17)

for every 𝒗𝑽σ{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}} and ψV1\psi\in V_{1}.

Remark 2.6.

Note that in Definitions 2.4 and 2.5 one has in particular that 𝒖^Cw0([0,T];𝑯σ)\widehat{\boldsymbol{u}}\in{\color[rgb]{0,0,0}C^{0}_{\text{w}}([0,T];{\boldsymbol{H}}_{\sigma})} ^\widehat{\mathbb{P}}-almost surely and 𝒖Cw0([0,T];𝑯σ){\boldsymbol{u}}\in{\color[rgb]{0,0,0}C^{0}_{\text{w}}([0,T];{\boldsymbol{H}}_{\sigma})} \mathbb{P}-almost surely, respectively. Here, the subscript “w” stands for weak continuity in time. Thus the initial conditions (2.8) and (2.15) make sense.

The first main result is the existence of a martingale solution.

Theorem 2.7.

Assume (A1)-(A3) and let p>2p>2. Then, for every initial datum (𝐮0,φ0)({\boldsymbol{u}}_{0},\varphi_{0}) satisfying (2.2)-(2.3) there exists a martingale solution ((Ω^,^,(^t)t[0,T],^),W^1,W^2,𝐮^,φ^)((\widehat{\Omega},\widehat{\mathscr{F}},(\widehat{\mathscr{F}}_{t})_{t\in[0,T]},\widehat{\mathbb{P}}),\widehat{W}_{1},\widehat{W}_{2},\widehat{\boldsymbol{u}},\widehat{\varphi}) to problem (1.7)–(1.12) satisfying the energy inequality

12supτ[0,t]𝔼^𝒖^(τ)𝑯σ2+12supτ[0,t]𝔼^φ^(τ)𝑯2+supτ[0,t]𝔼^F(φ^(τ))L1(𝒪)\displaystyle\dfrac{1}{2}\sup_{\tau\in[0,t]}\widehat{\mathbb{E}}\|\widehat{\boldsymbol{u}}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\sup_{\tau\in[0,t]}\widehat{\mathbb{E}}\|\nabla\widehat{\varphi}(\tau)\|_{\boldsymbol{H}}^{2}+\sup_{\tau\in[0,t]}\widehat{\mathbb{E}}\|F(\widehat{\varphi}(\tau))\|_{L^{1}(\mathcal{O})}
+𝔼^0t[𝒖^(s)𝑯σ2+μ^(s)H2]ds\displaystyle\qquad+\widehat{\mathbb{E}}\int_{0}^{t}\left[\|\nabla\widehat{\boldsymbol{u}}(s)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\widehat{\mu}(s)\|^{2}_{H}\right]\mathrm{d}s
(CG12+L222|𝒪|)t+12𝔼^𝒖^0𝑯σ2+12𝔼^φ^0𝑯2+𝔼^F(φ^0)L1(𝒪)\displaystyle\leq\left(C_{G_{1}}^{2}+\frac{L_{2}^{2}}{2}|\mathcal{O}|\right)t+\dfrac{1}{2}\widehat{\mathbb{E}}\|\widehat{\boldsymbol{u}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\widehat{\mathbb{E}}\|\nabla\widehat{\varphi}_{0}\|_{\boldsymbol{H}}^{2}+\widehat{\mathbb{E}}\|F(\widehat{\varphi}_{0})\|_{L^{1}(\mathcal{O})}
+CG12𝔼^0t𝒖^(τ)𝑯σ2dτ+L222𝔼^0tφ^(τ)𝑯2dτ\displaystyle\qquad+C_{G_{1}}^{2}\widehat{\mathbb{E}}\int_{0}^{t}\|\widehat{\boldsymbol{u}}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\>\mathrm{d}\tau+\frac{L_{2}^{2}}{2}\widehat{\mathbb{E}}\int_{0}^{t}\left\|\nabla\widehat{\varphi}(\tau)\right\|_{{\boldsymbol{H}}}^{2}\,\mathrm{d}\tau (2.18)

for every t[0,T]t\in[0,T], ^\widehat{\mathbb{P}}-almost surely. Here |𝒪||\mathcal{O}| stands for the Lebesgue measure of 𝒪\mathcal{O}. Furthermore, there exists π^L𝒫p2(Ω^;W1,(0,T;H))\widehat{\pi}\in L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;H)) such that

0Tt(𝒖^G1(𝒖^)W^1)(t)+𝑳𝒖^(t)+𝑩(𝒖^(t),𝒖^(t)),𝒗(t)(𝑯01(𝒪)),𝑯01(𝒪)dt\displaystyle\int_{0}^{T}\left\langle\partial_{t}(\widehat{{\boldsymbol{u}}}-G_{1}(\widehat{{\boldsymbol{u}}})\cdot\widehat{W}_{1})(t)+{\boldsymbol{L}}\widehat{{\boldsymbol{u}}}(t)+{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}(t),\widehat{{\boldsymbol{u}}}(t)),{\boldsymbol{v}}(t)\right\rangle_{{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*},{\boldsymbol{H}}^{1}_{0}(\mathcal{O})}}\,{\mathrm{d}}t
=(𝒖^0,𝒗)𝑯σ+0T𝒪μ^(t)φ^(t)𝒗(t)dt+π^,div𝒗([C0((0,T)×𝒪)]d),[C0((0,T)×𝒪)]d\displaystyle\quad=(\widehat{{\boldsymbol{u}}}_{0},{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{T}\int_{\mathcal{O}}\widehat{\mu}(t)\nabla\widehat{\varphi}(t)\cdot{\boldsymbol{v}}(t)\,{\mathrm{d}}t+\left\langle\widehat{\pi},\operatorname{div}{\boldsymbol{v}}\right\rangle_{\left(\left[C^{\infty}_{0}((0,T)\times\mathcal{O})\right]^{d}\right)^{*},\left[C^{\infty}_{0}((0,T)\times\mathcal{O})\right]^{d}} (2.19)

for every 𝐯[C0((0,T)×𝒪)]d{\boldsymbol{v}}\in{\color[rgb]{0,0,0}\left[C^{\infty}_{0}((0,T)\times\mathcal{O})\right]^{d}}, ^\widehat{\mathbb{P}}-almost surely. Finally, the following estimate holds:

π^Lp2(Ω^;W1,(0,T;H))\displaystyle\|\widehat{\pi}\|_{L^{\frac{p}{2}}(\widehat{\Omega};W^{-1,\infty}(0,T;H))} C(1+𝒖^Lp2(Ω^;L(0,T;𝑯σ))+𝒖^Lp2(Ω^;L2(0,T;𝑽σ))+𝒖^Lp(Ω^;L2(0,T;𝑽σ))2\displaystyle\leq C\left(1+\|\widehat{{\boldsymbol{u}}}\|_{L^{\frac{p}{2}}(\widehat{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}))}+\|\widehat{{\boldsymbol{u}}}\|_{L^{\frac{p}{2}}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))}+\|\widehat{{\boldsymbol{u}}}\|_{L^{p}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))}^{2}\right.
+φ^Lp(Ω^;L2(0,T;V2))2+F(φ^)Lp(Ω^;L2(0,T;H))2).\displaystyle\qquad\quad\left.+\|\widehat{\varphi}\|_{L^{p}(\widehat{\Omega};L^{2}(0,T;V_{2}))}^{2}+\|F^{\prime}(\widehat{\varphi})\|_{L^{p}(\widehat{\Omega};L^{2}(0,T;H))}^{2}\right). (2.20)
Remark 2.8.

The above result still holds if the viscosity depends on φ\varphi in a smooth way and it is bounded from below by a positive constant. Moreover, we recall that, in [33], the energy inequality is written -a.s.\mathbb{P}\text{-a.s.} in a distributional sense.

The second is a stronger result in dimension two, namely, the existence of a (unique) probabilistically-strong solution.

Theorem 2.9.

Assume (A1)-(A3), let d=2d=2, p>2p>2, and Y=𝐕σY={\boldsymbol{V}_{\sigma}^{*}} in (A2). Then, for every initial datum (𝐮0,φ0)({\boldsymbol{u}}_{0},\varphi_{0}) satisfying (2.2)–(2.3), there exists a unique probabilistically-strong solution (𝐮,φ)({\boldsymbol{u}},\varphi) for problem (1.7)–(1.12) and a pressure πL𝒫p2(Ω;W1,(0,T;H))\pi\in L^{\frac{p}{2}}_{\mathscr{P}}(\Omega;W^{-1,\infty}(0,T;H)), which satisfy on the original probability space (Ω,,)(\Omega,\mathscr{F},\mathbb{P}) the analogous of the energy inequality (2.18), the pressure-variational formulation (2.19), and the estimate (2.20).

Remark 2.10.

Referring to [33], we observe that a more general G1(𝒖,φ)G_{1}({\boldsymbol{u}},\varphi) can be considered. Instead, considering G2(𝒖,φ)G_{2}({\boldsymbol{u}},\varphi) would require appropriate assumptions on account of (A3). For instance, in place of gk(ψ)g_{k}(\psi) we could suppose to have gk(ψ)hk(𝒖)g_{k}(\psi)h_{k}({\boldsymbol{u}}) for a suitable {hk}k+\{h_{k}\}_{k\in\mathbb{N}_{+}}.

3. Proof of Theorem 2.7

Here we prove the existence of martingale solutions to problem (1.7)–(1.12). For the sake of clarity, the proof is split into several steps.

3.1. Regularization of the singular potential

First of all, note that assumption (A1) implies that the function

γ:(1,1),γ(x):=F(x)+cFx,x(1,1),\gamma:(-1,1)\to\mathbb{R}\,,\qquad\gamma(x):=F^{\prime}(x)+c_{F}x\,,\quad x\in(-1,1)\,,

can be identified with a maximal monotone graph in ×\mathbb{R}\times\mathbb{R}. Consequently, one can consider, for every λ(0,1)\lambda\in(0,1), the resolvent operator and the Yosida approximation of β\beta, defined as follows

Jλ,γλ:,Jλ(x):=(I+λγ)1(x),γλ(x):=λ1(xJλ(x)),x.J_{\lambda},\>\gamma_{\lambda}:\mathbb{R}\to\mathbb{R}\,,\qquad J_{\lambda}(x):=(I+\lambda\gamma)^{-1}(x)\,,\qquad\gamma_{\lambda}(x):=\lambda^{-1}(x-J_{\lambda}(x))\,,\qquad x\in\mathbb{R}\,.

For notation and general properties of monotone operators we refer the reader to [8]. For every λ(0,1)\lambda\in(0,1), we define an approximation of FF as follows

Fλ:[0,+),Fλ(x):=F(0)+0xγλ(s)dscF2x2,x.F_{\lambda}:\mathbb{R}\to[0,+\infty)\,,\qquad F_{\lambda}(x):=F(0)+\int_{0}^{x}\gamma_{\lambda}(s)\>{\mathrm{d}}s-\frac{c_{F}}{2}x^{2}\,,\quad x\in\mathbb{R}\,. (3.1)

Thus it holds

Fλ(x)=γλ(x)cFxx.F_{\lambda}^{\prime}(x)=\gamma_{\lambda}(x)-c_{F}x\quad\forall\,x\in\mathbb{R}\,. (3.2)

In order to preserve the scaling of the Yosida-approximation on FF^{\prime}, we analogously define the λ\lambda-approximation of G2G_{2} by setting

G2,λ:=G2Jλ:H2(U2,H).G_{2,\lambda}:=G_{2}\circ J_{\lambda}:H\to\mathscr{L}^{2}(U_{2},H). (3.3)

Notice that, by assumption (A3) and the non-expansivity of JλJ_{\lambda}, the operator G2,λG_{2,\lambda} is L2L_{2}-Lipschitz-continuous (therefore uniformly in λ\lambda), and converges pointwise to G2G_{2} as λ0+\lambda\to 0^{+}. Now, we consider the λ\lambda-approximated (formal) problem

d𝒖λ+[Δ𝒖λ+(𝒖λ)𝒖λ+pλμλφλ]dt=G1(𝒖λ)dW1\displaystyle{\mathrm{d}}{\boldsymbol{u}}_{\lambda}+\left[-\Delta{\boldsymbol{u}}_{\lambda}+({\boldsymbol{u}}_{\lambda}\cdot\nabla){\boldsymbol{u}}_{\lambda}+\nabla p_{\lambda}-\mu_{\lambda}\nabla\varphi_{\lambda}\right]\,{\mathrm{d}}t=G_{1}({\boldsymbol{u}}_{\lambda})\,{\mathrm{d}}W_{1}\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.4)
𝒖λ=0\displaystyle\nabla\cdot{\boldsymbol{u}}_{\lambda}=0\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.5)
dφλ+[𝒖λφλ+μλ]dt=G2,λ(φλ)dW2\displaystyle{\mathrm{d}}\varphi_{\lambda}+\left[{\boldsymbol{u}}_{\lambda}\cdot\nabla\varphi_{\lambda}+\mu_{\lambda}\right]\,{\mathrm{d}}t=G_{2,\lambda}(\varphi_{\lambda})\,{\mathrm{d}}W_{2}\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.6)
μλ=Δφλ+Fλ(φλ)\displaystyle\mu_{\lambda}=-\Delta\varphi_{\lambda}+F_{\lambda}^{\prime}(\varphi_{\lambda})\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.7)
𝒖λ=0,𝒏φλ=0\displaystyle{\boldsymbol{u}}_{\lambda}=0,\quad\partial_{\boldsymbol{n}}\varphi_{\lambda}=0\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\partial\mathcal{O}, (3.8)
𝒖λ(0)=𝒖0,φλ(0)=φ0\displaystyle{\boldsymbol{u}}_{\lambda}(0)={\boldsymbol{u}}_{0}\,,\quad\varphi_{\lambda}(0)=\varphi_{0}\qquad in 𝒪.\displaystyle\text{in }\mathcal{O}. (3.9)

3.2. Faedo-Galerkin approximation

A discretization scheme is now applied to problem (3.4)-(3.9). Let us consider the (countably many) eigencouples of the negative Laplace operator with homogeneous Neumann boundary condition, namely the couples {(αj,ej)}j+×V2\{(\alpha_{j},e_{j})\}_{j\in\mathbb{N_{+}}}\subset\mathbb{R}\times V_{2} such that

{Δej=αjej,in 𝒪,𝒏ej=0on 𝒪,j+.\begin{cases}-\Delta e_{j}=\alpha_{j}e_{j},&\quad\text{in }\mathcal{O},\\ \partial_{\boldsymbol{n}}e_{j}=0&\quad\text{on }\partial\mathcal{O},\end{cases}\qquad j\in\mathbb{N}_{+}.

Analogously, we also consider the (countably many) eigencouples of the Stokes operator, namely the couples {(βk,𝒆k)}k+×𝑽σ\{(\beta_{k},{\boldsymbol{e}}_{k})\}_{k\in\mathbb{N}_{+}}\subset\mathbb{R}\times{\boldsymbol{V}_{\sigma}}, and {πk}k+L02(𝒪)\{\pi_{k}\}_{k\in\mathbb{N}_{+}}\subset L^{2}_{0}(\mathbb{\mathcal{O}}) such that

{Δ𝒆k+πk=βk𝒆kin 𝒪,𝒆k=0in 𝒪,𝒆k=0on 𝒪,k+.\begin{cases}-\Delta{\boldsymbol{e}}_{k}+\nabla\pi_{k}=\beta_{k}{\boldsymbol{e}}_{k}&\quad\text{in }\mathcal{O},\\ \nabla\cdot{\boldsymbol{e}}_{k}=0&\quad\text{in }\mathcal{O},\\ {\boldsymbol{e}}_{k}=0&\quad\text{on }\partial\mathcal{O},\end{cases}\qquad k\in\mathbb{N}_{+}.

It is well known that, up to a renormalization, the set {ej}j+\{e_{j}\}_{j\in\mathbb{N}_{+}} (resp. {𝒆k}k+\{{\boldsymbol{e}}_{k}\}_{k\in\mathbb{N}_{+}}) is an orthonormal system in HH (resp. 𝑯σ{\boldsymbol{H}_{\sigma}}) and an orthogonal system in V1V_{1} (resp. 𝑽σ{\boldsymbol{V}_{\sigma}}). Let n+n\in\mathbb{N}_{+} and consider the finite-dimensional spaces Zn:=span{e1,,en}Z_{n}:=\operatorname{span}\{e_{1},\dots,e_{n}\} and 𝒁n:=span{𝒆1,,𝒆n}{\boldsymbol{Z}}_{n}:=\operatorname{span}\{{\boldsymbol{e}}_{1},\dots,{\boldsymbol{e}}_{n}\}, both endowed with the L2L^{2}-norm. In order to approximate the stochastic perturbation, we define the operators G1,nG_{1,n} and G2,λ,nG_{2,\lambda,n} as

G1,n:𝒁n2(U1,𝑯σ),G2,λ,n:Zn2(U2,H)G_{1,n}:{\boldsymbol{Z}}_{n}\to\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}}),\qquad G_{2,\lambda,n}:Z_{n}\to\mathscr{L}^{2}(U_{2},H)

and such that

G1,n(𝒗)uk1:=j=1n(G1(𝒗)uk1,𝒆j)𝑯σ𝒆j,G2,λ,n(v)uk2:=j=1n(G2,λ(v)uk2,ej)HejG_{1,n}({\boldsymbol{v}})u_{k}^{1}:=\sum_{j=1}^{n}(G_{1}({\boldsymbol{v}})u_{k}^{1},{\boldsymbol{e}}_{j})_{\boldsymbol{H}_{\sigma}}{\boldsymbol{e}}_{j},\qquad G_{2,\lambda,n}(v)u_{k}^{2}:=\sum_{j=1}^{n}(G_{2,\lambda}(v)u_{k}^{2},e_{j})_{H}e_{j}

for any kk\in\mathbb{N}, 𝒗𝒁n{\boldsymbol{v}}\in{\boldsymbol{Z}}_{n} and vZnv\in Z_{n}. Notice that, fixed any 𝒗𝒁n{\boldsymbol{v}}\in{\boldsymbol{Z}}_{n} and vZnv\in Z_{n}, G1,n(𝒗)G_{1,n}({\boldsymbol{v}}) and G2,λ,n(v)G_{2,\lambda,n}(v) are actually well defined as elements of 2(U1,𝒁n)\mathscr{L}^{2}(U_{1},{\boldsymbol{Z}}_{n}) and 2(U2,Zn)\mathscr{L}^{2}(U_{2},Z_{n}), respectively. Indeed, for instance,

G1,n(𝒗)2(U1,𝒁n)2=G1,n(𝒗)2(U1,𝑯σ)2=k=1+G1,n(𝒗)uk1𝑯σ2=k=1+j=1n|(G1(𝒗)uk1,𝒆j)𝑯σ|2k=1+j=1+|(G1(𝒗)uk1,𝒆j)𝑯σ|2=G1(𝒗)2(U1,𝑯σ)2.\begin{split}\|G_{1,n}({\boldsymbol{v}})\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{Z}}_{n})}=\|G_{1,n}({\boldsymbol{v}})\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}&=\sum_{k=1}^{+\infty}\|G_{1,n}({\boldsymbol{v}})u_{k}^{1}\|_{\boldsymbol{H}_{\sigma}}^{2}\\ &=\sum_{k=1}^{+\infty}\sum_{j=1}^{n}|(G_{1}({\boldsymbol{v}})u_{k}^{1},{\boldsymbol{e}_{j}})_{\boldsymbol{H}_{\sigma}}|^{2}\\ &\leq\sum_{k=1}^{+\infty}\sum_{j=1}^{+\infty}|(G_{1}({\boldsymbol{v}})u_{k}^{1},{\boldsymbol{e}_{j}})_{\boldsymbol{H}_{\sigma}}|^{2}=\|G_{1}({\boldsymbol{v}})\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}.\end{split} (3.10)

Moreover, since G1G_{1} is L1L_{1}-Lipschitz continuous in the sense of assumption (A2) and the orthogonal projection on 𝒁n{\boldsymbol{Z}}_{n} is non-expansive as an operator from 𝑽σ{\boldsymbol{V}_{\sigma}} to itself, we can deduce by the same argument that G1,nG_{1,n} is also L1L_{1}-Lipschitz continuous as an operator from YY to 2(U1,Y)\mathscr{L}^{2}(U_{1},Y). Similar considerations also apply to G2,λ,nG_{2,\lambda,n}. More precisely, we have

Proposition 3.1.

Let λ(0,1)\lambda\in(0,1) and n+n\in\mathbb{N}_{+}. The operators

G1,n:𝒁n2(U1,𝒁n),G2,λ,n:Zn2(U2,Zn)G_{1,n}:{\boldsymbol{Z}}_{n}\to\mathscr{L}^{2}(U_{1},{\boldsymbol{Z}}_{n}),\qquad G_{2,\lambda,n}:Z_{n}\to\mathscr{L}^{2}(U_{2},Z_{n})

are well defined and uniformly Lipschitz continuous with respect to nn and λ\lambda. In particular, G1,nG_{1,n} is L1L_{1}-Lipschitz continuous from YY to 2(U1,Y)\mathscr{L}^{2}(U_{1},Y) and G2,λ,nG_{2,\lambda,n} is L2L_{2}-Lipschitz continuous from HH to 2(U1,H)\mathscr{L}^{2}(U_{1},H).

Next, we define suitable projections (orthogonal with respect to the L2L^{2}-inner products) of initial data (evaluated at some point in Ω\Omega) on the discrete spaces ZnZ_{n} and 𝒁n{\boldsymbol{Z}}_{n}, namely, for all n+n\in\mathbb{N}_{+}, we set

𝒖0,n=j=1n(𝒖0,𝒆j)𝑯σ𝒆j,φ0,n=j=1n(φ0,ej)Hej.{\boldsymbol{u}}_{0,n}=\sum_{j=1}^{n}({\boldsymbol{u}}_{0},{\boldsymbol{e}}_{j})_{\boldsymbol{H}_{\sigma}}{\boldsymbol{e}}_{j},\qquad\varphi_{0,n}=\sum_{j=1}^{n}(\varphi_{0},e_{j})_{H}e_{j}.

It is now possible to formulate the discretized problem, which reads

d𝒖λ,n+[Δ𝒖λ,n+(𝒖λ,n)𝒖λ,n+pλ,nμλ,nφλ,n]dt=G1,n(𝒖λ,n)dW1\displaystyle{\mathrm{d}}{\boldsymbol{u}}_{\lambda,n}+\left[-\Delta{\boldsymbol{u}}_{\lambda,n}+({\boldsymbol{u}}_{\lambda,n}\cdot\nabla){\boldsymbol{u}}_{\lambda,n}+\nabla p_{\lambda,n}-\mu_{\lambda,n}\nabla\varphi_{\lambda,n}\right]\,{\mathrm{d}}t=G_{1,n}({\boldsymbol{u}}_{\lambda,n})\,{\mathrm{d}}W_{1}\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.11)
𝒖λ,n=0\displaystyle\nabla\cdot{\boldsymbol{u}}_{\lambda,n}=0\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.12)
dφλ,n+[𝒖λ,nφλ,n+μλ,n]dt=G2,λ,n(φλ,n)dW2\displaystyle{\mathrm{d}}\varphi_{\lambda,n}+\left[{\boldsymbol{u}}_{\lambda,n}\cdot\nabla\varphi_{\lambda,n}+\mu_{\lambda,n}\right]\,{\mathrm{d}}t=G_{2,\lambda,n}(\varphi_{\lambda,n})\,{\mathrm{d}}W_{2}\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.13)
μλ,n=Δφλ,n+Fλ(φλ,n)\displaystyle\mu_{\lambda,n}=-\Delta\varphi_{\lambda,n}+F_{\lambda}^{\prime}(\varphi_{\lambda,n})\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\mathcal{O}, (3.14)
𝒖λ,n=0,𝒏φλ,n=0\displaystyle{\boldsymbol{u}}_{\lambda,n}=0,\quad\partial_{\boldsymbol{n}}\varphi_{\lambda,n}=0\qquad in (0,T)×𝒪,\displaystyle\text{in }(0,T)\times\partial\mathcal{O}, (3.15)
𝒖λ,n(0)=𝒖0,n,φλ,n(0)=φ0,n\displaystyle{\boldsymbol{u}}_{\lambda,n}(0)={\boldsymbol{u}}_{0,n}\,,\quad\varphi_{\lambda,n}(0)=\varphi_{0,n}\qquad in 𝒪.\displaystyle\text{in }\mathcal{O}. (3.16)

The variational formulation of problem (3.11)-(3.16) is given by

(𝒖λ,n(t),𝒗)𝑯σ+0t[𝑨𝒖λ,n(s),𝒗𝑽σ,𝑽σ+𝑩(𝒖λ,n(s),𝒖λ,n(s)),𝒗𝑽σ,𝑽σ𝒪μλ,n(s)φλ,n(s)𝒗]ds\displaystyle({\boldsymbol{u}}_{\lambda,n}(t),{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left[\left\langle{\boldsymbol{A}}{\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\left\langle{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{u}}_{\lambda,n}(s)),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}-\int_{\mathcal{O}}\mu_{\lambda,n}(s)\nabla\varphi_{\lambda,n}(s)\cdot{\boldsymbol{v}}\right]\,{\mathrm{d}}s
=(𝒖0,n,𝒗)𝑯σ+(0tG1,n(𝒖λ,n(s))dW1(s),𝒗)𝑯σt[0,T],-a.s.\displaystyle\qquad=({\boldsymbol{u}}_{0,n},{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\left(\int_{0}^{t}G_{1,n}({\boldsymbol{u}}_{\lambda,n}(s))\,{\mathrm{d}}W_{1}(s),{\boldsymbol{v}}\right)_{{\boldsymbol{H}_{\sigma}}}\qquad\forall\,t\in[0,T]\,,\quad\mathbb{P}\text{-a.s.} (3.17)
(φλ,n(t),ψ)H+0t𝒪[𝒖λ,n(s)φλ,n(s)+μλ,n(s)]ψds\displaystyle(\varphi_{\lambda,n}(t),\psi)_{H}+\int_{0}^{t}\!\int_{\mathcal{O}}\left[{\boldsymbol{u}}_{\lambda,n}(s)\cdot\nabla\varphi_{\lambda,n}(s)+\mu_{\lambda,n}(s)\right]\psi\,{\mathrm{d}}s
=(φ0,n,ψ)H+(0tG2,λ,n(φλ,n(s))dW2(s),ψ)Ht[0,T],-a.s.\displaystyle\qquad=(\varphi_{0,n},\psi)_{H}+\left(\int_{0}^{t}G_{2,\lambda,n}(\varphi_{\lambda,n}(s))\,{\mathrm{d}}W_{2}(s),\psi\right)_{H}\qquad\forall\,t\in[0,T]\,,\quad\mathbb{P}\text{-a.s.} (3.18)

for every 𝒗𝒁n{\boldsymbol{v}}\in{\boldsymbol{Z}}_{n} and ψZn\psi\in Z_{n}. Fixed any λ(0,1)\lambda\in(0,1) and n+n\in\mathbb{N}_{+}, we search for a weak solution to (3.17)-(3.18) of the form

𝒖λ,n=j=1naλ,nj𝒆j,φλ,n=j=1nbλ,njej,μλ,n=j=1ncλ,njej,{\boldsymbol{u}}_{\lambda,n}=\sum_{j=1}^{n}a^{j}_{\lambda,n}{\boldsymbol{e}}_{j},\qquad\varphi_{\lambda,n}=\sum_{j=1}^{n}b^{j}_{\lambda,n}e_{j},\qquad\mu_{\lambda,n}=\sum_{j=1}^{n}c^{j}_{\lambda,n}e_{j}, (3.19)

where

𝒂λ,n=(aλ,n1,aλ,n2,,aλ,nn):Ω×[0,T]n,\displaystyle{\boldsymbol{a}}_{\lambda,n}=(a^{1}_{\lambda,n},a^{2}_{\lambda,n},...,a^{n}_{\lambda,n}):\Omega\times[0,T]\to\mathbb{R}^{n},
𝒃λ,n=(bλ,n1,bλ,n2,,bλ,nn):Ω×[0,T]n,\displaystyle{\boldsymbol{b}}_{\lambda,n}=(b^{1}_{\lambda,n},b^{2}_{\lambda,n},...,b^{n}_{\lambda,n}):\Omega\times[0,T]\to\mathbb{R}^{n},
𝒄λ,n=(cλ,n1,cλ,n2,,cλ,nn):Ω×[0,T]n,\displaystyle{\boldsymbol{c}}_{\lambda,n}=(c^{1}_{\lambda,n},c^{2}_{\lambda,n},...,c^{n}_{\lambda,n}):\Omega\times[0,T]\to\mathbb{R}^{n},

are suitable stochastic processes. Inserting (3.19) into (3.17)-(3.18) and choosing as test functions ψ=ei\psi=e_{i} and 𝒗=𝒆i{\boldsymbol{v}}={\boldsymbol{e}}_{i} for each i{1,,n}i\in\{1,\dots,n\}, we deduce that the three processes 𝒂λ,n{\boldsymbol{a}}_{\lambda,n}, 𝒃λ,n{\boldsymbol{b}}_{\lambda,n} and 𝒄λ,n{\boldsymbol{c}}_{\lambda,n} satisfy the system of 3n3n ordinary stochastic differential equations

daλ,ni+βiaλ,ni+j=1nk=1naλ,njaλ,nkb(𝒆j,𝒆k,𝒆i)j=1nk=1ncλ,njbλ,nk𝒪ejek𝒆i\displaystyle\mathrm{d}a^{i}_{\lambda,n}+\beta_{i}a^{i}_{\lambda,n}+\sum_{j=1}^{n}\sum_{k=1}^{n}a^{j}_{\lambda,n}a^{k}_{\lambda,n}b({\boldsymbol{e}}_{j},{\boldsymbol{e}}_{k},{\boldsymbol{e}}_{i})-\sum_{j=1}^{n}\sum_{k=1}^{n}c^{j}_{\lambda,n}b^{k}_{\lambda,n}\int_{\mathcal{O}}e_{j}\nabla e_{k}\cdot{\boldsymbol{e}}_{i}
=(G1,n(j=1naλ,nj𝒆j)dW1,𝒆i)𝑯σ\displaystyle=\left(G_{1,n}\left(\sum_{j=1}^{n}a^{j}_{\lambda,n}{\boldsymbol{e}}_{j}\right)\mathrm{d}W_{1},{\boldsymbol{e}}_{i}\right)_{\boldsymbol{H}_{\sigma}} (3.20)
dbλ,ni+cλ,ni=(G2,λ,n(j=1nbλ,njej)dW2,ei)H\displaystyle\mathrm{d}b^{i}_{\lambda,n}+c^{i}_{\lambda,n}=\left(G_{2,\lambda,n}\left(\sum_{j=1}^{n}b^{j}_{\lambda,n}e_{j}\right)\mathrm{d}W_{2},e_{i}\right)_{H} (3.21)
cλ,ni=αibλ,ni+𝒪Fλ(j=1nbλ,njej)ei,\displaystyle c^{i}_{\lambda,n}=\alpha_{i}b^{i}_{\lambda,n}+\int_{\mathcal{O}}F^{\prime}_{\lambda}\left(\sum_{j=1}^{n}b^{j}_{\lambda,n}e_{j}\right)e_{i}, (3.22)
aλ,ni(0)=(𝒖0,𝒆i)𝑯σ\displaystyle a^{i}_{\lambda,n}(0)=({\boldsymbol{u}}_{0},{\boldsymbol{e}}_{i})_{\boldsymbol{H}_{\sigma}} (3.23)
bλ,ni(0)=(φ0,ei)H\displaystyle b^{i}_{\lambda,n}(0)=(\varphi_{0},e_{i})_{H} (3.24)

Let us point out that, in order to derive (3.20)-(3.24), we exploited the fact that, for every choice of integers jj and kk between 11 and nn,

𝒪𝒆jekdx=𝒪ek𝒆jdx+𝒪ek𝒆j𝒏dσ=0,\int_{\mathcal{O}}{\boldsymbol{e}}_{j}\cdot\nabla e_{k}\>{\mathrm{d}}x=-\int_{\mathcal{O}}e_{k}\nabla\cdot{\boldsymbol{e}}_{j}\>{\mathrm{d}}x+\int_{\partial\mathcal{O}}e_{k}{\boldsymbol{e}}_{j}\cdot{\boldsymbol{n}}\>{\mathrm{d}}\sigma=0, (3.25)

as well as the orthogonality in 𝑽σ{\boldsymbol{V}_{\sigma}} of the basis {𝒆j}j\{{\boldsymbol{e}}_{j}\}_{j\in\mathbb{N}}. The stochastic integrals in (3.20)-(3.21) have to be regarded as G1,λ,nidW1G^{i}_{1,\lambda,n}\,\mathrm{d}W_{1} and G2,λ,nidW2G^{i}_{2,\lambda,n}\,\mathrm{d}W_{2} for every i=1,,ni=1,\dots,n, where

G1,λ,ni:𝒁n2(U1,),G1,λ,ni(𝒖λ,n)uk1:=(G1,n(j=1naλ,nj𝒆j)uk1,𝒆i)𝑯σG^{i}_{1,\lambda,n}:{\boldsymbol{Z}}_{n}\to\mathscr{L}^{2}(U_{1},\mathbb{R}),\qquad G^{i}_{1,\lambda,n}({\boldsymbol{u}}_{\lambda,n})u_{k}^{1}:=\left(G_{1,n}\left(\sum_{j=1}^{n}a^{j}_{\lambda,n}{\boldsymbol{e}}_{j}\right)u^{1}_{k},{\boldsymbol{e}}_{i}\right)_{\boldsymbol{H}_{\sigma}}

and

G2,λ,ni:Zn2(U2,),G2,λ,ni(φλ,n)uk2:=(G2,λ,n(j=1nbλ,njej)uk2,ei)H,G^{i}_{2,\lambda,n}:Z_{n}\to\mathscr{L}^{2}(U_{2},\mathbb{R}),\qquad G^{i}_{2,\lambda,n}(\varphi_{\lambda,n})u_{k}^{2}:=\left(G_{2,\lambda,n}\left(\sum_{j=1}^{n}b^{j}_{\lambda,n}e_{j}\right)u_{k}^{2},e_{i}\right)_{H},

for every kk\in\mathbb{N}. By Lipschitz continuity of all the nonlinearities appearing in (3.20)-(3.24), the standard theory of abstract stochastic evolution equations applies. Therefore, we are able to infer that

Proposition 3.2.

For every λ(0,1)\lambda\in(0,1) and n+n\in\mathbb{N}_{+}, there exists a unique triplet of (t)t(\mathscr{F}_{t})_{t}-adapted processes 𝐚λ,n{\boldsymbol{a}}_{\lambda,n}, 𝐛λ,n{\boldsymbol{b}}_{\lambda,n}, 𝐜λ,n{\boldsymbol{c}}_{\lambda,n} satisfying problem (3.20)-(3.24). Furthermore, for every r2r\geq 2, we have

𝒂λ,n,𝒃λ,n,𝒄λ,nLr(Ω;C0([0,T];n)),{\boldsymbol{a}}_{\lambda,n},{\boldsymbol{b}}_{\lambda,n},{\boldsymbol{c}}_{\lambda,n}\in L^{r}(\Omega;C^{0}([0,T];\mathbb{R}^{n})),

implying

𝒖λ,nLr(Ω;C0([0,T];𝒁n)),φλ,n,μλ,nLr(Ω;C0([0,T];Zn)).{\boldsymbol{u}}_{\lambda,n}\in L^{r}(\Omega;C^{0}([0,T];{\boldsymbol{Z}}_{n})),\quad\varphi_{\lambda,n},\mu_{\lambda,n}\in L^{r}(\Omega;C^{0}([0,T];Z_{n})).

3.3. Uniform estimates with respect to nn

First of all, we prove some uniform estimates with respect to the Galerkin parameter nn, keeping λ(0,1)\lambda\in(0,1) fixed. Hereafter, the symbol CC (possibly numbered) denote positive constants whose special dependencies are explicitly pointed out when necessary. ‘In some cases, in order to ease notation, we may use the same symbol to denote different constants throughout the same argument. In any case, such constants are always independent of nn.

First estimate

We exploit the Itô formula for the HH-norm of φλ,n\varphi_{\lambda,n} given in [62, Theorem 4.2.5]. This gives

12φλ,n(t)H2+0t[φλ,n(τ)𝑯2+(φλ,n(τ),Fλ(φλ,n(τ)))H]dτ=12φ0,nH2+0t(φλ,n(τ),G2,λ,n(φλ,n(τ))dW2(τ))H+120tG2,λ,n(φλ,n(τ))2(U2,H)2dτ.\dfrac{1}{2}\|\varphi_{\lambda,n}(t)\|_{H}^{2}+\int_{0}^{t}\left[\|\nabla\varphi_{\lambda,n}(\tau)\|^{2}_{\boldsymbol{H}}+\left(\varphi_{\lambda,n}(\tau),F^{\prime}_{\lambda}(\varphi_{\lambda,n}(\tau))\right)_{H}\right]\>\mathrm{d}\tau\\ =\dfrac{1}{2}\|\varphi_{0,n}\|_{H}^{2}+\int_{0}^{t}\left(\varphi_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,\mathrm{d}W_{2}(\tau)\right)_{H}+\dfrac{1}{2}\int_{0}^{t}\|G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\>\mathrm{d}\tau. (3.26)

Let us now address the above equality term by term. First of all, recalling (3.2) and that Fλ(0)=0F_{\lambda}^{\prime}(0)=0, we find

(φλ,n(τ),Fλ(φλ,n(τ)))HcFφλ,n(τ)H2.\left(\varphi_{\lambda,n}(\tau),F^{\prime}_{\lambda}(\varphi_{\lambda,n}(\tau))\right)_{H}\geq-c_{F}\|\varphi_{\lambda,n}(\tau)\|^{2}_{H}. (3.27)

Next, owing to (3.10) and (A3), we have

G2,λ,n(φλ,n(τ))2(U2,H)2G2,λ(φλ,n(τ))2(U2,H)2=k=1+gk(Jλ(φλ,n(τ)))H2k=1+gkW1,(1,1)2|𝒪|L22|𝒪|.\begin{split}\|G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\leq\|G_{2,\lambda}(\varphi_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}&=\sum_{k=1}^{+\infty}\|g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))\|^{2}_{H}\\ &\leq\sum_{k=1}^{+\infty}\|g_{k}\|^{2}_{W^{1,\infty}(-1,1)}|\mathcal{O}|\\ &\leq L_{2}^{2}|\mathcal{O}|.\end{split} (3.28)

Finally, by 1-Lipschitz-continuity of the projection Πn:HH\Pi_{n}:H\to H, it follows

φ0,nH2φ0H2.\|\varphi_{0,n}\|_{H}^{2}\leq\|\varphi_{0}\|_{H}^{2}. (3.29)

Thus, combining (3.27)-(3.29) with (3.26), letting p[2,+)p\in[2,+\infty), multiplying the resulting inequality by two, taking p2\frac{p}{2}-powers, the supremum on the interval [0,t][0,t] and expectations, we arrive at

𝔼supτ[0,t]φλ,n(τ)Hp+𝔼|0tφλ,n(τ)𝑯2dτ|p2\displaystyle\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|\varphi_{\lambda,n}(\tau)\|_{H}^{p}+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\nabla\varphi_{\lambda,n}(\tau)\|^{2}_{\boldsymbol{H}}\>\mathrm{d}\tau\right|^{\frac{p}{2}}
C[1+𝔼φ0Hp+𝔼0tφλ,n(τ)Hpdτ+𝔼sups[0,t]|0s(φλ,n(τ),G2,λ,n(φλ,n(τ)))HdW2(τ)|p2],\displaystyle\leq C\left[1+\mathop{{}\mathbb{E}}\|\varphi_{0}\|_{H}^{p}+\mathop{{}\mathbb{E}}\int_{0}^{t}\|\varphi_{\lambda,n}(\tau)\|_{H}^{p}\>\mathrm{d}\tau+\mathop{{}\mathbb{E}}\sup_{s\in[0,t]}\left|\int_{0}^{s}\left(\varphi_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\right)_{H}\,\mathrm{d}W_{2}(\tau)\right|^{\frac{p}{2}}\right],

where CC depends on pp and also on cFc_{F}, L2L_{2}, |𝒪||\mathcal{O}|, TT. The Burkholder-Davis-Gundy and Hölder inequalities jointly with (3.28) entail

𝔼sups[0,t]|0s(φλ,n(τ),G2,λ,n(φλ,n(τ))dW2(τ))H|p2\displaystyle\mathop{{}\mathbb{E}}\sup_{s\in[0,t]}\left|\int_{0}^{s}\left(\varphi_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,\mathrm{d}W_{2}(\tau)\right)_{H}\right|^{\frac{p}{2}}
C𝔼|0tφλ,n(τ)H2G2,λ,n(φλ,n(τ))2(U2,H)2dτ|p4\displaystyle\leq C\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\varphi_{\lambda,n}(\tau)\|^{2}_{H}\|G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\,\mathrm{d}\tau\right|^{\frac{p}{4}}
C𝔼|supτ[0,t]φλ,n(τ)H20tG2,λ,n(φλ,n(τ))2(U2,H)2dτ|p4\displaystyle\leq C\mathop{{}\mathbb{E}}\left|\sup_{\tau\in[0,t]}\|\varphi_{\lambda,n}(\tau)\|^{2}_{H}\int_{0}^{t}\|G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\,\mathrm{d}\tau\right|^{\frac{p}{4}}
CL2p2|𝒪|p4tp4𝔼supτ[0,t]φλ,n(τ)Hp2,\displaystyle\leq CL_{2}^{\frac{p}{2}}|\mathcal{O}|^{\frac{p}{4}}t^{\frac{p}{4}}\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|\varphi_{\lambda,n}(\tau)\|^{\frac{p}{2}}_{H}, (3.30)

where CC only depends on pp. In turn, thanks to (3.30) and the Young inequality, we can refine the estimate and get

𝔼supτ[0,t]φλ,n(τ)Hp+𝔼|0tφλ,n(τ)𝑯2dτ|p2C[1+𝔼φ0Hp+𝔼0tφλ,n(τ)Hpdτ].\displaystyle\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|\varphi_{\lambda,n}(\tau)\|_{H}^{p}+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\nabla\varphi_{\lambda,n}(\tau)\|^{2}_{\boldsymbol{H}}\>\mathrm{d}\tau\right|^{\frac{p}{2}}\leq C\left[1+\mathop{{}\mathbb{E}}\|\varphi_{0}\|_{H}^{p}+\mathop{{}\mathbb{E}}\int_{0}^{t}\|\varphi_{\lambda,n}(\tau)\|_{H}^{p}\>\mathrm{d}\tau\right].

The Gronwall lemma entails that there exists C1C_{1}, independent of nn and λ\lambda, but depending on pp and the structural data of the problem, such that

φλ,nL𝒫p(Ω;C0([0,T];H))+φλ,nL𝒫p(Ω;L2([0,T];V1))C1,\|\varphi_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;C^{0}([0,T];H))}+\|\varphi_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;L^{2}([0,T];V_{1}))}\leq C_{1}, (3.31)

for every fixed p2p\geq 2.

Second estimate.

We devise a similar argument for the 𝑯σ{\boldsymbol{H}_{\sigma}}-norm of 𝒖λ,n{\boldsymbol{u}}_{\lambda,n}. Still exploiting [62, Theorem 4.2.5], the Itô formula implies

12𝒖λ,n(t)𝑯σ2+0t[𝒖λ,n(τ)𝑯σ2μλ,n(τ)φλ,n(τ)𝒖λ,n(τ)]dτ=12𝒖0,n𝑯σ2+0t(𝒖λ,n(τ),G1,n(𝒖λ,n(τ))dW1(τ))𝑯σ+120tG1,n(𝒖λ,n(τ))2(U1,𝑯σ)2dτ.\dfrac{1}{2}\|{\boldsymbol{u}}_{\lambda,n}(t)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left[\|\nabla{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}-\mu_{\lambda,n}(\tau)\nabla\varphi_{\lambda,n}(\tau)\cdot{\boldsymbol{u}}_{\lambda,n}(\tau)\right]\mathrm{d}\tau\\ =\dfrac{1}{2}\|{\boldsymbol{u}}_{0,n}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left({\boldsymbol{u}}_{\lambda,n}(\tau),G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\,{\mathrm{d}}W_{1}(\tau)\right)_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\int_{0}^{t}\|G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\>\mathrm{d}\tau. (3.32)

Next, we want to apply the standard Itô formula to the regularized energy functional λ:Zn×𝒁n+\mathcal{E}_{\lambda}:Z_{n}\times{\boldsymbol{Z}}_{n}\to\mathbb{R}^{+}

λ(φλ,n,𝒖λ,n):=12𝒪|φλ,n|2+12𝒪|𝒖λ,n|2+𝒪Fλ(φλ,n).\mathcal{E}_{\lambda}(\varphi_{\lambda,n},{\boldsymbol{u}}_{\lambda,n}):=\dfrac{1}{2}\int_{\mathcal{O}}|\nabla\varphi_{\lambda,n}|^{2}+\dfrac{1}{2}\int_{\mathcal{O}}|{\boldsymbol{u}}_{\lambda,n}|^{2}+\int_{\mathcal{O}}F_{\lambda}(\varphi_{\lambda,n}).

However, notice that λ\mathcal{E}_{\lambda} exactly contains the kinetic energy contribution linked to the fluid velocity field which we just handled in (3.32). Thus, it is sufficient to apply the Itô formula only to the portion of the energy linked to the order parameter φλ,n\varphi_{\lambda,n}. Let us stress that this is only possible since no coupling energy terms are present. We set

Ψλ:Zn+,Ψλ(v):=12𝒪|v|2+𝒪Fλ(v).\Psi_{\lambda}:Z_{n}\to\mathbb{R}^{+},\qquad\Psi_{\lambda}(v):=\dfrac{1}{2}\int_{\mathcal{O}}|\nabla v|^{2}+\int_{\mathcal{O}}F_{\lambda}(v).

It has already been shown in [70, Subsection 3.2] that Ψλ\Psi_{\lambda} is twice Fréchet-differentiable. Thus it is possible to apply the Itô formula in its classical version [23, Theorem 4.32]. This yields

Ψλ(φλ,n(t)+0t[μλ,n(τ)H2+μλ,n(τ)φλ,n(τ)𝒖λ,n(τ)]dτ\displaystyle\Psi_{\lambda}(\varphi_{\lambda,n}(t)+\int_{0}^{t}\left[\|\mu_{\lambda,n}(\tau)\|^{2}_{H}+\mu_{\lambda,n}(\tau)\nabla\varphi_{\lambda,n}(\tau)\cdot{\boldsymbol{u}}_{\lambda,n}(\tau)\right]\,\mathrm{d}\tau
=Ψλ(φ0,n)+120t[G2,λ,n(φλ,n(τ))2(U2,𝑯)2+k=1𝒪Fλ′′(φλ,n(τ))|gk(Jλ(φλ,n(τ)))|2]dτ\displaystyle=\Psi_{\lambda}(\varphi_{0,n})+\frac{1}{2}\int_{0}^{t}\left[\left\|\nabla G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\right\|_{\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})}^{2}+\sum_{k=1}^{\infty}\int_{\mathcal{O}}F_{\lambda}^{\prime\prime}(\varphi_{\lambda,n}(\tau))|g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2}\right]\,\mathrm{d}\tau
+0t(μλ,n(τ),G2,λ,n(φλ,n(τ))dW2(τ))H,\displaystyle\qquad+\int_{0}^{t}\left(\mu_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,{\mathrm{d}}W_{2}(\tau)\right)_{H}, (3.33)

where we recall that DΨλ(φλ,n)=μλ,nD\Psi_{\lambda}(\varphi_{\lambda,n})=\mu_{\lambda,n}. Adding (3.32) and (3.33) together, we find

12𝒖λ,n(t)𝑯σ2+Ψλ(φλ,n(t))+0t[𝒖λ,n(τ)𝑯σ2+μλ,n(τ)H2]dτ\displaystyle\dfrac{1}{2}\|{\boldsymbol{u}}_{\lambda,n}(t)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\Psi_{\lambda}(\varphi_{\lambda,n}(t))+\int_{0}^{t}\left[\|\nabla{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\right]\mathrm{d}\tau
=12𝒖0,n𝑯σ2+Ψλ(φ0,n)+120t[G1,n(𝒖λ,n(τ))2(U1,𝑯σ)2+G2,λ,n(φλ,n(τ))2(U2,𝑯)2]dτ\displaystyle=\dfrac{1}{2}\|{\boldsymbol{u}}_{0,n}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\Psi_{\lambda}(\varphi_{0,n})+\dfrac{1}{2}\int_{0}^{t}\left[\|G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}+\left\|\nabla G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\right\|_{\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})}^{2}\right]\,\mathrm{d}\tau
+120tk=1𝒪Fλ′′(φλ,n(τ))|gk(Jλ(φλ,n(τ)))|2dτ\displaystyle\qquad+\dfrac{1}{2}\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}F_{\lambda}^{\prime\prime}(\varphi_{\lambda,n}(\tau))|g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2}\,\mathrm{d}\tau
+0t(𝒖λ,n(τ),G1(𝒖λ,n(τ))dW1(τ))𝑯σ+0t(μλ,n(τ),G2,λ,n(φλ,n(τ))dW2(τ))H.\displaystyle\qquad+\int_{0}^{t}\left({\boldsymbol{u}}_{\lambda,n}(\tau),G_{1}({\boldsymbol{u}}_{\lambda,n}(\tau))\,{\mathrm{d}}W_{1}(\tau)\right)_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left(\mu_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,{\mathrm{d}}W_{2}(\tau)\right)_{H}. (3.34)

Fix now p[2,+)p\in[2,+\infty). Taking p2\frac{p}{2}-powers, supremum over [0,t][0,t], and expectations of both sides of (3.34) yield

𝔼supτ[0,t]𝒖λ,n(τ)𝑯σp+𝔼supτ[0,t]φλ,n(τ)𝑯p+𝔼supτ[0,t]Fλ(φλ,n)L1(𝒪)p2\displaystyle\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|\nabla\varphi_{\lambda,n}(\tau)\|^{p}_{{\boldsymbol{H}}}+\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|F_{\lambda}(\varphi_{\lambda,n})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}
+𝔼|0t𝒖λ,n(τ)𝑯σ2dτ|p2+𝔼|0tμλ,n(τ)H2dτ|p2\displaystyle\qquad+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\nabla{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{2}}
C[𝔼𝒖0,n𝑯σp+𝔼φ0,n𝑯p+𝔼Fλ(φ0,n)L1(𝒪)p2+𝔼|0tG1,n(𝒖λ,n(τ))2(U1,𝑯σ)2dτ|p2\displaystyle\leq C\left[\mathop{{}\mathbb{E}}\|{\boldsymbol{u}}_{0,n}\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\mathop{{}\mathbb{E}}\|\nabla\varphi_{0,n}\|^{p}_{\boldsymbol{H}}+\mathop{{}\mathbb{E}}\|F_{\lambda}(\varphi_{0,n})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\,\mathrm{d}\tau\right|^{\frac{p}{2}}\right.
+𝔼|0tG2,λ,n(φλ,n(τ))2(U2,𝑯)2dτ|p2+𝔼|0tk=1𝒪|Fλ′′(φλ,n(τ))||gk(Jλ(φλ,n(τ)))|2dτ|p2\displaystyle\qquad+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\left\|\nabla G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\right\|_{\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})}^{2}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\varphi_{\lambda,n}(\tau))||g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2}\,\mathrm{d}\tau\right|^{\frac{p}{2}}
+𝔼sups[0,t]|0s(𝒖λ,n(τ),G1(𝒖λ,n(τ))dW1(τ))𝑯σ|p2\displaystyle\qquad\left.+\mathop{{}\mathbb{E}}\sup_{s\in[0,t]}\left|\int_{0}^{s}\left({\boldsymbol{u}}_{\lambda,n}(\tau),G_{1}({\boldsymbol{u}}_{\lambda,n}(\tau))\,{\mathrm{d}}W_{1}(\tau)\right)_{{\boldsymbol{H}_{\sigma}}}\right|^{\frac{p}{2}}\right.
+𝔼sups[0,t]|0s(μλ,n(τ),G2,λ,n(φλ,n(τ))dW2(τ))H|p2],\displaystyle\qquad\left.+\mathop{{}\mathbb{E}}\sup_{s\in[0,t]}\left|\int_{0}^{s}\left(\mu_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,{\mathrm{d}}W_{2}(\tau)\right)_{H}\right|^{\frac{p}{2}}\right], (3.35)

where CC only depends on pp. Next, we address the terms on the right hand side of (3.35). By (3.10) and Assumption (A2), we deduce

G1,n(𝒖λ,n(τ))2(U1,𝑯σ)2G1(𝒖λ,n(τ))2(U1,𝑯σ)22CG12(1+𝒖λ,n(τ))𝑯σ2).\|G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\leq\|G_{1}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\leq 2C_{G_{1}}^{2}\left(1+\|{\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\boldsymbol{H}_{\sigma}}\right). (3.36)

Since φλ,n(τ)V1\varphi_{\lambda,n}(\tau)\in V_{1}, recalling assumption (A3), (3.28), and the non-expansivity of JλJ_{\lambda}, we have

G2,λ,n(φλ,n(τ))2(U2,𝑯)2\displaystyle\left\|\nabla G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\right\|_{\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})}^{2} G2,λ(φλ,n(τ))2(U2,𝑯)2\displaystyle\leq\left\|\nabla G_{2,\lambda}(\varphi_{\lambda,n}(\tau))\right\|_{\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})}^{2}
=k=1gk(Jλ(φλ,n(τ)))Jλ(φλ,n(τ))H2\displaystyle=\sum_{k=1}^{\infty}\|g_{k}^{\prime}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))\nabla J_{\lambda}(\varphi_{\lambda,n}(\tau))\|_{H}^{2}
k=1gkW1,(1,1)2φλ,n(τ)H2L22φλ,n(τ)H2.\displaystyle\leq\sum_{k=1}^{\infty}\|g_{k}\|_{W^{1,\infty}(-1,1)}^{2}\|\nabla\varphi_{\lambda,n}(\tau)\|_{H}^{2}\leq L_{2}^{2}\|\nabla\varphi_{\lambda,n}(\tau)\|_{H}^{2}. (3.37)

Furthermore, since F′′=γcFF^{\prime\prime}=\gamma^{\prime}-c_{F}, by (3.2) we have that, for all xx\in\mathbb{R},

Fλ′′(x)=γλ(x)cF=γ(Jλ(x))Jλ(x)cF=F′′(Jλ(x))Jλ(x)+cF(Jλ(x)1).F^{\prime\prime}_{\lambda}(x)=\gamma_{\lambda}^{\prime}(x)-c_{F}=\gamma^{\prime}(J_{\lambda}(x))J_{\lambda}^{\prime}(x)-c_{F}=F^{\prime\prime}(J_{\lambda}(x))J_{\lambda}^{\prime}(x)+c_{F}(J_{\lambda}^{\prime}(x)-1).

Thus, thanks to (A3) and the non-expansivity of JλJ_{\lambda}, we get

k=1𝒪|Fλ′′(φλ,n(τ))||gk(Jλ(φλ,n(τ)))|2\displaystyle\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\varphi_{\lambda,n}(\tau))||g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2} k=1𝒪|F′′(Jλ(φλ,n(τ)))||gk(Jλ(φλ,n(τ)))|2\displaystyle\leq\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F^{\prime\prime}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))||g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2}
+2cF|𝒪|k=1gkW1,(1,1)2\displaystyle\qquad+2c_{F}|\mathcal{O}|\sum_{k=1}^{\infty}\|g_{k}\|_{W^{1,\infty}(-1,1)}^{2}
|𝒪|L22(1+2cF).\displaystyle\leq|\mathcal{O}|L_{2}^{2}\left(1+2c_{F}\right). (3.38)

Finally, we address the stochastic integrals. Using (3.36) jointly with the Burkholder-Davis-Gundy and Young inequalities, for every δ>0\delta>0 we obtain

𝔼supτ[0,t]|0t(𝒖λ,n(τ),G1,n(𝒖λ,n(τ))dW1(τ))𝑯σ|p2\displaystyle\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\left|\int_{0}^{t}\left({\boldsymbol{u}}_{\lambda,n}(\tau),G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\,{\mathrm{d}}W_{1}(\tau)\right)_{{\boldsymbol{H}_{\sigma}}}\right|^{\frac{p}{2}}
C𝔼|0t𝒖λ,n(τ)𝑯σ2G1,n(𝒖λ,n(τ))2(U1,𝑯σ)2dτ|p4\displaystyle\leq C\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{\boldsymbol{H}_{\sigma}}\|G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\,\mathrm{d}\tau\right|^{\frac{p}{4}}
C2p4CG1p2𝔼|supτ[0,t]𝒖λ,n(τ)𝑯σ20t(1+𝒖λ,n(τ)𝑯σ2)dτ|p4\displaystyle\leq C2^{\frac{p}{4}}C_{G_{1}}^{\frac{p}{2}}\mathop{{}\mathbb{E}}\left|\sup_{\tau\in[0,t]}\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{\boldsymbol{H}_{\sigma}}\int_{0}^{t}\left(1+\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{\boldsymbol{H}_{\sigma}}\right)\mathrm{d}\tau\right|^{\frac{p}{4}}
δ𝔼supτ[0,t]𝒖λ,n(τ)𝑯σp+Cp,δ𝔼0t(1+𝒖λ,n(τ)𝑯σp)dτ,\displaystyle\leq\delta\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{p}_{\boldsymbol{H}_{\sigma}}+C_{p,\delta}\mathop{{}\mathbb{E}}\int_{0}^{t}\left(1+\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{p}_{\boldsymbol{H}_{\sigma}}\right)\mathrm{d}\tau, (3.39)

where CC only depends on δ\delta, pp, and TT. Moreover, by (3.28) and the same inequalities, we also get

𝔼supτ[0,t]|0t(μλ,n(τ),G2,λ,n(φλ,n(τ))dW2(τ))H|p2\displaystyle\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\left|\int_{0}^{t}\left(\mu_{\lambda,n}(\tau),G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,{\mathrm{d}}W_{2}(\tau)\right)_{H}\right|^{\frac{p}{2}}
C𝔼|0tμλ,n(τ)H2G2,λ,n(φλ,n(τ))2(U2,H)2dτ|p4\displaystyle\leq C\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\|G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\,\mathrm{d}\tau\right|^{\frac{p}{4}}
CL2p2|𝒪|p4𝔼|0tμλ,n(τ)H2dτ|p4C+δ𝔼|0tμλ,n(τ)H2dτ|p2,\displaystyle\leq CL_{2}^{\frac{p}{2}}|\mathcal{O}|^{\frac{p}{4}}\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{4}}\leq C+\delta\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{2}}, (3.40)

where CC only depends on pp, δ\delta, and 𝒪\mathcal{O}. Finally, the non-expansivity of the orthogonal projectors on WnW_{n} and 𝑾n{\boldsymbol{W}}_{n} imply

𝒖0,n𝑯σp𝒖0𝑯σp,φ0,n𝑯pφ0𝑯p\|{\boldsymbol{u}}_{0,n}\|^{p}_{{\boldsymbol{H}_{\sigma}}}\leq\|{\boldsymbol{u}}_{0}\|_{\boldsymbol{H}_{\sigma}}^{p},\quad\|\nabla\varphi_{0,n}\|^{p}_{\boldsymbol{H}}\leq\|\nabla\varphi_{0}\|_{{\boldsymbol{H}}}^{p} (3.41)

whereas, since FλF^{\prime}_{\lambda} is linearly bounded, being Lipschitz-continuous, FλF_{\lambda} is quadratically bounded so that

Fλ(φ0,n)L1(𝒪)p2C(1+φ0,nHp)C(1+φ0Hp),\|F_{\lambda}(\varphi_{0,n})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}\leq C\left(1+\|\varphi_{0,n}\|_{H}^{p}\right)\leq C\left(1+\|\varphi_{0}\|_{H}^{p}\right), (3.42)

where CC depends on λ\lambda and pp. Collecting (3.36)-(3.42) and choosing δ\delta small enough, from (3.35) we infer that

𝔼supτ[0,t]𝒖λ,n(t)𝑯σp+𝔼supτ[0,t]φλ,n(τ)𝑯p+𝔼supτ[0,t]Fλ(φλ,n)L1(𝒪)p2\displaystyle\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|{\boldsymbol{u}}_{\lambda,n}(t)\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|\nabla\varphi_{\lambda,n}(\tau)\|^{p}_{{\boldsymbol{H}}}+\mathop{{}\mathbb{E}}\sup_{\tau\in[0,t]}\|F_{\lambda}(\varphi_{\lambda,n})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}
+𝔼|0t𝒖λ,n(τ)𝑯σ2dτ|p2+12𝔼|0tμλ,n(τ)H2dτ|p2\displaystyle\qquad+\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\nabla{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\dfrac{1}{2}\mathop{{}\mathbb{E}}\left|\int_{0}^{t}\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{2}}
C[1+𝔼φ0Vp+𝔼𝒖0𝑯σp+𝔼0t𝒖λ,n(τ)𝑯σpdτ+𝔼0tφλ,n(τ)𝑯pdτ].\displaystyle\leq C\left[1+\mathop{{}\mathbb{E}}\|\varphi_{0}\|_{V}^{p}+\mathop{{}\mathbb{E}}\|{\boldsymbol{u}}_{0}\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\mathop{{}\mathbb{E}}\int_{0}^{t}\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{p}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau+\mathop{{}\mathbb{E}}\int_{0}^{t}\left\|\nabla\varphi_{\lambda,n}(\tau)\right\|_{{\boldsymbol{H}}}^{p}\,\mathrm{d}\tau\right]. (3.43)

Here CC depends on λ\lambda and pp. An application of the Gronwall lemma entails the existence of C2,C3,C4C_{2},C_{3},C_{4}, depending on λ\lambda, pp and TT, such that

𝒖λ,nL𝒫p(Ω;C0([0,T];𝑯σ))+𝒖λ,nL𝒫p(Ω;L2(0,T;V1))C2,\displaystyle\|{\boldsymbol{u}}_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;C^{0}([0,T];{\boldsymbol{H}_{\sigma}}))}+\|{\boldsymbol{u}}_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;V_{1}))}\leq C_{2}, (3.44)
φλ,nL𝒫p(Ω;C0([0,T];V1))C3,\displaystyle\|\varphi_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;C^{0}([0,T];V_{1}))}\leq C_{3}, (3.45)
μλ,nL𝒫p(Ω;L2(0,T;H))+Fλ(φλ,n)L𝒫p/2(Ω;C0([0,T];L1(𝒪)))C4.\displaystyle\|\mu_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;H))}+\|F_{\lambda}(\varphi_{\lambda,n})\|_{L^{p/2}_{\mathscr{P}}(\Omega;C^{0}([0,T];L^{1}(\mathcal{O})))}\leq C_{4}. (3.46)

Further estimates.

The Lipschitz-continuity of FλF^{\prime}_{\lambda} and the fact that Fλ(0)=0F^{\prime}_{\lambda}(0)=0 entail

|Fλ(φλ,n(t))|C|φλ,n(t)|,|F^{\prime}_{\lambda}(\varphi_{\lambda,n}(t))|\leq C|\varphi_{\lambda,n}(t)|,

for some CC only depending on λ\lambda. Therefore, thanks to (3.31) we also get the estimate

Fλ(φλ,n)L𝒫p(Ω;L2(0,T;H))C5.\|F^{\prime}_{\lambda}(\varphi_{\lambda,n})\|_{L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;H))}\leq C_{5}. (3.47)

Additionally, by comparison in (3.14), we get

φλ,nL𝒫p(Ω;L2(0,T;V2))C6.\|\varphi_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;V_{2}))}\leq C_{6}. (3.48)

Here C5C_{5} or C6C_{6} depend on λ\lambda, pp, and TT. In light of (3.36), (3.37) and on account of (3.44) and (3.45), we deduce

G1,n(𝒖λ,n)L𝒫p(Ω;L(0,T;2(U1,𝑯σ)))\displaystyle\|G_{1,n}({\boldsymbol{u}}_{\lambda,n})\|_{L^{p}_{\mathscr{P}}(\Omega;L^{\infty}(0,T;\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})))} C7,\displaystyle\leq C_{7}, (3.49)
G2,λ,n(φλ,n)L𝒫p(Ω;L(0,T;2(U2,V1)))+G2,λ,n(φλ,n)L(Ω×(0,T);2(U2,H))\displaystyle\|G_{2,\lambda,n}(\varphi_{\lambda,n})\|_{L^{p}_{\mathscr{P}}(\Omega;L^{\infty}(0,T;\mathscr{L}^{2}(U_{2},V_{1})))}+\|G_{2,\lambda,n}(\varphi_{\lambda,n})\|_{L^{\infty}(\Omega\times(0,T);\mathscr{L}^{2}(U_{2},H))} C8,\displaystyle\leq C_{8}, (3.50)

Here, again, the constants C7C_{7}, C8C_{8} depend on λ\lambda. As a consequence of [36, Lemma 2.1], the following estimates on the Itô integrals hold:

0G1,n(𝒖λ,n(τ))dW1(τ)Lp(Ω;Wk,p(0,T;𝑯σ))\displaystyle\left\|\int_{0}^{\cdot}G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\,\mathrm{d}W_{1}(\tau)\right\|_{L^{p}(\Omega;W^{k,p}(0,T;{\boldsymbol{H}_{\sigma}}))} C9,\displaystyle\leq C_{9}, (3.51)
0G2,λ,n(φλ,n(τ))dW2(τ)Lp(Ω;Wk,p(0,T;V1))Lq(Ω;Wk,q(0,T;H))\displaystyle\left\|\int_{0}^{\cdot}G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,\mathrm{d}W_{2}(\tau)\right\|_{L^{p}(\Omega;W^{k,p}(0,T;V_{1}))\cap L^{q}(\Omega;W^{k,q}(0,T;H))} C10,\displaystyle\leq C_{10}, (3.52)

for every k(0,12)k\in(0,\frac{1}{2}) and q1q\geq 1, where C9C_{9} and C10C_{10} depend on λ,p,q,k\lambda,p,q,k, and TT. Estimates (3.51) and (3.52) enable us to carry out two comparison arguments. Let us interpret (3.18) as an equality in V1V^{*}_{1},

φλ,n(t),ψV1,V1\displaystyle\langle\varphi_{\lambda,n}(t),\psi\rangle_{V_{1}^{*},V_{1}} =0t𝒪[𝒖λ,n(s)φλ,n(s)+μλ,n(s)]ψds\displaystyle=-\int_{0}^{t}\!\int_{\mathcal{O}}\left[{\boldsymbol{u}}_{\lambda,n}(s)\cdot\nabla\varphi_{\lambda,n}(s)+\mu_{\lambda,n}(s)\right]\psi\,{\mathrm{d}}s
+φ0,n,ψV1,V1+(0tG2,λ,n(φλ,n(s))dW2(s),ψ)H\displaystyle\quad+\langle\varphi_{0,n},\psi\rangle_{V_{1}^{*},V_{1}}+\left(\int_{0}^{t}G_{2,\lambda,n}(\varphi_{\lambda,n}(s))\,{\mathrm{d}}W_{2}(s),\psi\right)_{H}

for all ψV1\psi\in V_{1} such that ψV1=1\|\psi\|_{V_{1}}=1, t[0,T]t\in[0,T], \mathbb{P}-almost-surely. It is clear that, by the Hölder inequality,

|𝒪ψ𝒖λ,nφλ,n+ψμλ,n|𝒖λ,n𝑯σφλ,n𝐋4(𝒪)+μλ,nH\left|\int_{\mathcal{O}}\psi{\boldsymbol{u}}_{\lambda,n}\cdot\nabla\varphi_{\lambda,n}+\psi\mu_{\lambda,n}\right|\leq\|{\boldsymbol{u}}_{\lambda,n}\|_{\boldsymbol{H}_{\sigma}}\|\nabla\varphi_{\lambda,n}\|_{\mathbf{L}^{4}(\mathcal{O})}+\|\mu_{\lambda,n}\|_{H} (3.53)

implying (see (3.44), (3.46), and (3.48))

0t𝒪[𝒖λ,n(s)φλ,n(s)+μλ,n(s)]dsL𝒫p(Ω;H1(0,T;V1))C\left\|\int_{0}^{t}\!\int_{\mathcal{O}}\left[{\boldsymbol{u}}_{\lambda,n}(s)\cdot\nabla\varphi_{\lambda,n}(s)+\mu_{\lambda,n}(s)\right]{\mathrm{d}}s\right\|_{L^{p}_{\mathscr{P}}(\Omega;H^{1}(0,T;V_{1}^{*}))}\leq C (3.54)

for some CC depending on λ,p\lambda,p and TT. Then, recalling that

|φ0,n,ψV1,V1|φ0,nHφ0H,|\langle\varphi_{0,n},\psi\rangle_{V_{1}^{*},V_{1}}|\leq\|\varphi_{0,n}\|_{H}\leq\|\varphi_{0}\|_{H},

and estimate (3.52) as well as Lemma 2.1, we find

φλ,nL𝒫p(Ω;Wβ,p(0,T;V1))C11\|\varphi_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\Omega;W^{\beta,p}(0,T;V_{1}^{*}))}\leq C_{11} (3.55)

for some β=β(p)(1p,12)\beta=\beta(p)\in(\frac{1}{p},\frac{1}{2}) if p>2p>2, and for all β(0,12)\beta\in(0,\frac{1}{2}) if p=2p=2. The constant C11C_{11} may depend on λ,β,p\lambda,\beta,p, and TT.

Remark 3.3.

Observe that β\beta is always well defined. Here, we apply Lemma 2.1 with r=2r=2 and X=V1X=V_{1}^{*}. If α\alpha denotes the Sobolev fractional exponent given by Lemma 2.1, then the following alternative holds:

  1. (a)

    if p=2p=2, then any value of α(0,1)\alpha\in(0,1) is valid, and therefore we can set an arbitrary β(0,12)\beta\in(0,\frac{1}{2});

  2. (b)

    if p>2p>2, then any value of α(0,2p]\alpha\in(0,\frac{2}{p}] is valid, and therefore we can set an arbitrary β(1p,min(2p,12))(1p,12)\beta\in(\frac{1}{p},\min(\frac{2}{p},\frac{1}{2}))\subset(\frac{1}{p},\frac{1}{2}).

Similarly, we consider the weak formulation of the discretized Navier–Stokes equation

𝒖λ,n(t),𝒗𝑽σ,𝑽σ\displaystyle\langle{\boldsymbol{u}}_{\lambda,n}(t),{\boldsymbol{v}}\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}} =0t[𝑨𝒖λ,n(s),𝒗𝑽σ,𝑽σ+𝑩(𝒖λ,n(s),𝒖λ,n(s)),𝒗𝑽σ,𝑽σ]ds\displaystyle=-\int_{0}^{t}\left[\left\langle{\boldsymbol{A}}{\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\left\langle{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{u}}_{\lambda,n}(s)),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}\right]\,{\mathrm{d}}s
0t𝒪μλ,n(s)φλ,n(s)𝒗ds+(𝒖0,n,𝒗)𝑯σ+(0tG1,n(𝒖λ,n(s))dW1(s),𝒗)𝑯σ\displaystyle\quad-\int_{0}^{t}\int_{\mathcal{O}}\mu_{\lambda,n}(s)\nabla\varphi_{\lambda,n}(s)\cdot{\boldsymbol{v}}\,{\mathrm{d}}s+({\boldsymbol{u}}_{0,n},{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\left(\int_{0}^{t}G_{1,n}({\boldsymbol{u}}_{\lambda,n}(s))\,{\mathrm{d}}W_{1}(s),{\boldsymbol{v}}\right)_{{\boldsymbol{H}_{\sigma}}}

for all 𝒗𝑽σ{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}} such that 𝒗𝑽σ=1\|{\boldsymbol{v}}\|_{{\boldsymbol{V}_{\sigma}}}=1, t[0,T]t\in[0,T], \mathbb{P}-almost-surely. Then, we have

|𝒖0,n,𝒗𝑽σ,𝑽σ|𝒖0,n𝑯σ𝒖0𝑯σ.|\langle{\boldsymbol{u}}_{0,n},{\boldsymbol{v}}\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}|\leq\|{\boldsymbol{u}}_{0,n}\|_{\boldsymbol{H}_{\sigma}}\leq\|{\boldsymbol{u}}_{0}\|_{\boldsymbol{H}_{\sigma}}.

Owing to (3.44) and the continuity of 𝑨{\boldsymbol{A}}, we infer

0𝑨𝒖λ,n(s)dsL𝒫p(Ω;H1(0,T;𝑽σ))C,\left\|\int_{0}^{\cdot}{\boldsymbol{A}}{\boldsymbol{u}}_{\lambda,n}(s)\,{\mathrm{d}}s\right\|_{L^{p}_{\mathscr{P}}(\Omega;H^{1}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))}\leq C,

for some CC depending on λ,p\lambda,p and TT, but independent of nn. Next, we recall the well-known inequality

𝑩(𝒖λ,n,𝒖λ,n)𝑽σ𝒖λ,n𝑯σ2d2𝒖λ,n𝑽σd2.\|{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda,n},{\boldsymbol{u}}_{\lambda,n})\|_{{\boldsymbol{V}_{\sigma}^{*}}}\leq\|{\boldsymbol{u}}_{\lambda,n}\|_{\boldsymbol{H}_{\sigma}}^{2-\frac{d}{2}}\|{\boldsymbol{u}}_{\lambda,n}\|_{\boldsymbol{V}_{\sigma}}^{\frac{d}{2}}. (3.56)

Therefore, we find

0𝑩(𝒖λ,n(s),𝒖λ,n(s))dsL𝒫p2(Ω;W1,4d(0,T;𝑽σ))C.\left\|\int_{0}^{\cdot}{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{u}}_{\lambda,n}(s))\,{\mathrm{d}}s\right\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\Omega;W^{1,\frac{4}{d}}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))}\leq C.

Furthermore, since by the Hölder, Gagliardo–Nirenberg and Young inequalities, we have

|𝒪μλ,nφλ,n𝒗|μλ,nHφλ,n𝑳3(𝒪)𝒗𝑳6(𝒪)Cμλ,nHφλ,nL6(𝒪)12φλ,nV212\left|\int_{\mathcal{O}}\mu_{\lambda,n}\nabla\varphi_{\lambda,n}\cdot{\boldsymbol{v}}\right|\leq\|\mu_{\lambda,n}\|_{H}\|\nabla\varphi_{\lambda,n}\|_{{\color[rgb]{0,0,0}{\boldsymbol{L}}^{3}(\mathcal{O})}}\|{\boldsymbol{v}}\|_{{\color[rgb]{0,0,0}{\boldsymbol{L}}^{6}(\mathcal{O})}}\leq C\|\mu_{\lambda,n}\|_{H}\|\varphi_{\lambda,n}\|_{L^{6}(\mathcal{O})}^{\frac{1}{2}}\|\varphi_{\lambda,n}\|_{V_{2}}^{\frac{1}{2}} (3.57)

for both d=2d=2 and d=3d=3. Thus we get

0μλ,n(s)φλ,n(s)dsL𝒫p2(Ω;W1,43(0,T;𝑽σ))C.\left\|\int_{0}^{\cdot}\mu_{\lambda,n}(s)\nabla\varphi_{\lambda,n}(s)\,{\mathrm{d}}s\right\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\Omega;W^{1,\frac{4}{3}}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))}\leq C.

Summing up, also owing to (3.50) and Lemma 2.1, we arrive at

𝒖λ,nL𝒫p2(Ω;Wγ,p(0,T;𝑽σ))C12,\|{\boldsymbol{u}}_{\lambda,n}\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\Omega;W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))}\leq C_{12}, (3.58)

for some γ=γ(p)(1p,12)\gamma=\gamma(p)\in(\frac{1}{p},\frac{1}{2}) if p>2p>2, and for all γ(0,12)\gamma\in(0,\frac{1}{2}) if p=2p=2. Here C12C_{12} depends on λ,γ,p\lambda,\gamma,p, and TT.

Remark 3.4.

Observe that γ\gamma is always well defined. In this case, we apply Lemma 2.1 with r=43r=\frac{4}{3} and X=𝑽σX={\boldsymbol{V}_{\sigma}^{*}}. Let α\alpha denote once again the fractional Sobolev exponent given by Lemma 2.1. Given any p>2>43p>2>\frac{4}{3}, we have that any value of α(0,43p]\alpha\in(0,\frac{4}{3p}] is valid, and therefore we can set an arbitrary γ(1p,min(43p,12))(1p,12)\gamma\in(\frac{1}{p},\min(\frac{4}{3p},\frac{1}{2}))\subset(\frac{1}{p},\frac{1}{2}). If p=2p=2 then we get any value of α(0,23]\alpha\in(0,\frac{2}{3}]. Hence we can choose any γ(0,12)\gamma\in(0,\frac{1}{2}).

In the following, we assume that, given p2p\geq 2, the exponents β=β(p)\beta=\beta(p) and γ=γ(p)\gamma=\gamma(p) are fixed. Notice that if p>2p>2, then trivially β\beta and γ\gamma are both greater than 1.

3.4. Passage to the limit as n+n\to+\infty

Owing to the previously proven uniform estimates, we now pass to the limit as n+n\to+\infty keeping λ(0,1)\lambda\in(0,1) fixed. Let p>2p>2.

Lemma 3.5.

The family of laws of (𝐮λ,n)n({\boldsymbol{u}}_{\lambda,n})_{n\in\mathbb{N}} is tight in the space Z𝐮:=L2(0,T;𝐇σ)C0([0,T];D(𝐀δ))Z_{\boldsymbol{u}}:=L^{2}(0,T;{\boldsymbol{H}_{\sigma}})\cap C^{0}([0,T];D({\boldsymbol{A}}^{-\delta})) for any δ(0,12)\delta\in(0,\frac{1}{2}). The family of laws of (φλ,n)n(\varphi_{\lambda,n})_{n\in\mathbb{N}} is tight in the space Zφ:=L2(0,T;V1)C0([0,T];H)Z_{\varphi}:=L^{2}(0,T;V_{1})\cap C^{0}([0,T];H).

Proof.

To prove the claims, we follow a standard argument (refer, for instance, to [70, Subsection 3.3] or [80, Proposition 1]). We first recall we have that the embeddings (see [75, Corollary 5])

L(0,T;V1)Wβ,p(0,T;V1)\displaystyle L^{\infty}(0,T;V_{1})\cap W^{\beta,p}(0,T;V_{1}^{*}) C0([0,T];H),\displaystyle\hookrightarrow C^{0}([0,T];H), L(0,T;𝑯σ)Wγ,p(0,T;𝑽σ)\displaystyle\quad L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}})\cap W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}}) C0([0,T];D(𝑨δ)),\displaystyle\hookrightarrow C^{0}([0,T];D({\boldsymbol{A}}^{-\delta})),
L2(0,T;V2)Wβ,p(0,T;V1)\displaystyle L^{2}(0,T;V_{2})\cap W^{\beta,p}(0,T;V_{1}^{*}) L2(0,T;V1),\displaystyle\hookrightarrow L^{2}(0,T;V_{1}), L2(0,T;𝑽σ)Wγ,p(0,T;𝑽σ)\displaystyle\quad L^{2}(0,T;{\boldsymbol{V}_{\sigma}})\cap W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}}) L2(0,T;𝑯σ),\displaystyle\hookrightarrow L^{2}(0,T;{\boldsymbol{H}_{\sigma}}),

are compact (the intersection spaces are endowed with their canonical norm), since β,γ>1p\beta,\gamma>\frac{1}{p}, p>2p>2. Here, δ(0,12)\delta\in(0,\frac{1}{2}). Let us prove the first one, the other three cases being similar. For any R>0R>0, let BRB_{R} denote the closed ball of radius RR in L(0,T;V1)Wβ,p(0,T;V1)L^{\infty}(0,T;V_{1})\cap W^{\beta,p}(0,T;V_{1}^{*}). Then the Markov inequality, jointly with estimates (3.45) and (3.58), implies

{φλ,nBRC}={φλ,nL(0,T;V1)Wβ,p(0,T;V1)>R}1Rp𝔼φλ,nL(0,T;V1)Wβ,p(0,T;V1)pCλRp.\begin{split}\mathbb{P}\left\{\varphi_{\lambda,n}\in B_{R}^{C}\right\}&=\mathbb{P}\left\{\|\varphi_{\lambda,n}\|_{L^{\infty}(0,T;V_{1})\cap W^{\beta,p}(0,T;V_{1}^{*})}>R\right\}\\ &\leq\dfrac{1}{R^{p}}\mathop{{}\mathbb{E}}\|\varphi_{\lambda,n}\|_{L^{\infty}(0,T;V_{1})\cap W^{\beta,p}(0,T;V_{1}^{*})}^{p}\\ &\leq\dfrac{C_{\lambda}}{R^{p}}.\end{split}

for some Cλ>0C_{\lambda}>0 depending on λ\lambda> This yields

limn+supn{φλ,nBRC}=0,\lim_{n\to+\infty}\sup_{n\in\mathbb{N}}\,\mathbb{P}\left\{\varphi_{\lambda,n}\in B_{R}^{C}\right\}=0,

so that the first claim is proven. The remaining claims can be proven analogously, replacing the spaces accordingly and exploiting the corresponding estimates. ∎

We now set

G1,n(𝒖λ,n)W1:=0G1,n(𝒖λ,n(τ))dW1(τ),G2,λ,n(φλ,n)W2:=0G2,λ,n(φλ,n(τ))dW2(τ).G_{1,n}({\boldsymbol{u}}_{\lambda,n})\cdot W_{1}:=\int_{0}^{\cdot}G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\,\mathrm{d}W_{1}(\tau),\qquad G_{2,\lambda,n}(\varphi_{\lambda,n})\cdot W_{2}:=\int_{0}^{\cdot}G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\,\mathrm{d}W_{2}(\tau).

With a little modification in the proof of Lemma 3.5, we can also prove

Lemma 3.6.

The family of laws of (G1,n(𝐮λ,n)W1)n(G_{1,n}({\boldsymbol{u}}_{\lambda,n})\cdot W_{1})_{n\in\mathbb{N}} is tight in the space C0([0,T];𝐕σ)C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}). The family of laws of (G2,λ,n(φλ,n)W2)n(G_{2,\lambda,n}(\varphi_{\lambda,n})\cdot W_{2})_{n\in\mathbb{N}} is tight in the space C0([0,T];H)C^{0}([0,T];H).

Proof.

By [36, Theorem 2.2], since βp>1\beta p>1 and γp>1\gamma p>1, we have that the embeddings

Wβ,p(0,T;V1)C0([0,T];H),Wγ,p(0,T;𝑯σ)C0([0,T];𝑽σ)W^{\beta,p}(0,T;V_{1})\hookrightarrow C^{0}([0,T];H),\qquad W^{\gamma,p}(0,T;{\boldsymbol{H}_{\sigma}})\hookrightarrow C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}})

are compact. The argument of the proof of Lemma 3.5, recalling estimates (3.51) and (3.52), is enough to conclude the claims. ∎

Next, we consider the constant sequences of cylindrical Wiener processes

W1,nW1,W2,nW2.W_{1,n}\equiv W_{1},\qquad W_{2,n}\equiv W_{2}.
Lemma 3.7.

The family of laws of (W1,n)n(W_{1,n})_{n\in\mathbb{N}} is tight in C0([0,T];U10)C^{0}([0,T];U_{1}^{0}). The family of laws of (W2,n)n(W_{2,n})_{n\in\mathbb{N}} is tight in C0([0,T];U20)C^{0}([0,T];U_{2}^{0}).

Proof.

It directly follows from the fact that every measure on a complete separable metric space is tight. ∎

Finally, we consider the sequences of approximated initial conditions.

Lemma 3.8.

The family of laws of (𝐮0,n)n({\boldsymbol{u}}_{0,n})_{n\in\mathbb{N}} is tight in 𝐕σ{\boldsymbol{V}_{\sigma}^{*}}. The family of laws of (φ0,n)n(\varphi_{0,n})_{n\in\mathbb{N}} is tight in HH.

Proof.

It is a third iteration of the proof of Lemma 3.5, exploting the compact embeddings

𝑯σ𝑽σ,V1H,{\boldsymbol{H}_{\sigma}}\hookrightarrow{\boldsymbol{V}_{\sigma}^{*}},\qquad V_{1}\hookrightarrow H,

and the Markov inequality on closed balls of 𝑯σ{\boldsymbol{H}_{\sigma}} and V1V_{1}, respectively. ∎

As an immediate consequence of Lemmas 3.5-3.8, we get that the family of laws of

(𝒖λ,n,φλ,n,G1,n(𝒖λ,n)W1,n,G2,λ,n(φλ,n)W2,n,W1,n,W2,n,𝒖0,n,φ0,n)n({\boldsymbol{u}}_{\lambda,n},\varphi_{\lambda,n},G_{1,n}({\boldsymbol{u}}_{\lambda,n})\cdot W_{1,n},G_{2,\lambda,n}(\varphi_{\lambda,n})\cdot W_{2,n},W_{1,n},W_{2,n},{\boldsymbol{u}}_{0,n},\varphi_{0,n})_{n\in\mathbb{N}}

is tight in the product space

Z𝒖×Zφ×C0([0,T];𝑽σ)×C0([0,T];H)×C0([0,T];U10)×C0([0,T];U20)×𝑽σ×H.Z_{\boldsymbol{u}}\times Z_{\varphi}\times C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}})\times C^{0}([0,T];H)\times C^{0}([0,T];U_{1}^{0})\times C^{0}([0,T];U_{2}^{0})\times{\boldsymbol{V}_{\sigma}^{*}}\times H.

Owing to the Prokhorov and Skorokhod theorems (see [56, Theorem 2.7] and [81, Theorem 1.10.4, Addendum 1.10.5]), there exists a probability space (Ω~,~,~)(\widetilde{\Omega},\widetilde{\mathscr{F}},\widetilde{\mathbb{P}}) and a sequence of random variables Xn:(Ω~,~)(Ω,)X_{n}:(\widetilde{\Omega},\widetilde{\mathscr{F}})\to(\Omega,\mathscr{F}) such that the law of XnX_{n} is \mathbb{P} for every nn\in\mathbb{N}, namely ~Xn1=\widetilde{\mathbb{P}}\circ X_{n}^{-1}=\mathbb{P} (so that composition with XnX_{n} preserves laws), and the following convergences hold

𝒖~λ,n:=𝒖λ,nXn𝒖~λ\displaystyle\widetilde{{\boldsymbol{u}}}_{\lambda,n}:={\boldsymbol{u}}_{\lambda,n}\circ X_{n}\to\widetilde{{\boldsymbol{u}}}_{\lambda}\quad in Z𝒖=L2(0,T;𝑯σ)C0([0,T];D(𝑨δ)),-a.s.;\displaystyle\text{in }Z_{\boldsymbol{u}}=L^{2}(0,T;{\boldsymbol{H}_{\sigma}})\cap C^{0}([0,T];D({\boldsymbol{A}}^{-\delta})),\,\,\mathbb{P}\text{-a.s.};
φ~λ,n:=φλ,nXnφ~λ\displaystyle\widetilde{\varphi}_{\lambda,n}:=\varphi_{\lambda,n}\circ X_{n}\to\widetilde{\varphi}_{\lambda}\quad in Zφ:=L2(0,T;V1)C0([0,T];H),-a.s.;\displaystyle\text{in }Z_{\varphi}:=L^{2}(0,T;V_{1})\cap C^{0}([0,T];H),\,\,\mathbb{P}\text{-a.s.};
I~λ,n:=(G1,n(𝒖λ,n)W1,n)XnI~λ\displaystyle\widetilde{I}_{\lambda,n}:=(G_{1,n}({\boldsymbol{u}}_{\lambda,n})\cdot W_{1,n})\circ X_{n}\to\widetilde{I}_{\lambda}\quad in C0([0,T];𝑽σ),-a.s.;\displaystyle\text{in }C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}),\,\,\mathbb{P}\text{-a.s.};
J~λ,n:=(G2,λ,n(φλ,n)W2,n)XnJ~λ\displaystyle\widetilde{J}_{\lambda,n}:=(G_{2,\lambda,n}(\varphi_{\lambda,n})\cdot W_{2,n})\circ X_{n}\to\widetilde{J}_{\lambda}\quad in C0([0,T];H),-a.s.;\displaystyle\text{in }C^{0}([0,T];H),\,\,\mathbb{P}\text{-a.s.};
W~1,n:=W1,nXnW~1\displaystyle\widetilde{W}_{1,n}:=W_{1,n}\circ X_{n}\to\widetilde{W}_{1}\quad in C0([0,T];U10),-a.s.;\displaystyle\text{in }C^{0}([0,T];U_{1}^{0}),\,\,\mathbb{P}\text{-a.s.};
W~2,n:=W2,nXnW~2\displaystyle\widetilde{W}_{2,n}:=W_{2,n}\circ X_{n}\to\widetilde{W}_{2}\quad in C0([0,T];U20),-a.s.;\displaystyle\text{in }C^{0}([0,T];U_{2}^{0}),\,\,\mathbb{P}\text{-a.s.};
𝒖~0,n:=𝒖0,nXn𝒖~0\displaystyle\widetilde{{\boldsymbol{u}}}_{0,n}:={\boldsymbol{u}}_{0,n}\circ X_{n}\to\widetilde{{\boldsymbol{u}}}_{0}\quad in 𝑽σ,-a.s.;\displaystyle\text{in }{\boldsymbol{V}_{\sigma}^{*}},\,\,\mathbb{P}\text{-a.s.};
φ~0,n:=φ0,nXnφ~0\displaystyle\widetilde{\varphi}_{0,n}:=\varphi_{0,n}\circ X_{n}\to\widetilde{\varphi}_{0}\quad in H,-a.s.,\displaystyle\text{in }H,\,\,\mathbb{P}\text{-a.s.},

for some limiting processes 𝒖~λ,φ~λ,I~λ,J~λ,W~1,W~2,𝒖~0,φ~0\widetilde{{\boldsymbol{u}}}_{\lambda},\widetilde{\varphi}_{\lambda},\widetilde{I}_{\lambda},\widetilde{J}_{\lambda},\widetilde{W}_{1},\widetilde{W}_{2},\widetilde{{\boldsymbol{u}}}_{0},\widetilde{\varphi}_{0} belonging to the specified spaces. Let us recall that, for the sake of what follows, if (S,,ν)(S,\mathcal{M},\nu) is a finite positive measure space and XX is any Banach space, then the Bochner space Lr(S;X)L^{r}(S;X) is reflexive if and only if Lr(S,ν)L^{r}(S,\nu) and XX are reflexive (see, for instance, [29, Corollary 2, p. 100]). By the previously proven uniform estimates and the preservation of laws under XnX_{n}, up to a subsequence which we do not relabel, the Vitali convergence theorem, the Eberlein-Smulian theorem and the Banach-Alaoglu theorem entail

𝒖~λ,n𝒖~λ\displaystyle\widetilde{{\boldsymbol{u}}}_{\lambda,n}\to\widetilde{{\boldsymbol{u}}}_{\lambda}\quad in Lq(Ω~;L2(0,T;𝑯σ)C0([0,T];D(𝑨δ))) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};L^{2}(0,T;{\boldsymbol{H}_{\sigma}})\cap C^{0}([0,T];D({\boldsymbol{A}}^{-\delta})))\text{ if }q<p,
𝒖~λ,n𝒖~λ\displaystyle\widetilde{{\boldsymbol{u}}}_{\lambda,n}\rightharpoonup\widetilde{{\boldsymbol{u}}}_{\lambda}\quad in Lp(Ω~;L2(0,T;𝑽σ)),\displaystyle\text{in }L^{p}(\widetilde{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}})),
𝒖~λ,n𝒖~λ\displaystyle\widetilde{{\boldsymbol{u}}}_{\lambda,n}\overset{\ast}{\rightharpoonup}\widetilde{{\boldsymbol{u}}}_{\lambda}\quad in Lwp(Ω~;L(0,T;𝑯σ))Lp2(Ω~;Wγ,p(0,T;𝑽σ)),\displaystyle\text{in }L^{p}_{w}(\widetilde{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}))\cap L^{\frac{p}{2}}(\widetilde{\Omega};W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}})),
φ~λ,nφ~λ\displaystyle\widetilde{\varphi}_{\lambda,n}\to\widetilde{\varphi}_{\lambda}\quad in Lq(Ω~;L2(0,T;V1)C0([0,T];H)) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};L^{2}(0,T;V_{1})\cap C^{0}([0,T];H))\text{ if }q<p,
φ~λ,nφ~λ\displaystyle\widetilde{\varphi}_{\lambda,n}\rightharpoonup\widetilde{\varphi}_{\lambda}\quad in Lp(Ω~;L2(0,T;V2)),\displaystyle\text{in }L^{p}(\widetilde{\Omega};L^{2}(0,T;V_{2})),
φ~λ,nφ~λ\displaystyle\widetilde{\varphi}_{\lambda,n}\overset{\ast}{\rightharpoonup}\widetilde{\varphi}_{\lambda}\quad in Lwp(Ω~;L(0,T;V1))Lp(Ω~;Wβ,p(0,T;V1)),\displaystyle\text{in }L^{p}_{w}(\widetilde{\Omega};L^{\infty}(0,T;V_{1}))\cap L^{p}(\widetilde{\Omega};W^{\beta,p}(0,T;V_{1}^{*})),
I~λ,nI~λ\displaystyle\widetilde{I}_{\lambda,n}\to\widetilde{I}_{\lambda}\quad in Lq(Ω~;C0([0,T];𝑽σ)) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}))\text{ if }q<p,
J~λ,nJ~λ\displaystyle\widetilde{J}_{\lambda,n}\to\widetilde{J}_{\lambda}\quad in Lq(Ω~;C0([0,T];H)) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};C^{0}([0,T];H))\text{ if }q<p,
W~1,nW~1\displaystyle\widetilde{W}_{1,n}\to\widetilde{W}_{1}\quad in Lq(Ω~;C0([0,T];U10)) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};C^{0}([0,T];U_{1}^{0}))\text{ if }q<p,
W~2,nW~2\displaystyle\widetilde{W}_{2,n}\to\widetilde{W}_{2}\quad in Lq(Ω~;C0([0,T];U20)) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};C^{0}([0,T];U_{2}^{0}))\text{ if }q<p,
𝒖~0,n𝒖~0\displaystyle\widetilde{{\boldsymbol{u}}}_{0,n}\to\widetilde{{\boldsymbol{u}}}_{0}\quad in Lq(Ω~;𝑽σ) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};{\boldsymbol{V}_{\sigma}^{*}})\text{ if }q<p,
φ~0,nφ~0\displaystyle\widetilde{\varphi}_{0,n}\to\widetilde{\varphi}_{0}\quad in Lq(Ω~;H) if q<p.\displaystyle\text{in }L^{q}(\widetilde{\Omega};H)\text{ if }q<p.

Let us now define

μ~λ,n:=μλ,nXn.\widetilde{\mu}_{\lambda,n}:=\mu_{\lambda,n}\circ X_{n}.

By uniform boundedness and weak compactness, there exists some μ~λ\widetilde{\mu}_{\lambda} such that

μ~λ,nμ~λ\displaystyle\widetilde{\mu}_{\lambda,n}\rightharpoonup\widetilde{\mu}_{\lambda} in Lp(Ω~;L2(0,T;H)).\displaystyle\quad\text{in }L^{p}(\widetilde{\Omega};L^{2}(0,T;H)).

Let us notice that it is possible to take the probability space (Ω~,~,~)(\widetilde{\Omega},\widetilde{\mathscr{F}},\widetilde{\mathbb{P}}) large enough so that it does not depend on λ\lambda. Taking into account the previous considerations and further straightforward weak convergences, the limit processes fulfill the following regularity properties:

𝒖~λ\displaystyle\widetilde{{\boldsymbol{u}}}_{\lambda} Lp2(Ω~;Wγ,p(0,T;𝑽σ))Lp(Ω~;C0([0,T];D(𝑨δ))L2(0,T;𝑽σ))Lwp(Ω~;L(0,T;𝑯σ));\displaystyle\in L^{\frac{p}{2}}(\widetilde{\Omega};W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))\cap L^{p}(\widetilde{\Omega};C^{0}([0,T];D({\boldsymbol{A}}^{-\delta}))\cap L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))\cap L^{p}_{w}(\widetilde{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}));
φ~λ\displaystyle\widetilde{\varphi}_{\lambda} Lp(Ω~;Wβ,p(0,T;V1)C0([0,T];H)L2(0,T;V2))Lwp(Ω~;L(0,T;V1));\displaystyle\in L^{p}(\widetilde{\Omega};W^{\beta,p}(0,T;V_{1}^{*})\cap C^{0}([0,T];H)\cap L^{2}(0,T;V_{2}))\cap L^{p}_{w}(\widetilde{\Omega};L^{\infty}(0,T;V_{1}));
μ~λ\displaystyle\widetilde{\mu}_{\lambda} Lp(Ω~;L2(0,T;H));\displaystyle\in L^{p}(\widetilde{\Omega};L^{2}(0,T;H));
I~λ\displaystyle\widetilde{I}_{\lambda} Lp(Ω~;C0([0,T];𝑽σ));\displaystyle\in L^{p}(\widetilde{\Omega};C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}));
J~λ\displaystyle\widetilde{J}_{\lambda} Lp(Ω~;C0([0,T];H));\displaystyle\in L^{p}(\widetilde{\Omega};C^{0}([0,T];H));
W~1\displaystyle\widetilde{W}_{1} Lp(Ω~;C0([0,T];U10));\displaystyle\in L^{p}(\widetilde{\Omega};C^{0}([0,T];U_{1}^{0}));
W~2\displaystyle\widetilde{W}_{2} Lp(Ω~;C0([0,T];U20));\displaystyle\in L^{p}(\widetilde{\Omega};C^{0}([0,T];U_{2}^{0}));
𝒖~0\displaystyle\widetilde{{\boldsymbol{u}}}_{0} Lp(Ω~;𝑯σ);\displaystyle\in L^{p}(\widetilde{\Omega};{\boldsymbol{H}_{\sigma}});
φ~0\displaystyle\widetilde{\varphi}_{0} Lp(Ω~;V1).\displaystyle\in L^{p}(\widetilde{\Omega};\mathcal{B}\cap V_{1}).

From this starting point, we now address several issues.

The nonlinearities

First of all, by Lipschitz-continuity of FλF_{\lambda}^{\prime}, it follows that

Fλ(φ~λ,n)Fλ(φ~λ)in Lp(Ω~;L2(0,T;H)).F_{\lambda}^{\prime}(\widetilde{\varphi}_{\lambda,n})\to F_{\lambda}^{\prime}(\widetilde{\varphi}_{\lambda})\quad\text{in }L^{p}(\widetilde{\Omega};L^{2}(0,T;H)).

Moreover, since G1,nG_{1,n} is uniformly Lipschitz-continuous (recall Proposition 3.1) and

G1,n(𝒖~λ,n)G1(𝒖~λ)Lp(Ω~,L2(0,T;2(U1,Y)))G1,n(𝒖~λ,n)G1,n(𝒖~λ)Lp(Ω~,L2(0,T;2(U1,Y)))+G1,n(𝒖~λ)G1(𝒖~λ)Lp(Ω~,L2(0,T;2(U1,Y))),\begin{split}&\|G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n})-G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda})\|_{L^{p}(\widetilde{\Omega},L^{2}(0,T;\mathscr{L}^{2}(U_{1},Y)))}\\ &\qquad\qquad\leq\|G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n})-G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda})\|_{L^{p}(\widetilde{\Omega},L^{2}(0,T;\mathscr{L}^{2}(U_{1},Y)))}+\|G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda})-G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda})\|_{L^{p}(\widetilde{\Omega},L^{2}(0,T;\mathscr{L}^{2}(U_{1},Y)))},\end{split}

we conclude

G1,n(𝒖~λ,n)G1(𝒖~λ)in Lq(Ω~;L2(0,T;2(U1,Y))) if q<p,G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n})\to G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda})\quad\text{in }L^{q}(\widetilde{\Omega};L^{2}(0,T;\mathscr{L}^{2}(U_{1},Y)))\text{ if }q<p,

A very similar computation also shows

G2,λ,n(φ~λ,n)G2,λ(φ~λ)in Lq(Ω~;L2(0,T;2(U2,H))) if q<p.G_{2,\lambda,n}(\widetilde{\varphi}_{\lambda,n})\to G_{2,\lambda}(\widetilde{\varphi}_{\lambda})\quad\text{in }L^{q}(\widetilde{\Omega};L^{2}(0,T;\mathscr{L}^{2}(U_{2},H)))\text{ if }q<p.

Next, we address the Korteweg term representing the capillary force. Let us prove that

μ~λ,nφ~λ,nμ~λφ~λin 𝑳1(Ω~×(0,T)×𝒪).\widetilde{\mu}_{\lambda,n}\nabla\widetilde{\varphi}_{\lambda,n}\rightharpoonup\widetilde{\mu}_{\lambda}\nabla\widetilde{\varphi}_{\lambda}\quad\text{in }{\boldsymbol{L}}^{1}(\widetilde{\Omega}\times(0,T)\times\mathcal{O}).

Indeed, for any 𝒘𝑳(Ω~×(0,T)×𝒪){\boldsymbol{w}}\in{\boldsymbol{L}}^{\infty}(\widetilde{\Omega}\times(0,T)\times\mathcal{O}),

|𝔼~𝒪×(0,T)(μ~λ,nφ~λ,nμ~λφ~λ)𝒘||𝔼~𝒪×(0,T)μ~λ,n(φ~λ,nφ~λ)𝒘|+|𝔼~𝒪×(0,T)(μ~λ,nμ~λ)φ~λ𝒘|𝒘𝑳(Ω~×(0,T)×𝒪)μ~λ,nL2(Ω~×(0,T)×𝒪)φ~λ,nφ~λ𝑳2(Ω~×(0,T)×𝒪)+|𝔼~𝒪×(0,T)(μ~λ,nμ~λ)φ~λ𝒘|\begin{split}&\left|\widetilde{\mathbb{E}}\int_{\mathcal{O}\times(0,T)}(\widetilde{\mu}_{\lambda,n}\nabla\widetilde{\varphi}_{\lambda,n}-\widetilde{\mu}_{\lambda}\nabla\widetilde{\varphi}_{\lambda})\cdot{\boldsymbol{w}}\right|\\ &\leq\left|\widetilde{\mathbb{E}}\int_{\mathcal{O}\times(0,T)}\widetilde{\mu}_{\lambda,n}(\nabla\widetilde{\varphi}_{\lambda,n}-\nabla\widetilde{\varphi}_{\lambda})\cdot{\boldsymbol{w}}\right|+\left|\widetilde{\mathbb{E}}\int_{\mathcal{O}\times(0,T)}(\widetilde{\mu}_{\lambda,n}-\widetilde{\mu}_{\lambda})\nabla\widetilde{\varphi}_{\lambda}\cdot{\boldsymbol{w}}\right|\\ &\leq\|{\boldsymbol{w}}\|_{{\boldsymbol{L}}^{\infty}(\widetilde{\Omega}\times(0,T)\times\mathcal{O})}\|\widetilde{\mu}_{\lambda,n}\|_{L^{2}(\widetilde{\Omega}\times(0,T)\times\mathcal{O})}\|\nabla\widetilde{\varphi}_{\lambda,n}-\nabla\widetilde{\varphi}_{\lambda}\|_{{\boldsymbol{L}}^{2}(\widetilde{\Omega}\times(0,T)\times\mathcal{O})}+\left|\widetilde{\mathbb{E}}\int_{\mathcal{O}\times(0,T)}(\widetilde{\mu}_{\lambda,n}-\widetilde{\mu}_{\lambda})\nabla\widetilde{\varphi}_{\lambda}\cdot{\boldsymbol{w}}\right|\end{split}

and both terms tend to zero as n+n\to+\infty by the above convergences (note that φ~λ𝒘L2(Ω~×(0,T)×𝒪)\nabla\widetilde{\varphi}_{\lambda}\cdot{\boldsymbol{w}}\in L^{2}(\widetilde{\Omega}\times(0,T)\times\mathcal{O})). Here, 𝔼~\widetilde{\mathbb{E}} stands for the expectation with respect to the probability ~\widetilde{\mathbb{P}}. As far as the other nonlinear term appearing in the Navier-Stokes equations, we have, as a straightforward application of (3.56),

𝑩(𝒖λ,n,𝒖λ,n)𝑩(𝒖λ,𝒖λ) in Lq(Ω~;L4d(0,T;𝑽σ)) if q<p2.{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda,n},{\boldsymbol{u}}_{\lambda,n})\to{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda},{\boldsymbol{u}}_{\lambda})\text{ in }L^{q}(\widetilde{\Omega};L^{\frac{4}{d}}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))\text{ if }q<\frac{p}{2}.

Finally, we address the convective term. Observe that

𝒖~λ,nφ~λ,n𝒖~λφ~λ=(𝒖~λ,n𝒖~λ)φ~λ,n+𝒖~λ(φ~λ,nφ~λ).\begin{split}\widetilde{{\boldsymbol{u}}}_{\lambda,n}\cdot\nabla\widetilde{\varphi}_{\lambda,n}-\widetilde{{\boldsymbol{u}}}_{\lambda}\cdot\nabla\widetilde{\varphi}_{\lambda}&=(\widetilde{{\boldsymbol{u}}}_{\lambda,n}-\widetilde{{\boldsymbol{u}}}_{\lambda})\cdot\nabla\widetilde{\varphi}_{\lambda,n}+\widetilde{{\boldsymbol{u}}}_{\lambda}\cdot(\nabla\widetilde{\varphi}_{\lambda,n}-\nabla\widetilde{\varphi}_{\lambda}).\end{split}

Thus, by the Hölder inequality, it holds that

𝒖~λ,nφ~λ,n𝒖~λφ~λin Lp2(Ω~;L1(0,T;L32(𝒪))L2(0,T;L1(𝒪))).\widetilde{{\boldsymbol{u}}}_{\lambda,n}\cdot\nabla\widetilde{\varphi}_{\lambda,n}\rightharpoonup\widetilde{{\boldsymbol{u}}}_{\lambda}\cdot\nabla\widetilde{\varphi}_{\lambda}\quad\text{in }L^{\frac{p}{2}}(\widetilde{\Omega};L^{1}(0,T;L^{\frac{3}{2}}(\mathcal{O}))\cap L^{2}(0,T;L^{1}(\mathcal{O}))).

The stochastic integrals

Let us now identify I~λ\widetilde{I}_{\lambda} and J~λ\widetilde{J}_{\lambda}. The procedure is standard, for instance see [23, Section 8.4]. We introduce a family of filtrations on (Ω~,~,~)(\widetilde{\Omega},\widetilde{\mathscr{F}},\widetilde{\mathbb{P}}), namely we set

~λ,n,t:=σ{𝒖~λ,n(s),φ~λ,n(s),I~λ,n(s),J~λ,n(s),W~1,n(s),W~2,n(s),𝒖~0,n,φ~0,n,s[0,t]},\widetilde{\mathscr{F}}_{\lambda,n,t}:=\sigma\left\{\widetilde{{\boldsymbol{u}}}_{\lambda,n}(s),\,\widetilde{\varphi}_{\lambda,n}(s),\,\widetilde{I}_{\lambda,n}(s),\,\widetilde{J}_{\lambda,n}(s),\,\widetilde{W}_{1,n}(s),\,\widetilde{W}_{2,n}(s),\,\widetilde{\boldsymbol{u}}_{0,n},\,\widetilde{\varphi}_{0,n},\,s\in[0,t]\right\},

for any t0t\geq 0, nn\in\mathbb{N} and λ(0,1)\lambda\in(0,1), in such a way that both W~1,n\widetilde{W}_{1,n} and W~2,n\widetilde{W}_{2,n} are adapted. In particular, by preservation of laws and the definitions of Wiener process and stochastic integral, we readily have that Wi,nW_{i,n} is a Qi0Q_{i}^{0}-Wiener process on Ui0U_{i}^{0} and

I~λ,n=0tG1,n(𝒖~λ,n(τ))dW~1,n(τ),J~λ,n=0tG2,λ,n(φ~λ,n(τ))dW~2,n(τ),\widetilde{I}_{\lambda,n}=\int_{0}^{t}G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))\>\mathrm{d}\widetilde{W}_{1,n}(\tau),\qquad\widetilde{J}_{\lambda,n}=\int_{0}^{t}G_{2,\lambda,n}(\widetilde{\varphi}_{\lambda,n}(\tau))\>\mathrm{d}\widetilde{W}_{2,n}(\tau),

are respectively a 𝑽σ{\boldsymbol{V}_{\sigma}^{*}}-valued and an HH-valued martingale. Let us iterate the same procedure on the limit processes: we define

~λ,t:=σ{𝒖~λ(s),φ~λ(s),I~λ(s),J~λ(s),W~1(s),W~2(s),𝒖~0,φ~0,s[0,t]}.\widetilde{\mathscr{F}}_{\lambda,t}:=\sigma\left\{\widetilde{{\boldsymbol{u}}}_{\lambda}(s),\,\widetilde{\varphi}_{\lambda}(s),\,\widetilde{I}_{\lambda}(s),\,\widetilde{J}_{\lambda}(s),\,\widetilde{W}_{1}(s),\,\widetilde{W}_{2}(s),\,\widetilde{\boldsymbol{u}}_{0},\,\widetilde{\varphi}_{0},\,s\in[0,t]\right\}.

It is easy to infer, by the proven convergences, that both W~1(0)\widetilde{W}_{1}(0) and W~2(0)\widetilde{W}_{2}(0) are zero. Let now t>0t>0, s[0,t]s\in[0,t] and set

Z𝒖,s\displaystyle Z_{{\boldsymbol{u}},s} :=L2(0,s;𝑯σ)C0([0,s];D(𝑨δ)),\displaystyle:=L^{2}(0,s;{\boldsymbol{H}_{\sigma}})\cap C^{0}([0,s];D({\boldsymbol{A}}^{-\delta})),
Zφ,s\displaystyle Z_{\varphi,s} :=L2(0,s;V1)C0([0,s];H),\displaystyle:=L^{2}(0,s;V_{1})\cap C^{0}([0,s];H),
𝒳s\displaystyle\mathcal{X}_{s} :=Z𝒖,s×Zφ,s×C0([0,s];𝑽σ)×C0([0,s];H)×C0([0,s];U10)×C0([0,s];U20)×𝑽σ×H.\displaystyle:=Z_{{\boldsymbol{u}},s}\times Z_{\varphi,s}\times C^{0}([0,s];{\boldsymbol{V}_{\sigma}^{*}})\times C^{0}([0,s];H)\times C^{0}([0,s];U_{1}^{0})\times C^{0}([0,s];U_{2}^{0})\times{\boldsymbol{V}_{\sigma}^{*}}\times H.

Let ψ:𝒳s\psi:\mathcal{X}_{s}\to\mathbb{R} be a bounded and continuous function. By definition of martingale, we have

𝔼~[(W~i,n(t)W~i,n(s))ψ(φ~λ,n,𝒖~λ,n,I~λ,n,J~λ,n,W~1,n,W~2,n,𝒖~0,n,φ~0,n)]=0\widetilde{\mathbb{E}}\left[\left(\widetilde{W}_{i,n}(t)-\widetilde{W}_{i,n}(s)\right)\psi\left(\widetilde{\varphi}_{\lambda,n},\,\widetilde{{\boldsymbol{u}}}_{\lambda,n},\,\widetilde{I}_{\lambda,n},\,\widetilde{J}_{\lambda,n},\,\widetilde{W}_{1,n},\,\widetilde{W}_{2,n},\,\widetilde{\boldsymbol{u}}_{0,n},\,\widetilde{\varphi}_{0,n}\right)\right]=0 (3.59)

for i=1,2i=1,2. Here, the arguments of ψ\psi are intended to be restricted over [0,s][0,s] when necessary and 𝔼~\widetilde{\mathbb{E}} denotes the expectation with respect to ~\widetilde{\mathbb{P}}. Letting n+n\to+\infty in (3.59), an application of the dominated convergence theorem, owing to the proven convergences and the properties of ψ\psi, entails

𝔼~[(W~i(t)W~i(s))ψ(φ~λ,n,𝒖~λ,n,I~λ,J~λ,W~1,W~2,𝒖~0,φ~0)]=0,\widetilde{\mathbb{E}}\left[\left(\widetilde{W}_{i}(t)-\widetilde{W}_{i}(s)\right)\psi\left(\widetilde{\varphi}_{\lambda,n},\,\widetilde{{\boldsymbol{u}}}_{\lambda,n},\,\widetilde{I}_{\lambda},\,\widetilde{J}_{\lambda},\,\widetilde{W}_{1},\,\widetilde{W}_{2},\,\widetilde{\boldsymbol{u}}_{0},\,\widetilde{\varphi}_{0}\right)\right]=0, (3.60)

which expresses the fact that W~i\widetilde{W}_{i} is a Ui0U_{i}^{0}-valued (~λ,t)t(\widetilde{\mathscr{F}}_{\lambda,t})_{t}-martingale for i=1,2i=1,2. The characterization of QQ-Wiener processes given in [23, Theorem 4.6] leads us to compute the quadratic variation of W~i\widetilde{W}_{i}. To this end, notice that (3.60) means that, for every v,wUi0v,w\in U_{i}^{0}

𝔼~[((W~i,n(t),v)Ui0(W~i,n(t),w)Ui0(W~i,n(s),v)Ui0(W~i,n(s),w)Ui0(ts)(Qi0v,w)Ui0)ψ(φ~λ,n,𝒖~λ,n,I~λ,n,J~λ,n,W~1,n,W~2,n,𝒖~0,n,φ~0,n)]=0,\widetilde{\mathbb{E}}\left[\left(\left(\widetilde{W}_{i,n}(t),v\right)_{U_{i}^{0}}\left(\widetilde{W}_{i,n}(t),w\right)_{U_{i}^{0}}-\left(\widetilde{W}_{i,n}(s),v\right)_{U_{i}^{0}}\left(\widetilde{W}_{i,n}(s),w\right)_{U_{i}^{0}}\right.\right.\\ \left.\left.-(t-s)\left(Q_{i}^{0}v,w\right)_{U_{i}^{0}}\right)\psi\left(\widetilde{\varphi}_{\lambda,n},\,\widetilde{{\boldsymbol{u}}}_{\lambda,n},\,\widetilde{I}_{\lambda,n},\,\widetilde{J}_{\lambda,n},\,\widetilde{W}_{1,n},\,\widetilde{W}_{2,n},\,\widetilde{\boldsymbol{u}}_{0,n},\,\widetilde{\varphi}_{0,n}\right)\right]=0,

and using once more the dominated convergence theorem, we get

𝔼~[((W~i(t),v)Ui0(W~i(t),w)Ui0(W~i(s),v)Ui0(W~i(s),w)Ui0(ts)(Qi0v,w)Ui0)ψ(φ~λ,𝒖~λ,I~λ,J~λ,W~1,W~2,𝒖~0,φ~0)]=0,\widetilde{\mathbb{E}}\left[\left(\left(\widetilde{W}_{i}(t),v\right)_{U_{i}^{0}}\left(\widetilde{W}_{i}(t),w\right)_{U_{i}^{0}}-\left(\widetilde{W}_{i}(s),v\right)_{U_{i}^{0}}\left(\widetilde{W}_{i}(s),w\right)_{U_{i}^{0}}\right.\right.\\ \left.\left.-(t-s)\left(Q_{i}^{0}v,w\right)_{U_{i}^{0}}\right)\psi\left(\widetilde{\varphi}_{\lambda},\,\widetilde{{\boldsymbol{u}}}_{\lambda},\,\widetilde{I}_{\lambda},\,\widetilde{J}_{\lambda},\,\widetilde{W}_{1},\,\widetilde{W}_{2},\,\widetilde{\boldsymbol{u}}_{0},\,\widetilde{\varphi}_{0}\right)\right]=0,

namely

\llangleW~i\rrangle(t)=tQi0,t[0,T],\left\llangle\widetilde{W}_{i}\right\rrangle(t)=tQ_{i}^{0},\qquad t\in[0,T],

which is enough to conclude that W~i\widetilde{W}_{i} is a Qi0Q_{i}^{0}-Wiener process, adapted to (~λ,t)t(\widetilde{\mathscr{F}}_{\lambda,t})_{t}, owing to [23, Theorem 4.6]. We are now in a position to study the stochastic integrals. Arguing exactly as in (3.59)-(3.60), we find that I~λ\widetilde{I}_{\lambda} (resp. J~λ\widetilde{J}_{\lambda}) is a 𝑽σ{\boldsymbol{V}_{\sigma}^{*}}-valued (resp. an HH-valued) martingale. As far as the quadratic variations are concerned, an application of [23, Theorem 4.27] yields

\llangleI~λ,n\rrangle(t)=0tG1,n(𝒖~λ,n(τ))G1,n(𝒖~λ,n(τ))dτ,\llangleJ~λ,n\rrangle(t)=0tG2,λ,n(φ~λ,n(τ))G2,λ,n(φ~λ,n(τ))dτ,\left\llangle\widetilde{I}_{\lambda,n}\right\rrangle(t)=\int_{0}^{t}G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))\circ G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))^{*}\>\mathrm{d}\tau,\qquad\left\llangle\widetilde{J}_{\lambda,n}\right\rrangle(t)=\int_{0}^{t}G_{2,\lambda,n}(\widetilde{\varphi}_{\lambda,n}(\tau))\circ G_{2,\lambda,n}(\widetilde{\varphi}_{\lambda,n}(\tau))^{*}\>\mathrm{d}\tau,

for every t[0,T]t\in[0,T]. Let us outline the argument for the first sequence (similar considerations hold for the second one). Once again, fixing 𝒗,𝒘𝑽σ{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{V}_{\sigma}}, we have

𝔼~[(I~λ,n(t),𝒗𝑽σ,𝑽σI~λ,n(t),𝒘𝑽σ,𝑽σI~λ,n(s),𝒗𝑽σ,𝑽σI~λ,n(s),𝒘𝑽σ,𝑽σ0t(G1(𝒖~λ(τ))G1(𝒖~λ(τ))𝒗,𝒘)𝑯σdτ)ψ(φ~λ,n,𝒖~λ,n,I~λ,n,J~λ,n,W~1,n,W~2,n,𝒖~0,n,φ~0,n)]=0,\widetilde{\mathbb{E}}\left[\left(\left\langle\widetilde{I}_{\lambda,n}(t),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\left\langle\widetilde{I}_{\lambda,n}(t),{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}-\left\langle\widetilde{I}_{\lambda,n}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\left\langle\widetilde{I}_{\lambda,n}(s),{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right.\right.\\ \left.\left.-{\color[rgb]{0,0,0}\int_{0}^{t}\left(G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\circ G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))^{*}{\boldsymbol{v}},{\boldsymbol{w}}\right)_{\boldsymbol{H}_{\sigma}}{\mathrm{d}}\tau}\right)\psi\left(\widetilde{\varphi}_{\lambda,n},\,\widetilde{{\boldsymbol{u}}}_{\lambda,n},\,\widetilde{I}_{\lambda,n},\,\widetilde{J}_{\lambda,n},\,\widetilde{W}_{1,n},\,\widetilde{W}_{2,n},\,\widetilde{\boldsymbol{u}}_{0,n},\,\widetilde{\varphi}_{0,n}\right)\right]=0,

and, as n+n\to+\infty, the dominated convergence theorem implies that

𝔼~[(I~λ(t),𝒗𝑽σ,𝑽σI~λ(t),𝒘𝑽σ,𝑽σI~λ(s),𝒗𝑽σ,𝑽σI~λ(s),𝒘𝑽σ,𝑽σ0t(G1(𝒖~λ(τ))G1(𝒖~λ(τ))𝒗,𝒘)𝑯σdτ)ψ(φ~λ,𝒖~λ,I~λ,J~λ,W~1,W~2,𝒖~0,φ~0)]=0,\widetilde{\mathbb{E}}\left[\left(\left\langle\widetilde{I}_{\lambda}(t),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\left\langle\widetilde{I}_{\lambda}(t),{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}-\left\langle\widetilde{I}_{\lambda}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\left\langle\widetilde{I}_{\lambda}(s),{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right.\right.\\ \left.\left.-\int_{0}^{t}\left(G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\circ G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))^{*}{\boldsymbol{v}},{\boldsymbol{w}}\right)_{\boldsymbol{H}_{\sigma}}\mathrm{d}\tau\right)\psi\left(\widetilde{\varphi}_{\lambda},\,\widetilde{{\boldsymbol{u}}}_{\lambda},\,\widetilde{I}_{\lambda},\,\widetilde{J}_{\lambda},\,\widetilde{W}_{1},\,\widetilde{W}_{2},\,\widetilde{\boldsymbol{u}}_{0},\,\widetilde{\varphi}_{0}\right)\right]=0,

Notice that in the above equality the dualities are necessary. The quadratic variation of I~λ\widetilde{I}_{\lambda} is therefore

\llangleI~λ\rrangle(t)=0tG1(𝒖~λ(τ))G1(𝒖~λ(τ))dτ,t[0,T].\left\llangle\widetilde{I}_{\lambda}\right\rrangle(t)=\int_{0}^{t}G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\circ G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))^{*}\>\mathrm{d}\tau,\qquad t\in[0,T].

Let us identify I~λ\widetilde{I}_{\lambda} with the martingale

M~λ(t):=0tG1(𝒖~λ(τ))dW~1(τ),\widetilde{M}_{\lambda}(t):=\int_{0}^{t}G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\>\mathrm{d}\widetilde{W}_{1}(\tau),

which is a 𝑽σ{\boldsymbol{V}_{\sigma}^{*}}-valued (~λ,t)t(\widetilde{\mathscr{F}}_{\lambda,t})_{t}-martingale having the same quadratic variation of I~λ\widetilde{I}_{\lambda}. By [66, Theorem 3.2], we can write

\llangleM~λI~λ\rrangle=\llangleM~λ\rrangle+\llangleI~λ\rrangle2\llangleM~λ,I~λ\rrangle=20G1(𝒖~λ(τ))G1(𝒖~λ(τ))dτ20G1(𝒖~λ(τ))d\llangleW~1,I~λ\rrangle(τ).\begin{split}\left\llangle\widetilde{M}_{\lambda}-\widetilde{I}_{\lambda}\right\rrangle&=\left\llangle\widetilde{M}_{\lambda}\right\rrangle+\left\llangle\widetilde{I}_{\lambda}\right\rrangle-2\left\llangle\widetilde{M}_{\lambda},\widetilde{I}_{\lambda}\right\rrangle\\ &=2\int_{0}^{\cdot}G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\circ G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))^{*}\>\mathrm{d}\tau-2\int_{0}^{\cdot}G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\>\mathrm{d}\left\llangle\widetilde{W}_{1},\widetilde{I}_{\lambda}\right\rrangle(\tau).\end{split} (3.61)

Thus, we now compute the cross quadratic variation appearing on the right hand side in (3.61). To this end, notice that by [66, Theorem 3.2], we have

\llangleI~λ,n,W~1,n\rrangle=0G1,n(𝒖~λ,n(τ))ι11d\llangleW~1,n,W~1,n\rrangle(τ)=0G1,n(𝒖~λ,n(τ))ι11Q10dτ=0G1,n(𝒖~λ,n(τ))ι11ι1ι1dτ=0G1,n(𝒖~λ,n(τ))ι1dτ,\begin{split}\left\llangle\widetilde{I}_{\lambda,n},\widetilde{W}_{1,n}\right\rrangle&=\int_{0}^{\cdot}G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))\circ\iota^{-1}_{1}\>\mathrm{d}\left\llangle\widetilde{W}_{1,n},\widetilde{W}_{1,n}\right\rrangle(\tau)\\ &=\int_{0}^{\cdot}G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))\circ\iota^{-1}_{1}\circ Q_{1}^{0}\>\mathrm{d}\tau\\ &=\int_{0}^{\cdot}G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))\circ\iota^{-1}_{1}\circ\iota_{1}\circ\iota^{*}_{1}\>\mathrm{d}\tau\\ &=\int_{0}^{\cdot}G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))\circ\iota^{*}_{1}\>\mathrm{d}\tau,\end{split}

where we also used the fact that Q10=ι1ι1Q_{1}^{0}=\iota_{1}\circ\iota^{*}_{1}, where ι1:U1U10\iota_{1}:U_{1}\to U_{1}^{0} is the classical Hilbert-Schmidt embedding. This implies that

\llangleW~1,n,I~λ,n\rrangle=0ι1G1,n(𝒖~λ,n(τ))dτ.\left\llangle\widetilde{W}_{1,n},\widetilde{I}_{\lambda,n}\right\rrangle=\int_{0}^{\cdot}\iota_{1}\circ G_{1,n}(\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau))^{*}\>\mathrm{d}\tau.

A further application of the dominated convergence theorem entails that, as n+n\to+\infty,

\llangleW~1,I~λ\rrangle=0ι1G1(𝒖~λ(τ))dτ.\left\llangle\widetilde{W}_{1},\widetilde{I}_{\lambda}\right\rrangle=\int_{0}^{\cdot}\iota_{1}\circ G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))^{*}\>\mathrm{d}\tau. (3.62)

The identification follows injecting (3.62) in (3.61).

Identification of the limit solution.

We are now left to prove that the limiting processes solve the regularized Allen-Cahn-Navier-Stokes system (3.4)-(3.9). Testing (3.11) by some 𝒗𝑽σ{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}} and integrating the obtained identity with respect to time yield

(𝒖λ,n(t),𝒗)𝑯σ+0t[𝑨𝒖λ,n(s),𝒗𝑽σ,𝑽σ+𝑩(𝒖λ,n(s),𝒖λ,n(s)),𝒗𝑽σ,𝑽σ+𝒪μλ,n(s)φλ,n(s)𝒗]ds=(𝒖~0,n,𝒗)𝑯σ+(0tG1,n(𝒖λ,n(s))dW1(s),𝒗)𝑯σt[0,T],-a.s..({\boldsymbol{u}}_{\lambda,n}(t),{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left[\left\langle{\boldsymbol{A}}{\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\left\langle{\boldsymbol{B}}({\boldsymbol{u}}_{\lambda,n}(s),{\boldsymbol{u}}_{\lambda,n}(s)),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\int_{\mathcal{O}}\mu_{\lambda,n}(s)\nabla\varphi_{\lambda,n}(s)\cdot{\boldsymbol{v}}\right]\,{\mathrm{d}}s\\ =(\widetilde{\boldsymbol{u}}_{0,n},{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\left(\int_{0}^{t}G_{1,n}({\boldsymbol{u}}_{\lambda,n}(s))\,{\mathrm{d}}W_{1}(s),{\boldsymbol{v}}\right)_{{\boldsymbol{H}_{\sigma}}}\qquad\forall\,t\in[0,T]\,,\quad\mathbb{P}\text{-a.s.}.

Letting n+n\to+\infty, owing to above convergences and using the dominated convergence theorem, we obtain

(𝒖~λ(t),𝒗)𝑯σ+0t[𝑨𝒖~λ(s),𝒗𝑽σ,𝑽σ+𝑩(𝒖~λ(s),𝒖~λ(s)),𝒗𝑽σ,𝑽σ+𝒪μλ(s)φλ(s)𝒗]ds=(𝒖~0,𝒗)𝑯σ+(0tG1(𝒖~λ(s))dW~1(s),𝒗)𝑯σt[0,T],-a.s.(\widetilde{{\boldsymbol{u}}}_{\lambda}(t),{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t}\left[\left\langle{\boldsymbol{A}}\widetilde{{\boldsymbol{u}}}_{\lambda}(s),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\left\langle{\boldsymbol{B}}(\widetilde{{\boldsymbol{u}}}_{\lambda}(s),\widetilde{{\boldsymbol{u}}}_{\lambda}(s)),{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{*},{\boldsymbol{V}}_{\sigma}}+\int_{\mathcal{O}}\mu_{\lambda}(s)\nabla\varphi_{\lambda}(s)\cdot{\boldsymbol{v}}\right]\,{\mathrm{d}}s\\ =(\widetilde{\boldsymbol{u}}_{0},{\boldsymbol{v}})_{{\boldsymbol{H}_{\sigma}}}+\left(\int_{0}^{t}G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(s))\,{\mathrm{d}}\widetilde{W}_{1}(s),{\boldsymbol{v}}\right)_{{\boldsymbol{H}_{\sigma}}}\qquad\forall\,t\in[0,T]\,,\quad\mathbb{P}\text{-a.s.} (3.63)

Next, we identify the limit chemical potential. Testing (3.14) by some vV1v\in V_{1}, passing to the limit as n+n\to+\infty yields and exploiting the proven convergences entail

𝒪μ~λv=𝒪Δφ~λv+𝒪Fλ(φ~λ)v,\int_{\mathcal{O}}\widetilde{\mu}_{\lambda}v=-\int_{\mathcal{O}}\Delta\widetilde{\varphi}_{\lambda}v+\int_{\mathcal{O}}F^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})v, (3.64)

almost everywhere in [0,T][0,T] and \mathbb{P}-almost surely. Finally, consider the approximating Allen-Cahn equation. Testing (3.13) by some vV1v\in V_{1} and passing to the limit as n+n\to+\infty, we get

(φ~λ(t),v)H+0t𝒪[𝒖~λ(s)φ~λ(s)+μ~λ(s)]vds=(φ~0,v)H+(0tG2,λ(φ~λ(s))dW2(s),v)H.(\widetilde{\varphi}_{\lambda}(t),v)_{H}+\int_{0}^{t}\!\int_{\mathcal{O}}\left[\widetilde{{\boldsymbol{u}}}_{\lambda}(s)\cdot\nabla\widetilde{\varphi}_{\lambda}(s)+\widetilde{\mu}_{\lambda}(s)\right]v\,{\mathrm{d}}s=(\widetilde{\varphi}_{0},v)_{H}+\left(\int_{0}^{t}G_{2,\lambda}(\widetilde{\varphi}_{\lambda}(s))\,{\mathrm{d}}W_{2}(s),v\right)_{H}.

Therefore, system (3.4)-(3.9) is satisfied (in the weak sense) once we identify (the law of) the initial state. By the properties of XnX_{n}, we know that

φ~0,n=φ0,n,𝒖~0,n=𝒖0,n\widetilde{\varphi}_{0,n}\stackrel{{\scriptstyle\mathcal{L}}}{{=}}{\varphi}_{0,n},\qquad\widetilde{{\boldsymbol{u}}}_{0,n}\stackrel{{\scriptstyle\mathcal{L}}}{{=}}{{\boldsymbol{u}}}_{0,n}

for any nn\in\mathbb{N}, and by uniqueness of the distributional limit (jointly with the above convergences) we conclude

φ~0=φ0,𝒖~0=𝒖0.\widetilde{\varphi}_{0}\stackrel{{\scriptstyle\mathcal{L}}}{{=}}{\varphi}_{0},\qquad\widetilde{{\boldsymbol{u}}}_{0}\stackrel{{\scriptstyle\mathcal{L}}}{{=}}{{\boldsymbol{u}}}_{0}.

The initial conditions are therefore attained in law.

3.5. Uniform estimates with respect to λ\lambda

Here, we prove further uniform estimates, now independent of the Yosida parameter λ\lambda. The symbol KK (possibly numbered) denotes a positive constant, always independent of λ\lambda, which may change from line to line.

First estimate.

Notice that the constant C1C_{1} in (3.31) does not depend on λ\lambda. By lower semicontinuity and preservation of laws of XnX_{n}, we infer

φ~λL𝒫p(Ω;C0([0,T];H))+φ~λL𝒫p(Ω;L2(0,T;V1))K1.\|\widetilde{\varphi}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\Omega;C^{0}([0,T];H))}+\|\widetilde{\varphi}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\Omega;L^{2}(0,T;V_{1}))}\leq K_{1}. (3.65)

Second estimate.

Let us collect, in (3.35), all controls which are already uniform with respect to λ\lambda, that is, the bounds on the diffusion coefficients (3.36) and (3.37), the bounds on the stochastic terms (3.39) and (3.40), and the initial data bounds given in (3.41). This can be summarized as follows (we can express the result in the new variables since XnX_{n} preserves laws)

𝔼~supτ[0,t]𝒖~λ,n(t)𝑯σp+𝔼~supτ[0,t]φ~λ,n(τ)𝑯p+𝔼~supτ[0,t]Fλ(φ~λ,n)L1(𝒪)p2\displaystyle\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|\widetilde{{\boldsymbol{u}}}_{\lambda,n}(t)\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|\nabla\widetilde{\varphi}_{\lambda,n}(\tau)\|^{p}_{{\boldsymbol{H}}}+\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|F_{\lambda}(\widetilde{\varphi}_{\lambda,n})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}
+𝔼~|0t𝒖~λ,n(τ)𝑯σ2dτ|p2+𝔼~|0tμ~λ,n(τ)H2dτ|p2\displaystyle\qquad+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\nabla\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\widetilde{\mu}_{\lambda,n}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{2}}
C[𝔼~Fλ(φ0,n)L1(𝒪)p2+1+𝔼~|0t𝒖~λ,n(τ)𝑯σ2dτ|p2+𝔼~|0tφ~λ,n(τ)𝑯2dτ|p2\displaystyle\leq C\left[\widetilde{\mathbb{E}}\|F_{\lambda}({\varphi}_{0,n})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}+1+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\widetilde{{\boldsymbol{u}}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\left\|\nabla\widetilde{\varphi}_{\lambda,n}(\tau)\right\|_{{\boldsymbol{H}}}^{2}\,\mathrm{d}\tau\right|^{\frac{p}{2}}\right.
+𝔼~|0tk=1𝒪|Fλ′′(φ~λ,n(τ))||gk(Jλ(φ~λ,n(τ)))|2dτ|p2].\displaystyle\qquad\left.+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda,n}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda,n}(\tau)))|^{2}\,\mathrm{d}\tau\right|^{\frac{p}{2}}\right]. (3.66)

where CC depends on pp but is independent of λ\lambda. Next, we would like to take the limit as n+n\to+\infty in (3.66). On the left hand side, the previously proven uniform estimates, convergences and weak lower semicontinuity of the norms are enough to pass to the limit. Moreover, it is easily seen, by Lipschitz-continuity of FλF^{\prime}_{\lambda}, that Fλ(φ0,n)Fλ(φ0)F_{\lambda}({\varphi}_{0,n})\to F_{\lambda}({\varphi}_{0}) in Lp2(Ω~;L1(𝒪))L^{\frac{p}{2}}(\widetilde{\Omega};L^{1}(\mathcal{O})) by the dominated convergence theorem. Finally, in order to pass to the limit in the last term at right hand side, we bound each term of the sequence as follows:

𝒪|Fλ′′(φ~λ,n(τ))||gk(Jλ(φ~λ,n(τ)))|2=𝒪|Fλ′′(φ~λ,n(τ))||gk(Jλ(φ~λ,n(τ)))|2|𝒪|gkJλL()2supx|Fλ′′(x)|=|𝒪|gkL(1,1)2supx|Fλ′′(x)|.\begin{split}\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda,n}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda,n}(\tau)))|^{2}&=\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda,n}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda,n}(\tau)))|^{2}\\ &\leq|\mathcal{O}|\|g_{k}\circ J_{\lambda}\|_{L^{\infty}(\mathbb{R})}^{2}\sup_{x\in\mathbb{R}}|F^{\prime\prime}_{\lambda}(x)|\\ &=|\mathcal{O}|\|g_{k}\|_{L^{\infty}(-1,1)}^{2}\sup_{x\in\mathbb{R}}|F^{\prime\prime}_{\lambda}(x)|.\end{split}

Thanks to the proven convergences, it is straightforward to conclude that (cfr. [70])

|Fλ′′(φ~λ,n(τ))||gk(Jλ(φ~λ,n(τ)))|2|Fλ′′(φ~λ(τ))||gk(Jλ(φ~λ(τ)))|2|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda,n}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda,n}(\tau)))|^{2}\to|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}

almost everywhere in Ω~×𝒪×(0,T)\widetilde{\Omega}\times\mathcal{O}\times(0,T). Therefore, applying the dominated convergence theorem and the weak lower semicontinuity of the norms, we find

𝔼~supτ[0,t]𝒖~λ(t)𝑯σp+𝔼~supτ[0,t]φ~λ(τ)𝑯p+𝔼~supτ[0,t]Fλ(φ~λ)L1(𝒪)p2\displaystyle\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|\widetilde{{\boldsymbol{u}}}_{\lambda}(t)\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|\nabla\widetilde{\varphi}_{\lambda}(\tau)\|^{p}_{{\boldsymbol{H}}}+\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|F_{\lambda}(\widetilde{\varphi}_{\lambda})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}
+𝔼~|0t𝒖~λ(τ)𝑯σ2dτ|p2+𝔼~|0tμ~λ(τ)H2dτ|p2\displaystyle\qquad+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\nabla\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\widetilde{\mu}_{\lambda}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{2}}
C[𝔼~Fλ(φ0)L1(𝒪)p2+1+𝔼~|0t𝒖~λ(τ)𝑯σ2dτ|p2+𝔼~|0tφ~λ(τ)𝑯2dτ|p2\displaystyle\leq C\left[\widetilde{\mathbb{E}}\|F_{\lambda}({\varphi}_{0})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}+1+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\left\|\nabla\widetilde{\varphi}_{\lambda}(\tau)\right\|_{{\boldsymbol{H}}}^{2}\,\mathrm{d}\tau\right|^{\frac{p}{2}}\right.
+𝔼~|0tk=1𝒪|Fλ′′(φ~λ(τ))||gk(Jλ(φ~λ(τ)))|2dτ|p2].\displaystyle\qquad\left.+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}\,\mathrm{d}\tau\right|^{\frac{p}{2}}\right]. (3.67)

We now need to find uniform bounds with respect to λ\lambda for the two terms involving FλF_{\lambda}. Notice first that, as customary,

Fλ(φ0)L1(𝒪)F(φ0)L1(𝒪),\|F_{\lambda}({\varphi}_{0})\|_{L^{1}(\mathcal{O})}\leq\|F({\varphi}_{0})\|_{L^{1}(\mathcal{O})},

which is finite by the hypotheses on the initial datum. Concerning the other term, we have

0tk=1𝒪|Fλ′′(φ~λ(τ))||gk(Jλ(φ~λ(τ)))|2dτ=0tk=1𝒪|βλ(φ~λ(τ))cF||gk(Jλ(φ~λ(τ)))|2dτcFL22|𝒪|t+0tk=1𝒪|β(Jλ(φ~λ(τ)))Jλ(φ~λ(τ))||gk(Jλ(φ~λ(τ)))|2dτcFL22|𝒪|t+0tk=1𝒪|F′′(Jλ(φ~λ(τ)))+cF||gk(Jλ(φ~λ(τ)))|2dτ2cFL22|𝒪|t+F′′gk2L(1,1)|𝒪|t(2cF+1)L22|𝒪|t,\small\begin{split}\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}\,\mathrm{d}\tau&=\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|\beta_{\lambda}^{\prime}(\widetilde{\varphi}_{\lambda}(\tau))-c_{F}||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}\,\mathrm{d}\tau\\ &\leq c_{F}L_{2}^{2}|\mathcal{O}|t+\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|\beta^{\prime}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))J^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau))||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}\,\mathrm{d}\tau\\ &\leq c_{F}L_{2}^{2}|\mathcal{O}|t+\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}|F^{\prime\prime}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))+c_{F}||g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}\,\mathrm{d}\tau\\ &\leq 2c_{F}L_{2}^{2}|\mathcal{O}|t+\|F^{\prime\prime}g^{2}_{k}\|_{L^{\infty}(-1,1)}|\mathcal{O}|t\\ &\leq(2c_{F}+1)L_{2}^{2}|\mathcal{O}|t,\end{split}

where we made use of (A3) and we exploited the non-expansivity of JλJ_{\lambda}. Collecting the two results in (3.67), we get

𝔼~supτ[0,t]𝒖~λ(t)𝑯σp+𝔼~supτ[0,t]φ~λ(τ)𝑯p+𝔼~supτ[0,t]Fλ(φ~λ)L1(𝒪)p2\displaystyle\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|\widetilde{{\boldsymbol{u}}}_{\lambda}(t)\|^{p}_{{\boldsymbol{H}_{\sigma}}}+\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|\nabla\widetilde{\varphi}_{\lambda}(\tau)\|^{p}_{{\boldsymbol{H}}}+\widetilde{\mathbb{E}}\sup_{\tau\in[0,t]}\|F_{\lambda}(\widetilde{\varphi}_{\lambda})\|_{L^{1}(\mathcal{O})}^{\frac{p}{2}}
+𝔼~|0t𝒖~λ(τ)𝑯σ2dτ|p2+𝔼~|0tμ~λ(τ)H2dτ|p2\displaystyle\qquad+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\nabla\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau\right|^{\frac{p}{2}}+\widetilde{\mathbb{E}}\left|\int_{0}^{t}\|\widetilde{\mu}_{\lambda}(\tau)\|^{2}_{H}\,\mathrm{d}\tau\right|^{\frac{p}{2}}
Cp[1+𝔼~0t𝒖~λ(τ)𝑯σpdτ+𝔼~0tφ~λ(τ)𝑯pdτ],\displaystyle\leq C_{p}\left[1+\widetilde{\mathbb{E}}\int_{0}^{t}\|\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau)\|^{p}_{{\boldsymbol{H}_{\sigma}}}\,\mathrm{d}\tau+\widetilde{\mathbb{E}}\int_{0}^{t}\left\|\nabla\widetilde{\varphi}_{\lambda}(\tau)\right\|_{{\boldsymbol{H}}}^{p}\,\mathrm{d}\tau\right], (3.68)

and an application of the Gronwall lemma to (3.68) gives

𝒖~λL𝒫p(Ω~;L([0,T];𝑯σ))+𝒖~λL𝒫p(Ω~;L2(0,T;V1))K2,\displaystyle\|\widetilde{{\boldsymbol{u}}}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};L^{\infty}([0,T];{\boldsymbol{H}_{\sigma}}))}+\|\widetilde{{\boldsymbol{u}}}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};L^{2}(0,T;V_{1}))}\leq K_{2}, (3.69)
φ~λL𝒫p(Ω~;L([0,T];V1))K3,\displaystyle\|\widetilde{\varphi}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};L^{\infty}([0,T];V_{1}))}\leq K_{3}, (3.70)
μ~λ,nL𝒫p(Ω~;L2(0,T;H))+Fλ(φ~λ,n)L𝒫p2(Ω~;C0([0,T];L1(𝒪)))K4.\displaystyle\|\widetilde{\mu}_{\lambda,n}\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};L^{2}(0,T;H))}+\|F_{\lambda}(\widetilde{\varphi}_{\lambda,n})\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\widetilde{\Omega};C^{0}([0,T];L^{1}(\mathcal{O})))}\leq K_{4}. (3.71)

Further estimates.

Choosing v=βλ(φ~λ)v=\beta_{\lambda}(\widetilde{\varphi}_{\lambda}) in (3.64) yields:

𝒪μ~λFλ(φ~λ)+cF𝒪[μ~λφ~λφ~λFλ(φ~λ)]=𝒪βλ(φ~λ)φ~λφ~λ+𝒪|Fλ(φ~λ)|2,\int_{\mathcal{O}}\widetilde{\mu}_{\lambda}F^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})+c_{F}\int_{\mathcal{O}}\left[\widetilde{\mu}_{\lambda}\widetilde{\varphi}_{\lambda}-\widetilde{\varphi}_{\lambda}F^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})\right]=\int_{\mathcal{O}}\beta^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})\nabla\widetilde{\varphi}_{\lambda}\cdot\nabla\widetilde{\varphi}_{\lambda}+\int_{\mathcal{O}}|F^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})|^{2},

and exploiting the monotonicity of βλ\beta_{\lambda}, the Hölder and the Young inequalities, after an integration over [0,t][0,t], we get

12Fλ(φ~λ)L2(0,T;H)232μ~λL2(0,T;H)2+3cF22φ~λL2(0,T;H)2.\dfrac{1}{2}\|F^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})\|_{L^{2}(0,T;H)}^{2}\leq\dfrac{3}{2}\|\widetilde{\mu}_{\lambda}\|_{L^{2}(0,T;H)}^{2}+\dfrac{3c_{F}^{2}}{2}\|\widetilde{\varphi}_{\lambda}\|_{L^{2}(0,T;H)}^{2}.

Therefore, by estimates (3.65) and (3.71), we find

Fλ(φ~λ)L𝒫p(Ω~;L2(0,T;H))K5.\|F^{\prime}_{\lambda}(\widetilde{\varphi}_{\lambda})\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};L^{2}(0,T;H))}\leq K_{5}. (3.72)

Again, by comparison in (3.7), we also obtain

φ~λL𝒫p(Ω~;L2(0,T;V2))K6.\|\widetilde{\varphi}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};L^{2}(0,T;V_{2}))}\leq K_{6}. (3.73)

The remaining estimates can be obtained following line by line the work already showed in Subsection 3.3. In this way, we also recover the following: given any k(0,12)k\in(0,\frac{1}{2}) and p2p\geq 2, there exist β=β(p)\beta=\beta(p) and γ=γ(p)\gamma=\gamma(p), satisfying βp>1\beta p>1 and γp>1\gamma p>1 if p>2p>2 (see Remarks 3.3 and 3.4), such that

0G1(𝒖~λ(τ))dW1(τ)L𝒫p(Ω~;Wk,p(0,T;𝑯σ))\displaystyle\left\|\int_{0}^{\cdot}G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda}(\tau))\,\mathrm{d}W_{1}(\tau)\right\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};W^{k,p}(0,T;{\boldsymbol{H}_{\sigma}}))} K7,\displaystyle\leq K_{7}, (3.74)
0G2,λ(φ~λ(τ))dW2(τ)L𝒫p(Ω~;Wk,p(0,T;V1))\displaystyle\left\|\int_{0}^{\cdot}G_{2,\lambda}(\widetilde{\varphi}_{\lambda}(\tau))\,\mathrm{d}W_{2}(\tau)\right\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};W^{k,p}(0,T;V_{1}))} K8,\displaystyle\leq K_{8}, (3.75)
φ~λL𝒫p(Ω~;Wβ,p(0,T;V1))\displaystyle\|\widetilde{\varphi}_{\lambda}\|_{L^{p}_{\mathscr{P}}(\widetilde{\Omega};W^{\beta,p}(0,T;V_{1}^{*}))} K9\displaystyle\leq K_{9} (3.76)
𝒖~λL𝒫p2(Ω~;Wγ,p(0,T;𝑽σ))\displaystyle\|\widetilde{{\boldsymbol{u}}}_{\lambda}\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\widetilde{\Omega};W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))} K10.\displaystyle\leq K_{10}. (3.77)

3.6. Passage to the limit as λ0+\lambda\to 0^{+}

We are now in a position to let λ0+\lambda\to 0^{+} (along a suitable subsequence). The argument is similar to the one of Subsection 3.4, thus we will omit some details for the sake of brevity. Iterating the proofs of Lemmas 3.5-3.7, we learn that the family of laws of

(𝒖~λ,φ~λ,G1(𝒖~λ)W~1,λ,G2,λ(φ~λ)W~2,λ,W~1,λ,W~2,λ,𝒖~0,λ,φ~0,λ)λ(0,1)(\widetilde{{\boldsymbol{u}}}_{\lambda},\widetilde{\varphi}_{\lambda},G_{1}(\widetilde{{\boldsymbol{u}}}_{\lambda})\cdot\widetilde{W}_{1,\lambda},G_{2,\lambda}(\widetilde{\varphi}_{\lambda})\cdot\widetilde{W}_{2,\lambda},\widetilde{W}_{1,\lambda},\widetilde{W}_{2,\lambda},\widetilde{{\boldsymbol{u}}}_{0,\lambda},\widetilde{\varphi}_{0,\lambda})_{\lambda\in(0,1)}

is again tight in the product space

Z𝒖×Zφ×C0([0,T];𝑽σ)×C0([0,T];H)×C0([0,T];U10)×C0([0,T];U20)×𝑽σ×H.Z_{\boldsymbol{u}}\times Z_{\varphi}\times C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}})\times C^{0}([0,T];H)\times C^{0}([0,T];U_{1}^{0})\times C^{0}([0,T];U_{2}^{0})\times{\boldsymbol{V}_{\sigma}^{*}}\times H.

Here, we recall that W~i,λW~i\widetilde{W}_{i,\lambda}\equiv\widetilde{W}_{i} and we set 𝒖~0,λ𝒖~0\widetilde{\boldsymbol{u}}_{0,\lambda}\equiv\widetilde{{\boldsymbol{u}}}_{0} and φ~0,λφ~0\widetilde{\varphi}_{0,\lambda}\equiv\widetilde{\varphi}_{0} for i=1,2i=1,2 and any λ(0,1)\lambda\in(0,1). Owing to the Prokhorov and Skorokhod theorems (see [56, Theorem 2.7] and [81, Theorem 1.10.4, Addendum 1.10.5]), there exists a probability space (Ω^,^,^)(\widehat{\Omega},\widehat{\mathscr{F}},\widehat{\mathbb{P}}) and a family of random variables Yλ:(Ω^,^)(Ω~,~)Y_{\lambda}:(\widehat{\Omega},\widehat{\mathscr{F}})\to(\widetilde{\Omega},\widetilde{\mathscr{F}}) such that the law of YλY_{\lambda} is ~\widetilde{\mathbb{P}} for every λ(0,1)\lambda\in(0,1), namely ^Yλ1=~\widehat{\mathbb{P}}\circ Y_{\lambda}^{-1}=\widetilde{\mathbb{P}} (so that composition with YλY_{\lambda} preserves laws), and the following convergences hold as λ0+\lambda\to 0^{+}:

𝒖^λ:=𝒖~λYλ𝒖^\displaystyle\widehat{{\boldsymbol{u}}}_{\lambda}:=\widetilde{{\boldsymbol{u}}}_{\lambda}\circ Y_{\lambda}\to\widehat{{\boldsymbol{u}}}\quad in Lq(Ω^;L2(0,T;𝑯σ)C0([0,T];D(𝑨δ))) if q<p,\displaystyle\text{in }L^{q}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{H}_{\sigma}})\cap C^{0}([0,T];D({\boldsymbol{A}}^{-\delta})))\text{ if }q<p,
𝒖^λ𝒖^\displaystyle\widehat{{\boldsymbol{u}}}_{\lambda}\rightharpoonup\widehat{{\boldsymbol{u}}}\quad in Lp(Ω^;L2(0,T;𝑽σ)),\displaystyle\text{in }L^{p}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}})),
𝒖^λ𝒖^\displaystyle\widehat{{\boldsymbol{u}}}_{\lambda}\overset{\ast}{\rightharpoonup}\widehat{{\boldsymbol{u}}}\quad in Lwp(Ω^;L(0,T;𝑯σ))Lp2(Ω^;Wγ,p(0,T;𝑽σ)),\displaystyle\text{in }L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}))\cap L^{\frac{p}{2}}(\widehat{\Omega};W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}})),
φ^λ:=φ~λYλφ^\displaystyle\widehat{\varphi}_{\lambda}:=\widetilde{\varphi}_{\lambda}\circ Y_{\lambda}\to\widehat{\varphi}\quad in Lq(Ω^;L2(0,T;V1)C0([0,T];H)) if q<p,\displaystyle\text{in }L^{q}(\widehat{\Omega};L^{2}(0,T;V_{1})\cap C^{0}([0,T];H))\text{ if }q<p,
φ^λφ^\displaystyle\widehat{\varphi}_{\lambda}\rightharpoonup\widehat{\varphi}\quad in Lp(Ω^;L2(0,T;V2)),\displaystyle\text{in }L^{p}(\widehat{\Omega};L^{2}(0,T;V_{2})),
φ^λφ^\displaystyle\widehat{\varphi}_{\lambda}\overset{\ast}{\rightharpoonup}\widehat{\varphi}\quad in Lwp(Ω^;L(0,T;V1))Lp(Ω^;Wβ,p(0,T;V1)),\displaystyle\text{in }L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;V_{1}))\cap L^{p}(\widehat{\Omega};W^{\beta,p}(0,T;V_{1}^{*})),
I^λ:=(G1(φ~λ)W~1,λ)YλI^\displaystyle\widehat{I}_{\lambda}:=(G_{1}(\widetilde{\varphi}_{\lambda})\cdot\widetilde{W}_{1,\lambda})\circ Y_{\lambda}\to\widehat{I}\quad in Lq(Ω^;C0([0,T];𝑽σ)) if q<p,\displaystyle\text{in }L^{q}(\widehat{\Omega};C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}))\text{ if }q<p,
J^λ:=(G2,λ(φ~λ)W~1,λ)YλJ^\displaystyle\widehat{J}_{\lambda}:=(G_{2,\lambda}(\widetilde{\varphi}_{\lambda})\cdot\widetilde{W}_{1,\lambda})\circ Y_{\lambda}\to\widehat{J}\quad in Lq(Ω^;C0([0,T];H)) if q<p,\displaystyle\text{in }L^{q}(\widehat{\Omega};C^{0}([0,T];H))\text{ if }q<p,
W^1,λ:=W~1,λYλW^1\displaystyle\widehat{W}_{1,\lambda}:=\widetilde{W}_{1,\lambda}\circ Y_{\lambda}\to\widehat{W}_{1}\quad in Lq(Ω^;C0([0,T];U10)) if q<p,\displaystyle\text{in }L^{q}(\widehat{\Omega};C^{0}([0,T];U_{1}^{0}))\text{ if }q<p,
W^2,λ:=W~2,λYλW^2\displaystyle\widehat{W}_{2,\lambda}:=\widetilde{W}_{2,\lambda}\circ Y_{\lambda}\to\widehat{W}_{2}\quad in Lq(Ω^;C0([0,T];U20)) if q<p,\displaystyle\text{in }L^{q}(\widehat{\Omega};C^{0}([0,T];U_{2}^{0}))\text{ if }q<p,
𝒖^0,λ:=𝒖~0,λYλ𝒖^0\displaystyle\widehat{{\boldsymbol{u}}}_{0,\lambda}:=\widetilde{{\boldsymbol{u}}}_{0,\lambda}\circ Y_{\lambda}\to\widehat{{\boldsymbol{u}}}_{0}\quad in Lq(Ω~;𝑽σ) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};{\boldsymbol{V}_{\sigma}^{*}})\text{ if }q<p,
φ^0,λ:=φ~0,λYλφ^0\displaystyle\widehat{\varphi}_{0,\lambda}:=\widetilde{\varphi}_{0,\lambda}\circ Y_{\lambda}\to\widehat{\varphi}_{0}\quad in Lq(Ω~;H) if q<p,\displaystyle\text{in }L^{q}(\widetilde{\Omega};H)\text{ if }q<p,

for some limiting processes satisfying

𝒖^\displaystyle\widehat{{\boldsymbol{u}}} Lp2(Ω^;Wγ,p(0,T;𝑽σ))Lp(Ω^;C0([0,T];D(𝑨δ))L2(0,T;𝑽σ))Lwp(Ω^;L(0,T;𝑯σ));\displaystyle\in L^{\frac{p}{2}}(\widehat{\Omega};W^{\gamma,p}(0,T;{\boldsymbol{V}_{\sigma}^{*}}))\cap L^{p}(\widehat{\Omega};C^{0}([0,T];D({\boldsymbol{A}}^{-\delta}))\cap L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))\cap L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}));
φ^\displaystyle\widehat{\varphi} Lp(Ω^;Wβ,p(0,T;V1)C0([0,T];H)L2(0,T;V2))Lwp(Ω^;L(0,T;V1));\displaystyle\in L^{p}(\widehat{\Omega};W^{\beta,p}(0,T;V_{1}^{*})\cap C^{0}([0,T];H)\cap L^{2}(0,T;V_{2}))\cap L^{p}_{w}(\widehat{\Omega};L^{\infty}(0,T;V_{1}));
μ^\displaystyle\widehat{\mu} Lp(Ω^;L2(0,T;H));\displaystyle\in L^{p}(\widehat{\Omega};L^{2}(0,T;H));
I^\displaystyle\widehat{I} Lp(Ω^;C0([0,T];𝑽σ));\displaystyle\in L^{p}(\widehat{\Omega};C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}));
J^\displaystyle\widehat{J} Lp(Ω^;C0([0,T];H));\displaystyle\in L^{p}(\widehat{\Omega};C^{0}([0,T];H));
W^1\displaystyle\widehat{W}_{1} Lp(Ω^;C0([0,T];U10));\displaystyle\in L^{p}(\widehat{\Omega};C^{0}([0,T];U_{1}^{0}));
W^2\displaystyle\widehat{W}_{2} Lp(Ω^;C0([0,T];U20));\displaystyle\in L^{p}(\widehat{\Omega};C^{0}([0,T];U_{2}^{0}));
𝒖^0\displaystyle\widehat{{\boldsymbol{u}}}_{0} Lp(Ω^;𝑯σ);\displaystyle\in L^{p}(\widehat{\Omega};{\boldsymbol{H}_{\sigma}});
φ^0\displaystyle\widehat{\varphi}_{0} Lp(Ω^;V1).\displaystyle\in L^{p}(\widehat{\Omega};\mathcal{B}\cap V_{1}).

Again, by estimate (3.71), we also have the following weak convergence of the redefined chemical potentials

μ^λ:=μ~λYλμ^in Lp(Ω^;L2(0,T;H)).\widehat{\mu}_{\lambda}:=\widetilde{\mu}_{\lambda}\circ Y_{\lambda}\rightharpoonup\widehat{\mu}\quad\text{in }L^{p}(\widehat{\Omega};L^{2}(0,T;H)).

Mimicking the arguments illustrated in Subsection 3.4, we now address several issues.

The nonlinearities.

First of all, we show that

Fλ(φ^λ)F(φ^) in Lp(Ω^;L2(0,T;H)).F^{\prime}_{\lambda}(\widehat{\varphi}_{\lambda})\to F^{\prime}(\widehat{\varphi})\text{ in }L^{p}(\widehat{\Omega};L^{2}(0,T;H)).

This comes from the weak-strong closure of maximal monotone operators (see, for instance, [8, Proposition 2.1]) combined with the strong convergence for φ^λ\widehat{\varphi}_{\lambda} proved above (recall that Fλ(x)=βλ(x)+cFx)F^{\prime}_{\lambda}(x)=\beta_{\lambda}(x)+c_{F}x). Next, the diffusion coefficients. As for G1G_{1}, it is easy by Lipschitz continuity to deduce

G1(𝒖^λ)G1(𝒖^)in Lq(Ω^;L2(0,T;2(U1,Y))) if q<p.G_{1}(\widehat{{\boldsymbol{u}}}_{\lambda})\to G_{1}(\widehat{{\boldsymbol{u}}})\quad\text{in }L^{q}(\widehat{\Omega};L^{2}(0,T;\mathscr{L}^{2}(U_{1},Y)))\text{ if }q<p.

Moreover, arguing similarly (recall also Proposition 3.1), we get

G2,λ(φ^λ)G2(φ^)Lp(Ω~,L2(0,T,2(U2,H)))G2,λ(φ^λ)G2,λ(φ^)Lp(Ω~,L2(0,T,2(U2,H)))+G2,λ(φ^)G2(φ^)Lp(Ω~,L2(0,T,2(U2,H))),\begin{split}&\|G_{2,\lambda}(\widehat{\varphi}_{\lambda})-G_{2}(\widehat{\varphi})\|_{L^{p}(\widetilde{\Omega},L^{2}(0,T,\mathscr{L}^{2}(U_{2},H)))}\\ &\qquad\qquad\leq\|G_{2,\lambda}(\widehat{\varphi}_{\lambda})-G_{2,\lambda}(\widehat{\varphi})\|_{L^{p}(\widetilde{\Omega},L^{2}(0,T,\mathscr{L}^{2}(U_{2},H)))}+\|G_{2,\lambda}(\widehat{\varphi})-G_{2}(\widehat{\varphi})\|_{L^{p}(\widetilde{\Omega},L^{2}(0,T,\mathscr{L}^{2}(U_{2},H)))},\end{split}

and we conclude

G2,λ(φ^λ)G2(φ^)in Lq(Ω^;L2(0,T;2(U2,H))) if q<p.G_{2,\lambda}(\widehat{\varphi}_{\lambda})\to G_{2}(\widehat{\varphi})\quad\text{in }L^{q}(\widehat{\Omega};L^{2}(0,T;\mathscr{L}^{2}(U_{2},H)))\text{ if }q<p.

Regarding the convective term and the Korteweg force, on account of the obtained convergences, we deduce that

μ^λφ^λμ^φ^\displaystyle\widehat{\mu}_{\lambda}\nabla\widehat{\varphi}_{\lambda}\rightharpoonup\widehat{\mu}\nabla\widehat{\varphi} in 𝑳1(𝒪×(0,T));\displaystyle\quad\text{in }{\boldsymbol{L}}^{1}(\mathcal{O}\times(0,T));
𝑩(𝒖^λ,𝒖^λ)𝑩(𝒖^,𝒖^)\displaystyle{\boldsymbol{B}}(\widehat{\boldsymbol{u}}_{\lambda},\widehat{{\boldsymbol{u}}}_{\lambda})\to{\boldsymbol{B}}(\widehat{\boldsymbol{u}},\widehat{{\boldsymbol{u}}}) in 𝑳q(Ω~;L4d(0,T;𝑽σ) if q<p2;\displaystyle\quad\text{in }{\boldsymbol{L}}^{q}(\widetilde{\Omega};L^{\frac{4}{d}}(0,T;{\boldsymbol{V}_{\sigma}^{*}})\text{ if }q<\frac{p}{2};
𝒖^λφ^λ𝒖^φ^\displaystyle\widehat{{\boldsymbol{u}}}_{\lambda}\cdot\nabla\widehat{\varphi}_{\lambda}\rightharpoonup\widehat{{\boldsymbol{u}}}\cdot\nabla\widehat{\varphi} in Lp2(Ω^;L2(0,T;L1(𝒪))L1(0,T;L32(𝒪))).\displaystyle\quad\text{in }L^{\frac{p}{2}}(\widehat{\Omega};L^{2}(0,T;L^{1}(\mathcal{O}))\cap L^{1}(0,T;L^{\frac{3}{2}}(\mathcal{O}))).

The stochastic integrals.

Following line by line the argument presented in Subsection 3.4, it is possible to identify the limits I^\widehat{I} and J^\widehat{J}. Indeed, we have

I^(t)=0tG1(𝒖^(τ))dW^1(τ),J^(t)=0tG2(φ^(τ))dW^2(τ),\widehat{I}(t)=\int_{0}^{t}G_{1}(\widehat{{\boldsymbol{u}}}(\tau))\>\mathrm{d}\widehat{W}_{1}(\tau),\qquad\widehat{J}(t)=\int_{0}^{t}G_{2}(\widehat{\varphi}(\tau))\>\mathrm{d}\widehat{W}_{2}(\tau),

which are a 𝑽σ{\boldsymbol{V}_{\sigma}^{*}} and an HH-valued martingale, respectively, adapted with respect to a suitable filtration (^t)t(\widehat{\mathscr{F}}_{t})_{t}.

Identification of the limit solution.

Again, a multiple application of the dominated convergence theorem allows us to infer that the limit processes form a martingale solution of the original problem. The existence of a martingale solution is proved.

3.7. The energy inequality

We are left to prove the energy inequality. To this end, we simply pass to the limit in a suitable approximating energy inequality. Let us add (3.32) and (3.33) together and take expectations. Recalling that stochastic integrals are martingales, we obtain the identity

12𝔼𝒖λ,n(t)𝑯σ2+12𝔼φλ,n𝑯2+𝔼Fλ(φλ,n)L1(𝒪)+𝔼0t[𝒖λ,n(τ)𝑯σ2+μλ,n(τ)H2]dτ\displaystyle\dfrac{1}{2}\mathop{{}\mathbb{E}}\|{\boldsymbol{u}}_{\lambda,n}(t)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\mathop{{}\mathbb{E}}\|\nabla\varphi_{\lambda,n}\|_{\boldsymbol{H}}^{2}+\mathop{{}\mathbb{E}}\|F_{\lambda}(\varphi_{\lambda,n})\|_{L^{1}(\mathcal{O})}+\mathop{{}\mathbb{E}}\int_{0}^{t}\left[\|\nabla{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\right]\mathrm{d}\tau
=12𝔼𝒖0,n𝑯σ2+12𝔼φ0,n𝑯2+𝔼Fλ(φ0,n)L1(𝒪)+12𝔼0tG1,n(𝒖λ,n(τ))2(U1,𝑯σ)2dτ\displaystyle=\dfrac{1}{2}\mathop{{}\mathbb{E}}\|{\boldsymbol{u}}_{0,n}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\mathop{{}\mathbb{E}}\|\nabla\varphi_{0,n}\|_{\boldsymbol{H}}^{2}+\mathop{{}\mathbb{E}}\|F_{\lambda}(\varphi_{0,n})\|_{L^{1}(\mathcal{O})}+\dfrac{1}{2}\mathop{{}\mathbb{E}}\int_{0}^{t}\|G_{1,n}({\boldsymbol{u}}_{\lambda,n}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\>\mathrm{d}\tau
+12𝔼0t[G2,λ,n(φλ,n(τ))2(U2,𝑯)2+k=1𝒪Fλ′′(φλ,n(τ))|gk(Jλ(φλ,n(τ)))|2]dτ.\displaystyle\qquad+\frac{1}{2}\mathop{{}\mathbb{E}}\int_{0}^{t}\left[\left\|\nabla G_{2,\lambda,n}(\varphi_{\lambda,n}(\tau))\right\|_{\mathscr{L}^{2}(U_{2},{\boldsymbol{H}})}^{2}+\sum_{k=1}^{\infty}\int_{\mathcal{O}}F_{\lambda}^{\prime\prime}(\varphi_{\lambda,n}(\tau))|g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2}\right]\,\mathrm{d}\tau. (3.78)

Thank to (3.36) and (3.37), from (3.78) we infer

12𝔼𝒖λ,n(t)𝑯σ2+12𝔼φλ,n𝑯2+𝔼Fλ(φλ,n)L1(𝒪)+𝔼0t[𝒖λ,n(τ)𝑯σ2+μλ,n(τ)H2]dτ\displaystyle\dfrac{1}{2}\mathop{{}\mathbb{E}}\|{\boldsymbol{u}}_{\lambda,n}(t)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\mathop{{}\mathbb{E}}\|\nabla\varphi_{\lambda,n}\|_{\boldsymbol{H}}^{2}+\mathop{{}\mathbb{E}}\|F_{\lambda}(\varphi_{\lambda,n})\|_{L^{1}(\mathcal{O})}+\mathop{{}\mathbb{E}}\int_{0}^{t}\left[\|\nabla{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\mu_{\lambda,n}(\tau)\|^{2}_{H}\right]\mathrm{d}\tau
CG12t+12𝔼𝒖0,n𝑯σ2+12𝔼φ0,n𝑯2+𝔼Fλ(φ0,n)L1(𝒪)+CG12𝔼0t𝒖λ,n(τ)𝑯σ2dτ\displaystyle\leq C_{G_{1}}^{2}t+\dfrac{1}{2}\mathop{{}\mathbb{E}}\|{\boldsymbol{u}}_{0,n}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\mathop{{}\mathbb{E}}\|\nabla\varphi_{0,n}\|_{\boldsymbol{H}}^{2}+\mathop{{}\mathbb{E}}\|F_{\lambda}(\varphi_{0,n})\|_{L^{1}(\mathcal{O})}+C_{G_{1}}^{2}\mathop{{}\mathbb{E}}\int_{0}^{t}\|{\boldsymbol{u}}_{\lambda,n}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\>\mathrm{d}\tau
+L222𝔼0tφλ,n(τ)𝑯2dτ+12𝔼0tk=1𝒪Fλ′′(φλ,n(τ))|gk(Jλ(φλ,n(τ)))|2dτ.\displaystyle\qquad+\frac{L_{2}^{2}}{2}\mathop{{}\mathbb{E}}\int_{0}^{t}\left\|\nabla\varphi_{\lambda,n}(\tau)\right\|_{{\boldsymbol{H}}}^{2}\,\mathrm{d}\tau+\frac{1}{2}\mathop{{}\mathbb{E}}\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}F_{\lambda}^{\prime\prime}(\varphi_{\lambda,n}(\tau))|g_{k}(J_{\lambda}(\varphi_{\lambda,n}(\tau)))|^{2}\,\mathrm{d}\tau. (3.79)

Exploiting the preservation of laws by XnX_{n}, and letting n+n\to+\infty, we find

12𝔼~𝒖~λ(t)𝑯σ2+12𝔼~φ~λ𝑯2+𝔼~Fλ(φ~λ)L1(𝒪)+𝔼~0t[𝒖~λ(τ)𝑯σ2+μ~λ(τ)H2]dτ\displaystyle\dfrac{1}{2}\widetilde{\mathbb{E}}\|\widetilde{\boldsymbol{u}}_{\lambda}(t)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\widetilde{\mathbb{E}}\|\nabla\widetilde{\varphi}_{\lambda}\|_{\boldsymbol{H}}^{2}+\widetilde{\mathbb{E}}\|F_{\lambda}(\widetilde{\varphi}_{\lambda})\|_{L^{1}(\mathcal{O})}+\widetilde{\mathbb{E}}\int_{0}^{t}\left[\|\nabla\widetilde{\boldsymbol{u}}_{\lambda}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\widetilde{\mu}_{\lambda}(\tau)\|^{2}_{H}\right]\mathrm{d}\tau
CG12t+12𝔼~𝒖~0𝑯σ2+12𝔼~φ~0𝑯2+𝔼~Fλ(φ~0)L1(𝒪)+CG12𝔼~0t𝒖~λ(τ)𝑯σ2dτ\displaystyle\leq C_{G_{1}}^{2}t+\dfrac{1}{2}\widetilde{\mathbb{E}}\|\widetilde{\boldsymbol{u}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\widetilde{\mathbb{E}}\|\nabla\widetilde{\varphi}_{0}\|_{\boldsymbol{H}}^{2}+\widetilde{\mathbb{E}}\|F_{\lambda}(\widetilde{\varphi}_{0})\|_{L^{1}(\mathcal{O})}+C_{G_{1}}^{2}\widetilde{\mathbb{E}}\int_{0}^{t}\|\widetilde{\boldsymbol{u}}_{\lambda}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\>\mathrm{d}\tau
+L222𝔼~0tφ~λ(τ)𝑯2dτ+12𝔼~0tk=1𝒪Fλ′′(φ~λ(τ))|gk(Jλ(φ~λ(τ)))|2dτ.\displaystyle\qquad+\frac{L_{2}^{2}}{2}\widetilde{\mathbb{E}}\int_{0}^{t}\left\|\nabla\widetilde{\varphi}_{\lambda}(\tau)\right\|_{{\boldsymbol{H}}}^{2}\,\mathrm{d}\tau+\frac{1}{2}\widetilde{\mathbb{E}}\int_{0}^{t}\sum_{k=1}^{\infty}\int_{\mathcal{O}}F_{\lambda}^{\prime\prime}(\widetilde{\varphi}_{\lambda}(\tau))|g_{k}(J_{\lambda}(\widetilde{\varphi}_{\lambda}(\tau)))|^{2}\,\mathrm{d}\tau. (3.80)

Here we have used the lower semicontinuity of the norms and the dominated convergence theorem. A second passage to the limit entails the claimed inequality. Indeed, exploiting preservation of laws by YλY_{\lambda} in (3.80) as well as (A3), and letting λ0+\lambda\to 0^{+}, we get

12𝔼^𝒖^(t)𝑯σ2+12𝔼^φ^𝑯2+𝔼^F(φ^)L1(𝒪)+𝔼^0t[𝒖^(τ)𝑯σ2+μ^(τ)H2]dτ\displaystyle\dfrac{1}{2}\widehat{\mathbb{E}}\|\widehat{\boldsymbol{u}}(t)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\widehat{\mathbb{E}}\|\nabla\widehat{\varphi}\|_{\boldsymbol{H}}^{2}+\widehat{\mathbb{E}}\|F(\widehat{\varphi})\|_{L^{1}(\mathcal{O})}+\widehat{\mathbb{E}}\int_{0}^{t}\left[\|\nabla\widehat{\boldsymbol{u}}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\widehat{\mu}(\tau)\|^{2}_{H}\right]\mathrm{d}\tau
(CG12+L222|𝒪|)t+12𝔼^𝒖^0𝑯σ2+12𝔼^φ^0𝑯2+𝔼^F(φ^0)L1(𝒪)\displaystyle\leq\left(C_{G_{1}}^{2}+\frac{L_{2}^{2}}{2}|\mathcal{O}|\right)t+\dfrac{1}{2}\widehat{\mathbb{E}}\|\widehat{\boldsymbol{u}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\widehat{\mathbb{E}}\|\nabla\widehat{\varphi}_{0}\|_{\boldsymbol{H}}^{2}+\widehat{\mathbb{E}}\|F(\widehat{\varphi}_{0})\|_{L^{1}(\mathcal{O})}
+CG12𝔼^0t𝒖^(τ)𝑯σ2dτ+L222𝔼^0tφ^(τ)𝑯2dτ.\displaystyle\qquad+C_{G_{1}}^{2}\widehat{\mathbb{E}}\int_{0}^{t}\|\widehat{\boldsymbol{u}}(\tau)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\>\mathrm{d}\tau+\frac{L_{2}^{2}}{2}\widehat{\mathbb{E}}\int_{0}^{t}\left\|\nabla\widehat{\varphi}(\tau)\right\|_{{\boldsymbol{H}}}^{2}\,\mathrm{d}\tau. (3.81)

Observe that, passing in the limit in the third term on the left hand side of (3.80) is possible by lower semicontinuity since recalling that

|Jλφ^λφ^||Jλφ^λφ^λ|+|φ^λφ^|λ|βλ(φ^λ)|+|φ^λφ^|,|J_{\lambda}\widehat{\varphi}_{\lambda}-\widehat{\varphi}|\leq|J_{\lambda}\widehat{\varphi}_{\lambda}-\widehat{\varphi}_{\lambda}|+|\widehat{\varphi}_{\lambda}-\widehat{\varphi}|\leq\lambda|\beta_{\lambda}(\widehat{\varphi}_{\lambda})|+|\widehat{\varphi}_{\lambda}-\widehat{\varphi}|,

it follows Jλφ^λφ^J_{\lambda}\widehat{\varphi}_{\lambda}\to\widehat{\varphi} almost everywhere in Ω^×𝒪×(0,T)\widehat{\Omega}\times\mathcal{O}\times(0,T). Fixed any t>0t>0, the energy inequality follows taking the supremum over [0,t][0,t] in both sides of (3.81).

3.8. Recovery of the pressure.

It is possible to recover a pressure through a generalization of the classical De Rham theorem to stochastic processes (see [59]). The result is of independent interest and we report it hereafter for reader’s convenience.

Theorem 3.9 ([59, Theorem 4.1]).

Let 𝒪\mathcal{O} be a bounded Lipschitz domain of d\mathbb{R}^{d} and let (Ω,,)(\Omega,\mathscr{F},\mathbb{P}) be a complete probability space. Let s1s_{1}\in{\color[rgb]{0,0,0}\mathbb{R}} and r0,r1[1,+]r_{0},\,r_{1}\in[1,+\infty]. Let

𝒉Lr0(Ω;Ws1,r1(0,T;(𝑯01(𝒪)))){\boldsymbol{h}}\in L^{r_{0}}(\Omega;W^{s_{1},r_{1}}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}}))

be such that, for all 𝐯[C0(𝒪)]d{\boldsymbol{v}}\in\left[C_{0}^{\infty}(\mathcal{O})\right]^{d} satisfying div𝐯=0\operatorname{div}{\boldsymbol{v}}=0,

𝒉,𝒗([C0(𝒪)]d),[C0(𝒪)]d=0in (C0(0,T)),-a.s.\left\langle{\boldsymbol{h}},{\boldsymbol{v}}\right\rangle_{\left(\left[C_{0}^{\infty}(\mathcal{O})\right]^{d}\right)^{*},\left[C_{0}^{\infty}(\mathcal{O})\right]^{d}}=0\qquad\text{in }\left(C^{\infty}_{0}(0,T)\right)^{*},\quad\mathbb{P}\text{-a.s.}

Then there exists a unique (up to a constant)

πLr0(Ω;Ws1,r1(0,T;H))\pi\in L^{r_{0}}(\Omega;W^{s_{1},r_{1}}(0,T;H))

such that

π=𝒉in ([𝒞0((0,T)×𝒪)]d),-a.s.\nabla\pi={\boldsymbol{h}}\qquad\text{in }\left(\left[\mathcal{C}^{\infty}_{0}((0,T)\times\mathcal{O})\right]^{d}\right)^{*},\quad\mathbb{P}\text{-a.s.}

and

𝒪π=0in (𝒞0(0,T)),-a.s.\int_{\mathcal{O}}\pi=0\qquad\text{in }\left(\mathcal{C}^{\infty}_{0}(0,T)\right)^{*},\quad\mathbb{P}\text{-a.s.}

Furthermore, there exists a positive constant C=C(𝒪)C=C(\mathcal{O}), independent of 𝐡{\boldsymbol{h}}, such that

πWs1,r1(0,T;H)C(𝒪)𝒉Ws1,r1(0,T;(𝑯01(𝒪)))-a.s.\|\pi\|_{W^{s_{1},r_{1}}(0,T;H)}\leq C(\mathcal{O})\|{\boldsymbol{h}}\|_{W^{s_{1},r_{1}}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})}\quad\mathbb{P}\text{-a.s.}

Let us now find suitable values for the parameters r0,r1r_{0},r_{1} and s1s_{1}. By choosing 𝒗[𝒞0(𝒪)]d{\boldsymbol{v}}\in\left[\mathcal{C}_{0}^{\infty}(\mathcal{O})\right]^{d} with div𝒗=0\operatorname{div}{\boldsymbol{v}}=0 in (1.7), after elementary rearrangements and integration by parts we obtain that

t(𝒖^G1(𝒖^)W^1)(t),𝒗(𝑯01(𝒪)),𝑯01(𝒪)+𝒪𝒖^(t):𝒗\displaystyle\left\langle\partial_{t}(\widehat{{\boldsymbol{u}}}-G_{1}(\widehat{{\boldsymbol{u}}})\cdot\widehat{W}_{1})(t),{\boldsymbol{v}}\right\rangle_{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*},{\boldsymbol{H}}^{1}_{0}(\mathcal{O})}+\int_{\mathcal{O}}\nabla\widehat{{\boldsymbol{u}}}(t):\nabla{\boldsymbol{v}}
+𝑩(𝒖^(t),𝒖^(t)),𝒗(𝑯01(𝒪)),𝑯01(𝒪)𝒪μ^(t)φ^(t)𝒗=0\displaystyle\qquad\qquad+\left\langle{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}(t),\widehat{{\boldsymbol{u}}}(t)),{\boldsymbol{v}}\right\rangle_{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*},{\boldsymbol{H}}^{1}_{0}(\mathcal{O})}-\int_{\mathcal{O}}\widehat{\mu}(t)\nabla\widehat{\varphi}(t)\cdot{\boldsymbol{v}}=0

for almost every t(0,T)t\in(0,T), ^\widehat{\mathbb{P}}-almost surely. Hence, by setting

𝒉:=t(𝒖^G1(𝒖^)W^1)+𝑳𝒖^+𝑩(𝒖^,𝒖^)μ^φ^,{\boldsymbol{h}}:=\partial_{t}(\widehat{{\boldsymbol{u}}}-G_{1}(\widehat{{\boldsymbol{u}}})\cdot\widehat{W}_{1})+{\boldsymbol{L}}\widehat{{\boldsymbol{u}}}+{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}},\widehat{{\boldsymbol{u}}})-\widehat{\mu}\nabla\widehat{\varphi},

one has in particular, for all 𝒗[𝒞0(𝒪)]d{\boldsymbol{v}}\in\left[\mathcal{C}_{0}^{\infty}(\mathcal{O})\right]^{d} with div𝒗=0\operatorname{div}{\boldsymbol{v}}=0, that

𝒉,𝒗([𝒞0(𝒪)]d),[𝒞0(𝒪)]d=0in (𝒞0(0,T)),^-a.s.\left\langle{\boldsymbol{h}},{\boldsymbol{v}}\right\rangle_{\left(\left[\mathcal{C}_{0}^{\infty}(\mathcal{O})\right]^{d}\right)^{*},\left[\mathcal{C}_{0}^{\infty}(\mathcal{O})\right]^{d}}=0\qquad\text{in }\left(\mathcal{C}^{\infty}_{0}(0,T)\right)^{*},\quad{\color[rgb]{0,0,0}\widehat{\mathbb{P}}\text{-a.s.}}

Let us recover the regularity of 𝒉{\boldsymbol{h}}. Observing that 𝒖^G1(𝒖^)W^1L𝒫p(Ω;L(0,T;𝑯))\widehat{{\boldsymbol{u}}}-G_{1}(\widehat{{\boldsymbol{u}}})\cdot\widehat{W}_{1}\in L^{p}_{\mathscr{P}}(\Omega;L^{\infty}(0,T;{\boldsymbol{H}})) and that t:L(0,T;𝑯)W1,(0,T;𝑯)\partial_{t}:L^{\infty}(0,T;{\boldsymbol{H}})\to W^{-1,\infty}(0,T;{\boldsymbol{H}}) is linear and continuous, we have

t(𝒖^G1(𝒖^)W^1)L𝒫p(Ω^;W1,(0,T;𝑯σ))L𝒫p(Ω^;W1,(0,T;(𝑯01(𝒪)))).\partial_{t}(\widehat{{\boldsymbol{u}}}-G_{1}(\widehat{{\boldsymbol{u}}})\cdot\widehat{W}_{1})\in L^{p}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;{\boldsymbol{H}_{\sigma}}))\subset L^{p}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})).

Furthermore, recalling that L1(0,T;(𝑯01(𝒪)))W1,(0,T;(𝑯01(𝒪)))L^{1}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})\hookrightarrow W^{-1,\infty}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}}) thanks to the fundamental theorem of calculus as shown in the proof of [59, Theorem 2.2], one has that

𝑳𝒖^L𝒫p(Ω^;L2(0,T;(𝑯01(𝒪))))L𝒫p(Ω^;W1,(0,T;(𝑯01(𝒪)))).{\boldsymbol{L}}\widehat{{\boldsymbol{u}}}\in L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}}))\subset L^{p}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})).

Moreover, since for d{2,3}d\in\{2,3\} the bilinear form

𝑩:𝑽σ×𝑽σ𝑳65(𝒪)(𝑯01(𝒪)){\boldsymbol{B}}:{\boldsymbol{V}_{\sigma}}\times{\boldsymbol{V}_{\sigma}}\to{\boldsymbol{L}}^{\frac{6}{5}}(\mathcal{O})\hookrightarrow{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}}

is continuous, thanks to the regularity of 𝒖^\widehat{{\boldsymbol{u}}} it follows that

𝑩(𝒖^,𝒖^)L𝒫p2(Ω^;L1(0,T;(𝑯01(𝒪))))L𝒫p2(Ω^;W1,(0,T;(𝑯01(𝒪)))).{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}},\widehat{{\boldsymbol{u}}})\in L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};L^{1}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}}))\hookrightarrow L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})).

Eventually, iterating the computations in (3.57), we obtain

μ^φ^L𝒫p2(Ω^;L43(0,T;(𝑯01(𝒪))))L𝒫p2(Ω^;W1,(0,T;(𝑯01(𝒪)))),\widehat{\mu}\nabla\widehat{\varphi}\in L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};L^{\frac{4}{3}}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}}))\hookrightarrow L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})),

Hence, we have shown that 𝒉Lp2(Ω^;W1,(0,T;(𝑯01(𝒪)))){\boldsymbol{h}}\in L^{\frac{p}{2}}(\widehat{\Omega};W^{-1,\infty}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})) and an application of Theorem 3.9 with r0=p2r_{0}={\color[rgb]{0,0,0}\frac{p}{2}}, s1=1s_{1}=-1 and r1=+r_{1}=+\infty yields the existence of the (unique up to a constant) pressure πLp2(Ω^;W1,(0,T;H))\pi\in L^{\frac{p}{2}}(\widehat{\Omega};W^{-1,\infty}(0,T;H)). Finally, we derive an estimate for π\pi. The continuous dependence given by Theorem 3.9 implies that

π^W1,(0,T;H)C(𝒖^G1(𝒖^)W^1L(0,T;𝑯σ)+𝒖^L2(0,T;𝑽σ)+𝒖^L2(0,T;𝑽σ)2+μ^φ^L43(0,T;(𝑯01(𝒪)))).\begin{split}&\|\widehat{\pi}\|_{W^{-1,\infty}(0,T;H)}\\ &\leq C\left(\|\widehat{{\boldsymbol{u}}}-G_{1}(\widehat{{\boldsymbol{u}}})\cdot\widehat{W}_{1}\|_{L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}})}+\|\widehat{{\boldsymbol{u}}}\|_{L^{2}(0,T;{\boldsymbol{V}_{\sigma}})}+\|\widehat{{\boldsymbol{u}}}\|_{L^{2}(0,T;{\boldsymbol{V}_{\sigma}})}^{2}+\|\widehat{\mu}\nabla\widehat{\varphi}\|_{L^{\frac{4}{3}}(0,T;{\color[rgb]{0,0,0}({\boldsymbol{H}}^{1}_{0}(\mathcal{O}))^{*}})}\right).\end{split}

Knowing that

μ^φ^L43(0,T;𝑽1)C(μ^L2(0,T;H)2+φ^L2(0,T;V2)2)C(F(φ^)L2(0,T;H)2+2φ^L2(0,T;V2)2),\begin{split}\|\widehat{\mu}\nabla\widehat{\varphi}\|_{L^{\frac{4}{3}}(0,T;{\boldsymbol{V}}_{1}^{*})}&\leq C\left(\|\widehat{\mu}\|_{L^{2}(0,T;H)}^{2}+\|\widehat{\varphi}\|_{L^{2}(0,T;V_{2})}^{2}\right)\\ &\leq C\left(\|F^{\prime}(\widehat{\varphi})\|_{L^{2}(0,T;H)}^{2}+2\|\widehat{\varphi}\|_{L^{2}(0,T;V_{2})}^{2}\right),\end{split}

and exploiting the Burkholder-Davis-Gundy inequality together with assumption (A2), we arrive at

π^L𝒫p2(Ω^;W1,(0,T;H))\displaystyle\|\widehat{\pi}\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};W^{-1,\infty}(0,T;H))} C(1+𝒖^L𝒫p2(Ω^;L(0,T;𝑯σ))+𝒖^Lp2(Ω^;L2(0,T;𝑽σ))+𝒖^Lp(Ω^;L2(0,T;𝑽σ))2\displaystyle\leq C\left(1+\|\widehat{{\boldsymbol{u}}}\|_{L^{\frac{p}{2}}_{\mathscr{P}}(\widehat{\Omega};L^{\infty}(0,T;{\boldsymbol{H}_{\sigma}}))}+\|\widehat{{\boldsymbol{u}}}\|_{L^{\frac{p}{2}}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))}+\|\widehat{{\boldsymbol{u}}}\|_{L^{p}(\widehat{\Omega};L^{2}(0,T;{\boldsymbol{V}_{\sigma}}))}^{2}\right.
+φ^Lp(Ω^;L2(0,T;V2))2+F(φ^)Lp(Ω^;L2(0,T;H))2).\displaystyle\qquad\quad\left.+\|\widehat{\varphi}\|_{L^{p}(\widehat{\Omega};L^{2}(0,T;V_{2}))}^{2}+\|F^{\prime}(\widehat{\varphi})\|_{L^{p}(\widehat{\Omega};L^{2}(0,T;H))}^{2}\right).

The proof of Theorem 2.7 is complete.

4. Existence of probabilistically-strong solutions when d=2d=2

This section is devoted to proving Theorem 2.9. To this end, we will use a standard approach, namely we shall deduce it from pathwise uniqueness of martingale solutions.

Proposition 4.1.

Let d=2d=2 and p(2,+)p\in(2,+\infty). Assume (A1)-(A3) and consider two sets of initial conditions (𝐮0,i,φ0,i)({\boldsymbol{u}}_{0,i},\varphi_{0,i}) for i=1,2i=1,2 complying with the hypotheses of Theorem 2.7. Let (φ^i,𝐮^i)(\widehat{\varphi}_{i},\widehat{\boldsymbol{u}}_{i}) denote some martingale solutions to (1.7)-(1.12), defined on the same suitable filtered space (Ω^,^,(^t)t,^)(\widehat{\Omega},\widehat{\mathscr{F}},(\widehat{\mathscr{F}}_{t})_{t},\widehat{\mathbb{P}}) and with respect to a pair of Wiener processes W^1,W^2\widehat{W}_{1},\widehat{W}_{2}. Then, there exist a sequence of positive real numbers (Cn)n(C_{n})_{n} and a sequence of stopping times {ζn}n\{\zeta_{n}\}_{n}, with ζnT\zeta_{n}\nearrow T ^\widehat{\mathbb{P}}-almost surely as nn\to\infty, such that the following continuous dependence estimate holds

(𝒖^1𝒖^2)ζnL𝒫p(Ω^;C0([0,T];𝑽σ))L𝒫p(Ω^;L2(0,T;H))+(φ^1φ^2)ζnL𝒫p(Ω^;C0([0,T];H))L𝒫p(Ω^;L2(0,T;V1))\displaystyle\|(\widehat{{\boldsymbol{u}}}_{1}-\widehat{{\boldsymbol{u}}}_{2})^{\zeta_{n}}\|_{L^{p}_{\mathscr{P}}(\widehat{\Omega};C^{0}([0,T];{\boldsymbol{V}_{\sigma}^{*}}))\cap L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;H))}+\|(\widehat{\varphi}_{1}-\widehat{\varphi}_{2})^{\zeta_{n}}\|_{L^{p}_{\mathscr{P}}(\widehat{\Omega};C^{0}([0,T];H))\cap L^{p}_{\mathscr{P}}(\widehat{\Omega};L^{2}(0,T;V_{1}))}
Cn(𝒖^0,1𝒖^0,2Lp(Ω^;𝑽σ)+φ^0,1φ^0,2Lp(Ω^;H)).\displaystyle\qquad\leq C_{n}\left(\|\widehat{{\boldsymbol{u}}}_{0,1}-\widehat{{\boldsymbol{u}}}_{0,2}\|_{L^{p}(\widehat{\Omega};{\boldsymbol{V}_{\sigma}^{*}})}+\|\widehat{\varphi}_{0,1}-\widehat{\varphi}_{0,2}\|_{L^{p}(\widehat{\Omega};H)}\right).

In particular, the martingale solution to (1.7)-(1.12) is pathwise unique.

Proof.

Let us set

𝒖^\displaystyle\widehat{{\boldsymbol{u}}} :=𝒖^1𝒖^2,\displaystyle:=\widehat{{\boldsymbol{u}}}_{1}-\widehat{{\boldsymbol{u}}}_{2},
φ^\displaystyle\widehat{\varphi} :=φ^1φ^2,\displaystyle:=\widehat{\varphi}_{1}-\widehat{\varphi}_{2},
μ^\displaystyle\widehat{\mu} :=μ^1μ^2,\displaystyle:=\widehat{\mu}_{1}-\widehat{\mu}_{2},
𝒖^0\displaystyle\widehat{{\boldsymbol{u}}}_{0} :=𝒖0,1𝒖0,2,\displaystyle:={\boldsymbol{u}}_{0,1}-{\boldsymbol{u}}_{0,2},
φ^0\displaystyle\widehat{\varphi}_{0} :=φ0,1φ0,2.\displaystyle:=\varphi_{0,1}-\varphi_{0,2}.

For every nn\in\mathbb{N} and i{1,2}i\in\{1,2\} we define the stopping time ζni:Ω^\zeta_{n}^{i}:\widehat{\Omega}\to\mathbb{R} as

ζni:=inf{t[0,T]:sups[0,t]𝒖^i(s)𝑯σ2+0t(𝒖^i(s)𝑽σ2+φ^i(s)V22)dsn2},\zeta_{n}^{i}:=\inf\left\{t\in[0,T]:\sup_{s\in[0,t]}\left\|\widehat{{\boldsymbol{u}}}_{i}(s)\right\|^{2}_{\boldsymbol{H}_{\sigma}}+\int_{0}^{t}\left(\left\|\widehat{{\boldsymbol{u}}}_{i}(s)\right\|_{{\boldsymbol{V}_{\sigma}}}^{2}+\left\|\widehat{\varphi}_{i}(s)\right\|_{V_{2}}^{2}\right)\,\mathrm{d}s\geq n^{2}\right\},

with the usual convention that inf=T\inf\emptyset=T, and set

ζn:=ζn1ζn2.\zeta_{n}:=\zeta_{n}^{1}\wedge\zeta_{n}^{2}.

Clearly, ζnT\zeta_{n}\nearrow T almost surely as nn\to\infty. Let us also introduce the functionals

Ψ1:𝑽σ,\displaystyle\Psi_{1}:{\boldsymbol{V}_{\sigma}^{*}}\to\mathbb{R}, Ψ1(𝒗):=12𝑨1𝒗𝑯σ2,\displaystyle\qquad\Psi_{1}({\boldsymbol{v}}):=\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{v}}\|_{\boldsymbol{H}_{\sigma}}^{2},
Ψ2:V1,\displaystyle\Psi_{2}:V_{1}\to\mathbb{R}, Ψ2(v):=12vH2.\displaystyle\qquad\Psi_{2}(v):=\dfrac{1}{2}\|\nabla v\|_{H}^{2}.

We point out, once and for all, that what follows is valid ^\widehat{\mathbb{P}}-almost surely for every t[0,T]t\in[0,T]. Let us consider at first Ψ1\Psi_{1}. First of all, let us compute its first two Fréchet derivatives. If we set

Ψ0:𝑽σ,Ψ0(𝒗):=12𝒗𝑯σ2,\Psi_{0}:{\boldsymbol{V}_{\sigma}}\to\mathbb{R},\qquad\Psi_{0}({\boldsymbol{v}}):=\dfrac{1}{2}\|\nabla{\boldsymbol{v}}\|_{\boldsymbol{H}_{\sigma}}^{2},

then we have Ψ1=Ψ0𝑨1\Psi_{1}=\Psi_{0}\circ{\boldsymbol{A}}^{-1}. Therefore, an application of the chain rule implies that DΨ1:𝑽σ𝑽σD\Psi_{1}:{\boldsymbol{V}_{\sigma}^{*}}\to{\boldsymbol{V}}_{\sigma}^{**} is defined by

DΨ1(𝒗)=D(Ψ0𝑨1)(𝒗)=DΨ0(𝑨1𝒗)D𝑨1(𝒗)=𝑨𝑨1𝒗𝑨1=𝒗𝑨1.\begin{split}D\Psi_{1}({\boldsymbol{v}})&=D(\Psi_{0}\circ{\boldsymbol{A}}^{-1})({\boldsymbol{v}})\\ &=D\Psi_{0}({\boldsymbol{A}}^{-1}{\boldsymbol{v}})\circ D{\boldsymbol{A}}^{-1}({\boldsymbol{v}})\\ &={\boldsymbol{A}}{\boldsymbol{A}}^{-1}{\boldsymbol{v}}\circ{\boldsymbol{A}}^{-1}\\ &={\boldsymbol{v}}\circ{\boldsymbol{A}}^{-1}.\end{split}

Here, of course, we exploited the facts that DΨ0=𝑨D\Psi_{0}={\boldsymbol{A}} and that 𝑨1(𝑽σ,𝑽σ){\boldsymbol{A}}^{-1}\in\mathcal{L}({\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}). The above identity must be understood as follows

DΨ1(𝒗),𝒘𝑽σ,𝑽σ=𝒗,𝑨1𝒘𝑽σ,𝑽σ=(𝒗,𝑨1𝒘)𝑯σ.\left\langle D\Psi_{1}({\boldsymbol{v}}),{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}}_{\sigma}^{**},{\boldsymbol{V}_{\sigma}^{*}}}=\left\langle{\boldsymbol{v}},{\boldsymbol{A}}^{-1}{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}=\left({\boldsymbol{v}},{\boldsymbol{A}}^{-1}{\boldsymbol{w}}\right)_{\boldsymbol{H}_{\sigma}}.

Moreover, by the properties of the inverse of the Stokes operator, it holds

𝒗,𝑨1𝒘𝑽σ,𝑽σ=(𝑨1𝒗,𝑨1𝒘)𝑯σ=𝒘,𝑨1𝒗𝑽σ,𝑽σ\left\langle{\boldsymbol{v}},{\boldsymbol{A}}^{-1}{\boldsymbol{w}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}=\left(\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{v}},\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{w}}\right)_{\boldsymbol{H}_{\sigma}}=\left\langle{\boldsymbol{w}},{\boldsymbol{A}}^{-1}{\boldsymbol{v}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}} (4.1)

for every 𝒗,𝒘𝑽σ{\boldsymbol{v}},{\boldsymbol{w}}\in{\boldsymbol{V}_{\sigma}^{*}}. Notice that DΨ1(𝑽σ,𝑽σ)D\Psi_{1}\in\mathcal{L}({\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}}_{\sigma}^{**}) and thus D2Ψ1(𝒗)=DΨ1D^{2}\Psi_{1}({\boldsymbol{v}})=D\Psi_{1} for every 𝒗𝑽σ{\boldsymbol{v}}\in{\boldsymbol{V}_{\sigma}^{*}}. Applying the Itô lemma [23, Theorem 4.32] to Ψ1(𝒖^)\Psi_{1}(\widehat{{\boldsymbol{u}}}) and stopping at time ζn\zeta_{n}, we obtain

12𝑨1𝒖^(tζn)𝑯σ2+0tζn[𝒖^(τ),𝑨1[𝑩(𝒖^1(τ),𝒖^1(τ))𝑩(𝒖^2(τ),𝒖^2(τ))]𝑽σ,𝑽σ]dτ\displaystyle\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(t\wedge\zeta_{n})\|_{\boldsymbol{H}_{\sigma}}^{2}+\int_{0}^{t\wedge\zeta_{n}}\left[\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\left[{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}_{1}(\tau),\widehat{{\boldsymbol{u}}}_{1}(\tau))-{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}_{2}(\tau),\widehat{{\boldsymbol{u}}}_{2}(\tau))\right]\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right]\mathrm{d}\tau
+0tζn[𝒖^(τ)𝑯σ2𝒖^(τ),𝑨1[μ^1(τ)φ^1(τ)μ^2(τ)φ^2(τ)]𝑽σ,𝑽σ]dτ\displaystyle\qquad+\int_{0}^{t\wedge\zeta_{n}}\left[\|\widehat{{\boldsymbol{u}}}(\tau)\|_{\boldsymbol{H}_{\sigma}}^{2}-\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\left[\widehat{\mu}_{1}(\tau)\nabla\widehat{\varphi}_{1}(\tau)-\widehat{\mu}_{2}(\tau)\nabla\widehat{\varphi}_{2}(\tau)\right]\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right]\mathrm{d}\tau
=12𝑨1𝒖^0𝑯σ2+0tζn𝒖^(τ),𝑨1[(G1(𝒖^1(τ))G1(𝒖^2(τ)))dW^1(τ)]𝑽σ,𝑽σ\displaystyle=\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\int_{0}^{t\wedge\zeta_{n}}\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\left[\big{(}G_{1}(\widehat{{\boldsymbol{u}}}_{1}(\tau))-G_{1}(\widehat{{\boldsymbol{u}}}_{2}(\tau))\big{)}{\mathrm{d}}\widehat{W}_{1}(\tau)\right]\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}
+120tζn𝑨1G1(𝒖^1(τ))𝑨1G1(𝒖^2(τ))2(U1,𝑯σ)2dτ.\displaystyle\qquad+\dfrac{1}{2}\int_{0}^{t\wedge\zeta_{n}}\|{\boldsymbol{A}}^{-1}G_{1}(\widehat{{\boldsymbol{u}}}_{1}(\tau))-{\boldsymbol{A}}^{-1}G_{1}(\widehat{{\boldsymbol{u}}}_{2}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})}\>\mathrm{d}\tau. (4.2)

For the ease of notation, throughout computations we may omit the evaluation of the functions at the time τ[0,ζn(ω)]\tau\in[0,\zeta_{n}(\omega)], for ^\widehat{\mathbb{P}}-almost every ωΩ^\omega\in\widehat{\Omega}. We address the various terms in (4.2) separately. First of all, notice that, by (4.1),

𝒖^,𝑨1[𝑩(𝒖^1,𝒖^1)𝑩(𝒖^2,𝒖^2)]𝑽σ,𝑽σ=𝑩(𝒖^1,𝒖^1),𝑨1𝒖^𝑽σ,𝑽σ𝑩(𝒖^2,𝒖^2),𝑨1𝒖^𝑽σ,𝑽σ=(𝒖𝒖1,𝑨1𝒖)𝑯σ+(𝒖2𝒖,𝑨1𝒖)𝑯σ,\begin{split}\left\langle\widehat{{\boldsymbol{u}}},{\boldsymbol{A}}^{-1}\left[{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}_{1},\widehat{{\boldsymbol{u}}}_{1})-{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}_{2},\widehat{{\boldsymbol{u}}}_{2})\right]\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}&=\left\langle{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}_{1},\widehat{{\boldsymbol{u}}}_{1}),{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}-\left\langle{\boldsymbol{B}}(\widehat{{\boldsymbol{u}}}_{2},\widehat{{\boldsymbol{u}}}_{2}),{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\\ &=({\boldsymbol{u}}\otimes{\boldsymbol{u}}_{1},\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}})_{\boldsymbol{H}_{\sigma}}+({\boldsymbol{u}}_{2}\otimes{\boldsymbol{u}},\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}})_{\boldsymbol{H}_{\sigma}},\end{split}

on account of the incompressibility condition

(𝒖i)𝒖i=div(𝒖i𝒖i)({\boldsymbol{u}}_{i}\cdot\nabla){\boldsymbol{u}}_{i}=-\operatorname{div}({\boldsymbol{u}}_{i}\otimes{\boldsymbol{u}}_{i})

for i=1,2i=1,2. Then, using the Hölder, Young and Ladyzhenskaya inequalities, together with the definition of ζn\zeta_{n}, we find

|(𝒖𝒖1,𝑨1𝒖)𝑯σ+(𝒖2𝒖,𝑨1𝒖)𝑯σ|\displaystyle\left|({\boldsymbol{u}}\otimes{\boldsymbol{u}}_{1},\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}})_{\boldsymbol{H}_{\sigma}}+({\boldsymbol{u}}_{2}\otimes{\boldsymbol{u}},\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}})_{\boldsymbol{H}_{\sigma}}\right|
(𝒖^1𝑳4(𝒪)+𝒖^2𝑳4(𝒪))𝒖^𝑯σ𝑨1𝒖𝑳4(𝒪)\displaystyle\qquad\qquad\leq\left(\|\widehat{{\boldsymbol{u}}}_{1}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}+\|\widehat{{\boldsymbol{u}}}_{2}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}\right)\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}\|\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}
C(𝒖^1𝑯σ12+𝒖^2𝑯σ12)(𝒖^1𝑽σ12+𝒖^2𝑽σ12)𝒖^𝑯σ32𝑨1𝒖𝑯σ12\displaystyle\qquad\qquad\leq C\left(\|\widehat{{\boldsymbol{u}}}_{1}\|_{{\boldsymbol{H}_{\sigma}}}^{\frac{1}{2}}+\|\widehat{{\boldsymbol{u}}}_{2}\|_{\boldsymbol{H}_{\sigma}}^{\frac{1}{2}}\right)\left(\|\widehat{{\boldsymbol{u}}}_{1}\|_{{\boldsymbol{V}_{\sigma}}}^{\frac{1}{2}}+\|\widehat{{\boldsymbol{u}}}_{2}\|_{\boldsymbol{V}_{\sigma}}^{\frac{1}{2}}\right)\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}^{\frac{3}{2}}\|\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}}\|^{\frac{1}{2}}_{\boldsymbol{H}_{\sigma}}
16𝒖^𝑯σ2+Cn2(𝒖^1𝑽σ2+𝒖^2𝑽σ2)𝑨1𝒖^𝑯σ2.\displaystyle\qquad\qquad\leq\dfrac{1}{6}\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}^{2}+Cn^{2}\left(\|\widehat{{\boldsymbol{u}}}_{1}\|_{{\boldsymbol{V}_{\sigma}}}^{2}+\|\widehat{{\boldsymbol{u}}}_{2}\|_{\boldsymbol{V}_{\sigma}}^{2}\right)\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}^{2}. (4.3)

Here, we also used the well-known fact that 𝑨𝒖𝑯σ\|{\boldsymbol{A}}{\boldsymbol{u}}\|_{\boldsymbol{H}_{\sigma}} is an equivalent norm in 𝑯2(𝒪)𝑽σ{\boldsymbol{H}}^{2}(\mathcal{O})\cap{\boldsymbol{V}_{\sigma}}. Next, we address the coupling term. We make use of the customary formula

μ^iφ^i=div(φ^iφ^i)+(12|φ^i|2+F(φ^i))\widehat{\mu}_{i}\nabla\widehat{\varphi}_{i}=-\operatorname{div}(\nabla\widehat{\varphi}_{i}\otimes\nabla\widehat{\varphi}_{i})+\nabla\left(\dfrac{1}{2}\nabla|\widehat{\varphi}_{i}|^{2}+F(\widehat{\varphi}_{i})\right)

for i=1,2i=1,2. The above makes sense in 𝑽σ{\boldsymbol{V}_{\sigma}^{*}}, since the chemical potential is not regular enough. Therefore, integrating by parts, we recover the identities

𝒖^,𝑨1[μ^1φ^1μ^2φ^2]𝑽σ,𝑽σ=μ^1φ^1μ^2φ^2,𝑨1𝒖^𝑽σ,𝑽σ=(φ^1φ^1φ^2φ^2,𝑨1𝒖^)𝑯=(φ^1φ^,𝑨1𝒖^)𝑯σ+(φ^φ^2,𝑨1𝒖^)𝑯σ.\begin{split}\left\langle\widehat{{\boldsymbol{u}}},{\boldsymbol{A}}^{-1}\left[\widehat{\mu}_{1}\nabla\widehat{\varphi}_{1}-\widehat{\mu}_{2}\nabla\widehat{\varphi}_{2}\right]\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}&=\left\langle\widehat{\mu}_{1}\nabla\widehat{\varphi}_{1}-\widehat{\mu}_{2}\nabla\widehat{\varphi}_{2},{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\\ &=(\nabla\widehat{\varphi}_{1}\otimes\nabla\widehat{\varphi}_{1}-\nabla\widehat{\varphi}_{2}\otimes\nabla\widehat{\varphi}_{2},\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}})_{\boldsymbol{H}}\\ &=(\nabla\widehat{\varphi}_{1}\otimes\nabla\widehat{\varphi},\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}})_{\boldsymbol{H}_{\sigma}}+(\nabla\widehat{\varphi}\otimes\nabla\widehat{\varphi}_{2},\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}})_{\boldsymbol{H}_{\sigma}}.\end{split}

On the other hand, by Hölder, Young and Ladyzhenskaya inequalities, we obtain

|(φ^1φ^,𝑨1𝒖^)𝑯+(φ^φ^2,𝑨1𝒖^)𝑯|\displaystyle\left|(\nabla\widehat{\varphi}_{1}\otimes\nabla\widehat{\varphi},\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}})_{\boldsymbol{H}}+(\nabla\widehat{\varphi}\otimes\nabla\widehat{\varphi}_{2},\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}})_{\boldsymbol{H}}\right|
(φ^1𝑳4(𝒪)+φ^2𝑳4(𝒪))φ^𝑯𝑨1𝒖^𝑳4(𝒪)\displaystyle\qquad\leq\left(\|\nabla\widehat{\varphi}_{1}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}+\|\nabla\widehat{\varphi}_{2}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}\right)\|\nabla\widehat{\varphi}\|_{\boldsymbol{H}}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}
(φ^1𝑳(𝒪)12φ^1V212+φ^2𝑳(𝒪)12φ^2V212)φ^𝑯𝒖^𝑯σ12𝑨1𝒖^𝑯σ12\displaystyle\qquad\leq\left(\|\widehat{\varphi}_{1}\|_{{\boldsymbol{L}}^{\infty}(\mathcal{O})}^{\frac{1}{2}}\|\widehat{\varphi}_{1}\|_{V_{2}}^{\frac{1}{2}}+\|\widehat{\varphi}_{2}\|_{{\boldsymbol{L}}^{\infty}(\mathcal{O})}^{\frac{1}{2}}\|\widehat{\varphi}_{2}\|_{V_{2}}^{\frac{1}{2}}\right)\|\nabla\widehat{\varphi}\|_{\boldsymbol{H}}\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}^{\frac{1}{2}}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\|_{{\boldsymbol{H}_{\sigma}}}^{\frac{1}{2}}
16𝒖^𝑯σ2+14φ^𝑯2+C(1+φ^1V22+φ^2V22)𝑨1𝒖^𝑯σ2.\displaystyle\qquad\leq\dfrac{1}{6}\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}^{2}+\dfrac{1}{4}\|\nabla\widehat{\varphi}\|_{\boldsymbol{H}}^{2}+C\left(1+\|\widehat{\varphi}_{1}\|_{V_{2}}^{2}+\|\widehat{\varphi}_{2}\|_{V_{2}}^{2}\right)\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\|_{{\boldsymbol{H}_{\sigma}}}^{2}. (4.4)

By Assumption (A2) we also get (recall that Y=𝑽σY={\boldsymbol{V}_{\sigma}^{*}}),

𝑨1G1(𝒖^1)𝑨1G1(𝒖^2)2(U1,𝑯σ)2\displaystyle\|{\boldsymbol{A}}^{-1}G_{1}(\widehat{{\boldsymbol{u}}}_{1})-{\boldsymbol{A}}^{-1}G_{1}(\widehat{{\boldsymbol{u}}}_{2})\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{H}_{\sigma}})} =G1(𝒖^1)G1(𝒖^2)2(U1,𝑽σ)2\displaystyle=\|G_{1}(\widehat{{\boldsymbol{u}}}_{1})-G_{1}(\widehat{{\boldsymbol{u}}}_{2})\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{V}_{\sigma}^{*}})}
L12𝒖^𝑽σCL12𝑨1𝒖^𝑯σ2,\displaystyle\leq L_{1}^{2}\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{V}_{\sigma}^{*}}\leq CL_{1}^{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}\|^{2}_{\boldsymbol{H}_{\sigma}}, (4.5)

since 𝑨1𝒖𝑯σ\|\nabla{\boldsymbol{A}}^{-1}{\boldsymbol{u}}\|_{{\boldsymbol{H}_{\sigma}}} is an equivalent norm in 𝑽σ{\boldsymbol{V}_{\sigma}^{*}}. Collecting (4.3)-(4.5), we infer from (4.2) that

12𝑨1𝒖^(tζn)𝑯σ2+0tζn[46𝒖^(τ)𝑯σ214φ^(τ)H2]dτ\displaystyle\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(t\wedge\zeta_{n})\|_{\boldsymbol{H}_{\sigma}}^{2}+\int_{0}^{t\wedge\zeta_{n}}\left[\dfrac{4}{6}\|\widehat{{\boldsymbol{u}}}(\tau)\|_{\boldsymbol{H}_{\sigma}}^{2}-\dfrac{1}{4}\|\nabla\widehat{\varphi}(\tau)\|_{H}^{2}\right]\mathrm{d}\tau
=12𝑨1𝒖^0𝑯σ2+sups[tζn]|0s𝒖^(τ),𝑨1[(G1(𝒖^1(τ))G1(𝒖^2(τ)))dW^1(τ)]𝑽σ,𝑽σ|\displaystyle=\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\sup_{s\in[t\wedge\zeta_{n}]}\left|\int_{0}^{s}\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\left[\big{(}G_{1}(\widehat{{\boldsymbol{u}}}_{1}(\tau))-G_{1}(\widehat{{\boldsymbol{u}}}_{2}(\tau))\big{)}{\mathrm{d}}\widehat{W}_{1}(\tau)\right]\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right|
+Cn20tζn(1+𝒖^1(τ)𝑽σ2+𝒖^2(τ)𝑽σ2+φ^1(τ)V22+φ^2(τ)V22)𝑨1𝒖^(τ)𝑯σ2dτ.\displaystyle\qquad+Cn^{2}\int_{0}^{t\wedge\zeta_{n}}\left(1+\|\widehat{{\boldsymbol{u}}}_{1}(\tau)\|^{2}_{\boldsymbol{V}_{\sigma}}+\|\widehat{{\boldsymbol{u}}}_{2}(\tau)\|^{2}_{\boldsymbol{V}_{\sigma}}+\|\widehat{\varphi}_{1}(\tau)\|_{V_{2}}^{2}+\|\widehat{\varphi}_{2}(\tau)\|_{V_{2}}^{2}\right)\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(\tau)\|_{\boldsymbol{H}_{\sigma}}^{2}\>\mathrm{d}\tau. (4.6)

Before dealing with the stochastic integral in (4.6), we consider Ψ2\Psi_{2}. Applying the Itô lemma to Ψ2(φ^)\Psi_{2}(\widehat{\varphi}) yields, thanks to [62, Theorem 4.2.5],

12φ^(tζn)H2+0tζn[(φ^(τ),μ^(τ))H+(φ^(τ),𝒖^1(τ)φ^1(τ)𝒖^2(τ)φ^2(τ))H]dτ\displaystyle\dfrac{1}{2}\|\widehat{\varphi}(t\wedge\zeta_{n})\|_{H}^{2}+\int_{0}^{t\wedge\zeta_{n}}\left[(\widehat{\varphi}(\tau),\widehat{\mu}(\tau))_{H}+\left(\widehat{\varphi}(\tau),\widehat{{\boldsymbol{u}}}_{1}(\tau)\cdot\nabla\widehat{\varphi}_{1}(\tau)-\widehat{{\boldsymbol{u}}}_{2}(\tau)\cdot\nabla\widehat{\varphi}_{2}(\tau)\right)_{H}\right]{\mathrm{d}}\tau
=12φ^0H2+120tζnG2(φ^1(τ))G2(φ^2(τ))2(U2,H)2dτ\displaystyle=\dfrac{1}{2}\|\widehat{\varphi}_{0}\|_{H}^{2}+\dfrac{1}{2}\int_{0}^{t\wedge\zeta_{n}}\|G_{2}(\widehat{\varphi}_{1}(\tau))-G_{2}(\widehat{\varphi}_{2}(\tau))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\,{\mathrm{d}}\tau
+0tζn(φ^(τ),[G2(φ^1(τ))G2(φ^2(τ))]dW^2(τ))H.\displaystyle\qquad+\int_{0}^{t\wedge\zeta_{n}}(\widehat{\varphi}(\tau),\left[G_{2}(\widehat{\varphi}_{1}(\tau))-G_{2}(\widehat{\varphi}_{2}(\tau))\right]{\mathrm{d}}\widehat{W}_{2}(\tau))_{H}. (4.7)

Observe now that, by the mean value theorem and (A1),

(φ^,μ^)H=φ^𝑯2+(F(φ^1)F(φ^2),φ^)Hφ^𝑯2cFφ^H2.\begin{split}(\widehat{\varphi},\widehat{\mu})_{H}&=\|\nabla\widehat{\varphi}\|^{2}_{\boldsymbol{H}}+(F^{\prime}(\widehat{\varphi}_{1})-F^{\prime}(\widehat{\varphi}_{2}),\widehat{\varphi})_{H}\\ &\geq\|\nabla\widehat{\varphi}\|^{2}_{\boldsymbol{H}}-c_{F}\|\widehat{\varphi}\|_{H}^{2}.\end{split} (4.8)

Moreover, we have

|(φ^,𝒖^1φ^1𝒖^2φ^2)H|\displaystyle\left|\left(\widehat{\varphi},\widehat{{\boldsymbol{u}}}_{1}\cdot\nabla\widehat{\varphi}_{1}-\widehat{{\boldsymbol{u}}}_{2}\cdot\nabla\widehat{\varphi}_{2}\right)_{H}\right| =|(φ^,𝒖^φ^1)H+(φ^,𝒖^2φ^)H|\displaystyle=\left|\left(\widehat{\varphi},\widehat{{\boldsymbol{u}}}\cdot\nabla\widehat{\varphi}_{1}\right)_{H}+\left(\widehat{\varphi},\widehat{{\boldsymbol{u}}}_{2}\cdot\nabla\widehat{\varphi}\right)_{H}\right|
=|(φ^,𝒖^φ^1)H|\displaystyle=\left|\left(\widehat{\varphi},\widehat{{\boldsymbol{u}}}\cdot\nabla\widehat{\varphi}_{1}\right)_{H}\right|
𝒖^𝑯σφ^L4(𝒪)φ^1𝑳4(𝒪)\displaystyle\leq\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}\|\widehat{\varphi}\|_{L^{4}(\mathcal{O})}\|\nabla\widehat{\varphi}_{1}\|_{{\boldsymbol{L}}^{4}(\mathcal{O})}
𝒖^𝑯σφ^H12φ^V112φ^1L(𝒪)12φ^1V212\displaystyle\leq\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}\|\widehat{\varphi}\|_{H}^{\frac{1}{2}}\|\widehat{\varphi}\|_{V_{1}}^{\frac{1}{2}}\|\widehat{\varphi}_{1}\|_{L^{\infty}(\mathcal{O})}^{\frac{1}{2}}\|\widehat{\varphi}_{1}\|_{V_{2}}^{\frac{1}{2}}
16𝒖^𝑯σ2+14φ^𝑯2+C(1+φ^1V22)φ^H2.\displaystyle\leq\dfrac{1}{6}\|\widehat{{\boldsymbol{u}}}\|_{\boldsymbol{H}_{\sigma}}^{2}+\dfrac{1}{4}\|\nabla\widehat{\varphi}\|^{2}_{\boldsymbol{H}}+C\left(1+\|\widehat{\varphi}_{1}\|^{2}_{V_{2}}\right)\|\widehat{\varphi}\|^{2}_{H}. (4.9)

By (A3), we easily deduce

G2(φ^1)G2(φ^2)2(U2,H)2L22φ^2.\|G_{2}(\widehat{\varphi}_{1})-G_{2}(\widehat{\varphi}_{2})\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\leq L_{2}^{2}\|\widehat{\varphi}\|^{2}. (4.10)

On account of (4.8)-(4.10), from (4.7) we arrive at

12φ^(tζn)H2+0tζn[34φ^(τ)𝑯216𝒖^(τ)𝑯σ2]dτ\displaystyle\dfrac{1}{2}\|\widehat{\varphi}(t\wedge\zeta_{n})\|_{H}^{2}+\int_{0}^{t\wedge\zeta_{n}}\left[\dfrac{3}{4}\|\nabla\widehat{\varphi}(\tau)\|^{2}_{\boldsymbol{H}}-\dfrac{1}{6}\|\widehat{{\boldsymbol{u}}}(\tau)\|^{2}_{\boldsymbol{H}_{\sigma}}\right]{\mathrm{d}}\tau
12φ^0H2+sups[0,tζn]|0s(φ^(τ),[G2(φ^1(τ))G2(φ^2(τ))]dW^2(τ))H|\displaystyle\leq\dfrac{1}{2}\|\widehat{\varphi}_{0}\|_{H}^{2}+\sup_{s\in[0,t\wedge\zeta_{n}]}\left|\int_{0}^{s}(\widehat{\varphi}(\tau),\left[G_{2}(\widehat{\varphi}_{1}(\tau))-G_{2}(\widehat{\varphi}_{2}(\tau))\right]{\mathrm{d}}\widehat{W}_{2}(\tau))_{H}\right|
+C0tζn(1+φ^1(τ)V22)φ^(τ)H2dτ.\displaystyle\qquad+C\int_{0}^{t\wedge\zeta_{n}}\left(1+\|\widehat{\varphi}_{1}(\tau)\|^{2}_{V_{2}}\right)\|\widehat{\varphi}(\tau)\|^{2}_{H}\,{\mathrm{d}}\tau. (4.11)

Adding (4.6) and (4.11) together, we obtain

12𝑨1𝒖^(tζn)𝑯σ2+12φ^(tζn)H2+120tζn[φ^(τ)𝑯2+𝒖^(τ)𝑯σ2]dτ\displaystyle\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(t\wedge\zeta_{n})\|_{\boldsymbol{H}_{\sigma}}^{2}+\dfrac{1}{2}\|\widehat{\varphi}(t\wedge\zeta_{n})\|_{H}^{2}+\frac{1}{2}\int_{0}^{t\wedge\zeta_{n}}\left[\|\nabla\widehat{\varphi}(\tau)\|^{2}_{\boldsymbol{H}}+\|\widehat{{\boldsymbol{u}}}(\tau)\|^{2}_{\boldsymbol{H}_{\sigma}}\right]{\mathrm{d}}\tau
12𝑨1𝒖^0𝑯σ2+12φ^0H2+sups[tζn]|0s𝒖^(τ),𝑨1(G1(𝒖^1(τ))G1(𝒖^2(τ)))dW^1(τ)𝑽σ,𝑽σ|\displaystyle\leq\dfrac{1}{2}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\dfrac{1}{2}\|\widehat{\varphi}_{0}\|_{H}^{2}+\sup_{s\in[t\wedge\zeta_{n}]}\left|\int_{0}^{s}\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\big{(}G_{1}(\widehat{{\boldsymbol{u}}}_{1}(\tau))-G_{1}(\widehat{{\boldsymbol{u}}}_{2}(\tau))\big{)}{\mathrm{d}}\widehat{W}_{1}(\tau)\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right|
+sups[0,tζn]|0s(φ^(τ),[G2(φ^1(τ))G2(φ^2(τ))]dW^2(τ))H|\displaystyle\qquad+\sup_{s\in[0,t\wedge\zeta_{n}]}\left|\int_{0}^{s}(\widehat{\varphi}(\tau),\left[G_{2}(\widehat{\varphi}_{1}(\tau))-G_{2}(\widehat{\varphi}_{2}(\tau))\right]{\mathrm{d}}\widehat{W}_{2}(\tau))_{H}\right|
+Cn20tζn[1+i=1,2(𝒖^i(τ)𝑽σ2+φ^i(τ)V22)](𝑨1𝒖^(τ)𝑯σ2+φ^(τ)H2)dτ,\displaystyle\qquad+Cn^{2}\int_{0}^{t\wedge\zeta_{n}}\left[1+\sum_{i=1,2}\left(\|\widehat{{\boldsymbol{u}}}_{i}(\tau)\|^{2}_{\boldsymbol{V}_{\sigma}}+\|\widehat{\varphi}_{i}(\tau)\|_{V_{2}}^{2}\right)\right]\left(\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(\tau)\|_{\boldsymbol{H}_{\sigma}}^{2}+\|\widehat{\varphi}(\tau)\|^{2}_{H}\right)\>\mathrm{d}\tau, (4.12)

so that the Gronwall Lemma and the definition of ζn\zeta_{n} yield

𝑨1𝒖^(tζn)𝑯σ2+φ^(tζn)H2+0tζn[φ^(τ)𝑯2+𝒖^(τ)𝑯σ2]dτ\displaystyle\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(t\wedge\zeta_{n})\|_{\boldsymbol{H}_{\sigma}}^{2}+\|\widehat{\varphi}(t\wedge\zeta_{n})\|_{H}^{2}+\int_{0}^{t\wedge\zeta_{n}}\left[\|\nabla\widehat{\varphi}(\tau)\|^{2}_{\boldsymbol{H}}+\|\widehat{{\boldsymbol{u}}}(\tau)\|^{2}_{\boldsymbol{H}_{\sigma}}\right]{\mathrm{d}}\tau
eC(T+n4)(𝑨1𝒖^0𝑯σ2+φ^0H2)\displaystyle\leq e^{C(T+n^{4})}\left(\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}_{0}\|^{2}_{{\boldsymbol{H}_{\sigma}}}+\|\widehat{\varphi}_{0}\|_{H}^{2}\right)
+2eC(T+n4)sups[tζn]|0s𝒖^(τ),𝑨1(G1(𝒖^1(τ))G1(𝒖^2(τ)))dW^1(τ)𝑽σ,𝑽σ|\displaystyle\qquad+2e^{C(T+n^{4})}\sup_{s\in[t\wedge\zeta_{n}]}\left|\int_{0}^{s}\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\big{(}G_{1}(\widehat{{\boldsymbol{u}}}_{1}(\tau))-G_{1}(\widehat{{\boldsymbol{u}}}_{2}(\tau))\big{)}{\mathrm{d}}\widehat{W}_{1}(\tau)\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right|
+2eC(T+n4)sups[0,tζn]|0s(φ^(τ),[G2(φ^1(τ))G2(φ^2(τ))]dW^2(τ))H|.\displaystyle\qquad+2e^{C(T+n^{4})}\sup_{s\in[0,t\wedge\zeta_{n}]}\left|\int_{0}^{s}(\widehat{\varphi}(\tau),\left[G_{2}(\widehat{\varphi}_{1}(\tau))-G_{2}(\widehat{\varphi}_{2}(\tau))\right]{\mathrm{d}}\widehat{W}_{2}(\tau))_{H}\right|. (4.13)

Take now p2\frac{p}{2}-powers, the supremum (with respect to time) and expectations (with respect to ^\widehat{\mathbb{P}}): let us deal with the stochastic integrals on the right hand side of (4.13). The Burkholder-Davis-Gundy inequality combined with the Young inequality and (A2) entail, for every δ>0\delta>0, that

𝔼^sups[tζn]|0s𝒖^(τ),𝑨1(G1(𝒖^1(τ))G1(𝒖^2(τ)))dW^1(τ)𝑽σ,𝑽σ|p2\displaystyle\widehat{\mathbb{E}}\sup_{s\in[t\wedge\zeta_{n}]}\left|\int_{0}^{s}\left\langle\widehat{{\boldsymbol{u}}}(\tau),{\boldsymbol{A}}^{-1}\big{(}G_{1}(\widehat{{\boldsymbol{u}}}_{1}(\tau))-G_{1}(\widehat{{\boldsymbol{u}}}_{2}(\tau))\big{)}{\mathrm{d}}\widehat{W}_{1}(\tau)\right\rangle_{{\boldsymbol{V}_{\sigma}^{*}},{\boldsymbol{V}_{\sigma}}}\right|^{\frac{p}{2}}
C𝔼^(0tζn𝑨1𝒖^(s)𝑯σ2G1(𝒖^1(s))G1(𝒖^2(s))2(U1,𝑽σ)2ds)p4\displaystyle\qquad\leq C\widehat{\mathbb{E}}\left(\int_{0}^{t\wedge\zeta_{n}}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(s)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\|G_{1}(\widehat{{\boldsymbol{u}}}_{1}(s))-G_{1}(\widehat{{\boldsymbol{u}}}_{2}(s))\|^{2}_{\mathscr{L}^{2}(U_{1},{\boldsymbol{V}_{\sigma}^{*}})}\,{\mathrm{d}}s\right)^{\frac{p}{4}}
C𝔼^(sups[0,tζn]𝑨1𝒖^(s)𝑯σ20tζn𝒖^(τ)𝑽σ2dτ)p4\displaystyle\qquad\leq C\widehat{\mathbb{E}}\left(\sup_{s\in[0,t\wedge\zeta_{n}]}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(s)\|^{2}_{{\boldsymbol{H}_{\sigma}}}\int_{0}^{t\wedge\zeta_{n}}\|\widehat{{\boldsymbol{u}}}(\tau)\|^{2}_{{\boldsymbol{V}_{\sigma}^{*}}}\,{\mathrm{d}}\tau\right)^{\frac{p}{4}}
δ𝔼^sups[0,tζn]𝑨1𝒖^(s)𝑯σp+Cδ𝔼^0tζn𝑨1𝒖^(τ)𝑯σpdτ,\displaystyle\qquad\leq\delta\widehat{\mathbb{E}}\sup_{s\in[0,t\wedge\zeta_{n}]}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(s)\|^{p}_{{\boldsymbol{H}_{\sigma}}}+C_{\delta}\widehat{\mathop{{}\mathbb{E}}}\int_{0}^{t\wedge\zeta_{n}}\|\nabla{\boldsymbol{A}}^{-1}\widehat{{\boldsymbol{u}}}(\tau)\|^{p}_{\boldsymbol{H}_{\sigma}}\,{\mathrm{d}}\tau, (4.14)

while the same inequalities and (A3) also yield

𝔼^sups[tζn]|0τ(φ^(s),[G2(φ^1(s))G2(φ^2(s))]dW^2(s))H|p2\displaystyle\widehat{\mathbb{E}}\sup_{s\in[t\wedge\zeta_{n}]}\left|\int_{0}^{\tau}(\widehat{\varphi}(s),\left[G_{2}(\widehat{\varphi}_{1}(s))-G_{2}(\widehat{\varphi}_{2}(s))\right]{\mathrm{d}}\widehat{W}_{2}(s))_{H}\right|^{\frac{p}{2}}
C𝔼^(0tζnφ^(s)H2G2(φ^1(s))G2(φ^2(s))2(U2,H)2ds)p4\displaystyle\qquad\leq C\widehat{\mathbb{E}}\left(\int_{0}^{t\wedge\zeta_{n}}\|\widehat{\varphi}(s)\|^{2}_{H}\|G_{2}(\widehat{\varphi}_{1}(s))-G_{2}(\widehat{\varphi}_{2}(s))\|^{2}_{\mathscr{L}^{2}(U_{2},H)}\,{\mathrm{d}}s\right)^{\frac{p}{4}}
δ𝔼^sups[tζn]φ^(s)Hp+Cδ𝔼0tζnφ^(τ)Hpdτ.\displaystyle\qquad\leq\delta\widehat{\mathbb{E}}\sup_{s\in[t\wedge\zeta_{n}]}\|\widehat{\varphi}(s)\|^{p}_{H}+C_{\delta}\mathop{{}\mathbb{E}}\int_{0}^{t\wedge\zeta_{n}}\|\widehat{\varphi}(\tau)\|^{p}_{H}\,{\mathrm{d}}\tau. (4.15)

Taking (4.14) and (4.15) into account in (4.13) and choosing δ\delta small enough, an application of the Gronwall lemma entails the claimed continuous dependence estimate. In turn, upon choosing 𝒖^0,1=𝒖^0,2\widehat{{\boldsymbol{u}}}_{0,1}=\widehat{{\boldsymbol{u}}}_{0,2} and φ^0,1=φ^0,2\widehat{\varphi}_{0,1}=\widehat{\varphi}_{0,2}, this also yields 𝒖^1=𝒖^2\widehat{{\boldsymbol{u}}}_{1}=\widehat{{\boldsymbol{u}}}_{2} and φ^1=φ^2\widehat{\varphi}_{1}=\widehat{\varphi}_{2} on the stochastic interval [[0,ζn]][\![0,\zeta_{n}]\!] for every nn\in\mathbb{N}. Hence pathwise uniqueness of the solution follows since ζnT\zeta_{n}\nearrow T almost surely. ∎

The existence of a probabilistically-strong solution follows from standard results (see, for instance, [67, Theorem 2.1]), which also turns out to be unique. The existence and uniqueness (up to a constant) of a pressure πLp2(Ω;W1,(0,T;H))\pi\in L^{\color[rgb]{0,0,0}\frac{p}{2}}(\Omega;W^{-1,\infty}(0,T;H)) can be deduced arguing as in Subsection 3.8. The proof of Theorem 2.9 is finished.


Acknowledgments. The second and third authors are members of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA), Istituto Nazionale di Alta Matematica (INdAM). The second author has been partially funded by MIUR-PRIN Grant 2020F3NCPX “Mathematics for industry 4.0 (Math4I4)”.

References

  • [1] H. Abels “On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities” In Arch. Ration. Mech. Anal. 194.2, 2009, pp. 463–506 DOI: 10.1007/s00205-008-0160-2
  • [2] H. Abels, D. Depner and H. Garcke “Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities” In J. Math. Fluid Mech. 15, 2013, pp. 453–480
  • [3] H. Abels and E. Feireisl “On a diffuse interface model for a two-phase flow of compressible viscous fluids” In Indiana Univ. Math. J. 57.2, 2008, pp. 659–698 DOI: 10.1512/iumj.2008.57.3391
  • [4] H. Abels, H. Garcke and G. Grün “Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities” In Math. Models Methods Appl. Sci. 22, 2012, pp. 1150013
  • [5] S. M. Allen and J. W. Cahn “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening” In Acta Metall. 27, 1979, pp. 1085–1095
  • [6] D.-M. Anderson, G.-B. McFadden and A.-A. Wheeler “Diffuse-interface methods in fluid mechanics” In Annu. Rev. Fluid Mech. 30, 1997, pp. 139–165
  • [7] D. C. Antonopoulou, P. W. Bates, D. Blömker and G. D. Karali “Motion of a Droplet for the Stochastic Mass-Conserving Allen–Cahn Equation” In SIAM J. Math. Anal. 48.1, 2016, pp. 670–708
  • [8] Viorel Barbu “Nonlinear differential equations of monotone types in Banach spaces”, Springer Monographs in Mathematics Springer, New York, 2010, pp. x+272 DOI: 10.1007/978-1-4419-5542-5
  • [9] C. Bauzet, E. Bonetti, G. Bonfanti, F. Lebon and G. Vallet “A global existence and uniqueness result for a stochastic Allen-Cahn equation with constraint” In Math. Methods Appl. Sci. 40.14, 2017, pp. 5241–5261 DOI: 10.1002/mma.4383
  • [10] F. Bertacco “Stochastic Allen–Cahn equation with logarithmic potential” In Nonlinear Anal. 202, 2021, pp. 112122
  • [11] F. Bertacco, C. Orrieri and L. Scarpa “Random separation property for stochastic Allen-Cahn-type equations” In ArXiv e-prints, 2021 arXiv:2110.06544 [math.PR]
  • [12] A. Berti, V. Berti and D. Grandi “Well-posedness of an isothermal diffusive model for binary mixtures of incompressible fluids” In Nonlinearity 24.11, 2011, pp. 3143–3164 DOI: 10.1088/0951-7715/24/11/008
  • [13] L. Bertini, P. Buttà and A. Pisante “Stochastic Allen–Cahn equation with mobility” In Nonlinear Differ. Equ. Appl. 24.54, 2017
  • [14] T. Blesgen “A generalization of the Navier-Stokes equations to two-phase flows” In Journal of Physics D: Applied Physics 32.10 IOP Publishing, 1999, pp. 1119–1123 DOI: 10.1088/0022-3727/32/10/307
  • [15] D. Blömker, B. Gawron and T. Wanner “Nucleation in the one-dimensional stochastic Cahn-Hilliard model” In Discrete Contin. Dyn. Syst. 27.1, 2010, pp. 25–52
  • [16] D. Blömker, S. Maier-Paape and T. Wanner “Second Phase Spinodal Decomposition for the Cahn-Hilliard-Cook Equation” In Trans. Amer. Math. Soc. 360.1, 2008, pp. 449–489
  • [17] H. Brezis and P. Mironescu “Gagliardo–Nirenberg inequalities and non-inequalities: The full story” In Ann. Inst. H. Poincaré Anal. Non Linéaire 35.5, 2018, pp. 1355–1376
  • [18] C.-B. Bréhier and L. Goudenège “Analysis of some splitting schemes for the stochastic Allen-Cahn equation” In Discr. Cont. Dyn. Syst. Ser. B 24.8, 2019, pp. 4169–4190
  • [19] J. W. Cahn and J. E. Hilliard “On spinodal decomposition” In Acta Metall. 9, 1961, pp. 795–801
  • [20] John W. Cahn and John E. Hilliard “Free Energy of a Nonuniform System. I. Interfacial Free Energy” In The Journal of Chemical Physics 28.2, 1958, pp. 258–267 DOI: 10.1063/1.1744102
  • [21] H.E Cook “Brownian motion in spinodal decomposition” In Acta Metallurgica 18.3, 1970, pp. 297 –306 DOI: https://doi.org/10.1016/0001-6160(70)90144-6
  • [22] Giuseppe Da Prato and Arnaud Debussche “Stochastic Cahn-Hilliard equation” In Nonlinear Anal. 26.2, 1996, pp. 241–263 DOI: 10.1016/0362-546X(94)00277-O
  • [23] Giuseppe Da Prato and Jerzy Zabczyk “Stochastic equations in infinite dimensions” 152, Encyclopedia of Mathematics and its Applications Cambridge University Press, Cambridge, 2014, pp. xviii+493 DOI: 10.1017/CBO9781107295513
  • [24] Arnaud Debussche and L. Goudenège “Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections” In SIAM J. Math. Anal. 43.3, 2011, pp. 1473–1494 DOI: 10.1137/090769636
  • [25] Arnaud Debussche and Lorenzo Zambotti “Conservative stochastic Cahn-Hilliard equation with reflection” In Ann. Probab. 35.5, 2007, pp. 1706–1739 DOI: 10.1214/009117906000000773
  • [26] G. Deugoué, B. Jidjou Moghomye and T. Tachim Medjo “Approximation of a stochastic two-phase flow model by a splitting-up method” In Commun. Pure Appl. Anal. 20, 2021, pp. 1135–1170
  • [27] G. Deugoué, A. Ndongmo Ngana and T. Tachim Medjo “Strong solutions for the stochastic Cahn-Hilliard-Navier-Stokes system” In J. Differential Equations 275, 2021, pp. 27–76
  • [28] G. Deugoué and T. Tachim Medjo “Large Deviation for a 2D Allen–Cahn–Navier–Stokes Model Under Random Influences” In Asymptot. Anal. 123.1-2, 2021, pp. 41–78
  • [29] J. Diestel and J.J. Uhl “Vector Measures”, Mathematical surveys and monographs American Mathematical Society, Providence, RI, 1977
  • [30] R. E. Edwards “Functional analysis. Theory and applications” Holt, RinehartWinston, New York-Toronto-London, 1965, pp. xiii+781
  • [31] N. Elezović and A. Mikelić “On the stochastic Cahn-Hilliard equation” In Nonlinear Anal. 16.12, 1991, pp. 1169–1200 DOI: 10.1016/0362-546X(91)90204-E
  • [32] E. Feireisl and Madalina Petcu “A diffuse interface model of a two-phase flow with thermal fluctuations” In Appl. Math. Optim. 83.1, 2021, pp. 531–563 DOI: 10.1007/s00245-019-09557-2
  • [33] E. Feireisl and Madalina Petcu “Stability of strong solutions for a model of incompressible two-phase flow under thermal fluctuations” In J. Differential Equations 267.3, 2019, pp. 1836–1858 DOI: 10.1016/j.jde.2019.03.006
  • [34] E. Feireisl, Madalina Petcu and Dalibor Pražák “Relative energy approach to a diffuse interface model of a compressible two-phase flow” In Math. Methods Appl. Sci. 42.5, 2019, pp. 1465–1479 DOI: 10.1002/mma.5436
  • [35] E. Feireisl, E. Rocca, E. Petzeltová and G. Schimperna “Analysis of a phase-field model for two-phase compressible fluids” In Math. Models Methods Appl. Sci. 20, 2010, pp. 1129–1160
  • [36] Franco Flandoli and Dariusz Gatarek “Martingale and stationary solutions for stochastic Navier-Stokes equations” In Probab. Theory Related Fields 102.3, 1995, pp. 367–391 DOI: 10.1007/BF01192467
  • [37] P. J. Flory “Thermodynamics of High Polymer Solutions” In J. Chem. Phys. 10, 1942, pp. 51–61 DOI: 10.1063/1.1723621
  • [38] C. G. Gal and M. Grasselli “Longtime behavior for a model of homogeneous incompressible two-phase flows” In Discrete Contin. Dyn. Syst. 28, 2010, pp. 1–39
  • [39] C. G. Gal and M. Grasselli “Trajectory attractors for binary fluid mixtures in 3D” In Chinese Ann. Math. Ser. B 31, 2010, pp. 655–678
  • [40] M. H. Giga, A. Kirshtein and C. Liu “Variational modeling and complex fluids”, Handbook of mathematical analysis in mechanics of viscous fluids Springer, Cham, 2018
  • [41] A. Giorgini “Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities” In Calc. Var. Partial Differential Equations 60.3, 2021, pp. Paper No. 100, 40 DOI: 10.1007/s00526-021-01962-2
  • [42] A. Giorgini, M. Grasselli and H. Wu “Diffuse interface models for incompressible binary fluids and the mass-conserving Allen-Cahn approximation” In ArXiv e-prints, 2020 arXiv:2005-07236v1 [math.AP]
  • [43] A. Giorgini, A. Miranville and R. Temam “Uniqueness and Regularity for the Navier-Stokes-Cahn-Hilliard system” In SIAM J. Math. Anal. 51, 2019, pp. 2535–2574
  • [44] A. Giorgini and Roger Temam “Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system” In J. Math. Pures Appl. (9) 144, 2020, pp. 194–249 DOI: 10.1016/j.matpur.2020.08.009
  • [45] A. Giorgini, Roger Temam and Xuan-Truong Vu “The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures” In Discrete Contin. Dyn. Syst. Ser. B 26.1, 2021, pp. 337–366 DOI: 10.3934/dcdsb.2020141
  • [46] L. Goudenège and L. Manca “Stochastic phase field α\alpha-Navier-Stokes vesicle-fluid interaction model” In J. Math. Anal. Appl. 496, 2021, pp. 124805
  • [47] Ludovic Goudenège “Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection” In Stochastic Process. Appl. 119.10, 2009, pp. 3516–3548 DOI: 10.1016/j.spa.2009.06.008
  • [48] Morton E. Gurtin, Debra Polignone and Jorge Viñals “Two-phase binary fluids and immiscible fluids described by an order parameter” In Math. Models Methods Appl. Sci. 6.6, 1996, pp. 815–831 DOI: 10.1142/S0218202596000341
  • [49] M. Hairer, K. Lê and T. Rosati “The Allen-Cahn equation with generic initial datum” In ArXiv e-prints, 2022 arXiv:2201.08426 [math.AP]
  • [50] M. Hairer, M. Ryser and H. Weber “Triviality of the 2D stochastic Allen-Cahn equation” In Electron. J. Probab. 17, 2012, pp. 1–14
  • [51] M. Heida, J. Málek and K. R. Rajagopal “On the development and generalizations of Allen–Cahn and Stefan equations within a thermodynamic framework” In Z. Angew. Math. Phys. 63, 2012, pp. 759–776
  • [52] M. Heida, J. Málek and K. R. Rajagopal “On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework” In Z. Angew. Math. Phys. 63, 2012, pp. 145–169
  • [53] P. C. Hohenberg and B. I. Halperin “Theory of dynamic critical phenomena” In Rev. Mod. Phys. 49 American Physical Society, 1977, pp. 435–479 DOI: 10.1103/RevModPhys.49.435
  • [54] R. Hošek and V. Mácha “Weak-strong uniqueness for Allen-Cahn/Navier-Stokes system” In Czechoslovak Math. J. 69, 2019, pp. 837–851
  • [55] M. L. Huggins “Solutions of Long Chain Compounds” In J. Chem. Phys. 9, 1941, pp. 440 DOI: 10.1063/1.1750930
  • [56] Nobuyuki Ikeda and Shinzo Watanabe “Stochastic differential equations and diffusion processes” 24, North-Holland Mathematical Library North-Holland Publishing Co., Amsterdam; Kodansha Ltd., Tokyo, 1989, pp. xvi+555
  • [57] J. Jiang, Y.-H. Li and C. Liu “Two-phase incompressible flows with variable density: an energetic variational approach” In Discrete Contin. Dyn. Syst. 37, 2017, pp. 3243–3284
  • [58] M. Kotschote “Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type” In Arch. Rational Mech. Anal. 206, 2012, pp. 489–514
  • [59] J. A. Langa, J. Real and J. Simon “Existence and Regularity of the Pressure for the Stochastic Navier–Stokes Equations” In Appl. Math. Optim. 48, 2003, pp. 195–210
  • [60] Y.-H. Li, S.-J. Ding and M.-X. Huang “Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities” In Discrete Contin. Dyn. Syst. Ser. B 21, 2016, pp. 1507–1523
  • [61] Y.-H. Li and M.-X. Huang “Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities” In Z. Angew. Math. Phys. 69, 2018, pp. Art. 68
  • [62] Wei Liu and M. Röckner “Stochastic partial differential equations: an introduction” Springer, Cham, 2015, pp. vi+266 DOI: 10.1007/978-3-319-22354-4
  • [63] J. Lowengrub and L. Truskinovsky “Quasi-incompressible Cahn-Hilliard fluids and topological transitions” In Proc. Roy. Soc. Lond. A 454, 1998, pp. 2617–2654
  • [64] Carlo Orrieri, Elisabetta Rocca and Luca Scarpa “Optimal control of stochastic phase-field models related to tumor growth” In ESAIM Control Optim. Calc. Var. 26, 2020, pp. 104
  • [65] Carlo Orrieri and Luca Scarpa “Singular stochastic Allen-Cahn equations with dynamic boundary conditions” In J. Differential Equations 266.8, 2019, pp. 4624–4667 DOI: 10.1016/j.jde.2018.10.007
  • [66] E. Pardoux “Equations aux derivées partielles stochastiques nonlinéaires monotones”, 1975
  • [67] M. Röckner, B. Schmuland and X. Zhang “Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions” In Condens. Matter Phys. 11, 2008, pp. 247–259
  • [68] J. Rubinstein and P. Sternberg “Nonlocal reaction-diffusion equations and nucleation” In IMA J. Appl. Math. 48, 1992, pp. 249–264
  • [69] M. Ryser, N. Nigam and P. F. Tupper “On the well-posedness of the stochastic Allen–Cahn equation in two dimensions” In J. Comput. Phys. 231.6, 2012, pp. 2537–2550
  • [70] L. Scarpa “The stochastic Cahn-Hilliard equation with degenerate mobility and logarithmic potential” In Nonlinearity 34, 2021, pp. 3813
  • [71] Luca Scarpa “Analysis and optimal velocity control of a stochastic convective Cahn-Hilliard equation” In J. Nonlinear Sci. 31.2, 2021, pp. Paper No. 45, 57 DOI: 10.1007/s00332-021-09702-8
  • [72] Luca Scarpa “On the stochastic Cahn-Hilliard equation with a singular double-well potential” In Nonlinear Anal. 171, 2018, pp. 102–133 DOI: 10.1016/j.na.2018.01.016
  • [73] Luca Scarpa “Optimal distributed control of a stochastic Cahn-Hilliard equation” In SIAM J. Control Optim. 57.5, 2019, pp. 3571–3602 DOI: 10.1137/18M1222223
  • [74] Luca Scarpa “The stochastic viscous Cahn-Hilliard equation: well-posedness, regularity and vanishing viscosity limit” In Appl. Math. Optim. 84.1, 2021, pp. 487–533 DOI: 10.1007/s00245-020-09652-9
  • [75] Jacques Simon “Compact sets in the space Lp(0,T;B)L^{p}(0,T;B) In Ann. Mat. Pura Appl. (4) 146, 1987, pp. 65–96 DOI: 10.1007/BF01762360
  • [76] T. Tachim Medjo “On the convergence of a stochastic 3D globally modified two-phase flow model” In Discrete Contin. Dyn. Syst. 39.1, 2019, pp. 395–430
  • [77] T. Tachim Medjo “On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model” In Stoch. Dyn. 19, 2019, pp. 1950007
  • [78] T. Tachim Medjo “On the existence and uniqueness of solution to a stochastic 2D Cahn-Hilliard-Navier-Stokes model” In J. Differential Equations 263, 2017, pp. 1028–1054
  • [79] T. Tachim Medjo “On the weak solutions to a stochastic two-phase flow model” In Appl. Anal. 101, 2022, pp. 914–937
  • [80] T. Tachim Medjo “On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects” In Discrete Contin. Dyn. Syst. Ser. B, 2021
  • [81] Aad W. Vaart and Jon A. Wellner “Weak convergence and empirical processes” With applications to statistics, Springer Series in Statistics Springer-Verlag, New York, 1996, pp. xvi+508 DOI: 10.1007/978-1-4757-2545-2