This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A self-consistent multi-component model of plasma turbulence and kinetic neutral dynamics for the simulation of the tokamak boundary

A Coroado 1, P Ricci 1 1 École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015
Lausanne, Switzerland.
[email protected]
Abstract

A self-consistent model is presented for the simulation of a multi-component plasma in the tokamak boundary. A deuterium plasma is considered, with the plasma species that include electrons, deuterium atomic ions and deuterium molecular ions, while the deuterium atoms and molecules constitute the neutral species. The plasma and neutral models are coupled via a number of collisional interactions, which include dissociation, ionization, charge-exchange and recombination processes. The derivation of the three-fluid drift-reduced Braginskii equations used to describe the turbulent plasma dynamics is presented, including its boundary conditions. The kinetic advection equations for the neutral species are also derived, and their numerical implementation discussed. The first results of multi-component plasma simulations carried out by using the GBS code are then presented and analyzed, being compared with results obtained with the single-component plasma model.

  • June 2021

1 Introduction

The boundary of a tokamak plays a crucial role in determining the overall performance of the device, as it sets the confinement of particles and heat, determines the heat exhaust to the vessel walls and controls the impurity level in the core [1]. The boundary is also the region where the plasma is fueled and helium ashes generated by fusion reactions are removed.

The tokamak boundary is characterized by the presence of several ion and neutral species that interact through a complex set of collisional processes [2, 1]. In particular, neutral atoms and molecules are relevant in the boundary as they result from processes such as the plasma recycling at the vessel walls and gas puffs. Recycling occurs because ions and electrons, transported along the magnetic-field lines by the parallel flow or across them by turbulent motion, eventually end at the vessel, where they recombine and re-enter the plasma as neutral particles, either being reflected, in which case they keep the energy of the original ion or, following an absorption process, being reemitted at the wall temperature. In case of absorption, a significant fraction of the atoms may associate to form molecules before being reemitted back to the plasma [3]. The exact probability of reflection or reemission, as well as the probability that atoms associate into molecules, depends on the physical properties of the limiter or divertor plate material [4]. At the same time, external injection of neutral molecules can be used to fuel the plasma, reduce the heat load on the vessel wall (e.g., by reducing the temperature of the plasma and hence inducing volumetric recombination processes), or diagnose the plasma.

The neutral atoms and molecules interact with the plasma in the tokamak boundary. Indeed, neutral atoms and molecules can be ionized, thus generating atomic and molecular ions, leading to a multi-component plasma. Molecular species also undergo dissociative processes that break them into mono-atomic species. Recombination, charge-exchange, elastic and inelastic collisions are also at play. These collisional interactions convert neutral particles into ions and electrons and vice versa, affect the temperature of the plasma species because of the energy required to trigger ionization and dissociation processes and modify the plasma velocity. As a result, since the dynamics of the plasma in the boundary are strongly influenced by its interaction with neutral species, it is important that simulations of the plasma dynamics in the tokamak boundary take into account its multi-component nature and the interactions between the different species to provide reliable quantitative predictions.

The description of a multi-component plasma is usually addressed by means of a fluid-diffusive model, which typically considers a version of the Braginskii fluid equations for the plasma species simplified by modelling cross-field transport through empirical anomalous transport coefficients. This approach is used by codes such as B2 [5, 6], EDGE2D [7], EMC3 [8], SOLEDGE-2D [9] and TECXY [10]. Sometimes, neutral particle species are also modelled using a diffusive fluid approach [11], for example in the UEDGE code [12]. However, diffusive models are no longer valid when the neutral mean free path is large, i.e. of the order of the plasma gradient scale length, which is often the case in the tokamak boundary. For this reason, neutrals are more commonly modelled by using a kinetic description valid for all ranges of mean free path. These models, typically based on Monte Carlo methods for the numerical solution, are implemented in the DEGAS2 [4], EIRENE [13], GTNEUT [14] and NEUT2D [15] codes. As a matter of fact, heat exhaust studies strongly rely on integrated neutral-plasma simulations of the tokamak boundary, which are most often based upon the coupling of the aforementioned fluid-diffusive models for the multi-component plasma and Monte Carlo-based models for the several neutral species, such as B2-EIRENE [13], EDGE2D-EIRENE [16], EMC3-EIRENE [17] and SOLPS [18]).

In order to shed light on perpendicular transport processes, simulations of plasma turbulence in the tokamak boundary have been carried out since a decade by using fluid and gyrofluid models, implemented in codes such as BOUT++ [19] (and its module Hermes [20]), FELTOR [21], GBS [22, 23], GDB [24], GRILLIX [25], HESEL [26] and TOKAM3X [27]. Kinetic models, implemented in other codes such as Gkeyll [28] and XGC1 [29, 30], have also been used. These simulations have allowed remarkable progress in the understanding of the mechanisms underlying turbulence and cross-field transport in a single-ion species boundary plasma. On the other hand, multi-component plasma simulations that include turbulent transport processes are still in their early days. Recent progress was made thanks to the synergy between the SOLEDGE2D [31] and TOKAM3X [27] codes. Based on the EIRENE Monte Carlo code for the kinetic simulation of the neutral species, multi-component plasma simulations are now enabled by the SOLEDGE3X code. The investigations carried out with SOLEDGE3X focused on the study of the dynamics of carbon impurities in the tokamak boundary [32]. Progress was also made by coupling the two-dimensional fluid code HESEL [26] with a one-dimensional fluid-diffusive model for the neutral particles, which accounts for both atomic and molecular species. The resulting nHESEL [33, 26, 34] code thus allows for the simulation of a single-ion plasma including the interactions with three neutral species: cold hydrogen molecules puffed into the system, warm atoms resulting from the dissociation of the hydrogen molecules and hot hydrogen atoms generated by charge-exchange processes. Such a model was used to study the plasma fueling in the presence of gas puffs and the formation of a density shoulder in the tokamak boundary at a high gas puffing rate.

In the present work, we describe the development and numerical implementation in the GBS code of a multi-component model that addresses the turbulent multi-ion species plasma dynamics through a set of fluid drift-reduced Braginskii equations, while each multiple neutral species are simulated by solving a kinetic equation. This work generalizes the implementation of the neutral-plasma interaction in GBS described in [35] for single-component plasmas. Single-component GBS simulations were used to study the electron temperature drop along the magnetic field [36] and to determine the influence of neutrals on gas puff imaging diagnostics [37]. The model has been improved recently through the implementation of mass-conservation by taking toroidal geometry consistently into account and by making use of particle-conserving boundary conditions to properly describe the recycling processes [38].

While the methodology presented in this work has the potential to include an arbitrary number of particle species and the corresponding complex scenarios, we consider a deuterium plasma, composed of five different particle species: three charged particle species, namely electrons (ee^{-}), monoatomic deuterium ions (D+D^{+}) and diatomic deuterium ions (D2+D_{2}^{+}), and two neutral species, namely deuterium atoms (DD) and molecules (D2D_{2}).

The model constitutes the first implementation of a kinetic multi-species model that avoids the statistical noise from the Monte Carlo method. In fact, the neutral kinetic equation, valid for any neutral mean free path, is solved by discretizing the kinetic equation integrated along the neutral path. The model has the potential to provide the fundamental elements necessary for the description and understanding of the key mechanisms taking place in the boundary, such as the fueling or gas puff imaging, where molecular species play an important role.

The results of the first simulation carried out with the multi-component model are also described in the present work, shedding some light on the processes underlying plasma fueling. In particular, for the limited configuration and sheath limited regime considered, we show that molecular dissociation processes have an impact on the location of the ionization source and plasma profiles, with respect to single-component simulations.

The outline for the present paper is as follows. After the Introduction, the collisional processes at play within the multi-component deuterium plasma model now implemented in GBS is presented in Sec. 2. In Sec. 3, we guide the reader through the derivation of the set of drift-reduced Braginskii equations used to describe a multi-component plasma, extending the approach previously followed by the single-component version of GBS. In Sec. 4, we present the boundary conditions we apply at the tokamak wall. The kinetic model for the neutral species is discussed in Sec. 5, where the numerical approach is also described, based on discretizing the kinetic equation integrated along the neutral path, in a generalization of the approach developed in [35] for a single neutral species model. Finally, in Sec. 6 we present and discuss the preliminary results of the first multi-component plasma GBS simulations, analyzing the impact of the molecules on the plasma dynamics, also presenting comparison to results from previous single-ion plasma simulations of GBS. The summary follows. In App. A, we derive the average energy of the reaction products and the average electron energy loss for the dissociative processes considered in the model. App. B presents the derivation of the friction and thermal force terms in the velocity and temperature equations used for the multi-component plasma description, following the Zhdanov closure [39] and considering the approach described in [32]. App. C features the list of kernel functions used to express the system of equations solved for the neutral species, while App. D presents the neutral system of equations in the matrix form implemented in GBS.

2 Collisional processes in multi-component deuterium plasmas

In the present paper we aim at describing an experimentally relevant multi-component deuterium plasma. Similarly to the works in [11], [40] and [41], the plasma we consider is composed of the ee, D+\text{D}^{+} and D2+\text{D}_{2}^{+} species and we consider the D and D2\text{D}_{2} neutral species. The D2\text{D}_{2} molecules are present as the result of the association of atoms at the vessel walls and external injection. The D2\text{D}_{2} molecules can be ionized, thus giving rise to D2+\text{D}_{2}^{+} ions, while dissociative processes are responsible for generating mono-atomic ions, D+\text{D}^{+}, and neutrals, D, the later being possibly further ionized into D+\text{D}^{+}. In general, the presence of D22+\text{D}_{2}^{2+} ions is negligible in deuterium plasmas. Additionally, in the typical conditions of the tokamak boundary considered here, also the concentration of species that might be present in a deuterium plasma, such as the D\text{D}^{-} and D3+\text{D}_{3}^{+} ions, is negligible [11, 42, 43]. Considering five different species contrasts with the three species model used in the previous GBS simulations of a single-ion species plasma [35], where only mono-atomic deuterium ions and neutrals are evolved. We highlight that, by introducing the tools necessary to deal with the fundamental processes at play in multi-component plasmas, the present model can be further extended to describe more complex scenarios that include a larger number of plasma and neutral species.

The charged particle and neutral species are coupled by means of collisional processes, which include ionization, recombination, charge-exchange and dissociation processes, as well as electron-neutral collisions. These processes appear both in the neutral and plasma species model as particle and heat sources or sinks, as well as friction terms.

We henceforth list the collisional processes considered in our multi-component model, as well as their respective reaction rates, in Table 1. We remark that we neglect the distinction between fundamental and excited states for atoms, molecules and ions. In particular, we use the total cross section for each process considering the sum over the accessible electronic states of the reactants and products, following [42] and [43]. Based on momentum and energy considerations, we also compute the values of the velocity and energy of the collision products. Since these also depend on the electronic states of the reactants and products, we perform an average over the states relevant to a given reaction, taking into account the cross section of each state.

We denote with vev_{\text{e}}, vD+v_{\text{D}^{+}} and vD2+v_{\text{D}_{2}^{+}} the modulus of the electron, D+\text{D}^{+} and D2+\text{D}_{2}^{+} velocities, while nen_{\text{e}}, nD+n_{\text{D}^{+}} and nD2+n_{\text{D}_{2}^{+}} represent their densities. The cross sections σiz,D\sigma_{\text{iz,D}} and σiz,D2\sigma_{\text{iz,D}_{2}} refer to the collisions leading to the ionization of D and D2\text{D}_{2} respectively, σrec,D+\sigma_{\text{rec,D}^{+}} and σrec,D2+\sigma_{\text{rec,D}_{2}^{+}} are the cross sections for recombination of D+\text{D}^{+} and D2+\text{D}_{2}^{+} with electrons, σe-D\sigma_{\text{e-D}} and σe-D2\sigma_{\text{e-D}_{2}} stand for the cross sections of elastic collisions between electrons and D and D2\text{D}_{2} respectively, σdiss,D2\sigma_{\text{diss,D}_{2}} and σdiss,D2+\sigma_{\text{diss,D}_{2}^{+}} represent the dissociation cross sections of D2\text{D}_{2} and D2+\text{D}_{2}^{+}, σdiss-iz,D2\sigma_{\text{diss-iz,D}_{2}} and σdiss-iz,D2+\sigma_{\text{diss-iz,D}_{2}^{+}} are the cross sections for dissociative ionization of D2\text{D}_{2} and D2+\text{D}_{2}^{+}, σdiss-rec,D2+\sigma_{\text{diss-rec,D}_{2}^{+}} is the cross section of dissociative recombination of D2+\text{D}_{2}^{+} ions and, finally, σcx,D+\sigma_{\text{cx,D}^{+}}, σcx,D2+\sigma_{\text{cx,D}_{2}^{+}}, σcx,D-D2+\sigma_{\text{cx,D-D}_{2}^{+}} and σcx,D2D+\sigma_{\text{cx,D}_{2}-\text{D}^{+}} represent the cross sections for DD+\text{D}-\text{D}^{+}, D2D2+\text{D}_{2}-\text{D}_{2}^{+}, DD2+\text{D}-\text{D}_{2}^{+} and D2D+\text{D}_{2}-\text{D}^{+} charge-exchange interactions.

By considering Krook collision operators, the collision frequencies for ionization, recombination, elastic collisions and dissociative processes are computed as the average over the electron velocity distribution function, neglecting therefore the velocity of the colliding massive particle (D, D2\text{D}_{2}, D+\text{D}^{+} or D2+\text{D}_{2}^{+}) when computing the relative velocity between the electron and the other particle. In fact, electrons have significantly larger thermal velocity than ions or neutrals. As for the charge-exchange interactions between D+\text{D}^{+} ions and the neutral species D and D2\text{D}_{2}, since the dependence of the cross section upon the ion-neutral relative velocity is weak [1], we neglect the velocity of the neutral particles (D or D2\text{D}_{2}) when evaluating the relative velocity of the colliding particles (we note that the velocity of a neutral particle is typically smaller than the velocity of the ions). Thus, we compute the reaction rates σcx,D+\sigma_{\text{cx,D}^{+}} and σcx,D2D+\sigma_{\text{cx,D}_{2}-\text{D}^{+}} by averaging over the distribution function of the D+\text{D}^{+} species, which we assume to be a Maxwellian with temperature TD+T_{\text{D}^{+}}. Following the same approach when computing the cross section of charge-exchange interactions between D2+\text{D}_{2}^{+} ions and the D2\text{D}_{2} and D neutrals, we average the cross sections σcx,D2+\sigma_{\text{cx,D}_{2}^{+}} and σcx,DD2+\sigma_{\text{cx,D}-\text{D}_{2}^{+}} over the D2+\text{D}_{2}^{+} distribution function, assumed to be a Maxwellian of temperature TD2+T_{\text{D}_{2}^{+}}.

Table 1: Collisional processes considered and their respective reaction rates.
  • Collisional process Equation Reaction Frequency
    Ionization of D e+D2e+D+\text{e}^{-}+\text{D}\rightarrow 2\text{e}^{-}+\text{D}^{+} νiz,D=neveσiz,D(ve)\nu_{\text{iz,D}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{iz,D}}(v_{\text{e}})\right\rangle
    Recombination of D+\text{D}^{+} and e\text{e}^{-} e+D+D\text{e}^{-}+\text{D}^{+}\rightarrow\text{D} νrec,D+=neveσrec,D+(ve)\nu_{\text{rec,D}^{+}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{rec,D}^{+}}(v_{\text{e}})\right\rangle
    eD\text{e}^{-}-\text{D} elastic collisions e+De+D\text{e}^{-}+\text{D}\rightarrow\text{e}^{-}+\text{D} νe-D=neveσe-D(ve)\nu_{\text{e-D}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{\text{e-D}}}(v_{\text{e}})\right\rangle
    Ionization of D2\text{D}_{2} e+D22e+D2+\text{e}^{-}+\text{D}_{2}\rightarrow 2\text{e}^{-}+\text{D}_{2}^{+} νiz,D2=neveσiz,D2(ve)\nu_{\text{iz,D}_{2}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{iz,D}_{2}}(v_{\text{e}})\right\rangle
    Recombination of D2+\text{D}_{2}^{+} and e\text{e}^{-} e+D2+D2\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{D}_{2} νrec,D2+=neveσrec,D2+(ve)\nu_{\text{rec,D}_{2}^{+}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{rec,D}_{2}^{+}}(v_{\text{e}})\right\rangle
    eD2\text{e}^{-}-\text{D}_{2} elastic collisions e+D2e+D2\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}_{2} νe-D2=neveσe-D2(ve)\nu_{\text{e-D}_{2}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{e-D}_{2}}(v_{\text{e}})\right\rangle
    Dissociation of D2\text{D}_{2} e+D2e+D+D\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}+\text{D} νdiss,D2=neveσdiss,D2(ve)\nu_{\text{diss,D}_{2}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{diss,D}_{2}}(v_{\text{e}})\right\rangle
    Dissociative ionization of D2\text{D}_{2} e+D22e+D+D+\text{e}^{-}+\text{D}_{2}\rightarrow 2\text{e}^{-}+\text{D}+\text{D}^{+} νdiss-iz,D2=neveσdiss-iz,D2(ve)\nu_{\text{diss-iz,D}_{2}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{diss-iz,D}_{2}}(v_{\text{e}})\right\rangle
    Dissociation of D2+\text{D}_{2}^{+} e+D2+e+D+D+\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{e}^{-}+\text{D}+\text{D}^{+} νdiss,D2+=neveσdiss,D2+(ve)\nu_{\text{diss,D}_{2}^{+}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{diss,D}_{2}^{+}}(v_{\text{e}})\right\rangle
    Dissociative ionization of D2+\text{D}_{2}^{+} e+D2+2e+2D+\text{e}^{-}+\text{D}_{2}^{+}\rightarrow 2\text{e}^{-}+2\text{D}^{+} νdiss-iz,D2+=neveσdiss-iz,D2+(ve)\nu_{\text{diss-iz,D}_{2}^{+}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{diss-iz,D}_{2}^{+}}(v_{\text{e}})\right\rangle
    Dissociative recombination of D2+\text{D}_{2}^{+} e+D2+2D\text{e}^{-}+\text{D}_{2}^{+}\rightarrow 2\text{D} νdiss-rec,D2+=neveσdiss-rec,D2+(ve)\nu_{\text{diss-rec,D}_{2}^{+}}=n_{\text{e}}\left\langle v_{\text{e}}\sigma_{\text{diss-rec,D}_{2}^{+}}(v_{\text{e}})\right\rangle
    Charge-exchange of D+,D\text{D}^{+},\text{D} D++DD+D+\text{D}^{+}+\text{D}\rightarrow\text{D}+\text{D}^{+} νcx,D=nD+vD+σcx,D+(vD+)\nu_{\text{\text{cx,D}}}=n_{\text{D}^{+}}\left\langle v_{\text{D}^{+}}\sigma_{\text{cx,D}^{+}}(v_{\text{D}^{+}})\right\rangle
    Charge-exchange of D2+,D2\text{D}_{2}^{+},\text{D}_{2} D2++D2D2+D2+\text{D}_{2}^{+}+\text{D}_{2}\rightarrow\text{D}_{2}+\text{D}_{2}^{+} νcx,D2=nD2+vD2+σcx,D2+(vD2+)\nu_{\text{cx,D}_{2}}=n_{\text{D}_{2}^{+}}\left\langle v_{\text{D}_{2}^{+}}\sigma_{\text{cx,D}_{2}^{+}}(v_{\text{D}_{2}^{+}})\right\rangle
    Charge-exchange of D2+,D\text{D}_{2}^{+},\text{D} D2++DD2+D+\text{D}_{2}^{+}+\text{D}\rightarrow\text{D}_{2}+\text{D}^{+} νcx,D-D2+=nD2+vD2+σcx,D-D2+(vD2+)\nu_{\text{cx,D-D}_{2}^{+}}=n_{\text{D}_{2}^{+}}\left\langle v_{\text{D}_{2}^{+}}\sigma_{\text{cx,D-D}_{2}^{+}}(v_{\text{D}_{2}^{+}})\right\rangle
    Charge-exchange of D2,D+\text{D}_{2},\text{D}^{+} D2+D+D2++D\text{D}_{2}+\text{D}^{+}\rightarrow\text{D}_{2}^{+}+\text{D} νcx,D2D+=nD+vD+σcx,D2D+(vD+)\nu_{\text{cx,D}_{2}-\text{D}^{+}}=n_{\text{D}^{+}}\left\langle v_{\text{D}^{+}}\sigma_{\text{cx,D}_{2}-\text{D}^{+}}(v_{\text{D}^{+}})\right\rangle

We highlight that the values of the vσ\left\langle v\sigma\right\rangle product for most of the reactions considered in Table 1 are obtained from the AMJUEL [42] and HYDEL [43] databases (precise references for each cross section are listed in Table 1 of [41]). While these databases list the cross sections for ordinary hydrogen plasmas, we assume here that they apply also to deuterium. More precisely, the cross section for the eD\text{e}^{-}-\text{D} elastic collisions is obtained from [44] (page 40, Table 2), while for the eD2\text{e}^{-}-\text{D}_{2} elastic collision we use [45] (page 917, Table 13). The cross section for the D2D2+\text{D}_{2}-\text{D}_{2}^{+} charge-exchange reaction is taken from the HYDEL database (H.4, reaction 4.3.1), while for the DD2+\text{D}-\text{D}_{2}^{+} charge-exchange we use the cross section values in the ALADDIN database [46], which are obtained from [47, 48]. For all the other reactions, we use the cross sections from the AMJUEL database [42]. The vσ\left\langle v\sigma\right\rangle product for the collisional processes considered in this work is plotted as a function of the temperature in Fig. 1.

Refer to caption
Figure 1: vσ\left\langle v\sigma\right\rangle product for the collisional processes considered in this work. Ionization processes, elastic collisions and charge-exchange processes are displayed on the top panel, dissociative reactions on the bottom panel. The vσ\left\langle v\sigma\right\rangle product is plotted as a function of the temperature of the colliding particle.

Having listed the collisional processes, we now focus on the velocity and energy of their products. For charge-exchange interactions of the kind A+B+A++BA+B^{+}\rightarrow A^{+}+B, we assume that, while AA and B+B^{+} exchange an electron, their velocities are not affected and energy is conserved. As a consequence, the ion A+A^{+} is released from the charge-exchange collision with the velocity of AA, and BB is released with the velocity of B+B^{+}. For the e+De+D\text{e}^{-}+\text{D}\rightarrow\text{e}^{-}+\text{D} elastic collisions, given the large electron to deuterium mass ratio, we consider that the D velocity is not affected by the collision, while the electron is emitted isotropically in the reference frame of the massive particle according to a Maxwellian distribution function, Φe[𝐯D,Te,e-D]=[me/(2πTe,e-D)]3/2exp[me(𝐯𝐯D)2/(2Te,e-D)]\Phi_{e\left[\mathbf{v_{\text{D}}},T_{\text{e},\text{e-D}}\right]}=\left[m_{\text{e}}/(2\pi T_{\text{e},\text{e-D}})\right]^{3/2}\exp\left[-m_{\text{e}}(\mathbf{v}-\mathbf{v}_{\text{D}})^{2}/(2T_{\text{e},\text{e-D}})\right], centered at the velocity of the incoming D particle, 𝐯D=𝐯fD𝑑𝐯/fD𝑑𝐯\mathbf{v}_{\text{D}}=\int\mathbf{v}f_{\text{D}}d\mathbf{v}/\int f_{\text{D}}d\mathbf{v}. The temperature Te,e-DT_{\text{e},\text{e-D}} is established by energy conservation considerations. Precisely, we observe that the average energy of the incoming electrons consists of the sum of the kinetic energy associated with the electron fluid velocity, 𝐯e\mathbf{v_{\text{e}}}, and the thermal contribution, given by (3/2)Te(3/2)T_{\text{e}}. On the other hand, the energy of the outcoming electrons has a contribution given by the collective re-emission velocity, 𝐯D\mathbf{v_{\text{D}}}, and a thermal contribution, Te,e-DT_{\text{e,e-D}}. It follows that Te,e-DT_{\text{e},\text{e-D}} satisfies the following balance, 3Te/2+meve2/2=Te,e-D+mevD2/23T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=T_{\text{e,e-D}}+m_{\text{e}}v_{\text{D}}^{2}/2. The elastic collisions between electronds and D2\text{D}_{2} can be described similarly. The re-emitted electrons have a distribution Φe[𝐯D𝟐,Te,e-D2]\Phi_{e\left[\mathbf{v_{\text{D}_{2}}},T_{\text{e},\text{e-D}_{2}}\right]}, with Te,e-D2T_{\text{e},\text{e-D}_{2}} obtained from an analogous conservation law, 3Te/2+meve2/2=Te,e-D2+mevD22/23T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=T_{\text{e,e-D}_{2}}+m_{\text{e}}v_{\text{D}_{2}}^{2}/2.

We now consider the electrons generated by ionization of D. We assume that they are described by the Maxwellian distribution function Φe[𝐯D,Te,iz(D)]\Phi_{e\left[\mathbf{v_{\text{D}}},T_{\text{e},\text{iz(D)}}\right]} centered at the fluid velocity of the D atom 𝐯D\mathbf{v_{\text{D}}} with Te,iz(D)T_{\text{e},\text{iz(D)}} that takes into account the ionization energy loss, Eiz\left\langle E_{\text{iz}}\right\rangle, whose value is presented in Table 2. More precisely, Te,iz(D)T_{\text{e,iz}(\text{D})} satisfies the energy conservation law, 3Te/2+meve2/2=2[Te,iz(D)+mevD2/2]+Eiz,D3T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=2\left[T_{\text{e,iz(D)}}+m_{\text{e}}v_{\text{D}}^{2}/2\right]+\left\langle E_{\text{iz,D}}\right\rangle, as the reaction gives rise to two electrons with the same properties. The same approach is followed for the ionization of D2\text{D}_{2}, with the two released electrons being described by a Maxwellian Φe[𝐯D𝟐,Te,iz(D)2]\Phi_{e\left[\mathbf{v_{\text{D}_{2}}},T_{\text{e},\text{iz(D)}_{2}}\right]} centered at the velocity of the D2\text{D}_{2} molecules, 𝐯D𝟐\mathbf{v_{\text{D}_{2}}}, and with temperature Te,iz(D)2T_{\text{e},\text{iz(D)}_{2}} obtained from 3Te/2+meve2/2=2[Te,iz(D2)+mevD22/2]+Eiz,D23T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=2\left[T_{\text{e,iz}(\text{D}_{2})}+m_{\text{e}}v_{\text{D}_{2}}^{2}/2\right]+\left\langle E_{\text{iz,D}_{2}}\right\rangle, with Eiz,D2\left\langle E_{\text{iz,D}_{2}}\right\rangle the average energy loss due to ionization of D2\text{D}_{2} (see Table 2). We highlight that we neglect multi-step ionization processes when computing the cross section for ionization of D and D2\text{D}_{2}, and we do the same for all other electron impact-induced reactions, such as the dissociative processes considered here.

We apply the procedure used for ionization processes to describe the properties of the electrons resulting from dissociative processes, with the electron generated by dissociation of D2\text{D}_{2} being described by the Maxwellian Φe[𝐯D𝟐,Te,diss(D)2]\Phi_{e\left[\mathbf{v_{\text{D}_{2}}},T_{\text{e},\text{diss(D)}_{2}}\right]} centered around 𝐯D𝟐\mathbf{v_{\text{D}_{2}}} and with temperature Te,diss(D)2T_{\text{e},\text{diss(D)}_{2}} obtained from 3Te/2+meve2/2=Te,diss(D2)+mevD22/2+Ediss,D23T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=T_{\text{e,diss}(\text{D}_{2})}+m_{\text{e}}v_{\text{D}_{2}}^{2}/2+\left\langle E_{\text{diss,D}_{2}}\right\rangle. Regarding dissociation of D2+\text{D}_{2}^{+}, the resulting electron is similarly modelled by a Maxwellian Φe[𝐯D𝟐+,Te,diss(D)2+]\Phi_{e\left[\mathbf{v_{\text{D}_{2}}^{+}},T_{\text{e},\text{diss(D)}_{2}^{+}}\right]} centered at the velocity of the D2+\text{D}_{2}^{+} ion and with temperature Te,diss(D)2+T_{\text{e},\text{diss(D)}_{2}^{+}} given by energy conservation, 3Te/2+meve2/2=Te,diss(D2+)+mevD2+2/2+Ediss,D2+3T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=T_{\text{e,diss}(\text{D}_{2}^{+})}+m_{\text{e}}v_{\text{D}_{2}^{+}}^{2}/2+\left\langle E_{\text{diss,D}_{2}^{+}}\right\rangle. On the other hand, dissociative ionization of D2\text{D}_{2} generates two electrons, whose Maxwellian distribution function, Φe[𝐯D𝟐,Te,diss-iz(D)2]\Phi_{e\left[\mathbf{v_{\text{D}_{2}}},T_{\text{e},\text{diss-iz(D)}_{2}}\right]}, is centered around the D2\text{D}_{2} velocity, 𝐯D𝟐\mathbf{v_{\text{D}_{2}}}, and characterized by a temperature Te,diss-iz(D2)T_{\text{e,diss-iz}(\text{D}_{2})}, obtained from 3Te/2+meve2/2=2[Te,diss-iz(D2)+mevD22/2]+Ediss-iz,D23T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=2\left[T_{\text{e,diss-iz}(\text{D}_{2})}+m_{\text{e}}v_{\text{D}_{2}}^{2}/2\right]+\left\langle E_{\text{diss-iz,D}_{2}}\right\rangle. Similarly, the electrons generated by dissociative ionization of D2+\text{D}_{2}^{+} are assumed to follow a Maxwellian Φe[𝐯D𝟐+,Te,diss-iz(D)2+]\Phi_{e\left[\mathbf{v_{\text{D}_{2}^{+}}},T_{\text{e},\text{diss-iz(D)}_{2}^{+}}\right]} centered at 𝐯D𝟐+\mathbf{v_{\text{D}_{2}^{+}}} and with temperature Te,diss-iz(D2+)T_{\text{e,diss-iz}(\text{D}_{2}^{+})} obtained from the corresponding energy conservation law, 3Te/2+meve2/2=2[Te,diss-iz(D2+)+mevD2+2/2]+Ediss-iz,D2+3T_{\text{e}}/2+m_{\text{e}}v_{\text{e}}^{2}/2=2\left[T_{\text{e,diss-iz}(\text{D}_{2}^{+})}+m_{\text{e}}v_{\text{D}_{2}^{+}}^{2}/2\right]+\left\langle E_{\text{diss-iz,D}_{2}^{+}}\right\rangle.

The evaluation of the temperature of the D atoms and D+\text{D}^{+} ions released from dissociative reactions are based on modelling these reactions as Franck-Condon dissociation processes. These temperatures are summarized in Table 2 and rely on data from [43]. The detailed calculations are presented in the App. A. We also remark that these particles are emitted isotropically in the frame of the centre of mass of the incoming D2\text{D}_{2} or D2+\text{D}_{2}^{+} particle. Thus, the D atoms generated in dissociation of D2\text{D}_{2} molecules, for instance, are assumed to have a Maxwellian distribution ΦD[𝐯D𝟐,TD,diss(D2)]\Phi_{\text{D}\left[\mathbf{v_{\text{D}_{2}}},T_{\text{D},\text{diss(D}_{2}\text{)}}\right]}. Analogously, we describe the neutral D atoms and D+\text{D}^{+} ions generated by dissociative-ionization of D2\text{D}_{2} molecules by the Maxwellian distributions ΦD[𝐯D2,TD,diss-iz(D2)]\Phi_{\text{D}\left[\mathbf{v}_{\text{D}_{2}},T_{\text{D,diss-iz}\left(\text{D}_{2}\right)}\right]} and ΦD+[𝐯D2,TD,diss-iz(D2)]\Phi_{\text{D}^{+}\left[\mathbf{v}_{\text{D}_{2}},T_{\text{D,diss-iz}\left(\text{D}_{2}\right)}\right]} respectively, with the temperature TD,diss-iz(D2)T_{\text{D,diss-iz(D}_{2}\text{)}} listed in Table 2 and evaluated in App. A. Similarly, ΦD[𝐯D2+,TD,diss(D2+)]\Phi_{\text{D}\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]} and ΦD+[𝐯D2+,TD,diss(D2+)]\Phi_{\text{D}^{+}\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]} are the Maxwellian distributions of D atoms and D+\text{D}^{+} ions generated by dissociation of D2+\text{D}_{2}^{+} ions, where 𝐯D2+\mathbf{v}_{\text{D}^{+}_{2}} is the fluid velocity of the D2+\text{D}^{+}_{2} ion population that includes the leading order components (see Sec. 3). Finally, dissociative-ionization of D2+\text{D}_{2}^{+} generates D+\text{D}^{+} ions that are described by a Maxwellian distribution ΦD+[𝐯D2+,TD,diss-iz(D2+)]\Phi_{\text{D}^{+}\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss-iz}\left(D_{2}^{+}\right)}\right]}. To conclude, we note that the D atoms and D+\text{D}^{+} generated by dissociative-recombination of D2+\text{D}_{2}^{+} are described by the Maxwellian distributions ΦD[𝐯D2+,TD,diss-rec(D2+)]\Phi_{\text{D}\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}\right]} and ΦD+[𝐯D2+,TD,diss-rec(D2+)]\Phi_{\text{D}^{+}\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}\right]} respectively, with TD,diss-rec(D2+)T_{\text{D,diss-rec(D}_{2}^{+}\text{)}} the average thermal energy of the reaction products.

Table 2: Average electron energy loss and average energy of reaction products for the ionization and dissociative processes included in the model.
  • Collisional process Electron energy loss Reaction product temperature
    Ionization of D Eiz,D=13.60eV\left\langle E_{\text{iz,D}}\right\rangle=13.60\text{eV} ————————————
    Ionization of D2\text{D}_{2} Eiz,D2=15.43eV\left\langle E_{\text{iz,D}_{2}}\right\rangle=15.43\text{eV} ————————————
    Dissociation of D2\text{D}_{2} Ediss,D214.3eV\left\langle E_{\text{diss,D}_{2}}\right\rangle\simeq 14.3\text{eV} TD,diss(D2)1.95eVT_{\text{D}\text{,diss}\left(\text{D}_{2}\right)}\simeq 1.95\text{eV}
    Dissociative-ionization of D2\text{D}_{2} (Ee<26eVE_{\text{e}}<26\text{eV}) Ediss-iz,D2=18.25eVE_{\text{diss-iz,D}_{2}}=18.25\text{eV} TD,diss-iz(D2)0.25eVT_{\text{D}\text{,diss-iz}\left(\text{D}_{2}\right)}\simeq 0.25\text{eV}
    Dissociative-ionization of D2\text{D}_{2} (Ee>26eVE_{\text{e}}>26\text{eV}) Ediss-iz,D2=33.6eVE_{\text{diss-iz,D}_{2}}=33.6\text{eV} TD,diss-iz(D2)7.8eVT_{\text{D}\text{,diss-iz}\left(\text{D}_{2}\right)}\simeq 7.8\text{eV}
    Dissociation of D2+\text{D}_{2}^{+} Ediss,D2+13.7eV\left\langle E_{\text{diss,D}_{2}^{+}}\right\rangle\simeq 13.7\text{eV} TD,diss(D2+)3.0eVT_{\text{D}\text{,diss}\left(\text{D}_{2}^{+}\right)}\simeq 3.0\text{eV}
    Dissociative-ionization of D2+\text{D}_{2}^{+} Ediss-iz,D2+15.5eV\left\langle E_{\text{diss-iz,D}_{2}^{+}}\right\rangle\simeq 15.5\text{eV} TD,diss-iz(D2+)0.4eVT_{\text{D}\text{,diss-iz}\left(\text{D}_{2}^{+}\right)}\simeq 0.4\text{eV}
    Dissociative-recombination of D2+\text{D}_{2}^{+} ———————————— TD,diss-rec(D2+)11.7eVT_{\text{D}\text{,diss-rec}\left(\text{D}_{2}^{+}\right)}\simeq 11.7\text{eV}

3 The three-fluid drift-reduced Braginskii equations

The kinetic equations for e\text{e}^{-}, D+\text{D}^{+} and D2+\text{D}_{2}^{+}, which include the terms associated with the neutral-plasma interactions, are the starting point for the derivation of the Braginskii set of equations, used here to model the plasma dynamics. These equations generalise the ones considered in the single-ion species model described in [23, 35], by adding the new collisional neutral-plasma interaction terms listed in Table 1, as well as an equation for the description of molecular ions, D2+\text{D}_{2}^{+}. The kinetic equations are

fet+𝐯fe𝐱+𝐚fe𝐯=νiz,DnD[2Φe[𝐯D,Te,iz(D)]fene]+νe-DnD[Φe[𝐯D,Te,en(D)]fene]νrec,D+nD+nefe+νiz,D2nD2[2Φe[𝐯D2,Te,iz(D2)]fene]+νe-D2nD2[Φe[𝐯D2,Te,en(D2)]fene]νrec,D2+nD2+nefe+νdiss,D2nD2[Φe[𝐯D2,Te,diss(D2)]fene]+νdiss-iz,D2nD2[2Φe[𝐯D2,Te,diss-iz(D2)]fene]+νdiss-iz,D2+nD2+[2Φe[𝐯D2+,Te,diss-iz(D2+)]fene]+νdiss,D2+nD2+[Φe[𝐯D2+,Te,diss(D2+)]fene]νdiss-rec,D2+nD2+fene+C(fe),\displaystyle\begin{aligned} &\frac{\partial f_{\text{e}}}{\partial t}+\mathbf{v}\cdot\frac{\partial f_{\text{e}}}{\partial\mathbf{x}}+\mathbf{a}\cdot\frac{f_{\text{e}}}{\partial\mathbf{v}}=\nu_{\text{iz,D}}n_{\text{D}}\left[2\Phi_{e\left[\mathbf{v}_{\text{D}},T_{\text{e,iz(D)}}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]\\ &+\nu_{\text{e-D}}n_{\text{D}}\left[\Phi_{e\left[\mathbf{v}_{\text{D}},T_{e,en(D)}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]-\nu_{\text{rec,D}^{+}}\frac{n_{\text{D}^{+}}}{n_{\text{e}}}f_{\text{e}}+\nu_{\text{iz,D}_{2}}n_{\text{D}_{2}}\left[2\Phi_{e\left[\mathbf{v}_{\text{D}_{2}},T_{\text{e,iz}(\text{D}_{2})}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]\\ &+\nu_{\text{e-D}_{2}}n_{\text{D}_{2}}\left[\Phi_{e\left[\mathbf{v}_{\text{D}_{2}},T_{e,en(\text{D}_{2})}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]-\nu_{\text{rec,D}_{2}^{+}}\frac{n_{\text{D}_{2}^{+}}}{n_{\text{e}}}f_{\text{e}}\\ &+\nu_{\text{diss,D}_{2}}n_{\text{D}_{2}}\left[\Phi_{e\left[\mathbf{v}_{\text{D}_{2}},T_{\text{e,diss}(\text{D}_{2})}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]+\nu_{\text{diss-iz,D}_{2}}n_{\text{D}_{2}}\left[2\Phi_{e\left[\mathbf{v}_{\text{D}_{2}},T_{\text{e,diss-iz}(\text{D}_{2})}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]\\ &+\nu_{\text{diss-iz,D}_{2}^{+}}n_{\text{D}_{2}^{+}}\left[2\Phi_{e\left[\mathbf{v}_{\text{D}_{2}^{+}},T_{\text{e,diss-iz}(\text{D}_{2}^{+})}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]\\ &+\nu_{\text{diss,D}_{2}^{+}}n_{\text{D}_{2}^{+}}\left[\Phi_{e\left[\mathbf{v}_{\text{D}_{2}^{+}},T_{\text{e,diss}(\text{D}_{2}^{+})}\right]}-\frac{f_{\text{e}}}{n_{\text{e}}}\right]-\nu_{\text{diss-rec,D}_{2}^{+}}n_{\text{D}_{2}^{+}}\frac{f_{\text{e}}}{n_{\text{e}}}+C(f_{\text{e}}),\\ \end{aligned} (1)
fD+t+𝐯fD+𝐱+𝐚fD+𝐯=νiz,DfDνrec,D+fD+νcx,D(nDnD+fD+fD)+νcx,D-D2+fDνcx,D2D+nD2nD+fD++νdiss-iz,D2fD2+2νdiss-iz,D2+fD2++νdiss,D2+fD2++C(fD+),\displaystyle\begin{aligned} &\frac{\partial f_{\text{D}^{+}}}{\partial t}+\mathbf{v}\cdot\frac{\partial f_{\text{D}^{+}}}{\partial\mathbf{x}}+\mathbf{a}\cdot\frac{f_{\text{D}^{+}}}{\partial\mathbf{v}}=\nu_{\text{iz,D}}f_{\text{D}}-\nu_{\text{rec,D}^{+}}f_{\text{D}^{+}}\\ &-\nu_{\text{cx,D}}\left(\frac{n_{\text{D}}}{n_{\text{D}^{+}}}f_{\text{D}^{+}}-f_{\text{D}}\right)+\nu_{\text{cx,D-D}_{2}^{+}}f_{\text{D}}-\nu_{\text{cx,D}_{2}-\text{D}^{+}}\frac{n_{\text{D}_{2}}}{n_{\text{D}^{+}}}f_{\text{D}^{+}}\\ &+\nu_{\text{diss-iz,D}_{2}}f_{\text{D}_{2}}+2\nu_{\text{diss-iz,D}_{2}^{+}}f_{\text{D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}f_{\text{D}_{2}^{+}}+C(f_{\text{D}^{+}}),\\ \end{aligned} (2)

and

fD2+t+𝐯fD2+𝐱+𝐚fD2+𝐯=νiz,D2fD2νrec,D2+fD2+νcx,D2(nD2nD2+fD2+fD2)νcx,D2D+fD2νcx,D-D2+nDnD2+fD2+(νdiss-iz,D2++νdiss,D2++νdiss-rec,D2+)fD2++C(fD2+).\displaystyle\begin{aligned} &\frac{\partial f_{\text{D}_{2}^{+}}}{\partial t}+\mathbf{v}\cdot\frac{\partial f_{\text{D}_{2}^{+}}}{\partial\mathbf{x}}+\mathbf{a}\cdot\frac{f_{\text{D}_{2}^{+}}}{\partial\mathbf{v}}=\nu_{\text{iz,D}_{2}}f_{\text{D}_{2}}-\nu_{\text{rec,D}_{2}^{+}}f_{\text{D}_{2}^{+}}\\ &-\nu_{\text{cx,D}_{2}}\left(\frac{n_{\text{D}_{2}}}{n_{\text{D}_{2}^{+}}}f_{\text{D}_{2}^{+}}-f_{\text{D}_{2}}\right)-\nu_{\text{cx,D}_{2}-\text{D}^{+}}f_{\text{D}_{2}}-\nu_{\text{cx,D-D}_{2}^{+}}\frac{n_{\text{D}}}{n_{\text{D}_{2}^{+}}}f_{\text{D}_{2}^{+}}\\ &-\left(\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}+\nu_{\text{diss-rec,D}_{2}^{+}}\right)f_{\text{D}_{2}^{+}}+C(f_{\text{D}_{2}^{+}}).\\ \end{aligned} (3)

In Eqs. (1-3), 𝐯\mathbf{v} is the particle velocity, 𝐚\mathbf{a} is the particle acceleration due to the Lorentz Force, /𝐱\partial/\partial\mathbf{x} is the gradient in real space and /𝐯\partial/\partial\mathbf{v} in the velocity space. The C(fe)C(f_{\text{e}}), C(fD+)C(f_{\text{D}^{+}}) and C(fD2+)C(f_{\text{D}_{2}^{+}}) terms represent Coulomb collisions between charged particles affecting the ee, D+\text{D}^{+} and D2+\text{D}_{2}^{+} distribution functions, respectively.

The Braginskii equations for the 3-species plasma (e\text{e}^{-}, D+\text{D}^{+} and D2+\text{D}_{2}^{+}) are then obtained by taking the first three moments of the kinetic equations for each species in the limit ΩcD+τD+1\Omega_{\text{cD}^{+}}\tau_{\text{D}^{+}}\gg 1, with ΩcD+=eB/mD+\Omega_{\text{cD}^{+}}=eB/m_{\text{D}^{+}} the cyclotron frequency (mD+m_{\text{D}^{+}} denotes the D+\text{D}^{+} ion mass and ee is the elementary charge) and τD+\tau_{\text{D}^{+}} the characteristic Coulomb collision time for D+\text{D}^{+} ions. The Braginskii equations, including the neutral-plasma interaction terms, can be derived by following the steps presented in [49], and take the following form

net+(ne𝐯e)=nDνiz,DnD+νrec,D++nD2νiz,D2nD2+νrec,D2+\displaystyle\frac{\partial n_{\text{e}}}{\partial t}+\nabla\cdot\left(n_{\text{e}}\mathbf{v}_{\text{e}}\right)=n_{\text{D}}\nu_{\text{iz,D}}-n_{\text{D}^{+}}\nu_{\text{rec,D}^{+}}+n_{\text{D}_{2}}\nu_{\text{iz,D}_{2}}-n_{\text{D}_{2}^{+}}\nu_{\text{rec,D}_{2}^{+}} (4)
+nD2νdiss-iz,D2+nD2+νdiss-iz,D2+nD2+νdiss-rec,D2+,\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}+n_{\text{D}_{2}^{+}}\nu_{\text{diss-iz,D}_{2}^{+}}-n_{\text{D}_{2}^{+}}\nu_{\text{diss-rec,D}_{2}^{+}},
nD+t+(nD+𝐯D+)=nDνiz,DnD+νrec,D++nDνcx,D-D2+nD2νcx,D2D+\displaystyle\frac{\partial n_{\text{D}^{+}}}{\partial t}+\nabla\cdot\left(n_{\text{D}^{+}}\mathbf{v}_{\text{D}^{+}}\right)=n_{\text{D}}\nu_{\text{iz,D}}-n_{\text{D}^{+}}\nu_{\text{rec,D}^{+}}+n_{\text{D}}\nu_{\text{cx,D-D}_{2}^{+}}-n_{\text{D}_{2}}\nu_{\text{cx,D}_{2}-\text{D}^{+}} (5)
+nD2νdiss-iz,D2+nD2+(2νdiss-iz,D2++νdiss,D2+),\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}+n_{\text{D}_{2}^{+}}\left(2\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}\right),
nD2+t+(nD2+𝐯D2+)=nD2νiz,D2nD2+νrec,D2++nD2νcx,D2D+nDνcx,D-D2+\displaystyle\frac{\partial n_{\text{D}_{2}^{+}}}{\partial t}+\nabla\cdot\left(n_{\text{D}_{2}^{+}}\mathbf{v}_{\text{D}_{2}^{+}}\right)=n_{\text{D}_{2}}\nu_{\text{iz,D}_{2}}-n_{\text{D}_{2}^{+}}\nu_{\text{rec,D}_{2}^{+}}+n_{\text{D}_{2}}\nu_{\text{cx,D}_{2}-\text{D}^{+}}-n_{\text{D}}\nu_{\text{cx,D-D}_{2}^{+}} (6)
nD2+(νdiss-iz,D2++νdiss,D2++νdiss-rec,D2+),\displaystyle-n_{\text{D}_{2}^{+}}\left(\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}+\nu_{\text{diss-rec,D}_{2}^{+}}\right),
menedeveαdt=pexαΠeαβxβene[Eα+(𝐯e×𝐁)α]+Reα\displaystyle m_{\text{e}}n_{\text{e}}\frac{d_{\text{e}}v_{\text{e}\alpha}}{dt}=-\frac{\partial p_{\text{e}}}{\partial x_{\alpha}}-\frac{\partial\Pi_{\text{e}\alpha\beta}}{\partial x_{\beta}}-en_{\text{e}}\left[E_{\alpha}+\left(\mathbf{v}_{\text{e}}\times\mathbf{B}\right)_{\alpha}\right]+R_{e\alpha} (7)
+me[nD(2νiz,D+νe-D)(vDαveα)+nD2(2νiz,D2+νe-D2)(vD2αveα)\displaystyle+m_{\text{e}}\left[n_{\text{D}}\left(2\nu_{\text{iz,D}}+\nu_{\text{e-D}}\right)\left(v_{\text{D}\alpha}-v_{\text{e}\alpha}\right)+n_{\text{D}_{2}}\left(2\nu_{\text{iz,D}_{2}}+\nu_{\text{e-D}_{2}}\right)\left(v_{\text{D}_{2}\alpha}-v_{\text{e}\alpha}\right)\right.
+2nD2νdiss-iz,D2(vD2αveα)+2νdiss-iz,D2+nD2+(vD2+αveα)\displaystyle+2n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}\left(v_{\text{D}_{2}\alpha}-v_{\text{e}\alpha}\right)+2\nu_{\text{diss-iz,D}_{2}^{+}}n_{\text{D}_{2}^{+}}\left(v_{\text{D}_{2}^{+}\alpha}-v_{\text{e}\alpha}\right)
+nD2+νdiss,D2+(vD2+αveα)+nD2νdiss,D2(vD2αveα)],\displaystyle\left.+n_{\text{D}_{2}^{+}}\nu_{\text{diss,D}_{2}^{+}}\left(v_{\text{D}_{2}^{+}\alpha}-v_{\text{e}\alpha}\right)+n_{\text{D}_{2}}\nu_{\text{diss,D}_{2}}\left(v_{\text{D}_{2}\alpha}-v_{\text{e}\alpha}\right)\right],
mDnD+dD+vD+αdt=pD+xαΠD+αβxβ+enD+[Eα+(𝐯D+×𝐁)α]+RD+α\displaystyle m_{\text{D}}n_{\text{D}^{+}}\frac{d_{\text{D}^{+}}v_{\text{D}^{+}\alpha}}{dt}=-\frac{\partial p_{\text{D}^{+}}}{\partial x_{\alpha}}-\frac{\partial\Pi_{\text{D}^{+}\alpha\beta}}{\partial x_{\beta}}+en_{\text{D}^{+}}\left[E_{\alpha}+\left(\mathbf{v}_{\text{D}^{+}}\times\mathbf{B}\right)_{\alpha}\right]+R_{\text{D}^{+}\alpha} (8)
+mD[nD(νiz,D+νcx,D+νcx,D-D2+)(vDαvD+α)+nD2νdiss-iz,D2(vD2αvD+α)\displaystyle+m_{\text{D}}\left[n_{\text{D}}(\nu_{\text{iz,D}}+\nu_{\text{cx,D}}+\nu_{\text{cx,D-D}_{2}^{+}})(v_{\text{D}\alpha}-v_{\text{D}^{+}\alpha})+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}(v_{\text{D}_{2}\alpha}-v_{\text{D}^{+}\alpha})\right.
+nD2+(2νdiss-iz,D2++νdiss,D2+)(vD2+αvD+α)],\displaystyle\left.+n_{\text{D}_{2}^{+}}\left(2\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}\right)(v_{\text{D}_{2}^{+}\alpha}-v_{\text{D}^{+}\alpha})\right],
mD2nD2+dD2+vD2+αdt=pD2+xαΠD+αβxβ+enD2+[Eα+(𝐯D2+×𝐁)α]+RD2+α\displaystyle m_{\text{D}_{2}}n_{\text{D}_{2}^{+}}\frac{d_{\text{D}_{2}^{+}}v_{\text{D}_{2}^{+}\alpha}}{dt}=-\frac{\partial p_{\text{D}_{2}^{+}}}{\partial x_{\alpha}}-\frac{\partial\Pi_{\text{D}^{+}\alpha\beta}}{\partial x_{\beta}}+en_{\text{D}_{2}^{+}}\left[E_{\alpha}+\left(\mathbf{v}_{\text{D}_{2}^{+}}\times\mathbf{B}\right)_{\alpha}\right]+R_{\text{D}_{2}^{+}\alpha} (9)
+mD2nD2(νiz,D2+νcx,D2+νcx,D2D+)(vD2αvD2+α),\displaystyle+m_{\text{D}_{2}}n_{\text{D}_{2}}(\nu_{\text{iz,D}_{2}}+\nu_{\text{cx,D}_{2}}+\nu_{\text{cx,D}_{2}-\text{D}^{+}})(v_{\text{D}_{2}\alpha}-v_{\text{D}_{2}^{+}\alpha}),
32nedeTedt+pe𝐯e=𝐪eΠeαβveβxα+Qe\displaystyle\frac{3}{2}n_{\text{e}}\frac{d_{\text{e}}T_{\text{e}}}{dt}+p_{\text{e}}\nabla\cdot\mathbf{v}_{\text{e}}=-\nabla\cdot\mathbf{q}_{\text{e}}-\Pi_{\text{e}\alpha\beta}\frac{\partial v_{\text{e}\beta}}{\partial x_{\alpha}}+Q_{\text{e}} (10)
+nDνiz,D[Eiz,D32Te+32me𝐯e(𝐯e43𝐯D)]nDνe-Dme𝐯e(𝐯D𝐯e)\displaystyle+n_{\text{D}}\nu_{\text{iz,D}}\left[-E_{\text{iz,D}}-\frac{3}{2}T_{\text{e}}+\frac{3}{2}m_{\text{e}}\mathbf{v}_{\text{e}}\cdot\left(\mathbf{v}_{\text{e}}-\frac{4}{3}\mathbf{v}_{\text{D}}\right)\right]-n_{\text{D}}\nu_{\text{e-D}}m_{\text{e}}\mathbf{v}_{\text{e}}\cdot(\mathbf{v}_{\text{D}}-\mathbf{v}_{\text{e}})
+nD2νiz,D2[Eiz,D232Te+32me𝐯e(𝐯e43𝐯D2)]nD2νe-D2me𝐯e(𝐯D2𝐯e)\displaystyle+n_{\text{D}_{2}}\nu_{\text{iz,D}_{2}}\left[-E_{\text{iz,D}_{2}}-\frac{3}{2}T_{\text{e}}+\frac{3}{2}m_{\text{e}}\mathbf{v}_{\text{e}}\cdot\left(\mathbf{v}_{\text{e}}-\frac{4}{3}\mathbf{v}_{\text{D}_{2}}\right)\right]-n_{\text{D}_{2}}\nu_{\text{e-D}_{2}}m_{\text{e}}\mathbf{v}_{\text{e}}\cdot(\mathbf{v}_{\text{D}_{2}}-\mathbf{v}_{\text{e}})
+nD2νdiss,D2[Ediss,D2+me𝐯e(𝐯e𝐯D2)]\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss,D}_{2}}\left[-E_{\text{diss,D}_{2}}+m_{\text{e}}\mathbf{v}_{\text{e}}\cdot\left(\mathbf{v}_{\text{e}}-\mathbf{v}_{\text{D}_{2}}\right)\right]
+nD2νdiss-iz,D2[Ediss-iz,D232Te+32me𝐯e(𝐯e43𝐯D2)]\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}\left[-E_{\text{diss-iz,D}_{2}}-\frac{3}{2}T_{\text{e}}+\frac{3}{2}m_{\text{e}}\mathbf{v}_{\text{e}}\cdot\left(\mathbf{v}_{\text{e}}-\frac{4}{3}\mathbf{v}_{\text{D}_{2}}\right)\right]
+nD2+νdiss,D2+[Ediss,D2++me𝐯e(𝐯e𝐯D2+)]\displaystyle+n_{\text{D}_{2}^{+}}\nu_{\text{diss,D}_{2}^{+}}\left[-E_{\text{diss,D}_{2}^{+}}+m_{\text{e}}\mathbf{v}_{\text{e}}\cdot\left(\mathbf{v}_{\text{e}}-\mathbf{v}_{\text{D}_{2}^{+}}\right)\right]
+nD2+νdiss-iz,D2+[Ediss-iz,D2+32Te+32me𝐯e(𝐯e43𝐯D2+)],\displaystyle+n_{\text{D}_{2}^{+}}\nu_{\text{diss-iz,D}_{2}^{+}}\left[-E_{\text{diss-iz,D}_{2}^{+}}-\frac{3}{2}T_{\text{e}}+\frac{3}{2}m_{\text{e}}\mathbf{v}_{\text{e}}\cdot\left(\mathbf{v}_{\text{e}}-\frac{4}{3}\mathbf{v}_{\text{D}_{2}^{+}}\right)\right],
32nD+dD+TD+dt+pD+𝐯D+=𝐪D+ΠD+αβvD+βxα+QD+\displaystyle\frac{3}{2}n_{\text{D}^{+}}\frac{d_{\text{D}^{+}}T_{\text{D}^{+}}}{dt}+p_{\text{D}^{+}}\nabla\cdot\mathbf{v}_{\text{D}^{+}}=-\nabla\cdot\mathbf{q}_{\text{D}^{+}}-\Pi_{\text{D}^{+}\alpha\beta}\frac{\partial v_{\text{D}^{+}\beta}}{\partial x_{\alpha}}+Q_{\text{D}^{+}} (11)
+nD(νiz,D+νcx,D+νcx,D-D2+)[32(TDTD+)+mD+2(𝐯D𝐯D+)2]\displaystyle+n_{\text{D}}(\nu_{\text{iz,D}}+\nu_{\text{cx,D}}+\nu_{\text{cx,D-D}_{2}^{+}})\left[\frac{3}{2}\left(T_{\text{D}}-T_{\text{D}^{+}}\right)+\frac{m_{\text{D}^{+}}}{2}\left(\mathbf{v}_{D}-\mathbf{v}_{\text{D}^{+}}\right)^{2}\right]
+nD2νdiss-iz,D2[32(TD+,diss-iz(D2)TD+)+mD+2(𝐯D2𝐯D+)2]\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}\left[\frac{3}{2}\left(T_{\text{D}^{+}\text{,diss-iz}\left(\text{D}_{2}\right)}-T_{\text{D}^{+}}\right)+\frac{m_{\text{D}^{+}}}{2}\left(\mathbf{v}_{\text{D}_{2}}-\mathbf{v}_{\text{D}^{+}}\right)^{2}\right]
+2nD2+νdiss-iz,D2+[32(TD+,diss-iz(D2+)TD+)+mD+2(𝐯D2+𝐯D+)2]\displaystyle+2n_{\text{D}_{2}^{+}}\nu_{\text{diss-iz,D}_{2}^{+}}\left[\frac{3}{2}\left(T_{\text{D}^{+}\text{,diss-iz}\left(\text{D}_{2}^{+}\right)}-T_{\text{D}^{+}}\right)+\frac{m_{\text{D}^{+}}}{2}\left(\mathbf{v}_{\text{D}_{2}^{+}}-\mathbf{v}_{\text{D}^{+}}\right)^{2}\right]
+nD2+νdiss,D2+[32(TD+,diss(D2+)TD+)+mD+2(𝐯D2+𝐯D+)2],\displaystyle+n_{\text{D}_{2}^{+}}\nu_{\text{diss,D}_{2}^{+}}\left[\frac{3}{2}\left(T_{\text{D}^{+}\text{,diss}\left(\text{D}_{2}^{+}\right)}-T_{\text{D}^{+}}\right)+\frac{m_{\text{D}^{+}}}{2}\left(\mathbf{v}_{\text{D}_{2}^{+}}-\mathbf{v}_{\text{D}^{+}}\right)^{2}\right],
32nD2+dD2+TD2+dt+pD2+𝐯D2+=𝐪D2+ΠD2+αβvD2+βxα+QD2+\displaystyle\frac{3}{2}n_{\text{D}_{2}^{+}}\frac{d_{\text{D}_{2}^{+}}T_{\text{D}_{2}^{+}}}{dt}+p_{\text{D}_{2}^{+}}\nabla\cdot\mathbf{v}_{\text{D}_{2}^{+}}=-\nabla\cdot\mathbf{q}_{\text{D}_{2}^{+}}-\Pi_{\text{D}_{2}^{+}\alpha\beta}\frac{\partial v_{\text{D}_{2}^{+}\beta}}{\partial x_{\alpha}}+Q_{\text{D}_{2}^{+}} (12)
+nD2(νcx,D2+νiz,D2+νcx,D2D+)[32(TD2+TD2+)+mD2+2(𝐯D2𝐯D2+)2],\displaystyle+n_{\text{D}_{2}}(\nu_{\text{cx,D}_{2}}+\nu_{\text{iz,D}_{2}}+\nu_{\text{cx,D}_{2}-\text{D}^{+}})\left[\frac{3}{2}\left(T_{\text{D}_{2}^{+}}-T_{\text{D}_{2}^{+}}\right)+\frac{m_{\text{D}_{2}^{+}}}{2}(\mathbf{v}_{\text{D}_{2}}-\mathbf{v}_{\text{D}_{2}^{+}})^{2}\right],

where Πeαβ\Pi_{\text{e}\alpha\beta} is the component of the stress tensor along the α\alpha and β\beta directions, 𝐑e\mathbf{R}_{\text{e}} is the friction force acting on the electrons, 𝐪e\mathbf{q}_{\text{e}} is the electron heat flux density, QeQ_{\text{e}} is the electron heat generated by Coulomb collisions and de/dt=/t+(𝐯e)d_{\text{e}}/dt=\partial/\partial t+(\mathbf{v}_{\text{e}}\cdot\nabla) is the electron advective derivative. The equivalent notation is used for the D+\text{D}^{+} and D2+\text{D}_{2}^{+} species.

The drift-limit of the Braginskii equations is finally derived by applying the d/dtΩcD+d/dt\ll\Omega_{\text{cD}^{+}} ordering, valid in typical conditions of the tokamak boundary. Only leading order components in (1/ΩcD+)d/dt(1/\Omega_{\text{cD}^{+}})d/dt are retained in the electron perpendicular velocity, i.e. 𝐯e=𝐯e0=𝐯E×B+𝐯de\mathbf{v}_{\perp\text{e}}=\mathbf{v}_{\perp\text{e0}}=\mathbf{v}_{\text{E}\times\text{B}}+\mathbf{v}_{\text{d}\text{e}}, with 𝐯E×B=(𝐄×𝐁)/B2\mathbf{v}_{\text{E}\times\text{B}}=(\mathbf{E}\times\mathbf{B})/B^{2} the E×BE\times B drift and 𝐯de=(𝐁×pe)/(eneB2)\mathbf{v}_{\text{d}\text{e}}=(\mathbf{B}\times\nabla p_{\text{e}})/(en_{\text{e}}B^{2}) the electron diamagnetic drift, thus neglecting electron inertia. Similarly, the D+\text{D}^{+} perpendicular velocity is decomposed as 𝐯D+=𝐯D+0+𝐯pol,D++𝐯fric,D+\mathbf{v}_{\perp\text{D}^{+}}=\mathbf{v}_{\perp\text{D}^{+}0}+\mathbf{v}_{\text{pol},\text{D}^{+}}+\mathbf{v}_{\text{fric,D}^{+}}, where the leading order perpendicular velocity,

𝐯D+0=𝐯E×B+𝐯dD+,\displaystyle\mathbf{v}_{\perp\text{D}^{+}0}=\mathbf{v}_{\text{E}\times\text{B}}+\mathbf{v}_{\text{d}\text{D}^{+}}, (13)

is the sum of the E×BE\times B drift and the diamagnetic drift, 𝐯dD+=(𝐁×pD+)/(enD+B2)\mathbf{v}_{\text{d}\text{D}^{+}}=(\mathbf{B}\times\nabla p_{\text{D}^{+}})/(en_{\text{D}^{+}}B^{2}). The polarization drift,

𝐯pol,D+=1nD+ΩcD+dD+dt(nD+Bϕ+1BpD+)+1mD+nD+ΩcD+𝐛×[GD+𝐤GD+3],\displaystyle\mathbf{v}_{\text{pol},\text{D}^{+}}=-\frac{1}{n_{\text{D}^{+}}\Omega_{\text{cD}^{+}}}\frac{d_{\text{D}^{+}}}{dt}\left(\frac{n_{\text{D}^{+}}}{B}\nabla_{\perp}\phi+\frac{1}{B}\nabla_{\perp}p_{\text{D}^{+}}\right)+\frac{1}{m_{\text{D}^{+}}n_{\text{D}^{+}}\Omega_{\text{cD}^{+}}}\mathbf{b}\times\left[G_{\text{D}^{+}}\mathbf{k}-\frac{\nabla G_{\text{D}^{+}}}{3}\right], (14)

is of higher order than 𝐯D+0\mathbf{v}_{\perp\text{D}^{+}0} in the d/dtΩcD+d/dt\ll\Omega_{\text{cD}^{+}} expansion, as shown in [49]. Similarly, the drift arising from friction between D+\text{D}^{+} ions and other species,

𝐯fric,D+=nDnD+νcx,D+νiz,D+νcx,DD2+ΩcD+(𝐯D𝐯D+0)×𝐛+nD2nD+νizdiss,D2ΩcD+(𝐯D2𝐯D+0)×𝐛\displaystyle\mathbf{v}_{\text{fric},\text{D}^{+}}=\frac{n_{\text{D}}}{n_{\text{D}^{+}}}\frac{\nu_{\text{cx,D}}+\nu_{\text{iz,D}}+\nu_{\text{cx,D}-\text{D}_{2}^{+}}}{\Omega_{\text{cD}^{+}}}\left(\mathbf{v}_{\perp\text{D}}-\mathbf{v}_{\perp\text{D}^{+}0}\right)\times\mathbf{b}+\frac{n_{\text{D}_{2}}}{n_{\text{D}^{+}}}\frac{\nu_{\text{iz}-\text{diss,D}_{2}}}{\Omega_{\text{cD}^{+}}}\left(\mathbf{v}_{\perp\text{D}_{2}}-\mathbf{v}_{\perp\text{D}^{+}0}\right)\times\mathbf{b} (15)
+nD2+nD+2νdiss-iz,D2++νdiss,D2+ΩcD+(𝐯D2+0𝐯D+0)×𝐛,\displaystyle+\frac{n_{\text{D}_{2}^{+}}}{n_{\text{D}^{+}}}\frac{2\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}}{\Omega_{\text{cD}^{+}}}\left(\mathbf{v}_{\perp\text{D}_{2}^{+}0}-\mathbf{v}_{\perp\text{D}^{+}0}\right)\times\mathbf{b},

is also of higher order in (1/ΩcD+)d/dt(1/\Omega_{\text{cD}^{+}})d/dt. This term includes contributions from collisions of D+\text{D}^{+} with D, D2\text{D}_{2} and D2+\text{D}_{2}^{+} particles. Assuming vDvD+v_{\text{D}}\lesssim v_{\text{D}^{+}}, vD2vD+v_{\text{D}_{2}}\lesssim v_{\text{D}^{+}} and vD2+vD+v_{\text{D}_{2}^{+}}\lesssim v_{\text{D}^{+}}, and noticing that ν/ΩcD+1\nu/\Omega_{\text{cD}^{+}}\ll 1, one obtains vfric,D+(ν/ΩcD+)vD+vD+v_{\text{fric},\text{D}^{+}}\sim(\nu/\Omega_{\text{cD}^{+}})v_{\text{D}^{+}}\ll v_{\text{D}^{+}}. For this reason, 𝐯D+\mathbf{v}_{\text{D}^{+}} and 𝐯D+\mathbf{v}_{\text{D}^{+}} are approximated with their leading order components, i.e. 𝐯D+𝐯D+0\mathbf{v}_{\perp\text{D}^{+}}\simeq\mathbf{v}_{\perp\text{D}^{+}0} and 𝐯D2+𝐯D2+0\mathbf{v}_{\perp\text{D}_{2}^{+}}\simeq\mathbf{v}_{\perp\text{D}_{2}^{+}0}, in Eq. (15). In Eqs. (14) and (15) we introduce the giroviscous term for D+\text{D}^{+} ions GD+=η0D+[2vD++C(ϕ)/B+C(pD+)/(ZD+nD+B)]G_{\text{D}^{+}}=-\eta_{0\text{D}^{+}}\left[2\nabla_{\|}v_{\|\text{D}^{+}}+C(\phi)/B+C(p_{\text{D}^{+}})/(Z_{\text{D}^{+}}n_{\text{D}^{+}}B)\right], the D+\text{D}^{+} viscosity η0D+\eta_{0\text{D}^{+}}, the magnetic field curvature vector 𝐤=(𝐛)𝐛\mathbf{k}=\left(\mathbf{b}\cdot\nabla\right)\mathbf{b}, the gradient along the magnetic field =𝐛\nabla_{\|}=\mathbf{b}\cdot\nabla, the gradient perpendicular to the magnetic field =𝐛\nabla_{\perp}=\nabla-\mathbf{b}\nabla_{\|}, and the magnetic field unit vector 𝐛=𝐁/B\mathbf{b}=\mathbf{B}/B.

For the derivation of the drift-limit of the D2+\text{D}_{2}^{+} velocity, we follow a similar approach, as the d/dtΩcD2+d/dt\ll\Omega_{\text{cD}_{2}^{+}} ordering is also valid in typical tokamak boundary conditions. The D2+\text{D}_{2}^{+} ions perpendicular velocity is thus given by 𝐯D2+=𝐯D2+0+𝐯pol,D2++𝐯fric,D2+\mathbf{v}_{\perp\text{D}_{2}^{+}}=\mathbf{v}_{\perp\text{D}_{2}^{+}0}+\mathbf{v}_{\text{pol},\text{D}_{2}^{+}}+\mathbf{v}_{\text{fric,D}_{2}^{+}}, with

𝐯D2+0=𝐯E×B+𝐯dD2+\displaystyle\mathbf{v}_{\perp\text{D}_{2}^{+}0}=\mathbf{v}_{\text{E}\times\text{B}}+\mathbf{v}_{\text{d}\text{D}_{2}^{+}} (16)

the leading order component, with 𝐯dD2+=(𝐁×pD2+)/(enD2+B2)\mathbf{v}_{\text{d}\text{D}_{2}^{+}}=(\mathbf{B}\times\nabla p_{\text{D}_{2}^{+}})/(en_{\text{D}_{2}^{+}}B^{2}). The velocity 𝐯pol,D2+\mathbf{v}_{\text{pol},\text{D}_{2}^{+}} denotes the polarization drift and 𝐯fric,D2+\mathbf{v}_{\text{fric},\text{D}_{2}^{+}} stands for the drift velocity arising from friction between D2+\text{D}_{2}^{+} ions and other species. Their expressions are given by

𝐯pol,D2+=1nD2+ΩcD2+dD2+dt(nD2+Bϕ+1BpD2+)+1mD2+nD2+ΩcD2+𝐛×[GD2+𝐤GD2+3],\displaystyle\mathbf{v}_{\text{pol},\text{D}_{2}^{+}}=-\frac{1}{n_{\text{D}_{2}^{+}}\Omega_{\text{cD}_{2}^{+}}}\frac{d_{\text{D}_{2}^{+}}}{dt}\left(\frac{n_{\text{D}_{2}^{+}}}{B}\nabla_{\perp}\phi+\frac{1}{B}\nabla_{\perp}p_{\text{D}_{2}^{+}}\right)+\frac{1}{m_{\text{D}_{2}^{+}}n_{\text{D}_{2}^{+}}\Omega_{\text{cD}_{2}^{+}}}\mathbf{b}\times\left[G_{\text{D}_{2}^{+}}\mathbf{k}-\frac{\nabla G_{\text{D}_{2}^{+}}}{3}\right], (17)

and

𝐯fric,D2+=nD2nD2+νiz,D2+νcx,D2+νcx,D2D+ΩcD2+(𝐯D2𝐯D2+0)×𝐛,\displaystyle\mathbf{v}_{\text{fric},\text{D}_{2}^{+}}=\frac{n_{\text{D}_{2}}}{n_{\text{D}_{2}^{+}}}\frac{\nu_{\text{iz,D}_{2}}+\nu_{\text{cx,D}_{2}}+\nu_{\text{cx,D}_{2}-\text{D}^{+}}}{\Omega_{\text{cD}_{2}^{+}}}\left(\mathbf{v}_{\perp\text{D}_{2}}-\mathbf{v}_{\perp\text{D}_{2}^{+}0}\right)\times\mathbf{b}, (18)

with GD2+=η0D2+[2vD2++C(ϕ)/B+C(pD2+)/(nD2+B)]G_{\text{D}_{2}^{+}}=-\eta_{0\text{D}_{2}^{+}}\left[2\nabla_{\|}v_{\|\text{D}_{2}^{+}}+C(\phi)/B+C(p_{\text{D}_{2}^{+}})/(n_{\text{D}_{2}^{+}}B)\right] the D2+\text{D}_{2}^{+} giroviscous term and η0D2+\eta_{0\text{D}_{2}^{+}} the related viscosity. The approximation 𝐯D2+𝐯D2+0\mathbf{v}_{\perp\text{D}_{2}^{+}}\simeq\mathbf{v}_{\perp\text{D}_{2}^{+}0} is used in Eq. (18).

To obtain an expression for the parallel friction forces and parallel heat fluxes and close the Braginskii equations, we use the collisional closure proposed by Zhdanov in [39], leveraging the formulation presented in [32, 50], more suitable for numerical implementation. The application of this procedure to the particular case of the multispecies plasma considered here is described in App. B, where we take advantage of the fact that the D2+\text{D}_{2}^{+} density is considerably smaller than the D+\text{D}^{+} density, i.e. nD2+/nD+1n_{\text{D}_{2}^{+}}/n_{\text{D}^{+}}\ll 1, for typical tokamak boundary conditions, which leads to nenD+n_{\text{e}}\simeq n_{\text{D}^{+}} because of quasi-neutrality. On the other hand, the contributions from the perpendicular heat flux arising from 𝐪e\nabla\cdot\mathbf{q}_{\text{e}} and 𝐪D+\nabla\cdot\mathbf{q}_{\text{D}^{+}} in the TeT_{\text{e}} and TD+T_{\text{D}^{+}} equations, respectively, can be evaluated as in the single-ion species model [22, 23], in particular following the derivation presented in [49]. This approach can be generalised to evaluate the term arising from the perpendicular component of 𝐪D2+\nabla\cdot\mathbf{q}_{\text{D}_{2}^{+}} in the TD2+T_{\text{D}_{2}^{+}} equation. Thus, the drift-reduced Braginskii system of equations is composed of the continuity equation for the electron species, the continuity equation for the D2+\text{D}_{2}^{+} species, the vorticity equations that ensures quasi-neutrality, ne=nD++nD2+n_{\text{e}}=n_{\text{D}^{+}}+n_{\text{D}_{2}^{+}}, and the equations for the parallel velocities and temperature of all species. They take the form

net=ρ1B[ϕ,ne]+2B[C(pe)neC(ϕ)](neve𝐛)+𝒟ne2ne+Sne\displaystyle\frac{\partial n_{\text{e}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,n_{\text{e}}]+\frac{2}{B}\left[C(p_{\text{e}})-n_{\text{e}}C(\phi)\right]-\nabla\cdot(n_{\text{e}}v_{\|\text{e}}\mathbf{b})+\mathcal{D}_{n_{\text{e}}}\nabla_{\perp}^{2}n_{\text{e}}+S_{n_{\text{e}}} (19)
+nDνiz,DnD+νrec,D++nD2νiz,D2nD2+νrec,D2+\displaystyle+n_{\text{D}}\nu_{\text{iz,D}}-n_{\text{D}^{+}}\nu_{\text{rec,D}^{+}}+n_{\text{D}_{2}}\nu_{\text{iz,D}_{2}}-n_{\text{D}_{2}^{+}}\nu_{\text{rec,D}_{2}^{+}}
+nD2νdiss-iz,D2+nD2+νdiss-iz,D2+nD2+νdiss-rec,D2+,\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}+n_{\text{D}_{2}^{+}}\nu_{\text{diss-iz,D}_{2}^{+}}-n_{\text{D}_{2}^{+}}\nu_{\text{diss-rec,D}_{2}^{+}},
nD2+t=ρ1B[ϕ,nD2+](nD2+vD2+𝐛)2B[nD2+C(TD2+)+TD2+C(nD2+)+nD2+C(ϕ)]\displaystyle\frac{\partial n_{\text{D}_{2}^{+}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,n_{\text{D}_{2}^{+}}]-\nabla\cdot(n_{\text{D}_{2}^{+}}v_{\|\text{D}_{2}^{+}}\mathbf{b})-\frac{2}{B}\left[n_{\text{D}_{2}^{+}}C(T_{\text{D}_{2}^{+}})+T_{\text{D}_{2}^{+}}C(n_{\text{D}_{2}^{+}})+n_{\text{D}_{2}^{+}}C(\phi)\right] (20)
+𝒟nD2+2nD2++SnD2++nD2νiz,D2nD2+νrec,D2++nD2νcx,D2D+nDνcx,D-D2+\displaystyle+\mathcal{D}_{n_{\text{D}_{2}^{+}}}\nabla_{\perp}^{2}n_{\text{D}_{2}^{+}}+S_{n_{\text{D}_{2}^{+}}}+n_{\text{D}_{2}}\nu_{\text{iz,D}_{2}}-n_{\text{D}_{2}^{+}}\nu_{\text{rec,D}_{2}^{+}}+n_{\text{D}_{2}}\nu_{\text{cx,D}_{2}-\text{D}^{+}}-n_{\text{D}}\nu_{\text{cx,D-D}_{2}^{+}}
nD2+(νdiss-iz,D2++νdiss,D2++νdiss-rec,D2+),\displaystyle-n_{\text{D}_{2}^{+}}\left(\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}+\nu_{\text{diss-rec,D}_{2}^{+}}\right),
Ωt=[ρ1B([ϕ,B𝛀D+]+2[ϕ,B𝝎D𝟐+])][vD+B(B𝛀D+)+vD2+B(B𝝎D𝟐+)]\displaystyle\frac{\partial\Omega}{\partial t}=-\nabla\cdot\left[\frac{\rho_{*}^{-1}}{B}\left(\left[\phi,B\bm{\Omega_{\text{D}^{+}}}\right]+2\left[\phi,B\bm{\omega_{\text{D}_{2}^{+}}}\right]\right)\right]-\nabla\cdot\left[\frac{v_{\|\text{D}^{+}}}{B}\nabla_{\|}\left(B\bm{\Omega_{\text{D}^{+}}}\right)+\frac{v_{\|\text{D}_{2}^{+}}}{B}\nabla_{\|}\left(B\bm{\omega_{\text{D}_{2}^{+}}}\right)\right] (21)
+2B[neC(Te)+TeC(ne)+nD+C(TD+)+TD+C(nD+)+nD2+C(TD2+)+TD2+C(nD2+)]\displaystyle+\frac{2}{B}\left[n_{\text{e}}C(T_{\text{e}})+T_{\text{e}}C(n_{\text{e}})+n_{\text{D}^{+}}C(T_{\text{D}^{+}})+T_{\text{D}^{+}}C(n_{\text{D}^{+}})+n_{\text{D}_{2}^{+}}C(T_{\text{D}_{2}^{+}})+T_{\text{D}_{2}^{+}}C(n_{\text{D}_{2}^{+}})\right]
+(j𝐛)+[GD+(𝒃×𝒌B)+GD+(𝒃×𝒌B)23BC(GD+)]\displaystyle+\nabla\cdot\left(j_{\|}\mathbf{b}\right)+\left[\nabla G_{\text{D}^{+}}\cdot\left(\frac{\bm{b}\times\bm{k}}{B}\right)+G_{\text{D}^{+}}\nabla\cdot\left(\frac{\bm{b}\times\bm{k}}{B}\right)-\frac{2}{3B}C\left(G_{\text{D}^{+}}\right)\right]
+[GD2+(𝒃×𝒌B)+GD2+(𝒃×𝒌B)23BC(GD2+)]+η0Ω2Ω+𝒟Ω2Ω\displaystyle+\left[\nabla G_{\text{D}_{2}^{+}}\cdot\left(\frac{\bm{b}\times\bm{k}}{B}\right)+G_{\text{D}_{2}^{+}}\nabla\cdot\left(\frac{\bm{b}\times\bm{k}}{B}\right)-\frac{2}{3B}C\left(G_{\text{D}_{2}^{+}}\right)\right]+\eta_{0\Omega}\nabla_{\|}^{2}\Omega+\mathcal{D}_{\perp\Omega}\nabla_{\perp}^{2}\Omega
[2nD2nD2+(νcx,D2+νiz,D2+νcx,D2D+)𝝎D𝟐+][nDnD+(νcx,D+νiz,D+νcx,D-D2+)𝝎D+]\displaystyle-\nabla\cdot\left[\frac{2n_{\text{D}_{2}}}{n_{\text{D}_{2}^{+}}}\left(\nu_{\text{cx,D}_{2}}+\nu_{\text{iz,D}_{2}}+\nu_{\text{cx,D}_{2}-\text{D}^{+}}\right)\bm{\omega_{\text{D}_{2}^{+}}}\right]-\nabla\cdot\left[\frac{n_{\text{D}}}{n_{\text{D}^{+}}}\left(\nu_{\text{cx,D}}+\nu_{\text{iz,D}}+\nu_{\text{cx,D-D}_{2}^{+}}\right)\bm{\omega_{\text{D}^{+}}}\right]
[nD2nD+νdi-iz,D2𝝎D+]+[nD2+nD+(2νdi-iz,D2++νdi,D2+)(𝝎D𝟐+𝝎D+)],\displaystyle-\nabla\cdot\left[\frac{n_{\text{D}_{2}}}{n_{\text{D}^{+}}}\nu_{\text{di-iz,D}_{2}}\bm{\omega_{\text{D}^{+}}}\right]+\nabla\cdot\left[\frac{n_{\text{D}_{2}^{+}}}{n_{\text{D}^{+}}}\left(2\nu_{\text{di-iz},\text{D}_{2}^{+}}+\nu_{\text{di,D}_{2}^{+}}\right)\left(\bm{\omega_{\text{D}_{2}^{+}}}-\bm{\omega_{\text{D}^{+}}}\right)\right],
vet=ρ1B[ϕ,ve]veve+mDme[ϕpene23neGe0.71Te]\displaystyle\frac{\partial v_{\|\text{e}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,v_{\|\text{e}}]-v_{\|\text{e}}\nabla_{\|}v_{\|\text{e}}+\frac{m_{\text{D}}}{m_{\text{e}}}\left[\nabla_{\|}\phi-\frac{\nabla_{\|}p_{\text{e}}}{n_{\text{e}}}-\frac{2}{3n_{\text{e}}}\nabla_{\|}G_{\text{e}}-0.71\nabla_{\|}T_{\text{e}}\right] (22)
mDmeν(vevD+)+𝒟ve2ve+1ne[nD(2νiz,D+νe-D)(vDve)\displaystyle-\frac{m_{\text{D}}}{m_{\text{e}}}\nu\left(v_{\|\text{e}}-v_{\|\text{D}^{+}}\right)+\mathcal{D}_{v_{\|\text{e}}}\nabla_{\perp}^{2}v_{\|\text{e}}+\frac{1}{n_{\text{e}}}\left[n_{\text{D}}\left(2\nu_{\text{iz,D}}+\nu_{\text{e-D}}\right)\left(v_{\|\text{D}}-v_{\|\text{e}}\right)\right.
+nD2(2νiz,D2+νe-D2)(vD2ve)+nD2(2νdiss-iz,D2+νdiss,D2)(vD2ve)\displaystyle+n_{\text{D}_{2}}\left(2\nu_{\text{iz,D}_{2}}+\nu_{\text{e-D}_{2}}\right)\left(v_{\|\text{D}_{2}}-v_{\|\text{e}}\right)+n_{\text{D}_{2}}\left(2\nu_{\text{diss-iz,D}_{2}}+\nu_{\text{diss,D}_{2}}\right)\left(v_{\|\text{D}_{2}}-v_{\|\text{e}}\right)
+nD2+(2νdiss-iz,D2++νdiss,D2+)(vD2+ve)],\displaystyle\left.+n_{\text{D}_{2}^{+}}\left(2\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}\right)\left(v_{\|\text{D}_{2}^{+}}-v_{\|\text{e}}\right)\right],
vD+t=ρ1B[ϕ,vD+]vD+vD+ϕpD+nD+23nD+GD++0.71nenD+Te\displaystyle\frac{\partial v_{\|\text{D}^{+}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,v_{\|\text{D}^{+}}]-v_{\|\text{D}^{+}}\nabla_{\|}v_{\|\text{D}^{+}}-\nabla_{\|}\phi-\frac{\nabla_{\|}p_{\text{D}}^{+}}{n_{\text{D}^{+}}}-\frac{2}{3n_{\text{D}^{+}}}\nabla_{\|}G_{\text{D}^{+}}+0.71\frac{n_{\text{e}}}{n_{\text{D}^{+}}}\nabla_{\|}T_{\text{e}} (23)
νnenD+(vD+ve)+𝒟vD+2vD++1nD+[nD(νiz,D+νcx,D+νcx,D-D2+)(vDvD+)\displaystyle-\nu\frac{n_{\text{e}}}{n_{\text{D}^{+}}}\left(v_{\|\text{D}^{+}}-v_{\|\text{e}}\right)+\mathcal{D}_{v_{\|\text{D}^{+}}}\nabla_{\perp}^{2}v_{\|\text{D}^{+}}+\frac{1}{n_{\text{D}^{+}}}\left[n_{\text{D}}(\nu_{\text{iz,D}}+\nu_{\text{cx,D}}+\nu_{\text{cx,D-D}_{2}^{+}})(v_{\|\text{D}}-v_{\|\text{D}^{+}})\right.
+nD2+νdiss-iz,D2(vD2vD+)+nD2+(2νdiss-iz,D2++νdiss,D2+)(vD2+vD+)],\displaystyle\left.+n_{\text{D}_{2}^{+}}\nu_{\text{diss-iz},\text{D}_{2}}(v_{\|\text{D}_{2}}-v_{\|\text{D}^{+}})+n_{\text{D}_{2}^{+}}\left(2\nu_{\text{diss-iz,D}_{2}^{+}}+\nu_{\text{diss,D}_{2}^{+}}\right)(v_{\|\text{D}_{2}^{+}}-v_{\|\text{D}^{+}})\right],
vD2+t=ρ1B[ϕ,vD2+]vD2+vD2++12[ϕpD2+nD2+23nD2+GD2+]\displaystyle\frac{\partial v_{\|\text{D}_{2}^{+}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,v_{\|\text{D}_{2}^{+}}]-v_{\|\text{D}_{2}^{+}}\nabla_{\|}v_{\|\text{D}_{2}^{+}}+\frac{1}{2}\left[-\nabla_{\|}\phi-\frac{\nabla p_{\text{D}_{2}^{+}}}{n_{\text{D}_{2}^{+}}}-\frac{2}{3n_{\text{D}_{2}^{+}}}\nabla_{\|}G_{\text{D}_{2}^{+}}\right] (24)
+𝒟vD2+2vD2++nD2nD2+(νiz,D2+νcx,D2+νcx,D2D+)(vD2vD2+),\displaystyle+\mathcal{D}_{v_{\|\text{D}_{2}^{+}}}\nabla_{\perp}^{2}v_{\|\text{D}_{2}^{+}}+\frac{n_{\text{D}_{2}}}{n_{\text{D}_{2}^{+}}}(\nu_{\text{iz,D}_{2}}+\nu_{\text{cx,D}_{2}}+\nu_{\text{cx,D}_{2}-\text{D}^{+}})(v_{\|\text{D}_{2}}-v_{\|\text{D}_{2}^{+}}),
Tet=ρ1B[ϕ,Te]veTe+4Te3B[C(pe)ne+52C(Te)C(ϕ)]2Te3(ve𝐛)\displaystyle\frac{\partial T_{\text{e}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,T_{\text{e}}]-v_{\|\text{e}}\nabla_{\|}T_{\text{e}}+\frac{4T_{\text{e}}}{3B}\left[\frac{C(p_{\text{e}})}{n_{\text{e}}}+\frac{5}{2}C(T_{\text{e}})-C(\phi)\right]-\frac{2T_{\text{e}}}{3}\nabla\cdot\left(v_{\|\text{e}}\mathbf{b}\right) (25)
+23ne1.62ν[neTe(Te)𝐛+(neTeTe)]230.71Te(vevD+)𝐛\displaystyle+\frac{2}{3n_{\text{e}}}\frac{1.62}{\nu}\left[n_{\text{e}}T_{\text{e}}\left(\nabla_{\|}T_{\text{e}}\right)\nabla\cdot\mathbf{b}+\nabla_{\|}\left(n_{\text{e}}T_{\text{e}}\nabla_{\|}T_{\text{e}}\right)\right]-\frac{2}{3}0.71T_{\text{e}}\nabla\cdot(v_{\|\text{e}}-v_{\|\text{D}^{+}})\mathbf{b}
230.71(Tenene+Te)(vevD+)+χe2Te+(χeTe)+STe\displaystyle-\frac{2}{3}0.71\left(\frac{T_{\text{e}}}{n_{\text{e}}}\nabla_{\|}n_{\text{e}}+\nabla_{\|}T_{\text{e}}\right)\left(v_{\|\text{e}}-v_{\|\text{D}^{+}}\right)+\mathcal{\chi}_{\perp\text{e}}\nabla_{\perp}^{2}T_{\text{e}}+\nabla_{\|}\left(\mathcal{\chi}_{\|\text{e}}\nabla_{\|}T_{\text{e}}\right)+S_{T_{\text{e}}}
+nDneνiz,D[23Eiz,DTe+memDve(ve43vD)]nDneνe-DmemD23ve(vDve)\displaystyle+\frac{n_{\text{D}}}{n_{\text{e}}}\nu_{\text{iz,D}}\left[-\frac{2}{3}E_{\text{iz,D}}-T_{\text{e}}+\frac{m_{\text{e}}}{m_{\text{D}}}v_{\|\text{e}}\left(v_{\|\text{e}}-\frac{4}{3}v_{\|\text{D}}\right)\right]-\frac{n_{\text{D}}}{n_{\text{e}}}\nu_{\text{e-D}}\frac{m_{\text{e}}}{m_{\text{D}}}\frac{2}{3}v_{\|\text{e}}(v_{\|\text{D}}-v_{\|\text{e}})
+nD2neνiz,D2[23Eiz,D2Te+memDve(ve43vD2)]nD2neνe-D2memD23ve(vD2ve)\displaystyle+\frac{n_{\text{D}_{2}}}{n_{\text{e}}}\nu_{\text{iz,D}_{2}}\left[-\frac{2}{3}E_{\text{iz,D}_{2}}-T_{\text{e}}+\frac{m_{\text{e}}}{m_{\text{D}}}v_{\|\text{e}}\left(v_{\|\text{e}}-\frac{4}{3}v_{\|\text{D}_{2}}\right)\right]-\frac{n_{\text{D}_{2}}}{n_{\text{e}}}\nu_{\text{e-D}_{2}}\frac{m_{\text{e}}}{m_{\text{D}}}\frac{2}{3}v_{\|\text{e}}(v_{\|\text{D}_{2}}-v_{\|\text{e}})
+nD2neνdiss,D2[23Ediss,D2+23memDve(vevD2)]\displaystyle+\frac{n_{\text{D}_{2}}}{n_{\text{e}}}\nu_{\text{diss,D}_{2}}\left[-\frac{2}{3}E_{\text{diss,D}_{2}}+\frac{2}{3}\frac{m_{\text{e}}}{m_{\text{D}}}v_{\|\text{e}}\left(v_{\|\text{e}}-v_{\|\text{D}_{2}}\right)\right]
+nD2neνdiss-iz,D2[23Ediss-iz,D2Te+memDve(ve43vD2)]\displaystyle+\frac{n_{\text{D}_{2}}}{n_{\text{e}}}\nu_{\text{diss-iz,D}_{2}}\left[-\frac{2}{3}E_{\text{diss-iz,D}_{2}}-T_{\text{e}}+\frac{m_{\text{e}}}{m_{\text{D}}}v_{\|\text{e}}\left(v_{\|\text{e}}-\frac{4}{3}v_{\|\text{D}_{2}}\right)\right]
+nD2+neνdiss,D2+[23Ediss,D2++23memDve(vevD2+)]\displaystyle+\frac{n_{\text{D}_{2}^{+}}}{n_{\text{e}}}\nu_{\text{diss,D}_{2}^{+}}\left[-\frac{2}{3}E_{\text{diss,D}_{2}^{+}}+\frac{2}{3}\frac{m_{\text{e}}}{m_{\text{D}}}v_{\|\text{e}}\left(v_{\|\text{e}}-v_{\|\text{D}_{2}^{+}}\right)\right]
+nD2+neνdiss-iz,D2+[23Ediss-iz,D2+Te+memDve(ve43vD2+)],\displaystyle+\frac{n_{\text{D}_{2}^{+}}}{n_{\text{e}}}\nu_{\text{diss-iz,D}_{2}^{+}}\left[-\frac{2}{3}E_{\text{diss-iz,D}_{2}^{+}}-T_{\text{e}}+\frac{m_{\text{e}}}{m_{\text{D}}}v_{\|\text{e}}\left(v_{\|\text{e}}-\frac{4}{3}v_{\|\text{D}_{2}^{+}}\right)\right],
TD+t=ρ1B[ϕ,TD+]vD+TD++43TD+B[C(ϕ)+C(pe+pD2+)nD+]\displaystyle\frac{\partial T_{\text{D}^{+}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,T_{\text{D}^{+}}]-v_{\|\text{D}^{+}}\nabla_{\|}T_{\text{D}^{+}}+\frac{4}{3}\frac{T_{\text{D}^{+}}}{B}\left[-C(\phi)+\frac{C(p_{\text{e}}+p_{\text{D}_{2}^{+}})}{n_{\text{D}^{+}}}\right] (26)
2TD+3nD+[ne(ve𝐛)nD2+(vD2+𝐛)+venevD2+nD2+vD+nD+]\displaystyle-\frac{2T_{\text{D}^{+}}}{3n_{\text{D}^{+}}}\left[n_{\text{e}}\nabla\cdot\left(v_{\|\text{e}}\mathbf{b}\right)-n_{\text{D}_{2}^{+}}\nabla\cdot\left(v_{\|\text{D}_{2}^{+}}\mathbf{b}\right)+v_{\|\text{e}}\nabla_{\|}n_{\text{e}}-v_{\|\text{D}_{2}^{+}}\nabla_{\|}n_{\text{D}_{2}^{+}}-v_{\|\text{D}^{+}}\nabla_{\|}n_{\text{D}^{+}}\right]
103TD+BC(TD+)+23nD+2.322νmemD(neTD+TD+)𝐛\displaystyle-\frac{10}{3}\frac{T_{\text{D}^{+}}}{B}C(T_{\text{D}^{+}})+\frac{2}{3n_{\text{D}^{+}}}\frac{2.32}{\sqrt{2}\nu}\sqrt{\frac{m_{\text{e}}}{m_{\text{D}}}}\nabla\cdot\left(n_{\text{e}}T_{\text{D}^{+}}\nabla_{\|}T_{\text{D}^{+}}\right)\mathbf{b}
+χD+2TD++(χD+TD+)+STD+\displaystyle+\mathcal{\chi}_{\perp\text{D}^{+}}\nabla_{\perp}^{2}T_{\text{D}^{+}}+\nabla_{\|}\left(\mathcal{\chi}_{\|\text{D}^{+}}\nabla_{\|}T_{\text{D}^{+}}\right)+S_{T_{\text{D}^{+}}}
+1nD+{nD(νiz,D+νcx,D+νcx,D-D2+)[TDTD++13(vDvD+)2]\displaystyle+\frac{1}{n_{\text{D}^{+}}}\left\{n_{\text{D}}\left(\nu_{\text{iz,D}}+\nu_{\text{cx,D}}+\nu_{\text{cx,D-D}_{2}^{+}}\right)\left[T_{\text{D}}-T_{\text{D}^{+}}+\frac{1}{3}\left(v_{\|\text{D}}-v_{\|\text{D}^{+}}\right)^{2}\right]\right.
+nD2νdiss-iz,D2[TD+,diss-iz(D2)TD++13(vD2vD+)2]\displaystyle+n_{\text{D}_{2}}\nu_{\text{diss-iz,D}_{2}}\left[T_{\text{D}^{+}\text{,diss-iz}\left(\text{D}_{2}\right)}-T_{\text{D}^{+}}+\frac{1}{3}\left(v_{\|\text{D}_{2}}-v_{\|\text{D}^{+}}\right)^{2}\right]
+2nD2+νdiss-iz,D2+[TD+,diss-iz(D2+)TD++13(vD2+vD+)2]\displaystyle+2n_{\text{D}_{2}^{+}}\nu_{\text{diss-iz,D}_{2}^{+}}\left[T_{\text{D}^{+}\text{,diss-iz}\left(\text{D}_{2}^{+}\right)}-T_{\text{D}^{+}}+\frac{1}{3}\left(v_{\|\text{D}_{2}^{+}}-v_{\|\text{D}^{+}}\right)^{2}\right]
+nD2+νdiss,D2+[TD+,diss(D2+)TD++13(vD2+vD+)2]}\displaystyle\left.+n_{\text{D}_{2}^{+}}\nu_{\text{diss,D}_{2}^{+}}\left[T_{\text{D}^{+}\text{,diss}\left(\text{D}_{2}^{+}\right)}-T_{\text{D}^{+}}+\frac{1}{3}\left(v_{\|\text{D}_{2}^{+}}-v_{\|\text{D}^{+}}\right)^{2}\right]\right\}

and

TD2+t=ρ1B[ϕ,TD2+]vD2+TD2+43TD2+B[C(ϕ)+C(pD2+)nD2+]103TD2+BC(TD2+)\displaystyle\frac{\partial T_{\text{D}_{2}^{+}}}{\partial t}=-\frac{\rho_{*}^{-1}}{B}[\phi,T_{\text{D}_{2}^{+}}]-v_{\|\text{D}_{2}^{+}}\nabla_{\|}T_{\text{D}_{2}^{+}}-\frac{4}{3}\frac{T_{\text{D}_{2}^{+}}}{B}\left[C(\phi)+\frac{C(p_{\text{D}_{2}^{+}})}{n_{\text{D}_{2}^{+}}}\right]-\frac{10}{3}\frac{T_{\text{D}_{2}^{+}}}{B}C(T_{\text{D}_{2}^{+}}) (27)
2TD2+3(vD2+𝐛)+23nD2+0.922νmemD(neTD+TD+)𝐛\displaystyle-\frac{2T_{\text{D}_{2}^{+}}}{3}\nabla\cdot\left(v_{\|\text{D}_{2}^{+}}\mathbf{b}\right)+\frac{2}{3n_{\text{D}_{2}^{+}}}\frac{0.92}{\sqrt{2}\nu}\sqrt{\frac{m_{\text{e}}}{m_{\text{D}}}}\nabla\cdot\left(n_{\text{e}}T_{\text{D}^{+}}\nabla_{\|}T_{\text{D}^{+}}\right)\mathbf{b}
+χD2+2TD2++(χD2+TD2+)+STD2+\displaystyle+\mathcal{\chi}_{\perp\text{D}_{2}^{+}}\nabla_{\perp}^{2}T_{\text{D}_{2}^{+}}+\nabla_{\|}\left(\mathcal{\chi}_{\|\text{D}_{2}^{+}}\nabla_{\|}T_{\text{D}_{2}^{+}}\right)+S_{T_{\text{D}_{2}^{+}}}
+nD2nD2+(νcx,D2+νiz,D2+νcx,D2D+)[TD2+TD2++23(vD2vD2+)2].\displaystyle+\frac{n_{\text{D}_{2}}}{n_{\text{D}_{2}^{+}}}(\nu_{\text{cx,D}_{2}}+\nu_{\text{iz,D}_{2}}+\nu_{\text{cx,D}_{2}-\text{D}^{+}})\left[T_{\text{D}_{2}^{+}}-T_{\text{D}_{2}^{+}}+\frac{2}{3}(v_{\|\text{D}_{2}}-v_{\|\text{D}_{2}^{+}})^{2}\right].

In Eqs. (19-27) we introduce [A,B]=𝐛(A×B)[A,B]=\mathbf{b}\cdot(\nabla A\times\nabla B), C(A)=(B/2)[×(𝐛/B)]AC(A)=(B/2)\left[\nabla\times(\mathbf{b}/B)\right]\cdot\nabla A and the plasma vorticity Ω=ΩD++2ΩD2+\Omega=\Omega_{\text{D}^{+}}+2\Omega_{\text{D}_{2}^{+}}, with the D+\text{D}^{+} contribution given by ΩD+=𝝎D+=[(nD+/B2)ϕ+(1/B2)pD+]\Omega_{\text{D}^{+}}=\nabla\cdot\bm{\omega_{\text{D}^{+}}}=\nabla\cdot\left[\left(n_{\text{D}^{+}}/B^{2}\right)\nabla_{\perp}\phi+\left(1/B^{2}\right)\nabla_{\perp}p_{\text{D}^{+}}\right] and an analogous D2+\text{D}_{2}^{+} contribution, ΩD2+\Omega_{\text{D}_{2}^{+}}. The system is thus closed by the generalized Poisson equation, which is obtained by inverting the definition of the plasma vorticity, Ω\Omega, yielding

[nD++2nD2+B2ϕ]=Ω[1B2(pD++2pD2+)].\displaystyle\begin{aligned} \nabla_{\perp}\cdot\left[\frac{n_{\text{D}^{+}}+2n_{\text{D}_{2}^{+}}}{B^{2}}\nabla_{\bot}\phi\right]=\Omega-\nabla_{\perp}\cdot\left[\frac{1}{B^{2}}\nabla_{\perp}\left(p_{\text{D}^{+}}+2p_{\text{D}_{2}^{+}}\right)\right].\end{aligned} (28)

We remark that the electron giroviscous term in Eq. (22) is defined similarly to the ion giroviscous terms, Ge=η0e[2ve+C(ϕ)/BC(pe)/(neB)]G_{\text{e}}=-\eta_{0e}\left[2\nabla_{\|}v_{\|\text{e}}+C(\phi)/B-C(p_{\text{e}})/\left(n_{\text{e}}B\right)\right]. Eq. (21) is written avoiding the Boussinesq approximation and taking into account all components of the velocity of the ion species D+\text{D}^{+} and D2+\text{D}_{2}^{+}, including the higher order polarization and friction contributions. On the other hand, in order to express the advective derivative for the ion species, dD+/dtd_{\text{D}^{+}}/dt and dD2+/dtd_{\text{D}_{2}^{+}}/dt, we only consider the leading order components of the perpendicular velocity, vD+0v_{\perp\text{D}^{+}0} and vD2+0v_{\perp\text{D}_{2}^{+}0}, therefore neglecting 𝐯pol\mathbf{v}_{\text{pol}} and 𝐯fric\mathbf{v}_{\text{fric}}. Similarly, we neglect the friction and polarization drifts in the continuity equation for D2+\text{D}_{2}^{+}. We also remark that the terms of higher order in 1/ΩcD2+d/dt1/\Omega_{\text{cD}_{2}^{+}}d/dt in the perpendicular velocity of D2+\text{D}_{2}^{+} ions are neglected when writing 𝐯D2+\nabla\cdot\mathbf{v}_{\text{D}_{2}^{+}} in the temperature equations, Eqs. (26) and (27), which is a necessary assumption in order to avoid explicit time derivatives arising from the polarization drift velocity, 𝐯pol,D2+\mathbf{v}_{\text{pol,D}_{2}^{+}}. Nevertheless, all terms are considered in the divergence of the perpendicular velocity of D+\text{D}^{+} ions in Eq. (26), as we make use of 𝐣=0\nabla\cdot\mathbf{j}=0 to write 𝐯D+\nabla\cdot\mathbf{v}_{\text{D}^{+}} in terms of 𝐯e\nabla\cdot\mathbf{v}_{\text{e}} and 𝐯D2+\nabla\cdot\mathbf{v}_{\text{D}_{2}^{+}}. Finally, when taking the divergence of these terms, we make use of 𝐯D𝐯D+\nabla\cdot\mathbf{v}_{\text{D}}\ll\nabla\cdot\mathbf{v}_{\text{D}^{+}} to neglect the contribution of the velocity of D atoms, which is valid since ρs,D+λmfp,D\rho_{\text{s},\text{D}^{+}}\ll\lambda_{\text{mfp},\text{D}} (with ρs,D+=cs,D+/Ωc,D+\rho_{\text{s,D}^{+}}=c_{\text{s,D}^{+}}/\Omega_{\text{c,D}^{+}} the sound Larmor radius of D+\text{D}^{+} ions, cs,D+=Te/mD+c_{\text{s,D}^{+}}=\sqrt{T_{e}/m_{\text{D}^{+}}} the D+\text{D}^{+} ions sound speed and λmfp,D\lambda_{\text{mfp,\text{D}}} the mean free path of a D atoms). This relation can be generalized to the other neutral and ion species, namely D2\text{D}_{2} molecules and D2+\text{D}_{2}^{+} ions. Thus we neglect the contribution of the divergence of neutral particle velocities when compared to the divergence of ion velocities.

We note that dimensionless units are used in Eqs. (19-27) and in the rest of the paper. The densities, nen_{\text{e}}, nD+n_{\text{D}^{+}} and nD2+n_{\text{D}_{2}^{+}}, are normalized to the reference value n0n_{0}, while temperatures, TeT_{\text{e}}, TD+T_{\text{D}^{+}} and TD2+T_{\text{D}_{2}^{+}}, are normalized to the respective reference values, Te0T_{\text{e}0}, TD+0T_{\text{D}^{+}0} and TD2+0=TD+0T_{\text{D}_{2}^{+}0}=T_{{\text{D}^{+}}0}, which are related by the dimensionless quantity τ=TD+0/Te0\tau=T_{\text{D}^{+}0}/T_{e0}. Conversely, lengths parallel to the magnetic field are normalized to the tokamak major radius, R0R_{0}, lengths perpendicular to the magnetic field are normalized to the ion sound Larmor radius, ρs0=cs0/ΩcD+0\rho_{\text{s}0}=c_{\text{s}0}/\Omega_{\text{cD}^{+}0}, where cs0=Te0/mD+c_{\text{s}0}=T_{\text{e}0}/m_{\text{D}^{+}} is the normalized D+\text{D}^{+} ion sound speed and ΩcD+0=eB0/mD+\Omega_{\text{cD}^{+}0}=eB_{0}/m_{\text{D}^{+}} is the D+\text{D}^{+} ion cyclotron frequency at the magnetic axis, and time is normalized to R0/cs0R_{0}/c_{\text{s}0}. All other normalizations follow, namely the parallel velocities, vev_{\|\text{e}}, vD+v_{\|\text{D}^{+}} and vD2+v_{\|\text{D}_{2}^{+}}, are normalized to cs0c_{\text{s}0}, the plasma vorticity Ω\Omega is normalized to n0Te0/(ρs02B02)n_{0}T_{\text{e}0}/(\rho_{\text{s}0}^{2}B_{0}^{2}), perpendicular diffusion coefficients DD_{\perp} and conductivities χ\chi_{\perp} are normalized to cs0ρs02/R0c_{\text{s}0}\rho_{\text{s}0}^{2}/R_{0}, while the parallel diffusion coefficients DD_{\|} and conductivities χ\chi_{\|} are normalized to cs0R0c_{\text{s}0}R_{0}. Normalized quantities are used in the rest of the paper, except when explicitly mentioned. The parameter ρ=ρs0/R0\rho_{\star}=\rho_{\text{s}0}/R_{0} is the ratio between the D+\text{D}^{+} ion sound Larmor radius and the tokamak major radius R0R_{0}. We also note that ν\nu is the dimensionless resistivity given by ν=(e2ne0R0)/(mDcs0σ)\nu=(e^{2}n_{\text{e}0}R_{0})/(m_{\text{D}}c_{\text{s}0}\sigma_{\|}), with the parallel conductivity defined in terms of the electron characteristic time τe\tau_{\text{e}} as σ=e2neτe/(0.51me)\sigma_{\|}=e^{2}n_{\text{e}}\tau_{\text{e}}/(0.51m_{\text{e}}).

We conclude with a few final remarks on Eqs. (19-27). We first note that the parallel conductivity appearing in the temperature equations for electrons is expressed in the form χ,e=χ0,eTe5/2\chi_{\|,\text{e}}=\chi_{\|0,\text{e}}T_{\text{e}}^{5/2}, where we retain the Spitzer temperature dependence while we neglect the weaker space and time variation of the 2/(3ne)2/(3n_{\text{e}}) factor, similarly to the approach followed in the single-component plasma model previously implemented in GBS ([22, 23]). A similar approach is followed for χ,D+\chi_{\|,\text{D}^{+}} and χ,D2+\chi_{\|,\text{D}_{2}^{+}}. This is not expected to impact the simulation results in the sheath-limited regime, where conductivity-related contributions are small. Finally, we point that, since the D2+\text{D}_{2}^{+} density may drop to a very low value, numerical issues may arise in the equations for vD2+v_{\|\text{D}_{2}^{+}} and TD2+T_{\text{D}_{2}^{+}} due to terms featuring a 1/nD2+1/n_{\text{D}_{2}^{+}} dependence. For a robust numerical approach, we evolve the parallel flux and pressure of the D2+\text{D}_{2}^{+} ion species, ΓD2+=nD2+vD2+\Gamma_{\|\text{D}_{2}^{+}}=n_{\text{D}_{2}^{+}}v_{\|\text{D}_{2}^{+}} and pD2+=nD2+TD2+p_{\text{D}_{2}^{+}}=n_{\text{D}_{2}^{+}}T_{\text{D}_{2}^{+}}, instead of vD2+v_{\|\text{D}_{2}^{+}} and TD2+T_{\text{D}_{2}^{+}}. The equations for the time evolution of ΓD2+\Gamma_{\|\text{D}_{2}^{+}} and pD2+p_{\text{D}_{2}^{+}} are

ΓD2+t=nD2+tvD2++nD2+vD2+t,\displaystyle\frac{\partial\Gamma_{\|\text{D}_{2}^{+}}}{\partial t}=\frac{\partial n_{\text{D}_{2}^{+}}}{\partial t}v_{\|\text{D}_{2}^{+}}+n_{\text{D}_{2}^{+}}\frac{\partial v_{\|\text{D}_{2}^{+}}}{\partial t}, (29)

and

pD2+t=nD2+tTD2++nD2+TD2+t,\displaystyle\frac{\partial p_{\text{D}_{2}^{+}}}{\partial t}=\frac{\partial n_{\text{D}_{2}^{+}}}{\partial t}T_{\text{D}_{2}^{+}}+n_{\text{D}_{2}^{+}}\frac{\partial T_{\text{D}_{2}^{+}}}{\partial t}, (30)

with tnD2+\partial_{t}n_{\text{D}_{2}^{+}}, tvD2+\partial_{t}v_{\|\text{D}_{2}^{+}} and tTD2+\partial_{t}T_{\text{D}_{2}^{+}} given, respectively, by Eqs. (20), (24) and (27). We focus on the parallel flux, ΓD2+\Gamma_{\|\text{D}_{2}^{+}}, and pressure, pD2+p_{\text{D}_{2}^{+}}, when presenting the simulation results.

4 Boundary conditions

The boundary conditions implemented in the previous GBS models for single-ion species plasma are extended in the present work to include the molecular ion species D2+\text{D}_{2}^{+}. In the case considered here, of a plasma with a toroidal limiter, the domain boundary includes the limiter plates, the outer wall and the interface with the core, where the low plasma collisionality questions the application of a fluid model.

We first consider the boundary conditions at the limiter plates, where most of the plasma ends by flowing along the magnetic field lines. Those are the most important boundary conditions to impact the simulation dynamics. The boundary conditions are imposed at the interface between the collisional pre-sheath (CP) and the magnetic pre-sheath (MP), derived from the Bohm-Chodura boundary conditions, following the approach described in Ref. [51] in the cold ion limit and generalized in Ref. [52] to account for finite ion temperature. Here, we further extend this procedure to the case of a multi-ion species plasma. For this purpose, we use the (y,x,z)(y,x,z) coordinates, with zz the direction of the magnetic field, xx the direction perpendicular to the magnetic field and parallel to the limiter surface, and yy the direction perpendicular to both xx and zz (here all spatial coordinates are normalized to ρs0\rho_{\text{s}0}, while the other quantities are normalized as in Eqs. (19-27)). We also introduce s=ycosα+zsinαs=y\text{cos}\alpha+z\text{sin}\alpha, the coordinate perpendicular to the limiter plate, with α\alpha the angle between the magnetic field line and the plane of the limiter.

As a first step in the derivation of the boundary conditions, we note that the steady-state dynamics of the multispecies plasma in the CP is described by means of the continuity equation for the D+\text{D}^{+} and D2+\text{D}_{2}^{+} species (quasi-neutrality provides the electron density) and the parallel momentum equations for e\text{e}^{-}, D+\text{D}^{+} and D2+\text{D}_{2}^{+}. In steady state, these can be written as

(nD+𝐯D+)=Sp,D+,\displaystyle\nabla\cdot(n_{\text{D}^{+}}\mathbf{v}_{\text{D}^{+}})=S_{\text{p,D}^{+}}, (31)
(nD2+𝐯D2+)=Sp,D2+,\displaystyle\nabla\cdot(n_{\text{D}_{2}^{+}}\mathbf{v}_{\text{D}_{2}^{+}})=S_{\text{p,D}_{2}^{+}}, (32)
ne(𝐯e)𝐯e=μ(ne𝐄+ne𝐯D+)×𝐁+pe+𝐒m,e,\displaystyle n_{\text{e}}(\mathbf{v}_{\text{e}}\cdot\nabla)\mathbf{v}_{\text{e}}=-\mu(n_{\text{e}}\mathbf{E}+n_{\text{e}}\mathbf{v}_{\text{D}^{+}})\times\mathbf{B}+\nabla p_{\text{e}}+\mathbf{S}_{\text{m,e}}, (33)
nD+(𝐯D+𝐯D+)=(nD+𝐄+nD+𝐯D+)×𝐁pD++𝐒m,D+\displaystyle n_{\text{D}^{+}}\left(\mathbf{v}_{\text{D}^{+}}\cdot\nabla\mathbf{v}_{\text{D}^{+}}\right)=\left(n_{\text{D}^{+}}\mathbf{E}+n_{\text{D}^{+}}\mathbf{v}_{\text{D}^{+}}\right)\times\mathbf{B}-\nabla p_{\text{D}^{+}}+\mathbf{S}_{\text{m,D}^{+}} (34)

and

nD2+(𝐯D2+𝐯D2+)=(nD2+𝐄+nD2+𝐯D2+)×𝐁pD2++𝐒m,D2+,\displaystyle n_{\text{D}_{2}^{+}}\left(\mathbf{v}_{\text{D}_{2}^{+}}\cdot\nabla\mathbf{v}_{\text{D}_{2}^{+}}\right)=\left(n_{\text{D}_{2}^{+}}\mathbf{E}+n_{\text{D}_{2}^{+}}\mathbf{v}_{\text{D}_{2}^{+}}\right)\times\mathbf{B}-\nabla p_{\text{D}_{2}^{+}}+\mathbf{S}_{\text{m,D}_{2}^{+}}, (35)

with μ=me/mD+\mu=m_{\text{e}}/m_{\text{D}^{+}}, Sp,D+S_{\text{p,D}^{+}} and Sp,D2+S_{\text{p,D}_{2}^{+}} the particle sources for D+\text{D}^{+} and D2+\text{D}_{2}^{+}, and 𝐒m,e\mathbf{S}_{\text{m,e}}, 𝐒m,D+\mathbf{S}_{\text{m,D}^{+}} and 𝐒m,D2+\mathbf{S}_{\text{m,D}_{2}^{+}} the momentum sources for e\text{e}^{-}, D+\text{D}^{+} and D2+\text{D}_{2}^{+}.

From Eqs. (31-35) and following the approach described in [52], a system of five equations for snD+\partial_{\text{s}}n_{\text{D}^{+}}, snD2+\partial_{\text{s}}n_{\text{D}_{2}^{+}}, svD+\partial_{\text{s}}v_{\|\text{D}^{+}} and svD2+\partial_{\text{s}}v_{\|\text{D}_{2}^{+}}, sϕ\partial_{\text{s}}\phi is hence obtained for the interface between the CP and the MP border, considering the μ1\mu\ll 1 limit and isothermal ions and electrons. For this purpose, at the MP entrance, gradients along the xx direction are assumed weaker than gradients along ss by a factor ϵ=ρs0/Lnρs0/LTeρs0/Lϕ1\epsilon=\rho_{\text{s}0}/L_{\text{n}}\simeq\rho_{\text{s}0}/L_{\text{T}_{\text{e}}}\simeq\rho_{\text{s}0}/L_{\phi}\ll 1, with LnL_{\text{n}}, LTeL_{\text{T}_{\text{e}}} and LϕL_{\phi} respectively the scale lengths of nen_{\text{e}}, TeT_{\text{e}} and ϕ\phi along the xx direction. In addition, finite Larmor radius (FLR) effects are neglected and, to express the yy and xx components of the velocity of each ion species, D+\text{D}^{+} and D2+\text{D}_{2}^{+}, we consider only the leading order terms in (1/ΩcD+)d/dt(1/\Omega_{\text{cD}^{+}})d/dt (see Eqs. (13) and (16)). This yields

vy,D+=vy,E×B+vy,dD+,\displaystyle v_{\text{y,D}^{+}}=v_{\text{y,E}\times\text{B}}+v_{\text{y,dD}^{+}}, (36)
vx,D+=vx,E×B+vx,dD+,\displaystyle v_{\text{x,D}^{+}}=v_{\text{x,E}\times\text{B}}+v_{\text{x,dD}^{+}}, (37)
vy,D2+=vy,E×B+vy,dD2+\displaystyle v_{\text{y,D}_{2}^{+}}=v_{\text{y,E}\times\text{B}}+v_{\text{y,dD}_{2}^{+}} (38)

and

vx,D2+=vx,E×B+vx,dD2+,\displaystyle v_{\text{x,D}_{2}^{+}}=v_{\text{x,E}\times\text{B}}+v_{\text{x,dD}_{2}^{+}}, (39)

where vy,E×Bv_{\text{y,E}\times\text{B}} and vy,E×Bv_{\text{y,E}\times\text{B}} are respectively the yy and xx components of the E×BE\times B drift velocity, vy,dD+v_{\text{y,dD}^{+}} and vx,dD+v_{\text{x,dD}^{+}} are the yy and xx components of the D+\text{D}^{+} diamagnetic velocity and vy,dD2+v_{\text{y,dD}_{2}^{+}} and vx,dD2+v_{\text{x,dD}_{2}^{+}} are the yy and xx components of the D2+\text{D}_{2}^{+} diamagnetic velocity. Finally, we define the velocity of the D+\text{D}^{+} ions along the ss direction as vs,D+=vD+sinα+vy,D+cosαv_{\text{s,D}^{+}}=v_{\|\text{D}^{+}}\text{sin}\alpha+v_{\text{y,D}^{+}}\text{cos}\alpha. We also introduce the velocity of the D+\text{D}^{+} ions along the ss direction that excludes the diamagnetic contribution, that is vs,D+=vs,D+vy,dD+cosαv^{\prime}_{\text{s},\text{D}^{+}}=v_{\text{s},\text{D}^{+}}-v_{\text{y,dD}^{+}}\text{cos}\alpha and vs,D2+=vs,D2+vy,dD2+cosαv^{\prime}_{\text{s},\text{D}_{2}^{+}}=v_{\text{s},\text{D}_{2}^{+}}-v_{\text{y,dD}_{2}^{+}}\text{cos}\alpha for the D2+\text{D}_{2}^{+} ions. The system in Eqs. (31-35) yields

vs,D+snD++nD+sinαsvD+xnD+cosαsϕ=Sp,D+,\displaystyle v_{\text{s,D}^{+}}\partial_{\text{s}}n_{\text{D}^{+}}+n_{\text{D}^{+}}\text{sin}\alpha\partial_{\text{s}}v_{\|\text{D}^{+}}-\partial_{\text{x}}n_{\text{D}^{+}}\text{cos}\alpha\partial_{\text{s}}\phi=S_{\text{p,D}^{+}}, (40)
vs,D2+snD2++nD2+sinαsvD2+xnD2+cosαsϕ=Sp,D2+,\displaystyle v_{\text{s,D}_{2}^{+}}\partial_{\text{s}}n_{\text{D}_{2}^{+}}+n_{\text{D}_{2}^{+}}\text{sin}\alpha\partial_{\text{s}}v_{\|\text{D}_{2}^{+}}-\partial_{\text{x}}n_{\text{D}_{2}^{+}}\text{cos}\alpha\partial_{\text{s}}\phi=S_{\text{p,D}_{2}^{+}}, (41)
nD+vs,D+svD++nD+(sinαxvD+cosα)sϕ+TD+sinαsnD+=Sm,D+,\displaystyle n_{\text{D}^{+}}v_{\text{s,D}^{+}}\partial_{\text{s}}v_{\|\text{D}^{+}}+n_{\text{D}^{+}}(\text{sin}\alpha-\partial_{\text{x}}v_{\|\text{D}^{+}}\text{cos}\alpha)\partial_{\text{s}}\phi+T_{\text{D}^{+}}\text{sin}\alpha\partial_{\text{s}}n_{\text{D}^{+}}=S_{\|\text{m,D}^{+}}, (42)
nD2+vs,D2+svD2++nD2+(sinαxvD2+cosα)sϕ+TD2+sinαsnD2+=Sm,D2+\displaystyle n_{\text{D}_{2}^{+}}v_{\text{s,D}_{2}^{+}}\partial_{\text{s}}v_{\|\text{D}_{2}^{+}}+n_{\text{D}_{2}^{+}}(\text{sin}\alpha-\partial_{\text{x}}v_{\|\text{D}_{2}^{+}}\text{cos}\alpha)\partial_{\text{s}}\phi+T_{\text{D}_{2}^{+}}\text{sin}\alpha\partial_{\text{s}}n_{\text{D}_{2}^{+}}=S_{\|\text{m,D}_{2}^{+}} (43)

and

μsinαTesneμsinαnesϕ=Sm,e,\displaystyle\mu\text{sin}\alpha T_{\text{e}}\partial_{\text{s}}n_{\text{e}}-\mu\text{sin}\alpha n_{\text{e}}\partial_{\text{s}}\phi=S_{\|\text{m,e}}, (44)

where Sm,D+=𝐒m,D+𝐛S_{\|\text{m,D}^{+}}=\mathbf{S_{\text{m,D}^{+}}}\cdot\mathbf{b}, Sm,D2+=𝐒m,D𝟐+𝐛S_{\|\text{m,D}_{2}^{+}}=\mathbf{S_{\text{m,D}_{2}^{+}}}\cdot\mathbf{b} and Sm,e=𝐒m,e𝐛S_{\|\text{m,e}}=\mathbf{S_{\text{m,e}}}\cdot\mathbf{b}. We then make use of the quasi-neutrality condition, ne=nD++nD2+n_{\text{e}}=n_{\text{D}^{+}}+n_{\text{D}_{2}^{+}}, to obtain a system of five linear equations that we express in matrix form as M𝐱=𝐒\text{M}\mathbf{x}=\mathbf{S}, with

𝐌=(vs,D+nD+sinα00cosαxnD+TD+sinαnD+vs,D+00nD+(sinαxvD+cosα)00vs,D2+nD2+sinαcosαxnD2+00TD2+sinαnD2+vs,D2+nD2+(sinαxvD2+cosα)μsinαTe0μsinαTe0μ(nD++nD2+)sinα),\mathbf{M}=\begin{pmatrix}v^{\prime}_{\text{s,D}^{+}}&n_{\text{D}^{+}}\text{sin}\alpha&0&0&-\text{cos}\alpha\partial_{\text{x}}n_{\text{D}^{+}}\\ T_{\text{D}^{+}}\text{sin}\alpha&n_{\text{D}^{+}}v^{\prime}_{\text{s,D}^{+}}&0&0&n_{\text{D}^{+}}(\text{sin}\alpha-\partial_{\text{x}}v_{\|\text{D}^{+}}\text{cos}\alpha)\\ 0&0&v^{\prime}_{\text{s,D}_{2}^{+}}&n_{\text{D}_{2}^{+}}\text{sin}\alpha&-\text{cos}\alpha\partial_{\text{x}}n_{\text{D}_{2}^{+}}\\ 0&0&T_{\text{D}_{2}^{+}}\text{sin}\alpha&n_{\text{D}_{2}^{+}}v^{\prime}_{\text{s,D}_{2}^{+}}&n_{\text{D}_{2}^{+}}(\text{sin}\alpha-\partial_{\text{x}}v_{\|\text{D}_{2}^{+}}\text{cos}\alpha)\\ \mu\text{sin}\alpha T_{\text{e}}&0&\mu\text{sin}\alpha T_{\text{e}}&0&-\mu(n_{\text{D}^{+}}+n_{\text{D}_{2}^{+}})\text{sin}\alpha\\ \end{pmatrix}, (45)
𝐱=(snD+snD2+svD+svD2+sϕ)\mathbf{x}=\begin{pmatrix}\partial_{\text{s}}n_{\text{D}^{+}}\\ \partial_{\text{s}}n_{\text{D}_{2}^{+}}\\ \partial_{\text{s}}v_{\|\text{D}^{+}}\\ \partial_{\text{s}}v_{\|\text{D}_{2}^{+}}\\ \partial_{\text{s}}\phi\\ \end{pmatrix} (46)

and

𝐒=(Sp,D+Sp,D2+Sm,D+Sm,D2+Sm,e).\mathbf{S}=\begin{pmatrix}S_{\text{p,D}^{+}}\\ S_{\text{p,D}_{2}^{+}}\\ S_{\|\text{m,D}^{+}}\\ S_{\|\text{m,D}_{2}^{+}}\\ S_{\|\text{m,e}}\\ \end{pmatrix}. (47)

Following [51, 52], we observe that, while the source terms are important in the CP, they are small at the MP entrance with respect to the gradient terms. This allows one to assume |ΣjMijXj||Si||\Sigma_{\text{j}}\text{M}_{\text{ij}}\text{X}_{\text{j}}|\gg|\text{S}_{\text{i}}| at the MP entrance. Thus, the linear system M𝐱=𝐒\text{M}\mathbf{x}=\mathbf{S} reduces to M𝐱=0\text{M}\mathbf{x}=0 at the MP entrance. We solve det(M)=0\text{det}(\text{M})=0 with respect to vsD+v^{\prime}_{\text{sD}^{+}} to obtain the non-trivial solution at the MP entrance. For this purpose, following [53], the parallel velocity of the D2+\text{D}_{2}^{+} ion species, vD2+v_{\|\text{D}_{2}^{+}}, is related to vD+v_{\|\text{D}^{+}},

vD2+=mD+mD2+vD+=vD+2.v_{\|\text{D}_{2}^{+}}=\sqrt{\frac{m_{\text{D}^{+}}}{m_{\text{D}_{2}^{+}}}}v_{\|\text{D}^{+}}=\frac{v_{\|\text{D}^{+}}}{\sqrt{2}}. (48)

In addition, we assume nD2+/ne1n_{\text{D}_{2}^{+}}/n_{\text{e}}\ll 1 (and therefore nD2+nen_{\text{D}_{2}^{+}}\simeq n_{\text{e}}) and keep only zero order terms in ϵ\epsilon, neglecting therefore all derivatives along the xx direction. The condition det(M)=0\text{det}(\text{M})=0 then yields

vsD+=±TeFTsinαv^{\prime}_{s\text{D}^{+}}=\pm\sqrt{T_{\text{e}}F_{T}}\text{sin}\alpha (49)

where the ±\pm signs refer to the magnetic field lines entering/leaving the vessel and we have defined FT=1+τTD+/TeF_{T}=1+\tau T_{\text{D}^{+}}/T_{\text{e}}. We now note that vs,D+=vD+sinαv^{\prime}_{\text{s,D}^{+}}=v_{\|\text{D}^{+}}\text{sin}\alpha, since we neglect vy,E×Bcosα=xϕcosαv_{\text{y},\text{E}\times\text{B}}\text{cos}\alpha=\partial_{\text{x}}\phi\text{cos}\alpha, to obtain the boundary condition for vD+v_{\|\text{D}^{+}} at the limiter,

vD+=±TeFT.v_{\|\text{D}^{+}}=\pm\sqrt{T_{\text{e}}F_{T}}. (50)

The expressions of the boundary conditions for the other plasma quantities then follow. In fact, Eq. (42) can be inverted to express sϕ\partial_{\text{s}}\phi in terms of svD+\partial_{\text{s}}v_{\|D^{+}}, which yields

sϕ=vsD+svD+FTsinα=TeFTsvD+.\partial_{\text{s}}\phi=-\frac{v^{\prime}_{\text{s}\text{D}^{+}}\partial_{\text{s}}v_{\|D^{+}}}{F_{T}\text{sin}\alpha}=\mp\frac{\sqrt{T_{\text{e}}}}{\sqrt{F_{T}}}\partial_{\text{s}}v_{\|D^{+}}. (51)

We then use Eq. (44) to express sne\partial_{\text{s}}n_{\text{e}} in terms of sϕ\partial_{\text{s}}\phi, that is

sne=neTesϕ=neTeFTsvD+\partial_{\text{s}}n_{\text{e}}=\frac{n_{\text{e}}}{T_{\text{e}}}\partial_{\text{s}}\phi=\mp\frac{n_{\text{e}}}{\sqrt{T_{\text{e}}F_{T}}}\partial_{\text{s}}v_{\|D^{+}} (52)

and, making use of nD+=nen_{\text{D}^{+}}=n_{\text{e}}, we also obtain

snD+=ne/Tesϕ=neTeFTsvD+\partial_{\text{s}}n_{\text{D}^{+}}=n_{\text{e}}/T_{\text{e}}\partial_{\text{s}}\phi=\mp\frac{n_{\text{e}}}{\sqrt{T_{\text{e}}F_{T}}}\partial_{\text{s}}v_{\|D^{+}} (53)

Regarding the density of the D2+\text{D}_{2}^{+} ions, we use Eq. (41), deriving the following boundary condition

snD2+=nD2+/TeFTsvD+.\partial_{\text{s}}n_{\text{D}_{2}^{+}}=\mp n_{\text{D}_{2}^{+}}/\sqrt{T_{\text{e}}F_{T}}\partial_{\text{s}}v_{\|D^{+}}. (54)

In order to derive the boundary conditions for TeT_{\text{e}}, TD+T_{\text{D}^{+}} and TD2+T_{\text{D}_{2}^{+}}, we notice that temperature gradients along the direction perpendicular to the wall are small compared to the gradients of the other physical quantities. In fact, [51, 52] show that sTesTD+0.1sϕ\partial_{\text{s}}T_{\text{e}}\sim\partial_{\text{s}}T_{\text{D}^{+}}\simeq 0.1\partial_{\text{s}}\phi. In the present work, we follow this prescription and assume sTe=sTD+=sTD2+=0.1sϕ\partial_{\text{s}}T_{\text{e}}=\partial_{\text{s}}T_{\text{D}^{+}}=\partial_{\text{s}}T_{\text{D}_{2}^{+}}=0.1\partial_{\text{s}}\phi (we note that our tests show that imposing sTe=sTD+=sTD2+=0\partial_{\text{s}}T_{\text{e}}=\partial_{\text{s}}T_{\text{D}^{+}}=\partial_{\text{s}}T_{\text{D}_{2}^{+}}=0 does not affect the simulation results noticeably).

To obtain the boundary condition for Ω\Omega at the MP entrance, we start from its definition, Ω=[(nD+/B2)ϕ+(1/B2)pD+]+[(nD2+/B2)ϕ+(1/B2)pD2+]\Omega=\nabla\cdot\left[(n_{\text{D}^{+}}/B^{2})\nabla_{\perp}\phi+(1/B^{2})\nabla_{\perp}p_{\text{D}^{+}}\right]+\nabla\cdot\left[(n_{\text{D}_{2}^{+}}/B^{2})\nabla_{\perp}\phi+(1/B^{2})\nabla_{\perp}p_{\text{D}_{2}^{+}}\right]. We write the second order derivatives in the directions perpendicular to the magnetic field retaining only derivatives along the yy direction, since x2y2\partial^{2}_{\text{x}}\ll\partial^{2}_{\text{y}}. Since yB=0\partial_{\text{y}}B=0 at the limiter, the 1/B21/B^{2} factor can be considered constant when the derivatives defining Ω\Omega are evaluated. We then write the derivatives along the yy direction in terms of derivatives along ss and consider TD2+=TD+T_{\text{D}_{2}^{+}}=T_{\text{D}^{+}} (for simplicity). This yields

Ω=cosα[s(ne+nD2+)sϕ+TD+s2(ne+nD2+)+(ne+nD2+)s2ϕ].\Omega=-\text{cos}\alpha\left[\partial_{\text{s}}(n_{\text{e}}+n_{\text{D}_{2}^{+}})\partial_{\text{s}}\phi+T_{\text{D}^{+}}\partial^{2}_{\text{s}}(n_{\text{e}}+n_{\text{D}_{2}^{+}})+(n_{\text{e}}+n_{\text{D}_{2}^{+}})\partial^{2}_{\text{s}}\phi\right]. (55)

We now take advantage of Eqs. (52) and (54) to express sne\partial_{\text{s}}n_{\text{e}} and snD+\partial_{\text{s}}n_{\text{D}^{+}} in terms of sϕ\partial_{\text{s}}\phi and use Eq. (51) to obtain the final expression of the boundary condition for Ω\Omega, that is

Ω=(ne+nD2+)FTcos2α[±TeFTs2vD+1TeFT(svD+)2].\Omega=-(n_{\text{e}}+n_{\text{D}_{2}^{+}})F_{T}\text{cos}^{2}\alpha\left[\pm\frac{\sqrt{T_{\text{e}}}}{\sqrt{F_{T}}}\partial^{2}_{\text{s}}v_{\|\text{D}^{+}}\mp\frac{1}{\sqrt{T_{\text{e}}}F_{T}}(\partial_{\text{s}}v_{\|\text{D}^{+}})^{2}\right]. (56)

Finally, the boundary condition for the electron parallel velocity is obtained from the analysis of the electron kinetic distribution function at the MP entrance. As discussed in [51], this gives

ve=Te[±exp(ΛϕTe)],v_{\|\text{e}}=\sqrt{T_{\text{e}}}\left[\pm\text{exp}\left(\Lambda-\frac{\phi}{T_{\text{e}}}\right)\right], (57)

where Λ=log[(1/2π)(mi/me)]3\Lambda=\text{log}\left[\sqrt{(1/2\pi)(m_{\text{i}}/m_{\text{e}})}\right]\simeq 3.

At the vessel outer wall and the core interface, 𝑎𝑑\it{ad} ℎ𝑜𝑐\it{hoc} boundary conditions are considered, similarly to the approach used in previous models of GBS [51, 52, 23]. In fact, a set of first-principles boundary conditions is yet to be derived for such boundaries. The impact of these 𝑎𝑑\it{ad} ℎ𝑜𝑐\it{hoc} boundary conditions upon the simulation results is controlled by extending radially the simulation domain towards the wall and the core. The conditions we impose include homogeneous Neumann boundary conditions to nen_{\text{e}}, nD+n_{\text{D}^{+}}, TeT_{\text{e}}, TD+T_{\text{D}^{+}}, TD2+T_{\text{D}_{2}^{+}}, vev_{\|\text{e}}, vD+v_{\|\text{D}^{+}} and vD2+v_{\|\text{D}_{2}^{+}}. Since the density of D2+\text{D}_{2}^{+} ions is expected to be very low at the core-edge interface (no particles outflowing from the core), we use Dirichlet boundary conditions at the core interface for nD2+n_{\text{D}_{2}^{+}}, setting it to a residual value, while homogenous Neumann boundary conditions are considered at the vessel outer wall. We also use Dirichlet boundary conditions for the vorticity, setting Ω=0\Omega=0 at both the wall and the core interface. Regarding the ϕ\phi boundary conditions, we follow the approach presented in Ref. [54], where ϕ=ΛTe\phi=\Lambda T_{\text{e}} is considered at the vessel wall. Finally, ϕ=ϕ0\phi=\phi_{0} is considered at the core interface, where ϕ0\phi_{0} is a constant value chosen to prevent large gradients of ϕ\phi.

5 The kinetic model for the neutral species and its formal solution

In order to compute the neutral distribution functions of D and D2\text{D}_{2}, fDf_{\text{D}} and fD2f_{\text{D}_{2}}, we consider a set of two coupled kinetic equations, that is

fDt+𝐯fD𝐱=νiz,DfDνcx,D(fDnDnD+fD+)+νrec,D+fD++νcx,D2D+(nD2nD+fD+)νcx,D-D2+fD+2νdiss,D2fD2+νdiss-iz,D2fD2+νdiss,D2+fD2++2νdiss-rec,D2+fD2+,\displaystyle\begin{aligned} &\frac{\partial f_{\text{D}}}{\partial t}+\mathbf{v}\cdot\frac{\partial f_{\text{D}}}{\partial\mathbf{x}}=-\nu_{\text{iz,D}}f_{\text{D}}-\nu_{\text{cx,D}}\left(f_{\text{D}}-\frac{n_{\text{D}}}{n_{\text{D}^{+}}}f_{\text{D}^{+}}\right)+\nu_{\text{rec,D}^{+}}f_{\text{D}^{+}}\\ &+\nu_{\text{cx,D}_{2}-\text{D}^{+}}\left(\frac{n_{\text{D}_{2}}}{n_{\text{D}^{+}}}f_{\text{D}^{+}}\right)-\nu_{\text{cx,D-D}_{2}^{+}}f_{\text{D}}+2\nu_{\text{diss,D}_{2}}f_{\text{D}_{2}}+\nu_{\text{diss-iz,D}_{2}}f_{\text{D}_{2}}\\ &+\nu_{\text{diss,D}_{2}^{+}}f_{\text{D}_{2}^{+}}+2\nu_{\text{diss-rec,D}_{2}^{+}}f_{\text{D}_{2}^{+}},\\ \end{aligned} (58)

and

fD2t+𝐯fD2𝐱=νiz,D2fD2νcx,D2(fD2nD2nD2+fD2+)+νrec,D2+fD2+νcx,D2D+fD2+νcx,D-D2+(nDnD2+fD2+)νdiss,D2fD2νdiss-iz,D2fD2.\displaystyle\begin{aligned} &\frac{\partial f_{\text{D}_{2}}}{\partial t}+\mathbf{v}\cdot\frac{\partial f_{\text{D}_{2}}}{\partial\mathbf{x}}=-\nu_{\text{iz,D}_{2}}f_{\text{D}_{2}}-\nu_{\text{cx,D}_{2}}\left(f_{\text{D}_{2}}-\frac{n_{\text{D}_{2}}}{n_{\text{D}_{2}^{+}}}f_{\text{D}_{2}^{+}}\right)\\ &+\nu_{\text{rec,D}_{2}^{+}}f_{\text{D}_{2}^{+}}-\nu_{\text{cx,D}_{2}-\text{D}^{+}}f_{\text{D}_{2}}+\nu_{\text{cx,D-D}_{2}^{+}}\left(\frac{n_{\text{D}}}{n_{\text{D}_{2}^{+}}}f_{\text{D}_{2}^{+}}\right)\\ &-\nu_{\text{diss,D}_{2}}f_{\text{D}_{2}}-\nu_{\text{diss-iz,D}_{2}}f_{\text{D}_{2}}.\end{aligned} (59)

The formal solution of Eqs. (58) and (59) can be obtained by using the method of characteristics, assuming that the plasma quantities are known. This yields

fD(𝐱,𝐯,t)=0rb[SD(𝐱,𝐯,t)v+δ(rrb)fD(𝐱b,𝐯,tb)]\displaystyle f_{\text{D}}(\mathbf{x},\mathbf{v},t)=\int_{0}^{r^{\prime}_{\text{b}}}\left[\frac{S_{\text{D}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})}{v}+\delta\left(r^{\prime}-r^{\prime}_{\text{b}}\right)f_{\text{D}}(\mathbf{x}^{\prime}_{\text{b}},\mathbf{v},t^{\prime}_{\text{b}})\right] (60)
×exp[1v0rνeffD(𝐱′′,t′′)𝑑r′′]J(𝐱)J(𝐱)dr\displaystyle\times\exp\left[-\frac{1}{v}\int_{0}^{r^{\prime}}\nu_{\text{eff}_{\text{D}}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})dr^{\prime\prime}\right]\frac{J(\mathbf{x}^{\prime})}{J(\mathbf{x})}dr^{\prime}

and

fD2(𝐱,𝐯,t)=0rb[SD2(𝐱,𝐯,t)v+δ(rrb)fD2(𝐱b,𝐯,tb)]\displaystyle f_{\text{D}_{2}}(\mathbf{x},\mathbf{v},t)=\int_{0}^{r^{\prime}_{\text{b}}}\left[\frac{S_{\text{D}_{2}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})}{v}+\delta\left(r^{\prime}-r^{\prime}_{\text{b}}\right)f_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\text{b}},\mathbf{v},t^{\prime}_{\text{b}})\right] (61)
×exp[1v0rνeffD2(𝐱′′,t′′)𝑑r′′]J(𝐱)J(𝐱)dr.\displaystyle\times\exp\left[-\frac{1}{v}\int_{0}^{r^{\prime}}\nu_{\text{eff}_{\text{D}_{2}}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})dr^{\prime\prime}\right]\frac{J(\mathbf{x}^{\prime})}{J(\mathbf{x})}dr^{\prime}.

The solutions presented in Eq. (60-61) show that the distribution functions of D and D2\text{D}_{2} at position 𝐱\mathbf{x}, velocity 𝐯\mathbf{v} and time tt result from the neutrals generated at a location 𝐱=𝐱r𝛀\mathbf{x^{\prime}}=\mathbf{x}-r^{\prime}\bm{\Omega}, in the plasma volume or at the boundary, and at time t=tr/vt^{\prime}=t-r^{\prime}/v, with 𝛀=𝐯/v\bm{\Omega}=\mathbf{v}/v the unit vector aligned with the neutral velocity and rr^{\prime} the distance measured from 𝐱\mathbf{x^{\prime}} to 𝐱\mathbf{x} (the subscript "b" denotes the intersection point between the domain boundary and the characteristic starting at 𝐱\mathbf{x} with direction 𝛀\bm{\Omega}). Since the neutrals are solved on the (R,Z)(R,Z) coordinate system, with RR the distance from the torus axis and ZZ the vertical coordinate measured from the equatorial midplane, the integral includes the Jacobian corresponding to the coordinate system J(𝐱)=R(𝐱)J(\mathbf{x})=R(\mathbf{x}). The volumetric source due to the collisional processes in Eq. (60) is

SD(𝐱,𝐯,t)=νcx,D(𝐱,t)nD(𝐱,t)Φ[𝐯D+,TD+](𝐱,𝐯,t)+νcx,D2D+(𝐱,t)nD2(𝐱,t)Φ[𝐯D+,TD+](𝐱,𝐯,t)\displaystyle S_{\text{D}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})=\nu_{\text{cx,D}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}}(\mathbf{x}^{\prime},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}^{+}},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})+\nu_{\text{cx,D}_{2}-\text{D}^{+}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}}(\mathbf{x}^{\prime},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}^{+}},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime}) (62)
+νrec,D+(𝐱,t)nD+(𝐱,𝐯,t)Φ[𝐯D+,TD+](𝐱,𝐯,t)+2νdiss,D2(𝐱,t)nD2(𝐱,t)Φ[𝐯D2,TD,diss(D2)](𝐱,𝐯,t)\displaystyle+\nu_{\text{rec,D}^{+}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}^{+}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}^{+}},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})+2\nu_{\text{diss,D}_{2}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}}(\mathbf{x}^{\prime},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}_{2}},T_{\text{D,diss}\left(\text{D}_{2}\right)}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})
+νdiss-iz,D2(𝐱,t)nD2(𝐱,t)Φ[𝐯D2,TD,diss-iz(D2)](𝐱,𝐯,t)+νdiss,D2+(𝐱,t)nD2+(𝐱,𝐯,t)Φ[𝐯D2+,TD,diss(D2+)](𝐱,𝐯,t)\displaystyle+\nu_{\text{diss-iz,D}_{2}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}}(\mathbf{x}^{\prime},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}_{2}},T_{\text{D,diss-iz}\left(\text{D}_{2}\right)}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})+\nu_{\text{diss,D}_{2}^{+}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})
+2νdiss-rec,D2+(𝐱,t)nD2+(𝐱,𝐯,t)Φ[𝐯D2+,TD,diss-rec(D2+)](𝐱,𝐯,t)\displaystyle+2\nu_{\text{diss-rec,D}_{2}^{+}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}^{+}_{2}},T_{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})

since D ions can be generated in the plasma volume by DD+\text{D}-\text{D}^{+} and D2D+\text{D}_{2}-\text{D}^{+} charge-exchange interactions, recombination of D+\text{D}^{+} ions with electrons, dissociation of D2\text{D}_{2} molecules into two D atoms, dissociative ionization of D2\text{D}_{2} into D and D+\text{D}^{+}, dissociation of D2+\text{D}_{2}^{+} ions into D and D+\text{D}^{+}, and dissociative recombination of D2+\text{D}_{2}^{+} into two D atoms.

Similarly, D2\text{D}_{2} molecules can be generated in the plasma by D2D2+\text{D}_{2}-\text{D}_{2}^{+} and DD2+\text{D}-\text{D}_{2}^{+} charge-exchange interactions or recombination of D2+\text{D}_{2}^{+} ions with electrons. Therefore, the volumetric source term in Eq. (61) is

SD2(𝐱,𝐯,t)=νcx,D2(𝐱,t)nD2(𝐱,t)Φ[𝐯D2+,TD2+](𝐱,𝐯,t)+νrec,D2+(𝐱,t)nD2+(𝐱,𝐯,t)Φ[𝐯D2+,TD2+](𝐱,𝐯,t)\displaystyle S_{\text{D}_{2}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})=\nu_{\text{cx,D}_{2}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}}(\mathbf{x}^{\prime},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})+\nu_{\text{rec,D}_{2}^{+}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime}) (63)
+νcx,D-D2+(𝐱,t)nD(𝐱,t)Φ[𝐯D2+,TD2+](𝐱,𝐯,t).\displaystyle+\nu_{\text{cx,D-D}_{2}^{+}}(\mathbf{x}^{\prime},t^{\prime})n_{\text{D}}(\mathbf{x}^{\prime},t^{\prime})\Phi_{\left[\mathbf{v}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime}).

We remark that Φ[𝐯D+,TD+](𝐱,𝐯,t)=[mD+/(2πTD+)]3/2exp[mD+(𝐯𝐯D+)2/(2TD+)]\Phi_{\left[\mathbf{v}_{\text{D}^{+}},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime})=\left[m_{\text{D}^{+}}/(2\pi T_{\text{D}^{+}})\right]^{3/2}\exp\left[-m_{\text{D}^{+}}(\mathbf{v}-\mathbf{v}_{\text{D}^{+}})^{2}/(2T_{\text{D}^{+}})\right] is a Maxwellian distribution function describing the D+\text{D}^{+} ion population, centered at the ion velocity 𝐯D+(𝐱,t)\mathbf{v}_{\text{D}^{+}}(\mathbf{x}^{\prime},t^{\prime}), which includes only the leading order components, i.e. 𝐯D+=vD+𝐛+𝐯D+0\mathbf{v}_{\text{D}^{+}}=v_{\|\text{D}^{+}}\mathbf{b}+\mathbf{v}_{\perp\text{D}^{+}0}, and based on the D+\text{D}^{+} temperature, 𝐓D+(𝐱,t)\mathbf{T}_{\text{D}^{+}}(\mathbf{x}^{\prime},t^{\prime}). Similarly, Φ[𝐯D2+,TD2+](𝐱,𝐯,t)\Phi_{\left[\mathbf{v}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime}) is a Maxwellian distribution that describes the D2+\text{D}_{2}^{+} ions and is defined analogously. We remark that, when evaluating the average velocity of the Maxwellian distributions describing neutrals generated from D2\text{D}_{2} and D2+\text{D}_{2}^{+}, we assume that 𝐯D2\mathbf{v}_{\text{D}_{2}} and 𝐯D2+\mathbf{v}_{\text{D}_{2}^{+}} can be neglected, i.e. |𝐯D2||𝐯D+||\mathbf{v}_{\text{D}_{2}}|\lesssim|\mathbf{v}_{\text{D}^{+}}| and |𝐯D2+||𝐯D+||\mathbf{v}_{\text{D}_{2}^{+}}|\lesssim|\mathbf{v}_{\text{D}^{+}}|. Regarding the dissociative processes, we recall that the temperature TD,diss(D2)T_{\text{D,diss(D}_{2}\text{)}} is the average thermal energy of D atoms generated by dissociation of D2\text{D}_{2}, presented in Table 2 and calculated in App. A. The energy of the neutral D atoms generated by other dissociative processes is evaluated using a similar approach.

The effective frequencies for depletion of neutral particles are given by

νeff,D(𝐱′′,t′′)=νiz,D(𝐱′′,t′′)+νcx,D(𝐱′′,t′′)+νcx,D-D2+(𝐱′′,t′′)\displaystyle\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})=\nu_{\text{iz,D}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})+\nu_{\text{cx,D}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})+\nu_{\text{cx,D-D}_{2}^{+}}(\mathbf{x}^{\prime\prime},t^{\prime\prime}) (64)

and

νeff,D2(𝐱′′,t′′)=νiz,D2(𝐱′′,t′′)+νcx,D2(𝐱′′,t′′)+νcx,D2D+(𝐱′′,t′′)\displaystyle\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})=\nu_{\text{iz,D}_{2}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})+\nu_{\text{cx,D}_{2}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})+\nu_{\text{cx,D}_{2}-\text{D}^{+}}(\mathbf{x}^{\prime\prime},t^{\prime\prime}) (65)
+νdiss,D2(𝐱′′,t′′)+νdiss-iz,D2(𝐱′′,t′′),\displaystyle+\nu_{\text{diss,D}_{2}}(\mathbf{x}^{\prime\prime},t^{\prime\prime})+\nu_{\text{diss-iz,D}_{2}}(\mathbf{x}^{\prime\prime},t^{\prime\prime}),

since the volumetric sinks of D atoms are due to ionization or charge-exchange with D+\text{D}^{+} or D2+\text{D}_{2}^{+}, while D2\text{D}_{2} are depleted by ionization, charge-exchange with D2+\text{D}_{2}^{+} or D+\text{D}^{+}, dissociation or dissociative ionization.

A contribution to the neutral distribution functions in Eqs. (60) and (61) is related to the neutral recycling at the boundary walls. Therefore, we now focus on the neutral processes that take place there. A fraction, αrefl(𝐱b)\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}}), of the D2+\text{D}_{2}^{+} ions that reach the boundary walls, after recombination with electrons and formation of D2\text{D}_{2} neutrals is reflected back into the plasma. The remaining fraction, 1αrefl(𝐱b)1-\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}}), is absorbed and reemitted at wall temperature as D2\text{D}_{2}, also following a recombination process. Analogous considerations hold when describing D2\text{D}_{2} neutrals that reach the boundary. The D2\text{D}_{2} molecules can, in fact, be reflected or reemitted with the same probability as D2+\text{D}_{2}^{+}.

Regarding the atomic species, since the wall temperature is low, a fraction, βassoc\beta_{\text{assoc}}, of the D+\text{D}^{+} and D particles absorbed at the walls associate and are reemitted back into the plasma as D2\text{D}_{2} molecules. The D+\text{D}^{+} ions and D neutrals reaching the boundaries that do not associate undergo reflection and reemission processes similar to the ones described for D2+\text{D}_{2}^{+} ions and D2\text{D}_{2} particles, the probability of reflection, αrefl(𝐱b)\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}}), being the same. As a consequence, the distribution functions at the vessel, fD(𝐱b,𝐯,t)f_{\text{D}}(\mathbf{x}^{\prime}_{\text{b}},\mathbf{v},t^{\prime}) and fD2(𝐱b,𝐯,t)f_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\text{b}},\mathbf{v},t^{\prime}), for vp=𝐯𝐧^>0v_{p}=\mathbf{v}\cdot\mathbf{\hat{n}}>0 (with 𝐧^\mathbf{\hat{n}} the unit vector normal to the boundary) yield

fD(𝐱b,𝐯,t)=(1αrefl(𝐱b))Γreem,D(𝐱𝐛,t)χin,D(𝐱𝐛,𝐯)\displaystyle f_{\text{D}}(\mathbf{x}^{\prime}_{\text{b}},\mathbf{v},t^{\prime})=(1-\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}}))\Gamma_{\text{\text{reem,D}}}(\mathbf{x^{\prime}_{b}},t^{\prime})\chi_{\text{in,D}}(\mathbf{x^{\prime}_{b}},\mathbf{v}) (66)
+αrefl(𝐱b)[fout,D(𝐱𝐛,𝐯2𝐯𝐩,t)+Γout,D+(𝐱𝐛,t)vpΦ[𝐯refl(D+),TD+](𝐱𝐛,𝐯,t)]\displaystyle+\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}})\left[f_{\text{out,D}}(\mathbf{x^{\prime}_{b}},\mathbf{v}-2\mathbf{v_{p}},t^{\prime})+\frac{\Gamma_{\text{out,D}^{+}}(\mathbf{x^{\prime}_{b}},t^{\prime})}{v_{p}}\Phi_{\left[\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x^{\prime}_{b}},\mathbf{v},t^{\prime})\right]

and

fD2(𝐱b,𝐯,t)=(1αrefl(𝐱b))Γreem,D2(𝐱𝐛,t)χin,D2(𝐱𝐛,𝐯)\displaystyle f_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\text{b}},\mathbf{v},t^{\prime})=(1-\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}}))\Gamma_{\text{reem},\text{D}_{2}}(\mathbf{x^{\prime}_{b}},t^{\prime})\chi_{\text{in,D}_{2}}(\mathbf{x^{\prime}_{b}},\mathbf{v}) (67)
+αrefl(𝐱b)[fout,D2(𝐱𝐛,𝐯2𝐯𝐩,t)+Γout,D2+(𝐱𝐛,t)vpΦ[𝐯refl(D2+),TD2+](𝐱𝐛,𝐯,t)].\displaystyle+\alpha_{\text{refl}}(\mathbf{x^{\prime}_{\text{b}}})\left[f_{\text{out,D}_{2}}(\mathbf{x^{\prime}_{b}},\mathbf{v}-2\mathbf{v_{p}},t^{\prime})+\frac{\Gamma_{\text{out,D}_{2}^{+}}(\mathbf{x^{\prime}_{b}},t^{\prime})}{v_{p}}\Phi_{\left[\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{b}},\mathbf{v},t^{\prime})\right].

We first analyse the contributions of reflected particles in Eqs. (66-67). The reflected D and D2\text{D}_{2} are described by the distribution functions fout,D(𝐱𝐛,𝐯2𝐯𝐩,t)f_{\text{out,D}}(\mathbf{x^{\prime}_{b}},\mathbf{v}-2\mathbf{v_{p}},t^{\prime}) and fout,D2(𝐱𝐛,𝐯2𝐯𝐩,t)f_{\text{out,D}_{2}}(\mathbf{x^{\prime}_{b}},\mathbf{v}-2\mathbf{v_{p}},t^{\prime}), since 𝐯2𝐯𝐩\mathbf{v}-2\mathbf{v_{p}} is the velocity of the reflected neutrals as they flow towards the wall, with 𝐯𝐩=vp𝐧^\mathbf{v_{p}}=v_{p}\mathbf{\hat{n}} the velocity along the direction normal to the wall surface. On the other hand, the contribution from the reflected D+\text{D}^{+} and D2+\text{D}_{2}^{+} is modelled by considering the projection of the flux of outflowing D+\text{D}^{+} and D2+\text{D}_{2}^{+} along the direction normal to the boundary surface, given respectively by Γout,D+(𝐱𝐛)=𝚪out,D+(𝐱𝐛)𝐧^\Gamma_{\text{out,D}^{+}}(\mathbf{x^{\prime}_{b}})=-\mathbf{\Gamma_{\text{out,D}^{+}}}(\mathbf{x^{\prime}_{b}})\cdot\mathbf{\hat{n}} and Γout,D2+(𝐱𝐛)=𝚪out,D𝟐+(𝐱𝐛)𝐧^\Gamma_{\text{out,D}_{2}^{+}}(\mathbf{x^{\prime}_{b}})=-\mathbf{\Gamma_{\text{out,D}_{2}^{+}}}(\mathbf{x^{\prime}_{b}})\cdot\mathbf{\hat{n}}. These fluxes include the contributions of the plasma parallel flow and the leading order perpendicular drifts, i.e. the E×BE\times B and diamagnetic drifts, yielding

𝚪out,D+(𝐱b)=nD+vD+𝐛+nD+𝐯D+0\displaystyle\mathbf{\Gamma_{\text{out,D}^{+}}}(\mathbf{x^{\prime}_{\text{b}}})=n_{\text{D}^{+}}v_{\|\text{D}^{+}}\mathbf{b}+n_{\text{D}^{+}}\mathbf{v}_{\perp\text{D}^{+}0} (68)

and

𝚪out,D𝟐+(𝐱b)=nD2+vD2+𝐛+nD2+𝐯D2+0,\displaystyle\mathbf{\Gamma_{\text{out,D}_{2}^{+}}}(\mathbf{x^{\prime}_{\text{b}}})=n_{\text{D}_{2}^{+}}v_{\|\text{D}_{2}^{+}}\mathbf{b}+n_{\text{D}_{2}^{+}}\mathbf{v}_{\perp\text{D}_{2}^{+}0}, (69)

We assume that the velocity distribution of the D neutrals generated by reflection of D+\text{D}^{+} ions is described by a Maxwellian centered at the velocity, 𝐯refl(D+)=𝐯D+2𝐯𝐩D+\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)}=\mathbf{v}_{\text{D}^{+}}-2\mathbf{v_{p}}_{\text{D}^{+}}, with 𝐯𝐩D+=(𝐯D+𝐧^)𝐧^\mathbf{v_{p}}_{\text{D}^{+}}=\left(\mathbf{v}_{\text{D}^{+}}\cdot\mathbf{\hat{n}}\right)\mathbf{\hat{n}}, and with temperature of the incoming D+\text{D}^{+} ions, TD+T_{\text{D}^{+}}, given by Φ[𝐯refl(D+),TD+](𝐱,𝐯,t)\Phi_{\left[\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime}). Analogously, the D2\text{D}_{2} neutrals generated by reflection of D2+\text{D}_{2}^{+} ions are described by a Maxwellian distribution of velocities, Φ[𝐯refl(D2+),TD+](𝐱,𝐯,t)\Phi_{\left[\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v},t^{\prime}), being 𝐯refl(D2+)=𝐯D2+2𝐯𝐩D2+\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)}=\mathbf{v}_{\text{D}_{2}^{+}}-2\mathbf{v_{p}}_{\text{D}_{2}^{+}}, with 𝐯𝐩D2+=(𝐯D2+𝐧^)𝐧^\mathbf{v_{p}}_{\text{D}_{2}^{+}}=\left(\mathbf{v}_{\text{D}_{2}^{+}}\cdot\mathbf{\hat{n}}\right)\mathbf{\hat{n}} and TD2+T_{\text{D}_{2}^{+}} the temperature of the incoming D2+\text{D}_{2}^{+} ions.

We now focus on the contributions in Eqs. (66-67) accounting for reemission of neutrals from the boundary. These are written in terms of

Γreem,D(𝐱b)=(1βassoc)[Γout,D(𝐱b)+Γout,D+(𝐱b)]\displaystyle\Gamma_{\text{reem,D}}(\mathbf{x^{\prime}_{\text{b}}})=(1-\beta_{\text{assoc}})\left[\Gamma_{\text{out,D}}(\mathbf{x^{\prime}_{\text{b}}})+\Gamma_{\text{out,D}^{+}}(\mathbf{x^{\prime}_{\text{b}}})\right] (70)

and

Γreem,D2(𝐱b)=Γout,D2(𝐱b)+Γout,D2+(𝐱b)+βassoc2[Γout,D(𝐱b)+Γout,D+(𝐱b)].\displaystyle\Gamma_{\text{reem},\text{D}_{2}}(\mathbf{x^{\prime}_{\text{b}}})=\Gamma_{\text{out,D}_{2}}(\mathbf{x^{\prime}_{\text{b}}})+\Gamma_{\text{out,D}_{2}^{+}}(\mathbf{x^{\prime}_{\text{b}}})+\frac{\beta_{\text{assoc}}}{2}\left[\Gamma_{\text{\text{out,D}}}(\mathbf{x^{\prime}_{\text{b}}})+\Gamma_{\text{out,D}^{+}}(\mathbf{x^{\prime}_{\text{b}}})\right]. (71)

In addition to the projections of the boundary ion fluxes, Γout,D2+\Gamma_{\text{out,D}_{2}^{+}} and Γout,D2+\Gamma_{\text{out,D}_{2}^{+}}, Eqs. (70) and (71) take into account the projections along the direction normal to the boundary of the fluxes of D and D2\text{D}_{2} outflowing to the limiter and walls, Γout,D\Gamma_{\text{out,D}} and Γout,D2\Gamma_{\text{out,D}_{2}}. These are defined based on the neutral fluxes directed towards the boundary (i.e. for vp<0v_{p}<0) as

Γout,D(𝐱b)=vp<0(𝐯𝐩𝐧)fD(𝐱b,𝐯)𝑑𝐯\displaystyle\Gamma_{\text{out,D}}(\mathbf{x^{\prime}_{\text{b}}})=-\int_{v_{p}<0}\left(\mathbf{v_{p}}\cdot\mathbf{n}\right)f_{\text{D}}(\mathbf{x^{\prime}_{\text{b}}},\mathbf{v})d\mathbf{v} (72)

and

Γout,D2(𝐱b)=vp<0(𝐯𝐩𝐧)fD2(𝐱b,𝐯)𝑑𝐯.\displaystyle\Gamma_{\text{out,D}_{2}}(\mathbf{x^{\prime}_{\text{b}}})=-\int_{v_{p}<0}\left(\mathbf{v_{p}}\cdot\mathbf{n}\right)f_{\text{D}_{2}}(\mathbf{x^{\prime}_{\text{b}}},\mathbf{v})d\mathbf{v}. (73)

We assume that the velocity distribution of reemitted particles follows the Knudsen cosine law for a given wall temperature, TwT_{\text{w}}. This yields, for the D neutrals,

χin,D(𝐱b,𝐯)=34πmD2Tw2cos(θ)exp(mDv22Tw),\displaystyle\chi_{\text{in,D}}(\mathbf{x^{\prime}_{\text{b}}},\mathbf{v})=\frac{3}{4\pi}\frac{m_{\text{D}}^{2}}{T_{\text{w}}^{2}}\text{cos}(\theta)\exp\left(-\frac{m_{\text{D}}v^{2}}{2T_{\text{w}}}\right), (74)

while the expression for D2\text{D}_{2} molecules is analogously given by

χin,D2(𝐱b,𝐯)=34πmD22Tw2cos(θ)exp(mD2v22Tw).\displaystyle\chi_{\text{in,D}_{2}}(\mathbf{x^{\prime}_{\text{b}}},\mathbf{v})=\frac{3}{4\pi}\frac{m_{\text{D}_{2}}^{2}}{T_{\text{w}}^{2}}\text{cos}(\theta)\exp\left(-\frac{m_{\text{D}_{2}}v^{2}}{2T_{\text{w}}}\right). (75)

We now follow the same approach described in [35] to obtain a set of time-independent two-dimensional integral equations for the D and D2\text{D}_{2} densities, making the numerical implementation of the formal solution in Eqs. (60) and (61) feasible. More precisely, we first make use of the fact that the neutral time of flight is typically shorter than the characteristic timescales of turbulence, τnτturb\tau_{\text{n}}\ll\tau_{\text{turb}}, a condition that we denote as the neutral adiabatic regime. This allows us to approximate t=tt^{\prime}=t in Eqs. (60-67) or, equivalently, tfD=0\partial_{t}f_{\text{D}}=0 and tfD2=0\partial_{t}f_{\text{D}_{2}}=0 in Eqs. (58-59). Second, we note that the neutral mean free path is typically smaller than the characteristic elongation of turbulence structures along the magnetic field, λmfp,nk1\lambda_{\text{mfp,n}}k_{\|}\ll 1. Therefore, our description of neutral motion is reduced to the analysis of a set of independent two-dimensional planes perpendicular to the magnetic field, approximately coincident with the poloidal planes. Then, integrating Eqs. (60-61) over the velocity space, a system of two coupled equations for the densities of D and D2\text{D}_{2} is obtained,

nD(𝐱)=D𝑑A1r0𝑑vv0𝑑v{SD(𝐱,𝐯)vexp[1v0rνeff,D(𝐱′′)𝑑r′′]}\displaystyle n_{\text{D}}(\mathbf{x}_{\perp})=\int_{\text{D}}dA^{\prime}\frac{1}{r^{\prime}_{\perp}}\int_{0}^{\infty}dv_{\perp}v_{\perp}\int_{0}^{\infty}dv_{\|}\left\{\frac{S_{D}(\mathbf{x}^{\prime}_{\perp},\mathbf{v})}{v_{\perp}}\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]\right\} (76)
+D𝑑abcosθrb0𝑑vv0𝑑v{fD(𝐱b,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]},\displaystyle+\int_{\partial\text{D}}da^{\prime}_{\text{b}}\frac{\text{cos}\theta^{\prime}}{r^{\prime}_{\perp\text{b}}}\int_{0}^{\infty}dv_{\perp}v_{\perp}\int_{0}^{\infty}dv_{\|}\left\{f_{\text{D}}(\mathbf{x^{\prime}_{\perp\text{b}}},\mathbf{v})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]\right\},

and

nD2(𝐱)=D𝑑A1r0𝑑vv0𝑑v{SD2(𝐱,𝐯)vexp[1v0rνeff,D2(𝐱′′)𝑑r′′]}\displaystyle n_{\text{D}_{2}}(\mathbf{x}_{\perp})=\int_{\text{D}}dA^{\prime}\frac{1}{r^{\prime}_{\perp}}\int_{0}^{\infty}dv_{\perp}v_{\perp}\int_{0}^{\infty}dv_{\|}\left\{\frac{S_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp},\mathbf{v})}{v_{\perp}}\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]\right\} (77)
+D𝑑abcosθrb0𝑑vv0𝑑v{fD2(𝐱b,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]}.\displaystyle+\int_{\partial\text{D}}da^{\prime}_{\text{b}}\frac{\text{cos}\theta^{\prime}}{r^{\prime}_{\perp\text{b}}}\int_{0}^{\infty}dv_{\perp}v_{\perp}\int_{0}^{\infty}dv_{\|}\left\{f_{\text{D}_{2}}(\mathbf{x^{\prime}_{\perp\text{b}}},\mathbf{v})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]\right\}.

where the same geometrical arguments presented in [35] is used when considering the integral along the neutral path and the integral along the perpendicular velocity angle, that is

0r,b𝑑r02π𝑑ϑF(𝐱,𝐱)=D𝑑A1rF(𝐱,𝐱),\displaystyle\int_{0}^{r_{\perp,\text{b}}}dr^{\prime}_{\perp}\int_{0}^{2\pi}d\vartheta F(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{\text{D}}dA^{\prime}\frac{1}{r^{\prime}_{\perp}}F(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}), (78)

where dAdA^{\prime} is the area element in the 2D poloidal plane and F(𝐱,𝐱)F(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}) is a generic function. In addition, we use

0r,b𝑑r02π𝑑ϑδ(rrb)F(𝐱,𝐱)=D𝑑abcosθrbF(𝐱,𝐱b),\displaystyle\int_{0}^{r_{\perp,\text{b}}}dr^{\prime}_{\perp}\int_{0}^{2\pi}d\vartheta\delta(r^{\prime}_{\perp}-r^{\prime}_{\perp\text{b}})F(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{\partial\text{D}}da^{\prime}_{\text{b}}\frac{\text{cos}\theta^{\prime}}{r^{\prime}_{\perp\text{b}}}F(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp\text{b}}), (79)

with dabda^{\prime}_{\text{b}} being a line element along the boundary of D, denoted as D\partial\text{D}, and θ=arccos(𝛀𝐧^)\theta^{\prime}=\text{arccos}(\mathbf{\Omega}_{\perp}\cdot\mathbf{\hat{n}}).

We now express the volumetric source terms appearing in Eqs. (62) and (63), SD(𝐱,𝐯)S_{\text{D}}(\mathbf{x}^{\prime},\mathbf{v}) and SD2(𝐱,𝐯)S_{\text{D}_{2}}(\mathbf{x}^{\prime},\mathbf{v}), in terms of nDn_{\text{D}} and nD2n_{\text{D}_{2}}, and the distribution functions of the neutral species at the boundary appearing in Eqs. (66) and (63), fDf_{\text{D}} and fD2f_{\text{D}_{2}}, in terms of Γout,D+\Gamma_{\text{out,D}^{+}}, Γout,D2+\Gamma_{\text{out,D}_{2}^{+}}, Γout,D\Gamma_{\text{out,D}} and Γout,D2\Gamma_{\text{out,D}_{2}}. For nD2n_{\text{D}_{2}}, this yields

nD2(𝐱)=DnD2(𝐱)νcx,D2(𝐱)KppD2,D2+(𝐱,𝐱)𝑑A\displaystyle n_{\text{D}_{2}}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D}_{2}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime} (80)
+D(1αrefl(𝐱,b))Γout,D2(𝐱,b)KbpD2(𝐱,𝐱,b)𝑑ab\displaystyle+\int_{\partial\text{D}}(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\Gamma_{\text{out,D}_{2}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow p}^{\text{D}_{2}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})da^{\prime}_{\text{b}}
+D(1αrefl(𝐱,b))βassoc2Γout,D(𝐱,b)KbpD2(𝐱,𝐱,b)𝑑ab\displaystyle+\int_{\partial\text{D}}(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\frac{\beta_{\text{assoc}}}{2}\Gamma_{\text{out,D}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow p}^{\text{D}_{2}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})da^{\prime}_{\text{b}}
+DnD(𝐱)νcx,D-D2+(𝐱)KppD2,D2+(𝐱,𝐱)𝑑A+nD2[rec(D2+)](𝐱)\displaystyle+\int_{\text{D}}n_{\text{D}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D-D}_{2}^{+}}(\mathbf{x^{\prime}_{\perp}})K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}+n_{\text{D}_{2}[\text{rec}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})
+nD2[out(D2+)](𝐱)+nD2[out(D+)](𝐱),\displaystyle+n_{\text{D}_{2}[\text{out}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}_{2}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp}),

while for nDn_{\text{D}} one has

nD(𝐱)=DnD(𝐱)νcx,D(𝐱)KppD,D+(𝐱,𝐱)𝑑A\displaystyle n_{\text{D}}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime} (81)
+DnD2(𝐱)νcx,D2D+(𝐱)KppD,D+(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D}_{2}-\text{D}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+D2nD2(𝐱)νdiss,D2+(𝐱)KppD,diss(D2+)(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}2n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+DnD2(𝐱)νdiss-iz,D2+(𝐱)KppD,diss-iz(D2+)(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss-iz,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,diss-iz}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+D(1αrefl(𝐱,b))(1βassoc)Γout,D(𝐱,b)KbpD,reem(𝐱,𝐱,b)𝑑ab\displaystyle+\int_{\partial\text{D}}(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))(1-\beta_{\text{assoc}})\Gamma_{\text{out,D}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow p}^{\text{D,reem}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})da^{\prime}_{\text{b}}
+nD[rec(D+)](𝐱)+nD[out(D+)](𝐱)+nD[diss(D2+)](𝐱).\displaystyle+n_{\text{D}[\text{rec}(\text{D}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}[\text{diss}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp}).

Replacing vpv_{p} in Eqs. (73) and (72), the normal projections of the fluxes of D2\text{D}_{2} and D can be written respectively as Γout,D2(𝐱,b)=cos(θ)<0vcosθfD2(𝐱,b,𝐯)𝑑𝐯\Gamma_{\text{out,D}_{2}}(\mathbf{x}^{\prime}_{\perp,\text{b}})=-\int_{\text{cos}(\theta)<0}v_{\perp}\text{cos}\theta f_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp,\text{b}},\mathbf{v}_{\perp})d\mathbf{v}_{\perp} and Γout,D(𝐱,b)=cos(θ)<0vcosθfD(𝐱,b,𝐯)𝑑𝐯\Gamma_{\text{out,D}}(\mathbf{x}^{\prime}_{\perp,\text{b}})=-\int_{\text{cos}(\theta)<0}v_{\perp}\text{cos}\theta f_{\text{D}}(\mathbf{x}^{\prime}_{\perp,\text{b}},\mathbf{v}_{\perp})d\mathbf{v}_{\perp}. By replacing fD2(𝐱,b,𝐯)f_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp,\text{b}},\mathbf{v}_{\perp}) and fD(𝐱,b,𝐯)f_{\text{D}}(\mathbf{x}^{\prime}_{\perp,\text{b}},\mathbf{v}_{\perp}) by their expressions as given in Eqs. (66) and (67), these fluxes can be rewritten in terms of nDn_{\text{D}}, nD2n_{\text{D}_{2}}, Γout,D+\Gamma_{\text{out,D}^{+}}, Γout,D2+\Gamma_{\text{out,D}_{2}^{+}}, Γout,D\Gamma_{\text{out,D}} and Γout,D2\Gamma_{\text{out,D}_{2}} as

Γout,D2(𝐱,b)=DnD2(𝐱)νcx,D2(𝐱)KpbD2,D2+(𝐱,𝐱)𝑑A\displaystyle\Gamma_{\text{out,D}_{2}}(\mathbf{x}_{\perp,\text{b}})=\int_{\text{D}}n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D}_{2}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime} (82)
+D(1αrefl(𝐱,b))Γout,D2(𝐱,b)KbbD2(𝐱,𝐱,b)𝑑ab\displaystyle+\int_{\partial\text{D}}(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\Gamma_{\text{out,D}_{2}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow b}^{\text{D}_{2}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})da^{\prime}_{\text{b}}
+D(1αrefl(𝐱,b))βassoc2Γout,D(𝐱,b)KbbD2(𝐱,𝐱,b)𝑑ab\displaystyle+\int_{\partial\text{D}}(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\frac{\beta_{\text{assoc}}}{2}\Gamma_{\text{out,D}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow b}^{\text{D}_{2}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})da^{\prime}_{\text{b}}
+DnD(𝐱)νcx,D-D2+(𝐱)KpbD2,D2+(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}n_{\text{D}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D-D}_{2}^{+}}(\mathbf{x^{\prime}_{\perp}})K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+Γout,D2[rec(D2+)](𝐱)+Γout,D2[out(D2+)](𝐱)+Γout,D2[out(D+)](𝐱),\displaystyle+\Gamma_{\text{out,D}_{2}[\text{rec}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{out,D}_{2}[\text{out}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{out,D}_{2}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp}),

and

Γout,D(𝐱,b)=DnD(𝐱)νcx,D(𝐱)KpbD,D+(𝐱,𝐱)𝑑A\displaystyle\Gamma_{\text{out,D}}(\mathbf{x}_{\perp,\text{b}})=\int_{\text{D}}n_{\text{D}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime} (83)
+DnD2(𝐱)νcx,D2D+(𝐱)KpbD,D+(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{cx,D}_{2}-\text{D}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+D2nD2(𝐱)νdiss,D2+(𝐱)KpbD,diss(D2+)(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}2n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+DnD2(𝐱)νdiss-iz,D2+(𝐱)KpbD,diss-iz(D2+)(𝐱,𝐱)𝑑A\displaystyle+\int_{\text{D}}n_{\text{D}_{2}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss-iz,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,diss-iz}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}
+D(1αrefl(𝐱,b))(1βassoc)Γout,D(𝐱,b)KbbD,reem(𝐱,𝐱,b)𝑑ab\displaystyle+\int_{\partial\text{D}}(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))(1-\beta_{\text{assoc}})\Gamma_{\text{out,D}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow b}^{\text{D,reem}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})da^{\prime}_{\text{b}}
+ΓD[rec(D+)](𝐱)+ΓD[out(D+)](𝐱)+ΓD[diss(D2+)](𝐱),\displaystyle+\Gamma_{\text{D}[\text{rec}(\text{D}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{D}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{D}[\text{diss}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp}),

We note that that the neutral particle densities and fluxes in Eqs. (80-83) are multiplied by a factor 1αrefl(𝐱,b)1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}) in order to account only for the contribution of particles that are reemitted at the boundary, hence excluding reflection. Neutral reflection is included, in the definition of the kernel functions that appear in Eqs. (76-77).

We now turn to the definition of the kernel functions appearing in Eqs. (80-83). These are defined as integrals over velocity space. For instance, KppD2,D2+(𝐱,𝐱)K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}) quantifies the amount of D2\text{D}_{2} neutrals found at a location 𝐱\mathbf{x}_{\perp} in the plasma volume (pp) being generated from collisions involving neutralization of D2+\text{D}_{2}^{+} ions at a location 𝐱\mathbf{x}^{\prime}_{\perp} inside the plasma volume (pp). Its expression is given by

KppD2,D2+(𝐱,𝐱)=Kpp,dirD2,D2+(𝐱,𝐱)+αreflKpp,reflD2,D2+(𝐱,𝐱).\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{p\rightarrow p,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})+\alpha_{\text{refl}}K_{p\rightarrow p,\text{refl}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}).\end{aligned} (84)

which separates the contributions to nD2n_{\text{D}_{2}} arising from the direct path of length r,dirr^{\prime}_{\perp,\text{dir}} connecting 𝐱\mathbf{x}_{\perp} and 𝐱\mathbf{x}^{\prime}_{\perp}, Kpp,dirD2,D2+(𝐱,𝐱)K_{p\rightarrow p,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}), and the path corresponding to the trajectory of neutrals that are reflected at the boundary, Kpp,reflD2,D2+(𝐱,𝐱)K_{p\rightarrow p,\text{refl}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}). Both Kpp,dirD2,D2+K_{p\rightarrow p,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}} and Kpp,reflD2,D2+K_{p\rightarrow p,\text{refl}}^{\text{D}_{2},\text{D}_{2}^{+}} have the same expression,

Kpp,pathD2,D2+(𝐱,𝐱)=01r,pathΦ[𝐯D2+,TD2+](𝐱,𝐯)exp[1v0r,pathνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp,\text{path}}}\Phi_{\perp\left[\mathbf{v_{\perp}}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp,\text{path}}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (85)

where path={dir,refl}\text{path}=\{\text{dir},\text{refl}\} and r,pathr^{\prime}_{\perp,\text{path}} is the distance between 𝐱\mathbf{x}_{\perp} and 𝐱\mathbf{x}^{\prime}_{\perp} measured along the path (for the direct trajectory r,dirr^{\prime}_{\perp,\text{dir}} is given by the distance between the two points along a straight line, while for the reflected trajectory r,reflr^{\prime}_{\perp,\text{refl}} is the sum of the distances between 𝐱\mathbf{x}^{\prime}_{\perp} and the boundary and the distance from the boundary to 𝐱\mathbf{x}_{\perp}). We remark that Φ[𝐯D2+,TD2+](𝐱,𝐯)\Phi_{\perp\left[\mathbf{v_{\perp}}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}}) is the integral along the parallel velocity of the D2+\text{D}_{2}^{+} Maxwellian distribution function, Φ[𝐯D2+,TD2+](𝐱,𝐯)=Φ[𝐯D2+,TD2+](𝐱,𝐯)𝑑v\Phi_{\perp\left[\mathbf{v_{\perp}}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{-\infty}^{\infty}\Phi_{\left[\mathbf{v_{\perp}}_{\text{D}_{2}^{+}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v_{\perp}})dv_{\|}. We also remark that Kpp,dirD2,D2+K_{p\rightarrow p,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}} in Eq. (85) is valid in case the points are optically connected, i.e. if the straight line connecting the two points does not cross the core region nor the limiter plates. Otherwise, if the points are not connected, one has Kpp,dirD2,D2+=0K_{p\rightarrow p,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}}=0. As for Kpp,reflD2,D2+K_{p\rightarrow p,\text{refl}}^{\text{D}_{2},\text{D}_{2}^{+}}, in the present work we assume no reflection at the outer walls, while reflection of ions and neutrals may take place at the limiter plates. The other kernels appearing in Eqs. (76-77) have the same structure as KppD2,D2+K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}, and they take into account possible direct and reflected paths connecting the two points. These kernels are presented in detail in App. C.

We now turn to the evaluation of the non-homogeneous terms appearing in Eqs. (80-83), i.e. the terms that are not proportional to nDn_{\text{D}} nor nD2n_{\text{D}_{2}}. For instance, these terms include the contribution of the ions recycled at the wall. In fact, the reflection and reemission of D+\text{D}^{+} ions that outflow to the boundary and recombine with electrons contribute to the density of neutral D atoms, through the term

nD[out,D+](𝐱)=DΓout,D+(𝐱,b)[(1αrefl(𝐱,b))(1βassoc)KbpD,reem(𝐱,𝐱,b)+αrefl(𝐱,b)KbpD,refl(𝐱,𝐱,b)]dab,\displaystyle\begin{aligned} &n_{\text{D}[\text{out,D}^{+}]}(\mathbf{x}_{\perp})=\int_{\partial\text{D}}\Gamma_{\text{out,D}^{+}}(\mathbf{x}^{\prime}_{\perp,\text{b}})\left[(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\left(1-\beta_{\text{assoc}}\right)K_{b\rightarrow p}^{\text{D,reem}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})\right.\\ &\left.+\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow p}^{\text{D,refl}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})\right]da^{\prime}_{\text{b}},\end{aligned} (86)

where Γout,D+\Gamma_{\text{out,D}^{+}} is defined in Eq. (68). Similarly, the recombination of D2+\text{D}_{2}^{+} ions with electrons at the walls that are then either reflected or reemitted as D2\text{D}_{2}, and the recombination of D+\text{D}^{+} ions with electrons at the walls and the following association into D2\text{D}_{2} molecules contribute to the density of the D2\text{D}_{2} species. These contributions can be expressed as

nD2[out,D2+](𝐱)=DΓout,D2+(𝐱,b)[(1αrefl(𝐱,b))KbpD2,reem(𝐱,𝐱,b)+αrefl(𝐱,b)KbpD2,refl(𝐱,𝐱,b)]dab,\displaystyle\begin{aligned} &n_{\text{D}_{2}[\text{out,D}_{2}^{+}]}(\mathbf{x}_{\perp})=\int_{\partial\text{D}}\Gamma_{\text{out,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp,\text{b}})\left[(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))K_{b\rightarrow p}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})\right.\\ &\left.+\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow p}^{\text{D}_{2}\text{,refl}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})\right]da^{\prime}_{\text{b}},\end{aligned} (87)

and

nD2[out,D+](𝐱)=DΓout,D+(𝐱,b)[(1αrefl(𝐱,b))βassoc2KbpD2,reem(𝐱,𝐱,b)]𝑑ab.\displaystyle\begin{aligned} &n_{\text{D}_{2}[\text{out,D}^{+}]}(\mathbf{x}_{\perp})=\int_{\partial\text{D}}\Gamma_{\text{out,D}^{+}}(\mathbf{x}^{\prime}_{\perp,\text{b}})\left[(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\frac{\beta_{\text{assoc}}}{2}K_{b\rightarrow p}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp,\text{b}})\right]da^{\prime}_{\text{b}}.\end{aligned} (88)

We also define the non-homogeneous terms appearing in Eqs. (82-83), that provide the contributions to the flux of neutrals at the boundary, Γout,D\Gamma_{\text{out,D}} and Γout,D2\Gamma_{\text{out,D}_{2}}, given by the ions outflowing to the wall. Following a similar approach to the one presented above, this can be expressed as

Γout,D2[out,D2+](𝐱,b)=DΓout,D2+(𝐱,b)[(1αrefl(𝐱,b))KbbD2,reem(𝐱,b,𝐱,b)+αrefl(𝐱,b)KbbD2,refl(𝐱,b,𝐱,b)]dab,\displaystyle\begin{aligned} &\Gamma_{\text{out,D}_{2}[\text{out,D}_{2}^{+}]}(\mathbf{x}_{\perp,\text{b}})=\int_{\partial\text{D}}\Gamma_{\text{out,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp,\text{b}})\left[(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))K_{b\rightarrow b}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp,\text{b}},\mathbf{x}^{\prime}_{\perp,\text{b}})\right.\\ &\left.+\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow b}^{\text{D}_{2}\text{,refl}}(\mathbf{x}_{\perp,\text{b}},\mathbf{x}^{\prime}_{\perp,\text{b}})\right]da^{\prime}_{\text{b}},\end{aligned} (89)
Γout,D2[out,D+](𝐱,b)=DΓout,D+(𝐱,b)[(1αrefl(𝐱,b))βassoc2KbbD2,reem(𝐱,b,𝐱,b)]𝑑ab,\displaystyle\begin{aligned} &\Gamma_{\text{out,D}_{2}[\text{out,D}^{+}]}(\mathbf{x}_{\perp,\text{b}})=\int_{\partial\text{D}}\Gamma_{\text{out,D}^{+}}(\mathbf{x}^{\prime}_{\perp,\text{b}})\left[(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\frac{\beta_{\text{assoc}}}{2}K_{b\rightarrow b}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp,\text{b}},\mathbf{x}^{\prime}_{\perp,\text{b}})\right]da^{\prime}_{\text{b}},\end{aligned} (90)

and

Γout,D[out,D+](𝐱,b)=DΓout,D+(𝐱,b)[(1αrefl(𝐱,b))(1βassoc)KbbD,reem(𝐱,b,𝐱,b)+αrefl(𝐱,b)KbbD,refl(𝐱,b,𝐱,b)]dab.\displaystyle\begin{aligned} &\Gamma_{\text{out,D}[\text{out,D}^{+}]}(\mathbf{x}_{\perp,\text{b}})=\int_{\partial\text{D}}\Gamma_{\text{out,D}^{+}}(\mathbf{x}^{\prime}_{\perp,\text{b}})\left[(1-\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}}))\left(1-\beta_{\text{assoc}}\right)K_{b\rightarrow b}^{\text{D,reem}}(\mathbf{x}_{\perp,\text{b}},\mathbf{x}^{\prime}_{\perp,\text{b}})\right.\\ &\left.+\alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}})K_{b\rightarrow b}^{\text{D,refl}}(\mathbf{x}_{\perp,\text{b}},\mathbf{x}^{\prime}_{\perp,\text{b}})\right]da^{\prime}_{\text{b}}.\\ \end{aligned} (91)

We now turn to the evaluation of the contributions to the neutral particles appearing in Eqs. (80-83) caused by volumetric processes that involve the ion species D+\text{D}^{+} and D2+\text{D}_{2}^{+}. The contribution to the D2\text{D}_{2} density as a result of D2+\text{D}_{2}^{+} recombination processes is given by

nD2[rec,D2+](𝐱)=DnD2+(𝐱)νrec,D2+(𝐱)KppD2,D2+(𝐱,𝐱)𝑑A,\displaystyle\begin{aligned} n_{\text{D}_{2}[\text{rec,D}_{2}^{+}]}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{rec,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime},\end{aligned} (92)

and the contribution to the flux of D2\text{D}_{2} to the boundary, also associated to D2+\text{D}_{2}^{+} recombination events, is expressed as

Γout,D2[rec,D2+](𝐱)=DnD2+(𝐱)νrec,D2+(𝐱)KpbD2,D2+(𝐱,𝐱)𝑑A.\displaystyle\begin{aligned} \Gamma_{\text{out,D}_{2}[\text{rec,D}_{2}^{+}]}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{rec,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}.\end{aligned} (93)

Similar contributions from volumetric recombination processes are considered for the D neutral species. The contribution to the D density as a result of D+\text{D}^{+} recombination yields

nD[rec,D+](𝐱)=DnD+(𝐱)νrec,D+(𝐱)KppD,D+(𝐱,𝐱)𝑑A,\displaystyle\begin{aligned} n_{\text{D}[\text{rec,D}^{+}]}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{rec,D}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime},\end{aligned} (94)

while an analogous definition is used for the flux of D,

Γout,D[rec,D+](𝐱)=DnD+(𝐱)νrec,D+(𝐱)KpbD,D+(𝐱,𝐱)𝑑A.\displaystyle\begin{aligned} \Gamma_{\text{out,D}[\text{rec,D}^{+}]}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{rec,D}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})dA^{\prime}.\end{aligned} (95)

Finally, the contribution of the dissociation of D2+\text{D}_{2}^{+} ions to nDn_{\text{D}} appearing in Eq. (81) is evaluated as

nD[diss(D2+)](𝐱)=DnD2+(𝐱)νdiss,D2+(𝐱)KppD,diss(D2+)(𝐱,𝐱)𝑑A+D2nD2+(𝐱)νdiss-rec,D2+(𝐱)KppD,diss-rec(D2+)(𝐱,𝐱)𝑑A.\displaystyle\begin{aligned} &n_{\text{D}[\text{diss}(\text{D}_{2}^{+})]}(\mathbf{x_{\perp}})=\int_{\text{D}}n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp}},\mathbf{x}^{\prime}_{\perp})dA^{\prime}\\ &+\int_{\text{D}}2n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss-rec,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow p}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp}},\mathbf{x}^{\prime}_{\perp})dA^{\prime}.\end{aligned} (96)

Similarly, a dissociation process of D2+\text{D}_{2}^{+} ions results in a contribution to Γout,D\Gamma_{\text{out,D}} in Eq. (83) given by

Γout,D[diss(D2+)](𝐱)=DnD2+(𝐱)νdiss,D2+(𝐱)KpbD,diss(D2+)(𝐱,𝐛,𝐱)𝑑A+D2nD2+(𝐱)νdiss-rec,D2+(𝐱)KpbD,diss-rec(D2+)(𝐱,𝐛,𝐱)𝑑A.\displaystyle\begin{aligned} &\Gamma_{\text{out,D}[\text{diss}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})=\int_{\text{D}}n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp,b}},\mathbf{x}^{\prime}_{\perp})dA^{\prime}\\ &+\int_{\text{D}}2n_{\text{D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})\nu_{\text{diss-rec,D}_{2}^{+}}(\mathbf{x}^{\prime}_{\perp})K_{p\rightarrow b}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp,b}},\mathbf{x}^{\prime}_{\perp})dA^{\prime}.\end{aligned} (97)

For their numerical solution, the system of kinetic equations for the neutral species is discretized on a regular cartesian grid in the (R,Z)(R,Z) plasma and then written in matrix form. The details of the numerical implementation of the neutral model are discussed in App. D.

6 First simulation of a multi-component plasma with the GBS code

We present the first results from simulations of turbulence in the tokamak boundary carried out by using the multi-component plasma model described in Secs. II-IV and implemented in the GBS code. Similarly to [22, 35], we consider a tokamak with an infinitesimally thin toroidal limiter at the HFS equatorial midplane, with major radius R0/ρs0=500R_{0}/\rho_{\text{s}0}=500, and we simulate a three-dimensional domain with an annular cross section that includes the edge and the open-field line region of the device. The radial size of the domain is Srad=150ρs0S_{\text{rad}}=150\rho_{\text{s}0} and a the poloidal size is Spol=800ρs0S_{\text{pol}}=800\rho_{\text{s}0} at the core interface. Since the limiter has a radial width of 75ρs075\rho_{\text{s}0}), both the open and closed field-line regions have a radial extension of 75ρs075\rho_{\text{s}0}, corresponding to half the size along the radial direction. The parameters chosen for the present simulation are q=3.992q=3.992, n0=2×1013cm3n_{0}=2\times 10^{13}\text{cm}^{-3}, T0=20.0eVT_{0}=20.0\text{eV}, Ωci=5.0×107s1\Omega_{\text{ci}}=5.0\times 10^{7}\text{s}^{-1}, TW=0.3eVT_{\text{W}}=0.3\text{eV}, ν=0.1\nu=0.1, η0e=η0D+=1.0\eta_{0\text{e}}=\eta_{0\text{D}^{+}}=1.0, η0Ω=4.0\eta_{0\Omega}=4.0, χ0,e=0.5\chi_{\|0,\text{e}}=0.5, χ0,D+=0.05\chi_{\|0,\text{D}^{+}}=0.05, χ0,D2+=0.05\chi_{\|0,\text{D}_{2}^{+}}=0.05, Dne=0.5D_{\|\text{n}_{e}}=0.5, DnD2+=0.0D_{\|\text{n}_{\text{D}_{2}^{+}}}=0.0, Dve=0.5D_{\|v_{\|\text{e}}}=0.5, DvD+=0.0D_{\|v_{\|\text{D}^{+}}}=0.0, DvD2+=0.5D_{\|v_{\|\text{D}_{2}^{+}}}=0.5, Dne=21.0D_{\perp\text{n}_{\text{e}}}=21.0, Dve=0.5D_{\|v_{\|\text{e}}}=0.5, DvD+=0.0D_{\|v_{\|\text{D}^{+}}}=0.0, DvD2+=0.5D_{\|v_{\|\text{D}_{2}^{+}}}=0.5 and Dne=21.0D_{\perp\text{n}_{\text{e}}}=21.0, DnD2+=DΩ=Dve=DvD+=DvD2+=DTe=DTD+=DTD2+=7.0D_{\perp\text{n}_{\text{D}_{2}^{+}}}=D_{\perp\Omega}=D_{\perp v_{\|\text{e}}}=D_{\perp v_{\|\text{D}^{+}}}=D_{\perp v_{\|\text{D}_{2}^{+}}}=D_{\perp T_{\text{e}}}=D_{\perp T_{\text{D}^{+}}}=D_{\perp T_{\text{D}_{2}^{+}}}=7.0. Regarding the reflection probability at the limiter, we remark that it depends strongly on the particle energy and the wall material (see [1]). In this simulation, reflection of ions and neutrals takes place at the limiter plates with a given probability αrefl,lim\alpha_{\text{refl,lim}}, constant along the limiter surface. The fraction of reflection at the boundary is therefore defined as

αrefl(𝐱,b)={αrefl,lim0if 𝐱,bis located at limiter walls0if 𝐱,bis located at the outer and inner boundary.\displaystyle\begin{aligned} \alpha_{\text{refl}}(\mathbf{x}^{\prime}_{\perp,\text{b}})=\left\{\begin{array}[]{ll}\alpha_{\text{refl,lim}}\neq 0&\text{if\ }\mathbf{x}^{\prime}_{\perp,\text{b}}\text{is\ located\ at\ limiter\ walls}\\ 0&\text{if\ }\mathbf{x}^{\prime}_{\perp,\text{b}}\text{is\ located\ at\ the\ outer\ and\ inner\ boundary.}\end{array}\right.\end{aligned} (98)

We choose to consider metallic boundaries and hence we assume αrefl,lim=0.8\alpha_{\text{refl,lim}}=0.8, a value similar to the one adopted in [35]. We also assume βassoc=0.95\beta_{\text{assoc}}=0.95, which is consistent with the usual assumption that most D atoms associate into D2\text{D}_{2} molecules at the boundary (see e.g. [3, 55]).

Regarding the numerical parameters, we note that the plasma grid resolution is nx,p×ny,p×nz,p=255×511×64n_{\text{x,p}}\times n_{\text{y,p}}\times n_{\text{z,p}}=255\times 511\times 64 while neutral grid resolution is nx,n×ny,n×nz,n=24×138×64n_{\text{x,n}}\times n_{\text{y,n}}\times n_{\text{z,n}}=24\times 138\times 64. The time step is 3.75×105R0/cs3.75\times 10^{-5}R_{0}/c_{\text{s}} and the neutral quantities are evaluated every Δt=0.1R0/cs\Delta t=0.1R_{0}/c_{\text{s}}. Although we have not carried out convergence studies with the multispecies model presented in this paper, convergence on plasma and neutral grid refinement has been studied within the single component framework. The conclusions presented in [56], which we expect to remain valid in the multispecies model presented here, show that our results are converged with respect to the frequency of neutral calculation.

For the description of the simulation results we focus on the quasi-steady state regime, established after a transient, when the plasma and neutral profiles fluctuate around constant values. We take toroidal and time averages of the plasma quantities evolved by Eqs. (19-27) and (28) over a time interval of Δt10R0/cs0\Delta t\simeq 10R_{0}/c_{\text{s}0}. These quantities are shown in Fig. 2 on a poloidal cross section. In Fig. 3, we present the density of the neutral species, nDn_{\text{D}} and nD2n_{\text{D}_{2}}, and the neutral-plasma collisional interaction terms taken into account in our model. The results of the multispecies simulations are compared with the one of a single-component plasma, with corresponding parameters. The time and toroidal averages of the plasma and neutral main quantities for the single species simulation are shown in Fig. 4.

Refer to caption
Figure 2: Cross section plots of the electron density (nen_{\text{e}}), D+\text{D}^{+} density (nD+n_{\text{D}^{+}}), D2+\text{D}_{2}^{+} density (nD2+n_{\text{D}_{2}^{+}}), electron parallel velocity (vev_{\|\text{e}}), D+\text{D}^{+} parallel velocity (vD+v_{\|\text{D}^{+}}), D2+\text{D}_{2}^{+} parallel velocity (vD2+v_{\|\text{D}_{2}^{+}}), electron temperature (TeT_{\text{e}}), D+\text{D}^{+} temperature (TD+T_{\text{D}^{+}}), D2+\text{D}_{2}^{+} temperature (TD2+T_{\text{D}_{2}^{+}}) and electrostatic potential (ϕ\phi), toroidal and time-averaged over an interval of Δt=10.1R0/cs0\Delta t=10.1R_{0}/c_{\text{s}0} from the quasi-steady state of the multi-component plasma simulation described in Sec. 6.
Refer to caption
Figure 3: Cross section plots of the neutral species densities and source terms resulting from the neutral-plasma interaction, toroidal and time-averaged over an interval of Δt=10.1R0/cs0\Delta t=10.1R_{0}/c_{\text{s}0} from the quasi-steady state of the multi-component plasma simulation described in Sec. 6.

We first focus on some general considerations on the plasma and neutral densities. The plots in Figs. 2 reveal that the density of the molecular ion species D2+\text{D}_{2}^{+} is three to four orders of magnitude smaller than the density of the main ion species D+\text{D}^{+}, a result in agreement with the assumption nD2+/nD+1n_{\text{D}_{2}^{+}}/n_{\text{D}^{+}}\ll 1 used in Eqs. (22-27) for the derivation of the parallel friction and heat flux terms and in Eqs. (40-44) to obtain the boundary conditions at the limiter. We highlight that the density of D2+\text{D}_{2}^{+} peaks just inside the LCFS next to the limiter, since most of the D2\text{D}_{2} molecules cross the open-field line region without interacting and are then dissociated and/or ionized by the denser and warmer plasma inside the LCFS. As a matter of fact, nD2+n_{\text{D}_{2}^{+}} exhibits a similar behavior to the profile of the molecular ionization source nD2νiz,D2n_{\text{D}_{2}}\nu_{\text{iz},\text{D}_{2}} presented in Fig. 3, which also peaks in the edge near the limiter. On the other hand, Fig. 2 shows that nDn_{\text{D}} and nD2n_{\text{D}_{2}} are comparable to nD+n_{\text{D}^{+}} near the limiter plates, while they are about one order of magnitude smaller than nD+n_{\text{D}^{+}} in the rest of the SOL and up to two orders of magnitude smaller inside the LCFS. Furthermore, regarding the relative importance of D and D2\text{D}_{2}, Fig. 3 shows that nD2n_{\text{D}_{2}} is larger than nDn_{\text{D}} by a factor between two and three in the open-field line region around the limiter, while nDn_{\text{D}} is larger than nD2n_{\text{D}_{2}} inside the LCFS at the HFS, as a consequence of the higher plasma densities and temperatures that lead to the dissociation of D2\text{D}_{2} molecules in that region.

As a second set of observations, we focus on the asymmetry of the plasma density and flow. An up-down asymmetry in the edge region is shown by the profiles of nen_{\text{e}} and nD+n_{\text{D}^{+}}, which are noticeably larger below the equatorial midplane than above it. The underlying reason of this asymmetry can be inferred from the vev_{\|\text{e}}, vD+v_{\|\text{D}^{+}} and ΓD2+\Gamma_{\|\text{D}_{2}^{+}} profiles. In fact, the e\text{e}^{-} and D+\text{D}^{+} parallel flows are directed in the counterclockwise direction in the edge region. Therefore, the ionization of neutrals inside the LCFS, which occurs mostly in the proximity of the limiter at the HFS, leads to plasma particles subject to a downward flow. Albeit being small, this flow leads to a slightly larger density of e\text{e}^{-} and D+\text{D}^{+} below the equatorial midplane of the device. The parallel flux of D2+\text{D}_{2}^{+} ions is also directed counterclockwise in the edge at the HFS, which further enhances this mechanism, even though D2+\text{D}_{2}^{+} densities are small compared to the other species. We highlight that the nD+n_{\text{D}^{+}} and vD+v_{\|\text{D}^{+}} profiles are slightly different when the single-component model of GBS is considered, as illustrated in Fig. 4. In this case, although it is also observed an up-down asymmetry in the nD+n_{\text{D}^{+}} profile, this is related to the fact that the ionization source, nDνizn_{\text{D}}\nu_{\text{iz}}, is larger in the edge region below the limiter than above it, due to larger recycling rates at the lower limiter plate. In fact, contrary to the multispecies case, the vD+v_{\|\text{D}^{+}} is characterized by a counterclockwise parallel flow of D+\text{D}^{+} ions in the edge below the midplane, while above it the parallel flow is directed clockwise.

In the multi-component plasma simulation we also observe a larger parallel flow of plasma in the open-field line region towards the upper side of the limiter when compared to the lower side. This can be observed in Fig. 2, that shows larger nD+n_{\text{D}^{+}} and vD+v_{\|\text{D}^{+}} above the limiter plates than below it, ultimately leading to higher recycling rates and hence larger nDn_{\text{D}} and nD2n_{\text{D}_{2}} densities in the region above the limiter, as shown in Fig. 3. The reason behind this behaviour is again related to the vD+v_{\|\text{D}^{+}} profile. In fact, while the D+\text{D}^{+} ions flow counterclockwise along the magnetic field lines in the edge, they undergo cross-field transport towards the SOL. As a result of the counterclockwise parallel flow and related asymmetry of nD+n_{\text{D}^{+}} in the edge region, most ions cross the LCFS above the equatorial midplane, while flowing along the magnetic field lines towards the upper side of the limiter.

Refer to caption
Figure 4: Cross section plots of plasma density n=ne=nD+n=n_{\text{e}}=n_{\text{D}^{+}}, ion parallel velocity vD+v_{\|\text{D}^{+}}, ion temperature TD+T_{\text{D}^{+}} and ionization source term nD+νizn_{\text{D}^{+}}\nu_{\text{iz}}, toroidal and time-averaged over an interval of Δt=10.1R0/cs0\Delta t=10.1R_{0}/c_{\text{s}0} from a quasi-steady state single-component plasma simulation. The grid sizes and simulation parameters are the same as the ones considered in the multi-component simulations, except for the wall re-emission temperature, which is set to TW=3.0eVT_{\text{W}}=3.0\text{eV}, to mimick Franck-Condon dissociation processes, and Dne=7.0D_{\perp\text{n}_{\text{e}}}=7.0.

It is also observed that nD+n_{\text{D}^{+}} is slightly larger in the HFS compared to the LFS, which is due to the existence of D+\text{D}^{+} sources in the HFS around the midplane. Similarly, also in the single-species simulation, nD+n_{\text{D}^{+}} is larger in the HFS as a consequence of the ionization source, nDνizn_{\text{D}}\nu_{\text{iz}}.

Focusing on the temperature of the plasma components, we observe that the TeT_{\text{e}} profile presents a similar behaviour to the one observed in single-component plasma simulations. A clear asymmetry between the HFS and the LFS is observed for TD+T_{\text{D}^{+}}, which is qualitatively similar to the results for a single-component simulation in Fig. 4. As a matter of fact, the temperature is considerably lower on the HFS compared to the LFS, which is related to the generation of cold D+\text{D}^{+} ions inside the LCFS due to ionization of D atoms, dissociative processes and charge-exchange interactions. This effect is particularly important above the limiter, where the recycling rates are larger. On the other hand, the profile of pD2+p_{\text{D}_{2}^{+}} exhibits a maximum inside the LCFS at the HFS, where the majority of the D2+\text{D}_{2}^{+} ions are generated by ionization of D2\text{D}_{2} molecules coming from the limiter. The up-down asymmetry of the D2+\text{D}_{2}^{+} pressure around the limiter is also due to the asymmetry of the recycling rates. As an aside note, we remark that, since it is strongly related to the TeT_{\text{e}} profile [57], the electrostatic potential profile revealed by the multi-fluid simulations is similar to the one observed in the single-component plasma model.

Analyzing the neutral-plasma interaction terms presented in Fig. 3, we first notice that ionization processes tend to be more important in the edge region at the HFS, with atomic and molecular ionization rates exhibiting similar profiles. However, nD2νiz,D2n_{\text{D}_{2}}\nu_{\text{iz},\text{D}_{2}} peaks in the vicinity of the LCFS, while nDνiz,Dn_{\text{D}}\nu_{\text{iz},\text{D}} peaks further inside the LCFS and has a larger radial spread. In fact, D2\text{D}_{2} molecules generated in the open-field line region and are dissociated and/or ionized in the proximity of the LCFS, where the plasma is warmer and denser. In contrast, although most D atoms are generated in the open-field line region, they are also created by dissociation of D2\text{D}_{2} molecules in the edge. This shifts the maximum of nDνiz,Dn_{\text{D}}\nu_{\text{iz},\text{D}} radially inwards and makes the ionization source spread across a wider area. As a result of nDn_{\text{D}} being larger than nD2n_{\text{D}_{2}} in the edge, the maximum of nDνiz,Dn_{\text{D}}\nu_{\text{iz},\text{D}} is also almost two times larger than nD2νiz,D2n_{\text{D}_{2}}\nu_{\text{iz},\text{D}_{2}}.

Focusing on the electron-neutral collisions, we note that the reactions involving D2\text{D}_{2} occur more often in the open-field line region, mainly in the area surrounding the limiter plates where the majority of the neutral molecules are generated. Reactions with D2\text{D}_{2} become less important in the edge, since most molecules are dissociated and/or ionized due to the higher densities and temperatures. On the other hand, electron-atom collision reactions involving the D species peak inside the LCFS, because the cross sections of these reactions are larger in the edge region due to the higher plasma density and temperature and because of the presence of D atom resulting from dissociative processes. We also highlight that elastic collisions and charge-exchange reactions are more frequent on the upper side of the limiter, in agreement with the strong up-down asymmetry discussed above. Regarding charge-exchange reactions, we observe that they are spatially localized similarly to the electron-neutral collisions. The reactions between the two molecular species (D2D2+\text{D}_{2}-\text{D}_{2}^{+} collisions) occur less often than the charge-exchange between mono-atomic species (DD+\text{D}-\text{D}^{+} collisions) by three to four orders of magnitude, which is a result of the nD2+n_{\text{D}_{2}^{+}} to nD+n_{\text{D}^{+}} ratio. In addition, the terms arising from charge-exchange interactions between D2\text{D}_{2} molecules and D+\text{D}^{+} ions (D2D+\text{D}_{2}-\text{D}^{+} collisions) are found to be two orders of magnitude smaller than the ones between the atomic species (DD+\text{D}-\text{D}^{+} collisions) in the region of the domain where these interactions are important. In turn, charge-exchange between D2+\text{D}_{2}^{+} ions and D atoms is three orders of magnitude smaller than DD+\text{D}-\text{D}^{+} charge-exchange, which is due to the fact that nDνcx,DD2+n_{\text{D}}\nu_{\text{cx},\text{D}-\text{D}_{2}^{+}} is proportional to nD2+n_{\text{D}_{2}^{+}}.

Finally, we analyse the dissociative processes, which represent a sink of molecular species D2\text{D}_{2} and D2+\text{D}_{2}^{+} and sources of D atoms and D+\text{D}^{+} ions. Simple dissociation of D2\text{D}_{2} and D2+\text{D}_{2}^{+}, described by the terms nD2νdi,D2n_{\text{D}_{2}}\nu_{\text{di},\text{D}_{2}} and nD2+νdi,D2+n_{\text{D}_{2}^{+}}\nu_{\text{di},\text{D}_{2}^{+}} respectively, which do not involve ionization nor recombination processes, are found to be dominant dissociation processes, and occur with a frequency similar to that of the ionization of D and D2\text{D}_{2}. We remark that dissociation of D2\text{D}_{2} molecules peaks just above the limiter plate (where most D2\text{D}_{2} molecules are generated) and in the edge region, in the vicinity of the LCFS, and then it is significantly smaller in the core, since nD2n_{\text{D}_{2}} drops rapidly across the edge. In contrast, dissociation of D2+\text{D}_{2}^{+} ions is very small in the open-field line region, where the density of D2+\text{D}_{2}^{+} is negligible (at the typical electron temperature of the SOL, the D2\text{D}_{2} ionization cross section is small), and is important only inside the LCFS, where D2+\text{D}_{2}^{+} ions are generated. The nD2+νdi,D2+n_{\text{D}_{2}^{+}}\nu_{\text{di},\text{D}_{2}^{+}} profile therefore closely follows the nD2+n_{\text{D}_{2}^{+}} profile, with a larger radial spread when compared with the dissociation of D2\text{D}_{2}. As for dissociative ionization of D2\text{D}_{2} and D2+\text{D}_{2}^{+}, nD2νdiiz,D2n_{\text{D}_{2}}\nu_{\text{di}-{\text{iz}},\text{D}_{2}} and nD2+νdiiz,D2+n_{\text{D}_{2}^{+}}\nu_{\text{di}-{\text{iz}},\text{D}_{2}^{+}} respectively, we observe that the rates are smaller by one to two orders of magnitude with respect to the simple dissociation of D2\text{D}_{2} and D2+\text{D}_{2}^{+} and peak in the edge region a bit further inside. This is due to the fact that the energy required to trigger dissociative ionization processes is considerably larger than the one needed to dissociate the particles without triggering an ionization process, as shown in Table II. Hence, these processes are only relevant in the edge region, where densities and temperatures are sufficiently high to make these cross sections significant. This is particularly the case of nD2+νdiiz,D2+n_{\text{D}_{2}^{+}}\nu_{\text{di}-{\text{iz}},\text{D}_{2}^{+}}, since this term is also proportional to the density of D2+\text{D}_{2}^{+} ions, which is relevant only inside the LCFS. Nevertheless, we highlight that these reactions become considerably less important towards the core, as very few D2\text{D}_{2} and D2+\text{D}_{2}^{+} cross the edge region without being dissociated. As for dissociative-recombination of D2+\text{D}_{2}^{+} particles, nD2+νdirec,D2+n_{\text{D}_{2}^{+}}\nu_{\text{di}-{\text{rec}},\text{D}_{2}^{+}}, its amplitude is also smaller than that of simple dissociation by one to two orders of magnitude and follows very closely the nD2+n_{\text{D}_{2}^{+}} profile, since there is no energy threshold to trigger the reaction, unlike dissociative ionization processes.

These results allow us to draw a global picture of the main processes determining the dynamics of D2\text{D}_{2} neutrals in the boundary. Although some D2\text{D}_{2} molecules are dissociated in the SOL region, most of them cross the LCFS and are dissociated into D atoms within a short distance as they get in contact with the warmer and denser plasma of the edge. The remaining D2\text{D}_{2} molecules penetrate further towards the core and are ionized by the increasingly warmer and denser plasma, giving rise to D2+\text{D}_{2}^{+} ions, which in turn are quickly dissociated into D+\text{D}^{+} ions and D atoms.

We remark that, in the multi-component as well as in the single-component simulations, given the low plasma density of the SOL, a significant amount of D atoms generated in the open-field line region (emitted at the limiter or created by dissociation of D2\text{D}_{2} molecules) penetrate in the edge, where ionization takes place due to the higher plasma density and temperature. However, the presence of the D sources inside the LCFS in the multi-component simulations shifts the ionization processes, nDνizn_{\text{D}}\nu_{\text{iz}}, towards the core with respect to the results with respect to single-component simulations, as shown in Fig. 4.

Refer to caption
Figure 5: Radial profiles of the ions and neutrals species densities, averaged over the toroidal and poloidal directions, evaluated over an interval of Δt=10.1R0/cs0\Delta t=10.1R_{0}/c_{\text{s}0} from a quasi-steady state simulation described in Sec. 6.

To conclude, we present radial plots of the particle densities (Fig. 5) and radial fluxes (Fig. 6), obtained by evaluating the time, toroidal and poloidal average of these quantities. In Fig. 6, we discriminate the contributions of the E×B\text{E}\times\text{B}, diamagnetic and polarization drifts to the flux of the plasma ion species, D+\text{D}^{+} and D2+\text{D}_{2}^{+}. The results from the single-component simulations are shown in Fig. 7. The nD+n_{\text{D}^{+}} profile in Fig. 5 is similar to the one observed within the single-component plasma simulation in Fig. 7, with a large density gradient region near the LCFS and a density shoulder appearing in the far SOL. In turn, the density of D2+\text{D}_{2}^{+} is small in the whole domain and peaks in the edge, across the LCFS, where most D2\text{D}_{2} molecules are ionized and decreases rapidly towards the core, due to the small penetration of D2\text{D}_{2} molecules in the warmer and denser plasma of the region. On the other hand, the D2+\text{D}_{2}^{+} ions observed in the open-field line region result from charge-exchange interactions between D2\text{D}_{2} and D+\text{D}^{+} (see Fig. 3) and the ionization of D2\text{D}_{2} molecules reemitted from the limiter and vessel wall.

Refer to caption
Figure 6: Radial profiles of the radial flux for D+\text{D}^{+} ions (top), D2+\text{D}_{2}^{+} ions (middle) and neutral species D and D2\text{D}_{2} (bottom), averaged over the toroidal and poloidal directions, evaluated over an interval of Δt=10.1R0/cs0\Delta t=10.1R_{0}/c_{\text{s}0} from the quasi-steady state multi-component plasma simulation described in Sec. 6. The components of the D+\text{D}^{+} and D2+\text{D}_{2}^{+} radial flux are discriminated.

Focusing on the neutral species, we note that nDn_{\text{D}} peaks in the open-field line region, in contrast to the single-component plasma simulation. This is the result of the D2\text{D}_{2} molecules dissociated into D atoms in the edge and near SOL. On the other hand, we observe that nD2n_{\text{D}_{2}} decreases monotonically from the outer wall to the core interface, since D2\text{D}_{2} molecules are generated in the open-field line region as the result of recycling processes are lost due to dissociation and ionization processes which take place mostly in the edge and near SOL.

The dissociation of D2\text{D}_{2} molecules also impacts ΓD\Gamma_{\text{D}}, the radial flux of D, presented in Fig. 6. In contrast with the single-component plasma simulation presented in Fig. 7, ΓD\Gamma_{\text{D}} points radially inwards in the edge, but reverses sign in the SOL region, a consequence of the release of D atoms because of the dissociation of D2\text{D}_{2} molecules, particularly important close to the LCFS. In addition, the D atoms reaching the outer wall associate and are reemitted as D2\text{D}_{2} molecules, thus contributing to the outward flux of D. The multi-component simulation shows that ΓD\Gamma_{\text{D}} peaks in the edge region, while for a single-component model ΓD\Gamma_{\text{D}} is maximum at the LCFS. This is due to the D atoms that are generated in the edge region close to the LCFS in a multi-component model, compensating their ionization. At the same time, we note that ΓD2\Gamma_{\text{D}_{2}}, the radial flux of D2\text{D}_{2} molecules, points radially inwards in the whole domain (see Fig. 6). More precisely, ΓD2\Gamma_{\text{D}_{2}} is approximately constant in the SOL, because the loss of D2\text{D}_{2} molecules due to dissociation is compensated by the D2\text{D}_{2} molecules recycled at the limiter. Then, ΓD2\Gamma_{\text{D}_{2}} decreases in the edge as a consequence of the molecules being dissociated and/or ionized because of the larger temperatures and densities in this region and becomes negligible towards the core.

Refer to caption
Figure 7: Radial profiles of density (top) and radial flux (bottom) for the D+\text{D}^{+} and D species, averaged over the toroidal and poloidal directions, evaluated over an interval of Δt=10.1R0/cs0\Delta t=10.1R_{0}/c_{\text{s}0} from a quasi-steady state single-component plasma situation. The components behind the radial ion flux are discriminated. Plasma and neutral grid resolution, as well as simulation parameters, are the same considered in Fig. 4.

Turning to the dynamics of the ion species, we note that the radial flux of D+\text{D}^{+} ions points radially outwards across the whole domain and is mostly determined by the dominant E×B\text{E}\times\text{B} flux except near the core, where the diamagnetic flux, dominates over the E×B\text{E}\times\text{B} flux. The polarization drift contribution is negligible in the whole domain. We also remark that the flux increases across the edge region from the core to the separatrix, having a maximum in the near SOL, and then decreases gradually across the open-field line region. This contrasts with the behavior of the ion flux in the single-component plasma simulation (see Fig. 7), where the flux peaks at the LCFS. This difference is related to the location of the ionization source nDνizn_{\text{D}}\nu_{\text{iz}}. Indeed, while the source has a smooth profile and peaks at the LCFS in the single-component model, the ionization source peaks further inside the edge in the multi-component model, accounting for a sharp increase of the D+\text{D}^{+} flux in the edge close to the LCFS.

Fig. 6 shows that the radial flux of D2+\text{D}_{2}^{+} ions points radially outwards in the SOL and radially inwards in the edge. This is a consequence of the fact that most D2+\text{D}_{2}^{+} are generated in the vicinity of the LCFS, where the D2\text{D}_{2} molecules are ionized by the warmer and denser plasma. The D2+\text{D}_{2}^{+} radial flux is determined by the balance between the inward pointing E×B\text{E}\times\text{B} and outward pointing diamagnetic drift components in the SOL, by the E×B\text{E}\times\text{B} flux in the edge close to the LCFS, and by the diamagnetic component towards the core.

We also note that the inward pointing ΓD2+\Gamma_{\text{D}_{2}^{+}} is sharply peaked in the edge, close to the LCFS. This is because most D2+\text{D}_{2}^{+} ions are generated by ionization of D2\text{D}_{2} molecules in that region and are then dissociated after traveling a short distance. Indeed, the location of the peak of ΓD2+\Gamma_{\text{D}_{2}^{+}} corresponds to the one of the nD2+n_{\text{D}_{2}^{+}} profile in Fig. 5. The flux of D2+\text{D}_{2}^{+} associated with the polarization drift is not represented in Fig. 6 because it is neglected in our model. We note that ΓD2+\Gamma_{\text{D}_{2}^{+}} is three to four orders of magnitude smaller than ΓD+\Gamma_{\text{D}^{+}}, which is a consequence of the ratio nD2+/nD+n_{\text{D}_{2}^{+}}/n_{\text{D}^{+}}. Since the polarization drift component is expected to be small compared to the total molecular ion flux, ΓD2+\Gamma_{\text{D}_{2}^{+}}, we conclude that neglecting the polarization drift terms in Eqs. (19-27) has indeed a negligible impact on the simulation results.

7 Conclusions

In this work we present a multi-component model for the self-consistent description of the neutral and plasma dynamics in the tokamak boundary. This model is implemented in the GBS code, allowing for the simulation of a deuterium plasma in the edge and SOL regions of a tokamak, including electrons, D+\text{D}^{+} and D2+\text{D}_{2}^{+} ions, D atoms and D2\text{D}_{2} molecules. The neutral and the plasma models are coupled through a number of collisional processes, which give rise to neutral-plasma interaction terms in the plasma and neutral equations. The reactions considered include ionization, electron-neutral elastic collisions, charge-exchange and dissociative processes. The multi-component plasma model relies on the Braginskii fluid equations derived in the drift limit, being an extension of the single ion species model to account for D2+\text{D}_{2}^{+} ions and closed by following Zhdanov approach. As for the neutral species, we extend the approach considered in the single neutral species model of GBS [35] to include the molecular species, D2\text{D}_{2}. The neutrals are computed by solving two coupled kinetic equations for the D and D2\text{D}_{2} species, which is carried out by using the method of characteristics. The resulting system of linear integral equations are then discretized and solved for the nDn_{\text{D}} and nD2n_{\text{D}_{2}} densities.

The results from the first simulation carried out using the multi-component model are described in the sheath-limited regime in a toroidally limited plasma. The results exhibit some noticeable differences with respect to the single-ion component implemented in GBS. We observe an up-down asymmetry in the nen_{\text{e}} and nD+n_{\text{D}^{+}} density, which are larger below the equatorial midplane. This is related to the counterclockwise parallel flow of the plasma in the edge, observed in the profiles of vev_{\|\text{e}}, vD+v_{\|\text{D}^{+}} and vD2+v_{\|\text{D}_{2}^{+}}. This feature also leads to larger recycling rates and a higher density of neutral particles in the upper side of the limiter, compared to the lower side. Moreover, the simulation shows that the density of the neutral species, nDn_{\text{D}}, is about one order of magnitude smaller than nD+n_{\text{D}^{+}} in the open-field line region and two orders of magnitude smaller in the edge, while nD2+n_{\text{D}_{2}^{+}} is about three to four orders of magnitude smaller than nD+n_{\text{D}^{+}}, even in the edge close to the LCFS, where nD2+n_{\text{D}_{2}^{+}} peaks.

By taking into account the molecular dynamics, the first simulations based upon the multi-component model also shed some light on the role played by molecules on the plasma fuelling. As a matter of fact, D2\text{D}_{2} particles are generated close to the LCFS. A large fraction of D2\text{D}_{2} molecules reach the closed field line region, where they are most often dissociated into atomic D by the warmer and denser plasma. The resulting D atoms and the remaining D2\text{D}_{2} molecules are then ionized inside the edge, with the D2+\text{D}_{2}^{+} ions being quickly dissociated as a consequence of the high electron densities and temperatures. The simulation results therefore show that the peak of the ionization of D atoms is shifted radially inwards with respect to the results from the single-species simulations.

The radial profiles of the densities and radial fluxes are also impacted by the presence of molecular species. We observe that the radial flux of D+\text{D}^{+} increases sharply in the edge close to the LCFS as a result of the peak of the ionization source observed in that region. The flux of D+\text{D}^{+} then remains high in the vicinity of the LCFS, and decreases sharply again in the near SOL, where the sources of D+\text{D}^{+} are outweighed by the sinks at the limiter. This is a major difference with respect to the D+\text{D}^{+} flux observed in the single-ion species simulation, which is maximum at the LCFS. On the other hand, the D density peaks in the SOL due to the D2+\text{D}_{2}^{+} ions dissociated there. This also explains why the D radial flux reverses sign, pointing radially outwards in the far SOL. On the other hand, the inward flux of D atoms in the edge increases radially inwards in the vicinity of the LCFS, since D atoms are also generated in that region as a result of dissociation of D2\text{D}_{2} molecules.

Ultimately, our results show that the multi-component model for the self-consistent description of the neutral-plasma interaction can provide a description of a deuterium plasma that captures the main features of the molecular dynamics and its overall impact. While describing the turbulent phenomena that lead to cross-field transport, it is possible to address a multi-component plasma and more than one neutral species at a kinetic level. The procedure described here can be extended to include additional plasma and neutral species, as well as additional collisional processes.

Appendix A: Evaluation of average electron energy loss and reaction product energies in collisional processes

The Franck-Condon principle [58, 59] states that electronic excitation occurs over a timescale considerably shorter than the characteristic timescale associated with vibration or dissociation of the diatomic species. In turn, the vibration or dissociation timescales are much shorter than the electron deexcitation timescale. As a result, when an electron impacts a D2\text{D}_{2} molecule or a D2+\text{D}_{2}^{+} ion, an electronic excitation is observed with no significant change in the inter-atomic distance (vertical transition). If the excited state is not stable, the molecule dissociates before deexcitation takes place. In this case, the difference between the excitation energy and the dissociation energy is converted into kinetic energy of the products (ionization and dissociative energies are discussed in [60]). We note that the exact energies of the products of dissociation reactions depend on the vibrational level of the D2\text{D}_{2} molecule or D2+\text{D}_{2}^{+} ion. Considering the excitation of a D2\text{D}_{2} molecule in a given initial state, the set of vibrational levels accessible for the molecule in the final state are the ones lying within the region of the potential energy surface accessed by that particular vertical transition, known as the Franck-Condon region. The mean energy of the reaction products is thus the average over the Franck-Condon region, taking into account all accessible vibrational states.

In the present work, we model the products of dissociative reactions by considering that they are reemitted isotropically in the reference frame of the incoming massive particle (D2\text{D}_{2} or D2+\text{D}_{2}^{+}), thus approximating their velocity distribution as a Maxwellian centered at the velocity of the incoming D2\text{D}_{2} or D2+\text{D}_{2}^{+}. The temperature of the Maxwellian, together with the average electron energy loss for each process, are obtained from the values presented in [43]. Since these energies depend on the intermediate excited state of the D2\text{D}_{2} or D2+\text{D}_{2}^{+} particle, different values are found for different channels within the same dissociative process. This requires that an average is performed over all possible excited states, taking into account the respective cross section of each process. We present these calculations in detail for each process, following [43].

The energy loss and the energy of the reaction products may depend on the electronic levels (nn) and sub-levels (ll) of the reaction products, on the molecular orbital (MO) of the intermediate state, if bonding or antibonding, and on the energy of the incident electron. The energy values are experimentally determined for all relevant dissociation channels. These quantities are then averaged over all vibrational states vv of the D2\text{D}_{2} molecules or D2+\text{D}_{2}^{+} ion and over the Franck-Condon region, from [43].

We start by considering the dissociation of D2\text{D}_{2} molecules, i.e.

e+D2e+D+D.\displaystyle\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}+\text{D}. (99)

For this reaction, the values of the electron energy loss, ΔEe\left\langle\Delta E_{\text{e}}\right\rangle, and reaction product energies, ED\left\langle E_{\text{D}}\right\rangle, depend significantly on the electronic state of the products. Hence, considering that there are i=1,,Ni=1,...,N electronic states of the reaction products and, associated, NN different sub-processes contributing to the dissociation of D2\text{D}_{2}, the average electron energy loss ΔEe\left\langle\Delta E_{\text{e}}\right\rangle is obtained by performing a weighed average of ΔEei\left\langle\Delta E_{\text{e}}\right\rangle_{i}, the energy loss for the sub-process ii, based on the σvi\left\langle\sigma v\right\rangle_{i} reaction rate, yielding

ΔEe=Σi=1N[σviΔEei]Σi=1N[σvi],\displaystyle\left\langle\Delta E_{\text{e}}\right\rangle=\frac{\Sigma_{i=1}^{N}\left[\left\langle\sigma v\right\rangle_{i}\left\langle\Delta E_{\text{e}}\right\rangle_{i}\right]}{\Sigma_{i=1}^{N}\left[\left\langle\sigma v\right\rangle_{i}\right]}, (100)

For simplicity, we evaluate all quantities at the reference temperature, Te=20eVT_{\text{e}}=20\text{eV}. Similarly, the average value for the energy of the reaction products is obtained as

ED=Σi=1N[σviEDi]Σi=1N[σvi],\displaystyle\left\langle E_{\text{D}}\right\rangle=\frac{\Sigma_{i=1}^{N}\left[\left\langle\sigma v\right\rangle_{i}\left\langle E_{\text{D}}\right\rangle_{i}\right]}{\Sigma_{i=1}^{N}\left[\left\langle\sigma v\right\rangle_{i}\right]}, (101)

with EDi\left\langle E_{\text{D}}\right\rangle_{i} the average energy of the products for the sub-process ii.

The values of σvi\left\langle\sigma v\right\rangle_{i}, ΔEei\left\langle\Delta E_{\text{e}}\right\rangle_{i}, EDi\left\langle E_{\text{D}}\right\rangle_{i} are presented in Table 3 for all sub-processes. The additional information between brackets refers to the minimum and maximum of the range of energies accessible to ΔEei\left\langle\Delta E_{\text{e}}\right\rangle_{i} and EDi\left\langle E_{\text{D}}\right\rangle_{i}, following the values listed in [43]. We highlight that D(1s)\text{D}(1\text{s}) denotes a D atom in the fundamental state (electron at the lowest orbital 1s1\text{s}), while D(2s)\text{D}^{*}(2\text{s}) and D(2p)\text{D}^{*}(2\text{p}) denote an atom in the excited state n=2n=2 with the electron in an orbital of type ss or pp, respectively, and D(n=3)\text{D}^{*}(n=3) represents an atom in the excited state n=3n=3. Following [43], we assume that the energy is equally distributed over the reaction products, regardless of the fact that their electronic states are the same. Based on the values in Table 3, from Eqs. (100) and (101), we obtain ΔEe14.3eV\left\langle\Delta E_{\text{e}}\right\rangle\simeq 14.3\text{eV} and ED1.95eV\left\langle E_{\text{D}}\right\rangle\simeq 1.95\text{eV}, respectively, at Te=20eVT_{\text{e}}=20\text{eV}. These are the values mentioned in Table 2.

  • Reaction σvei\left\langle\sigma v_{\text{e}}\right\rangle_{i} ΔEei\left\langle\Delta E_{\text{e}}\right\rangle_{i} EDi\left\langle E_{\text{D}}\right\rangle_{i}
    e+D2e+D(1s)+D(1s)\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}(1\text{s})+\text{D}(1\text{s}) 3.8×109cm3/s3.8\times 10^{-9}\text{cm}^{3}/\text{s} 10.5eV10.5\text{eV} 3eV3\text{eV}
    e+D2e+D(1s)+D(2s)\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}(1\text{s})+\text{D}^{*}(2\text{s}) 5.3×109cm3/s5.3\times 10^{-9}\text{cm}^{3}/\text{s} 15.3eV15.3\text{eV} 0.3eV0.3\text{eV}
    e+D2e+D(2p)+D(2s)\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}^{*}(2\text{p})+\text{D}^{*}(2\text{s}) 9.2×1010cm3/s9.2\times 10^{-10}\text{cm}^{3}/\text{s} 34.6eV34.6\text{eV} 4.85eV4.85\text{eV}
    e+D2e+D(1s)+D(n=3)\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\text{D}(1\text{s})+\text{D}^{*}(\text{n}=3) 5.7×1010cm3/s5.7\times 10^{-10}\text{cm}^{3}/\text{s} 21.5eV21.5\text{eV} 5.7eV5.7\text{eV}
Table 3: σve\left\langle\sigma v_{\text{e}}\right\rangle product, average electron energy loss and average energy of reaction products for each sub-process of D2\text{D}_{2} dissociation.

Focusing now on the dissociative-ionization of D2\text{D}_{2},

e+D2D+D++2e,\displaystyle\text{e}^{-}+\text{D}_{2}\rightarrow\text{D}+\text{D}^{+}+2\text{e}^{-}, (102)

we consider three cases. If the incoming electron has an energy Ee<Eth(g)E_{\text{e}}<E_{\text{th}(\text{g})}, with Eth(g)=18eVE_{\text{th}(\text{g})}=18\text{eV}, no dissociation takes place. If Eth(g)<Ee<Eth(u)E_{\text{th}(\text{g})}<E_{\text{e}}<E_{\text{th}(\text{u})}, with Eth(u)=26eVE_{\text{th}(\text{u})}=26\text{eV}, the electron can ionize the molecule, resulting in an unstable D2+\text{D}_{2}^{+} ion, which then dissociates into a D atom and a D+\text{D}^{+} ion. The short-lived D2+\text{D}_{2}^{+} has the electron in a bonding molecular orbital (MO) with σ\sigma-symmetry, thus exhibiting 𝑔𝑒𝑟𝑎𝑑𝑒\it{gerade} (g) symmetry (German for even) state, denoted as D2+(Σg)\text{D}_{2}^{+}(\Sigma_{\text{g}}). If Ee>Eth(u)E_{\text{e}}>E_{\text{th}(\text{u})}, the intermediate D2+\text{D}_{2}^{+} ion has the electron in a higher-energy antibonding MO with σ\sigma-symmetry, which exhibits 𝑢𝑛𝑔𝑒𝑟𝑎𝑑𝑒\it{ungerade} (u) symmetry (German for odd), thus denoted as D2+(Σu)\text{D}_{2}^{+}(\Sigma_{\text{u}}). As a result of the different energy levels of the intermediate D2+\text{D}_{2}^{+} ion, the energy of the final products will also be different, as well as the average electron energy loss. According to the results presented in [43], these energies still depend on the energy of the incoming electron within each sub-process. To simplify the evaluation of the ΔEe\left\langle\Delta E_{\text{e}}\right\rangle and the energy of the products, we consider the energy to be evenly distributed by the reaction products (D and D+\text{D}^{+}) and we consider the two cases separately. For Eth(g)<Ee<Eth(u)E_{\text{th}(\text{g})}<E_{\text{e}}<E_{\text{th}(\text{u})}, all dissociative-ionization events originate an intermediate state D2+(Σg)\text{D}_{2}^{+}(\Sigma_{\text{g}}), while for Ee>Eth(u)E_{\text{e}}>E_{\text{th}(\text{u})} all events generate an intermediate state D2+(Σu)\text{D}_{2}^{+}(\Sigma_{\text{u}}). The values for the electron energy loss and reaction product energies being considered for each case are evaluated for [43] and listed in Table 4. We note that this is just an approximation, as even with Te<Eth(u)T_{\text{e}}<E_{\text{th}(\text{u})} there are electrons with energies superior to the threshold that will generate a D2+\text{D}_{2}^{+} ion in a D2+(Σu)\text{D}_{2}^{+}(\Sigma_{\text{u}}) state, and vice-versa. Nevertheless, this approximation avoids us to evaluate ΔEe\left\langle\Delta E_{\text{e}}\right\rangle and ED\left\langle E_{\text{D}}\right\rangle at every single value of TeT_{\text{e}}.

Table 4: Average electron energy loss and average energy of reaction products for the two cases of dissociative-ionization of D2\text{D}_{2}.
  • Reaction ΔEe\left\langle\Delta E_{\text{e}}\right\rangle ED=ED+\left\langle E_{\text{D}}\right\rangle=\left\langle E_{\text{D}^{+}}\right\rangle
    e+D2e+[D2+(Σg)+e]D+D++2e\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\left[\text{D}_{2}^{+}(\Sigma_{\text{g}})+\text{e}^{-}\right]\rightarrow\text{D}+\text{D}^{+}+2\text{e}^{-} 18.25eV18.25\text{eV} 0.25eV0.25\text{eV}
    e+D2e+[D2+(Σu)+e]D+D++2e\text{e}^{-}+\text{D}_{2}\rightarrow\text{e}^{-}+\left[\text{D}_{2}^{+}(\Sigma_{\text{u}})+\text{e}^{-}\right]\rightarrow\text{D}+\text{D}^{+}+2\text{e}^{-} 33.6eV33.6\text{eV} 7.8eV7.8\text{eV}

For the dissociation of D2+\text{D}_{2}^{+}, i.e.

e+D2+D++D+e,\displaystyle\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{D}^{+}+\text{D}+\text{e}^{-}, (103)

different sub-processes are taken into account, following an approach similar to the one adopted to treat the dissociation of D2\text{D}_{2}. We perform a weighed average of the electron energy loss and the reaction products energy by using Eqs. (100) and (101), respectively. The values of σvei\left\langle\sigma v_{\text{e}}\right\rangle_{i}, ΔEei\left\langle\Delta E_{\text{e}}\right\rangle_{i} and ED=ED+i\left\langle E_{\text{D}}\right\rangle=\left\langle E_{\text{D}^{+}}\right\rangle_{i} for each sub-process are presented in Table 5. The weighed averaged values for the electron energy loss and reaction products energy at the reference temperature, Te=20eVT_{\text{e}}=20\text{eV}, yield ΔEe=13.7eV\left\langle\Delta E_{\text{e}}\right\rangle=13.7\text{eV} and ED=ED+=3.0eV\left\langle E_{\text{D}}\right\rangle=\left\langle E_{\text{D}^{+}}\right\rangle=3.0\text{eV}, as listed in Table 5.

  • Reaction σvei\left\langle\sigma v_{\text{e}}\right\rangle_{i} ΔEei\left\langle\Delta E_{\text{e}}\right\rangle_{i} ED=ED+i\left\langle E_{\text{D}}\right\rangle=\left\langle E_{\text{D}^{+}}\right\rangle_{i}
    e+D2+D++D(1s)+e\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{D}^{+}+\text{D}(1\text{s})+\text{e}^{-} 1.2×107cm3/s1.2\times 10^{-7}\text{cm}^{3}/\text{s} 10.5eV10.5\text{eV} 4.3eV4.3\text{eV}
    e+D2+D++D(n=2)+e\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{D}^{+}+\text{D}^{*}(\text{n}=2)+\text{e}^{-} 1.0×107cm3/s1.0\times 10^{-7}\text{cm}^{3}/\text{s} 17.5eV17.5\text{eV} 1.5eV1.5\text{eV}
Table 5: σve\left\langle\sigma v_{\text{e}}\right\rangle product, average electron energy loss and average energy of reaction products for each sub-process of D2+\text{D}_{2}^{+} dissociation.

Regarding the dissociative-ionization of D2+\text{D}_{2}^{+}, i.e.

e+D2+D++D++2e,\displaystyle\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{D}^{+}+\text{D}^{+}+2\text{e}^{-}, (104)

we follow [43], where the average energy of the resulting D+\text{D}^{+} ions is obtained from an average performed over all vibrational states (v=09v=0-9) of the D2+\text{D}_{2}^{+} ion and over the Franck-Condon region. This yields ED+=0.4eV\left\langle E_{\text{D}^{+}}\right\rangle=0.4\text{eV}, while the average electron energy loss is ΔEe=15.5eV\left\langle\Delta E_{\text{e}}\right\rangle=15.5\text{eV}.

We finally focus on the dissociative-recombination of D2+\text{D}_{2}^{+}, which generates a D atom in the fundamental state (electron in orbital 1s1\text{s}) and a D atom in an excited state (electron with principal quantum number n2\text{n}\geq 2), i.e.

e+D2+D(1s)+D(n2).\displaystyle\text{e}^{-}+\text{D}_{2}^{+}\rightarrow\text{D}(1\text{s})+\text{D}^{*}(\text{n}\geq 2). (105)

We assume that the energy of the products is evenly distributed among the two D atoms and is given by

ED(1s)ED(n2)12(Ee+Ryn2),\displaystyle\left\langle E_{\text{D}(1\text{s})}\right\rangle\simeq\left\langle E_{\text{D}^{*}(\text{n}\geq 2)}\right\rangle\simeq\frac{1}{2}\left(E_{\text{e}}+\frac{\text{Ry}}{n^{2}}\right), (106)

with Ry=13.6eV\text{Ry}=13.6\text{eV} the Rydberg unit of energy (corresponding to the electron binding energy in a hydrogen atom in the fundamental state). Since this expression depends on the energy of the incoming electron, EeE_{\text{e}}, and the electronic level nn of the excited atom, D\text{D}^{*}, we assume an energy of the incident electron of Ee20eVE_{\text{e}}\simeq 20\text{eV}, the typical value in the region around the LCFS at the HFS, and consider that these atoms are most likely in the accessible state of lowest energy n=2\text{n}=2 (considering a higher excited state would not change the value of the energy of the products by a significant amount). Under these assumptions, we get ED(1s)ED(n2)11.7eV\left\langle E_{\text{D}(1\text{s})}\right\rangle\simeq\left\langle E_{\text{D}^{*}(\text{n}\geq 2)}\right\rangle\simeq 11.7\text{eV}.

Appendix B: Zhdanov collisional closure

We focus on the derivation of the parallel friction forces and the parallel heat fluxes, denoted respectively by Rα=𝐑α𝐛R_{\|\alpha}=\mathbf{R_{\alpha}}\cdot\mathbf{b} and qα=𝐪α𝐛q_{\|\alpha}=\mathbf{q_{\alpha}}\cdot\mathbf{b} for a given species α\alpha, with 𝐑α=mα𝐯Cα𝑑𝐯\mathbf{R_{\alpha}}=\int m_{\alpha}\mathbf{v^{\prime}}C_{\alpha}d\mathbf{v} and 𝐪α=(mαv2)/2𝐯fα𝑑𝐯\mathbf{q_{\alpha}}=\int(m_{\alpha}v^{\prime 2})/2\mathbf{v^{\prime}}f_{\alpha}d\mathbf{v}, where we introduce the thermal component of the velocity, 𝐯=𝐯𝐯α\mathbf{v}^{\prime}=\mathbf{v}-\mathbf{v}_{\alpha}, with 𝐯α=𝐯fα𝑑𝐯\mathbf{v}_{\alpha}=\int\mathbf{v}f_{\alpha}d\mathbf{v} the fluid velocity of the α\alpha species, and the collision operator Cα=ΣβCαβ(fα,fβ)C_{\alpha}=\Sigma_{\beta}C_{\alpha\beta}(f_{\alpha},f_{\beta}), with CαβC_{\alpha\beta} describing collisions of species α\alpha with species β\beta. We consider the collisional closure derived by Zhdanov in [39], relying on the approach proposed in [32] and discussed in [50] for its numerical implementation.

Following [39], the parallel component of the friction forces and heat fluxes of the species α\alpha is related to the parallel gradients of the temperature and parallel velocity of all species through

[qαRα]=βZαβ[Tβwβ],\displaystyle\begin{bmatrix}q_{\|\alpha}\\ R_{\|\alpha}\end{bmatrix}=\sum_{\beta}Z_{\alpha\beta}\begin{bmatrix}\nabla_{\|}T_{\beta}\\ w_{\|\beta}\end{bmatrix}, (107)

where TβT_{\beta} denotes the temperature of plasma species β\beta and wβw_{\|\beta} is the parallel component of the fluid velocity of species β\beta with respect to the center of mass of the plasma, 𝐰β=𝐯β𝐯CM\mathbf{w_{\beta}}=\mathbf{v_{\beta}}-\mathbf{v_{\text{CM}}}, with 𝐯CM=(βnβmβ𝐯β)/(βnβmβ)\mathbf{v_{\text{CM}}}=\left(\sum_{\beta}n_{\beta}m_{\beta}\mathbf{v_{\beta}}\right)/\left(\sum_{\beta}n_{\beta}m_{\beta}\right). The matrix ZαβZ_{\alpha\beta} relates the parallel heat fluxes and friction forces with the parallel gradients of temperature and parallel velocity. We remark that Eq. (107) simplifies the general result obtained by Zhdanov [39] to the case of singly-ionized states, neglecting possible multiplicity of charge states for the chemical species present in the plasma.

In order to compute the matrix ZαβZ_{\alpha\beta}, we consider the 21N21N-moment approximation of the distribution function [39], thus including the moments up to the fifth order moment. We first express 𝐑α\mathbf{R}_{\alpha} and 𝐪α\mathbf{q}_{\alpha} in terms of these moments of the distribution function, namely the first order moment, 𝐰α\mathbf{w}_{\alpha}, the third order moment, 𝐡α=qα\mathbf{h}_{\alpha}=q_{\|\alpha}, and the fifth order moment, 𝐫α=mα/4(c414c2/γα+35γα)𝐜fα𝑑𝐜\mathbf{r}_{\alpha}=m_{\alpha}/4\int(c^{4}-14c^{2}/\gamma_{\alpha}+35\gamma_{\alpha})\mathbf{c}f_{\alpha}d\mathbf{c}, where we introduce the velocity with respect to the center of mass of the plasma, 𝐜=𝐯𝐯CM\mathbf{c}=\mathbf{v}-\mathbf{v_{\text{CM}}}, and the parameter γα=mα/(kTα)\gamma_{\alpha}=m_{\alpha}/(kT_{\alpha}), with Tα=(mαv2/2)fα𝑑𝐯T_{\alpha}=\int(m_{\alpha}v^{\prime 2}/2)f_{\alpha}d\mathbf{v}. Since only the expressions for the parallel component of the friction forces and heat fluxes are needed, we consider only the parallel component of these equations. The heat flux, qαq_{\|\alpha}, simply corresponds to the third order moment, hαh_{\|\alpha}, while the friction forces, RαR_{\|\alpha}, are obtained in terms of wαw_{\|\alpha}, hαh_{\|\alpha} and rαr_{\|\alpha} [61], yielding

qα=hα,\displaystyle q_{\|\alpha}=h_{\|\alpha}, (108)
Rα=β[Gαβ(1)(wαwβ)+μαβkTGαβ(2)(hαmαnαhβmβnβ)+(μαβkT)2Gαβ(8)(rαmαnαrβmβnβ)].\displaystyle R_{\|\alpha}=\sum_{\beta}\left[G_{\alpha\beta}^{(1)}\left(w_{\|\alpha}-w_{\|\beta}\right)+\frac{\mu_{\alpha\beta}}{kT}G_{\alpha\beta}^{(2)}\left(\frac{h_{\|\alpha}}{m_{\alpha}n_{\alpha}}-\frac{h_{\|\beta}}{m_{\beta}n_{\beta}}\right)+\left(\frac{\mu_{\alpha\beta}}{kT}\right)^{2}G_{\alpha\beta}^{(8)}\left(\frac{r_{\alpha}}{m_{\alpha}n_{\alpha}}-\frac{r_{\beta}}{m_{\beta}n_{\beta}}\right)\right]. (109)

where mαm_{\alpha} and nαn_{\alpha} are respectively the mass and density of species α\alpha, μαβ=(mαmβ)/(mα+mβ)\mu_{\alpha\beta}=(m_{\alpha}m_{\beta})/(m_{\alpha}+m_{\beta}) is the reduced mass, and Gαβ(n)G_{\alpha\beta}^{(\text{n})} are polynomial functions of the local plasma density and temperature, their exact expressions being presented in [39] (chapter 8.1, pp. 163-164). Eqs. (108) and (109) can then be written in matrix form as

[qαRα]=βAαβ[hβrβ]+βBαβ[Tβwβ],\displaystyle\begin{bmatrix}q_{\|\alpha}\\ R_{\|\alpha}\end{bmatrix}=\sum_{\beta}A_{\alpha\beta}\begin{bmatrix}h_{\|\beta}\\ r_{\|\beta}\end{bmatrix}+\sum_{\beta}B_{\alpha\beta}\begin{bmatrix}\nabla_{\|}T_{\beta}\\ w_{\|\beta}\end{bmatrix}, (110)

where the matrices AA and BB are defined to satisfy Eqs. (108) and (109). We now aim at expressing the moments 𝐡α\mathbf{h}_{\alpha} and rα\nabla r_{\alpha} in terms of 𝐰α\mathbf{w}_{\alpha} and Tα\nabla T_{\alpha}. This can be achieved by solving a system of moment equations similar to the one presented in [39] (chapter 8.1, pp. 162-163), including the time evolution of the moments (𝐰α\mathbf{w}_{\alpha}, 𝐡α\mathbf{h}_{\alpha} and rα\nabla r_{\alpha}) and the time evolution of basic thermodynamic variables (ρ\rho, 𝐯CM\mathbf{v_{\text{CM}}} and TT). We neglect time derivatives and nonlinear terms. For simplicity, we also assume that, for two massive particle species D+\text{D}^{+} and D2+\text{D}_{2}^{+}, the condition |TD2+TD+|TD2+|T_{\text{D}_{2}^{+}}-T_{\text{D}^{+}}|\ll T_{\text{D}_{2}^{+}} is fulfilled, which allows us to write TD2+=TD+=TT_{\text{D}_{2}^{+}}=T_{\text{D}^{+}}=T. Moreover, as long as Te/TD+me/mD+T_{\text{e}}/T_{\text{D}^{+}}\gg m_{\text{e}}/m_{\text{D}^{+}} is verified, TT can also be replaced by TeT_{\text{e}}, following [39] (the simulation results shown in Fig. 2 meet these conditions). We therefore impose TD2+=TD+=Te=TT_{\text{D}_{2}^{+}}=T_{\text{D}^{+}}=T_{\text{e}}=T, while no assumption is made on the temperature and pressure gradients, i.e. temperature gradients can be different from species to species [39].

The parallel projection of the system of moment equations can then be written as (see [61])

52nαkTα=β[52μαβmαGαβ(2)(wαwβ)+Gαβ(5)hαpα\displaystyle\frac{5}{2}n_{\|\alpha}k\nabla T_{\alpha}=\sum_{\beta}\left[\frac{5}{2}\frac{\mu_{\alpha\beta}}{m_{\alpha}}G_{\alpha\beta}^{(2)}\left(w_{\|\alpha}-w_{\|\beta}\right)+G_{\alpha\beta}^{(5)}\frac{h_{\|\alpha}}{p_{\alpha}}\right. (111)
+Gαβ(6)hβpβ+μαβkT(Gαβ(9)rαpα+Gαβ(10)rβpβ)],\displaystyle\left.+G_{\alpha\beta}^{(6)}\frac{h_{\|\beta}}{p_{\beta}}+\frac{\mu_{\alpha\beta}}{kT}\left(G_{\alpha\beta}^{(9)}\frac{r_{\|\alpha}}{p_{\alpha}}+G_{\alpha\beta}^{(10)}\frac{r_{\|\beta}}{p_{\beta}}\right)\right],
0=β[352(μαβmα)2Gαβ(8)(wαwβ)+7μαβmα(Gαβ(9)hαpα+Gαβ(10)hβpβ)\displaystyle 0=\sum_{\beta}\left[\frac{35}{2}\left(\frac{\mu_{\alpha\beta}}{m_{\alpha}}\right)^{2}G_{\alpha\beta}^{(8)}\left(w_{\|\alpha}-w_{\|\beta}\right)+7\frac{\mu_{\alpha\beta}}{m_{\alpha}}\left(G_{\alpha\beta}^{(9)}\frac{h_{\|\alpha}}{p_{\alpha}}+G_{\alpha\beta}^{(10)}\frac{h_{\beta}}{p_{\beta}}\right)\right. (112)
+mαkTGαβ(11)rαpα+mβkTGαβ(12)rβpβ],\displaystyle\left.+\frac{m_{\alpha}}{kT}G_{\alpha\beta}^{(11)}\frac{r_{\|\alpha}}{p_{\alpha}}+\frac{m_{\beta}}{kT}G_{\alpha\beta}^{(12)}\frac{r_{\|\beta}}{p_{\beta}}\right],

where pαp_{\alpha} is the pressure of species α\alpha. Rewriting Eqs. (111-112) in matrix form, one obtains

γPαγ[Tγwγ]=βMαβ[hβrβ],\displaystyle\sum_{\gamma}P_{\alpha\gamma}\begin{bmatrix}\nabla_{\|}T_{\gamma}\\ w_{\|\gamma}\end{bmatrix}=\sum_{\beta}M_{\alpha\beta}\begin{bmatrix}h_{\|\beta}\\ r_{\|\beta}\end{bmatrix}, (113)

which can be inverted to express the parallel third and fourth order fluid moments in terms of the parallel gradient of temperature and relative parallel velocity as

[hβrβ]=αγMαβ1Pαγ[Tγwγ].\displaystyle\begin{bmatrix}h_{\|\beta}\\ r_{\|\beta}\end{bmatrix}=\sum_{\alpha}\sum_{\gamma}M_{\alpha\beta}^{-1}P_{\alpha\gamma}\begin{bmatrix}\nabla_{\|}T_{\gamma}\\ w_{\|\gamma}\end{bmatrix}. (114)

Finally, making use of Eq. (114) to express hαh_{\|\alpha} and rαr_{\|\alpha} in Eq. (110) in terms of the parallel temperature gradients and relative velocities, one obtains the expressions for the parallel heat flux and friction forces in the matrix form presented in Eq. (107), that is

[qαRα]=(AαλMγλ1Pγβ+Bαβ)[Tβwβ].\displaystyle\begin{bmatrix}q_{\|\alpha}\\ R_{\|\alpha}\end{bmatrix}=\left(A_{\alpha\lambda}M_{\gamma\lambda}^{-1}P_{\gamma\beta}+B_{\alpha\beta}\right)\begin{bmatrix}\nabla_{\|}T_{\beta}\\ w_{\|\beta}\end{bmatrix}. (115)

Since the matrices AA, BB, PP and MM are fully determined by Eqs. (108), (109), (111) and (112), the expressions of the parallel heat flux and friction forces can be found. Following Zhdanov [39], these matrices can be expressed in terms of the local values of plasma quantities, namely densities nen_{\text{e}}, nD+n_{\text{D}^{+}} and nD2+n_{\text{D}_{2}^{+}} and temperatures TeT_{\text{e}} and TD+T_{\text{D}^{+}} (we again assume TD2+=TD+T_{\text{D}_{2}^{+}}=T_{\text{D}^{+}}, mass ratios and characteristic time scales τeD\tau_{\text{eD}} and τDD\tau_{\text{DD}}, with τeD\tau_{\text{eD}} defined as the inverse of the collision frequency for momentum transfer between electrons and D+\text{D}^{+} ions, and τDD\tau_{\text{DD}} the ion timescale defined as the inverse of the collision frequency for momentum transfer between D+\text{D}^{+} ions. We retain only terms of leading order in me/mD\sqrt{m_{\text{e}}/m_{\text{D}}}, while terms proportional to the fast electron timescale τeD\tau_{\text{eD}} are neglected when compared to terms proportional to τDD\tau_{\text{DD}}, which considerably simplifies the final expressions. We also highlight that, besides imposing the quasi-neutrality relation ne=nD++nD2+n_{\text{e}}=n_{\text{D}^{+}}+n_{\text{D}_{2}^{+}}, we take into account the fact that the density of the molecular ion species is much smaller than the density of the main ion species D+\text{D}^{+} for typical tokamak boundary conditions, i.e. nD2+/nD+1n_{\text{D}_{2}^{+}}/n_{\text{D}^{+}}\ll 1, keeping therefore only leading order terms in nD2+/nD+n_{\text{D}_{2}^{+}}/n_{\text{D}^{+}}. As a result, the friction forces between molecular ions and other species are neglected, as well as molecular ion temperature gradient terms, while friction and thermal force contributions involving D+\text{D}^{+} and e\text{e}^{-} species are kept in the expressions of the parallel components of the heat fluxes and friction forces. The expressions obtained for the friction forces and heat fluxes finally yield

qe=3.16neTeτeDmeTe+0.71neTe(vevD+),\displaystyle q_{\|e}=-\frac{3.16n_{\text{e}}T_{\text{e}}\tau_{\text{eD}}}{m_{\text{e}}}\nabla_{\|}T_{\text{e}}+0.71n_{\text{e}}T_{\text{e}}(v_{\|\text{e}}-v_{\|\text{D}^{+}}), (116)
qD+=4.52neTD+τDDmDTD+,\displaystyle q_{\|\text{D}^{+}}=-\frac{4.52n_{\text{e}}T_{\text{D}^{+}}\tau_{\text{DD}}}{m_{\text{D}}}\nabla_{\|}T_{\text{D}^{+}},
qD2+=1.80neTD+τDDmDTD+,\displaystyle q_{\|\text{D}_{2}^{+}}=-\frac{1.80n_{\text{e}}T_{\text{D}^{+}}\tau_{\text{DD}}}{m_{\text{D}}}\nabla_{\|}T_{\text{D}^{+}},
Re=0.71neTe0.51meneτeD(vevD+),\displaystyle R_{\|e}=-0.71n_{\text{e}}\nabla_{\|}T_{\text{e}}-\frac{0.51m_{\text{e}}n_{\text{e}}}{\tau_{\text{eD}}}(v_{\|\text{e}}-v_{\|\text{D}^{+}}),
RD+=0.71neTe0.51meneτeD(vD+ve),\displaystyle R_{\|\text{D}^{+}}=0.71n_{\text{e}}\nabla_{\|}T_{\text{e}}-\frac{0.51m_{\text{e}}n_{\text{e}}}{\tau_{\text{eD}}}(v_{\|\text{D}^{+}}-v_{\|\text{e}}),
RD2+=0,\displaystyle R_{\|\text{D}_{2}^{+}}=0,

The expressions in Eqs. (116) can be simplified by applying the relation between the electron and ion characteristic times,

τDDτeD=12mDme(TeTD+)12mDme,\displaystyle\frac{\tau_{\text{DD}}}{\tau_{\text{eD}}}=\frac{1}{\sqrt{2}}\sqrt{\frac{m_{\text{D}}}{m_{\text{e}}}}\left(\frac{T_{\text{e}}}{T_{\text{D}^{+}}}\right)\sim\frac{1}{\sqrt{2}}\sqrt{\frac{m_{\text{D}}}{m_{\text{e}}}}, (117)

having again assumed TD+TeT_{\text{D}^{+}}\sim T_{\text{e}}. This enables one to write τDD\tau_{\text{DD}} appearing in Eq. (116) in terms of τeD\tau_{\text{eD}}. Following Braginskii’s approach [62] and considering that the the electron characteristic time is τe=τeD\tau_{\text{e}}=\tau_{\text{eD}}, we then write Eqs. (116) in terms of the resistivity, defined as [22, 23]

ν=0.51memDR0cs01neτeD,\displaystyle\nu=0.51\frac{m_{\text{e}}}{m_{\text{D}}}\frac{R_{0}}{c_{\text{s}0}}\frac{1}{n_{\text{e}}\tau_{\text{eD}}}, (118)

The parallel friction forces and heat fluxes, as they appear in Eqs. (22-24) and Eqs. (25-27), respectively, are therefore written in normalized units as

Re=0.71neTeνne(vevD+),\displaystyle R_{\|e}=-0.71n_{\text{e}}\nabla_{\|}T_{\text{e}}-\nu n_{\text{e}}(v_{\|\text{e}}-v_{\|\text{D}^{+}}), (119)
RD+=0.71neTeνne(vD+ve),\displaystyle R_{\|\text{D}^{+}}=0.71n_{\text{e}}\nabla_{\|}T_{\text{e}}-\nu n_{\text{e}}(v_{\|\text{D}^{+}}-v_{\|\text{e}}),
RD2+=0,\displaystyle R_{\|\text{D}_{2}^{+}}=0,
qe=1.62νneTeTe+0.71neTe(vevD+),\displaystyle q_{\|e}=-\frac{1.62}{\nu}n_{\text{e}}T_{\text{e}}\nabla_{\|}T_{\text{e}}+0.71n_{\text{e}}T_{\text{e}}(v_{\|\text{e}}-v_{\|\text{D}^{+}}),
qD+=2.322νmemDneTD+TD+,\displaystyle q_{\|\text{D}^{+}}=-\frac{2.32}{\sqrt{2}\nu}\sqrt{\frac{m_{\text{e}}}{m_{\text{D}}}}n_{\text{e}}T_{\text{D}^{+}}\nabla_{\|}T_{\text{D}^{+}},
qD2+=0.922νmemDneTD+TD+.\displaystyle q_{\|\text{D}_{2}^{+}}=-\frac{0.92}{\sqrt{2}\nu}\sqrt{\frac{m_{\text{e}}}{m_{\text{D}}}}n_{\text{e}}T_{\text{D}^{+}}\nabla_{\|}T_{\text{D}^{+}}.

We note that, similarly to the single-ion species model implemented in GBS [22], the ohmic heating terms are neglected.

Appendix C: List of kernel functions

The kernels used in Eqs. (80-83) for nD2n_{\text{D}_{2}}, Γout,D2\Gamma_{\text{out,D}_{2}}, nDn_{\text{D}} and ΓD\Gamma_{\text{D}} are defined as

KppD2,D2+(𝐱,𝐱)=Kpp,dirD2,D2+(𝐱,𝐱)+αreflKpp,reflD2,D2+(𝐱,𝐱),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{p\rightarrow p,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})+\alpha_{\text{refl}}K_{p\rightarrow p,\text{refl}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}),\end{aligned} (120)
KbpD2,reem(𝐱,𝐱b)=Kbp,dirD2,reem(𝐱,𝐱b)+αreflKbp,reflD2,reem(𝐱,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow p}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow p,\text{dir}}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow p,\text{refl}}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (121)
KbpD2,refl(𝐱,𝐱b)=Kbp,dirD2,refl(𝐱,𝐱b)+αreflKbp,reflD2,refl(𝐱,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow p}^{\text{D}_{2}\text{,refl}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow p,\text{dir}}^{\text{D}_{2}\text{,refl}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow p,\text{refl}}^{\text{D}_{2}\text{,refl}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (122)
KpbD2,D2+(𝐱b,𝐱)=Kpb,dirD2,D2+(𝐱b,𝐱)+αreflKpb,reflD2,D2+(𝐱b,𝐱),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{p\rightarrow b,\text{dir}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})+\alpha_{\text{refl}}K_{p\rightarrow b,\text{refl}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp}),\end{aligned} (123)
KbbD2,reem(𝐱b,𝐱b)=Kbb,dirD2,reem(𝐱b,𝐱b)+αreflKbb,reflD2,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow b}^{\text{D}_{2}\text{,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow b,\text{dir}}^{\text{D}_{2}\text{,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D}_{2}\text{,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (124)
KbbD2,refl(𝐱b,𝐱b)=Kbb,dirD2,refl(𝐱b,𝐱b)+αreflKbb,reflD2,refl(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow b}^{\text{D}_{2}\text{,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow b,\text{dir}}^{\text{D}_{2}\text{,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D}_{2}\text{,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (125)
KppD,D+(𝐱,𝐱)=Kpp,dirD,D+(𝐱,𝐱)+αreflKpp,reflD,D+(𝐱,𝐱),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{p\rightarrow p,\text{dir}}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})+\alpha_{\text{refl}}K_{p\rightarrow p,\text{refl}}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}),\end{aligned} (126)
KppD,D2+(𝐱,𝐱)=Kpp,dirD,D2+(𝐱,𝐱)+αreflKpp,reflD,D2+(𝐱,𝐱),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D,D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{p\rightarrow p,\text{dir}}^{\text{D,D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})+\alpha_{\text{refl}}K_{p\rightarrow p,\text{refl}}^{\text{D,D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp}),\end{aligned} (127)
KppD,diss(D2+)(𝐱,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (128)
KppD,diss-rec(D2+)(𝐱,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (129)
KppD,diss(D2)(𝐱,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D,diss}\left(\text{D}_{2}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (130)
KppD,diss-iz(D2)(𝐱,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow p}^{\text{D,diss-iz}\left(\text{D}_{2}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (131)
KbpD,reem(𝐱,𝐱b)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow p}^{\text{D,reem}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (132)
KbpD,refl(𝐱,𝐱b)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow p}^{\text{D,refl}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (133)
KpbD,D+(𝐱b,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D,D}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (134)
KpbD,D2+(𝐱b,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D,D}_{2}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (135)
KpbD,diss(D2+)(𝐱b,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (136)
KpbD,diss-rec(D2+)(𝐱b,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (137)
KpbD,diss(D2)(𝐱b,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D,diss}\left(\text{D}_{2}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (138)
KpbD,diss-iz(D2)(𝐱b,𝐱)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{p\rightarrow b}^{\text{D,diss-iz}\left(\text{D}_{2}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (139)
KbbD,reem(𝐱b,𝐱b)=Kbb,dirD,reem(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow b}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow b,\text{dir}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (140)
KbbD,refl(𝐱b,𝐱b)=Kbb,dirD,refl(𝐱b,𝐱b)+αreflKbb,reflD,reem(𝐱b,𝐱b),\displaystyle\begin{aligned} &K_{b\rightarrow b}^{\text{D,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=K_{b\rightarrow b,\text{dir}}^{\text{D,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})+\alpha_{\text{refl}}K_{b\rightarrow b,\text{refl}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}}),\end{aligned} (141)

where the kernel functions for a given path={dir,refl}\text{path}=\{\text{dir},\text{refl}\} are defined as

Kpp,pathD2,D2+(𝐱,𝐱)=01rΦ[𝐯,D𝟐+,TD2+](𝐱,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v_{\perp,\text{D}_{2}^{+}}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (142)
Kbp,pathD2,reem(𝐱,𝐱b)=0vrcosθχ,in,D2(𝐱b,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow p,\text{path}}^{\text{D}_{2}\text{,reem}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta^{\prime}\chi_{\perp,\text{in,D}_{2}}(\mathbf{x^{\prime}_{\perp\text{b}}},\mathbf{v}_{\perp})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (143)
Kbp,pathD2,refl(𝐱,𝐱b)=01rΦ[𝐯refl(D2+),TD2+](𝐱,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow p,\text{path}}^{\text{D}_{2}\text{,refl}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (144)
Kpb,pathD2,D2+(𝐱b,𝐱)=0vrcosθΦ[𝐯,D𝟐+,TD2+](𝐱,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D}_{2},\text{D}_{2}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v_{\perp,\text{D}_{2}^{+}}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (145)
Kbb,pathD2,reem(𝐱b,𝐱b)=0v2rcosθcosθχ,in,D2(𝐱b,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow b,\text{path}}^{\text{D}_{2}\text{,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{v_{\perp}^{2}}{r^{\prime}_{\perp}}\text{cos}\theta\text{cos}\theta^{\prime}\chi_{\perp,\text{in,D}_{2}}(\mathbf{x^{\prime}_{\perp\text{b}}},\mathbf{v}_{\perp})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (146)
Kbb,pathD2,refl(𝐱b,𝐱b)=0vrcosθΦ[𝐯refl(D2+),TD2+](𝐱,𝐯)exp[1v0rνeff,D2(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow b,\text{path}}^{\text{D}_{2}\text{,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}_{2}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (147)
Kpp,pathD,D+(𝐱,𝐱)=01rΦ[𝐯,D+,TD+](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D,D}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v_{\perp,\text{D}^{+}}},T_{\text{D}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (148)
Kpp,pathD,D2+(𝐱,𝐱)=01rΦ[𝐯,D𝟐+,TD2+](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D,D}_{2}^{+}}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v_{\perp,\text{D}_{2}^{+}}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (149)
Kpp,pathD,diss(D2+)(𝐱,𝐱)=01r,Φ[𝐯,D2+,TD,diss(D2+)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp,}}\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}^{+}_{2}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (150)
Kpp,pathD,diss-rec(D2+)(𝐱,𝐱)=01rΦ[𝐯,D2+,TD,diss-rec(D2+)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}^{+}_{2}},T_{\text{D,diss-rec}\left(D_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (151)
Kpp,pathD,diss(D2)(𝐱,𝐱)=01rΦ[𝐯,D2,TD,diss(D2)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D,diss}\left(\text{D}_{2}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}_{2}},T_{\text{D,diss}\left(D_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (152)
Kpp,pathD,diss-iz(D2)(𝐱,𝐱)=01rΦ[𝐯,D2,TD,diss-iz(D2)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow p,\text{path}}^{\text{D,diss-iz}\left(\text{D}_{2}\right)}(\mathbf{x}_{\perp},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}_{2}},T_{\text{D,diss-iz}\left(D_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (153)
Kbp,pathD,reem(𝐱,𝐱b)=0vrcosθχ,in,D(𝐱b,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow p,\text{path}}^{\text{D,reem}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta^{\prime}\chi_{\perp,\text{in,D}}(\mathbf{x^{\prime}_{\perp\text{b}}},\mathbf{v}_{\perp})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (154)
Kbp,pathD,refl(𝐱,𝐱b)=01rΦ[𝐯refl(D+),TD+](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow p,\text{path}}^{\text{D,refl}}(\mathbf{x}_{\perp},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{1}{r^{\prime}_{\perp}}\Phi_{\perp\left[\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (155)
Kpb,pathD,D+(𝐱b,𝐱)=0vrcosθΦ[𝐯,D+,TD+](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D,D}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v_{\perp,\text{D}^{+}}},T_{\text{D}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (156)
Kpb,pathD,D2+(𝐱b,𝐱)=0vrcosθΦ[𝐯,D𝟐+,TD2+](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D,D}_{2}^{+}}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v_{\perp,\text{D}_{2}^{+}}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (157)
Kpb,pathD,diss(D2+)(𝐱b,𝐱)=0vrcosθΦ[𝐯,D2+,TD,diss(D2+)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}^{+}_{2}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (158)
Kpb,pathD,diss-rec(D2+)(𝐱b,𝐱)=0vrcosθΦ[𝐯,D2+,TD,diss-rec(D2+)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}^{+}_{2}},T_{\text{D,diss-rec}\left(D_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (159)
Kpb,pathD,diss(D2)(𝐱b,𝐱)=0vrcosθΦ[𝐯,D2,TD,diss(D2)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D,diss}\left(\text{D}_{2}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}_{2}},T_{\text{D,diss}\left(D_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (160)
Kpb,pathD,diss-iz(D2)(𝐱b,𝐱)=0vrcosθΦ[𝐯,D2,TD,diss-iz(D2)](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{p\rightarrow b,\text{path}}^{\text{D,diss-iz}\left(\text{D}_{2}\right)}(\mathbf{x_{\perp\text{b}}},\mathbf{x}^{\prime}_{\perp})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}_{2}},T_{\text{D,diss-iz}\left(D_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (161)
Kbb,pathD,reem(𝐱b,𝐱b)=0v2rcosθcosθχ,in,D(𝐱b,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v,\displaystyle\begin{aligned} &K_{b\rightarrow b,\text{path}}^{\text{D,reem}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{v_{\perp}^{2}}{r^{\prime}_{\perp}}\text{cos}\theta\text{cos}\theta^{\prime}\chi_{\perp,\text{in,D}}(\mathbf{x^{\prime}_{\perp\text{b}}},\mathbf{v}_{\perp})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp},\end{aligned} (162)
Kbb,pathD,refl(𝐱b,𝐱b)=0vrcosθΦ[𝐯refl(D+),TD+](𝐱,𝐯)exp[1v0rνeff,D(𝐱′′)𝑑r′′]𝑑v.\displaystyle\begin{aligned} &K_{b\rightarrow b,\text{path}}^{\text{D,refl}}(\mathbf{x_{\perp\text{b}}},\mathbf{x^{\prime}_{\perp\text{b}}})=\int_{0}^{\infty}\frac{v_{\perp}}{r^{\prime}_{\perp}}\text{cos}\theta\Phi_{\perp\left[\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})\text{exp}\left[-\frac{1}{v_{\perp}}\int_{0}^{r^{\prime}_{\perp}}\nu_{\text{eff,D}}(\mathbf{x}^{\prime\prime}_{\perp})dr^{\prime\prime}_{\perp}\right]dv_{\perp}.\end{aligned} (163)

We remark that all velocity distributions given by a Maxwellian or a Knudsen cosine law are integrated along the parallel velocity, that is

Φ[𝐯,D𝟐+,TD2+](𝐱,𝐯)=0Φ[𝐯,D𝟐+,TD2+](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v_{\perp,\text{D}_{2}^{+}}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v_{\perp,\text{D}_{2}^{+}}},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})dv_{\|},\end{aligned} (164)
Φ[𝐯,D+,TD+](𝐱,𝐯)=0Φ[𝐯,D+,TD+](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v_{\perp,\text{D}^{+}}},T_{\text{D}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v_{\perp,\text{D}^{+}}},T_{\text{D}^{+}}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})dv_{\|},\end{aligned} (165)
Φ[𝐯,D2,TD,diss(D2)](𝐱,𝐯)=0Φ𝐯,D𝟐,TD,diss(D2)(𝐱,𝐯)𝑑v.,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}_{2}},T_{\text{D,diss}\left(\text{D}_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\Phi_{\mathbf{v_{\perp,\text{D}_{2}}},T_{\text{D,diss}\left(\text{D}_{2}\right)}}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})dv_{\|}.,\end{aligned} (166)
Φ[𝐯,D2,TD,diss-iz(D2)](𝐱,𝐯)=0Φ[𝐯,D𝟐,TD,diss-iz(D2)](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}_{2}},T_{\text{D,diss-iz}\left(\text{D}_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v_{\perp,\text{D}_{2}}},T_{\text{D,diss-iz}\left(\text{D}_{2}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})dv_{\|},\end{aligned} (167)
Φ[𝐯,D2+,TD,diss(D2+)](𝐱,𝐯)=0Φ[𝐯,D𝟐+,TD,diss(D2+)](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}^{+}_{2}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v_{\perp,\text{D}^{+}_{2}}},T_{\text{D,diss}\left(D_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})dv_{\|},\end{aligned} (168)
Φ[𝐯,D2+,TD,diss-rec(D2+)](𝐱,𝐯)=0Φ[𝐯,D𝟐+,TD,diss-rec(D2+)](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v}_{\perp,\text{D}^{+}_{2}},T_{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v_{\perp,\text{D}^{+}_{2}}},T_{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)}\right]}(\mathbf{x^{\prime}_{\perp}},\mathbf{v_{\perp}})dv_{\|},\end{aligned} (169)
Φ[𝐯refl(D+),TD+](𝐱,𝐯)=0Φ[𝐯refl(D+),TD+](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v}_{\text{refl}\left(\text{D}^{+}\right)},T_{\text{D}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})dv_{\|},\end{aligned} (170)
Φ[𝐯refl(D2+),TD2+](𝐱,𝐯)=0Φ[𝐯refl(D2+),TD2+](𝐱,𝐯)𝑑v,\displaystyle\begin{aligned} \Phi_{\perp\left[\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})=\int_{0}^{\infty}\Phi_{\left[\mathbf{v}_{\text{refl}\left(\text{D}_{2}^{+}\right)},T_{\text{D}_{2}^{+}}\right]}(\mathbf{x}^{\prime},\mathbf{v})dv_{\|},\end{aligned} (171)
χ,in,D2(𝐱,b,𝐯)=0χin,D2(𝐱,b,𝐯)𝑑v,\displaystyle\begin{aligned} \chi_{\perp,\text{in,D}_{2}}(\mathbf{x^{\prime}_{\perp,\text{b}}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\chi_{\text{in,D}_{2}}(\mathbf{x^{\prime}_{\perp,\text{b}}},\mathbf{v_{\perp}})dv_{\|},\end{aligned} (172)
χ,in,D(𝐱,b,𝐯)=0χin,D(𝐱,b,𝐯)𝑑v.\displaystyle\begin{aligned} \chi_{\perp,\text{in,D}}(\mathbf{x^{\prime}_{\perp,\text{b}}},\mathbf{v_{\perp}})=\int_{0}^{\infty}\chi_{\text{in,D}}(\mathbf{x^{\prime}_{\perp,\text{b}}},\mathbf{v_{\perp}})dv_{\|}.\end{aligned} (173)

Appendix D: Numerical solution of the neutral equations

The coupled neutral equations for D2\text{D}_{2} and D, Eqs. (80-83), may be discretized as a linear matrix system, 𝐱=A𝐱+𝐛\mathbf{x}=A\mathbf{x}+\mathbf{b}, with the unknown 𝐱\mathbf{x} representing the density and boundary flux of the D2\text{D}_{2} and D species. Indicating with NPN_{P} the number of points that discretize the poloidal plane and NBN_{B} the number of points discretizing the boundary, 𝐱\mathbf{x} is a vector of size 2(NP+NB)2(N_{P}+N_{B}), AA is a 2(NP+NB)×2(NP+NB)2(N_{P}+N_{B})\times 2(N_{P}+N_{B}) matrix and 𝐛\mathbf{b} is a 2(NP+NB)2(N_{P}+N_{B}) vector that includes all contributions not proportional to the neutral density or flux, namely the effect of recombination of D+\text{D}^{+} and D2+\text{D}_{2}^{+} with electrons, the effect of dissociative processes to which D2+\text{D}_{2}^{+} ions are subject and the contributions from the flux of D+\text{D}^{+} and D2+\text{D}_{2}^{+} ions to the boundary.

The matrix MM, and the vectors 𝐱\mathbf{x} and 𝐛\mathbf{b} can then be written as

𝐱=[nDΓout,DnD2Γout,D2],M=[M11M12M13M14M21M22M23M24M31M32M33M34M41M42M43M44],𝐛=[b1b2b3b4],\mathbf{x}=\begin{bmatrix}n_{\text{D}}\\ \Gamma_{\text{out,D}}\\ n_{\text{D}_{2}}\\ \Gamma_{\text{out,D}_{2}}\end{bmatrix},M=\begin{bmatrix}M_{11}\ \ \ M_{12}\ \ \ M_{13}\ \ \ M_{14}\\ M_{21}\ \ \ M_{22}\ \ \ M_{23}\ \ \ M_{24}\\ M_{31}\ \ \ M_{32}\ \ \ M_{33}\ \ \ M_{34}\\ M_{41}\ \ \ M_{42}\ \ \ M_{43}\ \ \ M_{44}\end{bmatrix},\mathbf{b}=\begin{bmatrix}b_{1}\\ b_{2}\\ b_{3}\\ b_{4}\end{bmatrix}, (174)

where M11M_{11} is a matrix of size NP×NPN_{P}\times N_{P},

M11=νcx,DKppD,D+,\displaystyle\begin{aligned} &M_{11}=\nu_{\text{cx,D}}K_{p\rightarrow p}^{\text{D,D}^{+}},\end{aligned} (175)

that discretizes the kernel KppD,D+K_{p\rightarrow p}^{\text{D,D}^{+}} defined in Eq. (84) at the spatial points where nDn_{\text{D}} is evaluated. The matrix

M21=νcx,DKpbD,D+,\displaystyle\begin{aligned} &M_{21}=\nu_{\text{cx,D}}K_{p\rightarrow b}^{\text{D,D}^{+}},\end{aligned} (176)

has size NB×NPN_{B}\times N_{P} and discretizes the kernel KpbD,D+K_{p\rightarrow b}^{\text{D,D}^{+}} defined in Eq. (134) at the points where ΓD\Gamma_{\text{D}} is evaluated. The other matrices appearing in the definition of MM are defined similarly,

M31=[nD2+nDνcx,D2+D]KppD2,D2+,\displaystyle\begin{aligned} &M_{31}=\left[\frac{n_{\text{D}_{2}^{+}}}{n_{\text{D}}}\nu_{\text{cx,D}_{2}^{+}-\text{D}}\right]K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (177)
M41=[nD2+nDνcx,D2+D]KpbD2,D2+,\displaystyle\begin{aligned} &M_{41}=\left[\frac{n_{\text{D}_{2}^{+}}}{n_{\text{D}}}\nu_{\text{cx,D}_{2}^{+}-\text{D}}\right]K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (178)
M12=(1αrefl)(1βassoc)KbpD,reem,\displaystyle\begin{aligned} &M_{12}=(1-\alpha_{\text{refl}})(1-\beta_{\text{assoc}})K_{b\rightarrow p}^{\text{D,reem}},\end{aligned} (179)
M22=(1αrefl)(1βassoc)KbbD,reem,\displaystyle\begin{aligned} &M_{22}=(1-\alpha_{\text{refl}})(1-\beta_{\text{assoc}})K_{b\rightarrow b}^{\text{D,reem}},\end{aligned} (180)
M32=(1αrefl)βassoc2KbpD2,reem,\displaystyle\begin{aligned} &M_{32}=(1-\alpha_{\text{refl}})\frac{\beta_{\text{assoc}}}{2}K_{b\rightarrow p}^{\text{D}_{2}\text{,reem}},\end{aligned} (181)
M42=(1αrefl)βassoc2KbbD2,reem,\displaystyle\begin{aligned} &M_{42}=(1-\alpha_{\text{refl}})\frac{\beta_{\text{assoc}}}{2}K_{b\rightarrow b}^{\text{D}_{2}\text{,reem}},\end{aligned} (182)
M13=νcx,D2D+KppD,D++νdiss,D2KppD,diss(D2)+νdiss-iz,D2KppD,diss-iz(D2),\displaystyle\begin{aligned} &M_{13}=\nu_{\text{cx,D}_{2}-\text{D}^{+}}K_{p\rightarrow p}^{\text{D,D}^{+}}+\nu_{\text{diss,D}_{2}}K_{p\rightarrow p}^{\text{D,diss}\left(\text{D}_{2}\right)}+\nu_{\text{diss-iz,D}_{2}}K_{p\rightarrow p}^{\text{D,diss-iz}\left(\text{D}_{2}\right)},\end{aligned} (183)
M23=νcx,D2D+KpbD,D++νdiss,D2KpbD,diss(D2)+νdiss-iz,D2KpbD,diss-iz(D2),\displaystyle\begin{aligned} &M_{23}=\nu_{\text{cx,D}_{2}-\text{D}^{+}}K_{p\rightarrow b}^{\text{D,D}^{+}}+\nu_{\text{diss,D}_{2}}K_{p\rightarrow b}^{\text{D,diss}\left(\text{D}_{2}\right)}+\nu_{\text{diss-iz,D}_{2}}K_{p\rightarrow b}^{\text{D,diss-iz}\left(\text{D}_{2}\right)},\end{aligned} (184)
M33=νcx,D2KppD2,D2+,\displaystyle\begin{aligned} &M_{33}=\nu_{\text{cx,D}_{2}}K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (185)
M43=νcx,D2KpbD2,D2+,\displaystyle\begin{aligned} &M_{43}=\nu_{\text{cx,D}_{2}}K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (186)
M14=0,\displaystyle\begin{aligned} &M_{14}=0,\end{aligned} (187)
M24=0,\displaystyle\begin{aligned} &M_{24}=0,\end{aligned} (188)
M34=(1αrefl)KbpD2,\displaystyle\begin{aligned} &M_{34}=(1-\alpha_{\text{refl}})K_{b\rightarrow p}^{\text{D}_{2}},\end{aligned} (189)
M44=(1αrefl)KbbD2,\displaystyle\begin{aligned} &M_{44}=(1-\alpha_{\text{refl}})K_{b\rightarrow b}^{\text{D}_{2}},\end{aligned} (190)

The vector 𝐛\mathbf{b} is defined through the vectors b1b_{1} and b3b_{3} of size NPN_{P},

b1=nD[rec(D+)](𝐱)+nD[diss(D2+)](𝐱)+nD[out(D+)](𝐱),\displaystyle\begin{aligned} &b_{1}=n_{\text{D}[\text{rec}(\text{D}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}[\text{diss}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp}),\end{aligned} (191)
b3=nD2[rec(D2+)](𝐱)+nD2[out(D2+)](𝐱)+nD2[out(D+)](𝐱),\displaystyle\begin{aligned} &b_{3}=n_{\text{D}_{2}[\text{rec}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}_{2}[\text{out}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+n_{\text{D}_{2}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp}),\end{aligned} (192)

and the vector b2b_{2} and b4b_{4} of size NBN_{B},

b2=Γout,D[rec(D+)](𝐱)+Γout,D[diss(D2+)](𝐱)+Γout,D[out(D+)](𝐱),\displaystyle\begin{aligned} &b_{2}=\Gamma_{\text{out},\text{D}[\text{rec}(\text{D}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{out},\text{D}[\text{diss}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{out,D}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp}),\end{aligned} (193)
b4=Γout,D2[rec(D2+)](𝐱)+Γout,D2[out(D2+)](𝐱)+Γout,D2[out(D+)](𝐱).\displaystyle\begin{aligned} &b_{4}=\Gamma_{\text{out,D}_{2}[\text{rec}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{out,D}_{2}[\text{out}(\text{D}_{2}^{+})]}(\mathbf{x}_{\perp})+\Gamma_{\text{out,D}_{2}[\text{out}(\text{D}^{+})]}(\mathbf{x}_{\perp}).\end{aligned} (194)

It is remarked that the vector 𝐛\mathbf{b} can also be written as 𝐛=N𝐱i\mathbf{b}=N\mathbf{x}_{\text{i}}, where 𝐱i\mathbf{x}_{\text{i}} refers to the densities and boundary fluxes of the D+\text{D}^{+} and D2+\text{D}_{2}^{+} ion species,

𝐱i=[nD+Γout,D+nD2+Γout,D2+],\mathbf{x}_{\text{i}}=\begin{bmatrix}n_{\text{D}^{+}}\\ \Gamma_{\text{out,D}^{+}}\\ n_{\text{D}_{2}^{+}}\\ \Gamma_{\text{out,D}_{2}^{+}}\end{bmatrix}, (195)

and the matrix NN can be expressed as

N=[N11N12N13N14N21N22N23N24N31N32N33N34N41N42N43N44],N=\begin{bmatrix}N_{11}\ \ \ N_{12}\ \ \ N_{13}\ \ \ N_{14}\\ N_{21}\ \ \ N_{22}\ \ \ N_{23}\ \ \ N_{24}\\ N_{31}\ \ \ N_{32}\ \ \ N_{33}\ \ \ N_{34}\\ N_{41}\ \ \ N_{42}\ \ \ N_{43}\ \ \ N_{44}\end{bmatrix}, (196)

with entries

N11=νrec,D+KppD,D+,\displaystyle\begin{aligned} &N_{11}=\nu_{\text{rec,D}^{+}}K_{p\rightarrow p}^{\text{D,D}^{+}},\end{aligned} (197)
N21=νrec,D+KpbD,D+,\displaystyle\begin{aligned} &N_{21}=\nu_{\text{rec,D}^{+}}K_{p\rightarrow b}^{\text{D,D}^{+}},\end{aligned} (198)
N31=νrec,D2+KppD2,D2+,\displaystyle\begin{aligned} &N_{31}=\nu_{\text{rec,D}_{2}^{+}}K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (199)
N41=νrec,D2+KpbD2,D2+,\displaystyle\begin{aligned} &N_{41}=\nu_{\text{rec,D}_{2}^{+}}K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (200)
N12=(1αrefl)(1βassoc)KbpD,reem+αreflKbpD,refl,\displaystyle\begin{aligned} &N_{12}=(1-\alpha_{\text{refl}})(1-\beta_{\text{assoc}})K_{b\rightarrow p}^{\text{D,reem}}+\alpha_{\text{refl}}K_{b\rightarrow p}^{\text{D,refl}},\end{aligned} (201)
N22=(1αrefl)(1βassoc)KbbD,reem+αreflKbbD,refl,\displaystyle\begin{aligned} &N_{22}=(1-\alpha_{\text{refl}})(1-\beta_{\text{assoc}})K_{b\rightarrow b}^{\text{D,reem}}+\alpha_{\text{refl}}K_{b\rightarrow b}^{\text{D,refl}},\end{aligned} (202)
N32=(1αrefl)βassoc2KbpD2,reem,\displaystyle\begin{aligned} &N_{32}=(1-\alpha_{\text{refl}})\frac{\beta_{\text{assoc}}}{2}K_{b\rightarrow p}^{\text{D}_{2}\text{,reem}},\end{aligned} (203)
N42=(1αrefl)βassoc2KbbD2,reem,\displaystyle\begin{aligned} &N_{42}=(1-\alpha_{\text{refl}})\frac{\beta_{\text{assoc}}}{2}K_{b\rightarrow b}^{\text{D}_{2}\text{,reem}},\end{aligned} (204)
N13=νdiss,D2+KppD,diss(D2+)+2νdiss-rec,D2+KppD,diss-rec(D2+),\displaystyle\begin{aligned} &N_{13}=\nu_{\text{diss,D}_{2}^{+}}K_{p\rightarrow p}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}+2\nu_{\text{diss-rec,D}_{2}^{+}}K_{p\rightarrow p}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)},\end{aligned} (205)
N23=νdiss,D2+KpbD,diss(D2+)+2νdiss-rec,D2+KpbD,diss-rec(D2+),\displaystyle\begin{aligned} &N_{23}=\nu_{\text{diss,D}_{2}^{+}}K_{p\rightarrow b}^{\text{D,diss}\left(\text{D}_{2}^{+}\right)}+2\nu_{\text{diss-rec,D}_{2}^{+}}K_{p\rightarrow b}^{\text{D,diss-rec}\left(\text{D}_{2}^{+}\right)},\end{aligned} (206)
N33=νrec,D2+KppD2,D2+,\displaystyle\begin{aligned} &N_{33}=\nu_{\text{rec,D}_{2}^{+}}K_{p\rightarrow p}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (207)
N43=νrec,D2+KpbD2,D2+,\displaystyle\begin{aligned} &N_{43}=\nu_{\text{rec,D}_{2}^{+}}K_{p\rightarrow b}^{\text{D}_{2},\text{D}_{2}^{+}},\end{aligned} (208)
N14=0,\displaystyle\begin{aligned} &N_{14}=0,\end{aligned} (209)
N24=0,\displaystyle\begin{aligned} &N_{24}=0,\end{aligned} (210)
N34=(1αrefl)KbpD2,reem,\displaystyle\begin{aligned} &N_{34}=(1-\alpha_{\text{refl}})K_{b\rightarrow p}^{\text{D}_{2}\text{,reem}},\end{aligned} (211)
N44=(1αrefl)KbbD2,reem+αreflKbbD2,refl.\displaystyle\begin{aligned} &N_{44}=(1-\alpha_{\text{refl}})K_{b\rightarrow b}^{\text{D}_{2}\text{,reem}}+\alpha_{\text{refl}}K_{b\rightarrow b}^{\text{D}_{2}\text{,refl}}.\end{aligned} (212)

We remark that a convergence study to estimate the error introduced by the discretization of the neutral equation was carried out for a single neutral species model and it is reported in [56].

ACKNOWLEDGEMENTS

We would like to thank C. Theiler, C. Wersal, D. Mancini, K. Verhaegh and M. Wensing for useful discussions. The simulations presented herein were carried out in part at CSCS (Swiss National Supercomputing Center) under the project ID s882 and in part on the CINECA Marconi supercomputer under the GBSedge project. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Fond National Suisse de la Recherche Scientifique and from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

REFERENCES

References

  • [1] Peter C Stangeby. The Plasma Boundary of Magnetic Fusion Devices. IOP, Bristol, 2000.
  • [2] Charles Spencer Pitcher. Tokamak Plasma Interaction with Limiters. PhD thesis, University of Toronto, 1988.
  • [3] Chen Zhang, Chaofeng Sang, Liang Wang, Mingyu Chang, Daoyuan Liu, and Dezhen Wang. Effect of carbon and tungsten plasma-facing materials on the divertor and pedestal plasma in EAST. Plasma Physics and Controlled Fusion, 61:115013, 2019.
  • [4] Daren Stotler and Charles Karney. Neutral Gas Transport Modeling with DEGAS 2. Contributions to Plasma Physics, 34(2-3):392–397, 1994.
  • [5] B. J. Braams. Radiative Divertor Modelling for ITER and TPX. Contributions to Plasma Physics, 36:276, 1996.
  • [6] M. Baelmans, D. Reiter, and R. R. Weynants. New Developments in Plasma Edge Modeling with Particular Emphasis on Drift Flows and Electric Fields. Contributions to Plasma Physics, 36:117, 1996.
  • [7] R. Simonini, G. Corrigan, G. Radford, J. Spence, and A. Taroni. Models and Numerics in the Multi-Fluid 2-D Edge Plasma Code EDGE2D/U. Contributions to Plasma Physics, 34:368, 1994.
  • [8] Y. Feng, F. Sardei, and J. Kisslinger. 3D fluid modelling of the edge plasma by means of a Monte Carlo technique. Journal of Nuclear Materials, 266:812–818, 1999.
  • [9] H. Bufferand, G. Ciraolo, L. Isoardi, G. Chiavassa, F. Schwander, E. Serre, N. Fedorczak, Ph Ghendrih, and P. Tamain. Applications of SOLEDGE-2D code to complex SOL configurations and analysis of Mach probe measurements. Journal of Nuclear Materials, 415:S589–S592, 2011.
  • [10] R. Zagórski, H. Gerhauser, and H. A. Claaßen. Numerical simulation of the TEXTOR edge plasma including drifts and impurities. Contributions to Plasma Physics, 38:61, 1998.
  • [11] Keiji Sawada and Takashi Fujimoto. Effective ionization and dissociation rate coefficients of molecular hydrogen in plasma. Journal of Applied Physics, 78:2913, 1995.
  • [12] A. Yu Pigarov, S. I. Krasheninnikov, W. P. West, T. D. Rognlien, J. A. Boedo, D. G. Whyte, C. J. Lasnier, T. W. Petrie, M. J. Schaffer, and J. G. Watkins. DIII-D edge plasma simulations with UEDGE code including non-diffusive anomalous cross-field transport. Journal of Nuclear Materials, 313-316(SUPPL.):1076–1080, 2003.
  • [13] D. Reiter, M. Baelmans, and P. Börner. The EIRENE and B2-EIRENE codes. Fusion Science and Technology, 47(2):172–186, 2005.
  • [14] John Mandrekas. GTNEUT: A code for the calculation of neutral particle transport in plasmas based on the transmission and escape probability method. Computer Physics Communications, 161(1-2):36–64, 2004.
  • [15] K. Shimizu, T. Takizuka, S. Sakurai, H. Tamai, H. Takenaga, H. Kubo, and Y. Miura. Simulation of divertor detachment characteristics in JT-60 with superconducting coils. Journal of Nuclear Materials, 313-316(SUPPL.):1277–1281, 2003.
  • [16] K. D. Lawson, M. Groth, D. Harting, S. Menmuir, D. Reiter, S. Brezinsek, G. Corrigan, P. Drewelow, C. F. Maggi, A. G. Meigs, J. Simpson, M. F. Stamp, S. Wiesen, and Contributors. A study of the atomic and molecular power loss terms in EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges. Nuclear Materials and Energy, 12:924–930, 2017.
  • [17] J. D. Lore, J. M. Canik, Y. Feng, J. W. Ahn, R. Maingi, and V. Soukhanovskii. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX. Nuclear Fusion, 52(5):054012, 2012.
  • [18] R. Schneider, X. Bonnin, K. Borrass, D. P. Coster, H. Kastelewicz, D. Reiter, V. A. Rozhansky, and B. J. Braams. Plasma edge physics with B2-Eirene. Contributions to Plasma Physics, 46(1-2):3–191, 2006.
  • [19] B. D. Dudson, M. V. Umansky, X. Q. Xu, P. B. Snyder, and H. R. Wilson. BOUT++: A framework for parallel plasma fluid simulations. Computer Physics Communications, 180(9):1467–1480, 2009.
  • [20] B. D. Dudson and J. Leddy. Hermes: Global plasma edge fluid turbulence simulations. Plasma Physics and Controlled Fusion, 59(5), 2017.
  • [21] Matthias Wiesenberger, Lukas Einkemmer, Markus Held, Albert Gutierrez-Milla, Xavier Sáez, and Roman Iakymchuk. Reproducibility, accuracy and performance of the FELTOR code and library on parallel computer architectures. Computer Physics Communications, 238:145–156, 2019.
  • [22] P. Ricci, F. D. Halpern, S. Jolliet, J. Loizu, A. Mosetto, A. Fasoli, I. Furno, and C. Theiler. Simulation of plasma turbulence in scrape-off layer conditions: The GBS code, simulation results and code validation. Plasma Physics and Controlled Fusion, 54(12):124047, 2012.
  • [23] F. D. Halpern, P. Ricci, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, F. Musil, F. Riva, T. M. Tran, and C. Wersal. The GBS code for tokamak scrape-off layer simulations. Journal of Computational Physics, 315:388–408, 2016.
  • [24] M. Francisquez, B. Zhu, and B. N. Rogers. Global 3D Braginskii simulations of the tokamak edge region of IWL discharges. Nuclear Fusion, 57(11), 2017.
  • [25] Andreas Stegmeir, David Coster, Alexander Ross, Omar Maj, Karl Lackner, and Emanuele Poli. GRILLIX: A 3D turbulence code based on the flux-coordinate independent approach. Plasma Physics and Controlled Fusion, 60(3), 2018.
  • [26] A. S. Thrysøe, M. Løiten, J. Madsen, V. Naulin, A. H. Nielsen, and J. Juul Rasmussen. Plasma particle sources due to interactions with neutrals in a turbulent scrape-off layer of a toroidally confined plasma. Physics of Plasmas, 25(3), 2018.
  • [27] Camille Baudoin, Patrick Tamain, Hugo Bufferand, Guido Ciraolo, Nicolas Fedorczak, Davide Galassi, Philippe Ghendrih, and Nicolas Nace. Turbulent heat transport in TOKAM3X edge plasma simulations. Contributions to Plasma Physics, 58:484–489, 2018.
  • [28] E. L. Shi, G. W. Hammett, T. Stoltzfus-Dueck, and A. Hakim. Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma. Journal of Plasma Physics, 83(3), 2017.
  • [29] C. S. Chang and S. Ku. Spontaneous rotation sources in a quiescent tokamak edge plasma. Physics of Plasmas, 15(6), 2008.
  • [30] S. Ku, C. S. Chang, and P. H. Diamond. Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nuclear Fusion, 49(11), 2009.
  • [31] H. Bufferand, C. Baudoin, J. Bucalossi, G. Ciraolo, J. Denis, N. Fedorczak, D. Galassi, Ph Ghendrih, R. Leybros, Y. Marandet, N. Mellet, J. Morales, N. Nace, E. Serre, P. Tamain, and M. Valentinuzzi. Implementation of drift velocities and currents in SOLEDGE2D–EIRENE. Nuclear Materials and Energy, 12:852–857, 2017.
  • [32] H. Bufferand, P. Tamain, S. Baschetti, J. Bucalossi, G. Ciraolo, N. Fedorczak, Ph Ghendrih, F. Nespoli, F. Schwander, E. Serre, and Y. Marandet. Three-dimensional modelling of edge multi-component plasma taking into account realistic wall geometry. Nuclear Materials and Energy, 18:82–86, 2019.
  • [33] Alexander S. Thrysøe, Laust E.H. Tophøj, Volker Naulin, Jens Juul Rasmussen, Jens Madsen, and Anders H. Nielsen. The influence of blobs on neutral particles in the scrape-off layer. Plasma Physics and Controlled Fusion, 58(4), 2016.
  • [34] A. S. Thrysøe, J. Madsen, V. Naulin, and J. Juul Rasmussen. Influence of molecular dissociation on blob-induced atom density perturbations. Nuclear Fusion, 58(9), 2018.
  • [35] C. Wersal and P. Ricci. A first-principles self-consistent model of plasma turbulence and kinetic neutral dynamics in the tokamak scrape-off layer. Nuclear Fusion, 55(12):123014, 2015.
  • [36] C. Wersal, P. Ricci, and J. Loizu. A comparison between a refined two-point model for the limited tokamak SOL and self-consistent plasma turbulence simulations. Plasma Physics and Controlled Fusion, 59(4):044011, 2017.
  • [37] C. Wersal and P. Ricci. Impact of neutral density fluctuations on gas puff imaging diagnostics. Nuclear Fusion, 57(11):116018, 2017.
  • [38] A. Coroado and P. Ricci. Moving toward mass-conserving simulations of plasma turbulence and kinetic neutrals in the tokamak boundary with the GBS code. Physics of Plasmas, 28(2):022310, 2021.
  • [39] V M Zhdanov. Transport Processes in Multicomponent Plasma. Plasma Physics and Controlled Fusion, 2002.
  • [40] D. P. Stotler, C. H. Skinner, R. V. Budny, A. T. Ramsey, D. N. Ruzic, and R. B. Turkot. Modeling of neutral hydrogen velocities in the tokamak fusion test reactor. Physics of Plasmas, 3:4084, 1996.
  • [41] M. Wensing, B. P. Duval, O. Février, A. Fil, D. Galassi, E. Havlickova, A. Perek, H. Reimerdes, C. Theiler, K. Verhaegh, and M. Wischmeier. SOLPS-ITER simulations of the TCV divertor upgrade. Plasma Physics and Controlled Fusion, 61:085029, 2019.
  • [42] D Reiter. The data file AMJUEL: Additional Atomic and Molecular Data for EIRENE. Technical report, FZ, Forschungszentrum Julich GmbH FRG, 2011.
  • [43] R.K. Janev and Langer W.D. The Janev-Langer Hydrogen-Helium database, 1987 Contents. Springer, 1987.
  • [44] R. K. Janev. Atomic and Molecular Processes in Fusion Edge Plasmas. Plenum Press, New York, 1995.
  • [45] Jung Sik Yoon, Mi Young Song, Jeong Min Han, Sung Ha Hwang, Won Seok Chang, Bongju Lee, and Yukikazu Itikawa. Cross sections for electron collisions with hydrogen molecules. Journal of Physical and Chemical Reference Data, 37:913, 2008.
  • [46] H. K. Chung. Data for Atomic Processes of Neutral Beams in Fusion Plasma, Summary Report of the First Research Coordination Meeting. Technical report, IAEA Nuclear Data Section, 2017.
  • [47] Predrag S. Krstić. Inelastic processes from vibrationally excited states in slow H^+ + H_2 and H+ H_2^+ collisions: Excitations and charge transfer. Physical Review A - Atomic, Molecular, and Optical Physics, 66(4):042717, 2002.
  • [48] Predrag S. Krstić. Vibrationally resolved collisions in cold hydrogen plasma. In Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, pages 58–62, 2005.
  • [49] A. Zeiler, J. F. Drake, and B. Rogers. Nonlinear reduced Braginskii equations with ion thermal dynamics in toroidal plasma. Physics of Plasmas, 4(6):2134–2138, 1997.
  • [50] Madhusudan Raghunathan, Yannick Marandet, Hugo Bufferand, Guido Ciraolo, Philippe Ghendrih, Patrick Tamain, and Eric Serre. Generalized Collisional Fluid Theory for Multi-Component, Multi-Temperature Plasma Using The Linearized Boltzmann Collision Operator for Scrape-Off Layer/Edge Applications. Plasma Physics and Controlled Fusion, 29:1–29, 2021.
  • [51] J. Loizu, P. Ricci, F. D. Halpern, and S. Jolliet. Boundary conditions for plasma fluid models at the magnetic presheath entrance. Physics of Plasmas, 19(12):122307, 2012.
  • [52] Annamaria Mosetto, Federico D. Halpern, Sébastien Jolliet, Joaquim Loizu, and Paolo Ricci. Finite ion temperature effects on scrape-off layer turbulence. Physics of Plasmas, 22(1), 2015.
  • [53] D. Tskhakaya, S. Kuhn, and Y. Tomita. Formulation of boundary conditions for the unmagnetized multi-ion-component plasma sheath. Contributions to Plasma Physics, 46(7-9):649–654, 2006.
  • [54] Paola Paruta, P. Ricci, F. Riva, C. Wersal, C. Beadle, and B. Frei. Simulation of plasma turbulence in the periphery of diverted tokamak by using the GBS code. Physics of Plasmas, 25(11):112301, 2018.
  • [55] D. Galassi, H. Reimerdes, C. Theiler, M. Wensing, H. Bufferand, G. Ciraolo, P. Innocente, Y. Marandet, and P. Tamain. Numerical investigation of optimal divertor gas baffle closure on TCV. Plasma Physics and Controlled Fusion, 2020.
  • [56] M Giacomin, P Ricci, A Coroado, G Fourestey, D Galassi, E Lanti, and D Mancini. The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary. submitted, 2021.
  • [57] J. Loizu, P. Ricci, F. D. Halpern, S. Jolliet, and A. Mosetto. On the electrostatic potential in the scrape-off layer of magnetic confinement devices. Plasma Physics and Controlled Fusion, 55(12):124019, 2013.
  • [58] J. Franck. Elementary processes of photochemical reactions. Transactions of the Faraday Society, 21:536–542, 1926.
  • [59] Edward U. Condon. Nuclear motions associated with electron transitions in diatomic molecules. Physical Review, 32(6):858–872, 1928.
  • [60] Jinjun Liu, Edcel J. Salumbides, Urs Hollenstein, Jeroen C.J. Koelemeij, Kjeld S.E. Eikema, Wim Ubachs, and Fŕdŕic Merkt. Determination of the ionization and dissociation energies of the hydrogen molecule. Journal of Chemical Physics, 130:174306, 2009.
  • [61] V. M. Zhdanov and P. N. Yushmanov. Diffusion and heat transfer in a multicomponent completely ionized plasma. Journal of Applied Mechanics and Technical Physics, 1980.
  • [62] S. I. Braginskii. Transport processes in a plasma. In Reviews of Plasma Physics, volume 1. Consultants Bureau, New York, 1965.