This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A stability result for C2k+1C_{2k+1}-free graphs

Sijie Ren111Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China. E-mail:[email protected].   Jian Wang222Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China. E-mail:[email protected]. Research supported by Natural Science Foundation of Shanxi Province No. RD2200004810.   Shipeng Wang333Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China. E-mail:[email protected]. Research supported by NSFC No.12001242.   Weihua Yang444Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, P. R. China. E-mail:[email protected]. Research supported by NSFC No.11671296.
Abstract

A graph GG is called C2k+1C_{2k+1}-free if it does not contain any cycle of length 2k+12k+1. In 1981, Ha̋ggkvist, Faudree and Schelp showed that every nn-vertex triangle-free graph with more than (n1)24+1\frac{(n-1)^{2}}{4}+1 edges is bipartite. In this paper, we extend their result and show that for 1t2k21\leq t\leq 2k-2 and n318t2kn\geq 318t^{2}k, every nn-vertex C2k+1C_{2k+1}-free graph with more than (nt1)24+(t+22)\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2} edges can be made bipartite by either deleting at most t1t-1 vertices or deleting at most (t+222)+(t+222)1\binom{\lfloor\frac{t+2}{2}\rfloor}{2}+\binom{\lceil\frac{t+2}{2}\rceil}{2}-1 edges. The construction shows that this is best possible.

Keywords: stability; odd cycles; non-bipartite graphs.

1 Introduction

We consider only simple graphs. For a graph GG, we use V(G)V(G) and E(G)E(G) to denote its vertex set and edge set, respectively. Let e(G)e(G) denote the number of edges of GG. For SV(G)S\subseteq{V(G)}, let G[S]G[S] denote the subgraph of GG induced by SS. Let GSG-S denote the subgraph induced by V(G)\SV(G)\backslash{S}. For simplicity, we write E(S)E(S) and e(S)e(S) for E(G[S])E(G[S]) and e(G[S])e(G[S]), respectively. Let NG(v)N_{G}(v) denote the set of neighbors of vv in GG. For SV(G)S\subseteq V(G), let NG(v,S)N_{G}(v,S) denote the set of neighbors of vv in SS. Let degG(v)=|NG(v)|\deg_{G}(v)=|N_{G}(v)| and deg(v,S)=|NG(v,S)|\deg(v,S)=|N_{G}(v,S)|. The minimum degree of GG is defined as the minimum of degG(v)\deg_{G}(v) over all vV(G)v\in V(G). For a subgraph HH of GG, we also write NG(v,H)N_{G}(v,H), degG(v,H)\deg_{G}(v,H) for NG(v,V(H))N_{G}(v,V(H)), degG(v,V(H))\deg_{G}(v,V(H)), respectively. For EE(G)E\subseteq E(G), let GEG-E denote the graph obtained from GG by deleting edges in EE. For disjoint sets S,TV(G)S,T\subseteq V(G), let G[S,T]G[S,T] denote the subgraph of GG with the vertex set STS\cup T and the edge set {xyE(G):xS,yT}\left\{xy\in E(G)\colon x\in S,\ y\in T\right\}. Let eG(S,T)=e(G[S,T])e_{G}(S,T)=e(G[S,T]). If the context is clear, we often omit the subscript GG.

Given a graph FF, we say that GG is FF-free if it does not contain FF as a subgraph. The Turán number ex(n,F){\rm ex}(n,F) is defined as the maximum number of edges in an FF-free graph on nn vertices. Let Tr(n)T_{r}(n) denote the Turán graph, the complete rr-partite graph on nn vertices with rr partition classes, each of size nr\lfloor\frac{n}{r}\rfloor or nr\lceil\frac{n}{r}\rceil. Let tr(n)=e(Tr(n))t_{r}(n)=e(T_{r}(n)). The classic Turán theorem [15] tells us that Tr(n)T_{r}(n) is the unique graph attaining the maximum number of edges among all Kr+1K_{r+1}-free graphs, where the r=2r=2 case is Mantel’s theorem [13].

An edge eE(H)e\in E(H) is called a color-critical edge of HH if χ(He)<χ(H)\chi(H-e)<\chi(H). Let HH be a graph with χ(H)=r+1\chi(H)=r+1 that contains a color-critical edge. Simonovits [14] proved that there exists n0(H)n_{0}(H) such that if n>n0(H)n>n_{0}(H), then ex(n,H)=tr(n){\rm ex}(n,H)=t_{r}(n) and Tr(n)T_{r}(n) is the unique extremal graph. Since χ(C2k+1)=3\chi(C_{2k+1})=3 and C2k+1C_{2k+1} contains a color-critical edge, ex(n,C2k+1){\rm ex}(n,C_{2k+1}) is implied by Simonovits’ result for sufficiently large nn. Dzido [6] observed that ex(n,C2k+1){\rm ex}(n,C_{2k+1}) can be read out from the works of Bondy [3, 4], Woodall [16], and Bollobás [1] (pp. 147–156). Later, Füredi and Gunderson [9] determined the ex(n,C2k+1)ex(n,C_{2k+1}) for all nn and gave a complete description of the extremal graphs.

Theorem 1.1 ([6], [9]).

For k2k\geq 2 and n4k2n\geq 4k-2,

ex(n,C2k+1)=n24.{\rm ex}(n,C_{2k+1})=\left\lfloor\frac{n^{2}}{4}\right\rfloor. (1.1)

In 1981, Ha̋ggkvist, Faudree and Schelp [10] proved a stability result for Mantel’s Theorem.

Theorem 1.2 ([10]).

Let GG be a non-bipartite triangle-free graph on nn vertices. Then

e(G)(n1)24+1.e(G)\leq\frac{(n-1)^{2}}{4}+1.

Let H0H_{0} be a graph obtained from T2(n1)T_{2}(n-1) by replacing an edge xyxy with a path xzyxzy, where zz is a new vertex. It is easy to see that H0H_{0} is a triangle-free graph with (n1)24+1\frac{(n-1)^{2}}{4}+1 edges, which shows that Theorem 1.2 is sharp.

To state our results, we need the following two parameters. Define

d2(G)=min{|T|:TV(G),GT is bipartite}d_{2}(G)=\min\left\{|T|\colon T\subseteq V(G),\ G-T\mbox{ is bipartite}\right\}

and

γ2(G)=min{|E|:EE(G),GE is bipartite}.\gamma_{2}(G)=\min\left\{|E|\colon E\subseteq E(G),\ G-E\mbox{ is bipartite}\right\}.

Let H(n,t)H(n,t) be a graph obtained from graphs T2(nt1)T_{2}(n-t-1) and Kt+2K_{t+2} by sharing a vertex. In this paper, we extend Theorem 1.2 to the following two results.

Theorem 1.3.

Let n,k,tn,k,t be integers with 1t2k21\leq t\leq 2k-2 and n318t2kn\geq 318t^{2}k. If GG is a C2k+1C_{2k+1}-free (k2k\geq 2) graph on nn vertices with d2(G)td_{2}(G)\geq t, then

e(G)(nt1)24+(t+22),e(G)\leq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+2}{2},

with equality if and only if G=H(n,t)G=H(n,t) up to isomorphism.

Theorem 1.4.

Let n,k,tn,k,t be integers with 1t2k21\leq t\leq 2k-2 and n252t2kn\geq 252t^{2}k. If GG is a C2k+1C_{2k+1}-free (k2k\geq 2) graph on nn vertices with γ2(G)(t+222)+(t+222)\gamma_{2}(G)\geq\binom{\lfloor\frac{t+2}{2}\rfloor}{2}+\binom{\lceil\frac{t+2}{2}\rceil}{2}, then

e(G)(nt1)24+(t+22),\displaystyle e(G)\leq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+2}{2}, (1.2)

with equality if and only if G=H(n,t)G=H(n,t) up to isomorphism.

The circumference c(G)c(G) is defined as the length of a longest cycle of GG. The girth g(G)g(G) is defined as the length of a shortest cycle of GG. We say GG is weakly pancyclic if it contains cycles of all lengths from g(G)g(G) to c(G)c(G). We need the following result due to Brandt, Faudree and Goddard [5].

Theorem 1.5 ([5]).

Every non-bipartite graph GG of order nn with minimum degree δ(G)n+23\delta(G)\geq\frac{n+2}{3} is weakly pancyclic with girth 3 or 4.

Let P+1P_{\ell+1} be a path of length \ell and let 𝒞\mathcal{C}_{\geq\ell} be the family of cycles with lengths at least \ell. We need the Erdős-Gallai Theorem for paths and cycles.

Theorem 1.6 ([8]).

For n1n\geq\ell\geq 1,

ex(n,P+1)12n,ex(n,𝒞+1)2(n1).{\rm ex}(n,P_{\ell+1})\leq\frac{\ell-1}{2}n,\ {\rm ex}(n,\mathcal{C}_{\geq\ell+1})\leq\frac{\ell}{2}(n-1).

2 Some useful facts and inequalities

In this section, we prove some facts and inequalities that are needed.

Fact 2.1.

Let CC be a shortest odd cycle of GG. If CC has length at least 5, then every vertex in V(G)V(C)V(G)\setminus V(C) has at most two neighbors on CC.

Proof.

Let C=x0x1x2mx0C=x_{0}x_{1}\ldots x_{2m}x_{0} be a shortest odd cycle of GG, m2m\geq 2. Fix an arbitrary vertex vV(G)V(C)v\in V(G)\setminus V(C). If vv has at least three neighbors on CC, there exist neighbors xix_{i}, xjx_{j} of vv (0i<j2m0\leq i<j\leq 2m) such that the distance between xix_{i} and xjx_{j} on CC does not equal 2. Then one of xixi+1xjvxix_{i}x_{i+1}\ldots x_{j}vx_{i} and x0x1xivxjxj+1x2mx0x_{0}x_{1}\ldots x_{i}vx_{j}x_{j+1}\ldots x_{2m}x_{0} is an odd cycle shorter than CC, a contradiction. ∎

Fact 2.2.

Let GG be a graph with e(G)>(nt1)24e(G)>\frac{(n-t-1)^{2}}{4}, t1t\geq 1. Let CC be a shortest odd cycle of GG. If n6(t+1)n\geq 6(t+1), CC has length at most 2n3\frac{2n}{3}.

Proof.

Let S=V(C)S=V(C) and s=|S|s=|S|. Suppose for contradiction that s2n35s\geq\frac{2n}{3}\geq 5. By Fact 2.1, each vertex in GSG-S has at most two neighbors on CC. Then

e(G)\displaystyle e(G) =e(S)+e(GS)+e(S,GS)\displaystyle=e(S)+e(G-S)+e(S,G-S)
s+(ns2)+2(ns)\displaystyle\leq s+\binom{n-s}{2}+2(n-s)
=2ns+(ns)(ns1)2=:f(s).\displaystyle=2n-s+\frac{(n-s)(n-s-1)}{2}=:f(s).

Note that f(s)f(s) is a decreasing function for 2n3sn\frac{2n}{3}\leq s\leq n. Since n6(t+1)12n\geq 6(t+1)\geq 12, it follows that

e(G)f(2n3)=4n3+n6(n31)=n6(n3+7)n26.e(G)\leq f\left(\frac{2n}{3}\right)=\frac{4n}{3}+\frac{n}{6}\left(\frac{n}{3}-1\right)=\frac{n}{6}\left(\frac{n}{3}+7\right)\leq\frac{n^{2}}{6}.

Since n6(t+1)n\geq 6(t+1) implies n12t+120\frac{n}{12}-\frac{t+1}{2}\geq 0,

e(G)n26(n6+n12t+12)n=(n2(t+1))n4<(nt1)24,\displaystyle e(G)\leq\frac{n^{2}}{6}\leq\left(\frac{n}{6}+\frac{n}{12}-\frac{t+1}{2}\right)n=\frac{(n-2(t+1))n}{4}<\frac{(n-t-1)^{2}}{4},

a contradiction. ∎

Fact 2.3.

Let GG be a C2k+1C_{2k+1}-free graph and CC be an odd cycle of length 2+12\ell+1 in GG. If k+1\ell\geq k+1 then deg(x,C)\deg(x,C)\leq\ell for every xV(G)V(C)x\in V(G)\setminus V(C).

Proof.

Assume that C=v0v1v2v2v0C=v_{0}v_{1}v_{2}\ldots v_{2\ell}v_{0}. Let xV(G)V(C)x\in V(G)\setminus V(C). Define IiI_{i} as an indicator function by setting Ii=1I_{i}=1 for xviE(G)xv_{i}\in E(G) and setting Ii=0I_{i}=0 otherwise. Since GG is C2k+1C_{2k+1}-free, one cannot have both xvixv_{i} and xvi+2k1E(G)xv_{i+2k-1}\in E(G) (subscript modulo 22\ell) for each i{0,1,,2}i\in\{0,1,\ldots,2\ell\}. Hence,

2deg(x,C)=20i2Ii=0i2(Ii+Ii+2k1)2+1.2\deg(x,C)=2\sum_{0\leq i\leq 2\ell}I_{i}=\sum_{0\leq i\leq 2\ell}(I_{i}+I_{i+2k-1})\leq 2\ell+1.

Therefore, deg(x,C)2+12=\deg(x,C)\leq\lfloor\frac{2\ell+1}{2}\rfloor=\ell. ∎

Let a,b0a,b\geq 0 be integers. We need the following equalities and inequalities.

a2b2+a2b2=ab2,\displaystyle\left\lceil\frac{a}{2}\right\rceil\left\lfloor\frac{b}{2}\right\rfloor+\left\lfloor\frac{a}{2}\right\rfloor\left\lceil\frac{b}{2}\right\rceil=\left\lfloor\frac{ab}{2}\right\rfloor, (2.1)
a2b2+a2b2=ab2,\displaystyle\left\lceil\frac{a}{2}\right\rceil\left\lceil\frac{b}{2}\right\rceil+\left\lfloor\frac{a}{2}\right\rfloor\left\lfloor\frac{b}{2}\right\rfloor=\left\lceil\frac{ab}{2}\right\rceil, (2.2)
a2bab2,\displaystyle\left\lfloor\frac{a}{2}\right\rfloor b\leq\left\lfloor\frac{ab}{2}\right\rfloor, (2.3)
a2bab2+b2.\displaystyle\left\lceil\frac{a}{2}\right\rceil b\leq\left\lceil\frac{ab}{2}\right\rceil+\left\lfloor\frac{b}{2}\right\rfloor. (2.4)

Note that these equalities and inequalities can be easily verified by checking four cases: a=2i,b=2ja=2i,b=2j; a=2i,b=2j+1a=2i,b=2j+1; a=2i+1,b=2ja=2i+1,b=2j and a=2i+1,b=2j+1a=2i+1,b=2j+1.

Let a1,a2,,am0a_{1},a_{2},\ldots,a_{m}\geq 0 be integers. By induction on mm, one can also obtain the following inequality.

a1+a2++am2a12+a22++am2.\displaystyle\left\lceil\frac{a_{1}+a_{2}+\cdots+a_{m}}{2}\right\rceil\geq\left\lceil\frac{a_{1}}{2}\right\rceil+\left\lfloor\frac{a_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{a_{m}}{2}\right\rfloor. (2.5)

Define f(x):=(x2)x24+x2f(x):=\binom{x}{2}-\left\lfloor\frac{x^{2}}{4}\right\rfloor+\left\lfloor\frac{x}{2}\right\rfloor.

Lemma 2.4.

For integers a,b,t0a,b,t\geq 0,

f(t+1)=(t+222)+(t+222),\displaystyle f(t+1)=\binom{\lfloor\frac{t+2}{2}\rfloor}{2}+\binom{\lceil\frac{t+2}{2}\rceil}{2}, (2.6)
f(a+b)=f(a)+f(b)+ab2.\displaystyle f(a+b)=f(a)+f(b)+\left\lceil\frac{ab}{2}\right\rceil. (2.7)
Proof.

Note that (t+12)(t+1)24\binom{t+1}{2}-\lfloor\frac{(t+1)^{2}}{4}\rfloor can be viewed as the number of edges in K(t+1)/2K(t+1)/2K_{\lfloor(t+1)/2\rfloor}\cup K_{\lceil(t+1)/2\rceil}. By adding a vertex to K(t+1)/2K_{\lfloor(t+1)/2\rfloor}, we get a graph with (t+12)(t+1)24+(t+1)/2=f(t+1)\binom{t+1}{2}-\lfloor\frac{(t+1)^{2}}{4}\rfloor+\lfloor(t+1)/2\rfloor=f(t+1) edges, which is exactly a copy of K(t+2)/2K(t+2)/2K_{\lfloor(t+2)/2\rfloor}\cup K_{\lceil(t+2)/2\rceil}. Thus (2.6)\eqref{equalities2.6} follows.

Next we prove (2.7). Let A1,A2A_{1},A_{2} be two disjoint vertex sets with |A1|=a2|A_{1}|=\left\lceil\frac{a}{2}\right\rceil, |A2|=a2|A_{2}|=\left\lfloor\frac{a}{2}\right\rfloor and B1,B2B_{1},B_{2} be two disjoint sets with |B1|=b2|B_{1}|=\left\lfloor\frac{b}{2}\right\rfloor, |B2|=b2|B_{2}|=\left\lceil\frac{b}{2}\right\rceil. Clearly (A1B1,A2B2)(A_{1}\cup B_{1},A_{2}\cup B_{2}) is an almost equal partition of a+ba+b vertices. For a set SS, let K(S)K(S) denote the complete graph with vertex set SS. Note that (a+b2)(a+b)24\binom{a+b}{2}-\left\lfloor\frac{(a+b)^{2}}{4}\right\rfloor can be viewed as the number of edges in K(A1B1)K(A2B2)K(A_{1}\cup B_{1})\cup K(A_{2}\cup B_{2}). Similarly, (a2)a24\binom{a}{2}-\left\lfloor\frac{a^{2}}{4}\right\rfloor can be viewed as the number of edges in K(A1)K(A2)K(A_{1})\cup K(A_{2}), (b2)b24\binom{b}{2}-\left\lfloor\frac{b^{2}}{4}\right\rfloor can be viewed as the number of edges in K(B1)K(B2)K(B_{1})\cup K(B_{2}). Thus,

f(a+b)f(a)f(b)\displaystyle f(a+b)-f(a)-f(b) =|A1||B1|+|A2||B2|+a+b2a2b2\displaystyle=|A_{1}||B_{1}|+|A_{2}||B_{2}|+\left\lfloor\frac{a+b}{2}\right\rfloor-\left\lfloor\frac{a}{2}\right\rfloor-\left\lfloor\frac{b}{2}\right\rfloor
=a2b2+a2b2+a+b2a2b2.\displaystyle=\left\lceil\frac{a}{2}\right\rceil\left\lfloor\frac{b}{2}\right\rfloor+\left\lfloor\frac{a}{2}\right\rfloor\left\lceil\frac{b}{2}\right\rceil+\left\lfloor\frac{a+b}{2}\right\rfloor-\left\lfloor\frac{a}{2}\right\rfloor-\left\lfloor\frac{b}{2}\right\rfloor.

Define δ(a,b):=a+b2a2b2\delta(a,b):=\lfloor\frac{a+b}{2}\rfloor-\lfloor\frac{a}{2}\rfloor-\lfloor\frac{b}{2}\rfloor. Note that δ(a,b)\delta(a,b) equals 1 if a,ba,b are both odd and equals 0 otherwise. By (2.1),

f(a+b)f(a)f(b)=ab2+δ(a,b)=ab2.f(a+b)-f(a)-f(b)=\left\lfloor\frac{ab}{2}\right\rfloor+\delta(a,b)=\left\lceil\frac{ab}{2}\right\rceil.

3 Two structure lemmas

Lemma 3.1.

Let GG be a C2k+1C_{2k+1}-free (k2k\geq 2) graph on nn vertices with e(G)(nt1)24+(t+22)e(G)\geq\lfloor\frac{(n-t-1)^{2}}{4}\rfloor+\binom{t+2}{2}, t1t\geq 1. If n78t2kn\geq 78t^{2}k, then there exists TV(G)T\subseteq V(G) with |T|3(t+1)|T|\leq 3(t+1) such that GTG-T is a bipartite graph on partite sets X,YX,Y and (i), (ii), (iii), (iv) hold.

  • (i)

    δ(GT)n3t13\delta(G-T)\geq\frac{n-3t-1}{3};

  • (ii)

    n22tn|X|,|Y|n2+3tn\frac{n}{2}-2\sqrt{tn}\leq|X|,|Y|\leq\frac{n}{2}+\sqrt{3tn};

  • (iii)

    |{uV(G)T:degGT(u)n23tn}|tn|\left\{u\in V(G)\setminus T\colon\deg_{G-T}(u)\leq\frac{n}{2}-\sqrt{3tn}\right\}|\leq\sqrt{tn};

  • (iv)

    For vTv\in T, either N(v,XY)XN(v,X\cup Y)\subset X or N(v,XY)YN(v,X\cup Y)\subset Y holds.

Proof.

Set G0:=GG_{0}:=G. We obtain a bipartite subgraph from G0G_{0} by a vertex-deletion procedure. Let us start with i=0i=0 and obtain a sequence of graphs G1,G2,,G,G_{1},G_{2},\ldots,G_{\ell},\ldots as follows: In the iith step, if there exists a vertex vi+1V(Gi)v_{i+1}\in V(G_{i}) with degGi(vi+1)<(ni)+23\deg_{G_{i}}(v_{i+1})<\frac{(n-i)+2}{3} then let Gi+1G_{i+1} be the graph obtained from GiG_{i} by deleting vi+1v_{i+1} and go to the (i+1)(i+1)th step. Otherwise we stop and set G=GiG^{*}=G_{i}, T={v1,v2,,vi}T=\{v_{1},v_{2},\ldots,v_{i}\}. Clearly, the procedure will end in finite steps.

Let n=|V(G)|n^{\prime}=|V(G^{*})|. We claim that n4kn^{\prime}\geq 4k. Indeed, otherwise

e(G)<i=0n4k1(ni)+23+(4k2)\displaystyle e(G)<\sum_{i=0}^{n-4k-1}\frac{(n-i)+2}{3}+\binom{4k}{2} =(n+4k+5)(n4k)6+2k(4k1)\displaystyle=\frac{(n+4k+5)(n-4k)}{6}+2k(4k-1)
<(n+7k)(n4k)6+8k2\displaystyle<\frac{(n+7k)(n-4k)}{6}+8k^{2}
<(nt1)24+(t+1)n2n212+kn2+4k2.\displaystyle<\frac{(n-t-1)^{2}}{4}+\frac{(t+1)n}{2}-\frac{n^{2}}{12}+\frac{kn}{2}+4k^{2}.

By t+1<2kt+1<2k, we have e(G)<(nt1)24n212+32kn+4k2e(G)<\frac{(n-t-1)^{2}}{4}-\frac{n^{2}}{12}+\frac{3}{2}kn+4k^{2}. Since n78t2k>36kn\geq 78t^{2}k>36k implies that 32kn<n224\frac{3}{2}kn<\frac{n^{2}}{24}, we have n212>32kn+4k2\frac{n^{2}}{12}>\frac{3}{2}kn+4k^{2}. Thus e(G)<(nt1)24e(G)<\frac{(n-t-1)^{2}}{4}, a contradiction. Thus n4kn^{\prime}\geq 4k. Suppose to the contrary that |T|3t+4|T|\geq 3t+4. Since GG^{*} is C2k+1C_{2k+1}-free, by Theorem 1.1 we have e(G3t+4)(n3t4)24e(G_{3t+4})\leq\frac{(n-3t-4)^{2}}{4}. Thus,

e(G)\displaystyle e(G) <i=03t+3(ni)+23+(n3t4)24\displaystyle<\sum_{i=0}^{3t+3}\frac{(n-i)+2}{3}+\frac{(n-3t-4)^{2}}{4}
(3t+4)n3+(n3t4)24\displaystyle\leq\frac{(3t+4)n}{3}+\frac{(n-3t-4)^{2}}{4}
=(3t+4)n3+(nt1)24+(t+1)n(3t+4)n2+(3t+4)2(t+1)24\displaystyle=\frac{(3t+4)n}{3}+\frac{(n-t-1)^{2}}{4}+\frac{(t+1)n-(3t+4)n}{2}+\frac{(3t+4)^{2}-(t+1)^{2}}{4}
=(nt1)24n6+(2t+3)(4t+5)4\displaystyle=\frac{(n-t-1)^{2}}{4}-\frac{n}{6}+\frac{(2t+3)(4t+5)}{4}
<(nt1)24n6+2(t+2)2.\displaystyle<\frac{(n-t-1)^{2}}{4}-\frac{n}{6}+2(t+2)^{2}.

As n78t2k12(t+2)2n\geq 78t^{2}k\geq 12(t+2)^{2}, we get e(G)<(nt1)24e(G)<\frac{(n-t-1)^{2}}{4}, a contradiction. Thus |T|3t+3|T|\leq 3t+3 and (i) follows from δ(G)n+23\delta(G^{*})\geq\frac{n^{\prime}+2}{3}.

Suppose that GG^{*} is non-bipartite. As δ(G)n+23\delta(G^{*})\geq\frac{n^{\prime}+2}{3}, by Theorem 1.5 we infer that GG^{*} is weakly pancyclic with girth 3 or 4. By (i) and n78t2k>6k+3t+1n\geq 78t^{2}k>6k+3t+1, GG^{*} contains a cycle of length δ(G)+1n3t+232k+1\delta(G^{*})+1\geq\frac{n-3t+2}{3}\geq 2k+1. Then the weakly pancyclicity implies that GG^{*} contains a cycle of length 2k+12k+1, a contradiction. Thus GG^{*} is bipartite.

Let XX, YY be two partite sets of GG^{*}. We are left to show (ii), (iii) and (iv). Note that

|X||Y|e(G)\displaystyle|X||Y|\geq e(G^{*}) e(G)i=03t+2(ni)+23\displaystyle\geq e(G)-\sum_{i=0}^{3t+2}\frac{(n-i)+2}{3}
(nt1)24(3t+3)n3\displaystyle\geq\frac{(n-t-1)^{2}}{4}-\frac{(3t+3)n}{3}
n2432(t+1)n\displaystyle\geq\frac{n^{2}}{4}-\frac{3}{2}(t+1)n
n243tn.\displaystyle\geq\frac{n^{2}}{4}-3tn.

Note that |X|+|Y|=n|T||X|+|Y|=n-|T|. Set |X|=n|T|2+d|X|=\frac{n-|T|}{2}+d and |Y|=n|T|2d|Y|=\frac{n-|T|}{2}-d. Then

(n|T|)24d2=|X||Y|n243tn(n|T|)243tn.\frac{(n-|T|)^{2}}{4}-d^{2}=|X||Y|\geq\frac{n^{2}}{4}-3tn\geq\frac{(n-|T|)^{2}}{4}-3tn.

It follows that d3tnd\leq\sqrt{3tn}. Thus,

n|T|23tn|X|,|Y|n|T|2+3tnn2+3tn.\frac{n-|T|}{2}-\sqrt{3tn}\leq|X|,|Y|\leq\frac{n-|T|}{2}+\sqrt{3tn}\leq\frac{n}{2}+\sqrt{3tn}.

By n78t2k>9(23)2tn\geq 78t^{2}k>\frac{9}{(2-\sqrt{3})^{2}}t we have (23)tn3t(2-\sqrt{3})\sqrt{tn}\geq 3t. Then

|X|,|Y|n3t323tnn23t3tnn22tn.|X|,|Y|\geq\frac{n-3t-3}{2}-\sqrt{3tn}\geq\frac{n}{2}-3t-\sqrt{3tn}\geq\frac{n}{2}-2\sqrt{tn}.

Thus (ii) holds.

To show (iii), suppose indirectly that there are at least tn\sqrt{tn} vertices in GG^{*} with degree less than n23tn\frac{n}{2}-\sqrt{3tn}. Let UV(G)U\subseteq V(G) with |U|=tn|U|=\lfloor\sqrt{tn}\rfloor such that degG(u)n23tn\deg_{G^{*}}(u)\leq\frac{n}{2}-\sqrt{3tn} for all uUu\in U. Then degG(u)n23tn+|T|\deg_{G}(u)\leq\frac{n}{2}-\sqrt{3tn}+|T| for all uUu\in U. Note that n78t2k>4tn\geq 78t^{2}k>4t implies tnn2\sqrt{tn}\leq\frac{n}{2} and thereby n|U|ntnn24kn-|U|\geq n-\sqrt{tn}\geq\frac{n}{2}\geq 4k. Since GUG-U is C2k+1C_{2k+1}-free, using Theorem 1.1 we get e(GU)(n|U|)24e(G-U)\leq\frac{(n-|U|)^{2}}{4}. Thus, by |T|3(t+1)|T|\leq 3(t+1) we obtain that

e(G)\displaystyle e(G) e(GU)+|U|(n23tn+|T|)\displaystyle\leq e(G-U)+|U|\left(\frac{n}{2}-\sqrt{3tn}+|T|\right)
=n24+|U|243tn|U|+|T||U|\displaystyle=\frac{n^{2}}{4}+\frac{|U|^{2}}{4}-\sqrt{3tn}|U|+|T||U|
n24+|U|243|U|2+3(t+1)tn\displaystyle\leq\frac{n^{2}}{4}+\frac{|U|^{2}}{4}-\sqrt{3}|U|^{2}+3(t+1)\sqrt{tn}
n24(314)tn+3(t+1)tn\displaystyle\leq\frac{n^{2}}{4}-\left(\sqrt{3}-\frac{1}{4}\right)tn+3(t+1)\sqrt{tn}
(nt1)24(354)tn+3(t+1)tn.\displaystyle\leq\frac{(n-t-1)^{2}}{4}-\left(\sqrt{3}-\frac{5}{4}\right)tn+3(t+1)\sqrt{tn}.

By n78t2k36(354)2tn\geq 78t^{2}k\geq\frac{36}{(\sqrt{3}-\frac{5}{4})^{2}}t we have (354)tn6ttn3(t+1)tn\left(\sqrt{3}-\frac{5}{4}\right)tn\geq 6t\sqrt{tn}\geq 3(t+1)\sqrt{tn}. Hence e(G)<(nt1)24e(G)<\frac{(n-t-1)^{2}}{4}, a contradiction. Therefore (iii) holds.

To show (iv), suppose for contradiction that for some vTv\in T there exist xN(v,X)x\in N(v,X) and yN(v,Y)y\in N(v,Y). Let X1=N(y,X){x}X_{1}=N(y,X)\setminus\{x\} and Y1=N(x,Y){y}Y_{1}=N(x,Y)\setminus\{y\}. Note that

|X1|,|Y1|δ(GT)1n3t131>n33t.|X_{1}|,|Y_{1}|\geq\delta(G-T)-1\geq\frac{n-3t-1}{3}-1>\frac{n}{3}-3t.

Since GG is C2k+1C_{2k+1}-free and k2k\geq 2, G[X1Y1]G[X_{1}\cup Y_{1}] contains no paths of length 2k32k-3. By Theorem 1.6 we infer e(X1,Y1)(2k3)12(|X1|+|Y1|)(k2)ne(X_{1},Y_{1})\leq\frac{(2k-3)-1}{2}(|X_{1}|+|Y_{1}|)\leq(k-2)n. Thus,

e(G)\displaystyle e(G) e(GT)+0i<|T|ni+23\displaystyle\leq e(G-T)+\sum_{0\leq i<|T|}\frac{n-i+2}{3}
|X||Y||X1||Y1|+e(X1,Y1)+n+23|T|\displaystyle\leq|X||Y|-|X_{1}||Y_{1}|+e(X_{1},Y_{1})+\frac{n+2}{3}|T|
(n|T|)24(n33t)2+(k2)n+n+23|T|.\displaystyle\leq\frac{(n-|T|)^{2}}{4}-\left(\frac{n}{3}-3t\right)^{2}+(k-2)n+\frac{n+2}{3}|T|.

Let f(x):=(nx)24+n+23xf(x):=\frac{(n-x)^{2}}{4}+\frac{n+2}{3}x. It is easy to check that f(x)f(x) is a decreasing function on [1,n32][1,\frac{n}{3}-2]. Since n78t2k>9t+15n\geq 78t^{2}k>9t+15 implies |T|3(t+1)n32|T|\leq 3(t+1)\leq\frac{n}{3}-2, f(|T|)f(1)=(n1)24+n+23f(|T|)\leq f(1)=\frac{(n-1)^{2}}{4}+\frac{n+2}{3}. Hence,

e(G)\displaystyle e(G) (n1)24(n33t)2+(k2)n+n+23\displaystyle\leq\frac{(n-1)^{2}}{4}-\left(\frac{n}{3}-3t\right)^{2}+(k-2)n+\frac{n+2}{3}
(nt1)24+tn2n29+2tn+kn\displaystyle\leq\frac{(n-t-1)^{2}}{4}+\frac{tn}{2}-\frac{n^{2}}{9}+2tn+kn
(nt1)24(n29(k+52t)n).\displaystyle\leq\frac{(n-t-1)^{2}}{4}-\left(\frac{n^{2}}{9}-\left(k+\frac{5}{2}t\right)n\right).

By n78t2k>9k+13tn\geq 78t^{2}k>9k+13t we see that n29(k+52t)n\frac{n^{2}}{9}\geq(k+\frac{5}{2}t)n. Then e(G)(nt1)24e(G)\leq\frac{(n-t-1)^{2}}{4}, a contradiction. Thus (iv) holds and the lemma is proven. ∎

A vertex uu is called a high-degree vertex if deg(u)2tn\deg(u)\geq 2\sqrt{tn}, otherwise it is called a low-degree vertex. Let B(G)B(G) be the set of all low-degree vertices in GG, that is,

B(G)={uV(G):deg(u)<2tn}.B(G)=\left\{u\in V(G)\colon\deg(u)<2\sqrt{tn}\right\}.
Lemma 3.2.

Let GG be a C2k+1C_{2k+1}-free (k2k\geq 2) graph on nn vertices with e(G)(nt1)24+(t+22)e(G)\geq\lfloor\frac{(n-t-1)^{2}}{4}\rfloor+\binom{t+2}{2}, t1t\geq 1 and let B=B(G)B=B(G). If n252t2kn\geq 252t^{2}k, then GBG-B is a bipartite graph on bipartite sets X,YX,Y with (i)-(vi) hold.

  • (i)

    |B|t+1|B|\leq t+1.

  • (ii)

    n22tn|X|,|Y|n2+2tn\frac{n}{2}-2\sqrt{tn}\leq|X|,|Y|\leq\frac{n}{2}+2\sqrt{tn}.

  • (iii)

    |{vV(G)B:degGB(v)n23tn}|3tn2|\left\{v\in V(G)\setminus B\colon\deg_{G-B}(v)\leq\frac{n}{2}-\sqrt{3tn}\right\}|\leq\frac{3\sqrt{tn}}{2}.

  • (iv)

    For vBv\in B, either N(v,XY)XN(v,X\cup Y)\subset X or N(v,XY)YN(v,X\cup Y)\subset Y holds.

  • (v)

    For uvE(B)uv\in E(B), there does not exist x1,x2Xx_{1},x_{2}\in X such that ux1,vx2E(G)ux_{1},vx_{2}\in E(G). Similarly, there does not exist y1,y2Yy_{1},y_{2}\in Y such that uy1,vy2E(G)uy_{1},vy_{2}\in E(G).

  • (vi)

    Let uwvuwv be a path in BB. If deg(w,XY)1\deg(w,X\cup Y)\leq 1, then there does not exist xX,yYx\in X,y\in Y such that uy,vxE(G)uy,vx\in E(G) or ux,vyE(G)ux,vy\in E(G).

Proof.

By Lemma 3.1 there exists TV(G)T\subseteq V(G) with |T|3(t+1)|T|\leq 3(t+1) such that GTG-T is a bipartite graph and (i)-(iv) of Lemma 3.1 hold. Let X0X_{0}, Y0Y_{0} be two partite sets of GTG-T. Since n252t2k>144tn\geq 252t^{2}k>144t, by Lemma 3.1 (i) we have δ(GT)nt13>n62tn\delta(G-T)\geq\frac{n-t-1}{3}>\frac{n}{6}\geq 2\sqrt{tn}. Thus BTB\subset T.

Suppose indirectly that GBG-B is not bipartite. Let C=v0v1v2v2v0C=v_{0}v_{1}v_{2}\ldots v_{2\ell}v_{0} be a shortest odd cycle in GBG-B and let S=V(C)S=V(C). Clearly, v0,v1,,v2v_{0},v_{1},\ldots,v_{2\ell} are all high-degree vertices. Since CC is a shortest odd cycle, deg(vi,C)=2\deg(v_{i},C)=2 for each viSv_{i}\in S, that is, CC has no chord. Since n252t2k>(3t+7)2tn\geq 252t^{2}k>\frac{(3t+7)^{2}}{t} implies tn3t+7|T|+4\sqrt{tn}\geq 3t+7\geq|T|+4,

|N(vi,(X0Y0)S)|=deg(vi)|T|deg(vi,C)2tn|T|2tn+2.|N(v_{i},(X_{0}\cup Y_{0})\setminus S)|=\deg(v_{i})-|T|-\deg(v_{i},C)\geq 2\sqrt{tn}-|T|-2\geq\sqrt{tn}+2.

By Lemma 3.1 (iii), each viv_{i} in SS has at least two neighbors in X0Y0SX_{0}\cup Y_{0}\setminus S with degree at least n23tn\frac{n}{2}-\sqrt{3tn}. By Lemma 3.1 (iv), for each viv_{i} in SS either N(vi,X0Y0S)X0SN(v_{i},X_{0}\cup Y_{0}\setminus S)\subset X_{0}\setminus S or N(vi,X0Y0S)Y0SN(v_{i},X_{0}\cup Y_{0}\setminus S)\subset Y_{0}\setminus S holds. As CC is an odd cycle, there exist viv_{i}, vi+1v_{i+1} on CC such that N(vi,X0Y0S)N(v_{i},X_{0}\cup Y_{0}\setminus S) and N(vi+1,X0Y0S)N(v_{i+1},X_{0}\cup Y_{0}\setminus S) are contained in the same one of X0SX_{0}\setminus S and Y0SY_{0}\setminus S. Without loss of generality, let x1,x2x_{1},x_{2} be two distinct vertices in X0SX_{0}\setminus S such that vix1,vi+1x2E(G)v_{i}x_{1},v_{i+1}x_{2}\in E(G) and degGT(x1),degGT(x2)n23tn\deg_{G-T}(x_{1}),\deg_{G-T}(x_{2})\geq\frac{n}{2}-\sqrt{3tn}. Let Y1=N(x1,Y0)N(x2,Y0){vi,vi+1}Y_{1}=N(x_{1},Y_{0})\cap N(x_{2},Y_{0})\setminus\{v_{i},v_{i+1}\}. By Lemma 3.1 (ii) we know |Y0|n2+3tn|Y_{0}|\leq\frac{n}{2}+\sqrt{3tn}. Then

|Y1|\displaystyle|Y_{1}| |N(x1,Y0)|+|N(x2,Y0)||N(x1,Y0)N(x2,Y0)|2\displaystyle\geq|N(x_{1},Y_{0})|+|N(x_{2},Y_{0})|-|N(x_{1},Y_{0})\cup N(x_{2},Y_{0})|-2
degGT(x1)+degGT(x2)|Y0|2\displaystyle\geq\deg_{G-T}(x_{1})+\deg_{G-T}(x_{2})-|Y_{0}|-2
n233tn2.\displaystyle\geq\frac{n}{2}-3\sqrt{3tn}-2.

Let X1=X0{x1,x2,vi,vi+1}X_{1}=X_{0}\setminus\{x_{1},x_{2},v_{i},v_{i+1}\}. Note that

δ(G[X1Y1])δ(GT)(|Y0||Y1|)\displaystyle\delta(G[X_{1}\cup Y_{1}])\geq\delta(G-T)-(|Y_{0}|-|Y_{1}|) n3t1343tn2\displaystyle\geq\frac{n-3t-1}{3}-4\sqrt{3tn}-2
n3t43tn3.\displaystyle\geq\frac{n}{3}-t-4\sqrt{3tn}-3.

By n252t2k504tn\geq 252t^{2}k\geq 504t we infer that

n3t43tnn3n50443tn167n50443tn.\frac{n}{3}-t-4\sqrt{3tn}\geq\frac{n}{3}-\frac{n}{504}-4\sqrt{3tn}\geq\frac{167n}{504}-4\sqrt{3tn}.

As n504tn\geq 504t implies 43tn4n168<163n5044\sqrt{3tn}\leq\frac{4n}{\sqrt{168}}<\frac{163n}{504}, we have 167n50443tnn1262k\frac{167n}{504}-4\sqrt{3tn}\geq\frac{n}{126}\geq 2k. Hence δ(G[X1Y1])2k3\delta(G[X_{1}\cup Y_{1}])\geq 2k-3. Then there is a path of length at least δ(G[X1Y1])+12k2\delta(G[X_{1}\cup Y_{1}])+1\geq 2k-2. For k3k\geq 3 we choose a path PP of length 2k42k-4 with both ends in Y1Y_{1}. For k=2k=2 we simply choose PP as a vertex in Y1Y_{1}. Then PP together with x1vivi+1x2x_{1}v_{i}v_{i+1}x_{2} form a cycle of length 2k+12k+1, a contradiction. Thus GBG-B is bipartite.

Now we consider (i) and suppose indirectly that |B|t+2|B|\geq t+2. Since GBG-B is bipartite, e(GB)(n|B|)24e(G-B)\leq\frac{(n-|B|)^{2}}{4}. It follows that

e(G)<e(GB)+2tn|B|(n|B|)24+2tn|B|.e(G)<e(G-B)+2\sqrt{tn}|B|\leq\frac{(n-|B|)^{2}}{4}+2\sqrt{tn}|B|.

Let f(x)=(nx)24+2tnxf(x)=\frac{(n-x)^{2}}{4}+2\sqrt{tn}x. Since f(x)f(x) is convex and t+2|B|nt+2\leq|B|\leq n,

e(G)=f(|B|)max{f(t+2),f(n)}.e(G)=f(|B|)\leq\max\{f(t+2),f(n)\}.

Note that

f(t+2)=\displaystyle f(t+2)= (nt2)24+2(t+2)tn\displaystyle\frac{(n-t-2)^{2}}{4}+2(t+2)\sqrt{tn}
(nt1)24nt22+2(t+2)tn\displaystyle\leq\frac{(n-t-1)^{2}}{4}-\frac{n-t-2}{2}+2(t+2)\sqrt{tn}
<(nt1)24+(t+22)1n2+2(t+2)tn.\displaystyle<\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2}-1-\frac{n}{2}+2(t+2)\sqrt{tn}.

Using n252t2k>16(t+2)2tn\geq 252t^{2}k>16(t+2)^{2}t, we have n22(t+2)tn\frac{n}{2}\geq 2(t+2)\sqrt{tn}. Thus f(t+2)<(nt1)24+(t+22)1f(t+2)<\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2}-1. By n252t2k>144tn\geq 252t^{2}k>144t we also have 2tnn6n4t4n2(t+1)42\sqrt{tn}\leq\frac{n}{6}\leq\frac{n-4t}{4}\leq\frac{n-2(t+1)}{4}. It implies that

f(n)=2ntn(n2(t+1))n4<(nt1)24.\displaystyle f(n)=2n\sqrt{tn}\leq\frac{(n-2(t+1))n}{4}<\frac{(n-t-1)^{2}}{4}.

Thus e(G)<(nt1)24+(t+22)1e(G)<\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2}-1, a contradiction. Therefore (i) holds.

Let XX, YY be two partite sets of GBG-B. By BTB\subseteq T we infer X0XX_{0}\subset X and Y0YY_{0}\subset Y. By Lemma 3.1 (ii), |X||X0|n22tn|X|\geq|X_{0}|\geq\frac{n}{2}-2\sqrt{tn} and |Y||Y0|n22tn|Y|\geq|Y_{0}|\geq\frac{n}{2}-2\sqrt{tn}. By |X|n2+3tn|X|\leq\frac{n}{2}+\sqrt{3tn} and |TB||T|3t+3|T\setminus B|\leq|T|\leq 3t+3 we have

|X||X0|+|TB|n2+3tn+3t+3n2+3tn+6t.|X|\leq|X_{0}|+|T\setminus B|\leq\frac{n}{2}+\sqrt{3tn}+3t+3\leq\frac{n}{2}+\sqrt{3tn}+6t.

By n252t2k36(23)2tn\geq 252t^{2}k\geq\frac{36}{(2-\sqrt{3})^{2}}t, we have (23)tn6t(2-\sqrt{3})\sqrt{tn}\geq 6t. It implies that |X|n2+2tn|X|\leq\frac{n}{2}+2\sqrt{tn}. Similarly, |Y|n2+2tn|Y|\leq\frac{n}{2}+2\sqrt{tn}. Thus (ii) holds.

Since BTB\subseteq T, GTG-T is a subgraph of GBG-B. For n144tn\geq 144t we have tn26t3t+3\frac{\sqrt{tn}}{2}\geq 6t\geq 3t+3. By Lemma 3.1 (iii) we infer that

|{vV(G)B:degGB(v)n23tn}|tn+|TB|tn+3t+33tn2.\displaystyle\left|\left\{v\in V(G)\setminus B\colon\deg_{G-B}(v)\leq\frac{n}{2}-\sqrt{3tn}\right\}\right|\leq\sqrt{tn}+|T\setminus B|\leq\sqrt{tn}+3t+3\leq\frac{3\sqrt{tn}}{2}.

Thus (iii) holds.

We are left to show (iv), (v) and (vi). Suppose indirectly that there exists vBv\in B such that vv has two neighbors xXx\in X and yYy\in Y. By the definition of BB, we have deg(x),deg(y)2tn\deg(x),\deg(y)\geq 2\sqrt{tn}. Let X1=N(y,X){x}X_{1}=N(y,X)\setminus\{x\} and Y1=N(x,Y){y}Y_{1}=N(x,Y)\setminus\{y\}. Then

|X1|deg(x)|B|12tnt22tn3t.|X_{1}|\geq\deg(x)-|B|-1\geq 2\sqrt{tn}-t-2\geq 2\sqrt{tn}-3t.

Since n252t2k>64tn\geq 252t^{2}k>64t implies that tn24t3t+1\frac{\sqrt{tn}}{2}\geq 4t\geq 3t+1, we have |X1|3tn2+1|X_{1}|\geq\frac{3\sqrt{tn}}{2}+1. Similarly |Y1|3tn2+1|Y_{1}|\geq\frac{3\sqrt{tn}}{2}+1.

If k=2k=2, then the C5C_{5}-free property implies that there is no edge between X1X_{1} and Y1Y_{1}. It follows that e(GB)|X||Y||X1||Y1|(n|B|)24tne(G-B)\leq|X||Y|-|X_{1}||Y_{1}|\leq\frac{(n-|B|)^{2}}{4}-tn. Then

e(G)\displaystyle e(G) e(GB)+2tn|B|(n|B|)24tn+2tn|B|.\displaystyle\leq e(G-B)+2\sqrt{tn}|B|\leq\frac{(n-|B|)^{2}}{4}-tn+2\sqrt{tn}|B|.

Let f(x):=(nx)24+2tnxf(x):=\frac{(n-x)^{2}}{4}+2\sqrt{tn}x. It is easy to check that f(x)f(x) is decreasing on [1,n4tn][1,n-4\sqrt{tn}]. Since n252t2k>25tn\geq 252t^{2}k>25t implies 4tn4n54\sqrt{tn}\leq\frac{4n}{5}, we have |B|t+1n4tn|B|\leq t+1\leq n-4\sqrt{tn}. Then

e(G)f(|B|)tnf(1)tn=(n1)24+2tntn(nt1)24tn2+2tn.\displaystyle e(G)\leq f(|B|)-tn\leq f(1)-tn=\frac{(n-1)^{2}}{4}+2\sqrt{tn}-tn\leq\frac{(n-t-1)^{2}}{4}-\frac{tn}{2}+2\sqrt{tn}.

By n252t2kn\geq 252t^{2}k we have tn22tn\frac{tn}{2}\geq 2\sqrt{tn}. It follows that e(G)(nt1)24e(G)\leq\frac{(n-t-1)^{2}}{4}, a contradiction. Thus we may assume that k3k\geq 3.

Since |X1||X_{1}|, |Y1|3tn2+1|Y_{1}|\geq\frac{3\sqrt{tn}}{2}+1, by (iii) there are x1X1x_{1}\in X_{1} and y1Y1y_{1}\in Y_{1} such that deg(x1,Y),deg(y1,X)n23tn\deg(x_{1},Y),\deg(y_{1},X)\geq\frac{n}{2}-\sqrt{3tn}. Let X2=N(y1,X){x,x1}X_{2}=N(y_{1},X)\setminus\{x,x_{1}\}, Y2=N(x1,Y){y,y1}Y_{2}=N(x_{1},Y)\setminus\{y,y_{1}\}. Then

|X2|deg(y1,X)2n23tn2,|Y2|deg(x1,Y)2n23tn2.|X_{2}|\geq\deg(y_{1},X)-2\geq\frac{n}{2}-\sqrt{3tn}-2,\quad|Y_{2}|\geq\deg(x_{1},Y)-2\geq\frac{n}{2}-\sqrt{3tn}-2.

Since GG is C2k+1C_{2k+1}-free and k3k\geq 3, G[X2Y2]G[X_{2}\cup Y_{2}] contains no paths of length 2k52k-5. By Theorem 1.6 we infer e(X2,Y2)(2k5)12(|X2|+|Y2|)(k3)ne(X_{2},Y_{2})\leq\frac{(2k-5)-1}{2}(|X_{2}|+|Y_{2}|)\leq(k-3)n. Thus,

e(G)\displaystyle e(G) e(GB)+2tn|B|\displaystyle\leq e(G-B)+2\sqrt{tn}|B|
|X||Y||X2||Y2|+e(X2,Y2)+2tn|B|\displaystyle\leq|X||Y|-|X_{2}||Y_{2}|+e(X_{2},Y_{2})+2\sqrt{tn}|B|
(n|B|)24(n23tn2)2+(k3)n+2tn|B|.\displaystyle\leq\frac{(n-|B|)^{2}}{4}-\left(\frac{n}{2}-\sqrt{3tn}-2\right)^{2}+(k-3)n+2\sqrt{tn}|B|.

Let f(x):=(nx)24+2tnxf(x):=\frac{(n-x)^{2}}{4}+2\sqrt{tn}x. Recall that f(x)f(x) is decreasing on [1,n4tn][1,n-4\sqrt{tn}]. Since n252t2k>25tn\geq 252t^{2}k>25t implies |B|t+1n4tn|B|\leq t+1\leq n-4\sqrt{tn}, f(|B|)f(1)=(n1)24+2tnf(|B|)\leq f(1)=\frac{(n-1)^{2}}{4}+2\sqrt{tn}. Thus,

e(G)\displaystyle e(G) f(|B|)(n23tn2)2+(k3)n\displaystyle\leq f(|B|)-\left(\frac{n}{2}-\sqrt{3tn}-2\right)^{2}+(k-3)n
(n1)24+2tn(n23tn2)2+(k3)n\displaystyle\leq\frac{(n-1)^{2}}{4}+2\sqrt{tn}-\left(\frac{n}{2}-\sqrt{3tn}-2\right)^{2}+(k-3)n
2tn+(3tn+2)n3tn43tn+(k3)n\displaystyle\leq 2\sqrt{tn}+(\sqrt{3tn}+2)n-3tn-4\sqrt{3tn}+(k-3)n
(k+3tn)nt+12n.\displaystyle\leq(k+\sqrt{3tn})n-\frac{t+1}{2}n.

By n252t2k>20k+75tn\geq 252t^{2}k>20k+75t we have (k+3tn)n(n20+n5)n=n24(k+\sqrt{3tn})n\leq(\frac{n}{20}+\frac{n}{5})n=\frac{n^{2}}{4}. It implies that e(G)n24t+12n<(nt1)24e(G)\leq\frac{n^{2}}{4}-\frac{t+1}{2}n<\frac{(n-t-1)^{2}}{4}, a contradiction. Thus (iv) holds.

To show (v)(v), suppose for contradiction that there exist uvE(B)uv\in E(B) and x1,x2Xx_{1},x_{2}\in X such that ux1,vx2E(G)ux_{1},vx_{2}\in E(G). We distinguish two cases.

Case 1. k=2k=2.

Then |B|t+12k1=3|B|\leq t+1\leq 2k-1=3. By u,vBu,v\in B we have 2|B|32\leq|B|\leq 3. Since GG is C5C_{5}-free, for every ux,vx′′E(G)ux^{\prime},vx^{\prime\prime}\in E(G) with x,x′′Xx^{\prime},x^{\prime\prime}\in X we have N(x,Y)N(x′′,Y)=N(x^{\prime},Y)\cap N(x^{\prime\prime},Y)=\emptyset. It follows that

deg(x,Y)+deg(x′′,Y)|Y|.\displaystyle\deg(x^{\prime},Y)+\deg(x^{\prime\prime},Y)\leq|Y|. (3.1)

If |B|=3|B|=3, then e(B)+e(B,XY)2tn|B|=6tne(B)+e(B,X\cup Y)\leq 2\sqrt{tn}|B|=6\sqrt{tn}. By (3.1), deg(x1,Y)+deg(x2,Y)|Y|\deg(x_{1},Y)+\deg(x_{2},Y)\leq|Y|. Since |X|+|Y|1=n4|X|+|Y|-1=n-4, it implies that

e(X,Y)|X{x1,x2}||Y|+deg(x1,Y)+deg(x2,Y)(|X|1)|Y|(n4)24.e(X,Y)\leq|X\setminus\{x_{1},x_{2}\}||Y|+\deg(x_{1},Y)+\deg(x_{2},Y)\leq(|X|-1)|Y|\leq\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor.

Then

e(G)=e(B)+e(B,XY)+e(X,Y)\displaystyle e(G)=e(B)+e(B,X\cup Y)+e(X,Y) 6tn+(n4)24\displaystyle\leq 6\sqrt{tn}+\left\lfloor\frac{(n-4)^{2}}{4}\right\rfloor
=(n3)24n32+6tn.\displaystyle=\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor-\left\lfloor\frac{n-3}{2}\right\rfloor+6\sqrt{tn}.

By n252t2k>144tn\geq 252t^{2}k>144t we have n32+6>n26tn\left\lfloor\frac{n-3}{2}\right\rfloor+6>\frac{n}{2}\geq 6\sqrt{tn}. It implies that e(G)<(n3)24+6e(G)<\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+6, a contradiction. Thus |B|=2|B|=2, that is, B={u,v}B=\{u,v\}.

By (iv), N(u,XY)XN(u,X\cup Y)\subset X and N(v,XY)XN(v,X\cup Y)\subset X. Applying (3.1) with x=x1x^{\prime}=x_{1} and x′′=x2x^{\prime\prime}=x_{2},

deg(x1,Y)+deg(x2,Y)|Y|.\displaystyle\deg(x_{1},Y)+\deg(x_{2},Y)\leq|Y|. (3.2)

If deg(u,X)+deg(v,X)4\deg(u,X)+\deg(v,X)\leq 4, then e(B,XY)=deg(u,X)+deg(v,X)4e(B,X\cup Y)=\deg(u,X)+\deg(v,X)\leq 4. As |X|+|Y|1=n3|X|+|Y|-1=n-3,

e(X,Y)|X{x1,x2}||Y|+deg(x1,Y)+deg(x2,Y)(|X|1)|Y|(n3)24.\ e(X,Y)\leq|X\setminus\{x_{1},x_{2}\}||Y|+\deg(x_{1},Y)+\deg(x_{2},Y)\leq(|X|-1)|Y|\leq\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor.

Then

e(G)\displaystyle e(G) =e(B)+e(B,XY)+e(X,Y)1+4+(n3)24<(n3)24+6,\displaystyle=e(B)+e(B,X\cup Y)+e(X,Y)\leq 1+4+\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor<\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+6,

a contradiction. Thus we may assume that deg(u,X)+deg(v,X)5\deg(u,X)+\deg(v,X)\geq 5.

Without loss of generality, we further assume that deg(u,X)deg(v,X)\deg(u,X)\geq\deg(v,X). Then deg(u,X)3\deg(u,X)\geq 3 and e(B,XY)2deg(u,X)e(B,X\cup Y)\leq 2\deg(u,X). Let Xu=N(u,X){x1,x2}X_{u}=N(u,X)\setminus\{x_{1},x_{2}\}. Note that x2x_{2} is a high-degree vertex. It follows that deg(x2,Y)2tn|{u,v}|=2tn2\deg(x_{2},Y)\geq 2\sqrt{tn}-|\{u,v\}|=2\sqrt{tn}-2. For every xXux\in X_{u}, by applying (3.1) with x=xx^{\prime}=x and x′′=x2x^{\prime\prime}=x_{2} we get deg(x,Y)|Y|deg(x2,Y)|Y|2tn+2\deg(x,Y)\leq|Y|-\deg(x_{2},Y)\leq|Y|-2\sqrt{tn}+2. By (3.2) we have

e(X,Y)\displaystyle\ e(X,Y) |X(Xu{x1,x2})||Y|+deg(x1,Y)+deg(x2,Y)+|Xu|(|Y|2tn+2)\displaystyle\leq|X\setminus(X_{u}\cup\{x_{1},x_{2}\})||Y|+\deg(x_{1},Y)+\deg(x_{2},Y)+|X_{u}|(|Y|-2\sqrt{tn}+2)
(|X|1)|Y||Xu|(2tn2)\displaystyle\leq(|X|-1)|Y|-|X_{u}|(2\sqrt{tn}-2)
(n3)24(2tn2)(deg(u,X)2).\displaystyle\leq\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor-(2\sqrt{tn}-2)(\deg(u,X)-2).

Thus

e(G)\displaystyle e(G) =e(B)+e(B,XY)+e(X,Y)\displaystyle=e(B)+e(B,X\cup Y)+e(X,Y)
1+2deg(u,X)+(n3)24(2tn2)(deg(u,X)2)\displaystyle\leq 1+2\deg(u,X)+\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor-(2\sqrt{tn}-2)(\deg(u,X)-2)
1(2tn4)deg(u,X)+4tn4+(n3)24,\displaystyle\leq 1-(2\sqrt{tn}-4)\deg(u,X)+4\sqrt{tn}-4+\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor,

Since deg(u,X)3\deg(u,X)\geq 3, we have

e(G)(n3)243(2tn4)+4tn3=(n3)242tn+9<(n3)24+6,e(G)\leq\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor-3(2\sqrt{tn}-4)+4\sqrt{tn}-3=\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor-2\sqrt{tn}+9<\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+6,

a contradiction.

Case 2. k3k\geq 3.

Since deg(x1),deg(x2)2tnt13tn2+2\deg(x_{1}),\deg(x_{2})\geq 2\sqrt{tn}-t-1\geq\frac{3\sqrt{tn}}{2}+2 and by (iii), there exist distinct vertices y1N(x1)Y,y2N(x2)Yy_{1}\in N(x_{1})\cap Y,y_{2}\in N(x_{2})\cap Y such that deg(y1,X)n23tn>n22tn\deg(y_{1},X)\geq\frac{n}{2}-\sqrt{3tn}>\frac{n}{2}-2\sqrt{tn} and deg(y2,X)n23tn>n22tn\deg(y_{2},X)\geq\frac{n}{2}-\sqrt{3tn}>\frac{n}{2}-2\sqrt{tn}. Let X1=N(y1,X)N(y2,X){x1,x2}X_{1}=N(y_{1},X)\cap N(y_{2},X)\setminus\{x_{1},x_{2}\}, Y1=Y{y1,y2}Y_{1}=Y\setminus\{y_{1},y_{2}\}. Since |X|n2+2tn|X|\leq\frac{n}{2}+2\sqrt{tn} and |Y|n22tn|Y|\geq\frac{n}{2}-2\sqrt{tn},

|X1|\displaystyle|X_{1}| =|N(y1,X)|+|N(y2,X)||N(y1,X)N(y2,X)|2\displaystyle=|N(y_{1},X)|+|N(y_{2},X)|-|N(y_{1},X)\cup N(y_{2},X)|-2
2(n22tn)|X|2\displaystyle\geq 2\left(\frac{n}{2}-2\sqrt{tn}\right)-|X|-2
n26tn2.\displaystyle\geq\frac{n}{2}-6\sqrt{tn}-2.

Note also that |Y1|=|Y|2n22tn2|Y_{1}|=|Y|-2\geq\frac{n}{2}-2\sqrt{tn}-2. If there exists a path of length 2k62k-6 with both ends in X1X_{1}, then together with y1x1uvx2y2y_{1}x_{1}uvx_{2}y_{2} we obtain a cycle of length 2k+12k+1, a contradiction. Thus, there does not exist a path of length 2k62k-6 with both ends in X1X_{1}. This implies that G[X1,Y1]G[X_{1},Y_{1}] is P2k3P_{2k-3}-free. By Theorem 1.6,

e(X1,Y1)(2k3)12(|X1|+|Y1|)(k2)n.e(X_{1},Y_{1})\leq\frac{(2k-3)-1}{2}(|X_{1}|+|Y_{1}|)\leq(k-2)n.

Then

e(G)\displaystyle e(G) |X||Y||X1||Y1|+e(X1,Y1)+(t+1)2tn\displaystyle\leq|X||Y|-|X_{1}||Y_{1}|+e(X_{1},Y_{1})+(t+1)\cdot 2\sqrt{tn}
(n2)24(n26tn2)(n22tn2)+(k2)n+2(t+1)tn\displaystyle\leq\frac{(n-2)^{2}}{4}-\left(\frac{n}{2}-6\sqrt{tn}-2\right)\left(\frac{n}{2}-2\sqrt{tn}-2\right)+(k-2)n+2(t+1)\sqrt{tn}
(n2)24n24+4ntn12tn+2n+(k2)n+2(t+1)tn\displaystyle\leq\frac{(n-2)^{2}}{4}-\frac{n^{2}}{4}+4n\sqrt{tn}-12tn+2n+(k-2)n+2(t+1)\sqrt{tn}
(4tn+k)n12tn+2(t+1)tn\displaystyle\leq(4\sqrt{tn}+k)n-12tn+2(t+1)\sqrt{tn}
(4tn+k)nt+12n10tn+4ttn.\displaystyle\leq(4\sqrt{tn}+k)n-\frac{t+1}{2}n-10tn+4t\sqrt{tn}.

It is easy to verify that 10tn4ttn10tn\geq 4t\sqrt{tn}. By n252t2k>20k+400tn\geq 252t^{2}k>20k+400t we have (4tn+k)n(n5+n20)n=n24(4\sqrt{tn}+k)n\leq(\frac{n}{5}+\frac{n}{20})n=\frac{n^{2}}{4}. It implies that e(G)n24t+12n<(nt1)24e(G)\leq\frac{n^{2}}{4}-\frac{t+1}{2}n<\frac{(n-t-1)^{2}}{4}, a contradiction. Thus (v) holds.

To show (vi)(vi), let uwvuwv be a path in BB and deg(w,XY)1\deg(w,X\cup Y)\leq 1, assume that there exist xX,yYx\in X,y\in Y such that uy,vxE(G)uy,vx\in E(G). We distinguish two cases.

Case 1. k=2k=2.

Since |B|t+12k1=3|B|\leq t+1\leq 2k-1=3, B={u,v,w}B=\{u,v,w\}. By (iv), we have N(u,XY)YN(u,X\cup Y)\subset Y and N(v,XY)XN(v,X\cup Y)\subset X. It follows that

e(B,XY)deg(u,Y)+deg(v,X)+deg(w,XY)deg(u,Y)+deg(v,X)+1.e(B,X\cup Y)\leq\deg(u,Y)+\deg(v,{X})+\deg(w,X\cup Y)\leq\deg(u,{Y})+\deg(v,{X})+1.

Since GG is C5C_{5}-free, there is no edge between N(u,Y)N(u,Y) and N(v,X)N(v,X). That is,

e(X,Y)|X||Y|\displaystyle e(X,Y)\leq|X||Y| deg(u,Y)deg(v,X).\displaystyle-\deg(u,{Y})\deg(v,{X}).

It follows that

e(G)\displaystyle e(G) =e(B)+e(B,XY)+e(X,Y)\displaystyle=e(B)+e(B,X\cup Y)+e(X,Y)
3+deg(u,Y)+deg(v,X)+1+|X||Y|deg(u,Y)deg(v,X)\displaystyle\leq 3+\deg(u,{Y})+\deg(v,{X})+1+|X||Y|-\deg(u,{Y})\deg(v,{X})
=5+|X||Y|(deg(u,Y)1)(deg(v,X)1).\displaystyle=5+|X||Y|-(\deg(u,{Y})-1)(\deg(v,{X})-1).

Since |X|+|Y|=n3|X|+|Y|=n-3, |X||Y|(n3)24|X||Y|\leq\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor. Moreover, deg(u,Y)1\deg(u,{Y})\geq 1 and deg(v,X)1\deg(v,{X})\geq 1, we have e(G)5+(n3)24e(G)\leq 5+\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor. It follows that e(G)<(n2)24+3e(G)<\left\lfloor\frac{(n-2)^{2}}{4}\right\rfloor+3 for t=1t=1 and e(G)<(n3)24+6e(G)<\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor+6 for t=2t=2, a contradiction.

Case 2. k3k\geq 3.

Let X1=N(y,X){x}X_{1}=N(y,X)\setminus\{x\} and Y1=N(x,Y){y}Y_{1}=N(x,Y)\setminus\{y\}. Recall that x,yx,y are both high-degree vertices. Since n252t2k>64tn\geq 252t^{2}k>64t implies |B|t+12ttn22|B|\leq t+1\leq 2t\leq\frac{\sqrt{tn}}{2}-2, we infer that

|X1|,|Y1|2tn|B|13tn2+1>tn.|X_{1}|,|Y_{1}|\geq 2\sqrt{tn}-|B|-1\geq\frac{3\sqrt{tn}}{2}+1>\sqrt{tn}.

It follows that |X1||Y1|>tn|X_{1}||Y_{1}|>tn.

If k=3k=3 then by the C7C_{7}-free property there is no edge between X1X_{1} and Y1Y_{1}. Thus,

e(G)\displaystyle e(G) =e(B)+e(B,XY)+e(X,Y)\displaystyle=e(B)+e(B,X\cup Y)+e(X,Y)
(t+1)2tn+|X||Y||X1||Y1|\displaystyle\leq(t+1)\cdot 2\sqrt{tn}+|X||Y|-|X_{1}||Y_{1}|
(n3)24tn+2(t+1)tn\displaystyle\leq\frac{(n-3)^{2}}{4}-tn+2(t+1)\sqrt{tn}
(nt1)24t+12n+2(t+1)tn.\displaystyle\leq\frac{(n-t-1)^{2}}{4}-\frac{t+1}{2}n+2(t+1)\sqrt{tn}.

By n252t2k16tn\geq 252t^{2}k\geq 16t we have t+12n2(t+1)tn\frac{t+1}{2}n\geq 2(t+1)\sqrt{tn}. Thus e(G)(nt1)24e(G)\leq\frac{(n-t-1)^{2}}{4}, a contradiction.

If k4k\geq 4, by (iii) there exist x1X1x_{1}\in X_{1}, y1Y1y_{1}\in Y_{1} such that deg(x1,Y)>n22tn\deg(x_{1},{Y})>\frac{n}{2}-2\sqrt{tn} and deg(y1,X)>n22tn\deg(y_{1},{X})>\frac{n}{2}-2\sqrt{tn}. Let X2=N(y1,X){x,x1}X_{2}=N(y_{1},X)\setminus\{x,x_{1}\} and Y2=N(x1,Y){y,y1}Y_{2}=N(x_{1},Y)\setminus\{y,y_{1}\}. By the C2k+1C_{2k+1}-free property there is no a path of length 2k72k-7 with one end in X2X_{2} and the other one in Y2Y_{2}. By Theorem 1.6,

e(X2,Y2)(2k7)12(|X1|+|Y1|)(k4)n.e(X_{2},Y_{2})\leq\frac{(2k-7)-1}{2}(|X_{1}|+|Y_{1}|)\leq(k-4)n.

Using |X2|,|Y2|n22tn2|X_{2}|,|Y_{2}|\geq\frac{n}{2}-2\sqrt{tn}-2, we have

e(G)\displaystyle e(G) =e(B)+e(B,XY)+e(X,Y)\displaystyle=e(B)+e(B,X\cup Y)+e(X,Y)
(t+1)2tn+|X||Y||X2||Y2|+e(X2,Y2)\displaystyle\leq(t+1)\cdot 2\sqrt{tn}+|X||Y|-|X_{2}||Y_{2}|+e(X_{2},Y_{2})
(n3)24(n22tn2)2+(k4)n+2(t+1)tn\displaystyle\leq\left\lfloor\frac{(n-3)^{2}}{4}\right\rfloor-\left(\frac{n}{2}-2\sqrt{tn}-2\right)^{2}+(k-4)n+2(t+1)\sqrt{tn}
(2tn+2)n4tn+(k4)n+4ttn\displaystyle\leq(2\sqrt{tn}+2)n-4tn+(k-4)n+4t\sqrt{tn}
(k+2tn)nt+12n2tn+4ttn.\displaystyle\leq(k+2\sqrt{tn})n-\frac{t+1}{2}n-2tn+4t\sqrt{tn}.

It is easy to verify that 2tn4ttn2tn\geq 4t\sqrt{tn}. By n252t2k>10k+64tn\geq 252t^{2}k>10k+64t we have (k+2tn)n(n10+n8)n<n24(k+2\sqrt{tn})n\leq(\frac{n}{10}+\frac{n}{8})n<\frac{n^{2}}{4}. It implies that e(G)n24t+12n<(nt1)24e(G)\leq\frac{n^{2}}{4}-\frac{t+1}{2}n<\frac{(n-t-1)^{2}}{4}, a contradiction. Thus (vi) holds and the lemma is proven. ∎

4 The Proof of Theorem 1.3

Proof of Theorem 1.3.

Let GG be a C2k+1C_{2k+1}-free graph on nn vertices with d2(G)td_{2}(G)\geq t. If e(G)<(nt1)24+(t+22)e(G)<\lfloor\frac{(n-t-1)^{2}}{4}\rfloor+\binom{t+2}{2} then we have nothing to do. Thus we assume that

e(G)(nt1)24+(t+22)\displaystyle e(G)\geq\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2} (4.1)

and we are left to show that G=H(n,t)G=H(n,t) up to isomorphism. By Lemma 3.2, there exists BV(G)B\subseteq V(G) with t|B|t+1t\leq|B|\leq t+1 such that GBG-B is a bipartite graph on partite sets X,YX,Y with (i)-(vi) of Lemma 3.2 hold.

Claim 1.

Let BBB^{\prime}\subseteq B. If GBG-B^{\prime} is non-bipartite, then each shortest odd cycle in GBG-B^{\prime} has length at most 2k12k-1.

Proof.

Since GBG-B is bipartite and GBG-B^{\prime} is non-bipartite, |B||B|1t|B^{\prime}|\leq|B|-1\leq t. Let CC be a shortest cycle in GBG-B^{\prime}, let S=V(C)S=V(C). Suppose for contradiction that |S|=2+12k+3|S|=2\ell+1\geq 2k+3. By Fact 2.3 each vBv\in B^{\prime} has at most \ell neighbors on CC. By Fact 2.1 each vV(G)(BS)v\in V(G)\setminus(B^{\prime}\cup S) has at most two neighbors on CC. It follows that

e(S)+e(GS,S)\displaystyle e(S)+e(G-S,S) 2+1+2(n|B||S|)+|B|\displaystyle\leq 2\ell+1+{2\left(n-|B^{\prime}|-|S|\right)+|B^{\prime}|\ell}
2+1+2(nt21)+t\displaystyle\leq 2\ell+1+{2\left(n-t-2\ell-1\right)+t\ell}
=2n+(t2)2t1.\displaystyle=2n+(t-2)\ell-2t-1.

By Fact 2.2 we have 2+12n32\ell+1\leq\frac{2n}{3}. It follows that n21n34kn-2\ell-1\geq\frac{n}{3}\geq 4k. Since GSG-S is C2k+1C_{2k+1}-free, by Theorem 1.1 we have e(GS)(n21)24e(G-S)\leq{\frac{(n-2\ell-1)^{2}}{4}}. Thus,

e(G)\displaystyle e(G) =e(S)+e(GS,S)+e(GS)2n+(t2)2t1+(n21)24=:f().\displaystyle=e(S)+e(G-S,S)+e(G-S)\leq 2n+(t-2)\ell-2t-1+\frac{(n-2\ell-1)^{2}}{4}=:f(\ell).

Since f()f(\ell) is a convex function of \ell with k+1n12k+1\leq\ell\leq\frac{n-1}{2}, e(G)max{f(n12),f(k+1)}e(G)\leq\max\{f(\frac{n-1}{2}),f(k+1)\}. By n318t2k>14t+2n\geq 318t^{2}k>14t+2 we have n2(t+1)43t\frac{n-2(t+1)}{4}\geq 3t. It follows that

f(n12)=2n+(t2)(n1)22t13tn(n2(t+1))n4<(nt1)24.f\left(\frac{n-1}{2}\right)=2n+\frac{(t-2)(n-1)}{2}-2t-1\leq 3tn\leq\frac{(n-2(t+1))n}{4}<\frac{(n-t-1)^{2}}{4}.

For t2k3t\leq 2k-3,

f(k+1)\displaystyle f(k+1) =2n+(t2)(k+1)2t1+(n2k3)24\displaystyle=2n+(t-2)(k+1)-2t-1+\frac{(n-2k-3)^{2}}{4}
=2n+(t2)(k+1)2t1+(n2k+2)2452n+(2k+3)2(2k2)24\displaystyle=2n+(t-2)(k+1)-2t-1+\frac{(n-2k+2)^{2}}{4}-\frac{5}{2}n+\frac{(2k+3)^{2}-(2k-2)^{2}}{4}
<(n2k+2)24n2+(t2)k2+5(4k+1)4\displaystyle<\frac{(n-2k+2)^{2}}{4}-\frac{n}{2}+(t-2)k-2+\frac{5(4k+1)}{4}
<(n2k+2)24n2+(t+3)k.\displaystyle<\frac{(n-2k+2)^{2}}{4}-\frac{n}{2}+(t+3)k.

Since n318t2kn\geq 318t^{2}k implies n2(t+3)k\frac{n}{2}\geq(t+3)k, we infer that f(k+1)<(nt1)24f(k+1)<\frac{(n-t-1)^{2}}{4}. For t=2k2t=2k-2,

f(k+1)\displaystyle f(k+1) =2n+2(k2)(k+1)4k+3+(n2k3)24\displaystyle=2n+2(k-2)(k+1)-4k+3+\frac{(n-2k-3)^{2}}{4}
=(n2k+1)24+2k22k+1\displaystyle=\frac{(n-2k+1)^{2}}{4}+2k^{2}-2k+1
(n2k+1)24+(2k2)1\displaystyle\leq\frac{(n-2k+1)^{2}}{4}+\binom{2k}{2}-1
=(nt1)24+(t+22)1.\displaystyle=\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2}-1.

Thus e(G)max{f(n12),f(k+1)}(nt1)24+(t+22)1e(G)\leq\max\{f(\frac{n-1}{2}),f(k+1)\}\leq\frac{(n-t-1)^{2}}{4}+\binom{t+2}{2}-1, contradicting (4.1). ∎

Claim 2.

Let BBB^{\prime}\subseteq B such that GBG-B^{\prime} is non-bipartite and let CC be a shortest odd cycle in GBG-B^{\prime}. Then there is at most one high-degree vertex on CC.

Proof.

Suppose that C=v0v1v2v0C=v_{0}v_{1}\ldots v_{2\ell}v_{0} and there are two high-degree vertices on CC, say vi,vjv_{i},v_{j} with 0i<j20\leq i<j\leq 2\ell. Set Q1=vivi+1vjQ_{1}=v_{i}v_{i+1}\ldots v_{j} and Q2=vjvj+1v2v0viQ_{2}=v_{j}v_{j+1}\ldots v_{2\ell}v_{0}\ldots v_{i}. Let |V(Q1)|=1+1|V(Q_{1})|=\ell_{1}+1 and |V(Q2)|=2+1|V(Q_{2})|=\ell_{2}+1. By Claim 1 we know that k1\ell\leq k-1. It follows that 1,2{1,2,,2k2}\ell_{1},\ell_{2}\in\{1,2,\ldots,2k-2\}. Without loss of generality, assume that 1\ell_{1} is odd and 2\ell_{2} is even.

Note that CC is an induced cycle and each viv_{i} has at most 22 neighbors on CC. Let X1=XSX_{1}=X\setminus S and Y1=YSY_{1}=Y\setminus S. Since n318t2k>144tn\geq 318t^{2}k>144t implies deg(vi)2tn3tn2+6t\deg(v_{i})\geq 2\sqrt{tn}\geq\frac{3\sqrt{tn}}{2}+6t, we have

deg(vi,X1Y1)deg(vi)|B|deg(vi,S)3tn2+6t(t+1)23tn2+2.\deg(v_{i},X_{1}\cup Y_{1})\geq\deg(v_{i})-|B|-\deg(v_{i},S)\geq\frac{3\sqrt{tn}}{2}+6t-(t+1)-2\geq\frac{3\sqrt{tn}}{2}+2.

Similarly, deg(vj,X1Y1)3tn2+2\deg(v_{j},X_{1}\cup Y_{1})\geq\frac{3\sqrt{tn}}{2}+2. By Lemma 3.2 (iii), there exist distinct vertices x1N(vi,X1Y1),x2N(vj,X1Y1)x_{1}\in N(v_{i},X_{1}\cup Y_{1}),x_{2}\in N(v_{j},X_{1}\cup Y_{1}) such that deg(x1,XY)>n22tn\deg(x_{1},X\cup Y)>\frac{n}{2}-2\sqrt{tn} and deg(x2,XY)>n22tn\deg(x_{2},X\cup Y)>\frac{n}{2}-2\sqrt{tn}. Then by Claim 1

deg(x1,X1Y1)deg(x1,XY)|S|n22tn2k+1.\deg(x_{1},X_{1}\cup Y_{1})\geq\deg(x_{1},X\cup Y)-|S|\geq\frac{n}{2}-2\sqrt{tn}-2k+1.

Similarly, deg(x2,X1Y1)n22tn2k+1\deg(x_{2},X_{1}\cup Y_{1})\geq\frac{n}{2}-2\sqrt{tn}-2k+1. Now we distinguish two cases.

Case 1. x1x_{1} and x2x_{2} belong to the same one of X1,Y1X_{1},Y_{1}.

Without loss of generality, assume x1,x2X1x_{1},x_{2}\in X_{1}. Let Y2=N(x1,Y1)N(x2,Y1)Y_{2}=N(x_{1},Y_{1})\cap N(x_{2},Y_{1}) and X2=X1{x1,x2}X_{2}=X_{1}\setminus\{x_{1},x_{2}\}. By Lemma 3.2 (ii) |X2||X||S|2n22tn2k1|X_{2}|\geq|X|-|S|-2\geq\frac{n}{2}-2\sqrt{tn}-2k-1. By Lemma 3.2 (ii) |Y1||Y|n2+2tn|Y_{1}|\leq|Y|\leq\frac{n}{2}+2\sqrt{tn}. Then

|Y2|=|N(x1,Y1)N(x2,Y1)|\displaystyle|Y_{2}|=|N(x_{1},Y_{1})\cap N(x_{2},Y_{1})| deg(x1,Y1)+deg(x2,Y1)|Y1|\displaystyle\geq\deg(x_{1},Y_{1})+\deg(x_{2},Y_{1})-|Y_{1}|
2(n22tn2k)|Y1|\displaystyle\geq 2\left(\frac{n}{2}-2\sqrt{tn}-2k\right)-|Y_{1}|
n26tn4k.\displaystyle\geq\frac{n}{2}-6\sqrt{tn}-4k.

Let

L={vV(G)B:deg(v,XY)n23tn}.L=\left\{v\in V(G)\setminus B\colon\deg(v,X\cup Y)\leq\frac{n}{2}-\sqrt{3tn}\right\}.

By Lemma 3.2 (iii) we have |L|3tn2|L|\leq\frac{3\sqrt{tn}}{2}. It follows that G[XL,YL]G[X\setminus L,Y\setminus L] is a subgraph with minimum degree at least n23tn|L|>n24tn\frac{n}{2}-\sqrt{3tn}-|L|>\frac{n}{2}-4\sqrt{tn}. Note that

|YY2|(n2+2tn)(n26tn4k)=8tn+4k.|Y\setminus Y_{2}|\leq\left(\frac{n}{2}+2\sqrt{tn}\right)-\left(\frac{n}{2}-6\sqrt{tn}-4k\right)=8\sqrt{tn}+4k.

Then G:=G[X2L,Y2L]G^{\prime}:=G[X_{2}\setminus L,Y_{2}\setminus L] is a graph on |X2|+|Y2||L||X_{2}|+|Y_{2}|-|L| vertices with

δ(G)n24tn|YY2|n212tn4k.\delta(G^{\prime})\geq\frac{n}{2}-4\sqrt{tn}-|Y\setminus Y_{2}|\geq\frac{n}{2}-12\sqrt{tn}-4k.

Since n318t2k31821532×122tn\geq 318t^{2}k\geq\frac{318^{2}}{153^{2}}\times 12^{2}t implies tn112×153318n\sqrt{tn}\leq\frac{1}{12}\times\frac{153}{318}n, we have n212tn6318n6k\frac{n}{2}-12\sqrt{tn}\geq\frac{6}{318}n\geq 6k. It follows that δ(G)2k\delta(G^{\prime})\geq 2k. Thus there exists a path of length at least δ(G)+12k+1\delta(G^{\prime})+1\geq 2k+1. For 12k4\ell_{1}\leq 2k-4, we choose a sub-path QQ of length 2k312k-3-\ell_{1} with both ends in Y2Y_{2}. For 1=2k3\ell_{1}=2k-3, we choose QQ as an arbitrary vertex in Y1Y_{1}. Then vjx2Qx1Q1v_{j}x_{2}Qx_{1}Q_{1} forms a cycle of length 2k+12k+1, a contradiction.

Case 2. x1x_{1} and x2x_{2} belong to different ones of X1X_{1}, Y1Y_{1}.

Without loss of generality, assume that x1X1x_{1}\in X_{1} and x2Y1x_{2}\in Y_{1}. Let X2=N(x2,X1){x1}X_{2}=N(x_{2},X_{1})\setminus\{x_{1}\} and Y2=N(x1,Y1){x2}Y_{2}=N(x_{1},Y_{1})\setminus\{x_{2}\}. Then |X2|deg(x2,X1)1n22tn2k|X_{2}|\geq\deg(x_{2},X_{1})-1\geq\frac{n}{2}-2\sqrt{tn}-2k. Similarly, |Y2|n22tn2k|Y_{2}|\geq\frac{n}{2}-2\sqrt{tn}-2k. Let

L={vV(G)B:deg(v,XY)n23tn}.L=\left\{v\in V(G)\setminus B\colon\deg(v,X\cup Y)\leq\frac{n}{2}-\sqrt{3tn}\right\}.

By Lemma 3.2 (iii) we have |L|3tn2|L|\leq\frac{3\sqrt{tn}}{2}. It follows that G[XL,YL]G[X\setminus L,Y\setminus L] is a subgraph with minimum degree at least n23tn|L|>n24tn\frac{n}{2}-\sqrt{3tn}-|L|>\frac{n}{2}-4\sqrt{tn}. Note that

|YY2|(n2+2tn)(n22tn2k)=4tn+2k.|Y\setminus Y_{2}|\leq\left(\frac{n}{2}+2\sqrt{tn}\right)-\left(\frac{n}{2}-2\sqrt{tn}-2k\right)=4\sqrt{tn}+2k.

Then G:=G[X2L,Y2L]G^{\prime}:=G[X_{2}\setminus L,Y_{2}\setminus L] is a graph on |X2|+|Y2||L||X_{2}|+|Y_{2}|-|L| vertices with

δ(G)n24tn|YY2|n28tn2k.\delta(G^{\prime})\geq\frac{n}{2}-4\sqrt{tn}-|Y\setminus Y_{2}|\geq\frac{n}{2}-8\sqrt{tn}-2k.

Since n318t2k>31821552×64tn\geq 318t^{2}k>\frac{318^{2}}{155^{2}}\times 64t implies tn18×155318n\sqrt{tn}\leq\frac{1}{8}\times\frac{155}{318}n, we have n28tn4318n4k\frac{n}{2}-8\sqrt{tn}\geq\frac{4}{318}n\geq 4k. It implies that δ(G)2k\delta(G^{\prime})\geq 2k. Then there exists a path of length at least δ(G)+12k+1\delta(G^{\prime})+1\geq 2k+1. For 22k4\ell_{2}\leq 2k-4, we choose a sub-path QQ of length 2k322k-3-\ell_{2} with one end in X1X_{1} and the other one in Y1Y_{1}. Then vix1Qx2Q2v_{i}x_{1}Qx_{2}Q_{2} forms a cycle of length 2k+12k+1, a contradiction.

We are left with the case 2=2k2\ell_{2}=2k-2. The C2k+1C_{2k+1}-free property implies that there is no edge between N(vi,X1)N(v_{i},X_{1}) and N(vj,Y1)N(v_{j},Y_{1}). Since n318t2k16(22325)2tn\geq 318t^{2}k\geq\frac{16}{(2-\frac{23}{25})^{2}}t implies 4t(22325)tn4t\leq\left(2-\frac{23}{25}\right)\sqrt{tn},

deg(vi,X1)deg(vi)|B|deg(vi,S)2tnt32tn4t2325tn.\deg(v_{i},X_{1})\geq\deg(v_{i})-|B|-\deg(v_{i},S)\geq 2\sqrt{tn}-t-3\geq 2\sqrt{tn}-4t\geq\frac{23}{25}\sqrt{tn}.

Similarly, deg(vj,Y1)2325tn\deg(v_{j},Y_{1})\geq\frac{23}{25}\sqrt{tn}. Then

e(GB)|X||Y||N(vi,X1)||N(vj,Y1)|(n|B|)245tn6.e(G-B)\leq|X||Y|-|N(v_{i},X_{1})||N(v_{j},Y_{1})|\leq\frac{(n-|B|)^{2}}{4}-\frac{5tn}{6}.

By Lemma 3.2 we have

e(G)=e(GB)+2tn|B|(n|B|)245tn6+2tn|B|.\displaystyle e(G)=e(G-B)+2\sqrt{tn}|B|\leq\frac{(n-|B|)^{2}}{4}-\frac{5tn}{6}+2\sqrt{tn}|B|.

Let f(x):=(nx)24+2tnxf(x):=\frac{(n-x)^{2}}{4}+2\sqrt{tn}x. It is easy to verify that f(x)f(x) is decreasing on [1,n4tn][1,n-4\sqrt{tn}]. Note that n318t2k>25tn\geq 318t^{2}k>25t implies |B|t+1n4tn|B|\leq t+1\leq n-4\sqrt{tn}. By |B|t|B|\geq t we infer that

e(G)f(t)5tn6=(nt)24+2ttn5tn6.e(G)\leq f(t)-\frac{5tn}{6}=\frac{(n-t)^{2}}{4}+2t\sqrt{tn}-\frac{5tn}{6}.

Since n36tn\geq 36t we have 2ttntn32t\sqrt{tn}\leq\frac{tn}{3}. Then e(G)(nt)24tn2(nt1)24+nt2tn2(nt1)24e(G)\leq\frac{(n-t)^{2}}{4}-\frac{tn}{2}\leq\frac{(n-t-1)^{2}}{4}+\frac{n-t}{2}-\frac{tn}{2}\leq\frac{(n-t-1)^{2}}{4}, contradicting (4.1). Thus there is an edge xyxy between N(vi,X1Y1)N(v_{i},X_{1}\cup Y_{1}) and N(vj,X1Y1)N(v_{j},X_{1}\cup Y_{1}). It follows that xyQ2xxyQ_{2}x is a cycle of length 2k+12k+1, a contradiction. Thus the claim holds. ∎

Now we choose B0BB_{0}\subset B such that GB0G-B_{0} is bipartite and |B0||B_{0}| is minimal. By d2(G)td_{2}(G)\geq t we have t|B0|t+1t\leq|B_{0}|\leq t+1. By the minimality of |B0||B_{0}|, we infer that for each uB0u\in B_{0}, G(B0{u})G-(B_{0}\setminus\{u\}) is not bipartite. Let CuC_{u} be a shortest odd cycle in G(B0{u})G-(B_{0}\setminus\{u\}). By Claim 2, there is at most one high-degree vertex on CuC_{u}. Since |V(Cu)|3|V(C_{u})|\geq 3, CuC_{u} contains at least two low-degree vertices. As V(Cu)B0={u}V(C_{u})\cap B_{0}=\{u\}, we infer that CuC_{u} contains a low-degree vertex that is not in B0B_{0}, implying that BB0B\setminus B_{0}\neq\emptyset. By t|B0||B|t+1t\leq|B_{0}|\leq|B|\leq t+1 we have |B|=t+1|B|=t+1 and |B0|=t|B_{0}|=t. Then CuC_{u} contains exactly two low-degree vertices and one high-degree vertex, that is, |V(Cu)|=3|V(C_{u})|=3. Let BB0={u0}B\setminus B_{0}=\{u_{0}\} and let xux_{u} be a high-degree vertex on CuC_{u}. Then V(Cu)={u,u0,xu}V(C_{u})=\{u,u_{0},x_{u}\}. Since uu is chosen from B0B_{0} arbitrarily, we conclude that u0uE(G)u_{0}u\in E(G) for all uB0u\in B_{0}.

Assume that B={u0,u1,u2,,ut}B=\{u_{0},u_{1},u_{2},\ldots,u_{t}\} and let Bi=B{ui}B_{i}=B\setminus\{u_{i}\}, i=1,2,,ti=1,2,\ldots,t. We claim that GBiG-B_{i} is bipartite. Indeed, otherwise let CiC^{i} be a shortest odd cycle in GBiG-B_{i}. Note that |Bi|=t|B_{i}|=t. By applying Claim 2 to CiC^{i}, CiC^{i} contains at most one high-degree vertex. It follows that CiC^{i} contains at least two low-degree vertices. But there is only one low-degree vertex uiu_{i} in GBiG-B_{i}, a contradiction. Thus GBiG-B_{i} is bipartite. Let Bij=B{ui,uj}B_{ij}=B\setminus\{u_{i},u_{j}\} for 0i<jt0\leq i<j\leq t. By d2(G)td_{2}(G)\geq t and |Bij|=t1|B_{ij}|=t-1, we see that GBijG-B_{ij} is non-bipartite.

Claim 3.

For 0i<jt0\leq i<j\leq t, there exists a high-degree vertex xijx_{ij} such that uiujxiju_{i}u_{j}x_{ij} forms a triangle in GG.

Proof.

Let CC be a shortest odd cycle in GBijG-B_{ij}. By Claim 2, CC contains at most one high-degree vertex. Since GBijG-B_{ij} contains exactly two low-degree vertices ui,uju_{i},u_{j}, CC has to be a triangle on {ui,uj,xij}\{u_{i},u_{j},x_{ij}\} for some high-degree vertex xijx_{ij}. ∎

By Claim 3, BB spans a clique of size t+1t+1 in GG. Moreover, for each uiujE(B)u_{i}u_{j}\in E(B) there exists a high-degree vertex xijx_{ij} such that Cij=uiujxijuiC_{ij}=u_{i}u_{j}x_{ij}u_{i} is a triangle in GG.

Claim 4.

For each uiujE(B)u_{i}u_{j}\in E(B), N(ui,XY)=N(uj,XY)={xij}N(u_{i},X\cup Y)=N(u_{j},X\cup Y)=\{x_{ij}\}.

Proof.

Otherwise there exists a high-degree vertex yxijy\neq x_{ij} such that uixij,ujyE(G)u_{i}x_{ij},u_{j}y\in E(G). By Lemma 3.2 (iv), it implies that xij,yx_{ij},y belong to same side of XX or YY. By symmetry assume that y,xijXy,x_{ij}\in X, contradicting (v) of Lemma 3.2. ∎

Recall that G[B]G[B] is a clique of size t+1t+1. By Claim 4, xij=xij=:xx_{ij}=x_{i^{\prime}j^{\prime}}=:x^{*} for all uiuj,uiujE(B)u_{i}u_{j},u_{i^{\prime}}u_{j^{\prime}}\in E(B). That is, each vertex in BB is adjacent to the unique high-degree vertex xx^{*}. Hence GG is isomorphic to a subgraph of H(n,t)H(n,t). By (4.1) we conclude that G=H(n,t)G=H(n,t) up to isomorphism and the theorem is proven. ∎

5 The Proof of Theorem 1.4

Proof of Theorem 1.4.

Let GG be a C2k+1C_{2k+1}-free on nn vertices with

γ2(G)(t+222)+(t+222)=(2.6)f(t+1).\displaystyle\gamma_{2}(G)\geq\binom{\lfloor\frac{t+2}{2}\rfloor}{2}+\binom{\lceil\frac{t+2}{2}\rceil}{2}\overset{\eqref{equalities2.6}}{=}f(t+1). (5.1)

If e(G)<(nt1)24+(t+22)e(G)<\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+2}{2} then we are done. Thus we may assume that

e(G)(nt1)24+(t+22)\displaystyle e(G)\geq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+2}{2} (5.2)

and we are left to show that G=H(n,t)G=H(n,t) up to isomorphism. By Lemma 3.2, there exists BV(G)B\subseteq V(G) with |B|t+1|B|\leq t+1 such that GBG-B is a bipartite graph on partite sets X,YX,Y with (i)-(vi) of Lemma 3.2 hold. Let

B11={uB:deg(u,Y)=1},B12={uB:deg(u,X)=1},\displaystyle B_{11}=\{u\in B\colon\deg(u,Y)=1\},\quad B_{12}=\{u\in B\colon\deg(u,X)=1\},
X2={uB:deg(u,Y)2},Y2={uB:deg(u,X)2},\displaystyle X_{2}=\{u\in B\colon\deg(u,Y)\geq 2\},\quad Y_{2}=\{u\in B\colon\deg(u,X)\geq 2\},
B0={uB:deg(u,XY)=0}.\displaystyle B_{0}=\{u\in B\colon\deg(u,X\cup Y)=0\}.

By Lemma 3.2 (iv), B11B12=B_{11}\cap B_{12}=\emptyset, B11Y2=B_{11}\cap Y_{2}=\emptyset, X2B12=X_{2}\cap B_{12}=\emptyset and X2Y2=X_{2}\cap Y_{2}=\emptyset. It follows that (B0,B11,B12,X2,Y2)(B_{0},B_{11},B_{12},X_{2},Y_{2}) is partition of BB. Furthermore, we have

e(X2,X)=0,e(Y2,Y)=0,e(B11,X)=0,e(B12,Y)=0.\displaystyle e(X_{2},X)=0,\ e(Y_{2},Y)=0,\ e(B_{11},X)=0,\ e(B_{12},Y)=0. (5.3)
Claim 5.

X2X_{2} and Y2Y_{2} are both independent sets of GG.

Proof.

Suppose not, by symmetry assume that uvE(X2)uv\in E(X_{2}). Since deg(u,Y)2\deg(u,Y)\geq 2 and deg(v,Y)2\deg(v,Y)\geq 2, there are different vertices y1,y2Yy_{1},y_{2}\in Y such that uy1,vy2E(G)uy_{1},vy_{2}\in E(G), contradicting (v) of Lemma 3.2. Thus X2X_{2} is an independent set. Similarly, Y2Y_{2} is an independent set. ∎

Claim 6.

e(B11,X2)=0e(B_{11},X_{2})=0 and e(B12,Y2)=0e(B_{12},Y_{2})=0.

Proof.

Suppose that there exist uB11u\in B_{11}, vX2v\in X_{2} such that uvE(G)uv\in E(G). Since deg(u,Y)=1\deg(u,Y)=1 and deg(v,Y)2\deg(v,Y)\geq 2, one can find different vertices y1,y2Yy_{1},y_{2}\in Y such that uy1,vy2E(G)uy_{1},vy_{2}\in E(G), contradicting Lemma 3.2 (v). Thus e(B11,X2)=0e(B_{11},X_{2})=0. Similarly, e(B12,Y2)=0e(B_{12},Y_{2})=0. ∎

Set |B0|=z|B_{0}|=z, |B11|=p|B_{11}|=p, |B12|=q|B_{12}|=q, |X2|=x|X_{2}|=x and |Y2|=y|Y_{2}|=y. Clearly x+y+z+p+q=|B|t+1x+y+z+p+q=|B|\leq t+1. Now we further partition B0B_{0} to X0X_{0} and Y0Y_{0} such that |X0|=z2|X_{0}|=\left\lfloor\frac{z}{2}\right\rfloor and |Y0|=z2|Y_{0}|=\left\lceil\frac{z}{2}\right\rceil. Partition B11B_{11} to X11X_{11}, Y11Y_{11} such that |X11|=p2|X_{11}|=\left\lceil\frac{p}{2}\right\rceil, |Y11|=p2|Y_{11}|=\left\lfloor\frac{p}{2}\right\rfloor and partition B12B_{12} to X12X_{12}, Y12Y_{12} such that |X12|=q2|X_{12}|=\left\lfloor\frac{q}{2}\right\rfloor, |Y12|=q2|Y_{12}|=\left\lceil\frac{q}{2}\right\rceil. Let

X~=X0X11X12X2X,Y~=Y0Y11Y12Y2Y.\widetilde{X}=X_{0}\cup X_{11}\cup X_{12}\cup X_{2}\cup X,\ \widetilde{Y}=Y_{0}\cup Y_{11}\cup Y_{12}\cup Y_{2}\cup Y.

Clearly, (X~,Y~)(\widetilde{X},\widetilde{Y}) is a bi-partition of V(G)V(G) (as shown in Figure 1) and γ2(G)e(X~)+e(Y~)\gamma_{2}(G)\leq e(\widetilde{X})+e(\widetilde{Y}).

Refer to captionB0B_{0}B11B_{11}B12B_{12}Y2Y_{2}z2\left\lfloor\frac{z}{2}\right\rfloorz2\left\lceil\frac{z}{2}\right\rceilp2\left\lceil\frac{p}{2}\right\rceilp2\left\lfloor\frac{p}{2}\right\rfloorq2\left\lfloor\frac{q}{2}\right\rfloorq2\left\lceil\frac{q}{2}\right\rceilxxyyX2X_{2}XXYYX0X_{0}X11X_{11}X12X_{12}Y11Y_{11}Y12Y_{12}Y0Y_{0}
Figure 1: The bi-partition (X~,Y~)(\widetilde{X},\widetilde{Y}) of V(G)V(G).

By Claim 6 we have e(B11,X2)=0e(B_{11},X_{2})=0. Using e(B0,X)=0e(B_{0},X)=0 and (5.3), we obtain that

e(X~)=e(X0)+e(X11)+e(X12)+e(X0,X11X12X2)+e(X11,X12)+e(X12,X2)+e(X12,X).e(\widetilde{X})=e(X_{0})+e(X_{11})+e(X_{12})+e(X_{0},X_{11}\cup X_{12}\cup X_{2})+e(X_{11},X_{12})+e(X_{12},X_{2})+e(X_{12},X).

Similarly,

e(Y~)=e(Y0)+e(Y11)+e(Y12)+e(Y0,Y11Y12Y2)+e(Y11,Y12)+e(Y11,Y2)+e(Y11,Y).e(\widetilde{Y})=e(Y_{0})+e(Y_{11})+e(Y_{12})+e(Y_{0},Y_{11}\cup Y_{12}\cup Y_{2})+e(Y_{11},Y_{12})+e(Y_{11},Y_{2})+e(Y_{11},Y).

Note that

e(X0)(|X0|2),e(X11)(|X11|2),e(X12)(|X12|2),\displaystyle e(X_{0})\leq\binom{|X_{0}|}{2},\ e(X_{11})\leq\binom{|X_{11}|}{2},\ e(X_{12})\leq\binom{|X_{12}|}{2},
e(X0,X11X12X2)|X0|(|X11|+|X12|+|X2|),\displaystyle e(X_{0},X_{11}\cup X_{12}\cup X_{2})\leq|X_{0}|(|X_{11}|+|X_{12}|+|X_{2}|),
e(X11,X12)|X11||X12|,e(X12,X2)|X12||X2|.\displaystyle e(X_{11},X_{12})\leq|X_{11}||X_{12}|,\ e(X_{12},X_{2})\leq|X_{12}||X_{2}|.

Similarly,

e(Y0)(|Y0|2),e(Y11)(|Y11|2),e(Y12)(|Y12|2),\displaystyle e(Y_{0})\leq\binom{|Y_{0}|}{2},\ e(Y_{11})\leq\binom{|Y_{11}|}{2},\ e(Y_{12})\leq\binom{|Y_{12}|}{2},
e(Y0,Y11Y12Y2)|Y0|(|Y11|+|Y12|+|Y2|),\displaystyle e(Y_{0},Y_{11}\cup Y_{12}\cup Y_{2})\leq|Y_{0}|(|Y_{11}|+|Y_{12}|+|Y_{2}|),
e(Y11,Y12)|Y11||Y12|,e(Y11,Y2)|Y11||Y2|.\displaystyle e(Y_{11},Y_{12})\leq|Y_{11}||Y_{12}|,\ e(Y_{11},Y_{2})\leq|Y_{11}||Y_{2}|.

By the definitions of B12B_{12} and B11B_{11}, e(X12,X)|X12|e(X_{12},X)\leq|X_{12}| and e(Y11,Y)|Y11|e(Y_{11},Y)\leq|Y_{11}|.

Recall that f(x):=(x2)x24+x2f(x):=\binom{x}{2}-\left\lfloor\frac{x^{2}}{4}\right\rfloor+\left\lfloor\frac{x}{2}\right\rfloor. Then

e(X0)+e(Y0)(|X0|2)+(|Y0|2)=(z2)z24=f(z)z2,\displaystyle e(X_{0})+e(Y_{0})\leq\binom{|X_{0}|}{2}+\binom{|Y_{0}|}{2}=\binom{z}{2}-\left\lfloor\frac{z^{2}}{4}\right\rfloor=f(z)-\left\lfloor\frac{z}{2}\right\rfloor,
e(X11)+e(Y11)+e(Y11,Y)(|X11|2)+(|Y11|2)+|Y11|=(p2)p24+p2=f(p),\displaystyle e(X_{11})+e(Y_{11})+e(Y_{11},Y)\leq\binom{|X_{11}|}{2}+\binom{|Y_{11}|}{2}+|Y_{11}|=\binom{p}{2}-\left\lfloor\frac{p^{2}}{4}\right\rfloor+\left\lfloor\frac{p}{2}\right\rfloor=f(p),
e(X12)+e(Y12)+e(X12,X)(|X12|2)+(|Y12|2)+|X12|=(q2)q24+q2=f(q).\displaystyle e(X_{12})+e(Y_{12})+e(X_{12},X)\leq\binom{|X_{12}|}{2}+\binom{|Y_{12}|}{2}+|X_{12}|=\binom{q}{2}-\left\lfloor\frac{q^{2}}{4}\right\rfloor+\left\lfloor\frac{q}{2}\right\rfloor=f(q).

Moreover,

e(X0,X11X12X2)+e(X11,X12)z2(p2+q2+x)+p2q2,\displaystyle e(X_{0},X_{11}\cup X_{12}\cup X_{2})+e(X_{11},X_{12})\leq\left\lfloor\frac{z}{2}\right\rfloor\left(\left\lceil\frac{p}{2}\right\rceil+\left\lfloor\frac{q}{2}\right\rfloor+x\right)+\left\lceil\frac{p}{2}\right\rceil\left\lfloor\frac{q}{2}\right\rfloor,
e(Y0,Y11Y12Y2)+e(Y11,Y12)z2(p2+q2+y)+p2q2,\displaystyle e(Y_{0},Y_{11}\cup Y_{12}\cup Y_{2})+e(Y_{11},Y_{12})\leq\left\lceil\frac{z}{2}\right\rceil\left(\left\lfloor\frac{p}{2}\right\rfloor+\left\lceil\frac{q}{2}\right\rceil+y\right)+\left\lfloor\frac{p}{2}\right\rfloor\left\lceil\frac{q}{2}\right\rceil,

and

e(X12,X2)q2x,e(Y11,Y2)p2y.\displaystyle e(X_{12},X_{2})\leq\left\lfloor\frac{q}{2}\right\rfloor x,\ e(Y_{11},Y_{2})\leq\left\lfloor\frac{p}{2}\right\rfloor y.

Thus,

e(X~)+e(Y~)\displaystyle e(\widetilde{X})+e(\widetilde{Y}) f(p)+f(q)+f(z)z2+z2(p2+q2+x)\displaystyle\leq f(p)+f(q)+f(z)-\left\lfloor\frac{z}{2}\right\rfloor+\left\lfloor\frac{z}{2}\right\rfloor\left(\left\lceil\frac{p}{2}\right\rceil+\left\lfloor\frac{q}{2}\right\rfloor+x\right)
+z2(p2+q2+y)+p2q2+p2q2+q2x+p2y.\displaystyle+\left\lceil\frac{z}{2}\right\rceil\left(\left\lfloor\frac{p}{2}\right\rfloor+\left\lceil\frac{q}{2}\right\rceil+y\right)+\left\lceil\frac{p}{2}\right\rceil\left\lfloor\frac{q}{2}\right\rfloor+\left\lfloor\frac{p}{2}\right\rfloor\left\lceil\frac{q}{2}\right\rceil+\left\lfloor\frac{q}{2}\right\rfloor x+\left\lfloor\frac{p}{2}\right\rfloor y.

Using (2.1) and (2.2), we obtain that

e(X~)+e(Y~)\displaystyle e(\widetilde{X})+e(\widetilde{Y})\leq f(p)+f(q)+f(z)z2+zp2+zq2+z2x\displaystyle f(p)+f(q)+f(z)-\left\lfloor\frac{z}{2}\right\rfloor+\left\lfloor\frac{zp}{2}\right\rfloor+\left\lceil\frac{zq}{2}\right\rceil+\left\lfloor\frac{z}{2}\right\rfloor x
+z2y+pq2+q2x+p2y.\displaystyle+\left\lceil\frac{z}{2}\right\rceil y+\left\lfloor\frac{pq}{2}\right\rfloor+\left\lfloor\frac{q}{2}\right\rfloor x+\left\lfloor\frac{p}{2}\right\rfloor y.

By (2.3) and (2.4), we arrive at

e(X~)+e(Y~)\displaystyle e(\widetilde{X})+e(\widetilde{Y})\leq f(p)+f(q)+f(z)z2+zp2+zq2+zx2\displaystyle f(p)+f(q)+f(z)-\left\lfloor\frac{z}{2}\right\rfloor+\left\lfloor\frac{zp}{2}\right\rfloor+\left\lceil\frac{zq}{2}\right\rceil+\left\lfloor\frac{zx}{2}\right\rfloor
+zy2+y2+pq2+qx2+py2.\displaystyle+\left\lceil\frac{zy}{2}\right\rceil+\left\lfloor\frac{y}{2}\right\rfloor+\left\lfloor\frac{pq}{2}\right\rfloor+\left\lfloor\frac{qx}{2}\right\rfloor+\left\lfloor\frac{py}{2}\right\rfloor.

Since

f(p+q+z)f(p)f(q)f(z)\displaystyle f(p+q+z)-f(p)-f(q)-f(z) =(2.7)f(p+q)f(p)f(q)+z(p+q)2\displaystyle\overset{\eqref{equalities2.5}}{=}f(p+q)-f(p)-f(q)+\left\lceil\frac{z(p+q)}{2}\right\rceil
=(2.7)z(p+q)2+pq2\displaystyle\overset{\eqref{equalities2.5}}{=}\left\lceil\frac{z(p+q)}{2}\right\rceil+\left\lceil\frac{pq}{2}\right\rceil
(2.5)zp2+zq2+pq2,\displaystyle\overset{\eqref{equalities2.3}}{\geq}\left\lfloor\frac{zp}{2}\right\rfloor+\left\lceil\frac{zq}{2}\right\rceil+\left\lceil\frac{pq}{2}\right\rceil,

we have

e(X~)+e(Y~)\displaystyle e(\widetilde{X})+e(\widetilde{Y}) f(p+q+z)z2+zx2+zy2+y2+qx2+py2.\displaystyle\leq f(p+q+z)-\left\lfloor\frac{z}{2}\right\rfloor+\left\lfloor\frac{zx}{2}\right\rfloor+\left\lceil\frac{zy}{2}\right\rceil+\left\lfloor\frac{y}{2}\right\rfloor+\left\lfloor\frac{qx}{2}\right\rfloor+\left\lfloor\frac{py}{2}\right\rfloor.

Then,

e(X~)+e(Y~)\displaystyle e(\widetilde{X})+e(\widetilde{Y}) f(p+q+z)+zx2+zy2+y2+qx2+py2\displaystyle\leq f(p+q+z)+\left\lfloor\frac{zx}{2}\right\rfloor+\left\lceil\frac{zy}{2}\right\rceil+\left\lfloor\frac{y}{2}\right\rfloor+\left\lfloor\frac{qx}{2}\right\rfloor+\left\lfloor\frac{py}{2}\right\rfloor (5.4)
=(2.7)f(p+q+z+x)f(x)x(p+q+z)2+zx2+zy2+y2\displaystyle\overset{\eqref{equalities2.5}}{=}f(p+q+z+x)-f(x)-\left\lceil\frac{x(p+q+z)}{2}\right\rceil+\left\lfloor\frac{zx}{2}\right\rfloor+\left\lceil\frac{zy}{2}\right\rceil+\left\lfloor\frac{y}{2}\right\rfloor
+qx2+py2\displaystyle\qquad+\left\lfloor\frac{qx}{2}\right\rfloor+\left\lfloor\frac{py}{2}\right\rfloor
(2.5)f(p+q+z+x)+zy2+y2+py2\displaystyle\overset{\eqref{equalities2.3}}{\leq}f(p+q+z+x)+\left\lceil\frac{zy}{2}\right\rceil+\left\lfloor\frac{y}{2}\right\rfloor+\left\lfloor\frac{py}{2}\right\rfloor (5.5)
(2.7)f(p+q+z+x+y)f(y)y(p+q+z+x)2+zy2+y2+py2\displaystyle\overset{\eqref{equalities2.5}}{\leq}f(p+q+z+x+y)-f(y)-\left\lceil\frac{y(p+q+z+x)}{2}\right\rceil+\left\lceil\frac{zy}{2}\right\rceil+\left\lfloor\frac{y}{2}\right\rfloor+\left\lfloor\frac{py}{2}\right\rfloor
f(p+q+z+x+y)(y(p+q+z+x)2zy2py2)\displaystyle\leq f(p+q+z+x+y)-\left(\left\lceil\frac{y(p+q+z+x)}{2}\right\rceil-\left\lceil\frac{zy}{2}\right\rceil-\left\lfloor\frac{py}{2}\right\rfloor\right) (5.6)
(2.5)f(p+q+z+x+y).\displaystyle\overset{\eqref{equalities2.3}}{\leq}f(p+q+z+x+y).

Since f(x)f(x) is an increasing function and p+q+z+x+yt+1p+q+z+x+y\leq t+1,

(t+222)+(t+222)γ2(G)e(X~)+e(Y~)f(t+1)=(2.6)(t+222)+(t+222).\binom{\lfloor\frac{t+2}{2}\rfloor}{2}+\binom{\lceil\frac{t+2}{2}\rceil}{2}\leq\gamma_{2}(G)\leq e(\tilde{X})+e(\tilde{Y})\leq f(t+1)\overset{\eqref{equalities2.6}}{=}\binom{\lfloor\frac{t+2}{2}\rfloor}{2}+\binom{\lceil\frac{t+2}{2}\rceil}{2}.

Then we have equality in (5.4), (5.5), (5.6) and

p+q+z+x+y=t+1.\displaystyle p+q+z+x+y=t+1. (5.7)

It follows that

z2=0,f(x)=0,f(y)=y2.\left\lfloor\frac{z}{2}\right\rfloor=0,\ f(x)=0,\ f(y)=\left\lfloor\frac{y}{2}\right\rfloor.

Hence z1z\leq 1, x1x\leq 1 and y2y\leq 2.

Recall that (B0,B11,B12,X2,Y2)(B_{0},B_{11},B_{12},X_{2},Y_{2}) is partition of BB and |B0|=z1|B_{0}|=z\leq 1. Let us define a different partition of B11B_{11} and B12B_{12}. Let X11=vY2N(v,B11)X_{11}^{*}=\cup_{v\in Y_{2}}N(v,B_{11}) and Y12=uX2N(u,B12)Y_{12}^{*}=\cup_{u\in X_{2}}N(u,B_{12}). Set |B11X11|=p1|B_{11}\setminus X_{11}^{*}|=p_{1}, |X11|=p2|X_{11}^{*}|=p_{2}, |B12Y12|=q1|B_{12}\setminus Y_{12}^{*}|=q_{1} and |Y12|=q2|Y_{12}^{*}|=q_{2}. Clearly, p=p1+p2p=p_{1}+p_{2} and q=q1+q2q=q_{1}+q_{2}. We partition B11X11B_{11}\setminus X_{11}^{*} into X11X_{11}^{\prime} and Y11Y_{11}^{\prime} such that |X11|=p12|X_{11}^{\prime}|=\left\lceil\frac{p_{1}}{2}\right\rceil and |X12|=p12|X_{12}^{\prime}|=\left\lfloor\frac{p_{1}}{2}\right\rfloor. Similarly, we partition B12Y12B_{12}\setminus Y_{12}^{*} into X12X_{12}^{\prime} and Y12Y_{12}^{\prime} such that |X12|=q12|X_{12}^{\prime}|=\left\lfloor\frac{q_{1}}{2}\right\rfloor and |Y12|=q12|Y_{12}^{\prime}|=\left\lceil\frac{q_{1}}{2}\right\rceil. Let

X=X11X11X12X2XB0,Y=Y11Y12Y12Y2Y.X^{\prime}=X_{11}^{\prime}\cup X_{11}^{*}\cup X_{12}^{\prime}\cup X_{2}\cup X\cup B_{0},\ Y^{\prime}=Y_{11}^{\prime}\cup Y_{12}^{*}\cup Y_{12}^{\prime}\cup Y_{2}\cup Y.

Clearly, (X,Y)(X^{\prime},Y^{\prime}) is also a bi-partition of V(G)V(G) (as shown in Figure 2) and γ2(G)e(X)+e(Y)\gamma_{2}(G)\leq e(X^{\prime})+e(Y^{\prime}).

Refer to captionp12\left\lceil\frac{p_{1}}{2}\right\rceilB11B_{11}B12B_{12}Y2Y_{2}p12\left\lfloor\frac{p_{1}}{2}\right\rfloorp2p_{2}q2q_{2}q12\left\lfloor\frac{q_{1}}{2}\right\rfloorq12\left\lceil\frac{q_{1}}{2}\right\rceilxxyyX2X_{2}XXYYzzB0B_{0}X11X_{11}^{\prime}Y11Y_{11}^{\prime}X11X_{11}^{*}Y12Y_{12}^{*}X12X_{12}^{\prime}Y12Y_{12}^{\prime}
Figure 2: The bi-partition (X,Y)(X^{\prime},Y^{\prime}) of V(G)V(G).
Claim 7.

If X11X_{11}^{*}\neq\emptyset, then X11X_{11}^{*} is an independent set and e(X11,X11)=0e(X_{11}^{\prime},X_{11}^{*})=0. Similarly, if Y12Y_{12}^{*}\neq\emptyset, then Y12Y_{12}^{*} is an independent set and e(Y12,Y12)=0e(Y_{12}^{*},Y_{12}^{\prime})=0.

Proof.

Suppose that there is an edge wvwv with wX11w\in X_{11}^{*} and vX11X11v\in X_{11}^{\prime}\cup X_{11}^{*}. By the definition of X11X_{11}^{*}, there exists uY2u\in Y_{2} such that uwE(G)uw\in E(G). Then uwvuwv be a path in BB. Note that deg(w,Y)=1\deg(w,Y)=1, deg(v,Y)=1\deg(v,Y)=1 and deg(u,X)2\deg(u,X)\geq 2. It leads to a contradiction with Lemma 3.2 (vi). Thus the claim holds. ∎

Claim 8.

p2+q2+x+y+z1p_{2}+q_{2}+x+y+z\leq 1.

Proof.

If z=1z=1, let B0={w}B_{0}=\{w\}, then by Lemma 3.2 (vi) we infer that e({w},B11X2)=0e(\{w\},B_{11}\cup X_{2})=0 or e({w},B12Y2)=0e(\{w\},B_{12}\cup Y_{2})=0. If e({w},B12Y2)=0e(\{w\},B_{12}\cup Y_{2})=0 then one can interchange XX and YY, X2X_{2} and Y2Y_{2}, X11X_{11}^{\prime} and Y12Y_{12}^{\prime}, X11X_{11}^{*} and Y12Y_{12}^{*}, X12X_{12}^{\prime} and Y11Y_{11}^{\prime}. Thus by symmetry we may assume that e({w},B11X2)=0e(\{w\},B_{11}\cup X_{2})=0. If z=0z=0 then e(B0,B11X2)=0e(B_{0},B_{11}\cup X_{2})=0 and e(B0,B12Y2)=0e(B_{0},B_{12}\cup Y_{2})=0 are obvious. Thus in either case we may assume that e(B0,B11X2)=0e(B_{0},B_{11}\cup X_{2})=0.

By Claim 7, e(X11,X11)=0e(X_{11}^{\prime},X_{11}^{*})=0. By Claim 6 we have e(B11,X2)=0e(B_{11},X_{2})=0. By the definition of Y12Y_{12}^{*} we have e(X12,X2)=0e(X_{12}^{\prime},X_{2})=0. Using e(B0,X)=0e(B_{0},X)=0, (5.3) and by Claim 5, Claim 7, we arrive at

e(X)=e(X11)+e(X12)+e(X11,X12)+e(X11,X12)+e(X12,X)+e(B0,X12).e(X^{\prime})=e(X_{11}^{\prime})+e(X_{12}^{\prime})+e(X_{11}^{\prime},X_{12}^{\prime})+e(X_{11}^{*},X_{12}^{\prime})+e(X_{12}^{\prime},X)+e(B_{0},X_{12}^{\prime}).

Similarly, e(Y)=e(Y11)+e(Y12)+e(Y11,Y12)+e(Y11,Y12)+e(Y11,Y)e(Y^{\prime})=e(Y_{11}^{\prime})+e(Y_{12}^{\prime})+e(Y_{11}^{\prime},Y_{12}^{*})+e(Y_{11}^{\prime},Y_{12}^{\prime})+e(Y_{11}^{\prime},Y).

Since X11,Y11X_{11}^{\prime},Y_{11}^{\prime} is almost balanced partition of p1p_{1} vertices, we infer that e(X11)+e(Y11)(p12)p124e(X_{11}^{\prime})+e(Y_{11}^{\prime})\leq\binom{p_{1}}{2}-\lfloor\frac{p_{1}^{2}}{4}\rfloor. Note that each vertex in Y11Y_{11}^{\prime} has exactly one neighbor in YY. Thus,

e(X11)+e(Y11)+e(Y11,Y)(p12)p124+p12=f(p1).\displaystyle e(X_{11}^{\prime})+e(Y_{11}^{\prime})+e(Y_{11}^{\prime},Y)\leq\binom{p_{1}}{2}-\left\lfloor\frac{p_{1}^{2}}{4}\right\rfloor+\left\lfloor\frac{p_{1}}{2}\right\rfloor=f(p_{1}). (5.8)

Similarly,

e(X12)+e(Y12)+e(X12,X)f(q1).\displaystyle e(X_{12}^{\prime})+e(Y_{12}^{\prime})+e(X_{12}^{\prime},X)\leq f(q_{1}). (5.9)

It is easy to see that

e(X11,X12)+e(Y11,Y12)p12q12+p12q12(2.1)p1q12,\displaystyle e(X_{11}^{\prime},X_{12}^{\prime})+e(Y_{11}^{\prime},Y_{12}^{\prime})\leq\left\lceil\frac{p_{1}}{2}\right\rceil\left\lfloor\frac{q_{1}}{2}\right\rfloor+\left\lfloor\frac{p_{1}}{2}\right\rfloor\left\lceil\frac{q_{1}}{2}\right\rceil\overset{\eqref{equalities2.1-1}}{\leq}\left\lfloor\frac{p_{1}q_{1}}{2}\right\rfloor, (5.10)
e(X11,X12)p2q12,e(Y11,Y12)p12q2\displaystyle e(X_{11}^{*},X_{12}^{\prime})\leq p_{2}\left\lfloor\frac{q_{1}}{2}\right\rfloor,\ e(Y_{11}^{\prime},Y_{12}^{*})\leq\left\lfloor\frac{p_{1}}{2}\right\rfloor q_{2} (5.11)

and e({w},X12)zq12e(\{w\},X_{12}^{\prime})\leq z\left\lfloor\frac{q_{1}}{2}\right\rfloor. Adding (5.8), (5.9),(5.10) and (5.11), we get

γ2(G)\displaystyle\gamma_{2}(G) e(X11)+e(Y11)+e(Y11,Y)+e(X12)+e(Y12)+e(X12,X)+e(X11,X12)\displaystyle\leq e(X_{11}^{\prime})+e(Y_{11}^{\prime})+e(Y_{11}^{\prime},Y)+e(X_{12}^{\prime})+e(Y_{12}^{\prime})+e(X_{12}^{\prime},X)+e(X_{11}^{\prime},X_{12}^{\prime})
+e(Y11,Y12)+e(X11,X12)+e(Y11,Y12)+e({w},X12)\displaystyle+e(Y_{11}^{\prime},Y_{12}^{\prime})+e(X_{11}^{*},X_{12}^{\prime})+e(Y_{11}^{\prime},Y_{12}^{*})+e(\{w\},X_{12}^{\prime})
f(p1)+f(q1)+p1q12+p2q12+p12q2+zq12\displaystyle\leq f(p_{1})+f(q_{1})+\left\lfloor\frac{p_{1}q_{1}}{2}\right\rfloor+p_{2}\left\lfloor\frac{q_{1}}{2}\right\rfloor+\left\lfloor\frac{p_{1}}{2}\right\rfloor q_{2}+z\left\lfloor\frac{q_{1}}{2}\right\rfloor
(2.7)f(p1+q1)+p2q12+p12q2+zq12\displaystyle\overset{\eqref{equalities2.5}}{\leq}f(p_{1}+q_{1})+p_{2}\left\lfloor\frac{q_{1}}{2}\right\rfloor+\left\lfloor\frac{p_{1}}{2}\right\rfloor q_{2}+z\left\lfloor\frac{q_{1}}{2}\right\rfloor (5.12)
(2.7)f(p1+q1+p2+q2+x+y+z)f(p2+q2+x+y+z)\displaystyle\overset{\eqref{equalities2.5}}{\leq}f(p_{1}+q_{1}+p_{2}+q_{2}+x+y+z)-f(p_{2}+q_{2}+x+y+z)
(p1+q1)(p2+q2+x+y+z)2+p2q12+p12q2+zq12\displaystyle-\left\lceil\frac{(p_{1}+q_{1})(p_{2}+q_{2}+x+y+z)}{2}\right\rceil+p_{2}\left\lfloor\frac{q_{1}}{2}\right\rfloor+\left\lfloor\frac{p_{1}}{2}\right\rfloor q_{2}+z\left\lfloor\frac{q_{1}}{2}\right\rfloor

Since

(p1+q1)(p2+q2+x+y+z)2(2.5)q1p22+p1q22+q1z2(2.3)p2q12+p12q2+zq12,\left\lceil\frac{(p_{1}+q_{1})(p_{2}+q_{2}+x+y+z)}{2}\right\rceil\overset{\eqref{equalities2.3}}{\geq}\left\lfloor\frac{q_{1}p_{2}}{2}\right\rfloor+\left\lfloor\frac{p_{1}q_{2}}{2}\right\rfloor+\left\lfloor\frac{q_{1}z}{2}\right\rfloor\overset{\eqref{equalities2.2}}{\geq}p_{2}\left\lfloor\frac{q_{1}}{2}\right\rfloor+\left\lfloor\frac{p_{1}}{2}\right\rfloor q_{2}+z\left\lfloor\frac{q_{1}}{2}\right\rfloor,

we conclude that γ2(G)f(t+1)f(p2+q2+x+y+z)f(t+1)\gamma_{2}(G)\leq f(t+1)-f(p_{2}+q_{2}+x+y+z)\leq f(t+1) and equality holds if and only if p2+q2+x+y+z1p_{2}+q_{2}+x+y+z\leq 1. ∎

Claim 9.

z=0z=0.

Proof.

By Claim 8, p2+q2+x+y+z1p_{2}+q_{2}+x+y+z\leq 1. Suppose z=1z=1. Then p2+q2+x+y=0p_{2}+q_{2}+x+y=0. Since GBG-B is C2k+1C_{2k+1}-free, e(GB)(nt1)24e(G-B)\leq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor. Moreover, by (5.7) we infer e(B,GB)=p1+q1=te(B,G-B)=p_{1}+q_{1}=t and e(B)(t+12)e(B)\leq\binom{t+1}{2}. Thus

e(G)(nt1)24+(t+12)+t<(nt1)24+(t+22),e(G)\leq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+1}{2}+t<\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+2}{2},

contradicting (5.2). ∎

Claim 10.

x+y=0x+y=0.

Proof.

By Claim 8 we have p2+q2+x+y+z1p_{2}+q_{2}+x+y+z\leq 1. Suppose that x+y=1x+y=1. Then p2+q2+z=0p_{2}+q_{2}+z=0. By (5.7), p1+q1=tp_{1}+q_{1}=t. Using (5.12) we have

γ2(G)f(p1+q1)=f(t)<f(t+1),\displaystyle\gamma_{2}(G)\leq f(p_{1}+q_{1})=f(t)<f(t+1),

contradicting (5.1). ∎

By Claims 9 and 10, x=y=z=0x=y=z=0. Then X11=vY2N(v,B11)=X_{11}^{*}=\cup_{v\in Y_{2}}N(v,B_{11})=\emptyset and Y12=uX2N(u,B12)=Y_{12}^{*}=\cup_{u\in X_{2}}N(u,B_{12})=\emptyset, that is, p2=q2=0p_{2}=q_{2}=0. Therefore B=B11B12B=B_{11}\cup B_{12}.

Claim 11.

G[B]G[B] is a clique.

Proof.

Since e(B,XY)=e(B11,Y)+e(B12,X)|B11|+|B12|=t+1e(B,X\cup Y)=e(B_{11},Y)+e(B_{12},X)\leq|B_{11}|+|B_{12}|=t+1. Moreover, G[XY]G[X\cup Y] is bipartite and |X|+|Y|=nt1|X|+|Y|=n-t-1, we have e(XY)(nt1)24e(X\cup Y)\leq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor. By e(G)(nt1)24+(t+22)e(G)\geq\left\lfloor\frac{(n-t-1)^{2}}{4}\right\rfloor+\binom{t+2}{2}, we have

e(B)e(G)e(B,XY)e(XY)(t+22)(t+1)=(t+12).e(B)\geq e(G)-e(B,X\cup Y)-e(X\cup Y)\geq\binom{t+2}{2}-(t+1)=\binom{t+1}{2}.

Thus BB forms a clique in GG. ∎

Claim 12.

Either p=0p=0 or q=0q=0 holds.

Proof.

Suppose that p1p\geq 1 and q1q\geq 1. Then we show that |B|3|B|\geq 3. Otherwise, |B11|=|B12|=1|B_{11}|=|B_{12}|=1 and it follows that GG is a bipartite. That is, γ2(G)=0<f(t+1)\gamma_{2}(G)=0<f(t+1), contradicting (5.1). By Claim 11 and p1p\geq 1, q1q\geq 1, we can find a path uwvuwv with uB11u\in B_{11}, vB12v\in B_{12} and wB11B12w\in B_{11}\cup B_{12}. Since deg(u,Y)=1\deg(u,Y)=1, deg(v,X)=1\deg(v,X)=1 and deg(w,XY)=1\deg(w,X\cup Y)=1, there exist xXx\in X and yYy\in Y such that vx,uyE(G)vx,uy\in E(G), contradicting Lemma 3.2 (vi). Thus the claim holds. ∎

Without loss generality, assume that p=0p=0. By (5.7) and Claims 9, 10 we obtain that q=t+1q=t+1. Similarly, if q=0q=0, then p=t+1p=t+1. That is, the equality (5.2) holds if and only if p=0p=0, q=t+1q=t+1 or p=t+1p=t+1, q=0q=0. That is, B=B11B=B_{11} or B=B12B=B_{12}. Recall that B11B12=B_{11}\cap B_{12}=\emptyset. For each uvE(B)uv\in E(B), there exists a unique vertex wuvGBw_{uv}\in G-B such that uwuv,vwuvE(G)uw_{uv},vw_{uv}\in E(G). Otherwise, one can find distinct vertices w1,w2w_{1},w_{2} in XX (or YY) such that uw1,vw2E(G)uw_{1},vw_{2}\in E(G), contradicting Lemma 3.2 (v). By Claim 11, BB forms a clique in GG. Thus, each vertex in BB is adjacent to the unique vertex in GBG-B. Hence GG is isomorphic to a subgraph of H(n,t)H(n,t). By the assumption (5.2) we infer that G=H(n,t)G=H(n,t) up to isomorphism and the theorem is proven. ∎

6 Concluding remarks

In this paper, we obtain an edge-stability result and a vertex-stability result for C2k+1C_{2k+1}-free graphs with at least (n2k+1)24+(2k2)\frac{(n-2k+1)^{2}}{4}+\binom{2k}{2} edges. It should be mention that Korándi, Roberts and Scott [12] proposed a challenging conjecture concerning C2k+1C_{2k+1}-free graphs with n24δn2\frac{n^{2}}{4}-\delta n^{2} edges.

For a graph FF, an FF-blowup is a graph obtained from FF by replacing each vertex with an independent set and replacing each edge by a complete bipartite graph. Let (n,k)\mathcal{B}(n,k) be a class of graphs consisting of all C2k+3C_{2k+3}-blowups on nn vertices.

Conjecture 6.1 ([12]).

Fixed k2k\geq 2 and let δ>0\delta>0 be small enough. Then for any δ>δ0>0\delta>\delta_{0}>0 and large enough nn, the following holds. For every C2k+1C_{2k+1}-free graph GG on nn vertices with (14δ0)n2e(G)(14δ)n2(\frac{1}{4}-\delta_{0})n^{2}\geq e(G)\geq(\frac{1}{4}-\delta)n^{2} edges, there is a graph G(n,k)G^{*}\in\mathcal{B}(n,k) satisfying e(G)e(G)e(G^{*})\geq e(G) and γ2(G)γ2(G)\gamma_{2}(G^{*})\geq\gamma_{2}(G).

We define a class of graphs 𝒢(n,k)\mathcal{G}(n,k) on nn vertices as follows: a graph GG on nn vertices is in 𝒢(n,k)\mathcal{G}(n,k) if GG has exactly one block (2-connected component) being complete bipartite and all the other blocks are cliques of size at most 2k2k.

Motivated by Theorem 1.4 and Conjecture 6.1, we make the following conjecture.

Conjecture 6.2.

Fixed k2k\geq 2 and let δ>0\delta>0 be small enough. Then for any δ>0\delta>0 and large enough nn, the following holds. For every C2k+1C_{2k+1}-free graph GG on nn vertices with e(G)(14δ)n2e(G)\geq(\frac{1}{4}-\delta)n^{2} edges, there is a graph G(n,k)𝒢(n,k)G^{*}\in\mathcal{B}(n,k)\cup\mathcal{G}(n,k) satisfying e(G)e(G)e(G^{*})\geq e(G) and γ2(G)γ2(G)\gamma_{2}(G^{*})\geq\gamma_{2}(G).

References

  • [1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1979.
  • [2] B. Bollobás, E. Győri, Pentagons vs. triangles, Discrete Math. 308(19) (2008), 4332–4336.
  • [3] J. A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971), 80–84.
  • [4] J. A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971), 121–132.
  • [5] S. Brandt, R. Faudree, W. Goddard, Weakly pancyclic graphs. J. Graph Theory 27 (1998), 141-176.
  • [6] T. Dzido, A note on Turán numbers for even wheels, Graphs Combin. 29 (2013), 1305–1309.
  • [7] P. Erdős, L. Pósa, On the maximal number of disjoint circuits of a graph, Publicationes Mathematicae Debrecen, 9 (1962), 3–12.
  • [8] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar 10 (1959), 337–356.
  • [9] Z. Füredi, D.S. Gunderson, Extremal numbers for odd cycles, Combin. Probab. Comput. 24 (2015), 641–645.
  • [10] R. Ha̋ggkvist, R. J. Faudree, R. H. Schelp, Pancyclic graphs–connected Ramsey number, Ars Combin. 11 (1981), 37–49.
  • [11] G.R.T. Hendry, S. Brandt, An Extremal Problem for Cycles in Hamiltonian Graphs. Graphs Combin. 11 (1995), 255–262.
  • [12] D. Korándi, A. Roberts, A. Scott, Exact Stability for Turán’s Theorem, Advances in Combinatorics 9 (2021), 17 pp.
  • [13] W. Mantel, Problem 28, In Wiskundige Opgaven 10 (1907), 60–61.
  • [14] M. Simonovits, Extremal graph problems with symmetrical extremal graphs. Additional chromatic conditions, Discrete Math. 7 (1974), 349–376.
  • [15] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452.
  • [16] D. R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. 24 (1972), 739–755.