This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Shuffle Theorem for Paths Under Any Line

J. Blasiak M. Haiman J. Morse A. Pun  and  G. H. Seelinger Dept. of Mathematics
Drexel University
Philadelphia, PA
[email protected] Dept. of Mathematics
University of California
Berkeley, CA
[email protected] Dept. of Mathematics
University of Virginia
Charlottesville, VA
[email protected] Dept. of Mathematics
University of Virginia
Charlottesville, VA
[email protected] Dept. of Mathematics
University of Virginia
Charlottesville, VA
[email protected]
Abstract.

We generalize the shuffle theorem and its (km,kn)(km,kn) version, as conjectured by Haglund et al. and Bergeron et al., and proven by Carlsson and Mellit, and Mellit, respectively. In our version the (km,kn)(km,kn) Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose xx and yy intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula.

We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of GLl\operatorname{GL}_{l} characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for non-symmetric Hall-Littlewood polynomials.

2010 Mathematics Subject Classification:
Primary: 05E05; Secondary: 16T30
Authors were supported by NSF Grants DMS-1855784 (J. B.) and DMS-1855804 (J. M. and G. S.).

1. Introduction

1.1. Overview

The shuffle theorem, conjectured by Haglund et al. [15] and proven by Carlsson and Mellit [6], is a combinatorial formula for the symmetric polynomial ek\nabla e_{k} as a sum over LLT polynomials indexed by Dyck paths—that is, lattice paths from (0,k)(0,k) to (k,0)(k,0) that lie weakly below the line segment connecting these two points. Here eke_{k} is the kk-th elementary symmetric function, and \nabla is an operator on symmetric functions with coefficients in (q,t){\mathbb{Q}}(q,t) that arises in the theory of Macdonald polynomials [3].

The polynomial ek\nabla e_{k} is significant because it describes the character of the ring RkR_{k} of diagonal coinvariants for the symmetric group SkS_{k} [18, Proposition 3.5]. The character of RkR_{k} had been conjectured in the early 1990s to have surprising connections with the enumeration of combinatorial objects such as trees and Dyck paths—for instance, its dimension is equal to the number (k+1)k1(k+1)^{k-1} of rooted trees on k+1k+1 labelled vertices, and the multiplicity of the sign character is equal to the Catalan number CkC_{k}. A summary of these early conjectures, contributed by a number of people, can be found in [19]. More precisely, ek\nabla e_{k} describes the character of RkR_{k} as a doubly graded SkS_{k} module. The double grading in RkR_{k} thus gives rise to (q,t)(q,t)-analogs of the numbers that enumerate the associated combinatorial objects. The conjectures connect specializations of these (q,t)(q,t)-analogs with previously known qq-analogs in combinatorics.

Using results in [10], the whole suite of earlier combinatorial conjectures follows from the character formula ek\nabla e_{k} and the shuffle theorem.

Along with the formula for ek\nabla e_{k} given by the shuffle theorem, Haglund et al. conjectured a combinatorial formula for mek\nabla^{m}e_{k} as a sum over LLT polynomials indexed by lattice paths below the line segment from (0,k)(0,k) to (km,0)(km,0). Extending this, Bergeron et al. [4] conjectured, and Mellit [27] proved, an identity giving the symmetric polynomial ek[MXm,n]1e_{k}[-MX^{m,n}]\cdot 1 as a sum over LLT polynomials indexed by lattice paths below the segment from (0,kn)(0,kn) to (km,0)(km,0), for any pair of positive integers expressed in the form (km,kn)(km,kn) with m,nm,n coprime. Here we have written ek[MXm,n]e_{k}[-MX^{m,n}] for the operator on symmetric functions given by a certain element of the elliptic Hall algebra {\mathcal{E}} of Burban and Schiffmann [5], such that for n=1n=1 the symmetric polynomial ek[MXm,n]1e_{k}[-MX^{m,n}]\cdot 1 reduces to mek\nabla^{m}e_{k}. This notation is explained in §3.

In this paper we prove an even more general version of the shuffle theorem, involving a sum over LLT polynomials indexed by lattice paths lying under the line segment between arbitrary points (0,s)(0,s) and (r,0)(r,0) on the positive real axes, and reducing to the shuffle theorem of Bergeron et al. and Mellit when (r,s)=(km,kn)(r,s)=(km,kn) are integers.

Our generalized shuffle theorem (Theorem 5.5.1) is an identity

(1) D𝐛1=λta(λ)qdinvp(λ)ω(𝒢ν(λ)(X;q1)),D_{{\mathbf{b}}}\cdot 1=\sum_{\lambda}t^{a(\lambda)}\,q^{\operatorname{dinv}_{p}(\lambda)}\,\omega({\mathcal{G}}_{\nu(\lambda)}(X;q^{-1})),

whose ingredients we now summarize briefly, deferring full details to later parts of the paper.

The sum on the right hand side of (1) is over lattice paths λ\lambda from (0,s)(0,\lfloor s\rfloor) to (r,0)(\lfloor r\rfloor,0) that lie below the line segment from (0,s)(0,s) to (r,0)(r,0). The quantity a(λ)a(\lambda) is the number of lattice squares enclosed between the path λ\lambda and the highest such path δ\delta. We set p=s/rp=s/r and define dinvp(λ)\operatorname{dinv}_{p}(\lambda) to be the number of ‘pp-balanced’ hooks in the (French style) Young diagram enclosed by λ\lambda and the xx and yy axes. A hook is pp-balanced if a line of slope p-p passes through the segments at the top of its leg and the end of its arm (Definition 5.4.1 and Figure 3).

In the remaining factor ω(𝒢ν(λ)(X;q1))\omega({\mathcal{G}}_{\nu(\lambda)}(X;q^{-1})), the function 𝒢ν(X;q){\mathcal{G}}_{\nu}(X;q) is an ‘attacking inversions’ LLT polynomial (Definition 4.1.1), and ω(hμ)=eμ\omega(h_{\mu})=e_{\mu} is the standard involution on symmetric functions. The index ν(λ)\nu(\lambda) is a tuple of one-row skew Young diagrams of the same lengths as runs of contiguous south steps in λ\lambda, arranged so that the reading order on boxes of ν(λ)\nu(\lambda) corresponds to the ordering on south steps in λ\lambda given by decreasing values of y+pxy+px at the upper endpoint of each step.

The operator D𝐛=Db1,,blD_{{\mathbf{b}}}=D_{b_{1},\ldots,b_{l}} on the left hand side of (1) is one of a family of special elements defined by Negut [29] in the Schiffmann algebra {\mathcal{E}}. Letting δ\delta again denote the highest path under the given line segment, the index 𝐛{\mathbf{b}} is defined by taking bib_{i} to be the number of south steps in δ\delta on the line x=i1x=i-1.

To recover the previously known cases of the theorem, we take s=kns=kn and rr slightly larger than kmkm, so p=n/mϵp=n/m-\epsilon for a small ϵ>0\epsilon>0. The segment from (0,s)(0,s) to (r,0)(r,0) has the same lattice paths below it as the segment from (0,kn)(0,kn) to (km,0)(km,0), and dinvp(λ)\operatorname{dinv}_{p}(\lambda) reduces to the version of dinv(λ)\operatorname{dinv}(\lambda) in the original conjectures. The element D𝐛D_{{\mathbf{b}}} associated to the highest path δ\delta below the segment from (0,kn)(0,kn) to (km,0)(km,0) is equal to ek[MXm,n]e_{k}[-MX^{m,n}]. Hence, (1) reduces to the (km,kn)(km,kn) shuffle theorem.

1.2. Preview of the proof

We prove our generalized shuffle theorem by a remarkably simple method, which we now outline to help orient the reader in following the details. In §3 we will see that the left hand side of (1), after applying ω\omega and evaluating in l=r+1l=\lfloor r\rfloor+1 variables x1,,xlx_{1},\ldots,x_{l}, becomes the polynomial part

(2) ω(D𝐛1)(x1,,xl)=𝐛(x)pol\omega(D_{{\mathbf{b}}}\cdot 1)(x_{1},\ldots,x_{l})={\mathcal{H}}_{{\mathbf{b}}}(x)_{\operatorname{pol}}

of an explicit infinite series of GLl\operatorname{GL}_{l} characters

(3) 𝐛(x)=wSlw(x1b1xlbli+1<j(1qtxi/xj)i<j((1xj/xi)(1qxi/xj)(1txi/xj))).{\mathcal{H}}_{{\mathbf{b}}}(x)=\sum_{w\in S_{l}}w\left(\frac{x_{1}^{b_{1}}\cdots x_{l}^{b_{l}}\,\prod_{i+1<j}(1-q\,t\,x_{i}/x_{j})}{\prod_{i<j}\bigl{(}(1-x_{j}/x_{i})(1-q\,x_{i}/x_{j})(1-t\,x_{i}/x_{j})\bigr{)}}\right).

When ν\nu is a tuple of one-row skew shapes (βi)/(αi)(\beta_{i})/(\alpha_{i}), the LLT polynomial 𝒢ν(x;q1){\mathcal{G}}_{\nu}(x;q^{-1}) is equal, up to a factor of the form qdq^{d}, to the polynomial part of an infinite GLl\operatorname{GL}_{l} character series

(4) qd𝒢ν(x;q1)=β/α(x;q)polq^{d}\,{\mathcal{G}}_{\nu}(x;q^{-1})={\mathcal{L}}_{\beta/\alpha}(x;q)_{\operatorname{pol}}

defined by Grojnowski and the second author [13]. In Theorem 5.3.1 we establish an identity of infinite series

(5) 𝐛(x)=a1,,al10t|𝐚|((bl,,b1)+(0;𝐚))/(𝐚;0)σ(x;q),{\mathcal{H}}_{{\mathbf{b}}}(x)=\sum_{a_{1},\ldots,a_{l-1}\geq 0}t^{|{\mathbf{a}}|}{\mathcal{L}}^{\sigma}_{((b_{l},\ldots,b_{1})+(0;{\mathbf{a}}))/({\mathbf{a}};0)}(x;q),

where β/ασ(x;q){\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q) is a ‘twisted’ variant of β/α(x;q){\mathcal{L}}_{\beta/\alpha}(x;q) (see §4). Then (1) follows once we see that the polynomial part of the right hand side of (5) is equal to the right hand side of (1) with the ω\omega omitted.

In fact, (4) holds when αiβi\alpha_{i}\leq\beta_{i} for all ii, and otherwise β/α(x;q)pol=0{\mathcal{L}}_{\beta/\alpha}(x;q)_{\operatorname{pol}}=0. When we take the polynomial part in (5), this leaves a non-vanishing term t|𝐚|qd𝒢ν(λ)(x;q1)t^{|{\mathbf{a}}|}q^{d}{\mathcal{G}}_{\nu(\lambda)}(x;q^{-1}) for each path λ\lambda under the given line segment, with 𝐚{\mathbf{a}} giving the number of lattice squares in each column between λ\lambda and the highest path δ\delta, so t|𝐚|=ta(λ)t^{|{\mathbf{a}}|}=t^{a(\lambda)}. The factor qdq^{d} from (4) turns out to be precisely qdinvp(λ)q^{\operatorname{dinv}_{p}(\lambda)}, yielding (1).

Finally, the infinite series identity (5) from Theorem 5.3.1 is essentially a corollary to a Cauchy identity for non-symmetric Hall-Littlewood polynomials, Theorem 5.1.1. This Cauchy formula is quite general and can be applied in other situations, some of which we will take up elsewhere.

1.3. Further remarks

(i) The conjectures in [4, 15] and proofs in [6, 27] use a version of dinv(λ)\operatorname{dinv}(\lambda) that coincides with dinvp(λ)\operatorname{dinv}_{p}(\lambda) for p=n/mϵp=n/m-\epsilon. Alternatively, one can tilt the segment from (0,kn)(0,kn) to (km,0)(km,0) in the other direction, taking r=kmr=km and ss slightly larger than knkn, to get a version of the original conjectures with a variant of dinv(λ)\operatorname{dinv}(\lambda) that coincides with dinvp(λ)\operatorname{dinv}_{p}(\lambda) for p=n/m+ϵp=n/m+\epsilon. Our theorem implies this version as well.

(ii) Haglund, Zabrocki and the third author [16] formulated a ‘compositional’ generalization of the original shuffle conjecture, in which the sum over Dyck paths is decomposed into partial sums over paths touching the diagonal at specified points. Bergeron et al. also gave a compositional form of their (km,kn)(km,kn) shuffle conjecture in [4]. The proofs by Carlsson and Mellit [6] and Mellit [27] include the compositional forms of the conjectures, and indeed this seems to be essential to their methods.

Our results here do not cover the compositional shuffle theorems. For the generalization to paths under any line, it is not yet clear whether something like a compositional extension is possible or what form it might take.

(iii) By [15, Proposition 5.3.1], the LLT polynomials 𝒢ν(λ)(x;q){\mathcal{G}}_{\nu(\lambda)}(x;q) in (1) are qq Schur positive, meaning that their coefficients in the basis of Schur functions belong to [q]{\mathbb{N}}[q]. The right hand side of (1) is therefore q,tq,t Schur positive. In the cases corresponding to the (km,kn)(km,kn) shuffle theorem for k=1k=1, this can also be seen from the representation theoretic interpretation of the right hand side given by Hikita [20].

Identity (1) therefore implies that the expression D𝐛1D_{{\mathbf{b}}}\cdot 1 on the left hand side is q,tq,t Schur positive. In the cases where the left hand side coincides with mek\nabla^{m}e_{k}, this can be explained using the representation theoretic interpretations of ek\nabla e_{k} in [18] and mek\nabla^{m}e_{k} in [15, Proposition 6.1.1]. In §7 we conjecture a more general condition for D𝐛1D_{{\mathbf{b}}}\cdot 1 to be q,tq,t Schur positive.

(iv) The algebraic left hand side of (1) is manifestly symmetric in qq and tt. Hence, the combinatorial right hand side is also symmetric in qq and tt. No direct combinatorial proof of this symmetry is currently known.

2. Symmetric functions and GLl\operatorname{GL}_{l} characters

This section serves to fix notation and terminology for standard notions concerning symmetric functions and characters of the general linear groups GLl\operatorname{GL}_{l}.

2.1. Symmetric functions

Integer partitions are written λ=(λ1λl)\lambda=(\lambda_{1}\geq\cdots\geq\lambda_{l}), possibly with trailing zeroes. We set |λ|=λ1++λl|\lambda|=\lambda_{1}+\cdots+\lambda_{l} and let (λ)\ell(\lambda) be the number of non-zero parts. We also define

(6) n(λ)=i(i1)λi.n(\lambda)=\sum_{i}(i-1)\lambda_{i}.

The transpose of λ\lambda is denoted λ\lambda^{*}.

The partitions of a given integer nn are partially ordered by

(7) λμifλ1++λkμ1++μk for all k,\lambda\leq\mu\quad\text{if}\quad\lambda_{1}+\cdots+\lambda_{k}\leq\mu_{1}+\cdots+\mu_{k}\text{ for all $k$},

where the sums include trailing zeroes for k>(λ)k>\ell(\lambda) or k>(μ)k>\ell(\mu).

The (French style) Young or Ferrers diagram of a partition λ\lambda is the set of lattice points {(i,j)1j(λ), 1iλj}\{(i,j)\mid 1\leq j\leq\ell(\lambda),\;1\leq i\leq\lambda_{j}\}. We often identify λ\lambda and its diagram with the set of lattice squares, or boxes, with northeast corner at a point (i,j)λ(i,j)\in\lambda. A skew diagram (or skew shape) λ/μ\lambda/\mu is the difference between the diagram of a partition λ\lambda and that of a partition μλ\mu\subseteq\lambda contained in it. The diagram generator of λ\lambda is the polynomial

(8) Bλ(q,t)=(i,j)λqi1tj1.B_{\lambda}(q,t)=\sum_{(i,j)\in\lambda}q^{i-1}\,t^{j-1}.

Let Λ=Λ𝐤(X)\Lambda=\Lambda_{{\mathbf{k}}}(X) be the algebra of symmetric functions in an infinite alphabet of variables X=x1,x2,X=x_{1},x_{2},\ldots, with coefficients in the field 𝐤=(q,t){\mathbf{k}}={\mathbb{Q}}(q,t). We follow Macdonald’s notation [25] for various graded bases of Λ\Lambda, such as the elementary symmetric functions eλ=eλ1eλke_{\lambda}=e_{\lambda_{1}}\cdots e_{\lambda_{k}}, complete homogeneous symmetric functions hλ=hλ1hλkh_{\lambda}=h_{\lambda_{1}}\cdots h_{\lambda_{k}}, power-sums pλ=pλ1pλkp_{\lambda}=p_{\lambda_{1}}\cdots p_{\lambda_{k}}, monomial symmetric functions mλm_{\lambda} and Schur functions sλs_{\lambda}. The involutory 𝐤{\mathbf{k}}-algebra automorphism ω:ΛΛ\omega\colon\Lambda\rightarrow\Lambda mentioned in the introduction may be defined by any of the formulas

(9) ωek=hk,ωhk=ek,ωpk=(1)k1pk,ωsλ=sλ.\omega\,e_{k}=h_{k},\quad\omega\,h_{k}=e_{k},\quad\omega\,p_{k}=(-1)^{k-1}p_{k},\quad\omega\,s_{\lambda}=s_{\lambda^{*}}.

We also need the symmetric bilinear inner product ,\langle-,-\rangle on Λ\Lambda defined by any of

(10) sλ,sμ=δλ,μ,hλ,mμ=δλ,μ,pλ,pμ=zλδλ,μ,\langle s_{\lambda},s_{\mu}\rangle=\delta_{\lambda,\mu},\qquad\langle h_{\lambda},m_{\mu}\rangle=\delta_{\lambda,\mu},\qquad\langle p_{\lambda},p_{\mu}\rangle=z_{\lambda}\,\delta_{\lambda,\mu},

where zλ=iri!iriz_{\lambda}=\prod_{i}r_{i}!\,i^{r_{i}} if λ=(1r1,2r2,)\lambda=(1^{r_{1}},2^{r_{2}},\ldots).

We write ff^{\bullet} for the operator of multiplication by a function ff. Otherwise, the custom of writing ff for both the operator and the function would make it hard to distinguish between operator expressions such as (ωf)(\omega f)^{\bullet} and ωf\omega\cdot f^{\bullet}. When ff is a symmetric function, we write ff^{\perp} for the ,\langle-,-\rangle adjoint of ff^{\bullet}.

2.2.

We briefly recall the device of plethystic evaluation. If AA is an expression in terms of indeterminates, such as a polynomial, rational function, or formal series, we define pk[A]p_{k}[A] to be the result of substituting aka^{k} for every indeterminate aa occurring in AA. We define f[A]f[A] for any fΛf\in\Lambda by substituting pk[A]p_{k}[A] for pkp_{k} in the expression for ff as a polynomial in the power-sums pkp_{k}, so that ff[A]f\mapsto f[A] is a homomorphism.

The variables q,tq,t from our ground field 𝐤{\mathbf{k}} count as indeterminates.

As a simple example, the plethystic evaluation f[x1++xl]f[x_{1}+\cdots+x_{l}] is just the ordinary evaluation f(x1,,xl)f(x_{1},\ldots,x_{l}), since pk[x1++xl]=x1k++xlkp_{k}[x_{1}+\cdots+x_{l}]=x_{1}^{k}+\cdots+x_{l}^{k}. This also works in infinitely many variables.

When X=x1,x2,X=x_{1},x_{2},\ldots is the name of an infinite alphabet of variables, we use f(X)f(X), with round brackets, as an abbreviation for f(x1,x2,)Λ(X)f(x_{1},x_{2},\ldots)\in\Lambda(X). In this situation we also make the convention that when XX appears inside plethystic brackets, it means X=x1+x2+X=x_{1}+x_{2}+\cdots. With this convention, f[X]f[X] is another way of writing f(X)f(X).

As a second example and caution to the reader, the formula in (9) for ωpk\omega\,p_{k} implies the identity ωf(X)=f[zX]|z=1\omega f(X)=f[-zX]|_{z=-1}. Note that f[zX]|z=1f[-zX]|_{z=-1} does not reduce to f(X)f(X), as it might at first appear, since specializing the indeterminate zz to a number does not commute with plethystic evaluation.

Plethystic evaluation of a symmetric infinite series is allowed if the result converges as a formal series. The series

(11) Ω=1+k>0hk=expk>0pkk,orΩ[a1+a2+b1b2]=i(1bi)i(1ai)\Omega=1+\sum_{k>0}h_{k}=\exp\sum_{k>0}\frac{p_{k}}{k},\quad\text{or}\quad\Omega[a_{1}+a_{2}+\cdots-b_{1}-b_{2}-\cdots]=\frac{\prod_{i}(1-b_{i})}{\prod_{i}(1-a_{i})}

is particularly useful. The classical Cauchy identity can be written using this notation as

(12) Ω[XY]=λsλ[X]sλ[Y].\Omega[XY]=\sum_{\lambda}s_{\lambda}[X]s_{\lambda}[Y].

Taking the inner product with f(X)f(X) in (12) yields f[A]=Ω[AX],f(X)f[A]=\langle\Omega[AX],f(X)\rangle, which implies

(13) Ω[AX]Ω[BX],f(X)=f[A+B]=Ω[BX],f[X+A].\langle\Omega[AX]\Omega[BX],f(X)\rangle=f[A+B]=\langle\Omega[BX],f[X+A]\rangle.

As BB is arbitrary, Ω[BX]\Omega[BX] is in effect a general symmetric function, so (13) implies

(14) Ω[AX]f(X)=f[X+A].\Omega[AX]^{\perp}f(X)=f[X+A].

Note that although Ω[AX]=khk[AX]\Omega[AX]^{\perp}=\sum_{k}h_{k}[AX]^{\perp} is an infinite series, it converges formally as an operator applied to any fΛ(X)f\in\Lambda(X), since hk[AX]h_{k}[AX]^{\perp} has degree k-k, and so kills ff for k0k\gg 0.

Identifying Λ\Lambda with a polynomial ring in the power-sums pkp_{k}, we have

(15) pk=kpk.p_{k}^{\perp}=k\frac{\partial}{\partial p_{k}}.

In fact, taking A=zA=z and f=pkf=p_{k} in (14) shows that exp((pkzk)/k)\exp(\sum(p_{k}^{\perp}z^{k})/k) is the operator that substitutes pk+zkp_{k}+z^{k} for pkp_{k} in any polynomial f(p1,p2,)f(p_{1},p_{2},\ldots). This operator can also be written exp(zkpk)\exp(\sum z^{k}\frac{\partial}{\partial p_{k}}), giving (15).

Another consequence of (14) is the operator identity

(16) Ω[AX]Ω[BX]=Ω[AB]Ω[BX]Ω[AX]\Omega[AX]^{\perp}\,\Omega[BX]^{\bullet}=\Omega[AB]\,\Omega[BX]^{\bullet}\,\Omega[AX]^{\perp}

with notation Ω[BX]\Omega[BX]^{\bullet} as in §2.1.

2.3. GLl\operatorname{GL}_{l} characters

The weight lattice of GLl\operatorname{GL}_{l} is X=lX={\mathbb{Z}}^{l}, with Weyl group W=SlW=S_{l} permuting the coordinates. Letting ε1,,εl\varepsilon_{1},\ldots,\varepsilon_{l} be unit vectors, the positive roots are εiεj\varepsilon_{i}-\varepsilon_{j} for i<ji<j, with simple roots αi=εiεi+1\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1} for i=1,,l1i=1,\ldots,l-1. The standard pairing on l{\mathbb{Z}}^{l} in which the εi\varepsilon_{i} are orthonormal identifies the dual lattice XX^{*} with XX. Under this identification, the coroots coincide with the roots, and the simple coroots αi\alpha_{i}^{\vee} with the simple roots. A weight λl\lambda\in{\mathbb{Z}}^{l} is dominant if λ1λl\lambda_{1}\geq\cdots\geq\lambda_{l}; a weight is regular (has trivial stabilizer in SlS_{l}) if λ1,,λl\lambda_{1},\ldots,\lambda_{l} are distinct.

A polynomial weight is a dominant weight λ\lambda such that λl0\lambda_{l}\geq 0. In other words, polynomial weights of GLl\operatorname{GL}_{l} are integer partitions of length at most ll.

The algebra of virtual GLl\operatorname{GL}_{l} characters (𝐤X)W({\mathbf{k}}X)^{W} can be identified with the algebra of symmetric Laurent polynomials 𝐤[x1±1,,xl±1]Sl{\mathbf{k}}[x_{1}^{\pm 1},\ldots,x_{l}^{\pm 1}]^{S_{l}}. If λ\lambda is a polynomial weight, the irreducible character χλ\chi_{\lambda} is equal to the Schur function sλ(x1,,xl)s_{\lambda}(x_{1},\ldots,x_{l}). Given a virtual GLl\operatorname{GL}_{l} character f(x)=f(x1,,xl)=λcλχλf(x)=f(x_{1},\dots,x_{l})=\sum_{\lambda}c_{\lambda}\chi_{\lambda}, we denote the partial sum over polynomial weights λ\lambda by f(x)polf(x)_{\operatorname{pol}}. Thus, f(x)polf(x)_{\operatorname{pol}} is a symmetric polynomial in ll variables. We also use this notation for infinite formal sums f(x)f(x) of irreducible GLl\operatorname{GL}_{l} characters, in which case f(x)polf(x)_{\operatorname{pol}} is a symmetric formal power series.

The Weyl symmetrization operator for GLl\operatorname{GL}_{l} is

(17) 𝝈f(x1,,xl)=wSlw(f(x)i<j(1xj/xi)).{\boldsymbol{\sigma}}\,f(x_{1},\ldots,x_{l})=\sum_{w\in S_{l}}w\left(\frac{f(x)}{\prod_{i<j}(1-x_{j}/x_{i})}\right).

For dominant weights λ\lambda, the Weyl character formula can be written χλ=𝝈(xλ)\chi_{\lambda}={\boldsymbol{\sigma}}(x^{\lambda}).

Fix a weight ρ\rho such that αi,ρ=1\langle\alpha_{i}^{\vee},\rho\rangle=1 for each simple coroot αi\alpha_{i}^{\vee}, e.g., ρ=(l1,,1,0)\rho=(l-1,\ldots,1,0). Although ρ\rho is only unique up to adding a constant vector, all formulas in which ρ\rho appears will be independent of the choice. Let μ\mu be any weight, not necessarily dominant. If μ+ρ\mu+\rho is not regular, then 𝝈(xμ)=0{\boldsymbol{\sigma}}(x^{\mu})=0. Otherwise, if wSlw\in S_{l} is the unique permutation such that w(μ+ρ)=λ+ρw(\mu+\rho)=\lambda+\rho for λ\lambda dominant,

(18) 𝝈(xμ)=(1)(w)χλ.{\boldsymbol{\sigma}}(x^{\mu})=(-1)^{\ell(w)}\chi_{\lambda}.

The following identities are useful for working with the Weyl symmetrization operator.

Lemma 2.3.1.

For any GLl\operatorname{GL}_{l} weights λ,μ\lambda,\mu and Laurent polynomial ϕ(x)=ϕ(x1,,xl)\phi(x)=\phi(x_{1},\ldots,x_{l}), we have

(19) χλ¯i<j(1xi/xj)=wSl(1)(w)xw(λ+ρ)+ρ,\displaystyle\overline{\chi_{\lambda}}\,\prod_{i<j}(1-x_{i}/x_{j})=\sum_{w\in S_{l}}(-1)^{\ell(w)}x^{-w(\lambda+\rho)+\rho},
(20) χλ𝝈(ϕ(x))=x0χλ¯ϕ(x)i<j(1xi/xj),\displaystyle\langle\chi_{\lambda}\rangle\,{\boldsymbol{\sigma}}(\phi(x))=\langle x^{0}\rangle\,\overline{\chi_{\lambda}}\,\phi(x)\prod_{i<j}(1-x_{i}/x_{j}),
(21) 𝝈(xμ)pol=zμΩ[Z¯X]i<j(1zi/zj)\displaystyle{\boldsymbol{\sigma}}(x^{\mu})_{\operatorname{pol}}=\langle z^{-\mu}\rangle\Omega[\overline{Z}X]\,\prod_{i<j}(1-z_{i}/z_{j})

in alphabets X=x1++xlX=x_{1}+\cdots+x_{l} and Z=z1++zlZ=z_{1}+\cdots+z_{l}, where Z¯=z11++zl1\overline{Z}=z_{1}^{-1}+\cdots+z_{l}^{-1}.

Proof.

Identity (19) follows directly from the Weyl character formula. To prove (20), by linearity it suffices to verify the formula when ϕ(x)=xμ\phi(x)=x^{\mu} is any Laurent monomial. Then using (19), the right side becomes xμχλ¯i<j(1xi/xj)=xμwSl(1)(w)xw(λ+ρ)+ρ.\langle x^{-\mu}\rangle\,\overline{\chi_{\lambda}}\prod_{i<j}(1-x_{i}/x_{j})=\langle x^{-\mu}\rangle\sum_{w\in S_{l}}(-1)^{\ell(w)}x^{-w(\lambda+\rho)+\rho}. This is (1)(w)(-1)^{\ell(w)} if μ+ρ=w(λ+ρ)\mu+\rho=w(\lambda+\rho), or zero if there is no such ww, which agrees with χλ𝝈(xμ)\langle\chi_{\lambda}\rangle\,{\boldsymbol{\sigma}}(x^{\mu}).

The last identity is then proved from the Cauchy identity (12) followed by (20) (applied with zz in place of xx on the right):

(22) zμΩ[Z¯X]i<j(1zi/zj)=λsλ(X)zμsλ[Z¯]i<j(1zi/zj)=λsλ(X)χλ𝝈(xμ)=𝝈(xμ)pol.\langle z^{-\mu}\rangle\Omega[\overline{Z}X]\,\prod_{i<j}(1-z_{i}/z_{j})=\sum_{\lambda}s_{\lambda}(X)\cdot\langle z^{-\mu}\rangle s_{\lambda}[\overline{Z}]\prod_{i<j}(1-z_{i}/z_{j})\\ =\sum_{\lambda}s_{\lambda}(X)\cdot\langle\chi_{\lambda}\rangle{\boldsymbol{\sigma}}(x^{\mu})={\boldsymbol{\sigma}}(x^{\mu})_{\operatorname{pol}}.\qed

2.4. Hall-Littlewood symmetrization

Given a Laurent polynomial ϕ(x1,,xl)\phi(x_{1},\ldots,x_{l}), we define

(23) 𝐇q(ϕ(x))=𝝈(ϕ(x)i<j(1qxi/xj))=wSlw(ϕ(x)i<j((1xj/xi)(1qxi/xj))).{\mathbf{H}}_{q}(\phi(x))={\boldsymbol{\sigma}}\Bigl{(}\frac{\phi(x)}{\prod_{i<j}(1-q\,x_{i}/x_{j})}\Bigr{)}=\sum_{w\in S_{l}}w\left(\frac{\phi(x)}{\prod_{i<j}((1-x_{j}/x_{i})(1-q\,x_{i}/x_{j}))}\right).

Here and in similar raising operator formulas elsewhere, the factors 1/(1qxi/xj)1/(1-q\,x_{i}/x_{j}) are to be understood as geometric series, making 𝐇q(ϕ(x)){\mathbf{H}}_{q}(\phi(x)) an infinite formal sum of irreducible GLl\operatorname{GL}_{l} characters with coefficients in 𝐤{\mathbf{k}}. Since 1/(1qxi/xj)1/(1-q\,x_{i}/x_{j}) is a power series in qq, if we expand the coefficients of ϕ(x)\phi(x) as formal Laurent series in qq, then 𝐇q(ϕ(x)){\mathbf{H}}_{q}(\phi(x)) becomes a formal Laurent series in qq over virtual GLl\operatorname{GL}_{l} characters. This is how the last formula in (23) should be interpreted.

Remark 2.4.1.

The dual Hall-Littlewood polynomials, defined by Hμ(X;q)=λKλ,μ(q)sλH_{\mu}(X;q)=\sum_{\lambda}K_{\lambda,\mu}(q)s_{\lambda}, where Kλ,μ(q)K_{\lambda,\mu}(q) are the qq-Kostka coefficients, are given in ll variables by Hμ(x1,,xl;q)=𝐇q(xμ)polH_{\mu}(x_{1},\ldots,x_{l};q)={\mathbf{H}}_{q}(x^{\mu})_{\operatorname{pol}}. This explains our terminology.

3. The Schiffmann algebra

3.1.

We recall here some definitions and results from [5, 7, 29, 30, 31] concerning the elliptic Hall algebra {\mathcal{E}} of Burban and Schiffmann [5] (or Schiffmann algebra, for short) and its action on the algebra of symmetric functions Λ\Lambda, constructed by Feigin and Tsymbauliak [7] and Schiffmann and Vasserot [31].

From a certain point of view, this material is unnecessary: two of the three quantities equated by (1) and (2) are defined without reference to the Schiffmann algebra, and we could take “Shuffle Theorem” to mean the identity between these two, namely

(24) 𝐛(x)pol=λta(λ)qdinvp(λ)𝒢ν(λ)(x1,,xl;q1),{\mathcal{H}}_{{\mathbf{b}}}(x)_{\operatorname{pol}}=\sum_{\lambda}t^{a(\lambda)}\,q^{\operatorname{dinv}_{p}(\lambda)}\,{\mathcal{G}}_{\nu(\lambda)}(x_{1},\ldots,x_{l};q^{-1}),

with 𝐛(x){\mathcal{H}}_{{\mathbf{b}}}(x) as in (3). This identity still has the virtue of equating the combinatorial right hand side, involving Dyck paths and LLT polynomials, with a simple algebraic left hand side that is manifestly symmetric in qq and tt. Furthermore, our proof of (1) in Theorem 5.5.1 proceeds by combining (2) with a proof of (24) (via Theorem 5.3.1) that makes no use of the Schiffmann algebra.

What we need the Schiffmann algebra for is to provide the link between our shuffle theorem and the classical and (km,kn)(km,kn) versions. Indeed, the very definition of the algebraic side in the (km,kn)(km,kn) shuffle theorem is ek[MXm,n]1e_{k}[-MX^{m,n}]\cdot 1 for a certain operator ek[MXm,n]e_{k}[-MX^{m,n}]\in{\mathcal{E}}, while the classical shuffle theorems refer implicitly to the same operators through the identity mek=ek[MXm,1]1\nabla^{m}e_{k}=e_{k}[-MX^{m,1}]\cdot 1.

In this section, we review what is needed to relate the symmetric functions mek\nabla^{m}e_{k} and (𝐛)pol({\mathcal{H}}_{{\mathbf{b}}})_{\operatorname{pol}} to the action of the elements ek[MXm,n]e_{k}[-MX^{m,n}] and D𝐛D_{{\mathbf{b}}} on Λ\Lambda. For ease of reference, we have collected most of the statements that will be used elsewhere in the paper in §3.7, after the technical development in §§3.23.6.

3.2. The algebra {\mathcal{E}}

Let 𝐤=(q,t){\mathbf{k}}={\mathbb{Q}}(q,t). The Schiffmann algebra {\mathcal{E}} is generated by subalgebras Λ(Xm,n)\Lambda(X^{m,n}) isomorphic to the algebra Λ𝐤\Lambda_{{\mathbf{k}}} of symmetric functions, one for each pair of coprime integers (m,n)(m,n), and a central Laurent polynomial subalgebra 𝐤[c1±1,c2±1]{\mathbf{k}}[c_{1}^{\pm 1},c_{2}^{\pm 1}], subject to some defining relations which we will not list in full here, but only invoke a few of them as needed.

For purposes of comparison with [5, 30, 31], our notation (on the left hand side of each formula) is related as follows to that in [5, Definition 6.4] (on the right hand side). Note that our indices (m,n)2(m,n)\in{\mathbb{Z}}^{2} correspond to transposed indices (n,m)(n,m) in [5].

(25) q=σ1,t=σ¯1,c1mc2n=κn,m2,ωpk(Xm,n)=κkn,kmεn,mukn,km,ek[M^Xm,n]=κkn,kmεn,mθkn,km,\begin{gathered}q=\sigma^{-1},\quad t=\bar{\sigma}^{-1},\\ c_{1}^{m}c_{2}^{n}=\kappa_{n,m}^{-2},\\ \omega p_{k}(X^{m,n})=\kappa_{kn,km}^{\varepsilon_{n,m}}u_{kn,km},\\ e_{k}[-\widehat{M}X^{m,n}]=\kappa_{kn,km}^{\varepsilon_{n,m}}\theta_{kn,km},\end{gathered}

where εn,m\varepsilon_{n,m}, which is equal to (1ϵn,m)/2(1-\epsilon_{n,m})/2 in the notation of [5], is given by

(26) εn,m={1n<0 or (m,n)=(1,0)0otherwise.\varepsilon_{n,m}=\begin{cases}1&\text{$n<0$ or $(m,n)=(-1,0)$}\\ 0&\text{otherwise}.\end{cases}

The expression ek[M^Xm,n]e_{k}[-\widehat{M}X^{m,n}] in (25) uses plethystic substitution (§2.2) with

(27) M^=(11qt)MwhereM=(1q)(1t).\widehat{M}=(1-\frac{1}{q\,t})M\quad\text{where}\quad M=(1-q)(1-t).

The quantity MM will be referred to repeatedly.

3.3. Action of {\mathcal{E}} on Λ\Lambda

A natural action of {\mathcal{E}} by operators on Λ(X)\Lambda(X) has been constructed in [7, 31]. Actually these references give several different normalizations of essentially the same action. The action we use is a slight variation of the action in [31, Theorem 3.1].

To write it down we need to recall some notions from the theory of Macdonald polynomials. Let H~μ(X;q,t)\tilde{H}_{\mu}(X;q,t) denote the modified Macdonald polynomials [10], which can be defined in terms of the integral form Macdonald polynomials Jμ(X;q,t)J_{\mu}(X;q,t) of [25] by

(28) H~μ(X;q,t)=tn(μ)Jμ[X1t1;q,t1],\tilde{H}_{\mu}(X;q,t)=t^{n(\mu)}J_{\mu}[\frac{X}{1-t^{-1}};q,t^{-1}],

with n(μ)n(\mu) as in (6). For any symmetric function fΛf\in\Lambda, let f[B]f[B], f[B¯]f[\overline{B}] denote the eigenoperators on the basis {Hμ~}\{\tilde{H_{\mu}}\} of Λ\Lambda such that

(29) f[B]H~μ=f[Bμ(q,t)]H~μ,f[B¯]H~μ=f[Bμ(q,t)¯]H~μf[B]\,\tilde{H}_{\mu}=f[B_{\mu}(q,t)]\,\tilde{H}_{\mu},\quad f[\overline{B}]\,\tilde{H}_{\mu}=f[\overline{B_{\mu}(q,t)}]\,\tilde{H}_{\mu}

with Bμ(q,t)B_{\mu}(q,t) as in (8) and Bμ(q,t)¯=Bμ(q1,t1)\overline{B_{\mu}(q,t)}=B_{\mu}(q^{-1},t^{-1}). More generally we use the overbar to signify inverting the variables in any expression, for example

(30) M¯=(1q1)(1t1).\overline{M}=(1-q^{-1})(1-t^{-1}).

The next proposition essentially restates the contents of [31, Theorem 3.1 and Proposition 4.10] in our notation. To be more precise, since these two theorems refer to different actions of {\mathcal{E}} on Λ\Lambda, one must first use the plethystic transformation in [31, §4.4] to express [31, Proposition 4.10] in terms of the action in [31, Theorem 3.1]. Rescaling the generators u±1,lu_{\pm 1,l} then yields the following.

Proposition 3.3.1.

There is an action of {\mathcal{E}} on Λ\Lambda characterized as follows.

(i) The central parameters c1,c2c_{1},c_{2} act as scalars

(31) c11,c2(qt)1.c_{1}\mapsto 1,\quad c_{2}\mapsto(q\,t)^{-1}.

(ii) The subalgebras Λ(X±1,0)\Lambda(X^{\pm 1,0}) act as

(32) f(X1,0)(ωf)[B1/M],f(X1,0)(ωf)[1/MB¯].f(X^{1,0})\mapsto(\omega f)[B-1/M],\quad f(X^{-1,0})\mapsto(\omega f)[\overline{1/M-B}].

(iii) The subalgebras Λ(X0,±1)\Lambda(X^{0,\pm 1}) act as

(33) f(X0,1)f[X/M],f(X0,1)f(X),f(X^{0,1})\mapsto f[-X/M]^{\bullet},\quad f(X^{0,-1})\mapsto f(X)^{\perp},

using the notation in §2.1.

Remark 3.3.2.

The subalgebras Λ(X±(m,n))\Lambda(X^{\pm(m,n)})\subseteq{\mathcal{E}} satisfy Heisenberg relations that depend on the central element c1mc2nc_{1}^{m}c_{2}^{n}. If c1mc2n=1c_{1}^{m}c_{2}^{n}=1, the Heisenberg relation degenerates and Λ(X±(m,n))\Lambda(X^{\pm(m,n)}) commute. In particular, the value c11c_{1}\mapsto 1 in (31) makes Λ(X±1,0)\Lambda(X^{\pm 1,0}) commute, consistent with (32). The value c21/(qt)c_{2}\mapsto 1/(qt) makes Λ(X0,±1)\Lambda(X^{0,\pm 1}) satisfy Heisenberg relations consistent with (33).

We will show in Proposition 3.3.4, below, that the elements p1[MX1,a]p_{1}[-MX^{1,a}]\in{\mathcal{E}} act on Λ\Lambda as operators DaD_{a} given by the coefficients Da=zaD(z)D_{a}=\langle z^{-a}\rangle D(z) of a generating series

(34) D(z)=aDazaD(z)=\sum_{a\in{\mathbb{Z}}}D_{a}z^{-a}

defined by either of the equivalent formulas

(35) D(z)=Ω[z1X]Ω[zMX]orD(z)=(ωΩ[z1X])(ωΩ[zMX]),D(-z)=\Omega[-z^{-1}X]^{\bullet}\,\Omega[zMX]^{\perp}\quad\text{or}\quad D(z)=(\omega\Omega[z^{-1}X])^{\bullet}\,(\omega\Omega[-zMX])^{\perp},

using the operator notation from §2.1. These operators DaD_{a} differ by a sign (1)a(-1)^{a} from those studied in [3, 11], and by a plethystic transformation from operators previously introduced by Jing [22].

Lemma 3.3.3.

We have the identities

(36) [(ωpk[X/M]),Da]=Da+k,[(ωpk(X)),Da]=Dak.[\,(\omega p_{k}[-X/M])^{\bullet},\,D_{a}\,]=-D_{a+k},\quad[\,(\omega p_{k}(X))^{\perp},\,D_{a}\,]=D_{a-k}.
Proof.

We start with the second identity, which is equivalent to

(37) [(ωpk(X)),D(z)]=zkD(z).[\,(\omega p_{k}(X))^{\perp},\,D(z)\,]=z^{-k}D(z).

Since all operators of the form f(X)f(X)^{\perp} commute with each other, (37) follows from the definition of D(z)D(z) and

(38) [(ωpk(X)),(ωΩ[z1X])]=zk(ωΩ[z1X]).[\,(\omega p_{k}(X))^{\perp},\,(\omega\Omega[z^{-1}X])^{\bullet}\,]=z^{-k}(\omega\Omega[z^{-1}X])^{\bullet}.

To verify the latter identity, note first that (15) and Ω[z1X]=expk>0pkzk/k\Omega[z^{-1}X]=\exp\sum_{k>0}p_{k}z^{-k}/k imply

(39) [pk(X),Ω[z1X]]=zkΩ[z1X].[\,p_{k}(X)^{\perp},\,\Omega[z^{-1}X]^{\bullet}\,]=z^{-k}\,\Omega[z^{-1}X]^{\bullet}.

Conjugating both sides by ω\omega and using (ωf)=ωfω(\omega f)^{\bullet}=\omega\cdot f^{\bullet}\cdot\omega and (ωf)=ωfω(\omega f)^{\perp}=\omega\cdot f^{\perp}\cdot\omega gives (38).

For the first identity in (36), consider the modified inner product

(40) f,g=f[MX],g=f,g[MX].\langle f,g\rangle^{\prime}=\langle f[-MX],g\rangle=\langle f,g[-MX]\rangle.

The second equality here, which shows that ,\langle-,-\rangle^{\prime} is symmetric, follows from orthogonality of the power-sums pλp_{\lambda}. For any ff, the operators ff^{\perp} and f[X/M]f[-X/M]^{\bullet} are adjoint with respect to ,\langle-,-\rangle^{\prime}. Using this and the definition of D(z)D(z), we see that D(z1)D(z^{-1}) is the ,\langle-,-\rangle^{\prime} adjoint of D(z)D(z), hence DaD_{-a} is adjoint to DaD_{a}. Taking adjoints on both sides of the second identity in (36) now implies the first. ∎

Proposition 3.3.4.

In the action of {\mathcal{E}} on Λ\Lambda given by Proposition 3.3.1, the element p1[MX1,a]=Mp1(X1,a)p_{1}[-MX^{1,a}]=-Mp_{1}(X^{1,a})\in{\mathcal{E}} acts as the operator DaD_{a} defined by (34).

Proof.

It is known [17, Proposition 2.4] that D0H~μ=(1MBμ)H~μD_{0}\tilde{H}_{\mu}=(1-MB_{\mu})\tilde{H}_{\mu}. From Proposition 3.3.1 (ii), we see that p1[MX1,0]p_{1}[-MX^{1,0}] acts by the same operator, giving the case a=0a=0.

Among the defining relations of {\mathcal{E}} are

(41) [ωpk(X0,1),p1(X1,a)]=p1(X1,a+k),[ωpk(X0,1),p1(X1,a)]=p1(X1,ak).[\,\omega p_{k}(X^{0,1}),\,p_{1}(X^{1,a})\,]=-p_{1}(X^{1,a+k}),\quad[\,\omega p_{k}(X^{0,-1}),\,p_{1}(X^{1,a})\,]=p_{1}(X^{1,a-k}).

Multiplying these by M-M and using Proposition 3.3.1 (iii) to compare with (36) reduces the general result to the case a=0a=0. ∎

3.4. The operator \nabla

As in [3], we define an eigenoperator \nabla on the Macdonald basis by

(42) H~μ=tn(μ)qn(μ)H~μ,\nabla\tilde{H}_{\mu}=t^{n(\mu)}q^{n(\mu^{*})}\tilde{H}_{\mu},

with n(μ)n(\mu) as in (6). Since tn(μ)qn(μ)=en[Bμ(q,t)]t^{n(\mu)}q^{n(\mu^{*})}=e_{n}[B_{\mu}(q,t)] for n=|μ|n=|\mu|, we see that \nabla coincides in degree nn with en[B]e_{n}[B]. Although the operators en[B]e_{n}[B] belong to {\mathcal{E}} acting on Λ\Lambda, the operator \nabla does not. Its role, rather, is to internalize a symmetry of this action.

Lemma 3.4.1.

Conjugation by the operator \nabla provides a symmetry of the action of {\mathcal{E}} on Λ\Lambda, namely

(43) f(Xm,n)1=f(Xm+n,n).\nabla\,f(X^{m,n})\,\nabla^{-1}=f(X^{m+n,n}).
Proof.

For m=±1m=\pm 1, n=0n=0, this says that \nabla commutes with the other Macdonald eigenoperators, which is clear.

It is known from [5] that the group of kk-algebra automorphisms of {\mathcal{E}} includes one which acts on the subalgebras Λ(Xm,n)\Lambda(X^{m,n}) by f(Xm,n)f(Xm+n,n)f(X^{m,n})\mapsto f(X^{m+n,n}), and on the central subalgebra 𝐤[c1±1,c2±1]{\mathbf{k}}[c_{1}^{\pm 1},c_{2}^{\pm 1}] by an automorphism which fixes the central character in Proposition 3.3.1 (i).

The Λ(Xm,n)\Lambda(X^{m,n}) for n>0n>0 are all contained in the subalgebra of {\mathcal{E}} generated by the elements p1(Xa,1)p_{1}(X^{a,1}). To prove (43) for n>0n>0, it therefore suffices to verify the operator identity p1(Xa,1)1=p1(Xa+1,1)\nabla\,p_{1}(X^{a,1})\,\nabla^{-1}=p_{1}(X^{a+1,1}).

In {\mathcal{E}} there are relations

(44) [ωpk(X1,0),p1(Xa,1)]=p1(Xa+k,1),[c1kωpk(X1,0),p1(Xa,1)]=p1(Xak,1).[\,\omega p_{k}(X^{1,0}),\,p_{1}(X^{a,1})\,]=p_{1}(X^{a+k,1}),\quad[\,c_{1}^{-k}\omega p_{k}(X^{-1,0}),\,p_{1}(X^{a,1})\,]=-p_{1}(X^{a-k,1}).

Since \nabla commutes with the action of Λ(X±1,0)\Lambda(X^{\pm 1,0}), these relations reduce the problem to the case a=0a=0, that is, to the identity p1(X0,1)1=p1(X1,1)\nabla\,p_{1}(X^{0,1})\,\nabla^{-1}=p_{1}(X^{1,1}). By Propositions 3.3.1 and 3.3.4, this is equivalent to the operator identity p1(X)1=D1\nabla\cdot p_{1}(X)^{\bullet}\cdot\nabla^{-1}=D_{1}, which is [3, I.12 (iii)].

We leave the similar argument for the case n<0n<0, using [3, I.12 (iv)], to the reader. ∎

3.5. Shuffle algebra

The operators of interest to us belong to the ‘right half-plane’ subalgebra +{\mathcal{E}}^{+}\subseteq{\mathcal{E}} generated by the Λ(Xm,n)\Lambda(X^{m,n}) for m>0m>0, or equivalently by the elements p1(X1,a)p_{1}(X^{1,a}). The subalgebra +{\mathcal{E}}^{+} acts on Λ\Lambda as the algebra generated by the operators DaD_{a}. It was shown in [31] that +{\mathcal{E}}^{+} is isomorphic to the shuffle algebra constructed in [7] and studied further in [29], whose definition we now recall.

We fix the rational function

(45) Γ(x/y)=1qtx/y(1y/x)(1qx/y)(1tx/y),\Gamma(x/y)=\frac{1-q\,t\,x/y}{(1-y/x)(1-q\,x/y)(1-t\,x/y)},

and define, for each ll, a q,tq,t analog of the symmetrization operator 𝐇q{\mathbf{H}}_{q} in (23) by

(46) 𝐇q,t(ϕ(x1,,xl))=wSl(ϕ(x)i<jΓ(xixj))=𝝈(ϕ(x)i<j(1qtxi/xj)i<j((1qxi/xj)(1txi/xj))).{\mathbf{H}}_{q,t}(\phi(x_{1},\ldots,x_{l}))=\sum_{w\in S_{l}}\left(\phi(x)\cdot\prod_{i<j}\Gamma\bigl{(}\frac{x_{i}}{x_{j}}\bigr{)}\right)\\ ={\boldsymbol{\sigma}}\left(\frac{\phi(x)\,\prod_{i<j}(1-q\,t\,x_{i}/x_{j})}{\prod_{i<j}((1-q\,x_{i}/x_{j})(1-t\,x_{i}/x_{j}))}\right).

We write 𝐇q,t(l){\mathbf{H}}_{q,t}^{(l)} when we want to make the number of variables explicit.

Let T=T(𝐤[x±1])T=T({\mathbf{k}}[x^{\pm 1}]) be the tensor algebra on the Laurent polynomial ring 𝐤[x±1]{\mathbf{k}}[x^{\pm 1}] in one variable, that is, the non-commutative polynomial algebra with generators corresponding to the basis elements xax^{a} of 𝐤[x±1]{\mathbf{k}}[x^{\pm 1}] as a vector space. Identifying Tk=Tk(𝐤[x±1])T^{k}=T^{k}({\mathbf{k}}[x^{\pm 1}]) with 𝐤[x1±1,,xk±1]{\mathbf{k}}[x_{1}^{\pm 1},\ldots,x_{k}^{\pm 1}], the product in TT is given by ‘concatenation,’

(47) fg=f(x1,,xk)g(xk+1,,xk+l),for fTkgTl.f\cdot g=f(x_{1},\ldots,x_{k})g(x_{k+1},\ldots,x_{k+l}),\quad\text{for $f\in T^{k}$, $g\in T^{l}$}.

For each ll, let IlTlI^{l}\subseteq T^{l} be the kernel of the symmetrization operator 𝐇q,t(l){\mathbf{H}}_{q,t}^{(l)}. Since 𝐇q,t(l){\mathbf{H}}_{q,t}^{(l)} factors through the operator 𝐇q,t(k){\mathbf{H}}_{q,t}^{(k)} in any kk consecutive variables xi+1,,xi+kx_{i+1},\ldots,x_{i+k}, the graded subspace I=lIlTI=\bigoplus_{l}I^{l}\subseteq T is a two-sided ideal. The shuffle algebra is defined to be the quotient S=T/IS=T/I. Note that SS is generated by its tensor degree 11 component S1S^{1} by definition. We will not use the second, larger, type of shuffle algebra that was also introduced in [7, 29].

Proposition 3.5.1 ([31, Theorem 10.1]).

There is an algebra isomorphism ψ:S+\psi\colon S\rightarrow{\mathcal{E}}^{+} given on the generators by ψ(xa)=p1[MX1,a]\psi(x^{a})=p_{1}[-MX^{1,a}].

For clarity, we note that the factor M-M in p1[MX1,a]=Mp1(X1,a)p_{1}[-MX^{1,a}]=-Mp_{1}(X^{1,a}) makes no difference to the statement, but is a convenient normalization for us, since it makes ψ(x1a1xlal)\psi(x_{1}^{a_{1}}\cdots x_{l}^{a_{l}}) act on Λ\Lambda as Da1DalD_{a_{1}}\cdots D_{a_{l}}. We also note that our Γ(x/y)\Gamma(x/y) differs by a factor symmetric in x,yx,y from the function g(y/x)g(y/x) in [31, (10.3)], which makes our shuffle algebra SS opposite to the algebra 𝐒{\mathbf{S}} in [31]. This is as it should be, since the isomorphism in [31] is from 𝐒{\mathbf{S}} to the ‘upper half-plane’ subalgebra of {\mathcal{E}} generated by the elements p1(Xa,1)p_{1}(X^{a,1}), and the symmetry p1(Xa,1)p1(X1,a)p_{1}(X^{a,1})\leftrightarrow p_{1}(X^{1,a}) is an antihomomorphism.

By construction, Laurent polynomials ϕ(x),ϕ(x)\phi(x),\phi^{\prime}(x) in variables x1,,xlx_{1},\ldots,x_{l} define the same element of SS, or equivalently, map via ψ\psi to the same element of +{\mathcal{E}}^{+}, if and only if 𝐇q,t(ϕ)=𝐇q,t(ϕ){\mathbf{H}}_{q,t}(\phi)={\mathbf{H}}_{q,t}(\phi^{\prime}). We can regard 𝐇q,t(ϕ){\mathbf{H}}_{q,t}(\phi) as an infinite formal sum of GLl\operatorname{GL}_{l} characters with coefficients in 𝐤{\mathbf{k}}, in the same manner as for 𝐇q{\mathbf{H}}_{q}. Representing elements of SS, or of +{\mathcal{E}}^{+}, in this way leads to the following useful formula for describing their action on 1Λ1\in\Lambda.

Proposition 3.5.2.

Given a Laurent polynomial ϕ=ϕ(x1,,xl)\phi=\phi(x_{1},\ldots,x_{l}), let ζ=ψ(ϕ)+\zeta=\psi(\phi)\in{\mathcal{E}}^{+} be its image under the isomorphism in Proposition 3.5.1. Then with the action of {\mathcal{E}} on Λ\Lambda given by Proposition 3.3.1, we have

(48) ω(ζ1)(x1,,xl)=𝐇q,t(ϕ)pol.\omega(\zeta\cdot 1)(x_{1},\ldots,x_{l})={\mathbf{H}}_{q,t}(\phi)_{\operatorname{pol}}.

Moreover, the Schur function expansion of the symmetric function ω(ζ1)(X)\omega(\zeta\cdot 1)(X) contains only terms sλs_{\lambda} with (λ)l\ell(\lambda)\leq l, so (48) determines ζ1\zeta\cdot 1.

Proof.

It suffices to consider the case when ϕ(x)=x𝐚=x1a1xlal\phi(x)=x^{{\mathbf{a}}}=x_{1}^{a_{1}}\cdots x_{l}^{a_{l}} and thus (by Proposition 3.3.4) ζ\zeta acts on Λ\Lambda as the operator Da1DalD_{a_{1}}\cdots D_{a_{l}}. To find ζ1\zeta\cdot 1, we use (16) to compute

(49) D(z1)D(zl)=(i<jΩ[zi/zjM])(ωΩ[Z¯X])(ωΩ[ZMX]),D(z_{1})\cdots D(z_{l})=\bigl{(}\prod_{i<j}\Omega[-z_{i}/z_{j}M]\bigr{)}\,(\omega\Omega[\overline{Z}X])^{\bullet}\,(\omega\Omega[-ZMX])^{\perp},

where Z=z1++zlZ=z_{1}+\cdots+z_{l}. Acting on 11, applying ω\omega, and taking the coefficient of z𝐚z^{-{\mathbf{a}}} gives

(50) ω(ζ1)(X)=z𝐚(i<jΩ[zi/zjM])Ω[Z¯X]=z0(z𝐚i<j1qtzi/zj(1qzi/zj)(1tzi/zj))Ω[Z¯X]i<j(1zi/zj).\omega(\zeta\cdot 1)(X)=\langle z^{-{\mathbf{a}}}\rangle\bigl{(}\prod_{i<j}\Omega[-z_{i}/z_{j}M]\bigr{)}\,\Omega[\overline{Z}X]\\ =\langle z^{0}\rangle\bigl{(}z^{{\mathbf{a}}}\prod_{i<j}\frac{1-q\,t\,z_{i}/z_{j}}{(1-q\,z_{i}/z_{j})(1-t\,z_{i}/z_{j})}\bigr{)}\,\Omega[\overline{Z}X]\,\prod_{i<j}(1-z_{i}/z_{j}).

Since ZZ has ll variables, this implies that all Schur functions sλs_{\lambda} in ω(ζ1)(X)\omega(\zeta\cdot 1)(X) have (λ)l\ell(\lambda)\leq l. Identity (48) for ϕ(x)=x𝐚\phi(x)=x^{{\mathbf{a}}} follows by specializing XX to x1++xlx_{1}+\cdots+x_{l} and applying (21). ∎

3.6. Distinguished elements

Given a rational function ϕ(x1,,xl)\phi(x_{1},\ldots,x_{l}), it may happen that we have an identity of rational functions 𝐇q,t(ϕ)=𝐇q,t(η){\mathbf{H}}_{q,t}(\phi)={\mathbf{H}}_{q,t}(\eta) for some Laurent polynomial η(x)\eta(x). In this case, 𝐇q,t(ϕ){\mathbf{H}}_{q,t}(\phi) is the representative of the image of η\eta in SS, or of ψ(η)+\psi(\eta)\in{\mathcal{E}}^{+}, even though ϕ(x)\phi(x) is not necessarily a Laurent polynomial. For the shuffle algebra SS under consideration here, Negut [29, Proposition 6.1] showed that this happens for

(51) ϕ(x)=x1b1xlbli=1l1(1qtxi/xi+1).\phi(x)=\frac{x_{1}^{b_{1}}\cdots x_{l}^{b_{l}}}{\prod_{i=1}^{l-1}(1-q\,t\,x_{i}/x_{i+1})}.

Accordingly, there are distinguished elements

(52) Db1,,bl=ψ(η)+,D_{b_{1},\ldots,b_{l}}=\psi(\eta)\in{\mathcal{E}}^{+},

where ψ:S+\psi\colon S\rightarrow{\mathcal{E}}^{+} is the isomorphism in Proposition 3.5.1 and η(x)\eta(x) is any Laurent polynomial such that 𝐇q,t(ϕ)=𝐇q,t(η){\mathbf{H}}_{q,t}(\phi)={\mathbf{H}}_{q,t}(\eta) for the function ϕ\phi in (51).

Negut identified certain of the elements Db1,,blD_{b_{1},\ldots,b_{l}} as (in our notation) ribbon skew Schur functions sR[MXm,n]s_{R}[-MX^{m,n}]. The following result is a special case.

Proposition 3.6.1 ([29, Proposition 6.7]).

Let mm, kk be positive integers and nn any integer with m,nm,n coprime.

For i=1,,kmi=1,\ldots,km, let bi=in/m(i1)n/mb_{i}=\lceil in/m\rceil-\lceil(i-1)n/m\rceil; if n0n\geq 0, this is the number of south steps at x=i1x=i-1 in the highest south-east lattice path weakly below the line from (0,kn)(0,kn) to (km,0)(km,0). Then

(53) ek[MXm,n]=Db1,,bkme_{k}[-MX^{m,n}]=D_{b_{1},\ldots,b_{km}}
Lemma 3.6.2.

For any indices b1,,blb_{1},\ldots,b_{l} we have

(54) Db1,,bl,01=Db1,,bl1.D_{b_{1},\ldots,b_{l},0}\cdot 1=D_{b_{1},\ldots,b_{l}}\cdot 1.
Proof.

Using Proposition 3.5.2, each side of (54) is characterized by its evaluation

(55) ω(Db1,,bl1)(x1,,xl)=𝐇q,t(l)(x1b1xlbli=1l1(1qtxi/xi+1))pol\displaystyle\omega(D_{b_{1},\ldots,b_{l}}\cdot 1)(x_{1},\ldots,x_{l})={\mathbf{H}}^{(l)}_{q,t}\Bigl{(}\frac{x_{1}^{b_{1}}\cdots x_{l}^{b_{l}}}{\prod_{i=1}^{l-1}(1-q\,t\,x_{i}/x_{i+1})}\Bigr{)}_{\operatorname{pol}}
(56) ω(Db1,,bl,01)(x1,,xl+1)=𝐇q,t(l+1)(x1b1xlbl(1qtxl/xl+1)i=1l1(1qtxi/xi+1))pol.\displaystyle\omega(D_{b_{1},\ldots,b_{l},0}\cdot 1)(x_{1},\ldots,x_{l+1})={\mathbf{H}}^{(l+1)}_{q,t}\Bigl{(}\frac{x_{1}^{b_{1}}\cdots x_{l}^{b_{l}}}{(1-q\,t\,x_{l}/x_{l+1})\prod_{i=1}^{l-1}(1-q\,t\,x_{i}/x_{i+1})}\Bigr{)}_{\operatorname{pol}}.

Terms with a negative exponent of xl+1x_{l+1} inside the parenthesis in (56) contribute zero after we apply 𝐇q,t()pol{\mathbf{H}}_{q,t}(-)_{\operatorname{pol}}. We can therefore drop all but the constant term of the geometric series factor 1/(1qtxl/xl+1)1/(1-q\,t\,x_{l}/x_{l+1}), since the other factors are independent of xl+1x_{l+1}. This shows that the right hand side of (56) is the same as in (55), except that it has 𝐇q,t(l+1){\mathbf{H}}^{(l+1)}_{q,t} in place of 𝐇q,t(l){\mathbf{H}}^{(l)}_{q,t}.

It follows that ω(Db1,,bl,01)\omega(D_{b_{1},\ldots,b_{l},0}\cdot 1) is a linear combination of Schur functions sλ(X)s_{\lambda}(X) with (λ)l\ell(\lambda)\leq l, and that ω(Db1,,bl,01)\omega(D_{b_{1},\ldots,b_{l},0}\cdot 1) and ω(Db1,,bl1)\omega(D_{b_{1},\ldots,b_{l}}\cdot 1) evaluate to the same symmetric function in ll variables. Hence, they are identical. ∎

3.7. Summary

Most of what we use from this section in other parts of the paper can be summarized as follows.

Definition 3.7.1.

Given 𝐛=(b1,,bl)l{\mathbf{b}}=(b_{1},\ldots,b_{l})\in{\mathbb{Z}}^{l}, the infinite series of GLl\operatorname{GL}_{l} characters 𝐛(x)=b1,,bl(x1,,xl){\mathcal{H}}_{{\mathbf{b}}}(x)={\mathcal{H}}_{b_{1},\ldots,b_{l}}(x_{1},\ldots,x_{l}) is defined by

(57) 𝐛(x)=𝐇q,t(x𝐛i=1l1(1qtxi/xi+1))=𝐇q(x𝐛i+1<j(1qtxi/xj)i<j(1txi/xj)),{\mathcal{H}}_{{\mathbf{b}}}(x)={\mathbf{H}}_{q,t}\Bigl{(}\frac{x^{{\mathbf{b}}}}{\prod_{i=1}^{l-1}(1-q\,t\,x_{i}/x_{i+1})}\Bigr{)}={\mathbf{H}}_{q}\Bigl{(}x^{{\mathbf{b}}}\,\frac{\prod_{i+1<j}(1-q\,t\,x_{i}/x_{j})}{\prod_{i<j}(1-t\,x_{i}/x_{j})}\Bigr{)},

where 𝐇q,t{\mathbf{H}}_{q,t} is given by (46) and 𝐇q{\mathbf{H}}_{q} by (23); or where 𝐛(x){\mathcal{H}}_{{\mathbf{b}}}(x) is given in fully expanded form by (3).

In terms of this definition, we have the following special case of Proposition 3.5.2, which was stated as identity (2) in the introduction.

Corollary 3.7.2.

For the Negut element D𝐛D_{{\mathbf{b}}}\in{\mathcal{E}} acting on Λ\Lambda, the symmetric function ω(D𝐛1)\omega(D_{{\mathbf{b}}}\cdot 1) evaluated in ll variables is given by

(58) ω(D𝐛1)(x1,,xl)=𝐛(x)pol.\omega(D_{{\mathbf{b}}}\cdot 1)(x_{1},\ldots,x_{l})={\mathcal{H}}_{{\mathbf{b}}}(x)_{\operatorname{pol}}\,.

Moreover, all terms sλs_{\lambda} in the Schur expansion of ω(D𝐛1)(X)\omega(D_{{\mathbf{b}}}\cdot 1)(X) have (λ)l\ell(\lambda)\leq l, so ω(D𝐛1)\omega(D_{{\mathbf{b}}}\cdot 1) is determined by its evaluation in ll variables.

In the special cases where the index 𝐛{\mathbf{b}} is the sequence of south runs in the highest (km,kn)(km,kn) Dyck path, D𝐛1D_{{\mathbf{b}}}\cdot 1 can also be expressed as follows.

Corollary 3.7.3.

For i=1,,l=km+1i=1,\ldots,l=km+1, let bib_{i} be the number of south steps at x=i1x=i-1 in the highest south-east lattice path weakly below the line from (0,kn)(0,kn) to (km,0)(km,0), including bl=0b_{l}=0. Then the Negut element Db1,,blD_{b_{1},\ldots,b_{l}} and the operator ek[MXm,n]e_{k}[-MX^{m,n}] agree when applied to 1Λ1\in\Lambda, that is, we have

(59) Db1,,bl1=ek[MXm,n]1.D_{b_{1},\ldots,b_{l}}\cdot 1=e_{k}[-MX^{m,n}]\cdot 1.
Proof.

Immediate from Proposition 3.6.1 and Lemma 3.6.2. ∎

Corollary 3.7.4 (also proven in [4]).

In the case n=1n=1 of (59), we further have

(60) mek(X)=ek[MXm,1]1.\nabla^{m}e_{k}(X)=e_{k}[-MX^{m,1}]\cdot 1.
Proof.

By Proposition 3.3.1 (iii), ek[MX0,1]1=ek(X)e_{k}[-MX^{0,1}]\cdot 1=e_{k}(X). Since (1)=1\nabla(1)=1, the result now follows from Lemma 3.4.1. ∎

Remark 3.7.5.

Equations (46), (54), (57), (58), (59), and (60) imply the raising operator formula

(61) (ωmek+1)(x1,,xl)=𝝈(x1xm+1x2m+1xkm+1i+1<j(1qtxi/xj)i<j((1qxi/xj)(1txi/xj)))pol,(\omega\nabla^{m}e_{k+1})(x_{1},\dots,x_{l})={\boldsymbol{\sigma}}\left(\frac{x_{1}x_{m+1}x_{2m+1}\cdots x_{km+1}\,\prod_{i+1<j}(1-q\,t\,x_{i}/x_{j})}{\prod_{i<j}((1-q\,x_{i}/x_{j})(1-t\,x_{i}/x_{j}))}\right)_{\operatorname{pol}},

provided lkm+1l\geq km+1.

4. LLT polynomials

In this section we review the definition of the combinatorial LLT polynomials 𝒢ν(X;q){\mathcal{G}}_{\nu}(X;q), using the attacking inversions formulation from [15], which is better suited to our purposes than the original ribbon tableau formulation in [23].

We also define and prove some results on the infinite LLT series β/α(x;q){\mathcal{L}}_{\beta/\alpha}(x;q) introduced in [13]. Since [13] is unpublished, due for revision, and doesn’t cover the ‘twisted’ variants β/ασ(x;q){\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q), we give here a self-contained treatment of the material we need.

4.1. Combinatorial LLT polynomials

The content of a box a=(i,j)a=(i,j) in row jj, column ii of any skew diagram is c(a)=ijc(a)=i-j.

Let ν=(ν(1),,ν(k))\nu=(\nu^{(1)},\ldots,\nu^{(k)}) be a tuple of skew diagrams. When referring to boxes of ν\nu, we identify ν\nu with the disjoint union of the ν(i)\nu^{(i)}. Fix ϵ>0\epsilon>0 small enough that kϵ<1k\epsilon<1. The adjusted content of a box aν(i)a\in\nu^{(i)} is c~(a)=c(a)+iϵ\tilde{c}(a)=c(a)+i\epsilon. A reading order is any total ordering of the boxes aνa\in\nu on which c~(a)\tilde{c}(a) is increasing. In other words, the reading order is lexicographic, first by content, then by the index ii for which aν(i)a\in\nu^{(i)}, with boxes of the same content in the same component ν(i)\nu^{(i)} ordered arbitrarily.

Boxes a,bνa,b\in\nu attack each other if 0<|c~(a)c~(b)|<10<|\tilde{c}(a)-\tilde{c}(b)|<1. If aν(i)a\in\nu^{(i)} precedes bν(j)b\in\nu^{(j)} in the reading order, the attacking condition means that either c(a)=c(b)c(a)=c(b) and i<ji<j, or c(b)=c(a)+1c(b)=c(a)+1 and i>ji>j. We also say that a,ba,b form an attacking pair in ν\nu.

By a semistandard Young tableau on the tuple ν\nu we mean a map T:ν+T\colon\nu\rightarrow{\mathbb{Z}}_{+} which restricts to a semistandard tableau on each component ν(i)\nu^{(i)}. We write SSYT(ν)\operatorname{SSYT}(\nu) for the set of these. The weight of TSSYT(ν)T\in\operatorname{SSYT}(\nu) is xT=aνxT(a)x^{T}=\prod_{a\in\nu}x_{T(a)}. An attacking inversion in TT is an attacking pair a,ba,b such that T(a)>T(b)T(a)>T(b), where aa precedes bb in the reading order. We define inv(T)\operatorname{inv}(T) to be the number of attacking inversions in TT.

Definition 4.1.1.

The combinatorial LLT polynomial indexed by a tuple of skew diagrams ν\nu is the generating function

(62) 𝒢ν(X;q)=TSSYT(ν)qinv(T)xT.{\mathcal{G}}_{\nu}(X;q)=\sum_{T\in\operatorname{SSYT}(\nu)}q^{\operatorname{inv}(T)}x^{T}.

In [15] it was shown that 𝒢ν(X;q1){\mathcal{G}}_{\nu}(X;q^{-1}) coincides up to a factor qeq^{e} with a ribbon tableau LLT polynomial as defined in [23], and is therefore a symmetric function. A direct and more elementary proof that 𝒢ν(X;q){\mathcal{G}}_{\nu}(X;q) is symmetric was given in [14].

It is useful in working with the LLT polynomials 𝒢ν(X;q){\mathcal{G}}_{\nu}(X;q) to consider a more general combinatorial formalism, as in [14, §10]. Let 𝒜=𝒜+𝒜{\mathcal{A}}={\mathcal{A}}_{+}\coprod{\mathcal{A}}_{-} be a ‘signed’ alphabet with a positive letter v𝒜+v\in{\mathcal{A}}_{+} and a negative letter v¯𝒜\overline{v}\in{\mathcal{A}}_{-} for each v+v\in{\mathbb{Z}}_{+}, and an arbitrary total ordering on 𝒜{\mathcal{A}}.

A super tableau on a tuple of skew shapes ν\nu is a map T:ν𝒜T\colon\nu\rightarrow{\mathcal{A}}, weakly increasing along rows and columns, with positive letters increasing strictly on columns and negative letters increasing strictly on rows. A usual semistandard tableau is thus the same thing as a super tableau with all entries positive. Let SSYT±(ν)\operatorname{SSYT}_{\pm}(\nu) denote the set of super tableaux on ν\nu.

An attacking inversion in a super tableau is an attacking pair a,ba,b, with aa preceding bb in the reading order, such that either T(a)>T(b)T(a)>T(b) in the ordering on 𝒜{\mathcal{A}}, or T(a)=T(b)=v¯T(a)=T(b)=\overline{v} with v¯\overline{v} negative. As before, inv(T)\operatorname{inv}(T) denotes the number of attacking inversions.

Lemma 4.1.2 ([14, (81–82) and Proposition 4.2]).

We have the identity

(63) ωY𝒢ν[X+Y;q]=TSSYT±(ν)qinv(T)xT+yT,\omega_{Y}{\mathcal{G}}_{\nu}[X+Y;q]=\sum_{T\in\operatorname{SSYT}_{\pm}(\nu)}q^{\operatorname{inv}(T)}x^{T_{+}}y^{T_{-}},

where the weight is given by

(64) xT+yT=aν{xi,T(a)=i𝒜+,yi,T(a)=i¯𝒜.x^{T_{+}}y^{T_{-}}=\prod_{a\in\nu}\begin{cases}x_{i},&T(a)=i\in{\mathcal{A}}_{+},\\ y_{i},&T(a)=\overline{i}\in{\mathcal{A}}_{-}.\end{cases}

This holds for any choice of the ordering on the signed alphabet 𝒜{\mathcal{A}}.

Corollary 4.1.3.

We have

(65) ω𝒢ν(X;q)=TSSYT(ν)qinv(T)xT,\omega\,{\mathcal{G}}_{\nu}(X;q)=\sum_{T\in\operatorname{SSYT}_{-}(\nu)}q^{\operatorname{inv}(T)}x^{T},

where the sum is over super tableaux TT with all entries negative, and we abbreviate xTx^{T_{-}} to xTx^{T} in this case.

Proposition 4.1.4.

Given a tuple of skew diagrams ν=(ν(1),,ν(k))\nu=(\nu^{(1)},\ldots,\nu^{(k)}), let νR=((ν(1))R,,(ν(k))R)\nu^{R}=((\nu^{(1)})^{R},\ldots,(\nu^{(k)})^{R}), where (ν(i))R(\nu^{(i)})^{R} is the 180180^{\circ} rotation of the transpose (ν(i))(\nu^{(i)})^{*}, positioned so that each box in νR\nu^{R} has the same content as the corresponding box in ν\nu. Then

(66) ω𝒢ν(X;q)=qI(ν)𝒢νR(X;q1),\omega\,{\mathcal{G}}_{\nu}(X;q)=q^{I(\nu)}\,{\mathcal{G}}_{\nu^{R}}(X;q^{-1}),

where I(ν)I(\nu) is the total number of attacking pairs in ν\nu.

Proof.

Use Corollary 4.1.3 on the left hand side, ordering the negative letters as 1¯>2¯>\overline{1}>\overline{2}>\cdots. Given a negative tableau TT on ν\nu, let TRT^{R} be the tableau on νR\nu^{R} obtained by reflecting the tableau along with ν\nu and changing negative letters v¯\overline{v} to positive letters vv. Then TRT^{R} is an ordinary semistandard tableau, and TTRT\mapsto T^{R} is a weight preserving bijection from negative tableaux on ν\nu to SSYT(νR)\operatorname{SSYT}(\nu^{R}). An attacking pair in ν\nu is an inversion in TT if and only if the corresponding attacking pair in νR\nu^{R} is a non-inversion in TRT^{R}, hence inv(TR)=I(ν)inv(T)\operatorname{inv}(T^{R})=I(\nu)-\operatorname{inv}(T). This implies (66). ∎

Example 4.1.5.

Consider a tuple ν=(ν(1),,ν(k))\nu=(\nu^{(1)},\ldots,\nu^{(k)}) in which each skew shape is a column so that νR\nu^{R} is a tuple of rows. The super tableau of shape νR\nu^{R} with all entries a positive letter 11 has no inversions, whereas the distinguished tableau TT of shape ν\nu with all entries a negative letter 1¯\overline{1} has

(67) inv(T)=I(ν),\operatorname{inv}(T)=I(\nu),

where I(ν)I(\nu) is the total number of attacking pairs in ν\nu.

Lemma 4.1.6.

The LLT polynomial 𝒢ν(X;q){\mathcal{G}}_{\nu}(X;q) is a linear combination of Schur functions sλ(X)s_{\lambda}(X) such that (λ)\ell(\lambda) is bounded by the total number of rows in the diagram ν\nu.

Proof.

Let rr be the total number of rows in ν\nu. It is equivalent to show that ω𝒢ν(X;q)\omega\,{\mathcal{G}}_{\nu}(X;q) is a linear combination of monomial symmetric functions mλ(X)m_{\lambda}(X) such that λ1r\lambda_{1}\leq r. By Proposition 4.1.4, ω𝒢ν(X;q)\omega\,{\mathcal{G}}_{\nu}(X;q) has a monomial term qI(ν)inv(T)xTq^{I(\nu)-\operatorname{inv}(T)}x^{T} for each semistandard tableau TSSYT(νR)T\in\operatorname{SSYT}(\nu^{R}) on the tuple of reflected shapes νR\nu^{R}. Since a letter can appear at most once in each column of TT, the exponents of xTx^{T} are bounded by rr. ∎

4.2. Reminder on Hecke algebras

We recall, in the case of GLl\operatorname{GL}_{l}, the Hecke algebra action on the group algebra of the weight lattice, as in Lusztig [24] or Macdonald [26] and due originally to Bernstein and Zelevinsky.

For GLl\operatorname{GL}_{l}, we identify the group algebra 𝐤X{\mathbf{k}}X of the weight lattice X=lX={\mathbb{Z}}^{l} with the Laurent polynomial algebra 𝐤[x1±1,,xl±1]{\mathbf{k}}[x_{1}^{\pm 1},\ldots,x_{l}^{\pm 1}]. Here 𝐤{\mathbf{k}} is any ground field containing (q){\mathbb{Q}}(q).

The Demazure-Lusztig operators

(68) Ti=qsi+(1q)11xi+1/xi(si1)T_{i}=qs_{i}+(1-q)\frac{1}{1-x_{i+1}/x_{i}}(s_{i}-1)

for i=1,,l1i=1,\ldots,l-1 generate an action of the Hecke algebra of SlS_{l} on 𝐤[x1±1,,xl±1]{\mathbf{k}}[x_{1}^{\pm 1},\ldots,x_{l}^{\pm 1}]. We have normalized the generators so that the quadratic relations are (Tiq)(Ti+1)=0(T_{i}-q)(T_{i}+1)=0. The elements TwT_{w}, defined by Tw=Ti1Ti2TimT_{w}=T_{i_{1}}T_{i_{2}}\cdots T_{i_{m}} for any reduced expression w=si1si2simw=s_{i_{1}}s_{i_{2}}\cdots s_{i_{m}}, form a 𝐤{\mathbf{k}}-basis of the Hecke algebra, as ww ranges over SlS_{l}.

Let R+R_{+} be the set of positive roots and Q+=R+Q_{+}={\mathbb{N}}R_{+} the cone they generate in the root lattice QQ. For dominant weights we define λμ\lambda\leq\mu if μλQ+\mu-\lambda\in Q_{+}. For polynomial weights of GLl\operatorname{GL}_{l}, this coincides with the standard partial ordering (7) on partitions.

For any weight λ\lambda, let λ+\lambda_{+} denote the dominant weight in the orbit SlλS_{l}\cdot\lambda.

Let conv(Slλ)\operatorname{conv}(S_{l}\cdot\lambda) be the convex hull of the orbit SlλS_{l}\cdot\lambda in the coset λ+Q\lambda+Q of the root lattice, i.e., the set of weights that occur with non-zero multiplicity in the irreducible character χλ+\chi_{\lambda_{+}}. Note that conv(Slλ)conv(Slμ)\operatorname{conv}(S_{l}\cdot\lambda)\subseteq\operatorname{conv}(S_{l}\cdot\mu) if and only if λ+μ+\lambda_{+}\leq\mu_{+}.

Each orbit Slλ+S_{l}\cdot\lambda_{+} has a partial ordering induced by the Bruhat ordering on SlS_{l}. More explicitly, this ordering is the transitive closure of the relation siλ>λs_{i}\lambda>\lambda if αi,λ>0\langle\alpha_{i}^{\vee},\lambda\rangle>0. We extend this to a partial ordering on all of X=lX={\mathbb{Z}}^{l} by defining λμ\lambda\leq\mu if λ+<μ+\lambda_{+}<\mu_{+}, or if λ+=μ+\lambda_{+}=\mu_{+} and λμ\lambda\leq\mu in the Bruhat order on Slλ+S_{l}\cdot\lambda_{+}.

Suppose αi,λ0\langle\alpha_{i}^{\vee},\lambda\rangle\geq 0. If αi,λ=0\langle\alpha_{i}^{\vee},\lambda\rangle=0, that is, if λ=siλ\lambda=s_{i}\lambda, then

(69) Tixλ=qxλ.T_{i}\,x^{\lambda}=q\,x^{\lambda}.

Otherwise, if αi,λ>0\langle\alpha_{i}^{\vee},\lambda\rangle>0, then

(70) Tixλ\displaystyle T_{i}\,x^{\lambda} qxsiλ+(q1)xλ,\displaystyle\equiv q\,x^{s_{i}\lambda}+(q-1)x^{\lambda},
Tixsiλ\displaystyle T_{i}\,x^{s_{i}\lambda} xλ\displaystyle\equiv x^{\lambda}

modulo the space spanned by monomials xμx^{\mu} for μ\mu strictly between λ\lambda and siλs_{i}\lambda on the root string λ+αi\lambda+{\mathbb{Z}}\alpha_{i}. Note that μ<λ\mu<\lambda for these weights μ\mu, since they lie on orbits strictly inside conv(Slλ)\operatorname{conv}(S_{l}\cdot\lambda). Furthermore, the set of all weights μsiλ\mu\leq s_{i}\lambda is sis_{i}-invariant and has convex intersection with every root string ν+αi\nu+{\mathbb{Z}}\alpha_{i}, hence the space 𝐤{xμμsiλ}{\mathbf{k}}\cdot\{x^{\mu}\mid\mu\leq s_{i}\lambda\} is closed under TiT_{i}. It follows that if αi,λ0\langle\alpha_{i}^{\vee},\lambda\rangle\geq 0, then TiT_{i} applied to any Laurent polynomial of the form xλ+μ<λcμxμx^{\lambda}+\sum_{\mu<\lambda}c_{\mu}x^{\mu} yields a result of the form

(71) Ti(xλ+μ<λcμxμ)=qxsiλ+μ<siλdμxμ.T_{i}\,\bigl{(}x^{\lambda}+\sum_{\mu<\lambda}c_{\mu}x^{\mu}\bigr{)}=q\,x^{s_{i}\lambda}+\sum_{\mu<s_{i}\lambda}d_{\mu}x^{\mu}\,.

4.3. Non-symmetric Hall-Littlewood polynomials

For each GLl\operatorname{GL}_{l} weight λl\lambda\in{\mathbb{Z}}^{l}, we define the non-symmetric Hall-Littlewood polynomial

(72) Eλ(x;q)=Eλ(x1,xl;q)=q(w)Twxλ+,E_{\lambda}(x;q)=E_{\lambda}(x_{1},\cdots x_{l};q)=q^{-\ell(w)}T_{w}x^{\lambda_{+}},

where wSlw\in S_{l} is such that λ=w(λ+)\lambda=w(\lambda_{+}). If λ\lambda has non-trivial stabilizer then ww is not unique, but it follows from (69)–(71) that Eλ(x;q)E_{\lambda}(x;q) is independent of the choice of ww and has the monic and triangular form

(73) Eλ(x;q)=xλ+μ<λcμxμ.E_{\lambda}(x;q)=x^{\lambda}+\sum_{\mu<\lambda}c_{\mu}x^{\mu}.

See Figure 1 for examples.

E000\displaystyle E_{000} =1\displaystyle=1 F000=1\displaystyle F_{000}=1
E100\displaystyle E_{100} =x1\displaystyle=x_{1} F100=y1\displaystyle F_{100}=y_{1}
E010\displaystyle E_{010} =(1q)x1+x2\displaystyle=(1-q)x_{1}+x_{2} F010=y2\displaystyle F_{010}=y_{2}
E001\displaystyle E_{001} =(1q)x1+(1q)x2+x3\displaystyle=(1-q)x_{1}+(1-q)x_{2}+x_{3} F001=y3\displaystyle F_{001}=y_{3}
E110\displaystyle E_{110} =x1x2\displaystyle=x_{1}x_{2} F110=y1y2\displaystyle F_{110}=y_{1}y_{2}
E101\displaystyle E_{101} =(1q)x1x2+x1x3\displaystyle=(1-q)x_{1}x_{2}+x_{1}x_{3} F101=y1y3\displaystyle F_{101}=y_{1}y_{3}
E011\displaystyle E_{011} =(1q)x1x2+(1q)x1x3+x2x3\displaystyle=(1-q)x_{1}x_{2}+(1-q)x_{1}x_{3}+x_{2}x_{3} F011=y2y3\displaystyle F_{011}=y_{2}y_{3}
E200\displaystyle E_{200} =x12\displaystyle=x_{1}^{2} F200=y12+(1q)y1y2+(1q)y1y3\displaystyle F_{200}=y_{1}^{2}+(1-q)y_{1}y_{2}+(1-q)y_{1}y_{3}
E020\displaystyle E_{020} =(1q)x12+(1q)x1x2+x22\displaystyle=(1-q)x_{1}^{2}+(1-q)x_{1}x_{2}+x_{2}^{2} F020=y22+(1q)y2y3\displaystyle F_{020}=y_{2}^{2}+(1-q)y_{2}y_{3}
E002\displaystyle E_{002} =(1q)x12+(1q)2x1x2+(1q)x1x3+(1q)x22+(1q)x2x3+x32\displaystyle=\!\!\!\begin{array}[t]{l}(1-q)x_{1}^{2}+(1-q)^{2}x_{1}x_{2}+(1-q)x_{1}x_{3}\\ \;+(1-q)x_{2}^{2}+(1-q)x_{2}x_{3}+x_{3}^{2}\end{array} F002=y32\displaystyle F_{002}=y_{3}^{2}
Figure 1. Non-symmetric Hall-Littlewood polynomials E𝐚σ(x1,x2,x3;q1)E^{\sigma}_{{\mathbf{a}}}(x_{1},x_{2},x_{3};q^{-1}) and F𝐚σ(y1,y2,y3;q)F^{\sigma}_{{\mathbf{a}}}(y_{1},y_{2},y_{3};q) for l=3l=3, σ=1\sigma=1, and |𝐚|2|{\mathbf{a}}|\leq 2.

For context, we remark that several distinct notions of ‘non-symmetric Hall-Littlewood polynomial’ can be found in the literature. Our EλE_{\lambda} (and FλF_{\lambda}, below) coincide with specializations of non-symmetric Macdonald polynomials considered by Ion in [21, Theorem 4.8]. The twisted variants EλσE_{\lambda}^{\sigma} below are specializations of the ‘permuted basement’ non-symmetric Macdonald polynomials studied (for GLl\operatorname{GL}_{l}) by Alexandersson [1] and Alexandersson and Sawhney [2]. We also note that Eλ(x;q1)E_{\lambda}(x;q^{-1}) and Fλ(x;q)F_{\lambda}(x;q) have coefficients in [q]{\mathbb{Z}}[q] and specialize at q=0q=0 to Demazure characters and Demazure atoms respectively.

For any μl\mu\in{\mathbb{R}}^{l} we define Inv(μ)={(i<j)μi>μj}\operatorname{Inv}(\mu)=\{(i<j)\mid\mu_{i}>\mu_{j}\}. In the case of a permutation, Inv(σ)\operatorname{Inv}(\sigma) is then the usual inversion set of σ=(σ(1),,σ(l))Sl\sigma=(\sigma(1),\ldots,\sigma(l))\in S_{l}.

Taking ρ\rho as in §2.3 and ϵ>0\epsilon>0 small, the notation Inv(λ+ϵρ)\operatorname{Inv}(\lambda+\epsilon\rho) denotes the set of pairs i<ji<j such that λiλj\lambda_{i}\geq\lambda_{j}.

Given σSl\sigma\in S_{l}, we define twisted non-symmetric Hall-Littlewood polynomials

(74) Eλσ(x;q)=q|Inv(σ1)Inv(λ+ϵρ)|Tσ11Eσ1(λ)(x;q)\displaystyle E^{\sigma}_{\lambda}(x;q)=q^{|\operatorname{Inv}(\sigma^{-1})\cap\operatorname{Inv}(\lambda+\epsilon\rho)|}T_{\sigma^{-1}}^{-1}E_{\sigma^{-1}(\lambda)}(x;q)
(75) Fλσ(x;q)=Eλσw0(x;q)¯=Eλσw0(x11,,xl1;q1),\displaystyle F^{\sigma}_{\lambda}(x;q)=\overline{E^{\sigma w_{0}}_{-\lambda}(x;q)}=E^{\sigma w_{0}}_{-\lambda}(x_{1}^{-1},\ldots,x_{l}^{-1};q^{-1}),

where w0Slw_{0}\in S_{l} is the longest element, given by w0(i)=l+1iw_{0}(i)=l+1-i. The normalization in (74) implies the recurrence

(76) Eλσ={qI(λiλi+1)TiEsiλsiσ,siσ>σqI(λiλi+1)Ti1Esiλsiσ,siσ<σ,E^{\sigma}_{\lambda}=\begin{cases}q^{-I(\lambda_{i}\leq\lambda_{i+1})}\,T_{i}\,E^{s_{i}\sigma}_{s_{i}\lambda},&s_{i}\sigma>\sigma\\ q^{I(\lambda_{i}\geq\lambda_{i+1})}\,T_{i}^{-1}\,E^{s_{i}\sigma}_{s_{i}\lambda},&s_{i}\sigma<\sigma,\end{cases}

where I(P)=1I(P)=1 if PP is true, I(P)=0I(P)=0 if PP is false. Together with the initial condition Eλσ=xλE^{\sigma}_{\lambda}=x^{\lambda} for all σ\sigma if λ=λ+\lambda=\lambda_{+}, this determines EλσE^{\sigma}_{\lambda} for all σ\sigma and λ\lambda.

Corollary 4.3.1.

EλσE^{\sigma}_{\lambda} has the monic and triangular form in (73) for all σ\sigma.

Proof.

This follows from (71) and (76). ∎

Proposition 4.3.2.

For every σSl\sigma\in S_{l}, the Eλσ(x;q)E_{\lambda}^{\sigma}(x;q) and Fλσ(x;q)¯\overline{F_{\lambda}^{\sigma}(x;q)} are dual bases of 𝐤[x1±1,,xl±1]{\mathbf{k}}[x_{1}^{\pm 1},\ldots,x_{l}^{\pm 1}] with respect to the inner product defined by

(77) f,gq=x0fgi<j1xi/xj1q1xi/xj.\langle f,g\rangle_{q}=\langle x^{0}\rangle\,f\,g\,\prod_{i<j}\frac{1-x_{i}/x_{j}}{1-q^{-1}x_{i}/x_{j}}.

In other words, Eλσ,Fμσ¯q=δλμ\langle E_{\lambda}^{\sigma},\overline{F_{\mu}^{\sigma}}\rangle_{q}=\delta_{\lambda\mu} for all λ,μl\lambda,\mu\in{\mathbb{Z}}^{l} and all σSl\sigma\in S_{l}.

To prove Proposition 4.3.2 we need the following lemma.

Lemma 4.3.3.

The Demazure-Lusztig operators TiT_{i} in (68) are self-adjoint with respect to ,q\langle-,-\rangle_{q}.

Proof.

It’s the same to show that TiqT_{i}-q is self-adjoint. A bit of algebra gives

(78) Tiq=q1q1xi/xi+11xi/xi+1(si1),T_{i}-q=q\,\frac{1-q^{-1}x_{i}/x_{i+1}}{1-x_{i}/x_{i+1}}(s_{i}-1),

and therefore

(79) (Tiq)f,gq=qx0(si(f)gfg)1xj/xk1q1xj/xk,\langle(T_{i}-q)f,g\rangle_{q}=q\,\langle x^{0}\rangle\,(s_{i}(f)\,g-f\,g)\prod\frac{1-x_{j}/x_{k}}{1-q^{-1}x_{j}/x_{k}},

where the product is over j<kj<k with (j,k)(i,i+1)(j,k)\not=(i,i+1). We want to show that this is symmetric in ff and gg, i.e., that the right hand side is unchanged if we replace si(f)gs_{i}(f)\,g with fsi(g)f\,s_{i}(g). Let Δ\Delta denote the product factor in (79), and note that Δ\Delta is symmetric in xix_{i} and xi+1x_{i+1}. The constant term x0φ(x)\langle x^{0}\rangle\,\varphi(x) of any φ(x1,,xl)\varphi(x_{1},\ldots,x_{l}) is equal to x0si(φ(x))\langle x^{0}\rangle\,s_{i}(\varphi(x)). In particular, x0si(f)gΔ=x0fsi(g)Δ\langle x^{0}\rangle s_{i}(f)g\,\Delta=\langle x^{0}\rangle fs_{i}(g)\,\Delta, which implies the desired result. ∎

Proof of Proposition 4.3.2.

The desired identity is just a tidy notation for Eλσ,Eμσw0q=δλμ\langle E_{\lambda}^{\sigma},E_{-\mu}^{\sigma w_{0}}\rangle_{q}=\delta_{\lambda\mu}.

By (76), for every ii, we have either Eλσ,Eμσw0q=qeTiEsiλsiσ,Ti1Esiμsiσw0q\langle E_{\lambda}^{\sigma},E_{-\mu}^{\sigma w_{0}}\rangle_{q}=q^{e}\,\langle T_{i}E_{s_{i}\lambda}^{s_{i}\sigma},T_{i}^{-1}E_{-s_{i}\mu}^{s_{i}\sigma w_{0}}\rangle_{q} or Eλσ,Eμσw0q=qeTi1Esiλsiσ,TiEsiμsiσw0q\langle E_{\lambda}^{\sigma},E_{-\mu}^{\sigma w_{0}}\rangle_{q}=q^{e}\,\langle T_{i}^{-1}E_{s_{i}\lambda}^{s_{i}\sigma},T_{i}E_{-s_{i}\mu}^{s_{i}\sigma w_{0}}\rangle_{q}, depending on whether siσ>σs_{i}\sigma>\sigma or siσ<σs_{i}\sigma<\sigma, for some exponent ee. Moreover, if λ=μ\lambda=\mu, then qe=1q^{e}=1.

Since TiT_{i} is self-adjoint, we get Eλσ,Eμσw0q=qeEsiλsiσ,Esiμsiσw0q\langle E_{\lambda}^{\sigma},E_{-\mu}^{\sigma w_{0}}\rangle_{q}=q^{e}\langle E_{s_{i}\lambda}^{s_{i}\sigma},E_{-s_{i}\mu}^{s_{i}\sigma w_{0}}\rangle_{q} in either case. Repeating this gives an identity

(80) Eλσ,Eμσw0q=qeEvλvσ,Evμvσw0q\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\mu}\rangle_{q}=q^{e}\langle E^{v\sigma}_{v\lambda},E^{v\sigma w_{0}}_{-v\mu}\rangle_{q}

for all λ,μl\lambda,\mu\in{\mathbb{Z}}^{l} and all σ,vSl\sigma,v\in S_{l}, again with qe=1q^{e}=1 if λ=μ\lambda=\mu.

Choose vSlv\in S_{l} such that μ=v(μ)\mu_{-}=v(\mu) is antidominant. Then (80) gives

(81) Eλσ,Eμσw0q=qeEvλvσ,x(μ)q=qexμΔEvλvσ,\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\mu}\rangle_{q}=q^{e}\langle E^{v\sigma}_{v\lambda},x^{-(\mu_{-})}\rangle_{q}=q^{e}\,\langle x^{\mu_{-}}\rangle\,\Delta\,E^{v\sigma}_{v\lambda},

where Δ\Delta is the product factor in (77). Let supp(f)\operatorname{supp}(f) denote the set of weights ν\nu for which xνx^{\nu} occurs with non-zero coefficient in ff. Since supp(Δ)=Q+\operatorname{supp}(\Delta)=Q_{+}, and supp(Evλvσ)conv(Slλ)\operatorname{supp}(E^{v\sigma}_{v\lambda})\subseteq\operatorname{conv}(S_{l}\cdot\lambda), it follows from (81) that if Eλσ,Eμσw0q0\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\mu}\rangle_{q}\not=0, then (μQ+)conv(Slλ)(\mu_{-}-Q_{+})\cap\operatorname{conv}(S_{l}\cdot\lambda)\not=\emptyset and therefore μλQ+\mu_{-}-\lambda_{-}\in Q_{+}. Since w0(Q+)=Q+w_{0}(Q_{+})=-Q_{+}, this is equivalent to λ+μ+\lambda_{+}\geq\mu_{+}.

By symmetry, exchanging λ\lambda with μ-\mu and σ\sigma with σw0\sigma w_{0}, if Eλσ,Eμσw0q0\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\mu}\rangle_{q}\not=0 then we also have (λ)(μ)Q+(-\lambda)_{-}-(-\mu)_{-}\in Q_{+}, hence λ+μ+Q+\lambda_{+}-\mu_{+}\in-Q_{+}, that is, λ+μ+\lambda_{+}\leq\mu_{+}. Hence, Eλσ,Eμσw0q0\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\mu}\rangle_{q}\not=0 implies λ+=μ+\lambda_{+}=\mu_{+}, so λ\lambda and μ\mu belong to the same SlS_{l} orbit. This reduces the problem to the case that Slλ=SlμS_{l}\cdot\lambda=S_{l}\cdot\mu.

In this case, (μQ+)conv(Slλ)={μ}(\mu_{-}-Q_{+})\cap\operatorname{conv}(S_{l}\cdot\lambda)=\{\mu_{-}\}. Furthermore, if λμ\lambda\not=\mu, then vλμv\lambda\not=\mu_{-}, and Corollary 4.3.1 implies that (μQ+)supp(Evλvσ)=(\mu_{-}-Q_{+})\cap\operatorname{supp}(E^{v\sigma}_{v\lambda})=\emptyset, hence Eλσ,Eμσw0q=0\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\mu}\rangle_{q}=0.

If λ=μ\lambda=\mu, then the right hand side of (81) reduces to xμΔEμvσ\langle x^{\mu_{-}}\rangle\,\Delta\,E^{v\sigma}_{\mu_{-}}. Since supp(Δ)=Q+\operatorname{supp}(\Delta)=Q_{+} and supp(Eμvσ)μ+Q+\operatorname{supp}(E^{v\sigma}_{\mu_{-}})\subset\mu_{-}+Q_{+}, only the constant term of Δ\Delta and the xμx^{\mu_{-}} term of EμvσE^{v\sigma}_{\mu_{-}} contribute to the coefficient of xμx^{\mu_{-}} in ΔEμvσ\Delta\,E^{v\sigma}_{\mu_{-}}, and we have xμEμvσ=1\langle x^{\mu_{-}}\rangle E^{v\sigma}_{\mu_{-}}=1 by Corollary 4.3.1. Hence, Eλσ,Eλσw0q=1\langle E^{\sigma}_{\lambda},E^{\sigma w_{0}}_{-\lambda}\rangle_{q}=1. ∎

Lemma 4.3.4.

Given λl\lambda\in{\mathbb{Z}}^{l}, suppose there is an index kk such that λiλj\lambda_{i}\geq\lambda_{j} for all iki\leq k and j>kj>k. Given σSl\sigma\in S_{l}, let σ1Sk\sigma_{1}\in S_{k} and σ2Slk\sigma_{2}\in S_{l-k} be the permutations such that σ1(1),,σ1(k)\sigma_{1}(1),\ldots,\sigma_{1}(k) are in the same relative order as σ(1),,σ(k)\sigma(1),\ldots,\sigma(k), and σ2(1),,σ2(lk)\sigma_{2}(1),\ldots,\sigma_{2}(l-k) are in the same relative order as σ(k+1),,σ(l)\sigma(k+1),\ldots,\sigma(l). Then

(82) Eλσ1(x1,,xl;q)=E(λ1,,λk)σ11(x1,,xk;q)E(λk+1,,λl)σ21(xk+1,,xl;q).E^{\sigma^{-1}}_{\lambda}(x_{1},\ldots,x_{l};q)=E^{\sigma_{1}^{-1}}_{(\lambda_{1},\ldots,\lambda_{k})}(x_{1},\ldots,x_{k};q)\,E^{\sigma_{2}^{-1}}_{(\lambda_{k+1},\ldots,\lambda_{l})}(x_{k+1},\ldots,x_{l};q).
Proof.

If λ\lambda is dominant, the result is trivial. Otherwise, the recurrence (76) determines Eλσ1E^{\sigma^{-1}}_{\lambda} by induction on |Inv(λ)||\operatorname{Inv}(-\lambda)|. The condition on λ\lambda implies that we only need to use (76) for iki\not=k, that is, for sis_{i} in the Young subgroup Sk×SlkSlS_{k}\times S_{l-k}\subset S_{l}. For iki\not=k, the right hand side of (82) satisfies the same recurrence. ∎

4.4. LLT series

Definition 4.4.1.

Given GLl\operatorname{GL}_{l} weights α,βl\alpha,\beta\in{\mathbb{Z}}^{l} and a permutation σSl\sigma\in S_{l}, the LLT series β/ασ(x1,,xl;q){\mathcal{L}}^{\sigma}_{\beta/\alpha}(x_{1},\ldots,x_{l};q) is the infinite formal sum of irreducible GLl\operatorname{GL}_{l} characters in which the coefficient of χλ\chi_{\lambda} is defined by

(83) χλβ/ασ1(x;q1)=EβσχλEασ,\langle\chi_{\lambda}\rangle\,{\mathcal{L}}^{\sigma^{-1}}_{\beta/\alpha}(x;q^{-1})=\langle E^{\sigma}_{\beta}\rangle\,\chi_{\lambda}\cdot E^{\sigma}_{\alpha},

where Eλσ(x;q)E^{\sigma}_{\lambda}(x;q) are the twisted non-symmetric Hall-Littlewood polynomials from §4.3.

We remark that the coefficients of Eλσ(x;q)E^{\sigma}_{\lambda}(x;q) are polynomials in q1q^{-1}, so the convention of inverting qq in (83) makes the coefficients of β/ασ(x;q){\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q) polynomials in qq. Inverting σ\sigma as well leads to a more natural statement and proof in Corollary 4.5.7, below.

Proposition 4.4.2.

We have the formula

(84) β/ασ(x;q)=𝐇q(w0(Fβσ1(x;q)Eασ1(x;q)¯)),{\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q)={\mathbf{H}}_{q}(w_{0}(F^{\sigma^{-1}}_{\beta}(x;q)\overline{E^{\sigma^{-1}}_{\alpha}(x;q)})),

where 𝐇q{\mathbf{H}}_{q} is the Hall-Littlewood symmetrization operator in (23) and w0(i)=l+1iw_{0}(i)=l+1-i is the longest element in SlS_{l}.

Proof.

By Proposition 4.3.2, the coefficient Eβσ1(x;q1)χλEασ1(x;q1)\langle E^{\sigma^{-1}}_{\beta}(x;q^{-1})\rangle\,\chi_{\lambda}\cdot E^{\sigma^{-1}}_{\alpha}(x;q^{-1}) of χλ\chi_{\lambda} in β/ασ{\mathcal{L}}^{\sigma}_{\beta/\alpha} is given by the constant term

(85) x0χλFβσ1(x1;q)Eασ1(x;q1)i<j1xi/xj1qxi/xj.\langle x^{0}\rangle\,\chi_{\lambda}\,F^{\sigma^{-1}}_{\beta}(x^{-1};q)\,E^{\sigma^{-1}}_{\alpha}(x;q^{-1})\prod_{i<j}\frac{1-x_{i}/x_{j}}{1-q\,x_{i}/x_{j}}.

Substituting xixi1x_{i}\mapsto x_{i}^{-1} and applying w0w_{0}, this is equal to

(86) x0χλ¯w0(Fβσ1(x;q)Eασ1(x;q)¯)i<j1xi/xj1qxi/xj.\langle x^{0}\rangle\,\overline{\chi_{\lambda}}\,w_{0}(F^{\sigma^{-1}}_{\beta}(x;q)\overline{E^{\sigma^{-1}}_{\alpha}(x;q)})\prod_{i<j}\frac{1-x_{i}/x_{j}}{1-q\,x_{i}/x_{j}}.

Considering this expression as a formal Laurent series in qq and applying (20) coefficient-wise yields

(87) χλ𝝈(w0(Fβσ1(x;q)Eασ1(x;q)¯)i<j11qxi/xj),\langle\chi_{\lambda}\rangle{\boldsymbol{\sigma}}\left(w_{0}(F^{\sigma^{-1}}_{\beta}(x;q)\overline{E^{\sigma^{-1}}_{\alpha}(x;q)})\prod_{i<j}\frac{1}{1-q\,x_{i}/x_{j}}\right),

which is χλ𝐇q(w0(Fβσ1(x;q)Eασ1(x;q)¯))\langle\chi_{\lambda}\rangle{\mathbf{H}}_{q}(w_{0}(F^{\sigma^{-1}}_{\beta}(x;q)\overline{E^{\sigma^{-1}}_{\alpha}(x;q)})), as desired. ∎

Remark 4.4.3.

All definitions and results in §§2.32.4 and 4.24.4 extend naturally from the weight lattice and root system of GLl\operatorname{GL}_{l} to those of any reductive algebraic group GG, as in [13]. The reader may observe that apart from changes in notation, the arguments given here also apply in the general case.

4.5. Tableaux for LLT series

We now work out a tableau formalism which relates the polynomial part β/ασ(x;q)pol{\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q)_{\operatorname{pol}} to a combinatorial LLT polynomial 𝒢ν(x;q){\mathcal{G}}_{\nu}(x;q).

Lemma 4.5.1.

For all σSl\sigma\in S_{l}, λl\lambda\in{\mathbb{Z}}^{l} and kk, the product of the elementary symmetric function ek(x)e_{k}(x) and the non-symmetric Hall-Littlewood polynomial Eλσ1(x;q)E^{\sigma^{-1}}_{\lambda}(x;q) is given by

(88) ek(x)Eλσ1(x;q)=|I|=kqhIEλ+εIσ1(x;q),e_{k}(x)\,E^{\sigma^{-1}}_{\lambda}(x;q)=\sum_{|I|=k}q^{-h_{I}}E^{\sigma^{-1}}_{\lambda+\varepsilon_{I}}(x;q),

where I{1,,l}I\subseteq\{1,\ldots,l\} has kk elements, εI=iIεi\varepsilon_{I}=\sum_{i\in I}\varepsilon_{i} is the indicator vector of II, and

(89) hI=|Inv(λ+εI+ϵσ)Inv(λ+ϵσ)|.h_{I}=|\operatorname{Inv}(\lambda+\varepsilon_{I}+\epsilon\sigma)\setminus\operatorname{Inv}(\lambda+\epsilon\sigma)|.

Equivalently, hIh_{I} is the number of pairs i<ji<j such that iIi\in I, jIj\not\in I, and we have λj=λi\lambda_{j}=\lambda_{i} if σ(i)<σ(j)\sigma(i)<\sigma(j), or λj=λi+1\lambda_{j}=\lambda_{i}+1 if σ(i)>σ(j)\sigma(i)>\sigma(j).

Proof.

First consider the case σ=1\sigma=1. Being symmetric, ek(x)e_{k}(x) commutes with TwT_{w}, giving

(90) ekEλ=q(w)Twekxλ+=q(w)|J|=kTwxλ++εJ,e_{k}\,E_{\lambda}=q^{-\ell(w)}T_{w}\,e_{k}\,x^{\lambda_{+}}=q^{-\ell(w)}\sum_{|J|=k}T_{w}\,x^{\lambda_{+}+\varepsilon_{J}},

where λ=w(λ+)\lambda=w(\lambda_{+}), as in (72). To fix the choice, we take ww maximal in its coset wStab(λ+)w\cdot\operatorname{Stab}(\lambda_{+}).

In each term of the sum in (90), the weight μ=λ++εJ\mu=\lambda_{+}+\varepsilon_{J} can fail to be dominant at worst by having some entries μj=μi+1\mu_{j}=\mu_{i}+1 for indices i<ji<j such that (λ+)i=(λ+)j(\lambda_{+})_{i}=(\lambda_{+})_{j}, iJi\not\in J and jJj\in J. Let vv be the minimal permutation such that μ+=v(μ)\mu_{+}=v(\mu), that is, the permutation that moves indices jJj\in J to the left within each block of constant entries in λ+\lambda_{+}. The formula Tixiaxi+1a+1=xia+1xi+1aT_{i}x_{i}^{a}x_{i+1}^{a+1}=x_{i}^{a+1}x_{i+1}^{a} is immediate from the definition of TiT_{i}, and implies that Tvxμ=xμ+T_{v}x^{\mu}=x^{\mu_{+}}. By the maximality of ww, since vStab(λ+)v\in\operatorname{Stab}(\lambda_{+}), there is a reduced factorization w=uvw=uv, hence Tw=TuTvT_{w}=T_{u}T_{v}. Then

(91) Twxλ++εJ=Tuxμ+=q(u)Eλ+w(εJ),T_{w}\,x^{\lambda_{+}+\varepsilon_{J}}=T_{u}x^{\mu_{+}}=q^{\ell(u)}E_{\lambda+w(\varepsilon_{J})},

since λ+w(εJ)=w(μ)=u(μ+)\lambda+w(\varepsilon_{J})=w(\mu)=u(\mu_{+}).

Now, (v)\ell(v) is equal to the number of pairs i<ji<j such that μi<μj\mu_{i}<\mu_{j}, that is, such that (λ+)i=(λ+)j(\lambda_{+})_{i}=(\lambda_{+})_{j}, iJi\not\in J and jJj\in J. By maximality, the permutation ww carries these to the pairs j=w(i)j^{\prime}=w(i), i=w(j)i^{\prime}=w(j) such that i<ji^{\prime}<j^{\prime}, λi=λj\lambda_{i^{\prime}}=\lambda_{j^{\prime}}, iIi^{\prime}\in I and jIj^{\prime}\not\in I, where I=w(J)I=w(J). For σ=1\sigma=1, the definition of hIh_{I} is the number of such pairs i,ji^{\prime},j^{\prime}, so we have (u)(w)=(v)=hI\ell(u)-\ell(w)=-\ell(v)=-h_{I}. Hence, the term for JJ in (90) is q(w)Twxλ++εJ=qhIEλ+εIq^{-\ell(w)}T_{w}x^{\lambda_{+}+\varepsilon_{J}}=q^{-h_{I}}E_{\lambda+\varepsilon_{I}}. As JJ ranges over subsets of size kk, so does I=w(J)I=w(J), giving (88) in this case.

Substituting σ(λ)\sigma(\lambda) for λ\lambda and σ(I)\sigma(I) for II in the σ=1\sigma=1 case, and acting on both sides with Tσ1T_{\sigma}^{-1}, yields

(92) q|Inv(σ)Inv(λ+ϵρ)|ekEλσ1=|I|=kq|Inv(σ(λ+εI))Inv(σ(λ))|q|Inv(σ)Inv(λ+εI+ϵρ)|Eλ+εIσ1.q^{-|\operatorname{Inv}(\sigma)\cap\operatorname{Inv}(\lambda+\epsilon\rho)|}e_{k}\,E^{\sigma^{-1}}_{\lambda}=\sum_{|I|=k}q^{-|\operatorname{Inv}(\sigma(\lambda+\varepsilon_{I}))\setminus\operatorname{Inv}(\sigma(\lambda))|}q^{-|\operatorname{Inv}(\sigma)\cap\operatorname{Inv}(\lambda+\varepsilon_{I}+\epsilon\rho)|}E^{\sigma^{-1}}_{\lambda+\varepsilon_{I}}.

Combining powers of qq gives the desired identity (88) if we verify that

(93) |Inv(σ)Inv(λ+εI+ϵρ)||Inv(σ)Inv(λ+ϵρ)|=|Inv(λ+εI+ϵσ)Inv(λ+ϵσ)||Inv(σ(λ+εI))Inv(σ(λ))|.|\operatorname{Inv}(\sigma)\cap\operatorname{Inv}(\lambda+\varepsilon_{I}+\epsilon\rho)|-|\operatorname{Inv}(\sigma)\cap\operatorname{Inv}(\lambda+\epsilon\rho)|\\ =|\operatorname{Inv}(\lambda+\varepsilon_{I}+\epsilon\sigma)\setminus\operatorname{Inv}(\lambda+\epsilon\sigma)|-|\operatorname{Inv}(\sigma(\lambda+\varepsilon_{I}))\setminus\operatorname{Inv}(\sigma(\lambda))|.

On the left hand side, cancelling the contribution from the intersection of the two sets leaves

(94) |Inv(σ)(Inv(λ+εI+ϵρ)Inv(λ+ϵρ))||Inv(σ)(Inv(λ+ϵρ)Inv(λ+εI+ϵρ))|.|\operatorname{Inv}(\sigma)\cap(\operatorname{Inv}(\lambda+\varepsilon_{I}+\epsilon\rho)\setminus\operatorname{Inv}(\lambda+\epsilon\rho))|-|\operatorname{Inv}(\sigma)\cap(\operatorname{Inv}(\lambda+\epsilon\rho)\setminus\operatorname{Inv}(\lambda+\varepsilon_{I}+\epsilon\rho))|.

The first term in (94) counts pairs i<ji<j such that iIi\in I, jIj\not\in I, σ(i)>σ(j)\sigma(i)>\sigma(j), and λj=λi+1\lambda_{j}=\lambda_{i}+1. The second term counts pairs i>ji>j such that iIi\in I, jIj\not\in I, σ(i)<σ(j)\sigma(i)<\sigma(j), and λj=λi\lambda_{j}=\lambda_{i}. The first term on the right hand side of (93) counts pairs i<ji<j such that iIi\in I, jIj\not\in I, and λj=λi\lambda_{j}=\lambda_{i} if σ(i)<σ(j)\sigma(i)<\sigma(j), or λj=λi+1\lambda_{j}=\lambda_{i}+1 if σ(i)>σ(j)\sigma(i)>\sigma(j). The second term on the right hand side of (93) counts the set of pairs whose images under σ1\sigma^{-1} are pairs i,ji,j (in either order) such that iIi\in I, jIj\not\in I, σ(i)<σ(j)\sigma(i)<\sigma(j) and λi=λj\lambda_{i}=\lambda_{j}. The cases in the first term with σ(i)<σ(j)\sigma(i)<\sigma(j) cancel those in the second term with i<ji<j. The remaining cases in the first term, with σ(i)>σ(j)\sigma(i)>\sigma(j), match the first term in (94), while the remaining cases in the second term, with i>ji>j, match the second term in (94). This proves (93) and completes the proof of the lemma. ∎

489132567𝟒𝟑𝟒𝟐𝟒𝟖𝟓89697𝟏𝟑𝟐𝟑𝟓Sσ-triples for σ=1𝟒𝟑4828959632σ-triples for σ=(1,2,3)(3,1,2)\begin{array}[]{cc}\leavevmode\hbox to96.42pt{\vbox to49.39pt{\pgfpicture\makeatletter\hbox{\hskip 20.7549pt\lower-0.50897pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{}}{}\pgfsys@moveto{12.0925pt}{36.27753pt}\pgfsys@moveto{12.0925pt}{36.27753pt}\pgfsys@lineto{48.37003pt}{36.27753pt}\pgfsys@moveto{12.0925pt}{48.36578pt}\pgfsys@lineto{48.37003pt}{48.36578pt}\pgfsys@moveto{12.0925pt}{36.27753pt}\pgfsys@lineto{12.0925pt}{48.37003pt}\pgfsys@moveto{24.18501pt}{36.27753pt}\pgfsys@lineto{24.18501pt}{48.37003pt}\pgfsys@moveto{36.27753pt}{36.27753pt}\pgfsys@lineto{36.27753pt}{48.37003pt}\pgfsys@moveto{48.36578pt}{36.27753pt}\pgfsys@lineto{48.36578pt}{48.37003pt}\pgfsys@moveto{48.37003pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.32939pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-\infty\!$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.90303pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.63876pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.73126pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$8$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{39.82378pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$9$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}{}\pgfsys@moveto{0.0pt}{18.13875pt}\pgfsys@moveto{0.0pt}{18.13875pt}\pgfsys@lineto{24.18501pt}{18.13875pt}\pgfsys@moveto{0.0pt}{30.227pt}\pgfsys@lineto{24.18501pt}{30.227pt}\pgfsys@moveto{0.0pt}{18.13875pt}\pgfsys@lineto{0.0pt}{30.23125pt}\pgfsys@moveto{12.0925pt}{18.13875pt}\pgfsys@lineto{12.0925pt}{30.23125pt}\pgfsys@moveto{24.18077pt}{18.13875pt}\pgfsys@lineto{24.18077pt}{30.23125pt}\pgfsys@moveto{24.18501pt}{30.23125pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.42189pt}{22.03224pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-\infty\!$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.71802pt}{22.03224pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.54625pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.63876pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{}}{}\pgfsys@moveto{12.0925pt}{0.0pt}\pgfsys@moveto{12.0925pt}{0.0pt}\pgfsys@lineto{60.46254pt}{0.0pt}\pgfsys@moveto{12.0925pt}{12.08826pt}\pgfsys@lineto{60.46254pt}{12.08826pt}\pgfsys@moveto{12.0925pt}{0.0pt}\pgfsys@lineto{12.0925pt}{12.0925pt}\pgfsys@moveto{24.18501pt}{0.0pt}\pgfsys@lineto{24.18501pt}{12.0925pt}\pgfsys@moveto{36.27753pt}{0.0pt}\pgfsys@lineto{36.27753pt}{12.0925pt}\pgfsys@moveto{48.37003pt}{0.0pt}\pgfsys@lineto{48.37003pt}{12.0925pt}\pgfsys@moveto{60.4583pt}{0.0pt}\pgfsys@lineto{60.4583pt}{12.0925pt}\pgfsys@moveto{60.46254pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.32939pt}{3.89348pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-\infty\!$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{63.99554pt}{3.89348pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.63876pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.73126pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{39.82378pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$6$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.91629pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$7$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\leavevmode\hbox to326.17pt{\vbox to49.39pt{\pgfpicture\makeatletter\hbox{\hskip 20.7549pt\lower-0.50897pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{36.27753pt}\pgfsys@moveto{0.0pt}{36.27753pt}\pgfsys@lineto{12.0925pt}{36.27753pt}\pgfsys@moveto{0.0pt}{48.36578pt}\pgfsys@lineto{12.0925pt}{48.36578pt}\pgfsys@moveto{0.0pt}{36.27753pt}\pgfsys@lineto{0.0pt}{48.37003pt}\pgfsys@moveto{12.08826pt}{36.27753pt}\pgfsys@lineto{12.08826pt}{48.37003pt}\pgfsys@moveto{12.0925pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.42189pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-\infty\!$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.54625pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{18.13876pt}\pgfsys@moveto{0.0pt}{18.13876pt}\pgfsys@lineto{12.0925pt}{18.13876pt}\pgfsys@moveto{0.0pt}{30.22702pt}\pgfsys@lineto{12.0925pt}{30.22702pt}\pgfsys@moveto{0.0pt}{18.13876pt}\pgfsys@lineto{0.0pt}{30.23126pt}\pgfsys@moveto{12.08826pt}{18.13876pt}\pgfsys@lineto{12.08826pt}{30.23126pt}\pgfsys@moveto{12.0925pt}{30.23126pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.54625pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{48.37003pt}{36.27753pt}\pgfsys@moveto{48.37003pt}{36.27753pt}\pgfsys@lineto{60.46252pt}{36.27753pt}\pgfsys@moveto{48.37003pt}{48.36578pt}\pgfsys@lineto{60.46252pt}{48.36578pt}\pgfsys@moveto{48.37003pt}{36.27753pt}\pgfsys@lineto{48.37003pt}{48.37003pt}\pgfsys@moveto{60.45828pt}{36.27753pt}\pgfsys@lineto{60.45828pt}{48.37003pt}\pgfsys@moveto{60.46252pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{30.94814pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-\infty\!$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.91629pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{48.37003pt}{0.0pt}\pgfsys@moveto{48.37003pt}{0.0pt}\pgfsys@lineto{60.46252pt}{0.0pt}\pgfsys@moveto{48.37003pt}{12.08826pt}\pgfsys@lineto{60.46252pt}{12.08826pt}\pgfsys@moveto{48.37003pt}{0.0pt}\pgfsys@lineto{48.37003pt}{12.0925pt}\pgfsys@moveto{60.45828pt}{0.0pt}\pgfsys@lineto{60.45828pt}{12.0925pt}\pgfsys@moveto{60.46252pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.91629pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{84.64757pt}{36.27753pt}\pgfsys@moveto{84.64757pt}{36.27753pt}\pgfsys@lineto{108.83257pt}{36.27753pt}\pgfsys@moveto{84.64757pt}{48.36578pt}\pgfsys@lineto{108.83257pt}{48.36578pt}\pgfsys@moveto{84.64757pt}{36.27753pt}\pgfsys@lineto{84.64757pt}{48.37003pt}\pgfsys@moveto{96.74007pt}{36.27753pt}\pgfsys@lineto{96.74007pt}{48.37003pt}\pgfsys@moveto{108.82832pt}{36.27753pt}\pgfsys@lineto{108.82832pt}{48.37003pt}\pgfsys@moveto{108.83257pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.19382pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.28632pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{8}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{96.74007pt}{0.0pt}\pgfsys@moveto{96.74007pt}{0.0pt}\pgfsys@lineto{108.83257pt}{0.0pt}\pgfsys@moveto{96.74007pt}{12.08826pt}\pgfsys@lineto{108.83257pt}{12.08826pt}\pgfsys@moveto{96.74007pt}{0.0pt}\pgfsys@lineto{96.74007pt}{12.0925pt}\pgfsys@moveto{108.82832pt}{0.0pt}\pgfsys@lineto{108.82832pt}{12.0925pt}\pgfsys@moveto{108.83257pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.28632pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}{}\pgfsys@moveto{133.01761pt}{36.27753pt}\pgfsys@moveto{133.01761pt}{36.27753pt}\pgfsys@lineto{157.2026pt}{36.27753pt}\pgfsys@moveto{133.01761pt}{48.36578pt}\pgfsys@lineto{157.2026pt}{48.36578pt}\pgfsys@moveto{133.01761pt}{36.27753pt}\pgfsys@lineto{133.01761pt}{48.37003pt}\pgfsys@moveto{145.1101pt}{36.27753pt}\pgfsys@lineto{145.1101pt}{48.37003pt}\pgfsys@moveto{157.19836pt}{36.27753pt}\pgfsys@lineto{157.19836pt}{48.37003pt}\pgfsys@moveto{157.2026pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{136.56384pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$8$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{148.65636pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$9$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{145.1101pt}{0.0pt}\pgfsys@moveto{145.1101pt}{0.0pt}\pgfsys@lineto{157.2026pt}{0.0pt}\pgfsys@moveto{145.1101pt}{12.08826pt}\pgfsys@lineto{157.2026pt}{12.08826pt}\pgfsys@moveto{145.1101pt}{0.0pt}\pgfsys@lineto{145.1101pt}{12.0925pt}\pgfsys@moveto{157.19836pt}{0.0pt}\pgfsys@lineto{157.19836pt}{12.0925pt}\pgfsys@moveto{157.2026pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{148.65636pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$6$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{181.38765pt}{36.27753pt}\pgfsys@moveto{181.38765pt}{36.27753pt}\pgfsys@lineto{193.48015pt}{36.27753pt}\pgfsys@moveto{181.38765pt}{48.36578pt}\pgfsys@lineto{193.48015pt}{48.36578pt}\pgfsys@moveto{181.38765pt}{36.27753pt}\pgfsys@lineto{181.38765pt}{48.37003pt}\pgfsys@moveto{193.4759pt}{36.27753pt}\pgfsys@lineto{193.4759pt}{48.37003pt}\pgfsys@moveto{193.48015pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{184.93388pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$9$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{197.01315pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{193.48015pt}{0.0pt}\pgfsys@moveto{193.48015pt}{0.0pt}\pgfsys@lineto{205.57265pt}{0.0pt}\pgfsys@moveto{193.48015pt}{12.08826pt}\pgfsys@lineto{205.57265pt}{12.08826pt}\pgfsys@moveto{193.48015pt}{0.0pt}\pgfsys@lineto{193.48015pt}{12.0925pt}\pgfsys@moveto{205.5684pt}{0.0pt}\pgfsys@lineto{205.5684pt}{12.0925pt}\pgfsys@moveto{205.57265pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{197.0264pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$7$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{229.75768pt}{18.13876pt}\pgfsys@moveto{229.75768pt}{18.13876pt}\pgfsys@lineto{253.94267pt}{18.13876pt}\pgfsys@moveto{229.75768pt}{30.22702pt}\pgfsys@lineto{253.94267pt}{30.22702pt}\pgfsys@moveto{229.75768pt}{18.13876pt}\pgfsys@lineto{229.75768pt}{30.23126pt}\pgfsys@moveto{241.85017pt}{18.13876pt}\pgfsys@lineto{241.85017pt}{30.23126pt}\pgfsys@moveto{253.93843pt}{18.13876pt}\pgfsys@lineto{253.93843pt}{30.23126pt}\pgfsys@moveto{253.94267pt}{30.23126pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{233.30392pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{245.39644pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{241.85017pt}{0.0pt}\pgfsys@moveto{241.85017pt}{0.0pt}\pgfsys@lineto{253.94267pt}{0.0pt}\pgfsys@moveto{241.85017pt}{12.08826pt}\pgfsys@lineto{253.94267pt}{12.08826pt}\pgfsys@moveto{241.85017pt}{0.0pt}\pgfsys@lineto{241.85017pt}{12.0925pt}\pgfsys@moveto{253.93843pt}{0.0pt}\pgfsys@lineto{253.93843pt}{12.0925pt}\pgfsys@moveto{253.94267pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{245.39644pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{278.12772pt}{18.13876pt}\pgfsys@moveto{278.12772pt}{18.13876pt}\pgfsys@lineto{290.22021pt}{18.13876pt}\pgfsys@moveto{278.12772pt}{30.22702pt}\pgfsys@lineto{290.22021pt}{30.22702pt}\pgfsys@moveto{278.12772pt}{18.13876pt}\pgfsys@lineto{278.12772pt}{30.23126pt}\pgfsys@moveto{290.21597pt}{18.13876pt}\pgfsys@lineto{290.21597pt}{30.23126pt}\pgfsys@moveto{290.22021pt}{30.23126pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{281.67397pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{293.75322pt}{22.03224pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{290.22021pt}{0.0pt}\pgfsys@moveto{290.22021pt}{0.0pt}\pgfsys@lineto{302.31271pt}{0.0pt}\pgfsys@moveto{290.22021pt}{12.08826pt}\pgfsys@lineto{302.31271pt}{12.08826pt}\pgfsys@moveto{290.22021pt}{0.0pt}\pgfsys@lineto{290.22021pt}{12.0925pt}\pgfsys@moveto{302.30847pt}{0.0pt}\pgfsys@lineto{302.30847pt}{12.0925pt}\pgfsys@moveto{302.31271pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{293.76646pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{5}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\[4.30554pt] S&\text{$\sigma$-triples for $\sigma=1$}\\[12.91663pt] &\leavevmode\hbox to229.43pt{\vbox to49.39pt{\pgfpicture\makeatletter\hbox{\hskip 20.7549pt\lower-0.50897pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{36.27753pt}\pgfsys@moveto{0.0pt}{36.27753pt}\pgfsys@lineto{12.0925pt}{36.27753pt}\pgfsys@moveto{0.0pt}{48.36578pt}\pgfsys@lineto{12.0925pt}{48.36578pt}\pgfsys@moveto{0.0pt}{36.27753pt}\pgfsys@lineto{0.0pt}{48.37003pt}\pgfsys@moveto{12.08826pt}{36.27753pt}\pgfsys@lineto{12.08826pt}{48.37003pt}\pgfsys@moveto{12.0925pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.42189pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-\infty\!$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.54625pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{4}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{18.13876pt}\pgfsys@moveto{0.0pt}{18.13876pt}\pgfsys@lineto{12.0925pt}{18.13876pt}\pgfsys@moveto{0.0pt}{30.22702pt}\pgfsys@lineto{12.0925pt}{30.22702pt}\pgfsys@moveto{0.0pt}{18.13876pt}\pgfsys@lineto{0.0pt}{30.23126pt}\pgfsys@moveto{12.08826pt}{18.13876pt}\pgfsys@lineto{12.08826pt}{30.23126pt}\pgfsys@moveto{12.0925pt}{30.23126pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.54625pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\mathbf{3}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}{}\pgfsys@moveto{36.27753pt}{36.27753pt}\pgfsys@moveto{36.27753pt}{36.27753pt}\pgfsys@lineto{60.46252pt}{36.27753pt}\pgfsys@moveto{36.27753pt}{48.36578pt}\pgfsys@lineto{60.46252pt}{48.36578pt}\pgfsys@moveto{36.27753pt}{36.27753pt}\pgfsys@lineto{36.27753pt}{48.37003pt}\pgfsys@moveto{48.37003pt}{36.27753pt}\pgfsys@lineto{48.37003pt}{48.37003pt}\pgfsys@moveto{60.45828pt}{36.27753pt}\pgfsys@lineto{60.45828pt}{48.37003pt}\pgfsys@moveto{60.46252pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{39.82378pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.91629pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$8$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{36.27753pt}{0.0pt}\pgfsys@moveto{36.27753pt}{0.0pt}\pgfsys@lineto{48.37003pt}{0.0pt}\pgfsys@moveto{36.27753pt}{12.08826pt}\pgfsys@lineto{48.37003pt}{12.08826pt}\pgfsys@moveto{36.27753pt}{0.0pt}\pgfsys@lineto{36.27753pt}{12.0925pt}\pgfsys@moveto{48.36578pt}{0.0pt}\pgfsys@lineto{48.36578pt}{12.0925pt}\pgfsys@moveto{48.37003pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{39.82378pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{}}{}\pgfsys@moveto{84.64757pt}{36.27753pt}\pgfsys@moveto{84.64757pt}{36.27753pt}\pgfsys@lineto{108.83257pt}{36.27753pt}\pgfsys@moveto{84.64757pt}{48.36578pt}\pgfsys@lineto{108.83257pt}{48.36578pt}\pgfsys@moveto{84.64757pt}{36.27753pt}\pgfsys@lineto{84.64757pt}{48.37003pt}\pgfsys@moveto{96.74007pt}{36.27753pt}\pgfsys@lineto{96.74007pt}{48.37003pt}\pgfsys@moveto{108.82832pt}{36.27753pt}\pgfsys@lineto{108.82832pt}{48.37003pt}\pgfsys@moveto{108.83257pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.19382pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$8$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.28632pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$9$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{84.64757pt}{0.0pt}\pgfsys@moveto{84.64757pt}{0.0pt}\pgfsys@lineto{96.74007pt}{0.0pt}\pgfsys@moveto{84.64757pt}{12.08826pt}\pgfsys@lineto{96.74007pt}{12.08826pt}\pgfsys@moveto{84.64757pt}{0.0pt}\pgfsys@lineto{84.64757pt}{12.0925pt}\pgfsys@moveto{96.73582pt}{0.0pt}\pgfsys@lineto{96.73582pt}{12.0925pt}\pgfsys@moveto{96.74007pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.19382pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{133.01761pt}{36.27753pt}\pgfsys@moveto{133.01761pt}{36.27753pt}\pgfsys@lineto{145.1101pt}{36.27753pt}\pgfsys@moveto{133.01761pt}{48.36578pt}\pgfsys@lineto{145.1101pt}{48.36578pt}\pgfsys@moveto{133.01761pt}{36.27753pt}\pgfsys@lineto{133.01761pt}{48.37003pt}\pgfsys@moveto{145.10587pt}{36.27753pt}\pgfsys@lineto{145.10587pt}{48.37003pt}\pgfsys@moveto{145.1101pt}{48.37003pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{136.56384pt}{39.10156pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$9$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{148.64311pt}{40.171pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{133.01761pt}{0.0pt}\pgfsys@moveto{133.01761pt}{0.0pt}\pgfsys@lineto{145.1101pt}{0.0pt}\pgfsys@moveto{133.01761pt}{12.08826pt}\pgfsys@lineto{145.1101pt}{12.08826pt}\pgfsys@moveto{133.01761pt}{0.0pt}\pgfsys@lineto{133.01761pt}{12.0925pt}\pgfsys@moveto{145.10587pt}{0.0pt}\pgfsys@lineto{145.10587pt}{12.0925pt}\pgfsys@moveto{145.1101pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{136.56384pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$6$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{181.38765pt}{18.13876pt}\pgfsys@moveto{181.38765pt}{18.13876pt}\pgfsys@lineto{193.48015pt}{18.13876pt}\pgfsys@moveto{181.38765pt}{30.22702pt}\pgfsys@lineto{193.48015pt}{30.22702pt}\pgfsys@moveto{181.38765pt}{18.13876pt}\pgfsys@lineto{181.38765pt}{30.23126pt}\pgfsys@moveto{193.4759pt}{18.13876pt}\pgfsys@lineto{193.4759pt}{30.23126pt}\pgfsys@moveto{193.48015pt}{30.23126pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{184.93388pt}{20.9628pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{197.01315pt}{22.03224pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\!\infty$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{}}{}\pgfsys@moveto{181.38765pt}{0.0pt}\pgfsys@moveto{181.38765pt}{0.0pt}\pgfsys@lineto{193.48015pt}{0.0pt}\pgfsys@moveto{181.38765pt}{12.08826pt}\pgfsys@lineto{193.48015pt}{12.08826pt}\pgfsys@moveto{181.38765pt}{0.0pt}\pgfsys@lineto{181.38765pt}{12.0925pt}\pgfsys@moveto{193.4759pt}{0.0pt}\pgfsys@lineto{193.4759pt}{12.0925pt}\pgfsys@moveto{193.48015pt}{12.0925pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{184.93388pt}{2.82404pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\ &\text{$\sigma$-triples for $\sigma=(1,2,3)\mapsto(3,1,2)$}\end{array}
Figure 2. A negative tableau SS on β/α=(6,3,5)/(2,1,2)\beta/\alpha=(6,3,5)/(2,1,2) and the σ\sigma-triples in β/α\beta/\alpha, for two choices of σ\sigma, shown with their entries from SS. Triples in boldface are increasing in SS.

Given α,βl\alpha,\beta\in{\mathbb{Z}}^{l} such that αjβj\alpha_{j}\leq\beta_{j} for all jj, we let β/α\beta/\alpha denote the tuple of one-row skew shapes (βj)/(αj)(\beta_{j})/(\alpha_{j}) such that the xx coordinates of the right edges of boxes aa in the jj-th row are the integers αj+1,,βj\alpha_{j}+1,\ldots,\beta_{j}. The boxes just outside the jj-th row, adjacent to the left and right ends of the row, then have xx coordinates αj\alpha_{j} and βj+1\beta_{j}+1. In the case of an empty row with αj=βj\alpha_{j}=\beta_{j}, we still consider these two boxes to be adjacent to the ends of the row.

For each box aa, let i(a)i(a) denote the xx coordinate of its right edge and j(a)j(a) the index of the row containing it.

For σSl\sigma\in S_{l}, we define σ(β/α)=σ(β)/σ(α)\sigma(\beta/\alpha)=\sigma(\beta)/\sigma(\alpha). If aa is a box in row j(a)j(a) of β/α\beta/\alpha, then σ(a)\sigma(a) denotes the corresponding box with coordinate i(σ(a))=i(a)i(\sigma(a))=i(a) in row σ(j(a))\sigma(j(a)) of σ(β/α)\sigma(\beta/\alpha). The adjusted content of σ(a)\sigma(a), as defined in §4.1, is then c~(σ(a))=i(a)+ϵσ(j(a))\tilde{c}(\sigma(a))=i(a)+\epsilon\sigma(j(a)). Hence, the reading order on σ(β/α)\sigma(\beta/\alpha) corresponds via σ\sigma to the ordering of boxes in β/α\beta/\alpha by increasing values of i(a)+ϵσ(j(a))i(a)+\epsilon\sigma(j(a)).

We define a σ\sigma-triple in β/α\beta/\alpha to consist of any three boxes (a,b,c)(a,b,c) arranged as follows: boxes aa and cc are in or adjacent to the same row j(a)=j(c)j(a)=j(c), and are consecutive, that is, i(c)=i(a)+1i(c)=i(a)+1, while box bb is in a row j(b)<j(a)j(b)<j(a), and we have a<b<ca<b<c in the ordering corresponding to the reading order on σ(β/α)\sigma(\beta/\alpha). More explicitly, this means that if σ(j(b))<σ(j(a))\sigma(j(b))<\sigma(j(a)), then i(b)=i(c)i(b)=i(c), while if σ(j(b))>σ(j(a))\sigma(j(b))>\sigma(j(a)), then i(b)=i(a)i(b)=i(a). The box bb is required to be a box of β/α\beta/\alpha, but box aa is allowed to be outside and adjacent to the left end of a row, while cc is similarly allowed to be outside and adjacent to the right end of a row.

An example of a tuple β/α\beta/\alpha, with all its σ\sigma-triples for two different choices of σ\sigma, is shown in Figure 2.

A negative tableau on β/α\beta/\alpha is a map S:β/α+S\colon\beta/\alpha\rightarrow{\mathbb{Z}}_{+} strictly increasing on each row. In the terminology of §4.1, SS is a super tableau on β/α\beta/\alpha with entries in +{\mathbb{Z}}_{+}, considered as a negative alphabet ordered by 1¯<2¯<\overline{1}<\overline{2}<\cdots. We say that a σ\sigma-triple (a,b,c)(a,b,c) in β/α\beta/\alpha is increasing in SS if S(a)<S(b)<S(c)S(a)<S(b)<S(c), with the convention that S(a)=S(a)=-\infty if aa is just outside the left end of a row, and S(c)=S(c)=\infty if cc is just outside right end of a row. Along with the σ\sigma-triples in β/α\beta/\alpha, Figure 2 also displays which triples are increasing in a sample tableau SS.

Proposition 4.5.2.

Given α,βl\alpha,\beta\in{\mathbb{Z}}^{l} such that αiβi\alpha_{i}\leq\beta_{i} for all ii, and σSl\sigma\in S_{l}, let

(95) Nβ/ασ(X;q)=SSSYT(β/α)qhσ(S)xSN^{\sigma}_{\beta/\alpha}(X;q)=\sum_{S\in\operatorname{SSYT}_{-}(\beta/\alpha)}q^{h_{\sigma}(S)}x^{S}

be the generating function for negative tableaux SS on the tuple of one-row skew diagrams (βi)/(αi)(\beta_{i})/(\alpha_{i}), weighted by qhσ(S)q^{h_{\sigma}(S)}, where hσ(S)h_{\sigma}(S) is the number of increasing σ\sigma-triples in SS. Then Nβ/ασ(X;q)N^{\sigma}_{\beta/\alpha}(X;q) is a symmetric function, and ωNβ/ασ(X;q)\omega N^{\sigma}_{\beta/\alpha}(X;q) evaluates in ll variables to

(96) (ωNβ/ασ)(x1,,xl;q)=β/ασ(x1,,xl;q)pol.(\omega N^{\sigma}_{\beta/\alpha})(x_{1},\ldots,x_{l};q)={\mathcal{L}}^{\sigma}_{\beta/\alpha}(x_{1},\ldots,x_{l};q)_{\operatorname{pol}}.

If we do not have αiβi\alpha_{i}\leq\beta_{i} for all ii, then β/ασ(x;q)pol=0{\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q)_{\operatorname{pol}}=0.

Proof.

Let Lβ/ασ(X;q)L^{\sigma}_{\beta/\alpha}(X;q) be the unique symmetric function such that (i) Lβ/ασ(X;q)L^{\sigma}_{\beta/\alpha}(X;q) is a linear combination of Schur functions sλs_{\lambda} with (λ)l\ell(\lambda)\leq l, and (ii) in ll variables, it evaluates to

(97) Lβ/ασ(x1,,xl;q)=β/ασ(x1,,xl;q)pol.L^{\sigma}_{\beta/\alpha}(x_{1},\ldots,x_{l};q)={\mathcal{L}}^{\sigma}_{\beta/\alpha}(x_{1},\ldots,x_{l};q)_{\operatorname{pol}}.

What we need to prove is that ωLβ/ασ(X;q)=Nβ/ασ(X;q)\omega\,L^{\sigma}_{\beta/\alpha}(X;q)=N^{\sigma}_{\beta/\alpha}(X;q).

The definition of β/ασ(x;q){\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q) implies that Lβ/ασ(X;q)L^{\sigma}_{\beta/\alpha}(X;q) satisfies

(98) sλ(X),Lβ/ασ(X;q)=Eβσ1(x;q1)sλ(x1,,xl)Eασ1(x;q1)\langle s_{\lambda}(X),L^{\sigma}_{\beta/\alpha}(X;q)\rangle=\langle E^{\sigma^{-1}}_{\beta}(x;q^{-1})\rangle\,s_{\lambda}(x_{1},\ldots,x_{l})\,E^{\sigma^{-1}}_{\alpha}(x;q^{-1})

for every partition λ\lambda, including when (λ)>l\ell(\lambda)>l, since then both sides are zero. By linearity, we can replace sλs_{\lambda} by any symmetric function ff, giving

(99) f(X),Lβ/ασ(X;q)=Eβσ1(x;q1)f(x)Eασ1(x;q1).\langle f(X),\,L^{\sigma}_{\beta/\alpha}(X;q)\rangle=\langle E^{\sigma^{-1}}_{\beta}(x;q^{-1})\rangle\,f(x)\,E^{\sigma^{-1}}_{\alpha}(x;q^{-1})\,.

The coefficient of mμ(X)m_{\mu}(X) in ωLβ/ασ(X;q)\omega\,L^{\sigma}_{\beta/\alpha}(X;q) is given by taking f=eμf=e_{\mu}.

To show that ωLβ/ασ(X;q)\omega\,L^{\sigma}_{\beta/\alpha}(X;q) is given by the tableau generating function in (95), we use Lemma 4.5.1 to express

(100) Eβσ1(x;q1)eμ(x)Eασ1(x;q1)\langle E^{\sigma^{-1}}_{\beta}(x;q^{-1})\rangle\,e_{\mu}(x)\,E^{\sigma^{-1}}_{\alpha}(x;q^{-1})

as a sum of powers of qq indexed by negative tableaux. In particular, this coefficient will vanish unless we have αiβi\alpha_{i}\leq\beta_{i} for all ii, giving the last conclusion in the proposition.

Multiplying by eμ1e_{\mu_{1}} through eμne_{\mu_{n}} successively and keeping track of one chosen term in each product gives a sequence of terms Eα(0)σ1,Eα(1)σ1,,Eα(n)σ1E^{\sigma^{-1}}_{\alpha^{(0)}},E^{\sigma^{-1}}_{\alpha^{(1)}},\ldots,E^{\sigma^{-1}}_{\alpha^{(n)}}, in which α(0)=α\alpha^{(0)}=\alpha and α(m+1)=α(m)+εI\alpha^{(m+1)}=\alpha^{(m)}+\varepsilon_{I} for a set of indices II of size μm\mu_{m}, for each mm. Each sequence with α(n)=β\alpha^{(n)}=\beta contributes to (100).

If we record these data in the form of a tableau S:β/α+S\colon\beta/\alpha\rightarrow{\mathbb{Z}}_{+} with S(a)=mS(a)=m for a(α(m)/α(m1))a\in(\alpha^{(m)}/\alpha^{(m-1)}), SS satisfies the condition that it is a negative tableau of weight xS=xμx^{S}=x^{\mu}. The contribution to (100) from the corresponding sequence of terms is the product of the qhIq^{h_{I}} with hIh_{I} as in (89) for k=μmk=\mu_{m}, λ=α(m1)\lambda=\alpha^{(m-1)}, and II the set of indices jj such that S(a)=mS(a)=m for some box aa in row jj.

We now express the hIh_{I} corresponding to (α(m)/α(m1))=S1({m})(\alpha^{(m)}/\alpha^{(m-1)})=S^{-1}(\{m\}) as an attribute of SS. For hIh_{I} to count a pair i<ji<j, we must have iIi\in I, which means that S(b)=mS(b)=m for a box bb in row ii, and jIj\not\in I, and one of the following two situations.

If σ(i)<σ(j)\sigma(i)<\sigma(j), we must have αj(m1)=αi(m1)\alpha^{(m-1)}_{j}=\alpha^{(m-1)}_{i}. Since there is no mm in row jj of SS, this means that the boxes aa and cc in row jj with coordinates i(a)=i(b)1i(a)=i(b)-1, i(c)=i(b)i(c)=i(b) have S(a)<S(b)<S(c)S(a)<S(b)<S(c), with the same convention as above that S(a)=S(a)=-\infty if aa is to the left of a row of β/α\beta/\alpha, and S(c)=S(c)=\infty if cc is to the right of a row.

If σ(i)>σ(j)\sigma(i)>\sigma(j), we must have αj(m1)=αi(m1)+1\alpha^{(m-1)}_{j}=\alpha^{(m-1)}_{i}+1. This means that the boxes aa and cc in row jj with coordinates i(a)=i(b)i(a)=i(b), i(c)=i(b)+1i(c)=i(b)+1 have S(a)<S(b)<S(c)S(a)<S(b)<S(c), with the same convention as before.

These two cases establish that hIh_{I} is equal to the number of increasing σ\sigma-triples in SS for which S(b)=mS(b)=m. Summing them up gives the total number of increasing σ\sigma-triples, implying that the coefficient in (100) is the sum of qhσ(S)q^{h_{\sigma}(S)} over negative tableaux SS of weight xS=xμx^{S}=x^{\mu} on β/α\beta/\alpha, where hσ(S)h_{\sigma}(S) is the number of increasing σ\sigma-triples in SS. ∎

Lemma 4.5.3.

Given σSl\sigma\in S_{l} and α,βl\alpha,\beta\in{\mathbb{Z}}^{l} with αiβi\alpha_{i}\leq\beta_{i} for all ii, for TSSYT(σ(β/α))T\in\operatorname{SSYT}_{-}(\sigma(\beta/\alpha)),

(101) hσ(β/α)inv(T)=hσ(S),h_{\sigma}(\beta/\alpha)-\operatorname{inv}(T)=h_{\sigma}(S)\,,

where S=σ1(T)=TσS=\sigma^{-1}(T)=T\circ\sigma.

Proof.

Recall from §4.1 that an attacking inversion in a negative tableau is defined by T(a)T(b)T(a)\geq T(b), where a,ba,b is an attacking pair with aa preceding bb in the reading order.

One can verify from the definition of σ\sigma-triple that the attacking pairs in σ(β/α)\sigma(\beta/\alpha), ordered by the reading order, are precisely the pairs σ(a,b)\sigma(a,b) or σ(b,c)\sigma(b,c) for (a,b,c)(a,b,c) a σ\sigma-triple such that the relevant boxes are in β/α\beta/\alpha. Moreover, every attacking pair occurs in this manner exactly once.

If all three boxes of a σ\sigma-triple (a,b,c)(a,b,c) are in β/α\beta/\alpha, and TT is a negative tableau on σ(β/α)\sigma(\beta/\alpha), then since T(σ(a))<T(σ(c))T(\sigma(a))<T(\sigma(c)), at most one of the attacking pairs σ(a,b)\sigma(a,b), σ(b,c)\sigma(b,c) can be an attacking inversion in TT. The condition that neither pair is an attacking inversion is that S(a)<S(b)<S(c)S(a)<S(b)<S(c) in the negative tableau S=σ1(T)=TσS=\sigma^{-1}(T)=T\circ\sigma on β/α\beta/\alpha. This also holds for triples not contained in β/α\beta/\alpha with our convention that S(a)=S(a)=-\infty or S(c)=S(c)=\infty for aa or cc outside the tuple β/α\beta/\alpha. Hence, the result follows. ∎

Example 4.5.4.

Let SS be as in Figure 2 and

σ=(1,2,3)(3,1,2)\sigma=(1,2,3)\mapsto(3,1,2),     T=Sσ1=T=S\circ\sigma^{-1}=,225566774488991133

so TT is a negative tableau on σ(β/α)=(3,5,6)/(1,2,2)\sigma(\beta/\alpha)=(3,5,6)/(1,2,2). Reading TT by reading order on σ(β/α)\sigma(\beta/\alpha) gives 134285967134285967. The pairs (T(a),T(b))(T(a),T(b)) for attacking inversions (a,b)(a,b) in TT are (3,2)(3,2), (4,2)(4,2), (8,5)(8,5), and (9,6)(9,6), so inv(T)=4\operatorname{inv}(T)=4. From the bottom row of Figure 2, we have hσ(β/α)=5h_{\sigma}(\beta/\alpha)=5, hσ(S)=1h_{\sigma}(S)=1, so hσ(β/α)inv(T)=hσ(S)h_{\sigma}(\beta/\alpha)-\operatorname{inv}(T)=h_{\sigma}(S) is indeed satisfied.

Now let σ=1\sigma=1 and T=Sσ1=ST=S\circ\sigma^{-1}=S. Reading TT by reading order on β/α\beta/\alpha gives 123458697123458697. The pairs (T(a),T(b))(T(a),T(b)) for the attacking inversions are (8,6)(8,6) and (9,7)(9,7), so inv(T)=2\operatorname{inv}(T)=2. From Figure 2, we see hσ(β/α)=7h_{\sigma}(\beta/\alpha)=7, hσ(S)=5h_{\sigma}(S)=5, so again hσ(β/α)inv(T)=hσ(S)h_{\sigma}(\beta/\alpha)-\operatorname{inv}(T)=h_{\sigma}(S) holds.

Remark 4.5.5.

If we define an increasing σ\sigma-triple for TSSYT(σ(β/α))T\in\operatorname{SSYT}(\sigma(\beta/\alpha)) to be any σ\sigma-triple (a,b,c)(a,b,c) satisfying T(a)T(b)T(c)T(a)\leq T(b)\leq T(c), then a similar argument gives the relation

(102) hσ(β/α)inv(T)=hσ(S)h_{\sigma}(\beta/\alpha)-\operatorname{inv}(T)=h_{\sigma}(S)\,

for ordinary semistandard tableaux as well, where again S=σ1(T)=TσS=\sigma^{-1}(T)=T\circ\sigma.

Remark 4.5.6.

Given a tuple of rows βi/αi\beta_{i}/\alpha_{i}, if we shift the ii-th row to the right by ϵσ(i)\epsilon\sigma(i) for a small ϵ>0\epsilon>0, then hσ(β/α)h_{\sigma}(\beta/\alpha) is equal to the number of alignments between a box boundary in row jj and the interior of a box in row ii for i<ji<j, where a boundary is the edge common to two adjacent boxes which are either in or adjacent to the row. An empty row has one boundary.

The relation between 𝒢{\mathcal{G}} and {\mathcal{L}} can now be made precise by applying Proposition 4.5.2 and Lemma 4.5.3 to the expression for qhσ(β/α)𝒢σ(β/α)(X;q1)q^{h_{\sigma}(\beta/\alpha)}{\mathcal{G}}_{\sigma(\beta/\alpha)}(X;q^{-1}) given in Corollary 4.1.3.

Corollary 4.5.7.

Given α,βl\alpha,\beta\in{\mathbb{Z}}^{l} and σSl\sigma\in S_{l},

(103) β/ασ(x;q)pol={qhσ(β/α)𝒢σ(β/α)(x;q1)if αiβi for all i0otherwise,{\mathcal{L}}^{\sigma}_{\beta/\alpha}(x;q)_{\operatorname{pol}}=\begin{cases}q^{h_{\sigma}(\beta/\alpha)}{\mathcal{G}}_{\sigma(\beta/\alpha)}(x;q^{-1})&\text{if $\alpha_{i}\leq\beta_{i}$ for all $i$}\\ 0&\text{otherwise},\end{cases}

where hσ(β/α)h_{\sigma}(\beta/\alpha) is the number of σ\sigma-triples in β/α\beta/\alpha, and the right hand side is evaluated in ll variables x1,,xlx_{1},\ldots,x_{l}.

5. The generalized shuffle theorem

5.1. Cauchy identity

In this section we derive our main results, Theorems 5.3.1 and 5.5.1. The key point is the following delightful ‘Cauchy identity’ for non-symmetric Hall-Littlewood polynomials.

Theorem 5.1.1.

For any permutation σSl\sigma\in S_{l}, the twisted non-symmetric Hall-Littlewood polynomials Eλσ(x;q)E^{\sigma}_{\lambda}(x;q) and Fλσ(x;q)F^{\sigma}_{\lambda}(x;q) in (74, 75) satisfy the identity

(104) i<j(1qtxiyj)ij(1txiyj)=𝐚0t|𝐚|E𝐚σ(x1,,xl;q1)F𝐚σ(y1,,yl;q),\frac{\prod_{i<j}(1-q\,t\,x_{i}\,y_{j})}{\prod_{i\leq j}(1-t\,x_{i}\,y_{j})}=\sum_{{\mathbf{a}}\geq 0}t^{|{\mathbf{a}}|}\,E^{\sigma}_{{\mathbf{a}}}(x_{1},\ldots,x_{l};q^{-1})\,F^{\sigma}_{{\mathbf{a}}}(y_{1},\ldots,y_{l};q),

where the sum is over 𝐚=(a1,,al){\mathbf{a}}=(a_{1},\ldots,a_{l}) with all ai0a_{i}\geq 0 and |𝐚|=defa1++al|{\mathbf{a}}|\overset{\text{{\em def}}}{=}a_{1}+\cdots+a_{l}.

Proof.

Let Z(x,y,q,t)Z(x,y,q,t) denote the product on the left hand side.

From the definitions we see that E𝐚σ(x;q)E^{\sigma}_{{\mathbf{a}}}(x;q) and F𝐚σ(x;q)F^{\sigma}_{{\mathbf{a}}}(x;q) for 𝐚0{\mathbf{a}}\geq 0 belong to the polynomial ring (q)[x]=(q)[x1,,xl]{\mathbb{Q}}(q)[x]={\mathbb{Q}}(q)[x_{1},\ldots,x_{l}]. The E𝐚σ(x;q)E^{\sigma}_{{\mathbf{a}}}(x;q) form a graded basis of (q)[x]{\mathbb{Q}}(q)[x], since they are homogeneous and E𝐚σ(x;q)E^{\sigma}_{{\mathbf{a}}}(x;q) has leading term x𝐚x^{{\mathbf{a}}}. The F𝐚σ(x;q)F^{\sigma}_{{\mathbf{a}}}(x;q) likewise form a graded basis of (q)[x]{\mathbb{Q}}(q)[x]. We are to prove that the expansion of Z(x,y,q,t)Z(x,y,q,t) as a power series in tt, with coefficients expressed in terms of the basis {E𝐚σ(x;q1)F𝐛σ(y;q)}\{E^{\sigma}_{{\mathbf{a}}}(x;q^{-1})F^{\sigma}_{{\mathbf{b}}}(y;q)\} of (q)[x,y]{\mathbb{Q}}(q)[x,y], is given by the formula on the right hand side. Put another way, we are to show that the coefficient of F𝐚σ(y;q)F^{\sigma}_{{\mathbf{a}}}(y;q) in Z(x,y,q,t)Z(x,y,q,t) is equal to t|𝐚|E𝐚σ(x;q1)t^{|{\mathbf{a}}|}E^{\sigma}_{{\mathbf{a}}}(x;q^{-1}), or equivalently that the coefficient of F𝐚σ(y1;q1)F^{\sigma}_{{\mathbf{a}}}(y^{-1};q^{-1}) in Z(x,y1,q1,t)Z(x,y^{-1},q^{-1},t) is equal to t|𝐚|E𝐚σ(x;q)t^{|{\mathbf{a}}|}E^{\sigma}_{{\mathbf{a}}}(x;q).

Using Proposition 4.3.2, this will follow by taking f(y)=E𝐚σ(y;q)f(y)=E^{\sigma}_{{\mathbf{a}}}(y;q) in the identity

(105) f(tx)=y0f(y)i<j(1q1txi/yj)ij(1txi/yj)i<j1yi/yj1q1yi/yj,f(tx)=\langle y^{0}\rangle\;f(y)\frac{\prod_{i<j}(1-q^{-1}t\,x_{i}/y_{j})}{\prod_{i\leq j}(1-t\,x_{i}/y_{j})}\prod_{i<j}\frac{1-y_{i}/y_{j}}{1-q^{-1}y_{i}/y_{j}},

provided we prove that this identity is valid for all polynomials f(y)=f(y1,,yl)f(y)=f(y_{1},\ldots,y_{l}). Here we mean that f(y)(q)[y]f(y)\in{\mathbb{Q}}(q)[y] is a true polynomial and not a Laurent polynomial. Note that the denominator factors in (105) should be understood as geometric series.

The only factor in (105) that involves negative powers of y1y_{1} is 1/(1tx1/y1)1/(1-t\,x_{1}/y_{1}). All the rest is a power series as a function of y1y_{1}. For any power series g(y1)g(y_{1}), we have y10g(y1)/(1tx1/y1)=g(tx1)\langle y_{1}^{0}\rangle\,g(y_{1})/(1-t\,x_{1}/y_{1})=g(tx_{1}). The factors other than 1/(1tx1/y1)1/(1-t\,x_{1}/y_{1}) with index i=1i=1 in (105) cancel upon setting y1=tx1y_{1}=tx_{1}. It follows that when we take the constant term in the variable y1y_{1}, (105) reduces to the same identity in variables y2,,yly_{2},\ldots,y_{l}. We can assume that the latter holds by induction. ∎

Example 5.1.2.

The products t|𝐚|E𝐚σ(x;q1)F𝐚σ(y;q)t^{|{\mathbf{a}}|}E^{\sigma}_{{\mathbf{a}}}(x;q^{-1})F^{\sigma}_{{\mathbf{a}}}(y;q) for the pairs in Figure 1 sum to the t0t^{0} through t2t^{2} terms in the expansion of

(106) (1qtx1y2)(1qtx1y3)(1qtx2y3)(1tx1y1)(1tx1y2)(1tx1y3)(1tx2y2)(1tx2y3)(1tx3y3).\frac{(1-q\,t\,x_{1}\,y_{2})(1-q\,t\,x_{1}\,y_{3})(1-q\,t\,x_{2}\,y_{3})}{(1-t\,x_{1}\,y_{1})(1-t\,x_{1}\,y_{2})(1-t\,x_{1}\,y_{3})(1-t\,x_{2}\,y_{2})(1-t\,x_{2}\,y_{3})(1-t\,x_{3}\,y_{3})}.
Remark 5.1.3.

Using the fact that our non-symmetric Hall-Littlewood polynomials agree with those of Ion in [21], the σ=1\sigma=1 case of (104) can be derived from the Cauchy identity for non-symmetric Macdonald polynomials of Mimachi and Noumi [28]. We also note that (104) for σ=1\sigma=1 specializes at q=0q=0 to the GLl\operatorname{GL}_{l} case of the non-symmetric Cauchy identities of Fu and Lascoux [8].

5.2. Winding permutations

We will apply Theorem 5.1.1 in cases for which the twisting permutation has a special form, allowing the Hall-Littlewood polynomial F𝐚σ(y;q)F^{\sigma}_{{\mathbf{a}}}(y;q) to be written another way.

Definition 5.2.1.

Let {x}=xx{\boldsymbol{\{}}x{\boldsymbol{\}}}=x-\lfloor x\rfloor denote the fractional part of a real number xx. Let c1,,clc_{1},\ldots,c_{l} be the sequence of fractional parts ci={ai+b}c_{i}={\boldsymbol{\{}}a\,i+b{\boldsymbol{\}}} of an arithmetic progression, where aa is assumed irrational, so the cic_{i} are distinct. Let σSl\sigma\in S_{l} be the permutation such that σ(c1,,cl)\sigma(c_{1},\ldots,c_{l}) is increasing, i.e., σ(1),,σ(l)\sigma(1),\ldots,\sigma(l) are in the same relative order as c1,,clc_{1},\ldots,c_{l}.

A permutation σ\sigma of this form is a winding permutation. The descent indicator of σ\sigma is the vector (η1,,ηl1)(\eta_{1},\ldots,\eta_{l-1}) defined by

(107) ηi={1if σ(i)>σ(i+1),0if σ(i)<σ(i+1).\eta_{i}=\begin{cases}1&\text{if $\sigma(i)>\sigma(i+1)$},\\ 0&\text{if $\sigma(i)<\sigma(i+1)$}.\end{cases}

The head and tail of the winding permutation σ\sigma are the respective permutations τ,θSl1\tau,\,\theta\in S_{l-1} such that τ(1),,τ(l1)\tau(1),\ldots,\tau(l-1) are in the same relative order as σ(1),,σ(l1)\sigma(1),\ldots,\sigma(l-1), and θ(1),,θ(l1)\theta(1),\ldots,\theta(l-1) are in the same relative order as σ(2),,σ(l)\sigma(2),\ldots,\sigma(l).

Adding an integer to aa in the above definition doesn’t change the cic_{i}, so we can assume that 0<a<10<a<1. In that case the descent indicator of σ\sigma is characterized by

(108) ηi=1ci>ci+1\displaystyle\eta_{i}=1\quad\Leftrightarrow\quad c_{i}>c_{i+1}\quad\Leftrightarrow ci+1=ci+a1,\displaystyle c_{i+1}=c_{i}+a-1,
ηi=0ci<ci+1\displaystyle\eta_{i}=0\quad\Leftrightarrow\quad c_{i}<c_{i+1}\quad\Leftrightarrow ci+1=ci+a.\displaystyle c_{i+1}=c_{i}+a.
Proposition 5.2.2.

Let σSl\sigma\in S_{l} be a winding permutation, with descent indicator η\eta, and head and tail τ,θSl1\tau,\,\theta\in S_{l-1}. For every λl1\lambda\in{\mathbb{Z}}^{l-1} we have identities

(109) Eλθ1(x;q)=xηEλητ1(x;q),\displaystyle E^{\theta^{-1}}_{\lambda}(x;q)=x^{\eta}\,E^{\tau^{-1}}_{\lambda-\eta}(x;q),
(110) Fλθ1(x;q)=xηFλητ1(x;q)\displaystyle F^{\theta^{-1}}_{\lambda}(x;q)=x^{\eta}\,F^{\tau^{-1}}_{\lambda-\eta}(x;q)

of Laurent polynomials in x1,,xl1x_{1},\ldots,x_{l-1}.

The proof uses the following lemma.

Lemma 5.2.3.

With τ,θ\tau,\theta and η\eta as in Proposition 5.2.2, and for every wSl1w\in S_{l-1}, there is an identity of operators on 𝐤[x1±1,,xl1±1]{\mathbf{k}}[x_{1}^{\pm 1},\ldots,x_{l-1}^{\pm 1}]

(111) Tτw1TτxηTθ1Tθw=qexw1(η),T_{\tau w}^{-1}\,T_{\tau}\,x^{-\eta}\,T_{\theta}^{-1}\,T_{\theta w}=q^{e}\,x^{-w^{-1}(\eta)},

for some exponent ee depending on ww.

Proof.

We prove (111) by induction on the length of ww. The base case w=1w=1 is trivial. Suppose now that w=vsiw=vs_{i} is a reduced factorization. We can write the left hand side of (111) as

(112) Tiε1Tτv1TτxηTθ1TθvTiε2,T_{i}^{\varepsilon_{1}}\,T_{\tau v}^{-1}\,T_{\tau}\,x^{-\eta}\,T_{\theta}^{-1}\,T_{\theta v}\,T_{i}^{\varepsilon_{2}},

where

(113) ε1={+1if τvsi<τv1if τvsi>τvε2={+1if θvsi>θv1if θvsi<θv.\varepsilon_{1}=\begin{cases}+1&\text{if $\tau vs_{i}<\tau v$}\\ -1&\text{if $\tau vs_{i}>\tau v$}\end{cases}\qquad\varepsilon_{2}=\begin{cases}+1&\text{if $\theta vs_{i}>\theta v$}\\ -1&\text{if $\theta vs_{i}<\theta v$}\end{cases}.

Assuming by induction that (111) holds for vv, and substituting this into (112), we are left to show that

(114) Tiε1xv1(η)Tiε2=qexsiv1(η)T_{i}^{\varepsilon_{1}}\,x^{-v^{-1}(\eta)}\,T_{i}^{\varepsilon_{2}}=q^{e}\,x^{-s_{i}v^{-1}(\eta)}

for some exponent ee. We now consider the possible values for αi,v1(η)\langle\alpha_{i}^{\vee},-v^{-1}(\eta)\rangle, which is equal to ηkηj\eta_{k}-\eta_{j}, where v(i)=jv(i)=j, v(i+1)=kv(i+1)=k.

Case 1: If ηj=ηk\eta_{j}=\eta_{k}, we see from (108) that cj+1cj=ck+1ckc_{j+1}-c_{j}=c_{k+1}-c_{k}, hence cj+1<ck+1cj<ckc_{j+1}<c_{k+1}\Leftrightarrow c_{j}<c_{k}. This implies that σ(j+1)<σ(k+1)σ(j)<σ(k)\sigma(j+1)<\sigma(k+1)\Leftrightarrow\sigma(j)<\sigma(k), and therefore that τv(i)<τv(i+1)θv(i)<θv(i+1)\tau v(i)<\tau v(i+1)\Leftrightarrow\theta v(i)<\theta v(i+1). Hence, in this case we have ε1=ε2\varepsilon_{1}=-\varepsilon_{2}.

Case 2: If ηj=1\eta_{j}=1 and ηk=0\eta_{k}=0, then from (108) we get cj+1=cj+a1c_{j+1}=c_{j}+a-1 and ck+1=ck+ac_{k+1}=c_{k}+a. Then ck+1cj+1=ckcj+1c_{k+1}-c_{j+1}=c_{k}-c_{j}+1. Since ck+1cj+1c_{k+1}-c_{j+1} and ckcjc_{k}-c_{j} both have absolute value less than 11, this implies ck<cjc_{k}<c_{j} and ck+1>cj+1c_{k+1}>c_{j+1}. It follows in the same way as in Case 1 that τv(i)>τv(i+1)\tau v(i)>\tau v(i+1) and θv(i)<θv(i+1)\theta v(i)<\theta v(i+1). Hence, in this case we have ε1=ε2=1\varepsilon_{1}=\varepsilon_{2}=1.

Case 3: If ηj=0\eta_{j}=0 and ηk=1\eta_{k}=1 we reason as in Case 2, but with jj and kk exchanged, to conclude that in this case we have ε1=ε2=1\varepsilon_{1}=\varepsilon_{2}=-1.

In each case, (114) now follows from the well-known affine Hecke algebra identities

(115) Ti1xμTi=TixμTi1=xμ=xsiμ\displaystyle T_{i}^{-1}\,x^{\mu}\,T_{i}=T_{i}\,x^{\mu}\,T_{i}^{-1}=x^{\mu}=x^{s_{i}\mu} if αi,μ=0,\displaystyle\qquad\text{if $\langle\alpha_{i}^{\vee},\mu\rangle=0$},
TixμTi=qxsiμ\displaystyle T_{i}\,x^{\mu}\,T_{i}=q\,x^{s_{i}\mu} if αi,μ=1,\displaystyle\qquad\text{if $\langle\alpha_{i}^{\vee},\mu\rangle=-1$},
Ti1xμTi1=q1xsiμ\displaystyle T_{i}^{-1}\,x^{\mu}\,T_{i}^{-1}=q^{-1}x^{s_{i}\mu} if αi,μ=1,\displaystyle\qquad\text{if $\langle\alpha_{i}^{\vee},\mu\rangle=1$},

which can be verified directly from the definition of TiT_{i}. ∎

Proof of Proposition 5.2.2.

Let w0Slw_{0}\in S_{l} and w0Sl1w_{0}^{\prime}\in S_{l-1} be the longest permutations. Then w0τw_{0}^{\prime}\tau, w0θw_{0}^{\prime}\theta are the head and tail of the winding permutation w0σw_{0}\sigma, and the descent indicator of w0σw_{0}\sigma is ηi=1ηi\eta^{\prime}_{i}=1-\eta_{i}. Using these facts and the definition (75) of Fλπ(x;q)F^{\pi}_{\lambda}(x;q), one can check that (109) implies (110).

To prove (109), we begin by observing that for any given λ\lambda there exists wSlw\in S_{l} such that both w1(λ)w^{-1}(\lambda) and w1(λη)w^{-1}(\lambda-\eta) are dominant. To see this, first choose any vv such that v(λ)=λ+v(\lambda)=\lambda_{+} is dominant. Since η\eta is {0,1}\{0,1\}-valued, the weight μ=v(λη)=λ+v(η)\mu=v(\lambda-\eta)=\lambda_{+}-v(\eta) has the property that for all i<ji<j, if μi<μj\mu_{i}<\mu_{j} then (λ+)i=(λ+)j(\lambda_{+})_{i}=(\lambda_{+})_{j}. Hence, there is a permutation uu that fixes λ+\lambda_{+} and sorts μ\mu into weakly decreasing order, so u(μ)=uv(λη)u(\mu)=uv(\lambda-\eta) is dominant. Since uv(λ)=λ+uv(\lambda)=\lambda_{+} is also dominant, w1=uvw^{-1}=uv works.

Now, Lemma 5.2.3 implies

(116) Tτw1TτxηTθ1Tθw(xw1(λ))xw1(η)xw1(λ),T_{\tau w}^{-1}\,T_{\tau}\,x^{-\eta}\,T_{\theta}^{-1}\,T_{\theta w}(x^{w^{-1}(\lambda)})\sim x^{-w^{-1}(\eta)}x^{w^{-1}(\lambda)},

where \sim signifies that the expressions are equal up to a qq power factor. Equivalently,

(117) Tθ1Tθwxw1(λ)xηTτ1Tτwxw1(λη).T_{\theta}^{-1}\,T_{\theta w}\,x^{w^{-1}(\lambda)}\sim x^{\eta}\,T_{\tau}^{-1}\,T_{\tau w}\,x^{w^{-1}(\lambda-\eta)}.

Writing out the definitions of Eλθ1E^{\theta^{-1}}_{\lambda} and Eλητ1E^{\tau^{-1}}_{\lambda-\eta}, while ignoring qq power factors, and using the fact that λ+=w1(λ)\lambda_{+}=w^{-1}(\lambda) and (λη)+=w1(λη)(\lambda-\eta)_{+}=w^{-1}(\lambda-\eta) for this ww, (117) implies that (109) holds up to a scalar factor qeq^{e}. But we know that the xλx^{\lambda} term on each side has coefficient 1, so (109) holds exactly. ∎

5.3. Stable shuffle theorem

We now prove an identity of formal power series with coefficients in GLl\operatorname{GL}_{l} characters, that is, symmetric Laurent polynomials in variables x1,,xlx_{1},\ldots,x_{l}. When truncated to the polynomial part, this identity will reduce to our shuffle theorem for paths under a line (Theorem 5.5.1).

Theorem 5.3.1.

Let p,sp,s be real numbers with pp positive and irrational. For i=1,,li=1,\ldots,l, let

bi=sp(i1)spi.b_{i}=\lfloor s-p(i-1)\rfloor-\lfloor s-pi\rfloor.

Let ci={sp(i1)}c_{i}={\boldsymbol{\{}}s-p(i-1){\boldsymbol{\}}}, and let σSl\sigma\in S_{l} be the permutation such that σ(1),,σ(l)\sigma(1),\ldots,\sigma(l) are in the same relative order as cl,,c1c_{l},\ldots,c_{1}, i.e., σ(cl,,c1)\sigma(c_{l},\ldots,c_{1}) is increasing. For any non-negative integers u,vu,v we have the identity of formal power series in tt

(118) b1+u,b2,,bl1,blv=a1,,al10t|𝐚|((bl,,b1)+(v,al1,,a1))/(al1,,a1,u)σ(x;q),{\mathcal{H}}_{b_{1}+u,b_{2},\ldots,b_{l-1},b_{l}-v}=\sum_{a_{1},\ldots,a_{l-1}\geq 0}t^{|{\mathbf{a}}|}{\mathcal{L}}^{\sigma}_{((b_{l},\ldots,b_{1})+(-v,a_{l-1},\ldots,a_{1}))/(a_{l-1},\ldots,a_{1},-u)}(x;q),

where 𝐛{\mathcal{H}}_{{\mathbf{b}}} is given by Definition 3.7.1.

Remark 5.3.2.

If δ\delta is the highest south-east lattice path weakly below the line y+px=sy+px=s, starting at (0,s)(0,\lfloor s\rfloor) and extending forever (not stopping at the xx axis), then bib_{i} is the number of south steps in δ\delta along the line x=i1x=i-1, and cic_{i} is the gap along x=i1x=i-1 between the given line and the highest point of δ\delta beneath it.

Proof of Theorem 5.3.1.

We will prove that for 𝐛{\mathbf{b}}, σ\sigma as in the hypothesis of the theorem, we have the stronger ‘unstraightened’ identity

(119) x1uxlvx𝐛i+1<j(1qtxi/xj)i<j(1txi/xj)=a1,,al10t|𝐚|w0(F(bl,,b1)+(v,al1,,a1)σ1(x;q)E(al1,,a1,u)σ1(x;q)¯).x_{1}^{u}x_{l}^{-v}x^{{\mathbf{b}}}\frac{\prod_{i+1<j}(1-q\,t\,x_{i}/x_{j})}{\prod_{i<j}(1-t\,x_{i}/x_{j})}\\ =\sum_{a_{1},\ldots,a_{l-1}\geq 0}t^{|{\mathbf{a}}|}w_{0}\bigl{(}F^{\sigma^{-1}}_{(b_{l},\ldots,b_{1})+(-v,a_{l-1},\ldots,a_{1})}(x;q)\overline{E^{\sigma^{-1}}_{(a_{l-1},\ldots,a_{1},-u)}(x;q)}\bigr{)}.

By Proposition 4.4.2, applying the Hall-Littlewood raising operator 𝐇q{\mathbf{H}}_{q} to both sides of (119) yields (118).

By construction, the bib_{i} take only values p\lfloor p\rfloor or p\lceil p\rceil, and since bi+cici+1=pb_{i}+c_{i}-c_{i+1}=p, we have

(120) bi=pci>ci+1σ(li)<σ(li+1).b_{i}=\lfloor p\rfloor\quad\Leftrightarrow\quad c_{i}>c_{i+1}\quad\Leftrightarrow\quad\sigma(l-i)<\sigma(l-i+1).

In particular, blbl1+1b_{l}\leq b_{l-1}+1, hence blvbl1+al1+1b_{l}-v\leq b_{l-1}+a_{l-1}+1, and if equality holds, then bl1=pb_{l-1}=\lfloor p\rfloor, so σ(1)<σ(2)\sigma(1)<\sigma(2). Using Lemma 4.3.4, and recalling that the definition (75) of Fλσ(x;q)F^{\sigma}_{\lambda}(x;q) is Eλσw0(x;q)¯\overline{E^{\sigma w_{0}}_{-\lambda}(x;q)}, we have

(121) E(al1,,a1,u)σ1(x;q)=xluE(al1,,a1)τ1(x1,,xl1;q)\displaystyle E^{\sigma^{-1}}_{(a_{l-1},\ldots,a_{1},-u)}(x;q)=x_{l}^{-u}E^{\tau^{-1}}_{(a_{l-1},\ldots,a_{1})}(x_{1},\ldots,x_{l-1};q)
(122) F(bl,,b1)+(v,al1,,a1)σ1(x;q)=x1blvF(bl1,,b1)+(al1,,a1)θ1(x2,,xl;q),\displaystyle F^{\sigma^{-1}}_{(b_{l},\ldots,b_{1})+(-v,a_{l-1},\ldots,a_{1})}(x;q)=x_{1}^{b_{l}-v}F^{\theta^{-1}}_{(b_{l-1},\ldots,b_{1})+(a_{l-1},\ldots,a_{1})}(x_{2},\ldots,x_{l};q),

where τ\tau, θ\theta are the head and tail of σ\sigma, as in Proposition 5.2.2. Note that σ\sigma is a winding permutation. From (120) we also see that (bl1,,b1)=η+p(1,,1)(b_{l-1},\ldots,b_{1})=\eta+\lfloor p\rfloor\cdot(1,\ldots,1), where η\eta is the descent indicator of σ\sigma. Adding a constant vector k(1,,1)k\cdot(1,\ldots,1) to the index λ\lambda multiplies any Fλπ(x;q)F^{\pi}_{\lambda}(x;q) by (ixi)k(\prod_{i}x_{i})^{k}. Using this and Proposition 5.2.2, we can replace (122) with

(123) F(bl,,b1)+(v,al1,,a1)σ1(x;q)=x1blvx2bl1xlb1F(al1,,a1)τ1(x2,,xl;q)F^{\sigma^{-1}}_{(b_{l},\ldots,b_{1})+(-v,a_{l-1},\ldots,a_{1})}(x;q)=x_{1}^{b_{l}-v}x_{2}^{b_{l-1}}\cdots x_{l}^{b_{1}}F^{\tau^{-1}}_{(a_{l-1},\ldots,a_{1})}(x_{2},\ldots,x_{l};q)

Using the Cauchy identity (104) from Theorem 5.1.1 in l1l-1 variables, with twisting permutation τ1\tau^{-1}, and substituting xi1x_{i}^{-1} for xix_{i}, we obtain

(124) i<j(1qtyj/xi)ij(1tyj/xi)=𝐚0t|𝐚|F𝐚τ1(y1,,yl1;q)E𝐚τ1(x1,,xl1;q)¯.\frac{\prod_{i<j}(1-q\,t\,y_{j}/x_{i})}{\prod_{i\leq j}(1-t\,y_{j}/x_{i})}=\sum_{{\mathbf{a}}\geq 0}t^{|{\mathbf{a}}|}\,F^{\tau^{-1}}_{{\mathbf{a}}}(y_{1},\ldots,y_{l-1};q)\overline{E^{\tau^{-1}}_{{\mathbf{a}}}(x_{1},\ldots,x_{l-1};q)}.

Setting yi=xi+1y_{i}=x_{i+1} in (124) and multiplying both sides by w0(x1uxlvx𝐛)w_{0}(x_{1}^{u}x_{l}^{-v}x^{{\mathbf{b}}}), then using (121) and (123), and finally applying w0w_{0} to both sides, yields (119). ∎

5.4. LLT data and the dinv\operatorname{dinv} statistic

Our next goal is to deduce the combinatorial version of our shuffle theorem—that is, the identity (1) previewed in the introduction and restated as (133), below—from Theorem 5.3.1. To do this we first need to define the data that will serve to attach LLT polynomials to lattice paths, and relate these to the combinatorial statistic dinvp(λ)\operatorname{dinv}_{p}(\lambda).

We will be concerned with lattice paths λ\lambda lying weakly below the line segment

(125) y+px=s(p=s/r)y+p\,x=s\qquad(p=s/r)

between arbitrary points (0,s)(0,s) and (r,0)(r,0) on the positive yy and xx axes.

We always assume that the slope p-p of the line is irrational. Clearly it is possible to perturb any line slightly so as make its slope irrational, without changing the set of lattice points, and therefore also the set of lattice paths, that lie below the line. All dependence on pp in the combinatorial constructions to follow comes from comparisons between pp and various rational numbers. By taking pp to be irrational, we avoid the need to resolve ambiguities that would result from equality occurring in the comparisons.

Definition 5.4.1.

Let λ\lambda be a south-east lattice path in the first quadrant with endpoints on the axes. Let YY be the Young diagram enclosed by the positive axes and λ\lambda. The arm and leg of a box yYy\in Y are, as usual, the number of boxes in YY strictly east of yy and strictly north of yy, respectively. Given a positive irrational number pp, we define dinvp(λ)\operatorname{dinv}_{p}(\lambda) to be the number of boxes in YY whose arm aa and leg \ell satisfy

(126) a+1<p<+1a,\frac{\ell}{a+1}<p<\frac{\ell+1}{a},

where we interpret (+1)/a(\ell+1)/a as ++\infty if a=0a=0.

Geometrically, condition (126) means that some line of slope p-p crosses both the east step in λ\lambda at the top of the leg and the south step at the end of the arm, as shown in Figure 3. Since pp is irrational, such a line can always be assumed to pass through the interiors of the two steps.

Figure 3.

To each lattice path weakly below the line (125) we now attach a tuple of one-row skew shapes β/α\beta/\alpha and a permutation σ\sigma. The index ν(λ)\nu(\lambda) of the LLT polynomial in (1) and (133) will be defined in terms of these data.

Definition 5.4.2.

Let λ\lambda be a south-east lattice path from (0,s)(0,\lfloor s\rfloor) to (l1,0)(l-1,0) which is weakly below the line y+px=sy+p\,x=s in (125), where l1rl-1\leq r and pp is irrational. For i=1,,li=1,\ldots,l, let

(127) di=sp(i1)d_{i}=\lfloor s-p(i-1)\rfloor

be the yy coordinate of the highest lattice point weakly below the given line at x=i1x=i-1. Let

(128) α=(αl,,α1),β=(βl,,β1)\alpha=(\alpha_{l},\ldots,\alpha_{1}),\quad\beta=(\beta_{l},\ldots,\beta_{1})

be the vectors of integers 0αiβi0\leq\alpha_{i}\leq\beta_{i}, written in reverse order, such that the south steps in λ\lambda on the line x=i1x=i-1 go from y=diαiy=d_{i}-\alpha_{i} to y=diβiy=d_{i}-\beta_{i}. Let

(129) ci=sp(i1)di={sp(i1)}c_{i}=s-p(i-1)-d_{i}={\boldsymbol{\{}}s-p(i-1){\boldsymbol{\}}}

be the gap between the given line and the highest lattice point weakly below it along the line x=i1x=i-1. Let σSl\sigma\in S_{l} be the permutation with σ(1),,σ(l)\sigma(1),\ldots,\sigma(l) in the same relative order as cl,,c1c_{l},\ldots,c_{1}, i.e., such that σ(cl,,c1)\sigma(c_{l},\ldots,c_{1}) is increasing. The vectors α\alpha and β\beta and the permutation σ\sigma are the LLT data associated with λ\lambda and the given line.

Example 5.4.3.

The first diagram in Figure 4 shows a line y+px=sy+px=s with p1.36p\approx 1.36, s9.27s\approx 9.27, and a path λ\lambda below it from (0,s)=(0,9)(0,\lfloor s\rfloor)=(0,9) to (l1,0)=(6,0)(l-1,0)=(6,0) with l=7l=7.

In this example, the yy coordinates of the highest lattice points below the line at x=0,,6x=0,\ldots,6 are (d1,,d7)=(9,7,6,5,3,2,1)(d_{1},\ldots,d_{7})=(9,7,6,5,3,2,1). The runs of south steps in λ\lambda go from yy coordinates (9,6,6,3,1,1,0)(9,6,6,3,1,1,0) to (6,6,3,1,1,0,0)(6,6,3,1,1,0,0). Subtracting these from the did_{i} and listing them in reverse order gives

(130) α=(1,1,2,2,0,1,0),β=(1,2,2,4,3,1,3).\alpha=(1,1,2,2,0,1,0),\quad\beta=(1,2,2,4,3,1,3).

The gaps, in reverse order, are (c7,,c1)(.11,.47,.83,.19,.55,.91,.27)(c_{7},\ldots,c_{1})\approx(.11,.47,.83,.19,.55,.91,.27), giving

(131) σ=(1,4,6,2,5,7,3).\sigma=(1,4,6,2,5,7,3).
Proposition 5.4.4.

Given the line (125) and a lattice path λ\lambda weakly below it satisfying the conditions in Definition 5.4.2, let α,β,σ\alpha,\beta,\sigma be the associated LLT data. Then

(132) dinvp(λ)=hσ(β/α),\operatorname{dinv}_{p}(\lambda)=h_{\sigma}(\beta/\alpha),

where dinvp(λ)\operatorname{dinv}_{p}(\lambda) is given by Definition 5.4.1 and hσ(β/α)h_{\sigma}(\beta/\alpha) is as in Corollary 4.5.7.

Proof.

Let λ\lambda^{\prime} be the image of λ\lambda under the transformation in the plane that sends (x,y)(x,y) to (x,y+px)(x,y+px). Then λ\lambda^{\prime} is a path composed of unit south steps and sloped steps (1,p)(1,p) (transforms of east steps), which starts at (0,s(0,\lfloor s\rfloor) and stays weakly below the horizontal line y=sy=s (transform of the line y+px=sy+p\,x=s).

The south steps in λ\lambda^{\prime} on the line x=i1x=i-1 run from y=s(ci+αi)y=s-(c_{i}+\alpha_{i}) to y=s(ci+βi)y=s-(c_{i}+\beta_{i}). This means that if we offset the ii-th row (βl+1i)/(αl+1i)(\beta_{l+1-i})/(\alpha_{l+1-i}) in the tuple of one-row skew diagrams β/α\beta/\alpha by cl+1ic_{l+1-i}, then the xx coordinate on each box of β/α\beta/\alpha covers the same unit interval as does the distance below the line y=sy=s on the south step in λ\lambda^{\prime} corresponding to that box. See Figure 4 for an example.

(β7)/(α7)=(1)/(1)(\beta_{7})/(\alpha_{7})=(1)/(1)(β6)/(α6)=(2)/(1)(\beta_{6})/(\alpha_{6})=(2)/(1)(β5)/(α5)=(2)/(2)(\beta_{5})/(\alpha_{5})=(2)/(2)(β4)/(α4)=(4)/(2)(\beta_{4})/(\alpha_{4})=(4)/(2)(β3)/(α3)=(3)/(0)(\beta_{3})/(\alpha_{3})=(3)/(0)(β2)/(α2)=(1)/(1)(\beta_{2})/(\alpha_{2})=(1)/(1)(β1)/(α1)=(3)/(0)(\beta_{1})/(\alpha_{1})=(3)/(0)
Figure 4. (i) A path λ\lambda under y+px=sy+px=s with p1.36p\approx 1.36, s9.27s\approx 9.27, l=7l=7. (ii) Transformed path λ\lambda^{\prime} under y=sy=s, with gaps cic_{i} marked. (iii) Bottom to top: tuple of rows (β7,,β1)/(α7,,α1)(\beta_{7},\ldots,\beta_{1})/(\alpha_{7},\ldots,\alpha_{1}) offset by (c7,,c1)(c_{7},\ldots,c_{1}).

Since 0<ci<10<c_{i}<1 and the numbers cl,,c1c_{l},\ldots,c_{1} are in the same relative order as σ(1),,σ(l)\sigma(1),\ldots,\sigma(l), the description of hσ(β/α)h_{\sigma}(\beta/\alpha) in Remark 4.5.6 still applies if we offset row ii by cl+1ic_{l+1-i} instead of ϵσ(i)\epsilon\sigma(i). Mapping this onto λ\lambda^{\prime}, we see that hσ(β/α)h_{\sigma}(\beta/\alpha) is the number of horizontal alignments between any endpoint of a step in λ\lambda^{\prime} and the interior of a south step occurring later in λ\lambda^{\prime}. To put this another way, for each south step SS in λ\lambda^{\prime}, let BSB_{S} denote the interior of the horizontal band of height 1 to the left of SS in the plane. Then hσ(β/α)h_{\sigma}(\beta/\alpha) is the number of pairs consisting of a south step SS and a point PBSP\in B_{S} which is an endpoint of a step in λ\lambda^{\prime}.

For comparison, dinvp(λ)\operatorname{dinv}_{p}(\lambda) is the number of pairs consisting of a south step SS in λ\lambda^{\prime} and a sloped step which meets BSB_{S}. To complete the proof it suffices to show that each band BSB_{S} contains the same number of step endpoints PP as the number of sloped steps that meet BSB_{S}. In fact, we make the following stronger claim: within each band BSB_{S}, step endpoints alternate from left to right with fragments of sloped steps, starting with a step endpoint and ending with a sloped step fragment.

To see this, consider a connected component CC of λBS\lambda^{\prime}\cap B_{S}. Each component CC either enters BSB_{S} from above along a south step or from below along a sloped step, and exits BSB_{S} either at the top along a sloped step or at the bottom along a south step, except in two degenerate situations. One of these occurs if CC contains the starting point (0,s)(0,\lfloor s\rfloor) of λ\lambda^{\prime}. In this case we regard CC as entering BSB_{S} from above. The other is if CC contains a sloped step that adjoins SS. Then we regard CC as exiting BSB_{S} at the top.

Each component CC thus belongs to one of four cases shown in Figure 5. Note that since BSB_{S} has height 1, it cannot contain a full south step of λ\lambda^{\prime}. In Figure 5 we have chosen p<1p<1 in order to illustrate the possibility that BSB_{S} might contain full sloped steps of λ\lambda^{\prime}. If p>1p>1, then BSB_{S} can only meet sloped steps in proper fragments.

SSSSSSSS
Figure 5.

On each component CC, step endpoints clearly alternate with sloped step fragments, starting with a step endpoint if CC enters from above, or with a sloped step fragment if CC enters from below, and ending with a step endpoint if CC exits at the bottom, or with a sloped step fragment if CC exits at the top. Since the distance from the line y=sy=s to the starting point of λ\lambda^{\prime} is less than 11, the leftmost component CC of λBS\lambda^{\prime}\cap B_{S} always enters BSB_{S} from the top. Each subsequent component from left to right must enter BSB_{S} from the same side (top or bottom) that the previous component exited. This implies the claim stated above. ∎

5.5. Shuffle theorem for paths under a line

We now prove the identity previewed as (1) in the introduction.

Theorem 5.5.1.

Let r,sr,s be positive real numbers with p=s/rp=s/r irrational. We have the identity

(133) Db1,,bl1=λta(λ)qdinvp(λ)ω(𝒢ν(λ)(X;q1)),D_{b_{1},\ldots,b_{l}}\cdot 1=\sum_{\lambda}t^{a(\lambda)}q^{\operatorname{dinv}_{p}(\lambda)}\omega({\mathcal{G}}_{\nu(\lambda)}(X;q^{-1})),

where the sum is over lattice paths λ\lambda from (0,s)(0,\lfloor s\rfloor) to (r,0)(\lfloor r\rfloor,0) lying weakly below the line (125) through (0,s)(0,s) and (r,0)(r,0), and the other pieces of (133) are defined as follows.

The integer a(λ)a(\lambda) is the number of lattice squares enclosed between λ\lambda and δ\delta, where δ\delta is the highest path from (0,s)(0,\lfloor s\rfloor) to (r,0)(\lfloor r\rfloor,0) weakly below the given line. The index bib_{i} is the number of south steps in δ\delta along the line x=i1x=i-1, for i=1,,li=1,\ldots,l, where l=r+1l=\lfloor r\rfloor+1. The integer dinvp(λ)\operatorname{dinv}_{p}(\lambda) is given by Definition 5.4.1.

The LLT polynomial 𝒢ν(λ)(X;q){\mathcal{G}}_{\nu(\lambda)}(X;q) is indexed by the tuple of one-row skew shapes ν(λ)=σ(β/α)\nu(\lambda)=\sigma(\beta/\alpha), where α,β\alpha,\beta and σ\sigma are the LLT data associated to λ\lambda in Definition 5.4.2. More explicitly, σ(β/α)=(βw0σ1(1),,βw0σ1(l))/(αw0σ1(1),,αw0σ1(l))\sigma(\beta/\alpha)=(\beta_{w_{0}\sigma^{-1}(1)},\ldots,\beta_{w_{0}\sigma^{-1}(l)})/(\alpha_{w_{0}\sigma^{-1}(1)},\ldots,\alpha_{w_{0}\sigma^{-1}(l)}), where α=(αl,,α1)\alpha=(\alpha_{l},\ldots,\alpha_{1}) and β=(βl,,β1)\beta=(\beta_{l},\ldots,\beta_{1}).

The operator Db1,,blD_{b_{1},\ldots,b_{l}} on the left hand side is a Negut element in {\mathcal{E}}, as defined in §3.6, so that Db1,,bl1D_{b_{1},\ldots,b_{l}}\cdot 1 satisfies (58).

Proof.

We prove the equivalent identity

(134) ω(Db1,,bl1)=λta(λ)qdinvp(λ)𝒢ν(λ)(X;q1).\omega(D_{b_{1},\ldots,b_{l}}\cdot 1)=\sum_{\lambda}t^{a(\lambda)}q^{\operatorname{dinv}_{p}(\lambda)}{\mathcal{G}}_{\nu(\lambda)}(X;q^{-1}).

By Corollary 3.7.2 and Lemma 4.1.6, both sides of (134) involve only Schur functions sλ(X)s_{\lambda}(X) indexed by partitions such that (λ)l\ell(\lambda)\leq l. It therefore suffices to prove that (134) holds when evaluated in ll variables x1,,xlx_{1},\ldots,x_{l}. After doing this and using the formula (58) from Corollary 3.7.2, the desired identity becomes

(135) (𝐛)pol=λta(λ)qdinvp(λ)𝒢ν(λ)(x1,,xl;q1).({\mathcal{H}}_{{\mathbf{b}}})_{\operatorname{pol}}=\sum_{\lambda}t^{a(\lambda)}\,q^{\operatorname{dinv}_{p}(\lambda)}\,{\mathcal{G}}_{\nu(\lambda)}(x_{1},\ldots,x_{l};q^{-1}).

This is the same identity (24) that was mentioned in the introduction to §3. We now prove it using Theorem 5.3.1.

Let bi=sp(i1)spib^{\prime}_{i}=\lfloor s-p(i-1)\rfloor-\lfloor s-pi\rfloor. As in Remark 5.3.2, this is the number of south steps along x=i1x=i-1 in the highest south-east path δ\delta^{\prime} under our given line, where δ\delta^{\prime} starts at (0,s)(0,\lfloor s\rfloor) and extends forever. For i<li<l we have bi=bib^{\prime}_{i}=b_{i}. On the line x=l1=rx=l-1=\lfloor r\rfloor, however, the path δ\delta stops at (l1,0)(l-1,0), while δ\delta^{\prime} may extend below the xx-axis, giving blblb_{l}\leq b^{\prime}_{l}.

We now apply Theorem 5.3.1 with bib^{\prime}_{i} in place of bib_{i}, u=0u=0, and v=blblv=b^{\prime}_{l}-b_{l}, and then take the polynomial part on both sides of (118). This gives the same left hand side as in (135). On the right hand side, by Corollary 4.5.7, only those terms survive for which the index 𝐚{\mathbf{a}} satisfies (al1,,a1,0)(bl,,b1)+(0,al1,,a1)(a_{l-1},\ldots,a_{1},0)\leq(b_{l},\ldots,b_{1})+(0,a_{l-1},\ldots,a_{1}) in each coordinate, that is, for which

(136) al1blandaiai+1+bi+1 for i=1,,l2.a_{l-1}\leq b_{l}\quad\text{and}\quad a_{i}\leq a_{i+1}+b_{i+1}\text{ for }i=1,\ldots,l-2.

Now, (136) is precisely the condition for there to exist a (unique) lattice path λ\lambda from (0,s)(0,\lfloor s\rfloor) to (r,0)(\lfloor r\rfloor,0) such that aia_{i} is the number of lattice squares in the ii-th column (defined by x[i1,i]x\in[i-1,i]) of the region between λ\lambda and the highest path δ\delta. Moreover, when (136) holds, the LLT data for λ\lambda, as in Definition 5.4.2, are given by

(137) β\displaystyle\beta =(bl,,b1)+(0,al1,,a1),\displaystyle=(b_{l},\ldots,b_{1})+(0,a_{l-1},\ldots,a_{1}),
α\displaystyle\alpha =(al1,,a1,0),\displaystyle=(a_{l-1},\ldots,a_{1},0),

and σSl\sigma\in S_{l} such that σ(1),,σ(l)\sigma(1),\ldots,\sigma(l) are in the same relative order as cl,,c1c_{l},\ldots,c_{1}, where ci={sp(i1)}c_{i}={\boldsymbol{\{}}s-p(i-1){\boldsymbol{\}}}, as in Theorem 5.3.1. Hence, by Corollary 4.5.7 and Proposition 5.4.4, we have

(138) ((bl,,b1)+(0,al1,,a1))/(al1,,a1,0)σ(x;q)pol=qdinvp(λ)𝒢ν(λ)(x;q1).{\mathcal{L}}^{\sigma}_{((b_{l},\ldots,b_{1})+(0,a_{l-1},\ldots,a_{1}))/(a_{l-1},\ldots,a_{1},0)}(x;q)_{\operatorname{pol}}=q^{\operatorname{dinv}_{p}(\lambda)}{\mathcal{G}}_{\nu(\lambda)}(x;q^{-1}).

When (136) holds we clearly also have a(λ)=|𝐚|a(\lambda)=|{\mathbf{a}}|. This shows that the polynomial part of the right hand side in (118) is the same as the right hand side of (135). ∎

Remark 5.5.2.

The preceding argument also goes through with u>0u>0 in Theorem 5.3.1 to give a slightly more general version of Theorem 5.5.1 in which the sum is over lattice paths λ\lambda that start at a higher point (0,n)(0,n) on the yy axis, with n=s+un=\lfloor s\rfloor+u, go directly south to (0,s)(0,\lfloor s\rfloor), and then continue below the given line to (l1,0)(l-1,0) as before.

The corresponding modifications to (133) are (i) the index b1b_{1} on the left hand side is the number of south steps in λ\lambda on the yy axis including the extension to (0,n)(0,n), and (ii) the row in ν(λ)\nu(\lambda) corresponding to south steps in λ\lambda on the yy axis is also extended accordingly.

a(λ)=0,dinvp(λ)=4𝒢2011/0000(X;q)=s4+(q2+q)s31+q2s22+q3s211a(λ)=2,dinvp(λ)=2𝒢3021/1001(X;q)=s4+qs31+q2s22a(λ)=1,dinvp(λ)=2𝒢3011/0001(X;q)=s4+qs31a(λ)=3,dinvp(λ)=1𝒢3031/2001(X;q)=s4+qs31a(λ)=1,dinvp(λ)=3𝒢2021/1000(X;q)=s4+(q2+q)s31+q2s22+q3s211a(λ)=4,dinvp(λ)=0𝒢3041/3001(X;q)=s4a(λ)=2,dinvp(λ)=1𝒢2031/2000(X;q)=s4+qs31\begin{array}[]{ll@{\qquad}ll}\leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=0,\,\operatorname{dinv}_{p}(\lambda)=4\\ {\mathcal{G}}_{2011/0000}(X;q)=\\ \quad s_{4}+(q^{2}+q)s_{31}+q^{2}s_{22}+q^{3}s_{211}\end{array}&\leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{25.60774pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{8.5359pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=2,\,\operatorname{dinv}_{p}(\lambda)=2\\ {\mathcal{G}}_{3021/1001}(X;q)=\\ \quad s_{4}+q\hskip 0.85358pts_{31}+q^{2}s_{22}\end{array}\\[25.83325pt] \leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{8.5359pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=1,\,\operatorname{dinv}_{p}(\lambda)=2\\ {\mathcal{G}}_{3011/0001}(X;q)=s_{4}+q\hskip 0.85358pts_{31}\end{array}&\leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{25.60774pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{8.5359pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=3,\,\operatorname{dinv}_{p}(\lambda)=1\\ {\mathcal{G}}_{3031/2001}(X;q)=s_{4}+q\hskip 0.85358pts_{31}\end{array}\\[25.83325pt] \leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{25.60774pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{17.07182pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=1,\,\operatorname{dinv}_{p}(\lambda)=3\\ {\mathcal{G}}_{2021/1000}(X;q)=\\ \quad s_{4}+(q^{2}+q)s_{31}+q^{2}s_{22}+q^{3}s_{211}\end{array}&\leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{25.60774pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{8.5359pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=4,\,\operatorname{dinv}_{p}(\lambda)=0\\ {\mathcal{G}}_{3041/3001}(X;q)=s_{4}\end{array}\\[25.83325pt] \leavevmode\hbox to29.05pt{\vbox to40.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.59999pt\lower-0.59999pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgffillcolor}{rgb}{0.85,0.85,0.85}\pgfsys@color@gray@fill{0.85}\pgfsys@invoke{ }\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{0.0pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{25.60774pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{25.60774pt}\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{}{ {}{}{}{}{ }{ }{ }{ }{ }{ }{ }{ }{ }{}}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{tikz@color}{rgb}{.5,.5,.5}\definecolor[named]{.}{rgb}{.5,.5,.5}\definecolor[named]{pgfstrokecolor}{rgb}{.5,.5,.5}\pgfsys@color@gray@stroke{.5}\pgfsys@invoke{ }\pgfsys@color@gray@fill{.5}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@moveto{0.0pt}{8.5359pt}\pgfsys@lineto{28.25385pt}{8.5359pt}\pgfsys@moveto{0.0pt}{17.07182pt}\pgfsys@lineto{28.25385pt}{17.07182pt}\pgfsys@moveto{0.0pt}{25.60774pt}\pgfsys@lineto{28.25385pt}{25.60774pt}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{28.25385pt}{34.14365pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{40.11876pt}\pgfsys@moveto{8.5359pt}{0.0pt}\pgfsys@lineto{8.5359pt}{40.11876pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{40.11876pt}\pgfsys@moveto{25.60774pt}{0.0pt}\pgfsys@lineto{25.60774pt}{40.11876pt}\pgfsys@moveto{28.25385pt}{40.11876pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{0.0pt}{40.11876pt}\pgfsys@lineto{28.25385pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{34.14365pt}\pgfsys@lineto{0.0pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{8.5359pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{8.5359pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@lineto{25.60774pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&\begin{array}[]{l}a(\lambda)=2,\,\operatorname{dinv}_{p}(\lambda)=1\\ {\mathcal{G}}_{2031/2000}(X;q)=s_{4}+q\hskip 0.85358pts_{31}\end{array}\end{array}

Figure 6. An illustration of Theorem 5.5.1 as described in Example 5.5.3.
Example 5.5.3.

Figure 6 illustrates Theorem 5.5.1 for s4.7s\approx 4.7, r3.31r\approx 3.31. We have (c4,c3,c2,c1)(.44,.86,.28,.70)(c_{4},c_{3},c_{2},c_{1})\approx(.44,.86,.28,.70) and σ=(1,2,3,4)(2,4,1,3)\sigma=(1,2,3,4)\mapsto(2,4,1,3). The paths λ\lambda are shown along with the corresponding statistics and LLT polynomials 𝒢ν(λ)(X;q)=𝒢σ(β)/σ(α)(X;q){\mathcal{G}}_{\nu(\lambda)}(X;q)={\mathcal{G}}_{\sigma(\beta)/\sigma(\alpha)}(X;q). The highest path δ\delta is the one at the top left in the figure and (b1,b2,b3,b4)=(1,2,1,0)(b_{1},b_{2},b_{3},b_{4})=(1,2,1,0). The left side of (134), evaluated in l=4l=4 variables, is then

(139) ω(D1,2,1,01)(x)=(1,2,1,0)(x)pol=𝝈(x1x22x3(1qtx1/x3)(1qtx2/x4)(1qtx1/x4)1i<j4(1qxi/xj)(1txi/xj))pol.\omega(D_{1,2,1,0}\cdot 1)(x)={\mathcal{H}}_{(1,2,1,0)}(x)_{\operatorname{pol}}=\\ {\boldsymbol{\sigma}}\big{(}\frac{x_{1}x_{2}^{2}x_{3}(1-q\,t\,x_{1}/x_{3})(1-q\,t\,x_{2}/x_{4})(1-q\,t\,x_{1}/x_{4})}{\prod_{1\leq i<j\leq 4}(1-q\,x_{i}/x_{j})(1-t\,x_{i}/x_{j})}\big{)}_{\operatorname{pol}}\,.

To see that (134) holds at t=0t=0, observe that the right hand side of (139) becomes the Hall-Littlewood polynomial 𝐇q(x1x22x3)pol=qH2110(x;q){\mathbf{H}}_{q}(x_{1}x_{2}^{2}x_{3})_{\operatorname{pol}}=qH_{2110}(x;q), which agrees with the area 0 contribution q4𝒢2011/0000(x;q1)q^{4}{\mathcal{G}}_{2011/0000}(x;q^{-1}).

Definition 5.5.4.

For 𝐛l{\mathbf{b}}\in{\mathbb{Z}}^{l}, the generalized q,tq,t-Catalan number C𝐛(q,t)C_{\mathbf{b}}(q,t) is the coefficient of the single row Schur function s(|𝐛|)(X)s_{(|{\mathbf{b}}|)}(X) in ω(D𝐛1)\omega(D_{\mathbf{b}}\cdot 1).

When 𝐛=1l\mathbf{b}=1^{l}, C𝐛(q,t)C_{\mathbf{b}}(q,t) is the q,tq,t-Catalan number introduced by Garsia and the second author [9]. The generalized q,tq,t-Catalan numbers have been studied in [12]—see §7.2.

Corollary 5.5.5.

With 𝐛=(b1,,bl)\mathbf{b}=(b_{1},\dots,b_{l}), rr, ss, and p=s/rp=s/r as in Theorem 5.5.1,

(140) C𝐛(q,t)=λta(λ)qdinvp(λ),\displaystyle C_{\mathbf{b}}(q,t)=\sum_{\lambda}t^{a(\lambda)}q^{\operatorname{dinv}_{p}(\lambda)},

where the sum is over lattice paths λ\lambda from (0,s)(0,\lfloor s\rfloor) to (r,0)(\lfloor r\rfloor,0) lying weakly below the line through (0,s)(0,s) and (r,0)(r,0).

6. Relation to previous shuffle theorems

Theorem 5.5.1 is formulated a little differently than the classical and (km,kn)(km,kn) shuffle theorems in [4, 15], although these also have an algebraic side and a combinatorial side resembling ours. We now explain how to recover them from our version by transforming each side of (133) into its counterpart in the (km,kn)(km,kn) and classical shuffle conjectures.

For the (km,kn)(km,kn) shuffle conjecture, we take the line y+px=sy+px=s in (125) to be a perturbation of the line from (0,kn)(0,kn) to (km,0)(km,0), with s=kns=kn and rr slightly larger than kmkm. Our perturbed line has the same lattice points and paths under it as the line from (0,kn)(0,kn) to (km,0)(km,0), but it now has slope p-p, where p=n/mϵp=n/m-\epsilon for a small ϵ>0\epsilon>0. The classical shuffle conjectures in [15] are the special cases of the (km,kn)(km,kn) conjecture with n=1n=1. For these we perturb the line from (0,k)(0,k) to (km,0)(km,0) in the same way. Note that for our chosen line we have l=km+1l=km+1, and every lattice path λ\lambda under it has bl=0b_{l}=0 south steps at x=kmx=km.

The classical shuffle conjecture was formulated in [15, Conjecture 6.2.2] as the identity

(141) mek=λPSSYT((λ+(1k))/λ)ta(λ)qdinvm(P)xP,\nabla^{m}e_{k}=\sum_{\lambda}\sum_{P\in\operatorname{SSYT}{((\lambda+(1^{k}))/\lambda)}}t^{a(\lambda)}q^{\operatorname{dinv}_{m}(P)}x^{P}\,,

where the sum is over lattice paths λ\lambda below the bounding line, and dinvm(P)\operatorname{dinv}_{m}(P) is a statistic defined in [15], attached to each labelling PP of the south steps in λ\lambda by non-negative integers strictly increasing from south to north along each vertical run. The left hand side of (141) is ek[MXm,1]1e_{k}[-MX^{m,1}]\cdot 1 by Corollary 3.7.4. This agrees with the left hand side Db1,,bl1D_{b_{1},\ldots,b_{l}}\cdot 1 of (133) by Corollary 3.7.3.

It was noted and used in [15] that the combinatorial side of (141) can be phrased in terms of LLT polynomials, but to explicitly match with our formulation requires that we transform the right hand side of  (133) as follows. For the given ν(λ)=σ(β/α)\nu(\lambda)=\sigma(\beta/\alpha), apply Proposition 4.1.4 to replace ω𝒢ν(λ)(X;q1)\omega{\mathcal{G}}_{\nu(\lambda)}(X;q^{-1}) with qI(ν(λ)R)𝒢ν(λ)R(X;q)q^{-I(\nu(\lambda)^{R})}{\mathcal{G}}_{\nu(\lambda)^{R}}(X;q). Then writing out 𝒢ν(λ)R(X;q){\mathcal{G}}_{\nu(\lambda)^{R}}(X;q) term by term with tableaux on the tuple ν(λ)R\nu(\lambda)^{R} of one-column diagrams using Definition 4.1.1 gives

(142) Db1,,bl1=λTSSYT(ν(λ)R)ta(λ)qdinvp(λ)I(ν(λ)R)+inv(T)xT,D_{b_{1},\ldots,b_{l}}\cdot 1=\sum_{\lambda}\sum_{T\in\operatorname{SSYT}(\nu(\lambda)^{R})}t^{a(\lambda)}q^{\operatorname{dinv}_{p}(\lambda)-I(\nu(\lambda)^{R})+\operatorname{inv}(T)}x^{T}\,,

where inv(T)\operatorname{inv}(T) is defined in §4.1 to be the number of attacking inversions.

By the construction, boxes in each column of ν(λ)R\nu(\lambda)^{R}, from top to bottom, correspond to south steps uu in a vertical run in λ\lambda, from north to south. Semistandard tableaux TSSYT(ν(λ)R)T\in\operatorname{SSYT}(\nu(\lambda)^{R}) therefore biject with labellings PT:{south steps in λ}P_{T}\colon\{\text{south steps in $\lambda$}\}\rightarrow{\mathbb{N}} such that PTP_{T} is strictly increasing from south to north on each vertical run in λ\lambda; namely, PTSSYT((λ+(1k))/λ)P_{T}\in\operatorname{SSYT}((\lambda+(1^{k}))/\lambda). Changing (142) to instead sum over labellings, we can match the right hand sides of  (142) and (141) by showing that for p=1/mϵp=1/m-\epsilon,

(143) dinvm(PT)=dinvp(λ)I(ν(λ)R)+inv(T).\operatorname{dinv}_{m}(P_{T})=\operatorname{dinv}_{p}(\lambda)-I(\nu(\lambda)^{R})+\operatorname{inv}(T).

For any super tableau TT, [15, Corollary 6.4.2] implies that dinvm(PT)=eλ+inv(T)\operatorname{dinv}_{m}(P_{T})=e_{\lambda}+\operatorname{inv}(T) for an offset eλe_{\lambda} not depending on TT. For the tableau T0T_{0} with all entries 1¯\bar{1}, [15, Lemma 6.3.3] gives that dinvm(PT0)=bm(λ)\operatorname{dinv}_{m}(P_{T_{0}})=b_{m}(\lambda), where we note that bm(λ)b_{m}(\lambda) defined in [15, (100)] is simply dinvp(λ)\operatorname{dinv}_{p}(\lambda) with p=1/mϵp=1/m-\epsilon. Therefore, eλ=dinvm(PT0)inv(T0)=dinvp(λ)I(ν(λ)R)e_{\lambda}=\operatorname{dinv}_{m}(P_{T_{0}})-\operatorname{inv}(T_{0})=\operatorname{dinv}_{p}(\lambda)-I(\nu(\lambda)^{R}) by (67).

In fact, there is a direct correspondence between the combinatorics of dinvm(P)\operatorname{dinv}_{m}(P) for paths, as defined in [15], and that of triples in negative tableaux on a tuple of one-row shapes, as considered in §4.5.

Proposition 6.1.1.

Let λ\lambda be a lattice path from (0,k)(0,k) to (km,0)(km,0), lying weakly below the bounding line y+px=ky+p\,x=k with p=1/mϵp=1/m-\epsilon. Let α\alpha, β\beta, σ\sigma be the LLT data associated to λ\lambda for this pp. There is a weight-preserving bijection from labellings PSSYT((λ+(1k))/λ)P\in\operatorname{SSYT}((\lambda+(1^{k}))/\lambda) to negative tableaux SSSYT(β/α)S\in\operatorname{SSYT}_{-}(\beta/\alpha) such that

(144) dinvm(P)=hσ(S).\operatorname{dinv}_{m}(P)=h_{\sigma}(S).
Proof.

labelling P=PTSSYT((λ+(1k))/λ)P=P_{T}\in\operatorname{SSYT}((\lambda+(1^{k}))/\lambda) corresponds naturally to a semistandard tableau TSSYT(ν(λ)R)T\in\operatorname{SSYT}(\nu(\lambda)^{R}). Their statistics are related by (143), into which we can substitute dinvp(λ)=hσ(β/α)\operatorname{dinv}_{p}(\lambda)=h_{\sigma}(\beta/\alpha) by Proposition 5.4.4. The bijection TTRT\mapsto T^{R} in the proof of Proposition 4.1.4 satisfies inv(T)I(ν(λ)R)=inv(TR)\operatorname{inv}(T)-I(\nu(\lambda)^{R})=-\operatorname{inv}(T^{R}). Hence, dinvm(PT)=hσ(β/α)inv(TR)\operatorname{dinv}_{m}(P_{T})=h_{\sigma}(\beta/\alpha)-\operatorname{inv}(T^{R}). To complete the bijection, take S=TRσS=T^{R}\circ\sigma. Then hσ(β/α)inv(TR)=hσ(S)h_{\sigma}(\beta/\alpha)-\operatorname{inv}(T^{R})=h_{\sigma}(S) by Lemma 4.5.3, proving (144). ∎

See Figure 7 for an example with m=1m=1 and p=1ϵp=1-\epsilon. Note that these values give σ=w0\sigma=w_{0} in the LLT data.

55332266331144P=P=      -\infty4¯\overline{4}\infty-\infty\infty-\infty\infty-\infty3¯\overline{3}1¯\overline{1}\infty-\infty\infty-\infty6¯\overline{6}\infty-\infty5¯\overline{5}3¯\overline{3}2¯\overline{2}\inftyS=S=
Figure 7. Example of the bijection P=PTTTRS=TRσP=P_{T}\leftrightarrow T\leftrightarrow T^{R}\leftrightarrow S=T^{R}\circ\sigma in Proposition 6.1.1, with m=1m=1, p=1ϵp=1-\epsilon, σ=w0\sigma=w_{0}. Letters in SS are ordered 1¯>2¯>\overline{1}>\overline{2}>\cdots. We see dinv1(P)=hw0(S)=6\operatorname{dinv}_{1}(P)=h_{w_{0}}(S)=6.

Next we turn to the non-compositional (km,kn)(km,kn) shuffle conjecture from [4]. Its symmetric function side is precisely the Schiffmann algebra operator expression that we denote here by ek[MXm,n]1e_{k}[-MX^{m,n}]\cdot 1. By Corollary 3.7.3, this agrees with the left hand side Db1,,bl1D_{b_{1},\ldots,b_{l}}\cdot 1 of (133).

The combinatorial side of the (km,kn)(km,kn) shuffle conjecture can be written as in [4, §7], using notation defined there, as

(145) uπPark(u)tarea(u)qdinv(u)+tdinv(π)maxtdinv(u)Fides(π)(x).\sum_{u}\sum_{\pi\in\operatorname{Park}(u)}t^{\operatorname{area}(u)}\,q^{\operatorname{dinv}(u)+\operatorname{tdinv}(\pi)-\operatorname{maxtdinv(u)}}F_{\operatorname{ides}(\pi)}(x).

Here uu encodes a north-east lattice path lying above the line from (0,0)(0,0) to (km,kn)(km,kn), Park(u)\operatorname{Park}(u) encodes the set of standard Young tableaux on a tuple of columns corresponding to vertical runs in the path encoded by uu, and Fγ(x)F_{\gamma}(x) is a Gessel fundamental quasi-symmetric function.

To make uu correspond to a lattice path λ\lambda under the line from (0,kn)(0,kn) to (km,0)(km,0), as in (142), we need to flip the picture over, replacing each entry π(j)\pi(j) with kn+1π(j)kn+1-\pi(j) so the resulting standard tableau on ν(λ)R\nu(\lambda)^{R} has columns increasing upwards, as it should, instead of decreasing. Using [4, Definition 7.1] and taking account the modification to π\pi, we can translate notation in (145) as follows: area(u)=a(λ)\operatorname{area}(u)=a(\lambda), tdinv(π)=i(π)\operatorname{tdinv(\pi)}=i(\pi), maxtdinv(π)=I(ν(λ)R)\operatorname{maxtdinv(\pi)}=I(\nu(\lambda)^{R}), and dinv(u)=dinvp(λ)\operatorname{dinv}(u)=\operatorname{dinv}_{p}(\lambda), where p=n/mϵp=n/m-\epsilon.

Finally, the definition of ides(π)\operatorname{ides}(\pi) becomes the descent set of π\pi relative to the reading order on ν(λ)R\nu(\lambda)^{R}. This implies that expanding Fides(π)(x)F_{\operatorname{ides}(\pi)}(x) into monomials gives a sum with semistandard tableaux TT in place of standard tableaux π\pi and xTx^{T} in place of Fides(π)(x)F_{\operatorname{ides}(\pi)}(x). After these substitutions, (145) coincides with the right hand side of (142).

7. A positivity conjecture

7.1.

Theorem 5.5.1, Corollary 3.7.2 and [15, Proposition 5.3.1] imply that the symmetric function

(146) ω(D𝐛1)=𝐇q,t(x𝐛i(1qtxi/xi+1))pol\omega(D_{{\mathbf{b}}}\cdot 1)={\mathbf{H}}_{q,t}\left(\frac{x^{{\mathbf{b}}}}{\prod_{i}(1-q\,t\,x_{i}/x_{i+1})}\right)_{\operatorname{pol}}

is q,tq,t Schur positive when bib_{i} is the number of south steps along x=i1x=i-1 on the highest lattice path below a line with endpoints on the positive xx and yy axes. Computational evidence leads us to conjecture that (146) is q,tq,t Schur positive under a more general geometric condition on 𝐛{\mathbf{b}}.

Let CC be a convex curve (meaning that the region above CC is convex) in the first quadrant with endpoints (r,0)(r,0) and (0,s)(0,s) on the positive xx and yy axes. Let δ\delta be the highest lattice path from (0,s)(0,\lfloor s\rfloor) to (r,0)(\lfloor r\rfloor,0) weakly below CC. Let bib_{i} be the number of south steps in δ\delta along x=i1x=i-1 for i=1,,li=1,\ldots,l, where l=r+1l=\lfloor r\rfloor+1. Algebraically, this means that there are real numbers s0s1sl=0s_{0}\geq s_{1}\geq\cdots\geq s_{l}=0 with weakly decreasing differences si1sisisi+1s_{i-1}-s_{i}\geq s_{i}-s_{i+1}, such that bi=si1sib_{i}=\lfloor s_{i-1}\rfloor-\lfloor s_{i}\rfloor.

Note that if δ\delta is the highest path strictly below a convex curve CC^{\prime}, then it is also the highest lattice path weakly below a slightly lower curve CC, and vice versa, so it doesn’t matter whether we use ‘weakly below’ or ‘strictly below’ to formulate the condition on δ\delta.

Conjecture 7.1.1.

When bib_{i} is the number of south steps along x=i1x=i-1 in the highest lattice path below a convex curve, as above, the symmetric function in (146) is a linear combination of Schur functions with coefficients in [q,t]{\mathbb{N}}[q,t].

At q=1q=1, the qq-Kostka coefficients reduce to Kλ,μ(1)=Kλ,μ=sλ,hμK_{\lambda,\mu}(1)=K_{\lambda,\mu}=\langle s_{\lambda},h_{\mu}\rangle. Hence, the Hall-Littlewood symmetrization operator reduces to 𝐇q(xμ)pol|q=1=hμ(x){\mathbf{H}}_{q}(x^{\mu})_{\operatorname{pol}}|_{q=1}=h_{\mu}(x) if μi0\mu_{i}\geq 0 for all ii, and otherwise 𝐇q(xμ)pol=0{\mathbf{H}}_{q}(x^{\mu})_{\operatorname{pol}}=0. At q=1q=1, the factors containing tt in (46) cancel, so 𝐇q,t{\mathbf{H}}_{q,t} reduces to the same thing as 𝐇q{\mathbf{H}}_{q}.

It follows that (146) specializes at q=1q=1 to

(147) ω(D𝐛1)|q=1=a1,,al10t|𝐚|h𝐛+(a1,a2a1,,al1al2,al1),\omega(D_{{\mathbf{b}}}\cdot 1)|_{q=1}=\sum_{a_{1},\ldots,a_{l-1}\geq 0}t^{|{\mathbf{a}}|}h_{{\mathbf{b}}+(a_{1},a_{2}-a_{1},\ldots,a_{l-1}-a_{l-2},-a_{l-1})},

with the convention that hμ=0h_{\mu}=0 if μi<0\mu_{i}<0 for any ii. As in Theorem 5.5.1, the index 𝐛+(a1,a2a1,,al1al2,al1){\mathbf{b}}+(a_{1},a_{2}-a_{1},\ldots,a_{l-1}-a_{l-2},-a_{l-1}) is non-negative precisely when it is the sequence b(λ)b(\lambda) of lengths of south runs in a lattice path λ\lambda lying below the path δ\delta whose south runs are given by 𝐛{\mathbf{b}}. Here aia_{i} is the number of lattice squares in column ii between λ\lambda and δ\delta, so |𝐚||{\mathbf{a}}| is the area a(λ)a(\lambda) enclosed between the two paths. This gives a combinatorial expression

(148) ω(D𝐛1)|q=1=λta(λ)hb(λ),\omega(D_{{\mathbf{b}}}\cdot 1)|_{q=1}=\sum_{\lambda}t^{a(\lambda)}h_{b(\lambda)},

for (146) at q=1q=1, which is positive in terms of complete homogeneous symmetric functions hλh_{\lambda}, hence tt Schur positive. We may conjecture that when the hypothesis of Conjecture 7.1.1 holds, ω(D𝐛1)\omega(D_{{\mathbf{b}}}\cdot 1) is given by some Schur positive combinatorial qq-analog of (148), but it remains an open problem to formulate such a conjecture precisely.

Of course, (148) cannot be considered evidence for Conjecture 7.1.1, since (148) holds for any 𝐛0{\mathbf{b}}\geq 0, whether the convexity hypothesis is satisfied or not.

7.2. Relation to previous conjectures

The generalized q,tq,t-Catalan numbers C𝐛(q,t)=s(|𝐛|)(X),ω(D𝐛1)C_{\mathbf{b}}(q,t)=\langle s_{(|{\mathbf{b}}|)}(X),\omega(D_{\mathbf{b}}\cdot 1)\rangle from Definition 5.5.4 coincide with the functions denoted F(b2,,bl)F(b_{2},\dots,b_{l}) in [12], where several equivalent expressions for them were obtained. To see that C𝐛(q,t)=F(b2,,bl)C_{{\mathbf{b}}}(q,t)=F(b_{2},\ldots,b_{l}), one can compare the formula in Proposition 7.2.1, below, with the equation just before (2.6) in [12]. It was also shown in [12] that this quantity does not depend on b1b_{1}, hence the notation F(b2,,bl)F(b_{2},\dots,b_{l}).

Conjecture 7.1.1 implies a conjecture of Negut, announced in [12], which asserts that C𝐛(q,t)[q,t]C_{{\mathbf{b}}}(q,t)\in{\mathbb{N}}[q,t] when b2blb_{2}\geq\cdots\geq b_{l}. Conjecture 7.1.1 is stronger than Negut’s conjecture in two ways: the weight 𝐛{\mathbf{b}} is generalized from a partition to the highest path below a convex curve, and the coefficient of s(|𝐛|)(X)s_{(|{\mathbf{b}}|)}(X) in ω(D𝐛1)\omega(D_{\mathbf{b}}\cdot 1) is generalized to the coefficient of any Schur function.

Proposition 7.2.1.

The generalized q,tq,t-Catalan number C𝐛(q,t)C_{\mathbf{b}}(q,t) has the following description as a series coefficient:

(149) C𝐛(q,t)=z𝐛i=1l11zi1i=1l111qtzi/zi+1i<j(1zi/zj)(1qtzi/zj)(1qzi/zj)(1tzi/zj).\displaystyle C_{\mathbf{b}}(q,t)=\langle z^{-{\mathbf{b}}}\rangle\,\prod_{i=1}^{l}\frac{1}{1-z_{i}^{-1}}\,\prod_{i=1}^{l-1}\frac{1}{1-q\,t\,z_{i}/z_{i+1}}\,\prod_{i<j}\frac{(1-z_{i}/z_{j})(1-q\,t\,z_{i}/z_{j})}{(1-q\,z_{i}/z_{j})(1-t\,z_{i}/z_{j})}.
Proof.

From (50) we have

ω(D𝐛1)=z0z𝐛i=1l1(1qtzi/zi+1)i<j1qtzi/zj(1qzi/zj)(1tzi/zj)Ω[Z¯X]i<j(1zi/zj).\displaystyle\omega(D_{\mathbf{b}}\cdot 1)=\langle z^{0}\rangle\,\frac{z^{{\mathbf{b}}}}{\prod_{i=1}^{l-1}(1-q\,t\,z_{i}/z_{i+1})}\,\prod_{i<j}\frac{1-q\,t\,z_{i}/z_{j}}{(1-q\,z_{i}/z_{j})(1-t\,z_{i}/z_{j})}\,\Omega[\overline{Z}X]\,\prod_{i<j}(1-z_{i}/z_{j}).

Specializing X=1X=1 gives the result. ∎

References

  • [1] Per Alexandersson, Non-symmetric Macdonald polynomials and Demazure-Lusztig operators, Sém. Lothar. Combin. (2019), Article B76d, 27pp.
  • [2] Per Alexandersson and Mehtaab Sawhney, Properties of non-symmetric Macdonald polynomials at q=1q=1 and q=0q=0, Ann. Comb. 23 (2019), no. 2, 219–239.
  • [3] F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420, Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III.
  • [4] Francois Bergeron, Adriano Garsia, Emily Sergel Leven, and Guoce Xin, Compositional (km,kn)(km,kn)-shuffle conjectures, Int. Math. Res. Not. IMRN (2016), no. 14, 4229–4270.
  • [5] Igor Burban and Olivier Schiffmann, On the Hall algebra of an elliptic curve, I, Duke Math. J. 161 (2012), no. 7, 1171–1231.
  • [6] Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661–697.
  • [7] B. L. Feigin and A. I. Tsymbaliuk, Equivariant KK-theory of Hilbert schemes via shuffle algebra, Kyoto J. Math. 51 (2011), no. 4, 831–854.
  • [8] Amy M. Fu and Alain Lascoux, Non-symmetric Cauchy kernels for the classical groups, J. Combin. Theory Ser. A 116 (2009), no. 4, 903–917.
  • [9] A. M. Garsia and M. Haiman, A remarkable q,tq,t-Catalan sequence and qq-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244.
  • [10] by same author, Some natural bigraded SnS_{n}-modules and q,tq,t-Kostka coefficients, Electron. J. Combin. 3 (1996), no. 2, Research Paper 24, approx. 60 pp. (electronic), The Foata Festschrift.
  • [11] A. M. Garsia, M. Haiman, and G. Tesler, Explicit plethystic formulas for Macdonald q,tq,t-Kostka coefficients, Sém. Lothar. Combin. 42 (1999), Art. B42m, 45 pp. (electronic), The Andrews Festschrift (Maratea, 1998).
  • [12] Eugene Gorsky, Graham Hawkes, Anne Schilling, and Julianne Rainbolt, Generalized q,tq,t-Catalan numbers, Algebr. Comb. 3 (2020), no. 4, 855–886.
  • [13] I. Grojnowski and M. Haiman, Affine Hecke algebras and positivity of LLT and Macdonald polynomials, Unpublished manuscript, 2007.
  • [14] J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald polynomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735–761 (electronic).
  • [15] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232.
  • [16] J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822–844.
  • [17] Mark Haiman, Macdonald polynomials and geometry, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 207–254.
  • [18] by same author, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407.
  • [19] Mark D. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), no. 1, 17–76.
  • [20] Tatsuyuki Hikita, Affine Springer fibers of type AA and combinatorics of diagonal coinvariants, Adv. Math. 263 (2014), 88–122.
  • [21] Bogdan Ion, Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials, J. Algebra 319 (2008), no. 8, 3480–3517.
  • [22] Nai Huan Jing, qq-hypergeometric series and Macdonald functions, J. Algebraic Combin. 3 (1994), no. 3, 291–305.
  • [23] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys. 38 (1997), no. 2, 1041–1068.
  • [24] George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635.
  • [25] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., The Clarendon Press, Oxford University Press, New York, 1995, With contributions by A. Zelevinsky, Oxford Science Publications.
  • [26] by same author, Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge University Press, Cambridge, 2003.
  • [27] Anton Mellit, Toric braids and (m,n)(m,n)-parking functions, 2016, arXiv:math.CO/1604.07456.
  • [28] Katsuhisa Mimachi and Masatoshi Noumi, A reproducing kernel for nonsymmetric Macdonald polynomials, Duke Math. J. 91 (1998), no. 3, 621–634.
  • [29] Andrei Negut, The shuffle algebra revisited, Int. Math. Res. Not. IMRN (2014), no. 22, 6242–6275.
  • [30] Olivier Schiffmann, On the Hall algebra of an elliptic curve, II, Duke Math. J. 161 (2012), no. 9, 1711–1750.
  • [31] Olivier Schiffmann and Eric Vasserot, The elliptic Hall algebra and the KK-theory of the Hilbert scheme of 𝔸2\mathbb{A}^{2}, Duke Math. J. 162 (2013), no. 2, 279–366.