This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\savesymbol

iint \savesymbolopenbox \restoresymbolTXFiint \restoresymbolTXFopenbox

A Scaling Approach to Elliptic Theory for Geometrically-Natural Differential Operators with Sobolev-Type Coefficients

Michael Holst, David Maxwell and Gantumur Tsogtgerel
(June 28, 2023)
Abstract

We develop local elliptic regularity for operators having coefficients in a range of Sobolev-type function spaces (Bessel potential, Sobolev-Slobodeckij, Triebel-Lizorkin, Besov) where the coefficients have a regularity structure typical of operators in geometric analysis. The proofs rely on a nonstandard technique using rescaling estimates and apply to operators having coefficients with low regularity. For each class of function space for an operator’s coefficients, we exhibit a natural associated range of function spaces of the same type for the domain of the operator and we provide regularity inference along with interior estimates. Additionally, we present a unified set of multiplication results for the function spaces we consider.

2020 Mathematics Subject Classification. Primary: 35B65. Secondary: 35J47, 35J48, 46F10.Keywords: elliptic regularity, Bessel potential, Sobolev-Slobodeckij, Triebel-Lizorkin, Besov, multiplication

1 Introduction

Elliptic differential operators associated with Riemannian metrics having limited regularity arise naturally in the construction of initial data in general relativity. Moreover, because of connections with the associated evolution problem, it is natural to work with metrics having regularity measured in Sobolev-type scales, and with a non-integral number of derivatives [KR05][ST05][Ma06]. In this paper we develop a largely self-contained account of the mapping properties and local elliptic regularity theory for differential operators having coefficients in any one of a broad category of Sobolev-type spaces, including spaces with non-integral levels of differentiability, where the coefficients also admit a regularity structure typical of geometric differential operators. For each category of function spaces considered, we allow for coefficients with low regularity, and our approach to local elliptic theory is apparently novel in this context, relying on rescaling estimates for Sobolev-type spaces to reduce the problem to that of constant-coefficient operators.

Local elliptic regularity is a well-established subject, with a wealth of results available in a number of contexts, even in low-regularity settings. For second-order scalar elliptic operators in divergence form [Tr73] treats a form of elliptic regularity assuming only that the coefficients are measurable, although only for a very limited set of (operator-dependent) function spaces. A related theory appears in the text [GT01] that applies to a range of integer-based Sobolev spaces under progressively stronger hypotheses on the coefficients of the elliptic operator. See also [Gi93], which contains analogous results that apply to systems of equations. Spaces with a non-integral number of derivatives include the L2L^{2}-based spaces HsH^{s} which appear naturally in hyperbolic problems as well as their generalizations: Bessel potential spaces Hs,pH^{s,p}, Sobolev-Slobodeckij spaces Ws,pW^{s,p}, Triebel-Lizorkin spaces Fqs,pF^{s,p}_{q}, and Besov spaces Bqs,pB^{s,p}_{q}. So long as the differential operators involved have smooth coefficients, elliptic theory for these spaces can be found in [Tr10]. For less regular coefficients, one is led to the theory of pseudodifferential operators with non-smooth symbols and paradifferential calculus. See, e.g., [Ta91] and [Ma88]. Nevertheless, this theory is somewhat technical, and it can be difficult for non-practitioners to apply it immediately to the specific class of questions addressed in the current work.

Within the mathematical relativity literature one finds instead a sequence of custom-made regularity theorems for second-order operators associated with with a metric gg on a domain of dimension n3n\geq 3:

  • [CC81]: gWk,2g\in W^{k,2} with kk\in\mathbb{N}, k>n/2+1k>n/2+1 and hence possessing Hölder continuous derivatives,

  • [Ch04][Ma05]: gWk,pg\in W^{k,p} with kk\in\mathbb{N}, k2k\geq 2 and k>n/pk>n/p and hence Hölder continuous,

  • [Ma06]: gHsg\in H^{s} with ss\in\mathbb{R}, s>n/2s>n/2 and hence Hölder continuous,

  • [HNT09] gWs,pg\in W^{s,p} with ss\in\mathbb{R}, s1s\geq 1 and s>n/ps>n/p and hence Hölder continuous.

Although [Ma06] was the first work in this context to treat spaces with a fractional number of derivatives, its limited focus on the L2L^{2} setting meant that it did not recover the full set of earlier results. By contrast, [HNT09] recovers prior results fully, but its main regularity result, Lemma 32, contains an error that is not straightforward to correct. Moreover, although Sobolev-Slobodeckij spaces Ws,pW^{s,p} are a reasonable choice for interpolating between integer-based Sobolev spaces, Bessel potential spaces Hs,pH^{s,p} enjoy better interpolation and embedding properties and are a compelling alternative. Hence it would be desirable to extend the results above to other classes of function spaces, and indeed our work here concerning Bessel potential spaces provides the elliptic theory used by the recent preprint [ALM22], which treats geometric operators on asymptotically hyperbolic manifolds.

Our main results concern local elliptic regularity for differential operators having coefficients in any of the Sobolev-type spaces Hs,pH^{s,p}, Ws,pW^{s,p}, Fqs,pF^{s,p}_{q} and Bqs,pB^{s,p}_{q} mentioned above. Although we use basic techniques from the theory of paraproducts in the proofs of some of our work, we do so with a minimum of theoretical overhead, and Section 3.2 contains a short survey of the few tools needed. Moreover, although Bessel potential spaces are a special case of Triebel-Lizorkin spaces and could have been dealt with as a consequence of the general theory, in Section 2 we present a simplified approach in the Bessel potential context that is free from paraproduct methods. This approach comes at the expense of establishing a less-than-sharp intermediate result on rescaling (Proposition 2.17 vs. Proposition 3.10), but this has no impact on the final regularity theory. Readers who are only interested in the Bessel potential case can stop reading at the end of Section 2 without needing to move on to the relative complexities of the more general function spaces.

In addition to extending the scope of [Ma06] and [HNT09] to a broader class of function spaces, the results of this paper strengthen our earlier work. Rather than simply obtaining a-priori estimates for functions with a known level of regularity, we obtain full regularity inference in the spirit of, e.g., [GT01] Theorem 8.8. Additionally, we have extended the range of parameters of the function spaces treated. This extension is only marginal in the generic case, but substantially extends the range of parameters whenever the operators involved omit low-order terms; see the discussion following Definition 2.4. Although we restrict our attention to interior regularity, the tools developed here are also sufficient to address boundary value problems. We have omitted these considerations, in part for simplicity of exposition: boundary traces generally lie in Besov spaces, which are among the most technical of the spaces we consider, and which we treat last. We will address boundary regularity in followup work.

Principal applications of elliptic regularity only apply to the range of Lebesgue exponents 1<p<1<p<\infty. Motivated by this, and again for the sake of simple exposition, we have avoided the edge cases of Fqs,pF^{s,p}_{q} and Bqs,pB^{s,p}_{q} where p,q=1,p,q=1,\infty, much less the quasi-normed spaces where p,q<1p,q<1. We observe, however, that the multiplication rules of Theorems 3.5 and 5.4 and the rescaling estimates of Propositions 3.10 and 5.11 are candidates that could benefit from extending beyond the parameter ranges treated here.

1.1 Coefficient regularity structure

Differential operators in geometric analysis admit a representation in local coordinates in terms of coefficients that are universal expressions involving the values and derivatives of the coordinate representation gabg_{ab} of a metric gg. The prototypical example is the Laplacian Δg\Delta_{g} associated with gg, which can be written in terms of the inverse metric gabg^{ab} and the determinant g\sqrt{g} as

Δg=gabab+ag(a(1ggab))b.\Delta_{g}=g^{ab}\partial_{a}\partial_{b}+\sum_{a}\sqrt{g}\left(\partial_{a}\left(\frac{1}{\sqrt{g}}g^{ab}\right)\right)\partial_{b}.

The leading order coefficients have the regularity of gabg_{ab}, whereas the next order coefficients involve first derivatives of gabg_{ab}. More generally, consider the conformal Laplacian 𝒞g\mathcal{C}_{g} of gg,

𝒞g=cnΔg+Rg\mathcal{C}_{g}=-c_{n}\Delta_{g}+R_{g}

where cn=4(n1)/(n2)c_{n}=-4(n-1)/(n-2) and where RgR_{g} is the scalar curvature of the metric. If the coefficients of the metric lie in Wloc1,pW^{1,p}_{\rm loc} with p>np>n, a computation using Hölder’s inequality and Sobolev embedding shows that 𝒞g\mathcal{C}_{g} has the form

𝒞g=cngabab+βaa+γ\mathcal{C}_{g}=-c_{n}g^{ab}\partial_{a}\partial_{b}+\beta^{a}\partial_{a}+\gamma

where

gabWloc1,p,βaWloc0,p,γWloc1,p.\displaystyle g^{ab}\in W^{1,p}_{\rm loc},\qquad\beta^{a}\in W^{0,p}_{\rm loc},\qquad\gamma\in W^{-1,p}_{\rm loc}.

In particular, the leading order coefficients have the regularity of the metric, and there is a loss of one derivative as we descend from one order of coefficient to the next. This leads us to consider elliptic dthd^{\rm th}-order operators of the form

L=|α|daααL=\sum_{|\alpha|\leq d}a^{\alpha}\partial_{\alpha} (1.1)

where the top-most coefficients lie in a space JsJ^{s} with ss derivatives and more generally where each aαJsd+|α|a^{\alpha}\in J^{s-d+|\alpha|}. While this category of operator is not the most general possible in geometric analysis [St75], it is sufficiently broad to include many operators of interest, including Hodge Laplacians, the Lichnerowicz Laplacian [Be87], the vector Laplacian [Is95] and the conformal Laplacian, so long as s1s\geq 1 and so long as the underlying metric lies in a space sufficiently regular so as to ensure Hölder continuity. It also includes the class of geometric operators satisfying the hypotheses of Assumption P of [ALM22].

Given an operator of the form (1.1) with leading order coefficients in some space JsJ^{s} with ss derivatives, one wants to find compatible spaces KσK^{\sigma} with σ\sigma derivatives such that that L:KσKσdL:K^{\sigma}\to K^{\sigma-d} and such that local elliptic regularity holds: roughly that if uu is regular enough that LL can act on it, and if LuKσdLu\in K^{\sigma-d}, then locally uKσu\in K^{\sigma} along with associated estimates. We establish this theory for elliptic operators of the form (1.1) where the topmost coefficients come from a space JsJ^{s} of one of the following types:

  • a Bessel potential space Hs,pH^{s,p}, in which case KσK^{\sigma} is another Bessel potential space Hσ,qH^{\sigma,q} (Section 2),

  • a Triebel-Lizorkin space Fqs,pF^{s,p}_{q}, in which case KσK^{\sigma} is another Triebel-Lizorkin space Fbσ,aF^{\sigma,a}_{b} (Section 3),

  • a Sobolev-Slobodeckij space Ws,pW^{s,p}, in which case KσK^{\sigma} is another Sobolev-Slobodeckij space Wσ,qW^{\sigma,q} (Section 4),

  • a Besov space Bqs,pB^{s,p}_{q}, in which case KσK^{\sigma} is another Besov space Bbσ,aB^{\sigma,a}_{b} (Section 5).

In all these cases, the space JsJ^{s} is restricted to be suitably regular so that its elements are Hölder continuous, and we give a careful description of the parameters determining the allowable spaces KσK^{\sigma}.

1.2 Rescaling estimates

Our general approach is the same for all the function spaces considered, and in the specific case of Bessel potential spaces Hs,pH^{s,p} the core ingredients are:

  1. 1.

    Multiplication properties for Hs,pH^{s,p} spaces, Theorem 2.5.

  2. 2.

    Mapping properties: given an operator LL of the form (1.1) with leading coefficients in Hs,pH^{s,p}, for which spaces Hσ,qH^{\sigma,q} does LL map Hσ,qHσd,qH^{\sigma,q}\to H^{\sigma-d,q}? This is the content of Proposition 2.6.

  3. 3.

    A rescaling estimate, described below.

  4. 4.

    A coefficient freezing/blowup argument which uses the rescaling estimate to establish “regularity at a point”, Proposition 2.20.

  5. 5.

    A partition of unity decomposition and bootstrap to obtain the main regularity result, Theorem 2.21.

Coefficient freezing as used in step 4 above is classical, but we use a nonstandard rescaling technique to manage the perturbations from the constant coefficient operator. To motivate this technique, consider the simplest case of integer-based Sobolev spaces on the unit ball B1nB_{1}\subset\mathbb{R}^{n}, and let uWk,p(B1)u\in W^{k,p}(B_{1}), where kk\in\mathbb{N}, 1<p<1<p<\infty. For 0<r10<r\leq 1 we define u{r}(x)=u(rx)u_{\{r\}}(x)=u(rx), so u{r}u_{\{r\}} rescales uu up from the ball of radius rr to the unit ball. Derivatives are damped under this rescaling operation, but the singularities permitted by LpL^{p} spaces are enhanced, and a computation using Sobolev embedding and Hölder’s inequality shows

u{r}Wk,p(B1)rαuWk,p(B1)||u_{\{r\}}||_{W^{k,p}(B_{1})}\lesssim r^{\alpha}||u||_{W^{k,p}(B_{1})} (1.2)

where α=min(knp,0)\alpha=\min(k-\frac{n}{p},0), except in the marginal case k=n/pk=n/p, in which case we can take α\alpha to be any negative number. The cap α0\alpha\leq 0 appears in this estimate because of the constants, which are invariant under rescaling. However, if k>n/pk>n/p so that elements of Wk,p(B1)W^{k,p}(B_{1}) are Hölder continuous, and if f(0)=0f(0)=0, one can do better. Now estimate (1.2) holds with α=min(kn/p,1)\alpha=\min(k-n/p,1), except in the marginal case k=n/p+1k=n/p+1, in which case we can use any α<1\alpha<1. Regardless, if k>n/pk>n/p and if f(0)=0f(0)=0, estimate (1.2) holds for some α>0\alpha>0.

Now consider a differential operator L=|β|daββL=\sum_{|\beta|\leq d}a^{\beta}\partial_{\beta} with coefficients aβWkd+|β|,p(B1)a^{\beta}\in W^{k-d+|\beta|,p}(B_{1}) and with k>n/pk>n/p. The leading order coefficients lie in Wk,p(B1)W^{k,p}(B_{1}) and are therefore Hölder continuous. Hence we can define the principal part of LL at 0,

L0=|β|=daβ(0)β.L_{0}=\sum_{|\beta|=d}a^{\beta}(0)\partial_{\beta}.

If uu is a distribution that is regular enough that LL can act on it, a computation shows that

rd(Lu){r}\displaystyle r^{d}(Lu)_{{\{r\}}} =L0u{r}+|β|=d(aβaβ(0)){r}βu{r}:=B[r]u{r}+|β|<drd|β|a{r}ββu{r}:=C[r]u{r}.\displaystyle=L_{0}u_{\{r\}}+\underbrace{\sum_{|\beta|=d}(a^{\beta}-a^{\beta}(0))_{\{r\}}\partial_{\beta}u_{\{r\}}}_{:=B_{[r]}u_{\{r\}}}+\underbrace{\sum_{|\beta|<d}r^{d-|\beta|}a^{\beta}_{{\{r\}}}\partial_{\beta}u_{\{r\}}}_{:=C_{[r]}u_{\{r\}}}.

The aim at this point is to show that by taking rr sufficiently small, the coefficients of the perturbations B[r]B_{[r]} and C[r]C_{[r]} can be made as small as desired so that a parametrix for L0L_{0} can be employed to deduce regularity properties of u{r}u_{\{r\}}, and this is where the rescaling estimate (1.2) is needed. Using the structural hypothesis aβWkd+|β|,p(B1)a_{\beta}\in W^{k-d+|\beta|,p}(B_{1}) along with the rescaling estimate (1.2) we find, except in marginal cases where an unimportant adjustment is needed, that the coefficients of C[r]C_{[r]} satisfy

rd|β|(aβ){r}Wkd+|β|,p(B1)rd|β|rmin(kd+|β|n/p,0)aβWkd+|β|,p(B1).||r^{d-|\beta|}(a_{\beta})_{\{r\}}||_{W^{k-d+|\beta|,p}(B_{1})}\lesssim r^{d-|\beta|}r^{\min(k-d+|\beta|-n/p,0)}||a_{\beta}||_{W^{k-d+|\beta|,p}(B_{1})}.

Since |β|<d|\beta|<d for each of these coefficients, and since k>n/pk>n/p, we obtain

rd|β|rmin(kd+βn/p,0)=rmin(kn/p,d|β|)=rϵr^{d-|\beta|}r^{\min(k-d+\beta-n/p,0)}=r^{\min(k-n/p,d-|\beta|)}=r^{\epsilon}

for some ϵ>0\epsilon>0. Hence the coefficients of C[r]C_{[r]} scale away as r0r\to 0. On the other hand, the high order perturbation coefficients aβaβ(0)a^{\beta}-a^{\beta}(0) lie in Wk,p(B1)W^{k,p}(B_{1}) with k>n/pk>n/p and vanish at 0, so the improved variation of the scaling estimate (1.2) again shows that the coefficients of B[r]B_{[r]} vanish as r0r\to 0.

Propositions 3.10 and 5.11 show that estimate (1.2) generalizes to Triebel-Lizorkin and Besov spaces respectively. For Triebel-Lizorkin spaces, the proof requires elementary techniques from Littlewood-Paley theory and paramultiplication, and the necessary background is recalled in Section 3.2 prior to the proof of Proposition 3.10. The analogous results for Besov spaces follow from the Triebel-Lizorkin result and interpolation. As mentioned above, in the interest of approachability, for Bessel potential spaces we use an alternative approach with a rescaling estimate, Proposition 2.17, that is not sharp, but which admits an elementary proof that is independent of Littlewood-Paley theory.

1.3 Multiplication

Mapping properties of differential operators with coefficients in Sobolev-type spaces depend on pointwise multiplication rules that determine when a product of factors from two given function spaces lies in a third space. There is an extensive literature on this subject, including [Pa68] [Zo77] [Am91] [ST95] [RS96] [Jo95] [BH21] that contains individual pieces of the theory we require. Chapter 4 of [RS96] is especially comprehensive. Where these works overlap, there is generally agreement on the hypotheses, but certain edge cases are treated, or not, by different authors. Rather than attempt to assemble these disparate pieces into a coherent whole, we include a self-contained proof of multiplication rules for Triebel-Lizorkin spaces, Theorem 3.5, and for Besov spaces, Theorem 5.4, in the appendices. Corresponding rules for Bessel potential spaces and Sobolev-Slobodeckij spaces, Theorems 2.5 and 4.2 respectively, follow as corollaries. The proofs rely on the same elementary Littlewood-Paley/paramultiplication techniques that we use to obtain the rescaling estimates of Section 3.2. Although we have limited our analysis to the region 1<p,q<1<p,q<\infty for the spaces Fqs,pF^{s,p}_{q} and Bqs,pB^{s,p}_{q}, in this restricted setting we obtain a consistent set of hypotheses over all ranges of ss that are simpler in character, and that are at least as sharp, as what appears currently in the literature.

2 Coefficients in Bessel Potential Spaces

In this section we prove interior elliptic estimates for operators having coefficients in Bessel potential spaces, with a goal of presenting the result using a minimum of technology. The primary background requirements are:

  • standard facts about Sobolev spaces with integer orders of differentiability,

  • embedding, interpolation and duality theory for Bessel potential spaces,

  • multiplication rules for Bessel potential spaces, which we recall below, and

  • elementary tools from harmonic analysis needed to construct parametrices for elliptic operators with constant coefficients.

In particular, the approach is otherwise independent of Littlewood-Paley theory or the general theory of pseudodifferential operators, beyond what is required to define the spaces themselves.

Let \mathcal{F} denote the Fourier transform and for ss\in\mathbb{R} let DsD^{s} be the pseudodifferential operator given by

[Dsu](ξ)=(1+|ξ|2)s/2[u](ξ).\mathcal{F}[D^{s}u](\xi)=(1+|\xi|^{2})^{s/2}\mathcal{F}[u](\xi).

Given 1<p<1<p<\infty and ss\in\mathbb{R} a tempered distribution uu on n\mathbb{R}^{n} belongs to the Bessel potential space Hs,p(n)H^{s,p}(\mathbb{R}^{n}) if DsuLp(n)D^{-s}u\in L^{p}(\mathbb{R}^{n}), in which case

uHs,p(n)=DsuLp(n).||u||_{H^{s,p}(\mathbb{R}^{n})}=||D^{-s}u||_{L^{p}(\mathbb{R}^{n})}.

We use the same notation for for distributions taking on values in a real vector space (e.g., k\mathbb{R}^{k} or k×k\mathbb{R}^{k\times k}). When kk\in\mathbb{Z}, then Hk,p(n)H^{k,p}(\mathbb{R}^{n}) with this definition coincides with standard Sobolev spaces of distributions having derivatives laying in Lebesgue spaces.

Given an open set Ωn\Omega\subseteq\mathbb{R}^{n} the space Hs,p(Ω)H^{s,p}(\Omega) consists of restrictions of distributions in Hs,p(n)H^{s,p}(\mathbb{R}^{n}) to Ω\Omega and is given the quotient norm. That is,

||u||Hs,p(Ω)=inf{||u^||Hs,p(n):u^Hs,p(n),u^|Ω=u}.||u||_{H^{s,p}(\Omega)}=\inf\{||\hat{u}||_{H^{s,p}(\mathbb{R}^{n})}:\hat{u}\in H^{s,p}(\mathbb{R}^{n}),\hat{u}|_{\Omega}=u\}.

We say an open set Ω\Omega is a CC^{\infty} domain if each point in the boundary admits an open ball centered at it and a diffeomorphism from it to an open subset of n\mathbb{R}^{n} such that the image of the intersection of Ω\Omega with the ball is a simply connected subset of the upper half space n,+\mathbb{R}^{n,+}. If Ω\Omega is a bounded CC^{\infty} domain and if kk\in\mathbb{Z}, then Hk,p(Ω)H^{k,p}(\Omega) coincides with the usual integer-based Sobolev spaces.

We have the following embedding, interpolation, and duality properties of Bessel potential spaces, which are special cases of the same results cited in Section 3 for the more general Triebel-Lizorkin spaces.

Proposition 2.1.

Assume 1<p,p1,p2<1<p,p_{1},p_{2}<\infty and s,s1,s2s,s_{1},s_{2}\in\mathbb{R}, and suppose Ω\Omega is a bounded open set in n\mathbb{R}^{n}.

  1. 1.

    If s1>s2s_{1}>s_{2} then Hs1,p(n)Hs2,p(n)H^{s_{1},p}(\mathbb{R}^{n})\hookrightarrow H^{s_{2},p}(\mathbb{R}^{n}) and Hs1,p(Ω)Hs2,p(Ω)H^{s_{1},p}(\Omega)\hookrightarrow H^{s_{2},p}(\Omega).

  2. 2.

    If p1p2p_{1}\geq p_{2} then Hs,p1(Ω)Hs,p2(Ω)H^{s,p_{1}}(\Omega)\hookrightarrow H^{s,p_{2}}(\Omega).

  3. 3.

    If s1>s2s_{1}>s_{2} and 1p1s1n=1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}=\frac{1}{p_{2}}-\frac{s_{2}}{n} then Hs1,p1(n)Hs2,p2(n)H^{s_{1},p_{1}}(\mathbb{R}^{n})\hookrightarrow H^{s_{2},p_{2}}(\mathbb{R}^{n}).

  4. 4.

    If s1>s2s_{1}>s_{2} and 1p1s1n1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}\leq\frac{1}{p_{2}}-\frac{s_{2}}{n} then Hs1,p1(Ω)Hs2,p2(Ω)H^{s_{1},p_{1}}(\Omega)\hookrightarrow H^{s_{2},p_{2}}(\Omega).

  5. 5.

    If 0<α<10<\alpha<1 then Hnp+α,p(n)C0,α(n)H^{\frac{n}{p}+\alpha,p}(\mathbb{R}^{n})\hookrightarrow C^{0,\alpha}(\mathbb{R}^{n}) and Hnp+α,p(Ω)C0,α(Ω)H^{\frac{n}{p}+\alpha,p}(\Omega)\hookrightarrow C^{0,\alpha}(\Omega).

In the final embedding above, C0,α(n)C^{0,\alpha}(\mathbb{R}^{n}) denotes the Hölder space with norm uC0,α(n)=uL(n)+supxy|f(x)f(y)|xy|α|||u||_{C^{0,\alpha}(\mathbb{R}^{n})}=||u||_{L^{\infty}(\mathbb{R}^{n})}+\sup_{x\neq y}\left|\frac{f(x)-f(y)}{|x-y|^{\alpha}}\right|, with an analogous norm for functions defined on Ω\Omega.

Proposition 2.2.

Assume 1<p1,p2<1<p_{1},p_{2}<\infty and s1,s2s_{1},s_{2}\in\mathbb{R}, and suppose Ω\Omega is either n\mathbb{R}^{n} or is a bounded CC^{\infty} domain in n\mathbb{R}^{n}. For 0<θ<10<\theta<1,

[Hs1,p1(Ω),Hs2,p2(Ω)]θ=Hs,p(Ω)[H^{s_{1},p_{1}}(\Omega),H^{s_{2},p_{2}}(\Omega)]_{\theta}=H^{s,p}(\Omega)

where

s=(1θ)s1+θs2,1p=(1θ)1p1+θ1p2s=(1-\theta)s_{1}+\theta s_{2},\quad\frac{1}{p}=(1-\theta)\frac{1}{p_{1}}+\theta\frac{1}{p_{2}}
Proposition 2.3.

Assume 1<p<1<p<\infty and ss\in\mathbb{R}. The bilinear map C(n)×C(n)C^{\infty}(\mathbb{R}^{n})\times C^{\infty}(\mathbb{R}^{n})\to\mathbb{R} given by f,g:=Ωfg\left<f,g\right>:=\int_{\Omega}fg extends to a continuous bilinear map Fqs,p(n)×Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n})\times F^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n})\to\mathbb{R} where 1/p=11/p1/p^{*}=1-1/p and 1/q=11/q1/q^{*}=1-1/q. Moreover, ff,f\mapsto\left<f,\cdot\right> is a continuous identification of Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) with (Fqs,p(n))(F^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n}))^{*}.

2.1 Mapping properties

The following definition encodes the regularity structure of the coefficients of differential operators appearing frequently in geometric analysis.

Definition 2.4.

Consider a dthd^{\rm th} order differential operator on an open set Ωn\Omega\subseteq\mathbb{R}^{n},

L=|α|daααL=\sum_{|\alpha|\leq d}a^{\alpha}\partial_{\alpha}

where the coefficients are k×k\mathbb{R}^{k\times k}-valued for a system of kk variables. We say that LL is of class d(Hs,p;Ω)\mathcal{L}^{d}(H^{s,p};\Omega) for some ss\in\mathbb{R} and 1<p<1<p<\infty if each

aαHs+|α|d,p(Ω).a^{\alpha}\in H^{s+|\alpha|-d,p}(\Omega).

If LL omits terms of order lower than d0d_{0} for some 0d0d0\leq d_{0}\leq d, i.e.,

L=d0|α|daαα,L=\sum_{d_{0}\leq|\alpha|\leq d}a^{\alpha}\partial_{\alpha},

we say Ld0d(Hs,p;Ω)L\in\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega).

To motivate the roles of the pair of indices dd and d0d_{0} in the previous definition, recall from the introduction the conformal Laplacian 𝒞g=cnΔg+R[g]\mathcal{C}_{g}=-c_{n}\Delta_{g}+R[g] of a metric gg on a bounded CC^{\infty} domain Ω\Omega. An elementary computation using Sobolev embedding shows that if gH1,p(Ω)g\in H^{1,p}(\Omega) with p>np>n then 𝒞g\mathcal{C}_{g} is of class 2(H1,p;Ω)\mathcal{L}^{2}(H^{1,p};\Omega). The low-order term is the scalar curvature R[g]H1,p(Ω)R[g]\in H^{-1,p}(\Omega) and its presence restricts the set of spaces that 𝒞g\mathcal{C}_{g} can act on: functions in these spaces must possess at least one derivative. By contrast, the ordinary Laplacian for the same metric has no zero-order term and consequently is an operator of class 12(H1,p;Ω)\mathcal{L}^{2}_{1}(H^{1,p};\Omega). Moreover, one can show that it acts on a broader class of spaces and, for example, defines a map Lp(Ω)H2,p(Ω)L^{p}(\Omega)\to H^{-2,p}(\Omega). Hence, in addition to the order dd of the differential operator we also track the order d0d_{0} of the term with the lowest number of derivatives appearing in the operator.

Consider an operator LL of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega). It defines a map from C(Ω¯)C^{\infty}(\overline{\Omega}), the set of smooth functions on Ω\Omega admitting smooth extensions to n\mathbb{R}^{n}, to the set D(Ω)D^{\prime}(\Omega) of distributions on Ω\Omega, and we wish to establish finer-grained mapping properties. Specifically, we would like to determine the indices (σ,q)×(1,)(\sigma,q)\in\mathbb{R}\times(1,\infty) such that LL is continuous Hσ,q(Ω)Hσd,q(Ω)H^{\sigma,q}(\Omega)\to H^{\sigma-d,q}(\Omega).

The following result on multiplication of Bessel potential spaces is the tool needed to establish these mapping properties. It can be readily proved for integral orders of differentiability using only Sobolev embedding and duality arguments, and a slightly less sharp version that would, in fact, be sufficient for our purposes can be proved with interpolation techniques ([BH21] Theorem 5.1). See also [Pa68], the original reference for multiplication of Bessel potential spaces, which also considers the case of more than two factors. The statement below is a special case of the multiplication rules for the broader class of Triebel-Lizorkin spaces proved in Appendix A.

Theorem 2.5.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p1,p2,q<1<p_{1},p_{2},q<\infty and s1,s2,σs_{1},s_{2},\sigma\in\mathbb{R}. Let r1,r2r_{1},r_{2} and rr be defined by

1r1=1p1s1n,1r2=1p2s2n,and1r=1qσn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s_{1}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s_{2}}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{q}-\frac{\sigma}{n}.

Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Hs1,p1(Ω)×Hs2,p2(Ω)Hσ,q(Ω)H^{s_{1},p_{1}}(\Omega)\times H^{s_{2},p_{2}}(\Omega)\rightarrow H^{\sigma,q}(\Omega) so long as

s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (2.1)
min(s1,s2)\displaystyle\min({s_{1},s_{2}}) σ\displaystyle\geq\sigma (2.2)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (2.3)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (2.4)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (2.5)

with inequality (2.5) strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

There are admittedly a large number of conditions in the previous result, but they all have an easy interpretation. For a pair (σ,q)×(1,)(\sigma,q)\in\mathbb{R}\times(1,\infty) we call

1r=1qσn\frac{1}{r}=\frac{1}{q}-\frac{\sigma}{n}

the Lebesgue regularity of the pair, the terminology motivated by the observation that if 0<1/r<10<1/r<1 then Sobolev embedding implies Hlocσ,q(n)H^{\sigma,q}_{\rm loc}(\mathbb{R}^{n}) embeds in Llocr(n)L^{r}_{\rm loc}(\mathbb{R}^{n}). Using this vocabulary, the conditions (2.1)–(2.5) are, loosely:

  • (2.1)

    If one factor has a negative number of derivatives, the remaining factor must have at as many positive derivatives.

  • (2.2)

    The product will not have, in general, more derivatives than either factor.

  • (2.3)

    The product will not have, in general, better Lebesgue regularity than either factor.

  • (2.4)

    L1L^{1} is a least-regular barrier for multiplication of LpL^{p} spaces. Note that in light of inequality (2.5) this condition only plays a role if s<0s<0.

  • (2.5)

    The Lebesgue regularity of the product is consistent with multiplication of LpL^{p} spaces. Strictness of this inequality is needed in edge cases because LL^{\infty} is not the right target space for borderline Sobolev embeddings.

Repeated applications of Theorem 2.5 imply the following mapping result, where we emphasize the new hypothesis s>n/ps>n/p which ensures, among other consequences, that the highest order coefficients of the differential operator are continuous.

Proposition 2.6.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p,q<1<p,q<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. An operator of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Hσ,q(Ω)Hσd,q(Ω)H^{\sigma,q}(\Omega)\mapsto H^{\sigma-d,q}(\Omega) so long as

σ\displaystyle\sigma [ds,s+d0]\displaystyle\in[d-s,s+d_{0}] (2.6)
1qσn\displaystyle\frac{1}{q}-\frac{\sigma}{n} [1ps+d0n,1pdsn]\displaystyle\in\left[\frac{1}{p}-\frac{s+d_{0}}{n},\frac{1}{p^{*}}-\frac{d-s}{n}\right]

where 1/p=11/p1/p^{*}=1-1/p is the conjugate Lebesgue exponent of pp. Moreover, the map AA between these spaces depends continuously on its coefficients aαHsd+α,p(Ω)a^{\alpha}\in H^{s-d+\alpha,p}(\Omega).

Conditions (2.6) on σ\sigma and qq describe the natural Sobolev indices of spaces for an operator of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) to act on, and it is convenient to have notation for this set.

Definition 2.7.

Suppose 1<p<1<p<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. The compatible Sobolev indices for an operator of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) acting on a bounded open set Ω\Omega is the set

𝒮d0d(Hs,p)×(1,)\mathcal{S}_{d_{0}}^{d}(H^{s,p})\subseteq\mathbb{R}\times(1,\infty)

of tuples (σ,q)×(1,)(\sigma,q)\in\mathbb{R}\times(1,\infty) satisfying (2.6).

Refer to caption
Figure 1: The region 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p}) for n=3n=3, d=2d=2, d0=0d_{0}=0, p=1.7p=1.7 and s=np+12s=\frac{n}{p}+\frac{1}{2}.

The second condition of (2.6) is a restriction on the Lebesgue regularity of (σ,q)(\sigma,q) and it is helpful to visualize 𝒮d0d(Hs,p)\mathcal{S}^{d}_{d_{0}}(H^{s,p}) after making the transformation q1/qq\mapsto 1/q since sets of constant Lebesgue regularity then appear as straight lines with slope 1/n1/n as in Figure 1.

For any particular collection of parameters, it may be that 𝒮d0d(Hs,p)\mathcal{S}^{d}_{d_{0}}(H^{s,p}) is empty. The following result establishes when the set is nonempty and hence when an operator of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) has a suitable collection of Bessel potential spaces to act on.

Lemma 2.8.

Suppose 1<p<1<p<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Then 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p}) is nonempty if and only if

s\displaystyle s (dd0)/2, and\displaystyle\geq(d-d_{0})/2\text{, and} (2.7)
1psn\displaystyle\frac{1}{p}-\frac{s}{n} 12(dd0)/2n.\displaystyle\leq\frac{1}{2}-\frac{(d-d_{0})/2}{n}. (2.8)

If Sd0d(Hs,p)S_{d_{0}}^{d}(H^{s,p}) is non-empty then it contains (s+d0,p)(s+d_{0},p), (ds,p)(d-s,p^{*}), and ((d+d0)/2,2)((d+d_{0})/2,2). Moreover, if (σ,q)𝒮d0d(Hs,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}), then we have the continuous inclusions of Fréchet spaces

Hlocs+d0,p(n)Hlocσ,q(n)Hlocds,p(n).H^{s+d_{0},p}_{\rm loc}(\mathbb{R}^{n})\subseteq H^{\sigma,q}_{\rm loc}(\mathbb{R}^{n})\subseteq H^{d-s,p^{*}}_{\rm loc}(\mathbb{R}^{n}). (2.9)
Proof.

The intervals in (2.6) defining 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p}) are non-empty if and only if s(dd0)/2s\geq(d-d_{0})/2 and

1ps+d0n11pdsn,\frac{1}{p}-\frac{s+d_{0}}{n}\leq 1-\frac{1}{p}-\frac{d-s}{n},

which is equivalent to inequality (2.8). Moreover, if these intervals are nonempty, then (s+d0,p)(s+d_{0},p) and (ds,p)(d-s,p^{*}) evidently belong to 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p}). To show that (σ,q)=((d+d0)/2,2)𝒮d0d(Hs,p)(\sigma,q)=((d+d_{0})/2,2)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}) whenever this set is nonempty, define

1r1=1ps+d0n,1r2=1pdsn,and1r=12(d+d0)/2n.\frac{1}{r_{1}}=\frac{1}{p}-\frac{s+d_{0}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p^{*}}-\frac{d-s}{n},\quad\text{and}\quad\frac{1}{r}=\frac{1}{2}-\frac{(d+d_{0})/2}{n}.

Then ((d+d0)/2,2)𝒮d0d(Hs,p)((d+d_{0})/2,2)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}) so long as

dsd+d02s+d0d-s\leq\frac{d+d_{0}}{2}\leq s+d_{0} (2.10)

and

1r11r1r2.\frac{1}{r_{1}}\leq\frac{1}{r}\leq\frac{1}{r_{2}}. (2.11)

Since 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p}) is nonempty, dss+d0d-s\leq s+d_{0} and 1/r11/r21/r_{1}\leq 1/r_{2}. Inequalities (2.10) and (2.11) are then consequences of the observations

d+d02=12[(ds)+(s+d0)]\frac{d+d_{0}}{2}=\frac{1}{2}\left[(d-s)+(s+d_{0})\right]

and

1r=12(1r1+1r2).\frac{1}{r}=\frac{1}{2}\left(\frac{1}{r}_{1}+\frac{1}{r}_{2}\right).

Finally, recall that Hlocs1,p1(n)H^{s_{1},p_{1}}_{\rm loc}(\mathbb{R}^{n}) embeds continuously in Hlocs2,p2(n)H^{s_{2},p_{2}}_{\rm loc}(\mathbb{R}^{n}) if s1s2s_{1}\geq s_{2} and if

1p1s1n1p2s2n.\frac{1}{p_{1}}-\frac{s_{1}}{n}\leq\frac{1}{p_{2}}-\frac{s_{2}}{n}.

So conditions (2.6) ensure that if (σ,q)𝒮d0d(Hs,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}) then we have the continuous inclusions (2.9). ∎

The indices (s+d0,p)(s+d_{0},p) and (ds,p)(d-s,p^{*}) correspond to the most regular and least regular spaces an operator in d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) can naturally act on; indices (σ,q)𝒮d0d(Hs,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}) yield spaces Hlocσ,q(n)H^{\sigma,q}_{\rm loc}(\mathbb{R}^{n}) that lie intermediate between the two extreme spaces Hlocs+d0,p(n)H^{s+d_{0},p}_{\rm loc}(\mathbb{R}^{n}) and Hlocds,p(n)H^{d-s,p^{*}}_{\rm loc}(\mathbb{R}^{n}). Indeed, one interpretation of Lemma 2.8 is that 𝒮d0d(Hs,p)\mathcal{S}^{d}_{d_{0}}(H^{s,p}) is nonempty exactly when Hlocs+d0,p(n)H^{s+d_{0},p}_{\rm loc}(\mathbb{R}^{n}) includes Hlocds,p(n)H^{d-s,p^{*}}_{\rm loc}(\mathbb{R}^{n}). Alternatively, inequalities (2.7)–(2.8) are exactly the condition that Hlocs,pH^{s,p}_{\rm loc} includes Hloc(d+d0)/2,2H^{(d+d_{0})/2,2}_{\rm loc}, which highlights the importance of this L2L^{2}-based space. In effect, Lemma 2.8 implies 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p}) is nonempty exactly when it contains ((d+d0)/2,2)((d+d_{0})/2,2). For example, consider the case of a general second-order operator, so d=2d=2 and d0=0d_{0}=0. Then 𝒮02(Hs,p)\mathcal{S}_{0}^{2}(H^{s,p}) is non-empty when Hlocs,p(n)H^{s,p}_{\rm loc}(\mathbb{R}^{n}) contains Hloc1,2(n)H^{1,2}_{\rm loc}(\mathbb{R}^{n}), the natural L2L^{2}-based space for a weak existence theory. See also Figure 1, where the key L2L^{2}-based space appears as a small square.

In addition to the mapping properties of LL described in Proposition 2.6 we require an analogous result for the commutator of LL with a smooth cutoff function ϕ\phi.

Lemma 2.9.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p,q<1<p,q<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Let LL be an operator of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) and let ϕ𝒟(Ω)\phi\in\mathcal{D}(\Omega). Then [L,ϕ][L,\phi] extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Hσ,q(Ω)Hσd+1,q(Ω)H^{\sigma,q}(\Omega)\mapsto H^{\sigma-d+1,q}(\Omega) so long as (σ+1,q)𝒮d0d(Hs,p)(\sigma+1,q)\in\mathcal{S}^{d}_{d_{0}}(H^{s,p}). Moreover, if d0=0d_{0}=0, the same result holds if (σ,q)𝒮0d(Hs,p)(\sigma,q)\in\mathcal{S}^{d}_{0}(H^{s,p}).

Proof.

Suppose uHσ,q(Ω)u\in H^{\sigma,q}(\Omega). A term of [L,ϕ]u[L,\phi]u has the form

aαβϕγua^{\alpha}\partial_{\beta}\phi\partial_{\gamma}u

where aαHsd+|α|,pa^{\alpha}\in H^{s-d+|\alpha|,p} and where max(1,d0)|α|d\max(1,d_{0})\leq|\alpha|\leq d and |γ||α|1|\gamma|\leq|\alpha|-1. The result in the case of general d0d_{0} follows from a direct computation using these facts along with Theorem 2.5.

If d0=0d_{0}=0, we can improve the result as follows. Let L^\hat{L} be LL with its zero-order term removed, so L^1d(Hs,p;Ω)\hat{L}\in\mathcal{L}_{1}^{d}(H^{s,p};\Omega). Then [L,ϕ]=[L^,ϕ][L,\phi]=[\hat{L},\phi] and using the result just proved we find that the commutator [L,ϕ][L,\phi] maps Hσ,q(Ω)Hσd+1,a(Ω)H^{\sigma,q}(\Omega)\to H^{\sigma-d+1,a}(\Omega) so long as (σ+1,q)𝒮1d(Hs,p)(\sigma+1,q)\in\mathcal{S}^{d}_{1}(H^{s,p}). But a routine computation shows that this condition is equivalent to (σ,q)𝒮0d1(Hs,p)(\sigma,q)\in\mathcal{S}^{d-1}_{0}(H^{s,p}) and the claimed improvement follows since S0d1(Hs,p)S0d(Hs,p)S^{d-1}_{0}(H^{s,p})\supset S^{d}_{0}(H^{s,p}). ∎

2.2 Rescaling estimates

For a Schwartz function uu let u{r}(x)=u(rx)u_{\{r\}}(x)=u(rx). This rescaling operation extends to general tempered distributions by continuity and duality arguments, and we use the same notation when uu is a distribution. When mm is a non-negative integer, it is easy to see that uu{r}u\mapsto u_{\{r\}} is a continuous automorphism of Hm,p(n)H^{m,p}(\mathbb{R}^{n}) for all 1<p<1<p<\infty. The same holds for Hs,p(n)H^{s,p}(\mathbb{R}^{n}) for s>0s>0 by interpolation, and for s<0s<0 by an elementary duality argument.

In this section, we prove two principal estimates for the norms of rescaling operators, with bounds depending on rr along with the parameters of the function space being acted on. First, we have Proposition 2.10, which establishes the desired estimates for functions with integer-order differentiability. Then, using interpolation, we generalize the estimates to non-integer differentiability at the penalty of a mild loss of sharpness; this is the content of Proposition 2.17, which is the main result of this section. In fact, one can recover the sharpness using more sophisticated tools from Littlewood-Paley theory, and indeed we do for the broader class of Triebel-Lizorkin spaces in Section 3.2. Nevertheless, the less-than optimal estimates of Proposition 2.17 are sufficient to establish local elliptic regularity in the context of Bessel potential function spaces, and it permits a proof using only a minimal set of tools.

Proposition 2.10.

Suppose 1<p<1<p<\infty, mm\in\mathbb{Z} and that χ\chi is a Schwartz function on n\mathbb{R}^{n}. There exists a constant α\alpha\in\mathbb{R} such that for all 0<r10<r\leq 1 and all uHm,p(n)u\in H^{m,p}(\mathbb{R}^{n})

χu{r}Hm,p(n)rαuHm,p(n).||\chi u_{\{r\}}||_{H^{m,p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{H^{m,p}(\mathbb{R}^{n})}. (2.12)

Specifically:

  1. 1.

    Inequality (2.12) holds with

    α=min(mnp,0)\alpha=\min\left(m-\frac{n}{p},0\right)

    unless mn/p=0m-n/p=0, in which case it holds for any choice of α<0\alpha<0, with implicit constant depending on α\alpha.

  2. 2.

    If m>n/pm>n/p (in which case functions in Hm,p(n)H^{m,p}(\mathbb{R}^{n}) are Hölder continuous) and if u(0)=0u(0)=0, then inequality (2.12) holds with

    α=min(mnp,1)\alpha=\min\left(m-\frac{n}{p},1\right)

    unless mn/p=1m-n/p=1, in which case it holds for any choice of α<1\alpha<1, with implicit constant depending on α\alpha.

Proposition 2.10 is established in the following sequence of elementary results which treat specific subcases and supporting lemmas. Specifically, it is an immediate consequence of Corollary 2.13, Lemma 2.14 and Corollary 2.16 below. In applications, χ\chi in Proposition 2.10 will be compactly supported and we are effectively interested in rescaling uu from a ball of radius r<1r<1 up to a ball of fixed radius. Derivatives are dampened under this operation, and the role of χ\chi is to control the zero-frequency terms; without the cutoff function, for all m>0m>0 the optimal scaling would be α=n/p\alpha=-n/p instead.

We begin in the easier setting m0m\leq 0, in which case it turns out that the the cutoff function plays no role. When m=0m=0, we have the following consequence of the change of variables formula that the LpL^{p} norm has straightforward scaling behavior for all r>0r>0.

Lemma 2.11.

Suppose 1<p<1<p<\infty, r>0r>0, and uLp(n)u\in L^{p}(\mathbb{R}^{n}). Then

u{r}Lp(n)=uLp(n)rn/p.||u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}=||u||_{L^{p}(\mathbb{R}^{n})}r^{-n/p}.

Turning to the case m<0m<0 in Proposition 2.10, the proof proceeds via a duality argument, for which we need the following result concerning rescaling Hk,p(n)H^{k,p}(\mathbb{R}^{n}) for k>0k>0 with r>1r>1 (rather than r1r\leq 1).

Lemma 2.12.

Suppose 1<p<1<p<\infty and k0k\in\mathbb{Z}_{\geq 0}. For all r1r\geq 1 and all uHk,p(n)u\in H^{k,p}(\mathbb{R}^{n}),

u{r}Hk,p(n)uHk,p(n)rmnp.||u_{\{r\}}||_{H^{k,p}(\mathbb{R}^{n})}\lesssim||u||_{H^{k,p}(\mathbb{R}^{n})}r^{m-\frac{n}{p}}. (2.13)
Proof.

Lemma 2.11, the Gagliardo-Nirenberg-Sobolev inequality and the fact that r1r\geq 1 imply

u{r}Hk,p(n)\displaystyle||u_{\{r\}}||_{H^{k,p}(\mathbb{R}^{n})} u{r}Lp(n)+|α|=kαu{r}Lp(n)\displaystyle\lesssim||u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}+\sum_{|\alpha|=k}||\nabla^{\alpha}u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}
=rnpuLp(n)+rk|α|=k(αu){r}Lp(n)\displaystyle=r^{-\frac{n}{p}}||u||_{L^{p}(\mathbb{R}^{n})}+r^{k}\sum_{|\alpha|=k}||(\nabla^{\alpha}u)_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}
=rnp||u||Lp(n)+rknp|α|=k||(αu)||Lp(n))\displaystyle=r^{-\frac{n}{p}}||u||_{L^{p}(\mathbb{R}^{n})}+r^{k-\frac{n}{p}}\sum_{|\alpha|=k}||(\nabla^{\alpha}u)||_{L^{p}(\mathbb{R}^{n})})
rknpuHk,p(n).\displaystyle\lesssim r^{k-\frac{n}{p}}||u||_{H^{k,p}(\mathbb{R}^{n})}.

The following corollary follows from duality from Lemma 2.12.

Corollary 2.13.

Suppose 1<p<1<p<\infty and m0m\in\mathbb{Z}_{\leq 0}. For all 0<r10<r\leq 1 and all uHm,p(n)u\in H^{m,p}(\mathbb{R}^{n})

u{r}Hm,p(n)rmnpuHm,p(n).||u_{\{r\}}||_{H^{m,p}(\mathbb{R}^{n})}\lesssim r^{m-\frac{n}{p}}||u||_{H^{m,p}(\mathbb{R}^{n})}.
Proof.

Using a density argument it is enough to establish the result when uu is smooth and compactly supported. For any test function ϕ\phi,

|u{r},ϕ|\displaystyle|\left<u_{\{r\}},\phi\right>| =|nu(rx)ϕ(x)𝑑x|\displaystyle=\left|\int_{\mathbb{R}^{n}}u(rx)\phi(x)\;dx\right| (2.14)
=rn|nu(y)ϕ(y/r)𝑑y|\displaystyle=r^{-n}\left|\int_{\mathbb{R}^{n}}u(y)\phi(y/r)\;dy\right|
rnuHm,p(n)ϕ{1/r}Hm,p(n).\displaystyle\leq r^{-n}||u||_{H^{m,p}(\mathbb{R}^{n})}||\phi_{{\{1/r\}}}||_{H^{-m,p^{*}}(\mathbb{R}^{n})}.

Since m0-m\geq 0 and since 1/r11/r\geq 1, Lemma 2.12 implies

ϕ{1/r}Hm,p(n)rm+npϕHm,p(n)||\phi_{{\{1/r\}}}||_{H^{-m,p^{*}}(\mathbb{R}^{n})}\lesssim r^{m+\frac{n}{p^{*}}}||\phi||_{H^{-m,p^{*}}(\mathbb{R}^{n})}

where the implicit constant is independent of rr and uu. Hence

|u{r},ϕ|uHm,p(n)ϕHm,p(n)rn+m+np=uHm,p(n)ϕHm,p(n)rmnp,|\left<u_{\{r\}},\phi\right>|\lesssim||u||_{H^{m,p}(\mathbb{R}^{n})}||\phi||_{H^{-m,p^{*}}(\mathbb{R}^{n})}r^{-n+m+\frac{n}{p^{*}}}=||u||_{H^{m,p}(\mathbb{R}^{n})}||\phi||_{H^{-m,p^{*}}(\mathbb{R}^{n})}r^{m-\frac{n}{p}},

which concludes the proof, noting that Hm,p(n)H^{m,p}(\mathbb{R}^{n}) is the dual space of Hm,p(n)H^{-m,p^{*}}(\mathbb{R}^{n}). ∎

Corollary 2.13 implies Proposition 2.10 in the case m0m\leq 0, for if χ\chi is a Schwartz function χuHm,p(n)uHm,p(n).||\chi u||_{H^{m,p}(\mathbb{R}^{n})}\lesssim||u||_{H^{m,p}(\mathbb{R}^{n})}. We now turn to the more involved case of Proposition 2.10, m>0m>0.

Lemma 2.14.

Suppose 1<p<1<p<\infty, mm\in\mathbb{N} and that χ\chi is a Schwartz function on n\mathbb{R}^{n}. There exists α\alpha\in\mathbb{R} such that for all 1<r11<r\leq 1 and all uHm,p(n)u\in H^{m,p}(\mathbb{R}^{n})

u{r}Hm,p(n)rαuHm,p(n).||u_{\{r\}}||_{H^{m,p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{H^{m,p}(\mathbb{R}^{n})}. (2.15)

Specifically, we can take α=min(0,mn/p)\alpha=\min(0,m-n/p) in inequality (2.15) unless mn/p=0m-n/p=0, in which case inequality (2.15) holds for any choice of α<0\alpha<0 and the implicit constant depends on α\alpha.

Proof.

Repeated applications of the Gagliardo-Nirenberg-Sobolev inequality imply

χu{r}Hm,p(n)χu{r}Lp(n)+mu{r}Lp(n)||\chi u_{\{r\}}||_{H^{m,p}(\mathbb{R}^{n})}\lesssim||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}+||\nabla^{m}u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})} (2.16)

where the implicit constant depends on χ\chi; since χ\chi is fixed the explicit dependence is unimportant.

The second term on the right-hand side of equation (2.16) is easy to estimate. Using the identity mu{r}=rm(mu){r}\nabla^{m}u_{\{r\}}=r^{m}(\nabla^{m}u)_{\{r\}} Lemma 2.11 we find

mu{r}Lp(n)rmn/pmuLp(m)rmn/puHm,p(n).||\nabla^{m}u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{m-n/p}||\nabla^{m}u||_{L^{p}(\mathbb{R}^{m})}\leq r^{m-n/p}||u||_{H^{m,p}(\mathbb{R}^{n})}.

Turning to the low order term, first consider the case m>n/pm>n/p. Sobolev imbedding implies uL(n)u\in L^{\infty}(\mathbb{R}^{n}) and

χu{r}Lp(n)χLp(n)u{r}L(n)\displaystyle||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\leq||\chi||_{L^{p}(\mathbb{R}^{n})}||u_{\{r\}}||_{L^{\infty}(\mathbb{R}^{n})} =χLp(n)uL(n)\displaystyle=||\chi||_{L^{p}(\mathbb{R}^{n})}||u||_{L^{\infty}(\mathbb{R}^{n})}
uHm,p(n)=rmin(0,mn/p)uHm,p(n)\displaystyle\lesssim||u||_{H^{m,p}(\mathbb{R}^{n})}=r^{\min(0,m-n/p)}||u||_{H^{m,p}(\mathbb{R}^{n})}

Now suppose m<n/pm<n/p. Then Sobolev embedding implies uLq(n)u\in L^{q}(\mathbb{R}^{n}) where

1q=1pmn.\frac{1}{q}=\frac{1}{p}-\frac{m}{n}.

Hölder’s inequality, the fact that χ\chi lies in every Lebesgue space, and Lemma 2.11 imply

χu{r}Lp(n))u{r}Lq(n)\displaystyle||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n}))}\lesssim||u_{\{r\}}||_{L^{q}(\mathbb{R}^{n})} rn/quLq(n)\displaystyle\leq r^{-n/q}||u||_{L^{q}(\mathbb{R}^{n})}
=rmn/puLq(n)rmn/puHm,p(n)=rmin(mn/p,0)uHm,p(n).\displaystyle=r^{m-n/p}||u||_{L^{q}(\mathbb{R}^{n})}\lesssim r^{m-n/p}||u||_{H^{m,p}(\mathbb{R}^{n})}=r^{\min(m-n/p,0)}||u||_{H^{m,p}(\mathbb{R}^{n})}.

When m=n/pm=n/p we use the marginal case of Sobolev embedding and an argument similar to the above to conclude

χu{r}Lp(n)rn/quHm,p(n)||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{-n/q}||u||_{H^{m,p}(\mathbb{R}^{n})}

for any qpq\geq p. Taking qq sufficiently large we find inequality (2.15) holds for any choice of α<0\alpha<0. ∎

Lemma 2.14 completes the proof of part (1) of Proposition 2.10, and the following two results establish part (2).

Lemma 2.15.

Let χ\chi be a Schwartz function on n\mathbb{R}^{n} and let α[0,1]\alpha\in[0,1]. For all 0<r10<r\leq 1 and all uC0,α(n)u\in C^{0,\alpha}(\mathbb{R}^{n}) with u(0)=0u(0)=0,

χu{r}Lp(n)uC0,α(n)rα.||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}r^{\alpha}.
Proof.

We divide n\mathbb{R}^{n} into three regions: the ball B1(0)B_{1}(0), the annulus A=B1/r(0)B1(0)A=B_{1/r}(0)\setminus B_{1}(0) and the exterior region E=nB1/r(0)E=\mathbb{R}^{n}\setminus B_{1/r}(0). On the unit ball, since u(0)=0u(0)=0,

χu{r}Lp(B1(0))χL(n)uC0,α(B1(0))rα.||\chi u_{\{r\}}||_{L^{p}(B_{1}(0))}\lesssim||\chi||_{L^{\infty}(\mathbb{R}^{n})}||u||_{C^{0,\alpha}(B_{1}(0))}r^{\alpha}.

To obtain the remainder of the estimate, pick a constant B>0B>0 such that |χ(x)|B|x|(n+1)/pα|\chi(x)|\leq B|x|^{-(n+1)/p-\alpha} for all xnx\in\mathbb{R}^{n} with |x|1|x|\geq 1. Then, letting CnC_{n} be the volume of the unit n1n-1 sphere, we find on the annulus AA,

Aχpu{r}p\displaystyle\int_{A}\chi^{p}u_{\{r\}}^{p} Cn11/rBpsn1αpuC0,α(n)p(rs)αpsn1𝑑s\displaystyle\leq C_{n}\int_{1}^{1/r}B^{p}s^{-n-1-\alpha p}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}^{p}(rs)^{\alpha p}s^{n-1}\;ds (2.17)
CnBpuC0,α(n)prpα11/rs2𝑑sCnBpuC0,α(n)prpα.\displaystyle\leq C_{n}B^{p}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}^{p}r^{p\alpha}\int_{1}^{1/r}s^{-2}\;ds\leq C_{n}B^{p}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}^{p}r^{p\alpha}.

Taking pthp^{\rm th} roots establishes the desired estimate on AA.

Finally, for the exterior region we have

E|χu{r}|pCnBpuC0,α(n)p1/rsn1αpsn1𝑑s=CnBpuC0,α(n)p11+αpr1+αp\int_{E}|\chi u_{\{r\}}|^{p}\leq C_{n}B^{p}||u||_{C_{0,\alpha}(\mathbb{R}^{n})}^{p}\int_{1/r}^{\infty}s^{-n-1-\alpha p}s^{n-1}\;ds=C_{n}B^{p}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}^{p}\frac{1}{1+\alpha p}r^{1+\alpha p}

which completes the proof. ∎

Corollary 2.16.

Let χ\chi be a Schwartz function on n\mathbb{R}^{n}. Suppose 1<p<1<p<\infty and mm\in\mathbb{N} with m>n/pm>n/p. There exists α\alpha\in\mathbb{R} such that for all 0<r10<r\leq 1 and all uHm,p(n)u\in H^{m,p}(\mathbb{R}^{n}) with u(0)=0u(0)=0

χu{r}Hm,p(n)rαuHm,p(n).||\chi u_{\{r\}}||_{H^{m,p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{H^{m,p}(\mathbb{R}^{n})}. (2.18)

Specifically, we can take α=min(1,mn/p)\alpha=\min(1,m-n/p) in inequality (2.18) unless mn/p=1m-n/p=1, in which case inequality (2.18) holds for any choice of α<1\alpha<1 and the implicit constant depends on α\alpha.

Proof.

Following the argument of the beginning of the proof of Lemma 2.14 we know that

χu{r}Hm,p(n)χu{r}Lp(n)+mu{r}Lp(n)||\chi u_{\{r\}}||_{H^{m,p}(\mathbb{R}^{n})}\lesssim||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}+||\nabla^{m}u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}

and that mu{r}Lp(n)rmn/puHs,p(n)||\nabla^{m}u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{m-n/p}||u||_{H^{s,p}(\mathbb{R}^{n})}. Hence it suffices to show

χu{r}Lp(n)rmin(1,mn/p)uHm,p(n).||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\min(1,m-n/p)}||u||_{H^{m,p}(\mathbb{R}^{n})}.

Suppose first that 0<mn/p<10<m-n/p<1. Then uC0,α(n)u\in C^{0,\alpha}(\mathbb{R}^{n}) with α=mn/p\alpha=m-n/p. Since u(0)=0u(0)=0, Lemma 2.15 implies

χu{r}Lp(n)uC0,α(n)rαuHm,p(n)rmn/p=uHm,p(n)rmin(1,mn/p).||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}r^{\alpha}\lesssim||u||_{H^{m,p}(\mathbb{R}^{n})}r^{m-n/p}=||u||_{H^{m,p}(\mathbb{R}^{n})}r^{\min(1,m-n/p)}.

On the other hand, if mn/p>1m-n/p>1 then uu lies in C0,1(n)C^{0,1}(\mathbb{R}^{n}) and the same argument shows

χu{r}Lp(n)uHm,p(n)r1=uHm,p(n)rmin(1,mn/p)||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{H^{m,p}(\mathbb{R}^{n})}r^{1}=||u||_{H^{m,p}(\mathbb{R}^{n})}r^{\min(1,m-n/p)}

The result in the marginal case mn/p=1m-n/p=1 follows from a similar argument using the fact that Hm,p(n)H^{m,p}(\mathbb{R}^{n}) embeds into C0,α(n)C^{0,\alpha}(\mathbb{R}^{n}) for any α(0,1)\alpha\in(0,1). ∎

Refer to caption
Figure 2: Interpolation regions in Proposition 2.17.

Having now established Proposition 2.10, we turn to its generalization to non-integer orders of differentiability. In fact, one can show that the statement of Proposition 2.10 generalizes without change, other than replacing mm\in\mathbb{Z} with ss\in\mathbb{R}; see Proposition 3.10 which establishes an extension of this fact to the broader class of Triebel-Lizorkin spaces. The following result is mildly weaker, but is easier to prove and is sufficient for our application establishing local elliptic regularity. The key difference is that the equal sign in the definition of the exponent α\alpha in parts (1) and (2) of Proposition 2.10 has been replaced with a strict inequality.

Proposition 2.17.

Suppose 1<p<1<p<\infty, ss\in\mathbb{R} and χ\chi is a Schwartz function on n\mathbb{R}^{n}. There exists α\alpha\in\mathbb{R} such that for all 0<r10<r\leq 1 and all uHs,p(n)u\in H^{s,p}(\mathbb{R}^{n}),

χu{r}Hs,p(n)rαuHs,p(n).||\chi u_{\{r\}}||_{H^{s,p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{H^{s,p}(\mathbb{R}^{n})}. (2.19)

In particular:

  1. 1.

    Inequality (2.19) holds with any

    α<min(snp,0)\alpha<\min\left(s-\frac{n}{p},0\right)

    with implicit constant depending on α\alpha.

  2. 2.

    If s>n/ps>n/p and u(0)=0u(0)=0 then inequality (2.19) holds with any

    α<min(snp,1)\alpha<\min\left(s-\frac{n}{p},1\right)

    with implicit constant depending on α\alpha.

Proof.

We divide the tuples (s,1/p)(s,1/p) in ×(0,1)\mathbb{R}\times(0,1) into the following regions (see Figure 2):

  1. 𝒜\mathcal{A}:

    sn1s\leq n-1, 0<1/p<10<1/p<1, sn/p<0s-n/p<0,

  2. \mathcal{B}:

    s1s\geq 1, 0<1/p<10<1/p<1, sn/p>0s-n/p>0,

  3. 𝒞\mathcal{C}:

    s<1s<1, sn/p0s-n/p\geq 0,

  4. 𝒟\mathcal{D}:

    s>n1s>n-1, sn/p0s-n/p\leq 0,

  5. \mathcal{E}:

    1sn11\leq s\leq n-1, sn/p=0s-n/p=0.

Suppose (s,1/p)𝒜(s,1/p)\in\mathcal{A} and for the moment assume s0s\geq 0. If ss is an integer, the result follows from Proposition 2.10 so we can assume 0<s<n10<s<n-1. There exist 1/p0,1/p1(0,1)1/p_{0},1/p_{1}\in(0,1) such that (s,1/p)(s,1/p) lies on the line joining (0,1/p0)(0,1/p_{0}) and (n1,1/p1)(n-1,1/p_{1}). That is,

(s,1/p)=(1θ)(0,1/p0)+θ(n1,1/p1)(s,1/p)=(1-\theta)(0,1/p_{0})+\theta(n-1,1/p_{1})

for some θ(0,1)\theta\in(0,1). Since Hs,p(n)=[H0,p0(n),Hn1,p1(n)]θH^{s,p}(\mathbb{R}^{n})=[H^{0,p_{0}}(\mathbb{R}^{n}),H^{n-1,p_{1}}(\mathbb{R}^{n})]_{\theta} we conclude from Proposition 2.10 and interpolation applied to the map uχu{r}u\mapsto\chi u_{\{r\}} that

χu{r}Hs,p(n)(rn/p0)1θ(rn1n/p1)θuHs,p(n)=rsn/puHs,p(n).||\chi u_{\{r\}}||_{H^{s,p}(\mathbb{R}^{n})}\lesssim(r^{-n/p_{0}})^{1-\theta}(r^{n-1-n/p_{1}})^{\theta}||u||_{H^{s,p}(\mathbb{R}^{n})}=r^{s-n/p}||u||_{H^{s,p}(\mathbb{R}^{n})}.

Replacing Proposition 2.10 with Corollary 2.13, the same technique works in region 𝒜\mathcal{A} if s<0s<0 and indeed the argument is simpler since we can select p0=p1=pp_{0}=p_{1}=p.

If (s,1/p)(s,1/p)\in\mathcal{B} and ss is an integer then Proposition 2.10 implies inequality (2.12) holds with α=0\alpha=0. When ss is not an integer we can interpolate between (s,1/p1)(\lfloor s\rfloor,1/p_{1}) and (s,1/p2)(\lceil s\rceil,1/p_{2}) for appropriate choices of p1p_{1} and p2p_{2} to obtain the same result.

Next, suppose (s,1/p)(s,1/p) lies in the triangular region 𝒞\mathcal{C}, so n/p<s<1n/p<s<1. Consider any σ\sigma with 0<σ<n/p0<\sigma<n/p, so σ<s<1\sigma<s<1 as well. Then

Hs,p(n)=[Hσ,p(n),H1,p(n)]θH^{s,p}(\mathbb{R}^{n})=[H^{\sigma,p}(\mathbb{R}^{n}),H^{1,p}(\mathbb{R}^{n})]_{\theta}

with θ=(sσ)/(1σ)(0,1)\theta=(s-\sigma)/(1-\sigma)\in(0,1). From interpolation we find

χu{r}Hs,p(n)(rσn/p)1θuHs,p(n).||\chi u_{\{r\}}||_{H^{s,p}(\mathbb{R}^{n})}\lesssim(r^{\sigma-n/p})^{1-\theta}||u||_{H^{s,p}(\mathbb{R}^{n})}.

Noting that 1θ(1s)/(1n/p)<1-\theta\to(1-s)/(1-n/p)<\infty as σn/p\sigma\to n/p we can take σ\sigma as close to n/pn/p from below as we please to conclude that inequality (2.19) holds with any fixed choice of α<0\alpha<0. Note that this interpolation, and the one to follow for region 𝒟\mathcal{D}, is the source of the loss of sharpness of the current proposition.

In the region 𝒟\mathcal{D} the argument is similar to the argument for region 𝒞\mathcal{C}; we now interpolate between a point with s=n1s=n-1 and a point with s>n/ps>n/p in region 𝒜\mathcal{A} taken arbitrarily close to the line s=n/ps=n/p. On the line segment \mathcal{E} the proof follows by interpolating between a point in region 𝒜\mathcal{A} and a point region \mathcal{B} taken arbitrarily close to the line segment. This completes the proof of part (1).

The proof of part (2) is proved in a completely analogous way with the main division now occurring on the line s=n/p+1s=n/p+1. Given the careful proof of part (1) we omit the details. ∎

2.3 Interior elliptic estimates

This section contains our principal elliptic regularity results, which are established in two steps. First, Proposition 2.20 shows that if an operator is elliptic at a single point, then elliptic regularity can be established for functions that are supported in a sufficiently small neighborhood near the point. The rescaling estimates of the previous section, along with a parametrix construction, are the key tools needed at this first stage. Theorem 3.21 then builds on Proposition 2.20 to obtain full interior regularity for elliptic operators using a partition of unity argument along with a bootstrap. The commutator estimates of Lemma 2.9 are the key technical used at this second stage.

Definition 2.18.

Let Ω\Omega be an open subset of n\mathbb{R}^{n}. Suppose 1<p<1<p<\infty and s>n/ps>n/p. An operator

|α|daαα\sum_{|\alpha|\leq d}a^{\alpha}\partial_{\alpha}

of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) is elliptic at x0Ωx_{0}\in\Omega if for every ξn{0}\xi\in\mathbb{R}^{n}\setminus\{0\}

|α|=daα(x0)ξαk×k\sum_{|\alpha|=d}a^{\alpha}(x_{0})\xi^{\alpha}\in\mathbb{R}^{k\times k}

is non-singular, where ξα=ξα1ξαd\xi^{\alpha}=\xi^{\alpha_{1}}\cdots\xi^{\alpha_{d}}.

We have the following standard parametrix construction for homogeneous, constant coefficient elliptic operators.

Lemma 2.19.

Suppose L=|α|=daααL=\sum_{|\alpha|=d}a^{\alpha}\partial_{\alpha} is a constant coefficient elliptic differential operator. There exists maps QQ and TT acting on tempered distributions supported on BR(0)B_{R}(0) such that

  • Q:Hsd,p(n)Hs,p(n)Q:H^{s-d,p}(\mathbb{R}^{n})\to H^{s,p}(\mathbb{R}^{n}) is is continuous for all ss\in\mathbb{R} and 1<p<1<p<\infty,

  • T:Hs1,p(n)Hs2,p(n)T:H^{s_{1},p}(\mathbb{R}^{n})\to H^{s_{2},p}(\mathbb{R}^{n}) is continuous for all s1,s2s_{1},s_{2}\in\mathbb{R} and 1<p<1<p<\infty,

  • QLu=u+TuQLu=u+Tu for all tempered distributions uu.

Proof.

Let χ\chi be a smooth, compactly supported cutoff function that equals 1 in a neighborhood of zero. Define the parametrix QQ on tempered distributions by Qu=1(1χ(ξ))(aαξα)1Qu=\mathcal{F}^{-1}(1-\chi(\xi))(a^{\alpha}\xi^{\alpha})^{-1}\mathcal{F}, where \mathcal{F} is the Fourier transform. Similarly, let TT be the smoothing map Tu=1χ(ξ)Tu=\mathcal{F}^{-1}\chi(\xi)\mathcal{F}. A computation shows QLu=u+TuQLu=u+Tu for all tempered distributions.

Setting ξ=1+|ξ|2\left<\xi\right>=\sqrt{1+|\xi|^{2}}, the claimed continuity properties of QQ follows from factoring the multiplier as

[(1χ(ξ))(aαξα)1ξd]ξd\left[(1-\chi(\xi))(a^{\alpha}\xi^{\alpha})^{-1}\left<\xi\right>^{d}\right]\left<\xi\right>^{-d}

The continuity of the multiplier operator determined by the the first factor follows from the Mikhlin multiplier theorem whereas the second factor is handled by the definition of Bessel potential spaces.

The smoothing map TT has a compactly supported multiplier and its continuity properties follow from the same arguments as above, without restriction on the gain in derivatives. ∎

We now establish Proposition 2.20, the regularity result for functions supported in a sufficiently small region near a point where an operator is elliptic. The statement of this proposition requires notation for function spaces associated with compactly supported functions on a bounded open set Ω\Omega, and there are two natural classes of spaces one can work with. The first is the closure of 𝒟(Ω)\mathcal{D}(\Omega) in Hs,p(Ω)H^{s,p}(\Omega). We find it more convenient to take the closure of 𝒟(Ω)\mathcal{D}(\Omega) in Hs,p(n)H^{s,p}(\mathbb{R}^{n}) instead; following the notation of [Mc00] we denote this latter space by H~s,p(Ω)\widetilde{H}^{s,p}(\Omega). An element in H~s,p(Ω)\widetilde{H}^{s,p}(\Omega) is, by definition, an element of Hs,p(n)H^{s,p}(\mathbb{R}^{n}) and it is easy to see that it has support in Ω¯\overline{\Omega}. Moreover, if uHs,p(Ω)u\in H^{s,p}(\Omega) has support contained in a compact set VΩV\subseteq\Omega, an easy argument using a cutoff function that equals 1 on VV and vanishes outside Ω\Omega shows that there exists a unique u~H~s,p(Ω)\tilde{u}\in\widetilde{H}^{s,p}(\Omega) with u~|Ω=u\tilde{u}|_{\Omega}=u, and indeed one has the estimate u~H~s,p(Ω)uHs,p(Ω)||\tilde{u}||_{\tilde{H}^{s,p}(\Omega)}\lesssim||u||_{H^{s,p}(\Omega)} with implicit constant depending on VV. Following standard practice we informally identify uu with its zero extension u~\tilde{u}.

Proposition 2.20.

Let Ωn\Omega\subset\mathbb{R}^{n} be a bounded open set. Suppose ss\in\mathbb{R}, 1<p<1<p<\infty, d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with d0dd_{0}\leq d, that s>n/ps>n/p, and that these parameters satisfy inequalities (2.7)–(2.8) of Lemma 2.8 and hence 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p})\neq\emptyset. Suppose additionally that L=|α|daααL=\sum_{|\alpha|\leq d}a^{\alpha}\partial_{\alpha} is a differential operator of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) and that for some xΩx\in\Omega that

L0=|α|=maα(x)αL_{0}=\sum_{|\alpha|=m}a^{\alpha}(x)\partial_{\alpha}

is elliptic. Given (σ,q)𝒮d0d(Hs,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}) there exists r>0r>0 such that Br(x)¯Ω\overline{B_{r}(x)}\subset\Omega and such that if

u\displaystyle u H~ds,p(Br(x))and\displaystyle\in\widetilde{H}^{d-s,p^{*}}(B_{r}(x))\quad\text{and}
Lu\displaystyle Lu Hσd,q(Ω)\displaystyle\in H^{\sigma-d,q}(\Omega)

then uHσ,q(Ω)u\in H^{\sigma,q}(\Omega) and

uHσ,q(Ω)LuHσd,q(Ω)+uHds1,p(Ω)||u||_{H^{\sigma,q}(\Omega)}\lesssim||Lu||_{H^{\sigma-d,q}(\Omega)}+||u||_{H^{d-s-1,p^{*}}(\Omega)} (2.20)

with implicit constant independent of uu but depending on all other parameters.

Proof.

It suffices to prove the result assuming x=0x=0 and that B1(0)ΩB_{1}(0)\subset\Omega. From the definition of Bessel potential spaces on bounded domains, we can further assume that the coefficients of LL have been extended to all of n\mathbb{R}^{n}.

For each r(0,1]r\in(0,1] define

L[r]=L0+B[r]+C[r]L_{[r]}=L_{0}+B_{[r]}+C_{[r]}

where

B[r]\displaystyle B_{[r]} =|α|=d(aαaα(0)){r}α\displaystyle=\sum_{|\alpha|=d}(a^{\alpha}-a^{\alpha}(0))_{\{r\}}\partial_{\alpha} (2.21)
C[r]\displaystyle C_{[r]} =|α|<drd|α|(aα){r}α.\displaystyle=\sum_{|\alpha|<d}r^{d-|\alpha|}(a^{\alpha})_{\{r\}}\partial_{\alpha}.

Suppose uH~ds,p(Br(0))u\in\widetilde{H}^{d-s,p^{*}}(B_{r}(0)) for some r<1r<1 and that LuHσd,q(Ω)Lu\in H^{\sigma-d,q}(\Omega). Recall that by definition uHds,p(n)u\in H^{d-s,p^{*}}(\mathbb{R}^{n}). Moreover, LuLu is compactly supported in Ω\Omega and hence defines an element of H~σd,q(Ω)Hσd,q(n)Hs,p(n)\widetilde{H}^{\sigma-d,q}(\Omega)\subset H^{\sigma-d,q}(\mathbb{R}^{n})\subset H^{-s,p^{*}}(\mathbb{R}^{n}). In particular, we can treat uu and LuLu as distributions on n\mathbb{R}^{n} and a short computation shows u{r}u_{\{r\}} satisfies

L0u{r}+B[r]u{r}+C[r]u{r}=rd(Lu){r}L_{0}u_{\{r\}}+B_{[r]}u_{\{r\}}+C_{[r]}u_{\{r\}}=r^{d}(Lu)_{\{r\}}

as an equation in Hs,p(n)H^{-s,p^{*}}(\mathbb{R}^{n}).

Pick a cutoff function χ\chi that equals 11 on a neighborhood of B1(0)¯\overline{B_{1}(0)}. Since u{r}u_{\{r\}} is supported on B1(0)¯\overline{B_{1}(0)},

L0u{r}+χB[r]u{r}+χC[r]u{r}=rd(Lu){r}L_{0}u_{\{r\}}+\chi B_{[r]}u_{\{r\}}+\chi C_{[r]}u_{\{r\}}=r^{d}(Lu)_{\{r\}} (2.22)

as well.

Let QQ and TT be the parametrix and smoothing operator for L0L_{0} from Lemma 2.19. Applying χQ\chi Q to equation (2.22) we have

u{r}+χTu{r}+χQ(χ(B[r]+C[r]))u{r}=rdχQ(Lu){r}.u_{\{r\}}+\chi Tu_{\{r\}}+\chi Q\circ(\chi(B_{[r]}+C_{[r]}))u_{\{r\}}=r^{d}\chi Q(Lu)_{\{r\}}. (2.23)

It will be convenient to define Q=χQQ^{\prime}=\chi Q and T=χTT^{\prime}=\chi T, in which case QQ^{\prime} has the same continuity properties as in Lemma 2.19 and, using the compact support of χ\chi, TT^{\prime} is a continuous map Hs1,p1(n)Hs2,p2(n)H^{s_{1},p_{1}}(\mathbb{R}^{n})\to H^{s_{2},p_{2}}(\mathbb{R}^{n}) for all choices of s1,s2,p1,p2s_{1},s_{2},p_{1},p_{2}.

Consider a coefficient of C[r]C_{[r]}, cα=rd|α|(aα){r}Hsd+|α|,p(n)c^{\alpha}=r^{d-|\alpha|}(a^{\alpha})_{\{r\}}\in H^{s-d+|\alpha|,p}(\mathbb{R}^{n}). From Proposition 2.17, for any ϵ>0\epsilon>0

χcαHsd+|α|,p(n)rd|α|rmin(sd+|α|np,0)ϵaαHs+d|α|,p(n)=rmin(snp,d|α|)ϵaαHs+d|α|,p(n).||\chi c^{\alpha}||_{H^{s-d+|\alpha|,p}(\mathbb{R}^{n})}\lesssim r^{d-|\alpha|}r^{\min\left(s-d+|\alpha|-\frac{n}{p},0\right)-\epsilon}||a^{\alpha}||_{H^{s+d-|\alpha|,p}(\mathbb{R}^{n})}=r^{\min\left(s-\frac{n}{p},d-|\alpha|\right)-\epsilon}||a^{\alpha}||_{H^{s+d-|\alpha|,p}(\mathbb{R}^{n})}. (2.24)

Similarly, consider a coefficient bα=(aαaα(0)){r}b^{\alpha}=(a^{\alpha}-a^{\alpha}(0))_{\{r\}} of B[r]B_{[r]}. Since aαHs,p(n)a^{\alpha}\in H^{s,p}(\mathbb{R}^{n}) when |α|=d|\alpha|=d, and since bα(0)=0b^{\alpha}(0)=0, Proposition 2.17 implies

χbαHs,p(n)rmin(snp,1)ϵbαHs,p(n).||\chi b^{\alpha}||_{H^{s,p}(\mathbb{R}^{n})}\lesssim r^{\min\left(s-\frac{n}{p},1\right)-\epsilon}||b^{\alpha}||_{H^{s,p}(\mathbb{R}^{n})}. (2.25)

Pick ϵ>0\epsilon>0 with ϵ<min(snp,1)\epsilon<\min\left(s-\frac{n}{p},1\right). Since d|α|1d-|\alpha|\geq 1 in estimate (2.24) it follows that the coefficients of χB[r]\chi B_{[r]} and χC[r]\chi C_{{[r]}} converge to zero in the norms indicated on the left-hand sides of inequalities (2.24) and (2.25) as r0r\to 0. Using the fact that these coefficients are compactly supported in a common bounded open set, a computation using Theorem 2.5 shows that χ(B[r]+C[r])\chi(B_{[r]}+C_{[r]}) converges to zero as an operator Hσ,q(n)Hσd,q(n)H^{\sigma^{\prime},q^{\prime}}(\mathbb{R}^{n})\to H^{\sigma^{\prime}-d,q^{\prime}}(\mathbb{R}^{n}) as r0r\to 0 for any choice of (σ,q)𝒮d0d(Hs,p)(\sigma^{\prime},q^{\prime})\in\mathcal{S}^{d}_{d_{0}}(H^{s,p}). Hence we may take rr sufficiently small so that I+Q(χ(B[r]+C[r]))I+Q^{\prime}\circ(\chi(B_{[r]}+C_{[r]})) has a continuous inverse U[r]:Hsd,p(n)Hsd,p(n)U_{[r]}:H^{s-d,p^{*}}(\mathbb{R}^{n})\rightarrow H^{s-d,p^{*}}(\mathbb{R}^{n}) that also maps Hs+d0,p(n)Hs+d0,p(n)H^{s+d_{0},p}(\mathbb{R}^{n})\rightarrow H^{s+d_{0},p}(\mathbb{R}^{n}) and Hσ,q(n)Hσ,q(n)H^{\sigma,q}(\mathbb{R}^{n})\rightarrow H^{\sigma,q}(\mathbb{R}^{n}). Applying U[r]U_{[r]} to equation (2.23) we conclude

u{r}+U[r]Tu{r}=rdU[r]Q(Lu){r}u_{\{r\}}+U_{[r]}T^{\prime}u_{\{r\}}=r^{d}U_{[r]}Q^{\prime}(Lu)_{\{r\}}

and consequently

u{r}Hσ,q(n)\displaystyle||u_{\{r\}}||_{H^{\sigma,q}(\mathbb{R}^{n})} U[r]Tu{r}Hσ,q(n)+U[r]Q(Lu){r}Hσ,q(n)\displaystyle\lesssim||U_{[r]}T^{\prime}u_{\{r\}}||_{H^{\sigma,q}(\mathbb{R}^{n})}+||U_{[r]}Q^{\prime}(Lu)_{\{r\}}||_{H^{\sigma,q}(\mathbb{R}^{n})} (2.26)
U[r]Tu{r}Hs+d0,p(n)+Q(Lu){r}Hσ,q(n)\displaystyle\lesssim||U_{[r]}T^{\prime}u_{\{r\}}||_{H^{s+d_{0},p}(\mathbb{R}^{n})}+||Q^{\prime}(Lu)_{\{r\}}||_{H^{\sigma,q}(\mathbb{R}^{n})}
u{r}Hds1,p(n)+(Lu){r}Hσd,q(n).\displaystyle\lesssim||u_{\{r\}}||_{H^{d-s-1,p^{*}}(\mathbb{R}^{n})}+||(Lu)_{\{r\}}||_{H^{\sigma-d,q}(\mathbb{R}^{n})}.

Note that the implicit constants above depend on rr, but this dependence is unimportant since the smallness of rr has already be chosen. Since rescaling vv{r}v\mapsto v_{\{r\}} with fixed rr is a continuous automorphism of any Bessel potential space on n\mathbb{R}^{n} we conclude

uHσ,q(n)LuHσd,q(n)+uHds1,p(n).||u||_{H^{\sigma,q}(\mathbb{R}^{n})}\lesssim||Lu||_{H^{\sigma-d,q}(\mathbb{R}^{n})}+||u||_{H^{d-s-1,p^{*}}(\mathbb{R}^{n})}. (2.27)

Estimate (2.20) follows from inequality (2.27) along with the fact that if vHσ,q(n)v\in H^{\sigma^{\prime},q^{\prime}}(\mathbb{R}^{n}) for some (σ,q)(\sigma^{\prime},q^{\prime}) has support on a fixed Br(0)¯Ω\overline{B_{r}(0)}\subset\Omega, then vHσ,q(Ω)vHσ,q(n)||v||_{H^{\sigma^{\prime},q^{\prime}}(\Omega)}\sim||v||_{H^{\sigma^{\prime},q^{\prime}}(\mathbb{R}^{n})} with implicit constants depending on rr. ∎

We now arrive at our main regularity result.

Theorem 2.21.

Let Ω\Omega be a bounded open set in n\mathbb{R}^{n} and suppose s,p,d0s,p,d_{0} and dd are parameters as in Lemma 2.8 such that s>n/ps>n/p and such that inequalities (2.7)–(2.8) are satisfied so 𝒮d0d(Hs,p)\mathcal{S}_{d_{0}}^{d}(H^{s,p})\neq\emptyset. Suppose LL is of class d0d(Hs,p;Ω)\mathcal{L}_{d_{0}}^{d}(H^{s,p};\Omega) and is elliptic on Ω\Omega. If uHds,p(Ω)u\in H^{d-s,p^{*}}(\Omega) and LuHσd,q(Ω)Lu\in H^{\sigma-d,q}(\Omega) for some (σ,q)𝒮d0d(Hs,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(H^{s,p}) then for any open set UU with U¯Ω\overline{U}\subseteq\Omega, uHσ,q(U)u\in H^{\sigma,q}(U) and

uHσ,q(U)LuHσd,q(Ω)+uHds1,p(Ω).||u||_{H^{\sigma,q}(U)}\lesssim||Lu||_{H^{\sigma-d,q}(\Omega)}+||u||_{H^{d-s-1,p^{*}}(\Omega)}. (2.28)
Proof.

The proof is a bootstrap that relies on the following main step. We have initially assumed that uHds,p(Ω)u\in H^{d-s,p^{*}}(\Omega) so that LL can be applied to it, and that LuHσd,q(Ω)Lu\in H^{\sigma-d,q}(\Omega) for some (σ,q)𝒮d0d(Hs,p)(\sigma,q)\in\mathcal{S}^{d}_{d_{0}}(H^{s,p}). Suppose we know additionally that on some open set ΩA\Omega_{A} with U¯ΩAΩ\overline{U}\subset\Omega_{A}\subset\Omega that uHσA,qA(ΩA)u\in H^{\sigma_{A},q_{A}}(\Omega_{A}) for some pair (σA,qA)(\sigma_{A},q_{A}) such that the commutator result Lemma 2.9 applies. Now consider a target level of regularity (σB,qB)(\sigma_{B},q_{B}) satisfying the following:

  1. H1:

    σBσ\sigma_{B}\leq\sigma,

  2. H2:

    1qσn1qBσBn\displaystyle\frac{1}{q}-\frac{\sigma}{n}\leq\frac{1}{q_{B}}-\frac{\sigma_{B}}{n},

  3. H3:

    σBσA+1\sigma_{B}\leq\sigma_{A}+1,

  4. H4:

    1qAσA+1n1qBσBn\displaystyle\frac{1}{q_{A}}-\frac{\sigma_{A}+1}{n}\leq\frac{1}{q_{B}}-\frac{\sigma_{B}}{n}.

The first two conditions ensure via Sobolev embedding that Hσ,q(Ω)H^{\sigma,q}(\Omega) is contained in HσB,qB(Ω)H^{\sigma_{B},q_{B}}(\Omega) and form a hard limit on the target regularity. The second two conditions ensure HσB,qB(ΩA)HσA+1,qA(ΩA)H^{\sigma_{B},q_{B}}(\Omega_{A})\supset H^{\sigma_{A}+1,q_{A}}(\Omega_{A}) and limit the improvement in regularity that can be achieved on a single step of the bootstrap. We claim that under these hypotheses that uHσB,qB(ΩB)u\in H^{\sigma_{B},q_{B}}(\Omega_{B}) for some open set ΩBΩA\Omega_{B}\subset\Omega_{A} such that U¯ΩB\overline{U}\subset\Omega_{B} and that we have the estimate

uHσB,qB(ΩB)LuHσd,q(Ω)+uHσA,qA(ΩA)||u||_{H^{\sigma_{B},q_{B}}(\Omega_{B})}\lesssim||Lu||_{H^{\sigma-d,q}(\Omega)}+||u||_{H^{\sigma_{A},q_{A}}(\Omega_{A})} (2.29)

with implicit constant independent of uu.

To establish inequality (2.29) we first select an open set ΩB\Omega_{B} with U¯ΩBΩ¯BΩA\overline{U}\subseteq\Omega_{B}\subseteq\overline{\Omega}_{B}\subseteq\Omega_{A}. Since ΩB¯\overline{\Omega_{B}} is compact we can select finitely many balls Bi=Bri(xi)Ω0B_{i}=B_{r_{i}}(x_{i})\subset\Omega_{0} that cover ΩB\Omega_{B} and such that the conclusion of Proposition 2.20 holds for the pair (σB,qB)(\sigma_{B},q_{B}). Using a partition of unity subordinate to the balls BiB_{i} and ΩAΩ¯B\Omega_{A}\setminus\overline{\Omega}_{B} we can find non-negative smooth functions ϕi\phi_{i} compactly supported in BiB_{i} such that ϕi=1\sum\phi_{i}=1 on ΩB\Omega_{B}.

Consider

L(ϕiu)=ϕiLu+[L,ϕi]u.L(\phi_{i}u)=\phi_{i}Lu+[L,\phi_{i}]u. (2.30)

From conditions (H1:)–(H2:) and Sobolev embedding we know

ϕiLuHσBd,qB(ΩB)LuHσBd,qB(ΩB)LuHσd,q(Ω).||\phi_{i}Lu||_{H^{\sigma_{B}-d,q_{B}}(\Omega_{B})}\lesssim||Lu||_{H^{\sigma_{B}-d,q_{B}}(\Omega_{B})}\lesssim||Lu||_{H^{\sigma-d,q}(\Omega)}. (2.31)

Conditions (H3:)–(H4:) allow us to apply Sobolev embedding to the commutator term from equation (2.30) and we have

[L,ϕi]uHσBd,qB(Bi)[L,ϕi]uHσAd+1,qA(Bi).||[L,\phi_{i}]u||_{H^{\sigma_{B}-d,q_{B}}(B_{i})}\lesssim||[L,\phi_{i}]u||_{H^{\sigma_{A}-d+1,q_{A}}(B_{i})}. (2.32)

Since we have assumed that (σA,qA)(\sigma_{A},q_{A}) satisfies the conditions of Lemma 2.9 (i.e., either (σA+1,qA)𝒮d0d(Hs,p)(\sigma_{A}+1,q_{A})\in\mathcal{S}^{d}_{d_{0}}(H^{s,p}) or d0=0d_{0}=0 and (σA,qA)𝒮d0d(Hs,p)(\sigma_{A},q_{A})\in\mathcal{S}^{d}_{d_{0}}(H^{s,p})), we have

[L,ϕi]uHσAd+1,qA(Bi)uHσA,qA(Bi)uHσA,qA(ΩA).||[L,\phi_{i}]u||_{H^{\sigma_{A}-d+1,q_{A}}(B_{i})}\lesssim||u||_{H^{\sigma_{A},q_{A}}(B_{i})}\lesssim||u||_{H^{\sigma_{A},q_{A}}(\Omega_{A})}. (2.33)

Combining inequalities equalities (2.31), (2.32) and (2.32) we find L(ϕiu)HσBd,qB(Bi)L(\phi_{i}u)\in H^{\sigma_{B}-d,q_{B}}(B_{i}) and we conclude from Proposition 2.20 that ϕiuHσB,qB(n)\phi_{i}u\in H^{\sigma_{B},q_{B}}(\mathbb{R}^{n}) and additionally

ϕiuHσB,qB(ΩA)LuHσ,q(Ω)+uHσA,qA(ΩA).||\phi_{i}u||_{H^{\sigma_{B},q_{B}}(\Omega_{A})}\lesssim||Lu||_{H^{\sigma,q}(\Omega)}+||u||_{H^{\sigma_{A},q_{A}}(\Omega_{A})}.

Inequality (2.29) now follows from the observation ϕiuHσB,qB(ΩB)ϕiuHσB,qB(ΩA)||\phi_{i}u||_{H^{\sigma_{B},q_{B}}(\Omega_{B})}\lesssim||\phi_{i}u||_{H^{\sigma_{B},q_{B}}(\Omega_{A})} and summing on ii.

We now describe the bootstrap in the easier case when d0=0d_{0}=0, where Lemma 2.9 has the fewest restrictions. The argument begins with (σ0,q0)=(ds1,p)(\sigma_{0},q_{0})=(d-s-1,p^{*}) and (σ1,q1)=(ds,p)(\sigma_{1},q_{1})=(d-s,p^{*}). Conditions (H1:)–(H2:) are an immediate consequence of the definition of the region 𝒮0d(Hs,p)\mathcal{S}^{d}_{0}(H^{s,p}) and conditions (H3:)–(H4:) are obvious. Moreover, since (σ0+1,q0)=(ds,p)𝒮0d(Hs,p)(\sigma_{0}+1,q_{0})=(d-s,p^{*})\in\mathcal{S}^{d}_{0}(H^{s,p}), Lemma 2.9 applies. Hence all the conditions of the bootstrap step are met and we conclude there is an open set Ω1\Omega_{1} with U¯Ω1Ω\overline{U}\subset\Omega_{1}\subset\Omega such that

uHds,p(Ω1)LuHσ,q(Ω)+uHds1,p(Ω).||u||_{H^{d-s,p^{*}}(\Omega_{1})}\lesssim||Lu||_{H^{\sigma,q}(\Omega)}+||u||_{H^{d-s-1,p^{*}}(\Omega)}. (2.34)

We now iteratively apply the bootstrap step through a finite sequence (σk,qk)(\sigma_{k},q_{k}) in S0d(Hs,p)S^{d}_{0}(H^{s,p}) described below that starts at (sd,p)(s-d,p^{*}) and terminates at (σ,q)(\sigma,q). At each step we ensure conditions (H1:)–(H4:) hold and obtain inequalities

uHσk+1,qk+1(Ωk+1)LuHσ,q(Ω)+uHσk,qk(Ωk)||u||_{H^{\sigma_{k+1},q_{k+1}}(\Omega_{k+1})}\lesssim||Lu||_{H^{\sigma,q}(\Omega)}+||u||_{H^{\sigma_{k},q_{k}}(\Omega_{k})} (2.35)

for a sequence nested open sets U¯Ωk+1ΩkΩ\overline{U}\subset\Omega_{k+1}\subset\Omega_{k}\subset\Omega. Because we have assumed that d0=0d_{0}=0, and since each (σk,qk)𝒮0d(Hs,p)(\sigma_{k},q_{k})\in\mathcal{S}^{d}_{0}(H^{s,p}), we are assured that at each step we can use the commutator estimate from Lemma (2.9). Inequality (2.28) follows from chaining together the initial estimate (2.34) with the estimates (2.35) obtained along the bootstrap.

The specific sequence (σk,qk)(\sigma_{k},q_{k}) can be achieved as follows, starting from (σ1,q1)=(ds,p)(\sigma_{1},q_{1})=(d-s,p^{*}), in two cases depending on whether 1/q1/p1/q\leq 1/p^{*} or not as depicted in Figure 3.

If 1/q1/p1/q\leq 1/p^{*} we first lower 1/qk1/q_{k} by steps of at most 1/n1/n until it has been lowered to 1/q1/q. At this point we raise σk\sigma_{k} by steps of at most 11 until it has been raised to qq. Note that at each step kk,

1psn1qσn1qkσkn1q1σ1n=1pdsn\frac{1}{p}-\frac{s}{n}\leq\frac{1}{q}-\frac{\sigma}{n}\leq\frac{1}{q_{k}}-\frac{\sigma_{k}}{n}\leq\frac{1}{q_{1}}-\frac{\sigma_{1}}{n}=\frac{1}{p^{*}}-\frac{d-s}{n}

and hence the sequence remains in 𝒮0d(Hs,p)\mathcal{S}^{d}_{0}(H^{s,p}) as is required to apply Lemma 2.9. These same inequalities also show that conditions (H1:)–(H2:) are maintained at each step. Moreover, conditions (H3:)–(H4:) hold because we either fix σk\sigma_{k} and lower qkq_{k} by at most 1/n1/n or we fix qkq_{k} and raise σk\sigma_{k} by at most 11.

Now suppose 1/q>1/p1/q>1/p^{*}. Since 1/qσ/n1/p(ds)/n1/q-\sigma/n\leq 1/p^{*}-(d-s)/n, we can lower σ\sigma to a value σ\sigma^{\prime} such that the inequality becomes an equality. We now start the bootstrap by raising σk\sigma_{k} to min(σk+1,σ)\min(\sigma_{k}+1,\sigma^{\prime}) at each step while simultaneously raising 1/qk1/q_{k} so that the value 1/qkσk/n=1/p(ds)/n1/q_{k}-\sigma_{k}/n=1/p^{*}-(d-s)/n remains invariant. This stage ends when (σk,qk)=(σ,q)(\sigma_{k},q_{k})=(\sigma^{\prime},q). We then increase σk\sigma_{k} while leaving qkq_{k} fixed as in the earlier argument when 1/q<1/p1/q<1/p^{*}. The first stage of the sequence has dsσkσσsd-s\leq\sigma_{k}\leq\sigma^{\prime}\leq\sigma\leq s and

1psn1qσn1pdsn=1qkσkn.\frac{1}{p}-\frac{s}{n}\leq\frac{1}{q}-\frac{\sigma}{n}\leq\frac{1}{p^{*}}-\frac{d-s}{n}=\frac{1}{q_{k}}-\frac{\sigma_{k}}{n}.

Hence for this first part of the sequence the terms (σk,qk)(\sigma_{k},q_{k}) lie in 𝒮0d(Hs,p)\mathcal{S}^{d}_{0}(H^{s,p}) and additionally conditions (H1:)–(H2:) are maintained. Moreover, condition (H3:) is enforced because we raise σk\sigma_{k} by at most 11, and condition (H4:) is satisfied because it is an equality during this first stage where we lower 1/qk1/q_{k}. The same argument as in the case when 1/q1/p1/q\leq 1/p^{*} then shows that conditions (H1:)–(H4:) hold in the second stage when we raise σk\sigma_{k} while leaving qkq_{k} fixed. The proof is now complete in event that d0=0d_{0}=0.

Refer to caption
Figure 3: Two possible bootstrap paths.

We now turn to the case d0>0d_{0}>0 where the bootstrap requires more care because the hypotheses of Lemma 2.9 are more restrictive. Consider the case d0=1d_{0}=1. If (σ,q)𝒮0d(Hs,p)(\sigma,q)\in\mathcal{S}^{d}_{0}(H^{s,p}), we can simply apply the earlier result, so it suffices to assume (σ,q)𝒮1d(Hs,p))(\sigma,q)\in\mathcal{S}^{d}_{1}(H^{s,p})) but (σ,q)𝒮0d(Hs,p)(\sigma,q)\not\in\mathcal{S}^{d}_{0}(H^{s,p}). Because d0=1d_{0}=1 we can define a point (σ,q)(\sigma^{\prime},q^{\prime}) in 𝒮0d(Hs,p)\mathcal{S}^{d}_{0}(H^{s,p}) determined by (σ,q)(\sigma,q) and the following rules:

  1. 1.

    If σ<s\sigma<s, leave σ=σ\sigma^{\prime}=\sigma fixed but raise 1/q1/q by at most 1/n1/n to 1/q1/q^{\prime} such that 1/qσ/n=1/ps/n1/q^{\prime}-\sigma/n=1/p-s/n.

  2. 2.

    If σs\sigma\geq s and 1/ps/n1/qσ/n1/p-s/n\leq 1/q-\sigma/n, lower σ\sigma by at most 1 to ss while simultaneously lowering 1/q1/q by at most 1/n1/n so that the Lebesgue regularity 1/qσ/n=1/qσ/n1/q-\sigma/n=1/q^{\prime}-\sigma^{\prime}/n is unchanged.

  3. 3.

    Otherwise, (σ,q)(\sigma,q) satisfies sσσ+1s\leq\sigma\leq\sigma+1 and

    1ps+1n1qσn<1psn\frac{1}{p}-\frac{s+1}{n}\leq\frac{1}{q}-\frac{\sigma}{n}<\frac{1}{p}-\frac{s}{n}

    and we set (σ,q)=(s,p)(\sigma^{\prime},q^{\prime})=(s,p).

In each of these cases Hs,q(Ω)H^{s,q}(\Omega) is contained in Hs,q(Ω)H^{s^{\prime},q^{\prime}}(\Omega) by Sobolev embedding, so we can apply the original bootstrap for d0=0d_{0}=0 to get to (σ,q)(\sigma^{\prime},q^{\prime}). Since (σ,q)𝒮0d(Hs,p)(\sigma^{\prime},q^{\prime})\in\mathcal{S}^{d}_{0}(H^{s,p}) a computation shows (σ+1,q)𝒮1d0(Hs,p)(\sigma^{\prime}+1,q^{\prime})\in\mathcal{S}^{d_{0}}_{1}(H^{s,p}) and hence the commutator result Lemma 2.9 can be applied at (σ,q)(\sigma^{\prime},q^{\prime}). One verifies that in all three cases listed above, the target regularity (σ,q)(\sigma,q) satisfies conditions (H1:)-(H4:) when starting from (σ,q)(\sigma^{\prime},q^{\prime}) and we can apply the bootstrap step exactly once to arrive at (σ,q)(\sigma,q). This proves the result when d0=1d_{0}=1, and iterating this argument obtains the proof for any value of d0d_{0}. ∎

3 Coefficients in Triebel-Lizorkin Spaces

This section generalizes the results of Section 2 to operators having coefficients in Triebel-Lizorkin spaces, which are defined defined in terms of Littlewood-Paley projection operators. Let ϕ\phi be a smooth radial bump function that equals 11 on B1B_{1} and vanishes outside of B2B_{2} and let ψ(ξ)=ϕ(ξ)ϕ(2ξ)\psi(\xi)=\phi(\xi)-\phi(2\xi), so ψ(ξ)=0\psi(\xi)=0 if |ξ|>2|\xi|>2 or |ξ|<1/2|\xi|<1/2. For kk\in\mathbb{Z} we define the Littlewood-Paley projections PkP_{k} and PkP_{\leq k}

[Pku](ξ)\displaystyle\mathcal{F}[P_{k}u](\xi) =ψ(2kξ)[u](ξ)\displaystyle=\psi(2^{-k}\xi)\mathcal{F}[u](\xi)
[Pku](ξ)\displaystyle\mathcal{F}[P_{\leq k}u](\xi) =ϕ(2kξ)[u](ξ).\displaystyle=\phi(2^{-k}\xi)\mathcal{F}[u](\xi).

We also use the notation PabP_{a\leq\cdot\leq b} for j=abPj\sum_{j=a}^{b}P_{j}.

Let ss\in\mathbb{R} and 1<p,q<1<p,q<\infty. Given a tempered distribution uu, each PkuP_{k}u is an analytic function on n\mathbb{R}^{n} and a tempered distribution belongs to the Triebel-Lizorkin space Fqs,p()F^{s,p}_{q}(\mathbb{R}) if

uFqs,p(n)=P0uLp(n)+[k=1(2sk|Pku|)q]1/qLp(n)<.||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}=||P_{\leq 0}u||_{L^{p}(\mathbb{R}^{n})}+\left|\left|\,\,\left[\sum_{k=1}^{\infty}(2^{sk}|P_{k}u|)^{q}\,\,\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}<\infty.

We call pp the Lebesgue parameter, whereas qq is the fine parameter. Bessel potential spaces are Triebel-Lizorkin spaces with fine parameter q=2q=2 and, as recalled in the following section, Sobolev-Slobodeckij spaces Ws,p(n)W^{s,p}(\mathbb{R}^{n}) are also special cases of Triebel-Lizorkin spaces with either q=2q=2 or q=pq=p. Just as for Bessel potential spaces, on an open set Ωn\Omega\subseteq\mathbb{R}^{n}, Fqs,p(Ω)F^{s,p}_{q}(\Omega) consists of the restrictions to Ω\Omega of distributions in Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) to Ω\Omega and is given the quotient norm. The text [Tr10] contains a comprehensive description of Triebel-Lizorkin spaces, and indeed considers a wider set of parameters than those we employ here.

Embedding properties for Triebel-Lizorkin spaces follow those for Bessel potential spaces with the following rule of thumb: when a loss of derivatives is involved, the fine parameter has no role. Specifically, we recall the following results summarizing [Tr10] Proposition 2.3.2/2 and Theorems 2.7.1 and 3.3.1 along with [Tr78] Theorems 2.8.1 and 4.6.1; the notation ABA\hookrightarrow B denotes a continuous inclusion of space AA into space BB. Note that here and elsewhere when we quote established results, we restrict the range of the parameters to 1<p,q<1<p,q<\infty even when they apply with greater generality.

Proposition 3.1.

Assume 1<p,p1,p2,q,q1,q2<1<p,p_{1},p_{2},q,q_{1},q_{2}<\infty and s,s1,s2s,s_{1},s_{2}\in\mathbb{R}, and suppose Ω\Omega is a bounded open set in n\mathbb{R}^{n}.

  1. 1.

    If s1>s2s_{1}>s_{2} then Fq1s1,p(n)Fq2s2,p(n)F^{s_{1},p}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow F^{s_{2},p}_{q_{2}}(\mathbb{R}^{n}) and Fq1s1,p(Ω)Fq2s2,p(Ω)F^{s_{1},p}_{q_{1}}(\Omega)\hookrightarrow F^{s_{2},p}_{q_{2}}(\Omega).

  2. 2.

    If q1q2q_{1}\leq q_{2} then Fq1s,p(n)Fq2s,p(n)F^{s,p}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow F^{s,p}_{q_{2}}(\mathbb{R}^{n}) and Fq1s1,p(Ω)Fq2s2,p(Ω)F^{s_{1},p}_{q_{1}}(\Omega)\hookrightarrow F^{s_{2},p}_{q_{2}}(\Omega).

  3. 3.

    If p1p2p_{1}\geq p_{2} then Fqs,p1(Ω)Fqs,p2(Ω)F^{s,p_{1}}_{q}(\Omega)\hookrightarrow F^{s,p_{2}}_{q}(\Omega).

  4. 4.

    If s1>s2s_{1}>s_{2} and 1p1s1n=1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}=\frac{1}{p_{2}}-\frac{s_{2}}{n} then Fq1s1,p1(n)Fq2s2,p2(n)F^{s_{1},p_{1}}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow F^{s_{2},p_{2}}_{q_{2}}(\mathbb{R}^{n}).

  5. 5.

    If s1>s2s_{1}>s_{2} and 1p1s1n1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}\leq\frac{1}{p_{2}}-\frac{s_{2}}{n} then Fq1s1,p1(Ω)Fq2s2,p2(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\hookrightarrow F^{s_{2},p_{2}}_{q_{2}}(\Omega).

  6. 6.

    If 0<α<10<\alpha<1 then Fqnp+α,p(n)C0,α(n)F^{\frac{n}{p}+\alpha,p}_{q}(\mathbb{R}^{n})\hookrightarrow C^{0,\alpha}(\mathbb{R}^{n}) and Fqnp+α,p(Ω)C0,α(Ω)F^{\frac{n}{p}+\alpha,p}_{q}(\Omega)\hookrightarrow C^{0,\alpha}(\Omega).

Note that for bounded open sets Ω\Omega, [Tr10] and [Tr78] proves these embedding properties under the the addition hypothesis that Ω\Omega is a CC^{\infty} domain. The results for arbitrary bounded open sets follow as a corollary using the quotient space definition of the relevant spaces.

Complex interpolation of Triebel-Lizorkin spaces is described in [Tr10] Theorems 2.4.7 and 3.3.6.

Proposition 3.2.

Assume 1<p1,p2,q1,q2<1<p_{1},p_{2},q_{1},q_{2}<\infty and s1,s2s_{1},s_{2}\in\mathbb{R}, and suppose Ω\Omega is either n\mathbb{R}^{n} or is a bounded CC^{\infty} domain in n\mathbb{R}^{n}. For 0<θ<10<\theta<1,

[Fq1s1,p1(Ω),Fq2s2,p2(Ω)]θ=Fqs,p(Ω)[F^{s_{1},p_{1}}_{q_{1}}(\Omega),F^{s_{2},p_{2}}_{q_{2}}(\Omega)]_{\theta}=F^{s,p}_{q}(\Omega)

where

s=(1θ)s1+θs2,1p=(1θ)1p1+θ1p2,(1θ)1q1+θ1q2.s=(1-\theta)s_{1}+\theta s_{2},\quad\frac{1}{p}=(1-\theta)\frac{1}{p_{1}}+\theta\frac{1}{p_{2}},\quad(1-\theta)\frac{1}{q_{1}}+\theta\frac{1}{q_{2}}.

Duality of spaces of functions on n\mathbb{R}^{n} follows from [Tr10] Theorem 2.11.2. Duality for Lipschitz bounded domains can be found in [Tr02], but the theory is more complex and we have avoided its use in our arguments; see, e.g., Proposition A.7.

Proposition 3.3.

Assume 1<p,q<1<p,q<\infty and ss\in\mathbb{R}. The bilinear map 𝒟(n)×𝒟(n)\mathcal{D}(\mathbb{R}^{n})\times\mathcal{D}(\mathbb{R}^{n})\to\mathbb{R} given by f,g:=Ωfg\left<f,g\right>:=\int_{\Omega}fg extends to a continuous bilinear map Fqs,p(n)×Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n})\times F^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n})\to\mathbb{R} where 1/p=11/p1/p^{*}=1-1/p and 1/q=11/q1/q^{*}=1-1/q. Moreover, ff,f\mapsto\left<f,\cdot\right> is a continuous identification of Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) with (Fqs,p(n))(F^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n}))^{*}.

3.1 Mapping properties

Operators with coefficients in Triebel-Lizorkin spaces are defined analogously to those of Definition 2.4.

Definition 3.4.

Suppose d0,d0d_{0},d\in\mathbb{Z}_{\geq 0} with d0dd_{0}\leq d. A differential operator on an open set Ωn\Omega\subseteq\mathbb{R}^{n} of the form

d0|α|daαα\sum_{d_{0}\leq|\alpha|\leq d}a^{\alpha}\partial_{\alpha}

is of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) for some ss\in\mathbb{R}, and 1<p,q<1<p,q<\infty if each

aαFqs+|α|d,p(Ω).a^{\alpha}\in F^{s+|\alpha|-d,p}_{q}(\Omega).

We have the following multiplication rules for Triebel-Lizorkin spaces that generalize the rules found in Theorem 2.5. A self-contained proof is given in Appendix A.

Theorem 3.5.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p1,p2,p,q1,q2,q<1<p_{1},p_{2},p,q_{1},q_{2},q<\infty and s1,s2,ss_{1},s_{2},s\in\mathbb{R}. Let r1,r2r_{1},r_{2} and rr be defined by

1r1=1p1s1n,1r2=1p2s2n,and1r=1psn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s_{1}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s_{2}}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\rightarrow F^{s,p}_{q}(\Omega) so long as

s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (3.1)
min(s1,s2)\displaystyle\min({s_{1},s_{2}}) s\displaystyle\geq s (3.2)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (3.3)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (3.4)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (3.5)

with the the following caveats:

  • Inequality (3.5) is strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

  • If si=ss_{i}=s for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 then 1q1+1q21\frac{1}{q_{1}}+\frac{1}{q_{2}}\geq 1.

  • If s1=s2=s=0s_{1}=s_{2}=s=0 then 1q121qi\displaystyle\frac{1}{q}\leq\frac{1}{2}\leq\frac{1}{q_{i}} for i=1,2i=1,2.

Repeated applications of Theorem 3.5 lead to the following analogue of Proposition 2.6.

Proposition 3.6.

Let Ω\Omega be a bounded open set in n\mathbb{R}^{n}. Suppose 1<p,q,a,b<1<p,q,a,b<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. An operator of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Fbσ,a(Ω)Fbσd,a(Ω)F^{\sigma,a}_{b}(\Omega)\mapsto F^{\sigma-d,a}_{b}(\Omega) so long as

σ\displaystyle\sigma [ds,s+d0]\displaystyle\in[d-s,s+d_{0}] (3.6)
1aσn\displaystyle\frac{1}{a}-\frac{\sigma}{n} [1ps+d0n,1pdsn]\displaystyle\in\left[\frac{1}{p}-\frac{s+d_{0}}{n},\frac{1}{p^{*}}-\frac{d-s}{n}\right]

and so long as:

  • If σ=s+d0\sigma=s+d_{0} then 1q1b\frac{1}{q}\geq\frac{1}{b}.

  • If σ=ds\sigma=d-s then 1b1q\frac{1}{b}\geq\frac{1}{q^{*}}.

Moreover, operators in d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) depend continuously on their coefficients aαFqsd+α,p(Ω)a^{\alpha}\in F^{s-d+\alpha,p}_{q}(\Omega).

Note that in the Bessel potential case, q=b=2q=b=2 in Proposition 3.6 and the supplemental conditions at σ=s+d0\sigma=s+d_{0} and σ=ds\sigma=d-s are always satisfied. We have the following generalization of Definition 2.7.

Definition 3.7.

Suppose 1<p,q<1<p,q<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. The compatible Sobolev indices for an operator of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) is the set

𝒮d0d(Fqs,p)×(1,)×(1,)\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q})\subseteq\mathbb{R}\times(1,\infty)\times(1,\infty)

of tuples (σ,a,b)(\sigma,a,b) satisfying (3.6) along with the additional conditions at the end of Proposition 3.6 when σ=s+d0\sigma=s+d_{0} or σ=ds\sigma=d-s.

The proof of Lemma 2.8 generalizes to the Triebel-Lizorkin context with minimal changes, using Proposition 3.1 for facts about Sobolev embedding. The only interesting difference is that the marginal conditions at the end of Proposition 3.6 adds an additional condition when ss is the smallest possible value such that 𝒮d0d(Fqs,p)\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q}) is nonempty.

Lemma 3.8.

Suppose 1<p,q<1<p,q<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Then 𝒮d0d(Fqs,p)\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q}) is nonempty if and only if

s\displaystyle s (dd0)/2, and\displaystyle\geq(d-d_{0})/2\text{, and} (3.7)
1psn\displaystyle\frac{1}{p}-\frac{s}{n} 12(dd0)/2n\displaystyle\leq\frac{1}{2}-\frac{(d-d_{0})/2}{n} (3.8)

with the additional condition q2q\leq 2 in the marginal case s=(dd0)/2s=(d-d_{0})/2. If Sd0d(Fqs,p)S_{d_{0}}^{d}(F^{s,p}_{q}) is non-empty then it contains (s+d0,p,q)(s+d_{0},p,q), (ds,p,q)(d-s,p^{*},q^{*}), and ((d+d0)/2,2,2)((d+d_{0})/2,2,2). Moreover, if (σ,a,b)𝒮d0d(Fqs,p)(\sigma,a,b)\in\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q}), then we have the continuous inclusions of Fréchet spaces

Fq,locs+d0,p(n)Fb,locσ,a(n)Fq,locds,p(n).F^{s+d_{0},p}_{q,\rm loc}(\mathbb{R}^{n})\subseteq F^{\sigma,a}_{b,\rm loc}(\mathbb{R}^{n})\subseteq F^{d-s,p^{*}}_{q^{*},\rm loc}(\mathbb{R}^{n}). (3.9)

Just as in the Bessel potential case, if an operator of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) is compatible with any indices at all, it acts on a compatible L2L^{2}-based Bessel potential space, F2(dd0)/2,2(Ω)=H(dd0)/2,2(Ω)F^{(d-d_{0})/2,2}_{2}(\Omega)=H^{(d-d_{0})/2,2}(\Omega).

The following commutator result generalizes Lemma 2.9.

Lemma 3.9.

Suppose 1<p,q,a,b<1<p,q,a,b<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Let LL be an operator of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) and let ϕ𝒟(Ω)\phi\in\mathcal{D}(\Omega). Then [L,ϕ][L,\phi] extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Fbσ,a(Ω)Fbσd+1,a(Ω)F^{\sigma,a}_{b}(\Omega)\mapsto F^{\sigma-d+1,a}_{b}(\Omega) so long as (σ+1,a,b)𝒮d0d(Fqs,p)(\sigma+1,a,b)\in\mathcal{S}^{d}_{d_{0}}(F^{s,p}_{q}). Moreover, if d0=0d_{0}=0, the same result holds if (σ,a,b)𝒮0d(Hqs,p)(\sigma,a,b)\in\mathcal{S}^{d}_{0}(H^{s,p}_{q}).

Proof.

The proof in the case of general d0d_{0} is a computation that follows the analogous part of the proof of Lemma 2.9. The only difference is that there are fine parameter restrictions that need to be checked. In the notation of Theorem 3.5, nontrivial restrictions could happen when si=ss_{i}=s, when s1+s2=0s_{1}+s_{2}=0 and when s1=s2=s=0s_{1}=s_{2}=s=0. One readily verifies that under the given hypotheses that s1=s2=s=0s_{1}=s_{2}=s=0 cannot happen and that in the remaining cases the fine parameter restrictions are always met.

If d0=0d_{0}=0 the proof again follows the strategy of Lemma 2.9. First we observe that [L,ϕ]=[L^,ϕ][L,\phi]=[\hat{L},\phi] where L^\hat{L} is LL with its constant term eliminated. Using the case d0=1d_{0}=1 already proved we have continuity so long as (σ+1,a,b)𝒮1d(Fqs,p)(\sigma+1,a,b)\in\mathcal{S}^{d}_{1}(F^{s,p}_{q}), and computation shows that if (σ,a,b)𝒮0d(Fqs,p)(\sigma,a,b)\in\mathcal{S}^{d}_{0}(F^{s,p}_{q}) then (σ+1,a,b)𝒮1d(Fqs,p)(\sigma+1,a,b)\in\mathcal{S}^{d}_{1}(F^{s,p}_{q}). ∎

3.2 Rescaling estimates

In this section we show that the rescaling estimates of Proposition 2.10 carry over to Triebel-Lizorkin spaces.

Proposition 3.10.

Suppose 1<p,q<1<p,q<\infty, ss\in\mathbb{R} and that χ\chi is a Schwartz function on n\mathbb{R}^{n}. There exists a constant α\alpha\in\mathbb{R} such that for all 0<r10<r\leq 1 and all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n})

χu{r}Fqs,p(n)rαuFqs,p(n).||\chi u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}. (3.10)

Specifically:

  1. 1.

    Inequality (3.10) holds with

    α=min(snp,0)\alpha=\min\left(s-\frac{n}{p},0\right)

    unless sn/p=0s-n/p=0, in which case it holds for any choice of α<0\alpha<0, with implicit constant depending on α\alpha.

  2. 2.

    If s>n/ps>n/p (in which case functions in Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) are Hölder continuous) and if uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}) with u(0)=0u(0)=0, then inequality holds with

    α=min(snp,1)\alpha=\min\left(s-\frac{n}{p},1\right)

    unless sn/p=1s-n/p=1, in which case it holds for any choice of α<1\alpha<1, with implicit constant depending on α\alpha.

The remainder of this section is an extended proof of this result, and relies on the following elementary facts from Littlewood-Paley theory.

Proposition 3.11.

Let 1<p,q,t<1<p,q,t<\infty.

  1. 1.

    If η\eta is a Schwartz function then for any M>0M>0,

    |(Pkη)(x)|2Mk(1+|x|M)|(P_{k}\eta)(x)|\lesssim\frac{2^{-Mk}}{(1+|x|^{M})}

    with implicit constant independent of xx and kk but depending on η\eta and MM.

  2. 2.

    There exist Schwartz functions κ,κ\kappa,\kappa^{*} such that for any tempered distribution uu,

    (Pku)(x)\displaystyle(P_{k}u)(x) =u(x+2ky)κ(y)𝑑y\displaystyle=\int u(x+2^{-k}y)\kappa(y)\;dy
    (Pku)(x)\displaystyle(P_{\leq k}u)(x) =u(x+2ky)κ(y)𝑑y,\displaystyle=\int u(x+2^{-k}y)\kappa^{*}(y)\;dy,

    with convolution and scaling interpreted in the distributional sense.

  3. 3.

    For all uLp(n)u\in L^{p}(\mathbb{R}^{n}), kk\in\mathbb{N}, and xnx\in\mathbb{R}^{n}

    |Pku(x)|\displaystyle|P_{k}u(x)| |(Mu)(x)|and\displaystyle\lesssim|(Mu)(x)|\quad\text{and}
    |Pku(x)|\displaystyle|P_{\leq k}u(x)| |(Mu)(x)|.\displaystyle\lesssim|(Mu)(x)|.

    Here MM is the Hardy-Littlewood maximal operator and the implicit constants are independent of uu, kk and xx.

  4. 4.

    For any sequence {fk}k\{f_{k}\}_{k\in\mathbb{N}} of functions in Lp(n)L^{p}(\mathbb{R}^{n}),

    [k|Pkfk|q]1/qLp(n)[k|fk|q]1/qLp(n).\left|\left|\,\,\left[\sum_{k\in\mathbb{N}}|P_{k}f_{k}|^{q}\right]^{1/q}\,\right|\right|_{L^{p}(\mathbb{R}^{n})}\lesssim\left|\left|\,\,\left[\,\,\sum_{k\in\mathbb{N}}|f_{k}|^{q}\right]^{1/q}\,\right|\right|_{L^{p}(\mathbb{R}^{n})}.
  5. 5.

    Let s>0s>0 and aa\in\mathbb{N}. For all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}),

    uFqs,p(n)uLp(n)+[ka|2skPku|q]1/qLp(n).||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}\sim||u||_{L^{p}(\mathbb{R}^{n})}+\left|\left|\,\,\left[\sum_{k\geq a}|2^{sk}P_{k}u|^{q}\right]^{1/q}\,\right|\right|_{L^{p}(\mathbb{R}^{n})}.
  6. 6.

    (Littlewood-Paley Trichotomy) Suppose uLp(n)u\in L^{p}(\mathbb{R}^{n}) and vLt(n)v\in L^{t}(\mathbb{R}^{n}). Given k,k,k′′k,k^{\prime},k^{\prime\prime}\in\mathbb{Z},

    Pk((Pku)(Pk′′v))=0P_{k}((P_{k^{\prime}}u)(P_{k^{\prime\prime}}v))=0

    unless one of the following three conditions holds:

    • kk4k^{\prime}\leq k-4 and k3k′′k+3k-3\leq k^{\prime\prime}\leq k+3,

    • k3kk+3k-3\leq k^{\prime}\leq k+3 and k′′k+5k^{\prime\prime}\leq k+5,

    • kk+4k^{\prime}\geq k+4 and |kk′′|2|k^{\prime}-k^{\prime\prime}|\leq 2.

Part (1) is a consequence of the definition of the projection operator and elementary properties of the Fourier transform. The proof of parts (2) and (3) can be found in the approachable lecture notes [Ta01], weeks 2/3. Part (4) in full generality follows from the Fefferman-Stein inequality [FS71] together with part (3). We note, however, that the cases of greatest interest (Bessel potential spaces and Sobolev-Slobodeckij spaces) only involve the cases q=2q=2 and q=pq=p, which do not require the full power of [FS71]. The lecture notes [Ta01] contain a proof of part (4) when q=2q=2, and the result when q=pq=p is an easy consequence of part (3) and the Hardy-Littlewood maximal inequality. Part (5) follows from the definition of the norm, part (2) and embedding Fqs,p(n)F20,p(n)=Lp(n)F^{s,p}_{q}(\mathbb{R}^{n})\hookrightarrow F^{0,p}_{2}(\mathbb{R}^{n})=L^{p}(\mathbb{R}^{n}). Part (6) is just a computation based on the supports of convolutions of functions ψk\psi_{k} used to define Littlewood-Paley projection; see [Ta01] for a related statement. Note that there is an artificial asymmetry in part (6) between kk^{\prime} and k′′k^{\prime\prime}, and symmetry can be restored at the expense of increasing the number of cases.

As for Bessel potential spaces, rescaling uu{r}u\mapsto u_{\{r\}} is a continuous automorphism of any space Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}); for s>0s>0 this is a straightforward consequence of the Closed Graph Theorem, using the fact that rescaling is continuous acting on Lp(n)L^{p}(\mathbb{R}^{n}), whereas for s<0s<0 and s=0s=0 the result follows from duality and interpolation respectively. We initially require the following basic estimate for the norms of the rescaling maps.

Lemma 3.12.

Let R>0R>0, and suppose 1<p,q<1<p,q<\infty and ss\in\mathbb{R}. Then

u{r}Fqs,p(n)uFqs,p(n)||u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}

for all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}) and all r[R,R]r\in[-R,R].

Proof.

Recall the cutoff functions ϕ\phi and ψ\psi used to define the Littlewood-Paley projection operators and define

ψk(ξ)={0k<0ϕ(ξ)k=0ψ(2kξ)k>0\psi_{k}(\xi)=\begin{cases}0&k<0\\ \phi(\xi)&k=0\\ \psi(2^{-k}\xi)&k>0\end{cases}

A computation shows that for k0k\geq 0,

(Pku{r})(x)=fk(rx)(P_{k}u_{\{r\}})(x)=f_{k}(rx)

where fk=1Mkuf_{k}=\mathcal{F}^{-1}M_{k}\mathcal{F}u and where

Mk(ξ)=ϕk(rξ).M_{k}(\xi)=\phi_{k}(r\xi).

From the bound |r|R|r|\leq R we can find JJ independent of rr such that

Mk=Mkj=JJψk+jM_{k}=M_{k}\sum_{j=-J}^{J}\psi_{k+j}

with the convention that ψk=0\psi_{k}=0 for k<0k<0. Hence

fk=j=JJ(1Mk)[Pk+ju].f_{k}=\sum_{j=-J}^{J}(\mathcal{F}^{-1}M_{k}\mathcal{F})[P_{k+j}u].

Using [Tr10] Theorem 1.6.3 via the same argument as in [Tr10] Proposition 2.3.2/1 we find

(|fk|q)p/q(|Pku{r}|q)p/q=uFqs,p(n)p\int\left(\sum|f_{k}|^{q}\right)^{p/q}\lesssim\int\left(\sum|P_{k}u_{\{r\}}|^{q}\right)^{p/q}=||u||^{p}_{F^{s,p}_{q}(\mathbb{R}^{n})}

with implicit constant independent of r[R,R]r\in[-R,R]. Recalling that (Pku{r})(x)=fk(rx)(P_{k}u_{\{r\}})(x)=f_{k}(rx) the result now follows from the obvious uniform bounds on rescaling in Lp(n)L^{p}(\mathbb{R}^{n}) for |r|R|r|\leq R. ∎

We now proceed with the proof of Proposition 3.10 part (1) is broken into three cases depending on whether s>0s>0, s<0s<0, or s=0s=0. We begin with s>0s>0 and first establish the following technical lemma, which is needed to control high frequency rescaling.

Lemma 3.13.

Suppose s>0s>0. For all 0<r10<r\leq 1 and all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}),

[k1|2ksPku{r}|q]1/qLp(n)rsnpuFqs,p(n).\left|\left|\left[\sum_{k\geq 1}|2^{ks}P_{k}u_{\{r\}}|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}\lesssim r^{s-\frac{n}{p}}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.
Proof.

Suppose first that r=2jr=2^{-j} for some j0j\in\mathbb{Z}_{\geq 0}. An easy computation from the definition of the Fourier transform and change of variables shows for each kk\in\mathbb{N},

(Pku{r})=(Pk+ju){r}(P_{k}u_{\{r\}})=(P_{k+j}u)_{\{r\}}

for all Schwartz functions uu, and hence also for all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}). But then

[k1|2ksPku{r}|q]1/qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 1}|2^{ks}P_{k}u_{\{r\}}|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})} =2js[k1+j|2ks(Pku)|q]1/qLp(n)\displaystyle=2^{-js}\left|\left|\left[\sum_{k\geq 1+j}|2^{ks}(P_{k}u)|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}
=2js2n/p[k1+j|2ksPku|q]1/qLp(n)\displaystyle=2^{-js}2^{-n/p}\left|\left|\left[\sum_{k\geq 1+j}|2^{ks}P_{k}u|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}
2jsrn/puFqs,p(n)\displaystyle\lesssim 2^{-js}r^{-n/p}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}
=rsnpuFqs,p(n).\displaystyle=r^{s-\frac{n}{p}}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

This completes the proof in the case r=2jr=2^{-j}. The general case follows from the consequence of Lemma 3.12 that that uu{r}u\mapsto u_{\{r\}} is uniformly bounded in Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) for 1/2r21/2\leq r\leq 2. ∎

Proposition 3.10 part (1) when s>0s>0 now follows from the following.

Proposition 3.14.

Suppose 1<p,q<1<p,q<\infty and s>0s>0, and let χ\chi be a Schwartz function. For all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}) and 0<r10<r\leq 1,

χu{r}Fqs,p(n)rαuFqs,p(n)||\chi u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})} (3.11)

where

α=min(snp,0)\alpha=\min\left(s-\frac{n}{p},0\right) (3.12)

unless s=n/ps=n/p, in which case α\alpha can be any (fixed) negative number. The implicit constant in (3.11) depends on χ\chi is independent of uu and rr.

Proof.

We first assume that sn/ps\neq n/p and define α\alpha according to equation 3.12. Since s>0s>0, Proposition 3.11 part (5) implies

χu{r}Fqs,p(n)χu{r}Lp(n)+[k10|Pk(χu{r})|q]1qLp(n).||\chi u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}+\left|\left|\left[\sum_{k\geq 10}|P_{k}(\chi u_{\{r\}})|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}. (3.13)

To estimate the first term on the right-hand side of inequality (3.13) first consider the case s<n/ps<n/p. Define tt by

1t=1psn\frac{1}{t}=\frac{1}{p}-\frac{s}{n} (3.14)

and observe that since 1/p<11/p<1 and since s<n/ps<n/p, we have 0<1/t<10<1/t<1. Proposition 3.1 implies Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) embeds in F20,t(n)=Lt(n)F^{0,t}_{2}(\mathbb{R}^{n})=L^{t}(\mathbb{R}^{n}). From Hölder’s inequality we find

χu{r}Lp(n)χLτ(n)u{r}Lt(n)||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\leq||\chi||_{L^{\tau}(\mathbb{R}^{n})}||u_{\{r\}}||_{L^{t}(\mathbb{R}^{n})}

where 1τ=1p1t\frac{1}{\tau}=\frac{1}{p}-\frac{1}{t}. Hence, from Lemma 2.11

u{r}Lt(n)=rntuLt(n)=rsnpuLt(n)rαuFqs,p(n)||u_{\{r\}}||_{L^{t}(\mathbb{R}^{n})}=r^{-\frac{n}{t}}||u||_{L^{t}(\mathbb{R}^{n})}=r^{s-\frac{n}{p}}||u||_{L^{t}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}

and we conclude χu{r}Lp(n)rαuFqs,p(n)||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}. On the other hand, if s>n/ps>n/p then

χu{r}Lp(n)u{r}L(n)χLp(n)uFqs,p(n)=rαuFqs,p(n).||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u_{\{r\}}||_{L^{\infty}(\mathbb{R}^{n})}||\chi||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}=r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

Hence in both cases, χu{r}Lp(n)rαuFqs,p(n)||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

Turning to the second term on the right-hand side of inequality (3.13) we introduce the notation

P~k=Pk3k+3.\widetilde{P}_{k}=P_{k-3\leq\cdot\leq k+3}.

The Littlewood-Paley trichotomy, Proposition 3.11 part (6), implies

Pk(χu{r})=Pk((P~kχ)(Pk4u{r})high-low+(Pk+5χ)P~ku{r})low-high+kk+4(P~kχ)(Pku{r})high-high)P_{k}(\chi u_{\{r\}})=P_{k}\left(\underbrace{(\widetilde{P}_{k}\chi)(P_{\leq k-4}u_{\{r\}})}_{\text{high-low}}+\underbrace{(P_{\leq k+5}\chi)\widetilde{P}_{k}u_{\{r\}})}_{\text{low-high}}+\underbrace{\sum_{k^{\prime}\geq k+4}(\widetilde{P}_{k^{\prime}}\chi)(P_{k^{\prime}}u_{\{r\}})}_{\text{high-high}}\right) (3.15)

and we estimate the contributions from each of these three terms individually via the triangle inequality.

Starting with the high-low term, Proposition 3.11 parts (4) and (3) imply

[k10|2skPk{(P~kχ)(Pk4u{r})}|q]1qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}|2^{sk}P_{k}\left\{\left(\widetilde{P}_{k}\chi\right)\left(P_{\leq k-4}u_{\{r\}}\right)\right\}|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})} [k10|2sk(P~kχ)(Pk4u{r})|q]1qLp(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}|2^{sk}\left(\widetilde{P}_{k}\chi\right)\left(P_{\leq k-4}u_{\{r\}}\right)|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}
|Mu{r}|[k10|2skP~kχ|q]1qLp(n)\displaystyle\lesssim\left|\left||Mu_{\{r\}}|\left[\sum_{k\geq 10}|2^{sk}\widetilde{P}_{k}\chi|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}

where MM is the Hardy-Littlewood maximal operator. Now suppose s<n/ps<n/p and pick tt according to equation (3.14). Then Hölder’s inequality and the triangle inequality imply

|Mu{r}|[k10|2skP~kχ|q]1qLp(n)Mu{r}Lt(n)χFqs,τ(n)\left|\left||Mu_{\{r\}}|\left[\sum_{k\geq 10}|2^{sk}\widetilde{P}_{k}\chi|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}\lesssim||Mu_{\{r\}}||_{L^{t}(\mathbb{R}^{n})}||\chi||_{F^{s,\tau}_{q}(\mathbb{R}^{n})}

where again 1/τ=1/p1/t1/\tau=1/p-1/t. The Hardy-Littlewood maximal inequality and Lemma 2.11 then imply Mu{r}Lt(n)u{r}Lt(n)rntuLt(n)=rαuFqs,p(n)||Mu_{\{r\}}||_{L^{t}(\mathbb{R}^{n})}\lesssim||u_{\{r\}}||_{L^{t}(\mathbb{R}^{n})}\lesssim r^{-\frac{n}{t}}||u||_{L^{t}(\mathbb{R}^{n})}=r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}, which yields the desired estimate

[k10|2ksPk{(P~kχ)(Pk4u{r})}|q]1qLp(n)rαuFqs,p(n).\left|\left|\left[\sum_{k\geq 10}|2^{ks}P_{k}\left\{\left(\widetilde{P}_{k}\chi\right)\left(P_{k-4}u_{\{r\}}\right)\right\}|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

Obtaining this same inequality in the case s>n/ps>n/p is similar but easier, using the estimate

|Mu{r}|uL(n)uFqs,p(n)=rαuFqs,p(n)|Mu_{\{r\}}|\lesssim||u||_{L^{\infty}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}=r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}

along with the fact χFqs,p(n)\chi\in F^{s,p}_{q}(\mathbb{R}^{n}).

To estimate the low-high term we estimate |Pk+5χ|χL(n)|P_{\leq k+5}\chi|\lesssim||\chi||_{L^{\infty}(\mathbb{R}^{n})} and use Proposition 3.11 part (4) and Lemma 3.13 to conclude

[k10|Pk{2ks(Pk+5χ)(P~ku{r})}|q]1qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}|P_{k}\left\{2^{ks}\left(P_{\leq k+5}\chi\right)\left(\widetilde{P}_{k}u_{\{r\}}\right)\right\}|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})} [k10|2ksP~ku{r}|q]1qLp(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}|2^{ks}\widetilde{P}_{k}u_{\{r\}}|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}
[k7|2ksPku{r}|q]1qLp(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 7}|2^{ks}P_{k}u_{\{r\}}|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}
rsnpuFqs,p(n)\displaystyle\lesssim r^{s-\frac{n}{p}}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}
rαuFqs,p(n).\displaystyle\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

Finally, for the high-high term we observe from Proposition 3.11 part (2) that P~jχ2j\widetilde{P}_{j}\chi\lesssim 2^{-j} is uniformly bounded in L(n)L^{\infty}(\mathbb{R}^{n}) independent of jj and hence Proposition 3.11 part (4) and Lemma 3.13 along with the triangle inequality imply

[k10|2ksPk{kk+4(Pku{r})(P~kχ)}|q]1qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}\left|2^{ks}P_{k}\left\{\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u_{\{r\}})(\widetilde{P}_{k^{\prime}}\chi)\right\}\right|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})} [k10|2kskk+4(Pku{r})(P~kχ)|q]1qLp(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}\left|2^{ks}\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u_{\{r\}})(\widetilde{P}_{k^{\prime}}\chi)\right|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}
a42as[k10|2(k+a)sPk+au{r}|q]1qLp(n)\displaystyle\lesssim\sum_{a\geq 4}2^{-as}\left|\left|\left[\sum_{k\geq 10}\left|2^{(k+a)s}P_{k+a}u_{\{r\}}\right|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}
a42as[k1|2ksPku{r}|q]1qLp(n)\displaystyle\lesssim\sum_{a\geq 4}2^{-as}\left|\left|\left[\sum_{k\geq 1}|2^{ks}P_{k}u_{\{r\}}|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}
rsnpuFqs,p(n).\displaystyle\lesssim r^{s-\frac{n}{p}}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

This concludes the proof unless s=n/ps=n/p, in which case the result follows from interpolation. ∎

The proof of Proposition 3.10 part (1) when s<0s<0 uses a duality argument analogous to that used for the same step in Section 2.2. First, the following generalization of Lemma 2.12 follows from [Tr10] Proposition 3.4.1/1, which is proved similarly to Lemma 3.13.

Lemma 3.15.

Suppose 1<p,q<1<p,q<\infty, and s>0s>0. For all r1r\geq 1 and all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}),

u{r}Fqs,p(n)uFqs,p(n)rsnp.||u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}r^{s-\frac{n}{p}}. (3.16)

The following corollary, which completes the case of part (1), is proved identically to Corollary 2.13 using the duality property of Proposition 3.3.

Corollary 3.16.

Suppose 1<p,q<1<p,q<\infty and s<0s<0. For all 0<r10<r\leq 1 and all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n})

u{r}Fqs,p(n)rσnpuFqs,p(n).||u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim r^{\sigma-\frac{n}{p}}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}.

Proposition 3.10 part (1) has now been established except for the case s=0s=0, which follows from the following easy interpolation argument.

Lemma 3.17.

Suppose 1<p,q<1<p,q<\infty. For all 0<r10<r\leq 1 and all uFq0,p(n)u\in F^{0,p}_{q}(\mathbb{R}^{n}),

u{r}Fq0,p(n)rnpuFq0,p(n).||u_{\{r\}}||_{F^{0,p}_{q}(\mathbb{R}^{n})}\lesssim r^{-\frac{n}{p}}||u||_{F^{0,p}_{q}(\mathbb{R}^{n})}.
Proof.

Pick σ\sigma\in\mathbb{R} such that 0<σ<n/p0<\sigma<n/p. Then for all Schwartz functions uu, Corollary 3.16 and Proposition 3.14 imply

u{r}Fqσ,p(n)\displaystyle||u_{\{r\}}||_{F^{\sigma,p}_{q}(\mathbb{R}^{n})} rσnpuFqσ,p(n)\displaystyle\lesssim r^{\sigma-\frac{n}{p}}||u||_{F^{\sigma,p}_{q}(\mathbb{R}^{n})}
u{r}Fqσ,p(n)\displaystyle||u_{\{r\}}||_{F^{-\sigma,p}_{q}(\mathbb{R}^{n})} rσnpuFqσ,p(n).\displaystyle\lesssim r^{-\sigma-\frac{n}{p}}||u||_{F^{\sigma,p}_{q}(\mathbb{R}^{n})}.

for all 0<r10<r\leq 1. The result follows from interpolation. ∎

With the proof of Proposition 3.10 part (1) now complete we turn to part (2), the improved estimate when u(0)=0u(0)=0. The following estimate is the key to controlling low-frequency interactions near x=0x=0.

Lemma 3.18.

Suppose uC0,α(n)u\in C^{0,\alpha}(\mathbb{R}^{n}) for some α(0,1]\alpha\in(0,1] and that u(0)=0u(0)=0. For all kk\in\mathbb{N} and all 0<r10<r\leq 1

|Pku{r}(x)|uC0,α(n)min(rα(|x|α+1),1).|P_{\leq k}u_{\{r\}}(x)|\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}\min(r^{\alpha}(|x|^{\alpha}+1),1).
Proof.

Proposition 3.11 part (2) implies there is a Schwartz function κ\kappa^{*} such that

Pku{r}(x)=u(rx+r2ky)κ(y)𝑑y.P_{\leq k}u_{\{r\}}(x)=\int u(rx+r2^{-k}y)\kappa^{*}(y)\;dy.

We therefore have the easy estimate Pku{r}L(n)uC0,α(n)||P_{\leq k}u_{\{r\}}||_{L^{\infty}(\mathbb{R}^{n})}\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})} and it suffices to show

|Pku{r}(x)|uC0,α(n)rα(|x|α+1)|P_{\leq k}u_{\{r\}}(x)|\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}r^{\alpha}(|x|^{\alpha}+1)

as well.

Since u(0)=0u(0)=0, on each annulus Aj={y:2j|y|2j+1}A_{j}=\{y:2^{j}\leq|y|\leq 2^{j+1}\} for j0j\in\mathbb{Z}_{\geq 0} we find

|u{r}(x+2ky)|uC0,α(n)rα|x+2ky|αrαuC0,α(n)(|x|α+2αj)|u_{\{r\}}(x+2^{-k}y)|\leq||u||_{C^{0,\alpha}(\mathbb{R}^{n})}r^{\alpha}|x+2^{-k}y|^{\alpha}\lesssim r^{\alpha}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}\left(|x|^{\alpha}+2^{\alpha j}\right)

where the implicit constant is independent of jj. Hence

|Aju(rx+r2ky)κ(y)𝑑y|\displaystyle\left|\int_{A_{j}}u(rx+r2^{-k}y)\kappa^{*}(y)\;dy\right| rαuC0,α(n)(|x|α+2αj)Aj|κ(y)|𝑑y.\displaystyle\lesssim r^{\alpha}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}\left(|x|^{\alpha}+2^{\alpha j}\right)\int_{A_{j}}|\kappa^{*}(y)|\;dy.

Since κ\kappa^{*} is a Schwartz function, Aj|κ(y)|𝑑y2(1+α)j\int_{A_{j}}|\kappa^{*}(y)|\;dy\lesssim 2^{-(1+\alpha)j} and hence

|Aju(rx+r2ky)κ(y)𝑑y|rαuC0,α(n)(|x|α+1)2j.\left|\int_{A_{j}}u(rx+r2^{-k}y)\kappa^{*}(y)\;dy\right|\lesssim r^{\alpha}||u||_{C^{0,\alpha}(\mathbb{R}^{n})}(|x|^{\alpha}+1)2^{-j}. (3.17)

On the other hand,

|B1(0)u(rx+r2ky)κ(y)𝑑y|\displaystyle\left|\int_{B_{1}(0)}u(rx+r2^{-k}y)\kappa^{*}(y)\;dy\right| uC0,α(n)rα(|x|+1)αB1|κ(y)|𝑑y\displaystyle\leq||u||_{C^{0,\alpha}(\mathbb{R}^{n})}r^{\alpha}(|x|+1)^{\alpha}\int_{B_{1}}|\kappa^{*}(y)|\;dy (3.18)
uC0,α(n)rα(|x|α+1).\displaystyle\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}r^{\alpha}(|x|^{\alpha}+1).

The result follows from adding the contributions in inequalities (3.17) and (3.18). ∎

Part (2) of Proposition 3.10 now follows from the following.

Proposition 3.19.

Suppose 1<p,q<1<p,q<\infty and s>n/ps>n/p, and let χ\chi be a Schwartz function. For all uFqs,p(n)u\in F^{s,p}_{q}(\mathbb{R}^{n}) with u(0)=0u(0)=0, and for all 0<r10<r\leq 1,

χu{r}Fqs,p(n)rαuFqs,p(n)||\chi u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})} (3.19)

where

α=min(snp,1)\alpha=\min\left(s-\frac{n}{p},1\right) (3.20)

unless s=n/p+1s=n/p+1, in which case α\alpha can be any (fixed) number less than 1. The implicit constant in (3.19) depends on χ\chi but is independent of uu and rr.

Proof.

We start by assuming snp+1s\neq\frac{n}{p}+1 and define α\alpha according to equation (3.20). Hence Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) embeds in C0,α(n)C^{0,\alpha}(\mathbb{R}^{n}).

As in the proof of Proposition 3.14 we start from the estimate

χu{r}Fqs,p(n)χu{r}Lp(n)+[k10|2ksPk(χu{r})|q]1qLp(n).||\chi u_{\{r\}}||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}+\left|\left|\left[\sum_{k\geq 10}\left|2^{ks}P_{k}(\chi u_{\{r\}})\right|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})}. (3.21)

The second term on the right-hand side is again estimated using the Littlewood-Paley trichotomy (equation (3.15)) and the proof of Proposition 3.14 shows that the low-high and high-high terms of that decomposition satisfy a bound of the form rsnpuFqs,p(n)r^{s-\frac{n}{p}}||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}, regardless of the value of uu at zero. Consequently, we need only estimate the effects of the low-frequency contributions from u{r}u_{\{r\}}, namely the high-low term, as well as χu{r}Lp(n)||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}.

For the low-high term, let vr(x)=min(rα(|x|α+1),1)v_{r}(x)=\min(r^{\alpha}(|x|^{\alpha}+1),1) and hence Lemma 3.18 implies |u{r}|uC0,α(n)vr|u_{\{r\}}|\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}v_{r} for all 0<r10<r\leq 1. Recalling the notation P~k=Pk3k+3\widetilde{P}_{k}=P_{k-3\leq\cdot\leq k+3}, Proposition 3.11 part 4 and Lemma 3.18 imply

[k10|2ksPk{(P~kχ)(Pk4u{r})}|q]1qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}\left|2^{ks}P_{k}\left\{\left(\widetilde{P}_{k}\chi\right)\left(P_{\leq k-4}u_{\{r\}}\right)\right\}\right|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})} [k10|2ks(P~kχ)(Pk4u{r})|q]1qLp(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}\left|2^{ks}\left(\widetilde{P}_{k}\chi\right)\left(P_{\leq k-4}u_{\{r\}}\right)\right|^{q}\right]^{\frac{1}{q}}\right|\right|_{L^{p}(\mathbb{R}^{n})} (3.22)
uC0,α(n)vrηLp(n)\displaystyle\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}||v_{r}\eta||_{L^{p}(\mathbb{R}^{n})}

where η=[k10|2ksP~kχ|q]1q\eta=\left[\sum_{k\geq 10}|2^{ks}\widetilde{P}_{k}\chi|^{q}\right]^{\frac{1}{q}}. Since χ\chi is a Schwartz function, Proposition 3.11 part (1) implies that given M>0M>0 we can estimate

|(Pjχ)(x)|2Mj(1+|x|)M|(P_{j}\chi)(x)|\lesssim\frac{2^{-Mj}}{(1+|x|)^{M}}

with implicit constant independent of jj. As a consequence, |η(x)|1/(1+|x|)M|\eta(x)|\lesssim 1/(1+|x|)^{M}; i.e., η\eta is rapidly decreasing.

To estimate vrηLp(n)||v_{r}\eta||_{L^{p}(\mathbb{R}^{n})} we divide n\mathbb{R}^{n} into three regions: the ball B1(0)B_{1}(0), the annulus A=B1/r(0)B1(0)A=B_{1/r}(0)\setminus B_{1}(0) and the exterior region E=B1/r(0)cE=B_{1/r}(0)^{c}. On the unit ball |vr|rα|v_{r}|\lesssim r^{\alpha} and hence

vrηLp(B1(0))rα.||v_{r}\eta||_{L^{p}(B_{1}(0))}\lesssim r^{\alpha}. (3.23)

Outside the unit ball, |vr(x)|rα(|x|α+1)rα|x|α|v_{r}(x)|\lesssim r^{\alpha}(|x|^{\alpha}+1)\lesssim r^{\alpha}|x|^{\alpha} and |η(x)||x|(n+1)/pα|\eta(x)|\lesssim|x|^{-(n+1)/p-\alpha} So

Aηpvrp\displaystyle\int_{A}\eta^{p}v_{r}^{p} 11/rsn1αp(rs)αpsn1𝑑srpα11/rs2𝑑srpα\displaystyle\lesssim\int_{1}^{1/r}s^{-n-1-\alpha p}(rs)^{\alpha p}s^{n-1}\;ds\leq r^{p\alpha}\int_{1}^{1/r}s^{-2}\;ds\lesssim r^{p\alpha} (3.24)

Finally, for the exterior region we estimate |vr|2|v_{r}|\leq 2 and find

Eηp|vr|p1/rsn1αpsn1𝑑sr1+αprαp.\int_{E}\eta^{p}|v_{r}|^{p}\lesssim\int_{1/r}^{\infty}s^{-n-1-\alpha p}s^{n-1}\;ds\lesssim r^{1+\alpha p}\lesssim r^{\alpha p}. (3.25)

Combining inequalities (3.23), (3.24) and (3.25) we conclude vrηLp(n)rα||v_{r}\eta||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\alpha} which, when combined with inequality (3.22), completes the estimate for the low-high term.

It remains to show that χu{r}Lp(n)uFqs,p(n)rα||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}r^{\alpha}. The argument that showed vrηLp(n)rα||v_{r}\eta||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\alpha} only used the fact that η\eta was rapidly decreasing, and hence we also find vrχLp(n)rα||v_{r}\chi||_{L^{p}(\mathbb{R}^{n})}\lesssim r^{\alpha}. Again using the estimate |u{r}|uC0,α(n)vr|u_{\{r\}}|\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}v_{r} we obtain

χu{r}Lp(n)uC0,α(n)χvrLp(n)uFqs,p(n)rα.||\chi u_{\{r\}}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{C^{0,\alpha}(\mathbb{R}^{n})}||\chi v_{r}||_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p}_{q}(\mathbb{R}^{n})}r^{\alpha}.

This concludes the proof assuming snp+1s\neq\frac{n}{p}+1. For the marginal case, let Fq,0s,p(n)F^{s,p}_{q,0}(\mathbb{R}^{n}) denote the closed subspace of Fqs,p(nF^{s,p}_{q}(\mathbb{R}^{n}) consisting of functions that vanish at zero, assuming of course that s>n/ps>n/p. The proof when s=n/p+1s=n/p+1 follows from interpolation if we can show

[Fq,0s1,p(n),Fq,0s2,p(n)]θ=Fq,0s,p(n)[F^{s_{1},p}_{q,0}(\mathbb{R}^{n}),F^{s_{2},p}_{q,0}(\mathbb{R}^{n})]_{\theta}=F^{s,p}_{q,0}(\mathbb{R}^{n}) (3.26)

assuming that si>n/ps_{i}>n/p for i=1,2i=1,2 and that 0<θ<10<\theta<1 and s=s1(1θ)+s2θs=s_{1}(1-\theta)+s_{2}\theta.

Let ϕ\phi be a compactly supported smooth function with ϕ(0)=1\phi(0)=1. For smooth compactly supported functions uu define Ru=uu(0)ϕRu=u-u(0)\phi. This extends to a continuous retraction Fqs,p(n)Fq,0s,p(n)F^{s,p}_{q}(\mathbb{R}^{n})\to F^{s,p}_{q,0}(\mathbb{R}^{n}) so long as s>n/ps>n/p, with the co-retraction being the natural embedding. The interpolation property (3.26) now follows from, e.g, [Tr76] Lemma 6. ∎

3.3 Interior elliptic estimates

Elliptic operators for operators with coefficients in Triebel-Lizorkin spaces are defined analogously to Definition 2.18. This section contains our primary elliptic regularity result,

which relies on the following generalization of the rescaling estimates of Proposition 2.10. The proof of these estimates is a little involved, so we record the result for now and defer the proof to Section 3.2.

The “regularity at a point” result, Proposition 2.20, admits a straightforward generalization. Note that F~qs,p(Ω)\tilde{F}^{s,p}_{q}(\Omega) denotes the closure of 𝒟(Ω)\mathcal{D}(\Omega) in Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}).

Proposition 3.20.

Let Ωn\Omega\subset\mathbb{R}^{n} be a bounded open set. Suppose 1<p,q<1<p,q<\infty, ss\in\mathbb{R}, that d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with d0dd_{0}\leq d, that s>n/ps>n/p, and that the conditions of Lemma 3.8 are are satisfied and hence 𝒮d0d(Fqs,p)\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q})\neq\emptyset. Suppose additionally that L=|α|daααL=\sum_{|\alpha|\leq d}a^{\alpha}\partial_{\alpha} is a differential operator of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) and that for some xΩx\in\Omega that

L0=|α|=maα(x)αL_{0}=\sum_{|\alpha|=m}a^{\alpha}(x)\partial_{\alpha}

is elliptic. Given (σ,a,b)𝒮d0d(Fqs,p)(\sigma,a,b)\in\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q}) there exists r>0r>0 such that Br(x)ΩB_{r}(x)\subset\Omega and such that if

u\displaystyle u F~qds,p(Br(x))and\displaystyle\in\widetilde{F}^{d-s,p^{*}}_{q^{*}}(B_{r}(x))\quad\text{and}
Lu\displaystyle Lu Fbσd,a(Ω)\displaystyle\in F^{\sigma-d,a}_{b}(\Omega)

then uFbσ,a(Ω)u\in F^{\sigma,a}_{b}(\Omega) and

uFbσ,a(Ω)LuFbσd,a(Ω)+uFqds1,p(Ω)||u||_{F^{\sigma,a}_{b}(\Omega)}\lesssim||Lu||_{F^{\sigma-d,a}_{b}(\Omega)}+||u||_{F^{d-s-1,p^{*}}_{q^{*}}(\Omega)} (3.27)

with implicit constant independent of uu but depending on all other parameters.

Proof.

The proof is essentially the same as the proof of Proposition 2.20, with the following notes:

  1. 1.

    The proof of the natural generalization of Lemma 2.19 regarding the parametrix goes through now using [Tr10] Theorems 2.3.7 and 2.3.8 in place of the Mikhlin multiplier theorem to establish the desired continuity properties.

  2. 2.

    We replace the use of the rescaling result Proposition 2.17 with Proposition 3.10, which results in a little simplification because the replacement result is sharper.

  3. 3.

    Fine parameters need tracking, but the changes are straightforward. When the Lebesgue parameter is pp the fine parameter is qq, when the Lebesgue parameter is pp^{*} the fine parameter is qq^{*} and for the intermediate spaces the Lebesgue parameter is aa and the fine parameter is bb.

The proof of the main interior regularity result for Bessel potential spaces, Theorem 2.21, carries over to the Triebel-Lizorkin setting. The bulk of the new work consists of tracking the fine parameter.

Theorem 3.21.

Let Ω\Omega be a bounded open set in n\mathbb{R}^{n} and suppose s,p,q,d0s,p,q,d_{0} and dd are parameters as in Lemma 3.8 such that s>n/ps>n/p and such that the conditions of Lemma 3.8 are satisfied so 𝒮d0d(Fqs,p)\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q})\neq\emptyset. Suppose LL is of class d0d(Fqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(F^{s,p}_{q};\Omega) and is elliptic on Ω\Omega. If uFds,p,q(Ω)u\in F^{d-s,p^{*},q^{*}}(\Omega) and LuFbσd,a(Ω)Lu\in F^{\sigma-d,a}_{b}(\Omega) for some (σ,a,b)𝒮d0d(Fbs,a)(\sigma,a,b)\in\mathcal{S}_{d_{0}}^{d}(F^{s,a}_{b}) then for any open set UU with U¯Ω\overline{U}\subseteq\Omega, uFbσ,a(U)u\in F^{\sigma,a}_{b}(U) and

uFbσ,a(U)LuFbσd,a(Ω)+uFqds1,p(Ω).||u||_{F^{\sigma,a}_{b}(U)}\lesssim||Lu||_{F^{\sigma-d,a}_{b}(\Omega)}+||u||_{F^{d-s-1,p^{*}}_{q^{*}}(\Omega)}. (3.28)
Proof.

The proof follows that of Theorem 2.21 with the following changes needed to manage the fine parameter.

A bootstrap step starts with knowing uFbAσA,aA(ΩA)u\in F^{\sigma_{A},a_{A}}_{b_{A}}(\Omega_{A}) for some open set ΩA\Omega_{A} containing U¯\overline{U} and we wish to improve these parameters to (σB,aB,bB)(\sigma_{B},a_{B},b_{B}) while shrinking ΩA\Omega_{A}. We assume:

  1. H1:

    σBσ\sigma_{B}\leq\sigma,

  2. H2:

    1qσn1qBσBn\displaystyle\frac{1}{q}-\frac{\sigma}{n}\leq\frac{1}{q_{B}}-\frac{\sigma_{B}}{n},

  3. H3:

    σBσA+1\sigma_{B}\leq\sigma_{A}+1,

  4. H4:

    1qAσA+1n1qBσBn\displaystyle\frac{1}{q_{A}}-\frac{\sigma_{A}+1}{n}\leq\frac{1}{q_{B}}-\frac{\sigma_{B}}{n},

  5. H5:

    if σB=σ\sigma_{B}=\sigma then bBbb_{B}\geq b,

  6. H6:

    if σB=σA+1\sigma_{B}=\sigma_{A}+1 then bBbAb_{B}\geq b_{A}.

Hypotheses (H1:)–(H4:) are exactly those of Theorem (2.21) expressed in terms of the notation of the current result. Condition (H5:) is needed additionally to ensure Fbσ,a(Ω)FbBσB,aB(Ω)F^{\sigma,a}_{b}(\Omega)\subset F^{\sigma_{B},a_{B}}_{b_{B}}(\Omega). Similarly (H6:) is the extra hypothesis needed to ensure FbAσA+1,aA(ΩA)FbBσB,aB(ΩA)F^{\sigma_{A}+1,a_{A}}_{b_{A}}(\Omega_{A})\subset F^{\sigma_{B},a_{B}}_{b_{B}}(\Omega_{A}). If we additionally assume that (σA,aA,bA)(\sigma_{A},a_{A},b_{A}) satisfies the conditions of Lemma 3.9 so that its commutator estimate applies, the bootstrap step argument of Theorem 2.21 then goes through with obvious changes and we obtain an open set ΩB\Omega_{B} with U¯ΩBΩA\overline{U}\subset\Omega_{B}\subset\Omega_{A} such that uFbBσB,aB(ΩB)u\in F^{\sigma_{B},a_{B}}_{b_{B}}(\Omega_{B}) along with the estimate

uFbBσB,aB(ΩB)LuFbσd,a(Ω)+uFbAσA,aA(ΩA).||u||_{F^{\sigma_{B},a_{B}}_{b_{B}}(\Omega_{B})}\lesssim||Lu||_{F^{\sigma-d,a}_{b}(\Omega)}+||u||_{F^{\sigma_{A},a_{A}}_{b_{A}}(\Omega_{A})}.

Now consider the bootstrap in the case d0=0d_{0}=0 where we pass through a sequence of regularity parameters (σk,ak,bk)(\sigma_{k},a_{k},b_{k}) starting from (σ,a0,b0)=(ds1,p,q)(\sigma_{,}a_{0},b_{0})=(d-s-1,p^{*},q^{*}); we need not track the shrinking open sets. Focusing for the moment only on the parameters σk\sigma_{k} and aka_{k}, the bootstrap consists of three distinct stages:

  1. 1.

    The initial step arriving at (σ1,a1,b1)=(ds,p,q)(\sigma_{1},a_{1},b_{1})=(d-s,p^{*},q^{*}).

  2. 2.

    A low regularity stage that either

    • preserves σk=ds\sigma_{k}=d-s while lowering 1/ak1/a_{k} by at most 1/n1/n per step, or

    • preserves the Lebesgue regularity at the low value 1/p(ds)/n1/p^{*}-(d-s)/n while raising σk\sigma_{k} by at most 1 per step.

    At the end of the low regularity stage σkσ\sigma_{k}\leq\sigma and ak=aa_{k}=a.

  3. 3.

    A derivative improving stage where ak=aa_{k}=a is fixed and σk\sigma_{k} is raised by at most 1 per step until arriving at its final value.

We now discuss the sequence of fine parameters bkb_{k}, which will in fact be set to qq^{*} throughout the sequence just described except at the last step, where it is set to its desired value.

  1. 1.

    The initial stage starts at (σ0,a0,b0)=(ds1,p,q)(\sigma_{0},a_{0},b_{0})=(d-s-1,p^{*},q^{*}) and wish to improve to (d+s,p,q)(-d+s,p^{*},q^{*}). Because (σ0+1,a0,b0)𝒮0d(Fqs,p)(\sigma_{0}+1,a_{0},b_{0})\in\mathcal{S}^{d}_{0}(F^{s,p}_{q}), the commutator result Lemma 3.9 applies. Hypotheses (H1:)–(H4:) hold for the same reasons as in Theorem 2.21. At this step, hypothesis (H5:) reads “if dsd-s = σ\sigma then bqb\leq q^{*}”, which is satisfied by the definition of 𝒮0d(Fqs,p)\mathcal{S}^{d}_{0}(F^{s,p}_{q}). Finally, hypothesis (H8:) holds trivially. Thus this first bootstrap step is justified.

  2. 2.

    During the low regularity stage we again preserve bk=qb_{k}=q^{*} at every step. This is justified as follows for the two possibilities:

    • Consider a step where σk=ds\sigma_{k}=d-s and where 1/ak1/a_{k} is lowered by at most 1/n1/n. Conditions (H1:)–(H4:) are met for the same reasons as in Theorem (2.21) and condition (H8:) is met trivially. Condition (H7:) is a restriction only if σ=ds\sigma=d-s, in which case it requires bqb\leq q^{*}; this condition is met by the definition of 𝒮0d(Fqs,p)\mathcal{S}^{d}_{0}(F^{s,p}_{q}). We also need to ensure that the commutator estimate can be employed, which can be done by showing that (σk,ak,bk)=(ds,ak,q)𝒮0d(Fs,p)(\sigma_{k},a_{k},b_{k})=(d-s,a_{k},q^{*})\in\mathcal{S}^{d}_{0}(F^{s,p}). In fact, the definition of 𝒮0d(Fqs,p)\mathcal{S}^{d}_{0}(F^{s,p}_{q}) permits the fine parameter to be qq^{*} along the line σ=ds\sigma=d-s, even in the marginal case s=dss=d-s where the region S0d(Fqs,p)S^{d}_{0}(F^{s,p}_{q}) collapses to a line segment. The remainder of the justification of the commutator estimate is the same as in Theorem 2.21.

    • Consider a step where the Lebesgue regularity is preserved at the low value 1/p(ds)/n1/p^{*}-(d-s)/n. and where σk\sigma_{k} is raised by at most 1; without loss of generality we can assume we raise σk\sigma_{k} by less than 1. Hypotheses (H1:)–(H4:) are met for the same reasons as in Theorem 2.21. Condition (H6:) is always met because of our additional restriction on the step size. Condition (H7:) only comes into play if we are raising σk\sigma_{k} to its terminal value, in which case we also set the fine parameter to its terminal value bb (and stop the bootstrap). We need to ensure that each non-terminal (σk,ak,bk)(\sigma_{k},a_{k},b_{k}) lies in S0d(Fqs,p)S^{d}_{0}(F^{s,p}_{q}) in order to apply the commutator estimate, but this is ensured because a fine parameter value of qq^{*} is always permitted along this line of Lebesgue regularity.

  3. 3.

    On a step where we raise σk\sigma_{k} and leave aka_{k} fixed at its terminal value we can again assume we raise σk\sigma_{k} by less than 1. Throughout this stage we again leave bkb_{k} fixed at qq^{*} except at the very last step. There are no fine parameter restrictions that arise to allow the commutator estimate to apply, and hypotheses (H1:)–(H4:) hold for the same reasons as in Theorem (2.21). Hypothesis (H6:) is always met because of our restriction on the step size and hypothesis (H7:) only comes into play at the final step, where we meet it by setting bkb_{k} to its terminal value bb.

At this point of the procedure we have arrived at the desired parameters (σ,a,b)(\sigma,a,b), except in the marginal case σ=ds\sigma=d-s in which case we are at (ds,a,q)(d-s,a,q^{*}). Since σ=ds\sigma=d-s, the definition of 𝒮0d(Fqs,p)\mathcal{S}^{d}_{0}(F^{s,p}_{q}) implies bqb\leq q^{*} and we can use this inequality to confirm that conditions (H1:)–(H8:) hold if we perform one more bootstrap step to improve the fine parameter to its desired value bb; note that the commutator result Lemma (3.9) is available for this bootstrap step since (ds,a,q)𝒮0d(Fqs,p)(d-s,a,q^{*})\in\mathcal{S}^{d}_{0}(F^{s,p}_{q}).

Now consider the case where d0=1d_{0}=1. As in Theorem 2.21 it suffices to consider assume (σ,a,b)𝒮1d(Fqs,p)(\sigma,a,b)\in\mathcal{S}^{d}_{1}(F^{s,p}_{q}) but (σ,a,b)𝒮0d(Fqs,p)(\sigma,a,b)\not\in\mathcal{S}^{d}_{0}(F^{s,p}_{q}). Starting from (σ,a,b)(\sigma,a,b) we define (σ,a,b)𝒮0d(Fqs,p)(\sigma^{\prime},a^{\prime},b^{\prime})\in\mathcal{S}^{d}_{0}(F^{s,p}_{q}) by setting b=max(q,b)b^{\prime}=\max(q,b) and then applying the following rules:

  1. 1.

    If σ<s\sigma<s, leave σ=σ\sigma^{\prime}=\sigma fixed but raise 1/a1/a by at most 1/n1/n to 1/a1/a^{\prime} such that 1/aσ/n=1/ps/n1/a^{\prime}-\sigma/n=1/p-s/n.

  2. 2.

    If σs\sigma\geq s and 1/ps/n1/aσ/n1/p-s/n\leq 1/a-\sigma/n, lower σ\sigma by at most 1 to ss while simultaneously lowering 1/a1/a by at most 1/n1/n so that the Lebesgue regularity 1/aσ/n=1/aσ/n1/a-\sigma/n=1/a^{\prime}-\sigma^{\prime}/n is unchanged.

  3. 3.

    Otherwise, (σ,a)(\sigma,a) satisfies sσσ+1s\leq\sigma\leq\sigma+1 and

    1ps+1n1aσn<1psn\frac{1}{p}-\frac{s+1}{n}\leq\frac{1}{a}-\frac{\sigma}{n}<\frac{1}{p}-\frac{s}{n}

    and we set (σ,a)=(s,p)(\sigma^{\prime},a^{\prime})=(s,p).

Note that we set b=max(q,b)b^{\prime}=\max(q,b) to satisfy the fine parameter restriction on 𝒮0d(Fqs,p)\mathcal{S}^{d}_{0}(F^{s,p}_{q}) when σ=s\sigma^{\prime}=s. In all of these three cases, Fbσ,a(Ω)F^{\sigma,a}_{b}(\Omega) is contained in Fbσ,a(Ω)F^{\sigma^{\prime},a^{\prime}}_{b^{\prime}}(\Omega) and we can therefore apply the d0=0d_{0}=0 bootstrap to arrive at (σ,a,b)(\sigma^{\prime},a^{\prime},b^{\prime}). Since (σ,a,b)𝒮0d(Fqs,p)(\sigma^{\prime},a^{\prime},b^{\prime})\in\mathcal{S}_{0}^{d}(F^{s,p}_{q}), a computation shows that (σ+1,a,b)𝒮1d(Fqs,p)(\sigma^{\prime}+1,a^{\prime},b^{\prime})\in\mathcal{S}_{1}^{d}(F^{s,p}_{q}) and hence the commutator result from Lemma 3.9 can be applied starting from (σ,a,b)(\sigma^{\prime},a^{\prime},b^{\prime}). Hence we can apply one round of the bootstrap starting from (σA,aA,bA)=(σ,a,b)(\sigma_{A},a_{A},b_{A})=(\sigma^{\prime},a^{\prime},b^{\prime}) to arrive at (σB,aB,bB)=(σ,a,b)(\sigma_{B},a_{B},b_{B})=(\sigma,a,b) so long as hypotheses (H1:)–(H6:) are met. The first four are satisfied for the same reasons as in Theorem 2.21 and (H5:) is satisfied trivially since bB=bb_{B}=b. Finally, (H6:) is a restriction only if σB=σA+1\sigma_{B}=\sigma_{A}+1, in which case σ=s+1\sigma=s+1. But then, since (σ,a,b)𝒮1d(Fqs,p)(\sigma,a,b)\in\mathcal{S}^{d}_{1}(F^{s,p}_{q}), we have assumed qbq\leq b and hence b=max(q,b)=bb^{\prime}=\max(q,b)=b. So we are not changing the fine parameter and condition (H6:) is met. This completes the proof when d0=1d_{0}=1, and the result for higher values of d0d_{0} follows from iterating this argument. ∎

4 Coefficients in Sobolev-Slobodeckij Spaces

Sobolev-Slobodeckij spaces of functions on an open set Ωn\Omega\subset\mathbb{R}^{n} are special cases of Triebel-Lizorkin spaces as follows:

Ws,p(Ω)={F2s,p(Ω)sFps,p(Ω)s.W^{s,p}(\Omega)=\begin{cases}F^{s,p}_{2}(\Omega)&s\in\mathbb{Z}\\ F^{s,p}_{p}(\Omega)&s\not\in\mathbb{Z}.\end{cases}

Hence the results of Section 3 specialize to statements about Sobolev-Slobodeckij spaces, which we briefly record here.

Definition 4.1.

Suppose d0,d0d_{0},d\in\mathbb{Z}_{\geq 0} with d0dd_{0}\leq d. A differential operator on an open set Ωn\Omega\subseteq\mathbb{R}^{n} of the form

d0|α|daαα\sum_{d_{0}\leq|\alpha|\leq d}a^{\alpha}\partial_{\alpha}

is of class d0d(Ws,p;Ω)\mathcal{L}_{d_{0}}^{d}(W^{s,p};\Omega) for some ss\in\mathbb{R} and 1<p<1<p<\infty if each

aαWs+|α|d,p(Ω).a^{\alpha}\in W^{s+|\alpha|-d,p}(\Omega).
Theorem 4.2.

Suppose 1<p1,p2,p<1<p_{1},p_{2},p<\infty and s1,s2,ss_{1},s_{2},s\in\mathbb{R}. Let r1,r2r_{1},r_{2} and rr be defined by

1r1=1p1s1n,1r2=1p2s2n,and1r=1psn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s_{1}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s_{2}}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Ws1,p1(Ω)×Ws2,p2(Ω)Ws,p(Ω)W^{s_{1},p_{1}}(\Omega)\times W^{s_{2},p_{2}}(\Omega)\rightarrow W^{s,p}(\Omega) so long as

s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (4.1)
min(s1,s2)σ\displaystyle\min({s_{1},s_{2}})\geq\sigma (4.2)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (4.3)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (4.4)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (4.5)

with the the following caveats:

  • Inequality (4.5) is strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

  • If s=sis=s_{i}\not\in\mathbb{Z}, then p=pip=p_{i}, i=1,2i=1,2.

  • If s1,s2s_{1},s_{2}\not\in\mathbb{Z} and s1+s2=0s_{1}+s_{2}=0 then 1p1+1p2=1\frac{1}{p_{1}}+\frac{1}{p_{2}}=1.

Proposition 4.3.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p,q<1<p,q<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. An operator of class d0d(Ws,p;Ω)\mathcal{L}_{d_{0}}^{d}(W^{s,p};\Omega) extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Wσ,q(Ω)Wσd,q(Ω)W^{\sigma,q}(\Omega)\mapsto W^{\sigma-d,q}(\Omega) so long as

σ\displaystyle\sigma [ds,s+d0]\displaystyle\in[d-s,s+d_{0}] (4.6)
1qσn\displaystyle\frac{1}{q}-\frac{\sigma}{n} [1ps+d0n,1pdsn]\displaystyle\in\left[\frac{1}{p}-\frac{s+d_{0}}{n},\frac{1}{p^{*}}-\frac{d-s}{n}\right]

and so long as:

  • If ss\not\in\mathbb{Z} and σ=s+d0\sigma=s+d_{0} then q=pq=p.

  • If ss\not\in\mathbb{Z} and σ=ds\sigma=d-s then q=pq=p^{*}.

Moreover, operators in d0d(Ws,p;Ω)\mathcal{L}_{d_{0}}^{d}(W^{s,p};\Omega) depend continuously on their coefficients aαWs,p+|α|d(Ω)a^{\alpha}\in W^{s,p+|\alpha|-d}(\Omega).

Definition 4.4.

Suppose 1<p<1<p<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. The compatible Sobolev indices for an operator of class d0d(Ws,p;Ω)\mathcal{L}_{d_{0}}^{d}(W^{s,p};\Omega) is the set

𝒮d0d(Ws,p)×(1,)\mathcal{S}_{d_{0}}^{d}(W^{s,p})\subseteq\mathbb{R}\times(1,\infty)

of tuples (σ,q)(\sigma,q) satisfying (4.6) along with the additional conditions at the end of Proposition 4.3 when σ=s+d0\sigma=s+d_{0} or σ=ds\sigma=d-s.

Lemma 4.5.

Suppose 1<p<1<p<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Then 𝒮d0d(Ws,p)\mathcal{S}_{d_{0}}^{d}(W^{s,p}) is nonempty if and only if

s\displaystyle s (dd0)/2, and\displaystyle\geq(d-d_{0})/2\text{, and} (4.7)
1psn\displaystyle\frac{1}{p}-\frac{s}{n} 12(dd0)/2n\displaystyle\leq\frac{1}{2}-\frac{(d-d_{0})/2}{n} (4.8)

with the additional condition when ss\not\in\mathbb{Z} that p=2p=2 in the marginal case s=(dd0)/2s=(d-d_{0})/2. If Sd0d(Ws,p)S_{d_{0}}^{d}(W^{s,p}) is non-empty then it contains (s+d0,p)(s+d_{0},p), (ds,p)(d-s,p^{*}), and ((d+d0)/2,2)((d+d_{0})/2,2). Moreover, if (σ,q)𝒮d0d(Ws,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(W^{s,p}), then we have the continuous inclusions of Fréchet spaces

Wlocs+d0,p(n)Wlocσ,q(n)Wlocds,p(n).W^{s+d_{0},p}_{\rm loc}(\mathbb{R}^{n})\subseteq W^{\sigma,q}_{\rm loc}(\mathbb{R}^{n})\subseteq W^{d-s,p^{*}}_{\rm loc}(\mathbb{R}^{n}). (4.9)
Theorem 4.6.

Let Ω\Omega be a bounded open set in n\mathbb{R}^{n} and suppose s,p,d0s,p,d_{0} and dd are parameters as in Lemma 4.5 such that s>n/ps>n/p and such that the conditions of Lemma 4.5 are satisfied so 𝒮d0d(Ws,p)\mathcal{S}_{d_{0}}^{d}(W^{s,p})\neq\emptyset. Suppose LL is of class d0d(Ws,p;Ω)\mathcal{L}_{d_{0}}^{d}(W^{s,p};\Omega) and is elliptic on Ω\Omega. If uWds,p(Ω)u\in W^{d-s,p^{*}}(\Omega) and LuWσd,q(Ω)Lu\in W^{\sigma-d,q}(\Omega) for some (σ,q)𝒮d0d(Ws,p)(\sigma,q)\in\mathcal{S}_{d_{0}}^{d}(W^{s,p}) then for any open set UU with U¯Ω\overline{U}\subseteq\Omega, uWσ,q(U)u\in W^{\sigma,q}(U) and

uWσ,q(U)LuWσd,q(Ω)+uWds1,p(Ω).||u||_{W^{\sigma,q}(U)}\lesssim||Lu||_{W^{\sigma-d,q}(\Omega)}+||u||_{W^{d-s-1,p^{*}}(\Omega)}. (4.10)

5 Coefficients in Besov Spaces

We establish results for operators with coefficients in Besov spaces, mirroring the developments of the preceding sections. Recall from Section 3 the Littlewood-Paley projectors PkP_{k} and PkP_{\leq k}. Let 1<p,q<1<p,q<\infty and ss\in\mathbb{R}. A tempered distribution uu belongs to the Besov space Bqs,p(n)B^{s,p}_{q}(\mathbb{R}^{n}) if

uBqs,p(n)=P0uLp(n)+(k12sqkPkuLp(n)q)1q<.||u||_{B^{s,p}_{q}(\mathbb{R}^{n})}=\left\|P_{\leq 0}u\right\|_{L^{p}(\mathbb{R}^{n})}+\left(\sum_{k\geq 1}2^{sqk}\|P_{k}u\|_{L^{p}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}}<\infty. (5.1)

On an open set Ωn\Omega\subseteq\mathbb{R}^{n}, the space Bqs,p(Ω)B^{s,p}_{q}(\Omega) consists of the restrictions of distributions in Bqs,p(n)B^{s,p}_{q}(\mathbb{R}^{n}) to Ω\Omega and is given the quotient norm.

Embedding properties of Besov spaces can be found in [Tr10] Proposition 2.3.2/2, and Theorems 2.7.1 and 3.3.1 along with [Tr78] Theorems 2.8.1 and 4.6.1; we summarize these in the following proposition. The important distinction here from Triebel-Lizorkin spaces is that when performing Sobolev embedding, the fine parameter cannot be improved if the Lebesgue regularity 1/ps/n1/p-s/n stays fixed. This phenomenon is the source of many of the additional fine parameter restrictions in this section beyond those of Section 3.

Proposition 5.1.

Assume 1<p,p1,p2,q,q1,q2<1<p,p_{1},p_{2},q,q_{1},q_{2}<\infty and s,s1,s2s,s_{1},s_{2}\in\mathbb{R}, and suppose Ω\Omega is a bounded open set in n\mathbb{R}^{n}.

  1. 1.

    If s1>s2s_{1}>s_{2} then Bq1s1,p(n)Bq2s2,p(n)B^{s_{1},p}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow B^{s_{2},p}_{q_{2}}(\mathbb{R}^{n}) and Bq1s1,p(Ω)Bq2s2,p(Ω)B^{s_{1},p}_{q_{1}}(\Omega)\hookrightarrow B^{s_{2},p}_{q_{2}}(\Omega).

  2. 2.

    If q1q2q_{1}\leq q_{2} then Bq1s,p(n)Bq2s,p(n)B^{s,p}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow B^{s,p}_{q_{2}}(\mathbb{R}^{n}) and Bq1s,p(Ω)Bq2s,p(Ω)B^{s,p}_{q_{1}}(\Omega)\hookrightarrow B^{s,p}_{q_{2}}(\Omega).

  3. 3.

    If p1p2p_{1}\geq p_{2} then Bqs,p1(Ω)Bqs,p2(Ω)B^{s,p_{1}}_{q}(\Omega)\hookrightarrow B^{s,p_{2}}_{q}(\Omega).

  4. 4.

    If s1>s2s_{1}>s_{2} and 1p1s1n=1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}=\frac{1}{p_{2}}-\frac{s_{2}}{n} then Bqs1,p1(n)Bqs2,p2(n)B^{s_{1},p_{1}}_{q}(\mathbb{R}^{n})\hookrightarrow B^{s_{2},p_{2}}_{q}(\mathbb{R}^{n}) and Bqs1,p1(Ω)Bqs2,p2(Ω)B^{s_{1},p_{1}}_{q}(\Omega)\hookrightarrow B^{s_{2},p_{2}}_{q}(\Omega).

  5. 5.

    If s1>s2s_{1}>s_{2} and 1p1s1n<1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}<\frac{1}{p_{2}}-\frac{s_{2}}{n} then Bq1s1,p1(Ω)Bq2s2,p2(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\hookrightarrow B^{s_{2},p_{2}}_{q_{2}}(\Omega).

  6. 6.

    If 0<α<10<\alpha<1 then Bqnp+α,p(n)C0,α(n)B^{\frac{n}{p}+\alpha,p}_{q}(\mathbb{R}^{n})\hookrightarrow C^{0,\alpha}(\mathbb{R}^{n}) and Bqnp+α,p(Ω)C0,α(Ω)B^{\frac{n}{p}+\alpha,p}_{q}(\Omega)\hookrightarrow C^{0,\alpha}(\Omega).

As noted previously following Proposition 3.1, although [Tr10] and [Tr78] only prove the embedding results above for bounded domains when the boundary is smooth, the result for arbitrary bounded open sets is an easy corollary.

Complex interpolation of Besov spaces ([Tr10] Theorems 2.4.7 and 3.3.6) follows the same pattern as for Triebel-Lizorkin spaces.

Proposition 5.2.

Assume 1<p1,p2,q1,q2<1<p_{1},p_{2},q_{1},q_{2}<\infty and s1,s2s_{1},s_{2}\in\mathbb{R}, and suppose Ω\Omega is either n\mathbb{R}^{n} or is a bounded CC^{\infty} domain in n\mathbb{R}^{n}. For 0<θ<10<\theta<1,

[Bq1s1,p1(Ω),Bq2s2,p2(Ω)]θ=Bqs,p(Ω)[B^{s_{1},p_{1}}_{q_{1}}(\Omega),B^{s_{2},p_{2}}_{q_{2}}(\Omega)]_{\theta}=B^{s,p}_{q}(\Omega)

where

s=(1θ)s1+θs2,1p=(1θ)1p1+θ1p2,(1θ)1q1+θ1q2.s=(1-\theta)s_{1}+\theta s_{2},\quad\frac{1}{p}=(1-\theta)\frac{1}{p_{1}}+\theta\frac{1}{p_{2}},\quad(1-\theta)\frac{1}{q_{1}}+\theta\frac{1}{q_{2}}.

Duality for Besov spaces of functions on n\mathbb{R}^{n} is analogous to that for Triebel-Lizorkin spaces; see [Tr10] Theorem 2.11.2.

Proposition 5.3.

Assume 1<p,q<1<p,q<\infty and ss\in\mathbb{R}. The bilinear map 𝒟(n)×𝒟(n)\mathcal{D}(\mathbb{R}^{n})\times\mathcal{D}(\mathbb{R}^{n})\to\mathbb{R} given by f,g:=Ωfg\left<f,g\right>:=\int_{\Omega}fg extends to a continuous bilinear map Bqs,p(n)×Bqs,p(n)B^{s,p}_{q}(\mathbb{R}^{n})\times B^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n})\to\mathbb{R}. Moreover, ff,f\mapsto\left<f,\cdot\right> is a continuous identification of Bqs,p(n)B^{s,p}_{q}(\mathbb{R}^{n}) with (Bqs,p(n))(B^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n}))^{*}.

5.1 Mapping properties

As for the other function spaces, mapping properties of differential operators depend on the rules for multiplication in Besov spaces. We recall the relevant result here, and give a self-contained proof in Appendix B.

Theorem 5.4.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p1,p2,p,q1,q2,q<1<p_{1},p_{2},p,q_{1},q_{2},q<\infty and s1,s2,ss_{1},s_{2},s\in\mathbb{R}. Let r1,r2r_{1},r_{2} and rr be defined by

1r1=1p1s1n,1r2=1p2s2n,and1r=1psn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s_{1}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s_{2}}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) so long as

min(s1,s2)\displaystyle\min(s_{1},s_{2}) s\displaystyle\geq s (5.2)
s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (5.3)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (5.4)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (5.5)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (5.6)

with the following caveats:

  • If s=sis=s_{i} or 1/r=1/ri1/r=1/r_{i} for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 or 1/r1+1/r2=11/r_{1}+1/r_{2}=1 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1.

  • If equality holds in (5.6) then

    • \circ

      min(1/r1,1/r2,11/r)0\min(1/r_{1},1/r_{2},1-1/r)\neq 0.

    • \circ

      If min(s1,s2)0\min(s_{1},s_{2})\leq 0 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1 and 1/q1/r1/q\leq 1/r.

    • \circ

      If sis_{i} has the same sign as min(s1,s2)\min(s_{1},s_{2}) for some ii then 1/q1/qi1/q\leq 1/q_{i}.

    • \circ

      If sis_{i} has the same sign as max(s1,s2)\max(s_{1},s_{2}) for some ii then 1/ri1/qi1/r_{i}\leq 1/q_{i}.

    • \circ

      If s=0s=0 then 1/q1/qi1/q\leq 1/q_{i} and 1/ri1/qi1/r_{i}\leq 1/q_{i} for both i=1,2i=1,2.

  • If s1=s2=s=0s_{1}=s_{2}=s=0 then 1qmin(12,1r)\displaystyle\frac{1}{q}\leq\min\left(\frac{1}{2},\frac{1}{r}\right) and max(12,1ri)1qi\displaystyle\max\left(\frac{1}{2},\frac{1}{r_{i}}\right)\leq\frac{1}{q_{i}} for both i=1,2i=1,2.

The list of caveats above is extensive in comparison with Theorem 3.5, but the bulk of these occur when inequality (5.6) is not strict, and we do not encounter this edge case in our applications.

Operators with coefficients in Besov spaces are defined analogously to those of Definition 2.4.

Definition 5.5.

Suppose d0,d0d_{0},d\in\mathbb{Z}_{\geq 0} with d0dd_{0}\leq d. A differential operator on an open set Ωn\Omega\subseteq\mathbb{R}^{n} of the form

d0|α|daαα\sum_{d_{0}\leq|\alpha|\leq d}a^{\alpha}\partial_{\alpha}

is of class d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega) for some ss\in\mathbb{R} and 1<p,q<1<p,q<\infty if each

aαBqs+|α|d,p(Ω).a^{\alpha}\in B^{s+|\alpha|-d,p}_{q}(\Omega).

Theorem 5.4 implies the following. Notably, in the computations that lead to this result, the caveats of Theorem 5.4 concerning the edge cases 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r and s1=s2=s=0s_{1}=s_{2}=s=0 never occur.

Proposition 5.6.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p,q,a,b<1<p,q,a,b<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. An operator of class d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega) extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Bbσ,a(Ω)Bbσd,a(Ω)B^{\sigma,a}_{b}(\Omega)\mapsto B^{\sigma-d,a}_{b}(\Omega) so long as

σ\displaystyle\sigma [ds,s+d0]\displaystyle\in[d-s,s+d_{0}] (5.7)
1aσn\displaystyle\frac{1}{a}-\frac{\sigma}{n} [1ps+d0n,1pdsn]\displaystyle\in\left[\frac{1}{p}-\frac{s+d_{0}}{n},\frac{1}{p^{*}}-\frac{d-s}{n}\right]

and so long as:

  • If σ=s+d0\sigma=s+d_{0} or 1aσn=1ps+d0n\frac{1}{a}-\frac{\sigma}{n}=\frac{1}{p}-\frac{s+d_{0}}{n} then 1b1q\frac{1}{b}\leq\frac{1}{q}.

  • If σ=ds\sigma=d-s or 1aσn=1pdsn\frac{1}{a}-\frac{\sigma}{n}=\frac{1}{p^{*}}-\frac{d-s}{n} then 1b1q\frac{1}{b}\geq\frac{1}{q^{*}}.

Moreover, operators in d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega) depend continuously on their coefficients aαBqsd+|α|,p(Ω)a^{\alpha}\in B^{s-d+|\alpha|,p}_{q}(\Omega).

We have the following generalization of Definition 2.7.

Definition 5.7.

Suppose 1<p,q<)1<p,q<\infty), ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. The compatible Sobolev indices for an operator of class d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega) is the set

𝒮d0d(Bqs,p)×(1,)×(1,)\mathcal{S}_{d_{0}}^{d}(B^{s,p}_{q})\subseteq\mathbb{R}\times(1,\infty)\times(1,\infty)

of tuples (σ,a,b)(\sigma,a,b) satisfying (5.7) along with the additional conditions at the end of Proposition 5.6 in any of the boundary cases σ=s+d0\sigma=s+d_{0}, σ=ds\sigma=d-s, 1/aσ/n=1/ps/n1/a-\sigma/n=1/p-s/n or 1/aσ/n=1/p(ds)/n1/a-\sigma/n=1/p^{*}-(d-s)/n.

The analogue of Lemma 2.8 in the Besov context is the following.

Lemma 5.8.

Suppose 1<p,q<1<p,q<\infty, ss\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Then 𝒮d0d(Bqs,p)\mathcal{S}_{d_{0}}^{d}(B^{s,p}_{q}) is nonempty if and only if

s\displaystyle s (dd0)/2, and\displaystyle\geq(d-d_{0})/2\text{, and} (5.8)
1psn\displaystyle\frac{1}{p}-\frac{s}{n} 12(dd0)/2n\displaystyle\leq\frac{1}{2}-\frac{(d-d_{0})/2}{n} (5.9)

with the additional condition q2q\leq 2 in each of the marginal cases s=(dd0)/2s=(d-d_{0})/2 and 1psn=12(dd0)/2n\frac{1}{p}-\frac{s}{n}=\frac{1}{2}-\frac{(d-d_{0})/2}{n}. If Sd0d(Bqs,p)S_{d_{0}}^{d}(B^{s,p}_{q}) is non-empty then it contains (s+d0,p,q)(s+d_{0},p,q), (ds,p,q)(d-s,p^{*},q^{*}), and ((d+d0)/2,2,2)((d+d_{0})/2,2,2). Moreover, if (σ,a,b)𝒮d0d(Bqs,p)(\sigma,a,b)\in\mathcal{S}_{d_{0}}^{d}(B^{s,p}_{q}), then we have the continuous inclusions of Fréchet spaces

Bq,locs+d0,p(n)Bb,locσ,a(n)Bq,locds,p(n).B^{s+d_{0},p}_{q,\rm{loc}}(\mathbb{R}^{n})\subseteq B^{\sigma,a}_{b,\rm{loc}}(\mathbb{R}^{n})\subseteq B^{d-s,p^{*}}_{q^{*},\rm{loc}}(\mathbb{R}^{n}). (5.10)

The following commutator result is the analogue of Lemma 3.9

Lemma 5.9.

Suppose 1<p,q,a,b<1<p,q,a,b<\infty, s>n/ps>n/p, σ\sigma\in\mathbb{R} and d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with dd0d\geq d_{0}. Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n} and let LL be an operator of class d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega). If ϕ𝒟(Ω)\phi\in\mathcal{D}(\Omega) then [L,ϕ][L,\phi] extends from a map C(Ω¯)𝒟(Ω)C^{\infty}(\overline{\Omega})\mapsto\mathcal{D}^{\prime}(\Omega) to a continuous linear map Bbσ,a(Ω)Bbσd+1,a(Ω)B^{\sigma,a}_{b}(\Omega)\mapsto B^{\sigma-d+1,a}_{b}(\Omega) so long as (σ+1,a,b)𝒮d0d(Bqs,p)(\sigma+1,a,b)\in\mathcal{S}^{d}_{d_{0}}(B^{s,p}_{q}). Moreover, if d0=0d_{0}=0, the same result holds if (σ,a,b)𝒮0d(Bqs,p)(\sigma,a,b)\in\mathcal{S}^{d}_{0}(B^{s,p}_{q}).

Proof.

The proof is a computation using Theorem 5.4 that parallels that of Lemma 3.9. The only difference is that there are three additional fine parameter restrictions that arise. In the notation of Theorem 5.4, these occur when r=rir=r_{i}, when 1/r1+1/r2=11/r_{1}+1/r_{2}=1 and when 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r. Under the given hypotheses, the last of these conditions never occurs, and in remaining two cases the fine parameter restrictions are met for the same reasons as the analogous restrictions are met when s=sis=s_{i} and when s1+s2=0s_{1}+s_{2}=0 in Lemma 3.9. ∎

5.2 Rescaling estimates

The same argument used for Triebel-Lizorkin spaces shows that rescaling uu{r}u\mapsto u_{\{r\}} is a continuous automorphism of Besov spaces, and we wish to generalize the associated estimates of Theorem 3.10 to the Besov setting. This could be accomplished by suitably modifying the arguments of Section 3.2, but we can prove the desired results as a corollary of the Triebel-Lizorkin estimates using the following real interpolation property, which follows from [Tr10] Theorem 2.4.2.

Proposition 5.10.

Assume 1<p,q1,q2,q<1<p,q_{1},q_{2},q<\infty and s1,s2s_{1},s_{2}\in\mathbb{R} with s1s2s_{1}\neq s_{2}. Suppose 0<θ<10<\theta<1 and let s=(1θ)s1+θs2s=(1-\theta)s_{1}+\theta s_{2}. Then

[Fq1s1,p(n),Fq2s2,p(n)]θ,q=Bqs,p(n).[F^{s_{1},p}_{q_{1}}(\mathbb{R}^{n}),F^{s_{2},p}_{q_{2}}(\mathbb{R}^{n})]_{\theta,q}=B^{s,p}_{q}(\mathbb{R}^{n}).
Proposition 5.11.

Suppose 1<p,q<1<p,q<\infty, ss\in\mathbb{R} and that χ\chi is a Schwartz function on n\mathbb{R}^{n}. There exists a constant α\alpha\in\mathbb{R} such that for all 0<r10<r\leq 1 and all uBqs,p(n)u\in B^{s,p}_{q}(\mathbb{R}^{n})

χu{r}Bqs,p(n)rαuBqs,p(n).||\chi u_{\{r\}}||_{B^{s,p}_{q}(\mathbb{R}^{n})}\lesssim r^{\alpha}||u||_{B^{s,p}_{q}(\mathbb{R}^{n})}. (5.11)

Specifically:

  1. 1.

    Inequality (5.11) holds with

    α=min(snp,0)\alpha=\min\left(s-\frac{n}{p},0\right)

    unless sn/p=0s-n/p=0, in which case it holds for any choice of α<0\alpha<0, with implicit constant depending on α\alpha.

  2. 2.

    If s>n/ps>n/p (in which case functions in Bqs,p(n)B^{s,p}_{q}(\mathbb{R}^{n}) are Hölder continuous) and if uBqs,p(n)u\in B^{s,p}_{q}(\mathbb{R}^{n}) with u(0)=0u(0)=0, then inequality holds with

    α=min(snp,1)\alpha=\min\left(s-\frac{n}{p},1\right)

    unless sn/p=1s-n/p=1, in which case it holds for any choice of α<1\alpha<1, with implicit constant depending on α\alpha.

Proof.

Suppose s<n/ps<n/p. Pick ϵ>0\epsilon>0 such that s1=s+ϵ<n/ps_{1}=s+\epsilon<n/p as well, and let s2=sϵs_{2}=s-\epsilon. From real interpolation with endpoints F2s1,p(n)F^{s_{1},p}_{2}(\mathbb{R}^{n}) and F2s2,p(n)F^{s_{2},p}_{2}(\mathbb{R}^{n}) along with Proposition 3.10 we find

urBqs,p(n)r12(s1np)+12(s2np)uBqs,p(n)=rsnpuBqs,p(n).||u_{r}||_{B^{s,p}_{q}(\mathbb{R}^{n})}\lesssim r^{\frac{1}{2}\left(s_{1}-\frac{n}{p}\right)+\frac{1}{2}\left(s_{2}-\frac{n}{p}\right)}||u||_{B^{s,p}_{q}(\mathbb{R}^{n})}=r^{s-\frac{n}{p}}||u||_{B^{s,p}_{q}(\mathbb{R}^{n})}.

A similar and easier proof works when s>n/ps>n/p and the marginal case s=n/ps=n/p can be handled by interpolation between endpoints with differentiability s1s_{1} and s2s_{2} taken arbitrarily close to ss, as in the proof of Proposition 2.17.

For the improved estimate in the Hölder continuous case, we let Fq,0s,p(n)F^{s,p}_{q,0}(\mathbb{R}^{n}) be the closed subspace of Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}) of functions that vanish at 0, assuming of course that s>n/ps>n/p. The spaces Bq,0s,pB^{s,p}_{q,0} are defined similarly. The same argument as at the end of the proof of Proposition 3.19 shows that

[Fq1,0s1,p(n),Fq2,0s2,p(n)]θ,q=Bq,0s,p(n)[F^{s_{1},p}_{q_{1},0}(\mathbb{R}^{n}),F^{s_{2},p}_{q_{2},0}(\mathbb{R}^{n})]_{\theta,q}=B^{s,p}_{q,0}(\mathbb{R}^{n}) (5.12)

assuming that si>n/ps_{i}>n/p for i=1,2i=1,2 and that 0<θ<10<\theta<1 and s=(1θ)s1+θs2s=(1-\theta)s_{1}+\theta s_{2}. Using this interpolation property, the proof of the improved estimate now follows exactly as in the generic case. ∎

5.3 Interior elliptic estimates

Elliptic operators with Besov space coefficients are defined analogously as in Definition 2.18. The following “regularity at a point” result is proved identically as for Proposition 3.20, using the fact that the parametrix result Lemma 2.19 is proved identically for Besov spaces. Note that B~qs,p(Ω)\widetilde{B}^{s,p}_{q}(\Omega) denotes the closure of 𝒟(Ω)\mathcal{D}(\Omega) in Bqs,p(n)B^{s,p}_{q}(\mathbb{R}^{n}).

Proposition 5.12.

Let Ωn\Omega\subset\mathbb{R}^{n} be a bounded open set. Suppose ss\in\mathbb{R}, 1<p,q<1<p,q<\infty, that d,d00d,d_{0}\in\mathbb{Z}_{\geq 0} with d0dd_{0}\leq d, that s>n/ps>n/p, and that the conditions of Lemma 5.8 are are satisfied and hence 𝒮d0d(Bqs,p)\mathcal{S}_{d_{0}}^{d}(B^{s,p}_{q})\neq\emptyset. Suppose additionally that L=|α|daααL=\sum_{|\alpha|\leq d}a^{\alpha}\partial_{\alpha} is a differential operator of class d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega) and that for some xΩx\in\Omega that

L0=|α|=maα(x)αL_{0}=\sum_{|\alpha|=m}a^{\alpha}(x)\partial_{\alpha}

is elliptic. Given (σ,a,b)𝒮d0d(Fqs,p)(\sigma,a,b)\in\mathcal{S}_{d_{0}}^{d}(F^{s,p}_{q}) there exists r>0r>0 such that Br(x)ΩB_{r}(x)\subset\Omega and such that if

u\displaystyle u B~qds,p(Br(x))and\displaystyle\in\widetilde{B}^{d-s,p^{*}}_{q^{*}}(B_{r}(x))\quad\text{and}
Lu\displaystyle Lu Bbσd,a(Ω)\displaystyle\in B^{\sigma-d,a}_{b}(\Omega)

then uBbσ,a(Ω)u\in B^{\sigma,a}_{b}(\Omega) and

uBbσ,a(Ω)LuBbσd,a(Ω)+uBqds1,p(Ω)||u||_{B^{\sigma,a}_{b}(\Omega)}\lesssim||Lu||_{B^{\sigma-d,a}_{b}(\Omega)}+||u||_{B^{d-s-1,p^{*}}_{q^{*}}(\Omega)} (5.13)

with implicit constant independent of uu but depending on all other parameters.

With the previous proposition established, local elliptic regularity is proved using the same techniques as in Theorem 3.21, taking into account extra fine-parameter restrictions that arise for Besov spaces.

Theorem 5.13.

Let Ω\Omega be a bounded open set in n\mathbb{R}^{n} and suppose s,p,d0s,p,d_{0} and dd are parameters as in Lemma 5.8 such that s>n/ps>n/p and such that the conditions of Lemma 5.8 are satisfied so 𝒮d0d(Bqs,p)\mathcal{S}_{d_{0}}^{d}(B^{s,p}_{q})\neq\emptyset. Suppose LL is of class d0d(Bqs,p;Ω)\mathcal{L}_{d_{0}}^{d}(B^{s,p}_{q};\Omega) and is elliptic on Ω\Omega. If uBqds,p(Ω)u\in B^{d-s,p^{*}}_{q^{*}}(\Omega) and LuBbσd,a(Ω)Lu\in B^{\sigma-d,a}_{b}(\Omega) for some (σ,a,b)𝒮d0d(Bqs,p)(\sigma,a,b)\in\mathcal{S}_{d_{0}}^{d}(B^{s,p}_{q}) then for any open set UU with U¯Ω\overline{U}\subseteq\Omega, uBbσ,a(U)u\in B^{\sigma,a}_{b}(U) and

uBbσ,a(U)LuBbσd,a(Ω)+uBqds1,p(Ω).||u||_{B^{\sigma,a}_{b}(U)}\lesssim||Lu||_{B^{\sigma-d,a}_{b}(\Omega)}+||u||_{B^{d-s-1,p^{*}}_{q^{*}}(\Omega)}. (5.14)
Proof.

The proof very closely follows that of Theorem 3.21, and we list here the additional steps needed to further manage the fine parameter.

In addition to conditions (H1:)–(H6:) from that proof, the bootstrap step requires two more hypotheses to ensure the needed embeddings:

  1. H7:

    if 1aBσBn=1aσn\frac{1}{a_{B}}-\frac{\sigma_{B}}{n}=\frac{1}{a}-\frac{\sigma}{n} then bBbb_{B}\geq b,

  2. H8:

    if 1aBσBn=1aAσA+1n\frac{1}{a_{B}}-\frac{\sigma_{B}}{n}=\frac{1}{a_{A}}-\frac{\sigma_{A}+1}{n} then bBbAb_{B}\geq b_{A}.

For the stages of the main bootstrap for d0=0d_{0}=0 from Theorem 3.21 we make the following adjustments

  1. 1.

    In the initial step from (σ0,a0,b0)=(ds1,p,q)(\sigma_{0},a_{0},b_{0})=(d-s-1,p^{*},q^{*}) to (σ1,a1,b1)=(ds,p,q)(\sigma_{1},a_{1},b_{1})=(d-s,p^{*},q^{*}) hypothesis (H8:) is met trivially and hypothesis (H7:) only yields a restriction if 1pdsn=1aσn\frac{1}{p^{*}}-\frac{d-s}{n}=\frac{1}{a}-\frac{\sigma}{n}, in which case it requires bqb\leq q^{*}. But this fine parameter restriction is met because (σ,a,b)=(ds,a,b)𝒮0d(Bqs,p)(\sigma,a,b)=(d-s,a,b)\in\mathcal{S}^{d}_{0}(B^{s,p}_{q}).

  2. 2.

    During the low regularity stage we again preserve bk=qb_{k}=q^{*}.

    • If we preserve σk=ds\sigma_{k}=d-s and lower 1/ak1/a_{k} we can arrange to do so by less than 1/n1/n. In this case hypothesis (H8:) is met automatically. Hypothesis (H7:) only applies if σ=ds\sigma=d-s and only on the last step where we lower 1/ak1/a_{k}, in which case we set the fine parameter to its final value (satisfying (H7:)) and the bootstrap stops. All other aspects of this stage are justified identically to Theorem 3.21.

    • If we preserve the Lebesgue regularity 1/p(ds)/n1/p^{*}-(d-s)/n and raise σk\sigma_{k} then hypothesis (H8:) is met automatically. Hypothesis (H7:) provides a restriction only if 1/aσ/n=1/p(ds)/n1/a-\sigma/n=1/p^{*}-(d-s)/n, in which case we have assumed bqb\leq q^{*} from the definition of 𝒮0d(Bqs,p)\mathcal{S}^{d}_{0}(B^{s,p}_{q}) and condition (H7:) is met. We need to ensure that the iterates (σk,ak,bk)(\sigma_{k},a_{k},b_{k}) all remain in S0d(Bqs,p)S^{d}_{0}(B^{s,p}_{q}) in order for the commutator result Lemma 5.9 to apply. Indeed, the line of Lebesgue regularity 1/p(ds)/n1/p^{*}-(d-s)/n is associated with a fine parameter restriction, but it is always met by keeping bk=qb_{k}=q^{*}.

  3. 3.

    In the final stage we raise σk\sigma_{k} (by less than 1 per iteration) while keeping ak=aa_{k}=a. Again we preserve bk=qb_{k}=q^{*} except at the final step. Hypothesis (H8:) is met because of the step size restriction and hypothesis (H7:) is a restriction only at the last step, at which point it is satisfied by setting the fine parameter to its terminal value bb.

At the end of this procedure, the bootstrap has stopped at its desired value except in the two marginal cases σ=ds\sigma=d-s and 1/aσ/n=1/p(ds)/n1/a-\sigma/n=1/p^{*}-(d-s)/n, in which case we have arrived at (σ,a,q)(\sigma,a,q^{*}). In both these cases the definition of 𝒮0d(Bqs,p)\mathcal{S}^{d}_{0}(B^{s,p}_{q}) ensures that b<qb<q^{*}. Using this inequality, one readily verifies that hypotheses (H1:)–(H8:) hold if we perform one more bootstrap step to improve the fine parameter to its final value bb. As in the proof of Theorem 3.21, one needs to verify that the starting regularity (σ,a,q)(\sigma,a,q^{*}) for the bootstrap lies in 𝒮0d(Bqs,p)\mathcal{S}^{d}_{0}(B^{s,p}_{q}) so as to use the commutator result Lemma 5.9, but this is always met for the fine parameter qq^{*} on the two marginal lines σ=ds\sigma=d-s and 1/aσ/n=1/p(ds)/n1/a-\sigma/n=1/p^{*}-(d-s)/n. This completes the proof when d0=0d_{0}=0.

Now consider the case d0=1d_{0}=1. Arguing as in Theorem 3.21, we can apply the d0=0d_{0}=0 bootstrap to arrive at some (σ,a,b)𝒮0d(Bqs,p)(\sigma^{\prime},a^{\prime},b^{\prime})\in\mathcal{S}^{d}_{0}(B^{s,p}_{q}) where b=max(q,b)b^{\prime}=\max(q,b) and where (σ,a)(\sigma^{\prime},a^{\prime}) is obtained from (σ,a)(\sigma,a) as follows:

  1. 1.

    If σ<s\sigma<s, leave σ=σ\sigma^{\prime}=\sigma fixed but raise 1/a1/a by at most 1/n1/n to 1/a1/a^{\prime} such that 1/aσ/n=1/ps/n1/a^{\prime}-\sigma/n=1/p-s/n.

  2. 2.

    If σs\sigma\geq s and 1/ps/n1/aσ/n1/p-s/n\leq 1/a-\sigma/n, lower σ\sigma by at most 1 to ss while simultaneously lowering 1/a1/a by at most 1/n1/n so that the Lebesgue regularity 1/aσ/n=1/aσ/n1/a-\sigma/n=1/a^{\prime}-\sigma^{\prime}/n is unchanged.

  3. 3.

    Otherwise, (σ,a)(\sigma,a) satisfies sσσ+1s\leq\sigma\leq\sigma+1 and

    1ps+1n1aσn<1psn\frac{1}{p}-\frac{s+1}{n}\leq\frac{1}{a}-\frac{\sigma}{n}<\frac{1}{p}-\frac{s}{n}

    and we set (σ,a)=(s,p)(\sigma^{\prime},a^{\prime})=(s,p).

Note that we set b=max(q,b)b^{\prime}=\max(q,b) to ensure that the fine parameter restrictions of 𝒮0d(Bqs,p)\mathcal{S}^{d}_{0}(B^{s,p}_{q}) along the lines σ=s\sigma^{\prime}=s and 1/aσ/n=1/ps/n1/a^{\prime}-\sigma^{\prime}/n=1/p-s/n are met. Since Bbσ,a(Ω)B^{\sigma,a}_{b}(\Omega) embeds in Bbσ,a(Ω)B^{\sigma^{\prime},a^{\prime}}_{b^{\prime}}(\Omega) we can initially apply the d0=0d_{0}=0 bootstrap to arrive at (σ,a,b)(\sigma^{\prime},a^{\prime},b^{\prime}). At this point we wish to apply a single bootstrap step to terminate at (σ,a,b)(\sigma,a,b). Since (σ,a,b)𝒮0d(Bqs,p)(\sigma^{\prime},a^{\prime},b^{\prime})\in\mathcal{S}^{d}_{0}(B^{s,p}_{q}) a computation shows (σ+1,a,b)𝒮1d(Bqs,p)(\sigma^{\prime}+1,a^{\prime},b^{\prime})\in\mathcal{S}^{d}_{1}(B^{s,p}_{q}) and hence the commutator Lemma 5.9 is available starting from (σ,a,b)(\sigma^{\prime},a^{\prime},b^{\prime}). Hence we can perform the desired bootstrap step if we show that hypotheses (H1:)–(H8:) hold with (σA,aA,bA)=(σ,a,b)(\sigma_{A},a_{A},b_{A})=(\sigma^{\prime},a^{\prime},b^{\prime}) and (σB,aB,bB)=(σ,a,b)(\sigma_{B},a_{B},b_{B})=(\sigma,a,b).

Conditions (H1:)–(H4:) hold for the same reasons as in Theorem 2.21 and conditions (H5:) and (H7:) hold trivially since we are setting the fine parameter to bb. Condition (H6:) holds for exactly the same reason as in Theorem 3.21. Finally, condition (H8:) implies a restriction only in cases (1) and (3) and only when 1/aσ/n=1/p(s+1)/n1/a-\sigma/n=1/p-(s+1)/n. But then (σ,a,b)𝒮1d(Bqs,p)(\sigma,a,b)\in\mathcal{S}^{d}_{1}(B^{s,p}_{q}) is a spot where the fine parameter restriction qbq\leq b holds and hence b=max(q,b)=bb^{\prime}=\max(q,b)=b already. Hence condition (H8:) is met.

This concludes the proof when d0=1d_{0}=1 and the result holds for higher values of d0d_{0} by iterating this argument. ∎

Appendix A Multiplication in Triebel-Lizorkin Spaces

We prove the multiplication rules for Triebel-Lizorkin spaces, Theorem 3.5, which we restate here for convenience.

Theorem 3.5.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p1,p2,p,q1,q2,q<1<p_{1},p_{2},p,q_{1},q_{2},q<\infty and s1,s2,ss_{1},s_{2},s\in\mathbb{R}. Let r1,r2r_{1},r_{2} and rr be defined by

1r1=1p1s1n,1r2=1p2s2n,and1r=1psn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s_{1}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s_{2}}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Pointwise multiplication of C(Ω)C^{\infty}(\Omega) functions extends to a continuous bilinear map Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\rightarrow F^{s,p}_{q}(\Omega) so long as

s1+s20\displaystyle s_{1}+s_{2}\geq 0 (A.1)
min(s1,s2)s\displaystyle\min({s_{1},s_{2}})\geq s (A.2)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (A.3)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (A.4)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (A.5)

with the the following caveats:

  • Inequality (A.5) is strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

  • If si=ss_{i}=s for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 then 1q1+1q21\displaystyle\frac{1}{q_{1}}+\frac{1}{q_{2}}\geq 1.

  • If s1=s2=s=0s_{1}=s_{2}=s=0 then 1q121qi\displaystyle\frac{1}{q}\leq\frac{1}{2}\leq\frac{1}{q_{i}} for i=1,2i=1,2.

The proof is broken into a number of cases depending on the value of min(s1,s2)\min(s_{1},s_{2}). Propositions A.5 and A.6 cover the case min(s1,s2)>0\min(s_{1},s_{2})>0, Proposition A.7 is the case min(s1,s2)<0\min(s_{1},s_{2})<0 and the remaining case min(s1,s2)=0\min(s_{1},s_{2})=0 is the content of Proposition A.8.

These results all build on the following two lemmas, which concern multiplication of spaces having the same number s>0s>0 of derivatives and the same fine parameter, but where the Lebesgue parameters vary. The lemmas employ the same elementary Littlewood-Paley techniques used in Section 3.2.

Lemma A.1.

Suppose 1<p2p1<1<p_{2}\leq p_{1}<\infty, 1<q<1<q<\infty, ss\in\mathbb{R} and s>n/p1s>n/p_{1}. Given uFqs,p1(n)u\in F^{s,p_{1}}_{q}(\mathbb{R}^{n}) and vFqs,p2(n)v\in F^{s,p_{2}}_{q}(\mathbb{R}^{n}), both supported in BR(0)B_{R}(0) for some R>0R>0, uvFqs,p2(n)uv\in F^{s,p_{2}}_{q}(\mathbb{R}^{n}) and

uvFqs,p2(n)uFqs,p1(n)vFqs,p2(n).||uv||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}}(\mathbb{R}^{n})||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

The implicit constant depends on ss, p1p_{1}, p2p_{2} qq and RR but is independent of uu and vv.

Proof.

Since s>0s>0, Proposition 3.11(5) implies

uvFqs,p2(n)uvLp2(n)+[k10|2skPk(uv)|q]1/qLp2(n).||uv||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}\lesssim\ \left|\left|uv\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}+\left|\left|\left[\sum_{k\geq 10}|2^{sk}P_{k}(uv)|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}.

For the low frequency component we use the fact that s>n/ps>n/p and Proposition 3.1 twice to conclude

uvLp2(n)uL(n)vLp2(n)uFqs,p1(n)vFqs,p2(n).\left|\left|uv\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}\lesssim||u||_{L^{\infty}(\mathbb{R}^{n})}||v||_{L^{p_{2}}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

Turning to the high-frequency component we use the Littlewood-Paley trichotomy Proposition 3.11(6), to conclude for any k10k\geq 10

Pk(uv)=Pk((Pk4u)(P~kv)low-high+(P~ku)(Pk+5v)high-low+kk+4(Pku)(P~kv)high-high)P_{k}(uv)=P_{k}\left(\underbrace{(P_{\leq k-4}u)(\widetilde{P}_{k}v)}_{\text{low-high}}+\underbrace{(\widetilde{P}_{k}u)(P_{\leq k+5}v)}_{\text{high-low}}+\underbrace{\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)}_{\text{high-high}}\right) (A.6)

where P~k=Pk3k+3\widetilde{P}_{k}=P_{k-3\leq\cdot\leq k+3}. For the low-high contributions we use Proposition 3.11 parts (4) and (3) to conclude

[k10|2skPk((Pk4u)(P~kv))|q]1/qLp2(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}|2^{sk}P_{k}((P_{\leq k-4}u)(\widetilde{P}_{k}v))|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})} [k10|2sk(Pk4u)(P~kv)|q]1/qLp2(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}|2^{sk}(P_{\leq k-4}u)(\widetilde{P}_{k}v)|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}
MuL(n)[k10|2skP~kv|q]1/qLp2(n).\displaystyle\lesssim||Mu||_{L^{\infty}(\mathbb{R}^{n})}\left|\left|\left[\sum_{k\geq 10}|2^{sk}\widetilde{P}_{k}v|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}.

Since s>n/ps>n/p, MuL(n)uL(n)uFqs,p1(n)||Mu||_{L^{\infty}(\mathbb{R}^{n})}\lesssim||u||_{L^{\infty}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}. Moreover the triangle inequality implies

[k10|2skP~kv|q]1/qLp2(n)vFqs,p2(n)\left|\left|\left[\sum_{k\geq 10}|2^{sk}\widetilde{P}_{k}v|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}\lesssim||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}

and we conclude that the low-high interactions are controlled by uFqs,p1(n)vFqs,p2(n)||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

To analyze the high-low term we set

1t=1p21p1\frac{1}{t}=\frac{1}{p_{2}}-\frac{1}{p_{1}}

and observe that since p1p2p_{1}\geq p_{2}, 1<t1<t\leq\infty. The estimate now proceeds similarly to the low-high case: using Proposition 3.11 parts (4) and (3) along with Hölder’s inequality and the Hardy-Littlewood maximal inequality we find

[k10|2skPk((P~ku)(Pk+5v))|2]1/2Lp2(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}|2^{sk}P_{k}((\widetilde{P}_{k}u)(P_{\leq k+5}v))|^{2}\right]^{1/2}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})} [k10|2sk(P~ku)|q]1/q|Mv|Lp2(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}|2^{sk}(\widetilde{P}_{k}u)|^{q}\right]^{1/q}|Mv|\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}
[k10|2sk(P~ku)|q]1/qLp1(n)MvLt(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}|2^{sk}(\widetilde{P}_{k}u)|^{q}\right]^{1/q}\right|\right|_{L^{p_{1}}(\mathbb{R}^{n})}||Mv||_{L^{t}(\mathbb{R}^{n})}
uFqs,p1(n)vLt(n).\displaystyle\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{L^{t}(\mathbb{R}^{n})}.

Since s>n/p1s>n/p_{1} we have

1t=1p21p1>1p2sn.\frac{1}{t}=\frac{1}{p_{2}}-\frac{1}{p_{1}}>\frac{1}{p_{2}}-\frac{s}{n}.

So Sobolev embedding and the bounded support of vv imply

vLt(n)vFqs,p2(n)||v||_{L^{t}(\mathbb{R}^{n})}\lesssim||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}

with implicit constant depending on the radius RR of support. We conclude that the low-high terms are controlled by uFqs,p1(n)vFqs,p2(n)||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

Finally, for the high-high contributions we start by applying Proposition 3.11 parts (4) and (3) to obtain

||[k10|2skPk(kk+4(Pku)(P~kv)|q]1/q||Lp2(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}\left|2^{sk}P_{k}\left(\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v\right)\right|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})} |||Mu|[k10|2sk(kk+4(P~kv)|q]1/q||Lp2(n)\displaystyle\lesssim\left|\left||Mu|\left[\sum_{k\geq 10}\left|2^{sk}\left(\sum_{k^{\prime}\geq k+4}(\widetilde{P}_{k^{\prime}}v\right)\right|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}
MuL(n)a42sa[k10|2s(k+a)(P~k+av)|q]1/qLp2(n)\displaystyle\lesssim||Mu||_{L^{\infty}(\mathbb{R}^{n})}\sum_{a\geq 4}2^{-sa}\left|\left|\left[\sum_{k\geq 10}\left|2^{s(k+a)}\left(\widetilde{P}_{k+a}v\right)\right|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}
MuL(n)vFqs,p2(n)a42sa.\displaystyle\lesssim||Mu||_{L^{\infty}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}\sum_{a\geq 4}2^{-sa}.

Since s>0s>0 the sum is finite, and we have already seen that MuL(n)uFqs,p1(n)||Mu||_{L^{\infty}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}. So the high-high terms are also controlled by uFqs,p1(n)vFqs,p2(n)||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})} as needed. ∎

Lemma A.2.

Suppose s>0s>0, 1<pp2p1<1<p\leq p_{2}\leq p_{1}<\infty, 1<q<1<q<\infty and s<n/p1s<n/p_{1}. Suppose moreover that

1p1p1+1p2sn\frac{1}{p}\geq\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{s}{n} (A.7)

Given uFqs,p1(n)u\in F^{s,p_{1}}_{q}(\mathbb{R}^{n}) and vHqs,p2(n)v\in H^{s,p_{2}}_{q}(\mathbb{R}^{n}), both supported in BR(0)B_{R}(0) for some R>0R>0, uvFqs,p(n)uv\in F^{s,p}_{q}(\mathbb{R}^{n}) and

uvFqs,p(n)uFqs,p1(n)vFqs,p2(n).||uv||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

The implicit constant depends on ss, p1p_{1}, p2p_{2}, qq and RR but is independent of uu and vv.

Proof.

The proof follows the pattern of Lemma A.1. First apply Proposition 3.11(5) to obtain

uvFqs,p(n)uvLp(n)+[k10|2skPk(uv)|q]1/qLp(n).||uv||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim\ \left|\left|uv\right|\right|_{L^{p}(\mathbb{R}^{n})}+\left|\left|\left[\sum_{k\geq 10}|2^{sk}P_{k}(uv)|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}.

To estimate the low frequency term define

1t=1p1p2\frac{1}{t}=\frac{1}{p}-\frac{1}{p_{2}} (A.8)

and observe 1>1/p>1/t(1/p1)(s/n)>01>1/p>1/t\geq(1/p_{1})-(s/n)>0 by inequality (A.7) and the hypothesis s<n/p1s<n/p_{1}. Sobolev embedding and the fact that uu is supported on BR(0)B_{R}(0) then imply

uLt(n)uFqs,p1(n)||u||_{L^{t}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})} (A.9)

and we conclude from Hölder’s inequality

uvLp(n)uLt(n)vLp2(n)uFqs,p1(n)vFqs,p2(n).\left|\left|uv\right|\right|_{L^{p}(\mathbb{R}^{n})}\lesssim||u||_{L^{t}(\mathbb{R}^{n})}||v||_{L^{p_{2}}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

As in the proof of Lemma A.1 the high-frequency term is split into three terms using the Littlewood-Paley trichotomy, Proposition 3.11(6); see equation (A.6). For the low-high contributions we use Proposition 3.11 parts (4) and (3) together with the Hardy-Littlewood maximal inequality to obtain

[k10|2skPk((Pk4u)(P~kv))|q]1/qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}|2^{sk}P_{k}((P_{\leq k-4}u)(\widetilde{P}_{k}v))|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})} [k10|2sk(Pk4u)(P~kv)|q]1/qLp(n)\displaystyle\lesssim\left|\left|\left[\sum_{k\geq 10}|2^{sk}(P_{\leq k-4}u)(\widetilde{P}_{k}v)|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}
|Mu|[k10|2skP~kv|q]1/qLp(n)\displaystyle\lesssim\left|\left||Mu|\left[\sum_{k\geq 10}|2^{sk}\widetilde{P}_{k}v|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}
MuLt(n)vFqs,p2(n)\displaystyle\lesssim||Mu||_{L^{t}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}
uLt(n)vFqs,p2(n)\displaystyle\lesssim||u||_{L^{t}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}

where tt is again defined as in (A.8). From inequality (A.9) we conclude that the low-high interactions are controlled by uFqs,p1(n)vFqs,p2(n)||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

The estimate for the high-low contributions proceeds identically to that for the low-high contributions with the minor change that in equation (A.8) we replace p2p_{2} with p1p_{1}.

Turning now to the high-high contributions we define tt as in equation in (A.8) and apply Proposition 3.11 parts (4) and (3) to obtain

[k10|2skPk(kk+4(Pku)(P~kv))|q]1/qLp(n)\displaystyle\left|\left|\left[\sum_{k\geq 10}\left|2^{sk}P_{k}\left(\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right)\right|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})} |||Mu|[k10|2sk(kk+4(P~kv)|q]1/q||Lp(n)\displaystyle\lesssim\left|\left||Mu|\left[\sum_{k\geq 10}\left|2^{sk}\left(\sum_{k^{\prime}\geq k+4}(\widetilde{P}_{k^{\prime}}v\right)\right|^{q}\right]^{1/q}\right|\right|_{L^{p}(\mathbb{R}^{n})}
MuLt(n)a42sa[k10|2s(k+a)(P~k+av)|q]1/qLp2(n)\displaystyle\lesssim||Mu||_{L^{t}(\mathbb{R}^{n})}\sum_{a\geq 4}2^{-sa}\left|\left|\left[\sum_{k\geq 10}\left|2^{s(k+a)}\left(\widetilde{P}_{k+a}v\right)\right|^{q}\right]^{1/q}\right|\right|_{L^{p_{2}}(\mathbb{R}^{n})}
uLt(n)vFqs,p2(n)a42sa.\displaystyle\lesssim||u||_{L^{t}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}\sum_{a\geq 4}2^{-sa}.

Since s>0s>0 the sum is finite, and we have already seen that uLt(n)uFqs,p1(n)||u||_{L^{t}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}. So the high-high terms are also controlled by uFqs,p1(n)vFqs,p2(n)||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})} as needed. ∎

Having established the technical core of the theory, it remains for us to build a conveniently accessible interface in the form of Theorem 3.5. We now turn to a sequence of results that prove the theorem by cases based on the sign of min(s1,s2)\min(s_{1},s_{2}), and for brevity we establish the following standing hypothesis.

Assumption A.3.

Suppose

  • Ωn\Omega\subseteq\mathbb{R}^{n} is a bounded CC^{\infty} domain,

  • s1,s2,ss_{1},s_{2},s\in\mathbb{R},

  • 1<p1,p2,p<1<p_{1},p_{2},p<\infty,

  • 1<q1,q2,q<1<q_{1},q_{2},q<\infty.

Moreover, define

1r1=1p1sn,1r2=1p2sn,and1r=1psn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Note, in particular, that Assumption A.3 supposes that Ω\Omega has a smooth boundary. This hypothesis is made for convenience, and the proof of Theorem 3.5 follows for general bounded domains from the smooth case using a straightforward extension argument based on the quotient space definition of the relevant spaces.

The following result is mostly a translation of Lemmas A.1 and A.2 into the hypotheses of Theorem 3.5.

Proposition A.4.

Assume the multiplication hypothesis A.3 and that s1=s2=s>0s_{1}=s_{2}=s>0 and q1=q2=qq_{1}=q_{2}=q. Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Fqs,p1(Ω)×Fqs,p2(Ω)Fqs,p(Ω)F^{s,p_{1}}_{q}(\Omega)\times F^{s,p_{2}}_{q}(\Omega)\rightarrow F^{s,p}_{q}(\Omega) so long as

max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (A.10)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (A.11)

with the final inequality strict if min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0.

Proof.

Using an elementary extension and cutoff function argument, it suffices to show

uvFqs,p(n)uFqs,p1(n)vFqs,p2(n)||uv||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})} (A.12)

whenever uHs,p1(n)u\in H^{s,p_{1}}(\mathbb{R}^{n}) and vHs,p2(n)v\in H^{s,p_{2}}(\mathbb{R}^{n}) are supported in BR(0)B_{R}(0) for some R>0R>0.

Suppose min(1/r1,1/r2)0\min(1/r_{1},1/r_{2})\neq 0. Without loss of generality, we can assume 1/r1=min(1/r1,1/r2)1/r_{1}=\min(1/r_{1},1/r_{2}). Suppose 1/r1<01/r_{1}<0. Since 1/r11/r21/r1/r_{1}\leq 1/r_{2}\leq 1/r it follows that 1/p11/p21/p1/p_{1}\leq 1/p_{2}\leq 1/p and Lemma A.1 together with Proposition 3.1 implies

uvFqs,p(n)uvFqs,p2(n)uFqs,p1(n)vHqs,p2(n).||uv||_{F^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||uv||_{F^{s,p_{2}}_{q}(\mathbb{R}^{n})}\lesssim||u||_{F^{s,p_{1}}_{q}(\mathbb{R}^{n})}||v||_{H^{s,p_{2}}_{q}(\mathbb{R}^{n})}.

Next, assume 1/r1>01/r_{1}>0. Since 1/r1+1/r21/r1/r_{1}+1/r_{2}\leq 1/r, inequality (A.7) holds and the result follows from Lemma A.2.

Finally, consider the threshold case 1/r1=01/r_{1}=0, so min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0. We have therefore also assumed 1/r1+1/r2<1/r1/r_{1}+1/r_{2}<1/r and can lower p1p_{1} and p2p_{2} slightly to p^1\hat{p}_{1} and p^2\hat{p}_{2} so that

1/r^1+1/r^2<1/r1/\hat{r}_{1}+1/\hat{r}_{2}<1/r (A.13)

remains true. Notice that min(1/r^1,1/r^2)>0\min(1/\hat{r}_{1},1/\hat{r}_{2})>0, and hence inequality (A.13) also implies max(1/r^1,1/r^2)<1/r\max(1/\hat{r}_{1},1/\hat{r}_{2})<1/r. We have therefore already established continuity of multiplication Fqs,p^1(Ω)×Fqs,p^2(Ω)Fqs,p(Ω)F^{s,\hat{p}_{1}}_{q}(\Omega)\times F^{s,\hat{p}_{2}}_{q}(\Omega)\to F^{s,p}_{q}(\Omega) and the result follows from the continuous embedding Fqs,p1(Ω)×Fqs,p2(Ω)Fqs,p^1(Ω)×Fqs,p^2(Ω).F^{s,p_{1}}_{q}(\Omega)\times F^{s,p_{2}}_{q}(\Omega)\hookrightarrow F^{s,\hat{p}_{1}}_{q}(\Omega)\times F^{s,\hat{p}_{2}}_{q}(\Omega).

Using Sobolev embedding we can now relax the requirement s1=s2=ss_{1}=s_{2}=s and q1=q2=qq_{1}=q_{2}=q, noting that a fine parameter restriction arises if s=sis=s_{i} for some ii.

Proposition A.5.

Assume the multiplication hypothesis A.3 and that s1,s2,s>0s_{1},s_{2},s>0. Multiplication is continuous Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\to F^{s,p}_{q}(\Omega) so long as

s\displaystyle s min(s1,s2)\displaystyle\leq\min({s_{1},s_{2}}) (A.14)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (A.15)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (A.16)

with the following caveats:

  • Inequality (A.16) is strict if min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0.

  • If si=ss_{i}=s for some ii then qqiq\geq q_{i}.

Proof.

First, suppose min(1/r1,1/r2)>0\min(1/r_{1},1/r_{2})>0. Define t1,t2t_{1},t_{2} by

1tisn=1ri=1pisin.\frac{1}{t_{i}}-\frac{s}{n}=\frac{1}{r_{i}}=\frac{1}{p_{i}}-\frac{s_{i}}{n}.

Since sis0s_{i}\geq s\geq 0,

0<1ri1ti1pi<10<\frac{1}{r_{i}}\leq\frac{1}{t_{i}}\leq\frac{1}{p_{i}}<1

so by Sobolev embedding (Proposition 3.1) we have

Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,t1(Ω)×Fqs,t2(Ω).F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\hookrightarrow F^{s,t_{1}}_{q}(\Omega)\times F^{s,t_{2}}_{q}(\Omega).

Note that this is the point where we used the caveat qiqq_{i}\leq q if si=ss_{i}=s. Because the value of rir_{i} is preserved in the transition from pip_{i} to tit_{i}, the hypotheses of Proposition A.4 are satisfied and we have continuity of multiplication Fqs,t1(Ω)×Fqs,t2(Ω)Fqs,p(Ω)F^{s,t_{1}}_{q}(\Omega)\times F^{s,t_{2}}_{q}(\Omega)\to F^{s,p}_{q}(\Omega).

Now suppose min(1/r1,1/r2)<0\min(1/r_{1},1/r_{2})<0; without loss of generality we can assume 1/r11/r21/r_{1}\leq 1/r_{2} and therefore 1/r1<01/r_{1}<0. Using the hypotheses ss2s\leq s_{2}, 1/r1/r21/r\geq 1/r_{2} and qiqq_{i}\leq q if s=s2s=s_{2} we know from Sobolev embedding that Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{2},p_{2}}_{q_{2}}(\Omega)\hookrightarrow F^{s,p}_{q}(\Omega). Hence it suffices to prove that multiplication is continuous

Fq1s1,p1(Ω)×Fqs,p(Ω)Fqs,p(Ω).F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s,p}_{q}(\Omega)\to F^{s,p}_{q}(\Omega).

Proposition A.4 implies multiplication is continuous

Fqs,t(Ω)×Fqs,p(Ω)Fqs,p(Ω)F^{s,t}_{q}(\Omega)\times F^{s,p}_{q}(\Omega)\to F^{s,p}_{q}(\Omega)

if t(1,)t\in(1,\infty) satisfies

1tsn\displaystyle\frac{1}{t}-\frac{s}{n} 1psn\displaystyle\leq\frac{1}{p}-\frac{s}{n} (A.17)
1tsn\displaystyle\frac{1}{t}-\frac{s}{n} <0.\displaystyle<0.

Hence we need only show that Fq1s1,p1(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega) embeds into Fqs,t(Ω)F^{s,t}_{q}(\Omega) for some tt satisfying conditions (A.17).

There are two cases depending on the value of

1t^=1p1s1n+sn.\frac{1}{\hat{t}}=\frac{1}{p_{1}}-\frac{s_{1}}{n}+\frac{s}{n}.

If t^>0\hat{t}>0 we take t=t^t=\hat{t} and observe that since s1ss_{1}\geq s, t>1t>1. Sobolev embedding (using the hypothesis q1qq_{1}\leq q if s1=ss_{1}=s) implies Fq1s1,p1(Ω)Fqs,t(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\hookrightarrow F^{s,t}_{q}(\Omega). Inequalities (A.17) follow from the the observations 1/ts/n=1/p1s1/n<01/t-s/n=1/p_{1}-s_{1}/n<0 and

1tsn=1p1s1n=1r11r=1psn.\frac{1}{t}-\frac{s}{n}=\frac{1}{p_{1}}-\frac{s_{1}}{n}=\frac{1}{r_{1}}\leq\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Suppose instead t^0\hat{t}\leq 0. Now we simply choose any t>1t>1 satisfying conditions (A.17). Sobolev embedding Fq1s1,p1(Ω)Fqs,t(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\hookrightarrow F^{s,t}_{q}(\Omega) now follows from the inequality t^0\hat{t}\leq 0 (noting that this can only happen if s1>ss_{1}>s and hence the fine parameter plays no role).

The proposition is now proved except in the marginal case min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0. In this case we have assumed 1/r1+1/r2<1/r1/r_{1}+1/r_{2}<1/r and consequently 1/ri<1/r1/r_{i}<1/r, i=1,2i=1,2. Just as in Proposition A.4 we can lower p1p_{1} and p2p_{2} slightly while maintaining these strict inequalities, and the result follows from our previous work. ∎

We now extend Proposition A.5 to the case s0s\leq 0 while still assuming min(s1,s2)>0\min(s_{1},s_{2})>0. The proof relies on the embeddings

  • L1(Ω)Fqs,p(Ω)L^{1}(\Omega)\hookrightarrow F^{s,p}_{q}(\Omega) if s<0s<0 and 1/p+s/n<01/p^{*}+s/n<0

  • La(Ω)Fqs,p(Ω)L^{a}(\Omega)\hookrightarrow F^{s,p}_{q}(\Omega) for any a>1a>1 if s<0s<0 and 1/p+s/n=01/p^{*}+s/n=0

which are proved by extending functions on Ω\Omega by zero to all of n\mathbb{R}^{n} and applying duality on n\mathbb{R}^{n}, Proposition 3.20, along with Sobolev embedding on n\mathbb{R}^{n}.

Proposition A.6.

Assume the multiplication hypothesis A.3 and that s1,s2>0s_{1},s_{2}>0 and s0s\leq 0. Multiplication of C(Ω)C^{\infty}(\Omega) functions extends to a continuous bilinear map Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\to F^{s,p}_{q}(\Omega) so long as

max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (A.18)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (A.19)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (A.20)

with the following caveat:

  • Inequality (A.19) is strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

Proof.

First, suppose 1/r<11/r<1. Choose 1/t(0,1)1/t\in(0,1) and σ>0\sigma>0 such that σ<min(s1,s2)\sigma<\min(s_{1},s_{2}) and such that (1/t)(σ/n)=1/r(1/t)-(\sigma/n)=1/r. This is possible because of the strict inequality 1/r<11/r<1. Proposition A.5 and Sobolev embedding then ensure the continuity of multiplication

Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqσ,t(Ω)Fqs,p(Ω).F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\to F^{\sigma,t}_{q}(\Omega)\hookrightarrow F^{s,p}_{q}(\Omega).

Now suppose 1/r>11/r>1. Since 1/p+s/n=11/r<01/p^{*}+s/n=1-1/r<0, from the comments before the start of the proposition it suffices to show show that product embeds continuously in L1(Ω)L^{1}(\Omega), and the hard case occurs when min(1/r1,1/r2)>0\min(1/r_{1},1/r_{2})>0. But then Sobolev embedding implies Fqisi,pi(Ω)Lri(Ω)F^{s_{i},p_{i}}_{q_{i}}(\Omega)\hookrightarrow L^{r^{i}}(\Omega). Since 1/r1+1/r21/r<11/r_{1}+1/r_{2}\leq 1/r<1, the result follows from Hölder’s inequality.

Finally, suppose 1/r=11/r=1. Now Sobolev embedding implies Fqs,p(Ω)Lt(Ω)F^{-s,p^{*}}_{q^{*}}(\Omega)\hookrightarrow L^{t}(\Omega) for all t<t<\infty. So it suffices to show that the product embeds continuously in La(Ω)L^{a}(\Omega) for some a>1a>1 and again the hard case occurs when 1/r1,1/r2>01/r_{1},1/r_{2}>0. Since 11/r=01-1/r=0, min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0 and we have hence assumed 1/r1+1/r2<1/r=11/r_{1}+1/r_{2}<1/r=1. Arguing as in the case 1/r<11/r<1, the product lies in La(Ω)L^{a}(\Omega) with 1/a=1/r1+1/r21/a=1/r_{1}+1/r_{2}. The proof is complete, noting that the assumption 1/r1+1/r2<11/r_{1}+1/r_{2}<1 implies a>1a>1 as required. ∎

The previous two propositions establish Theorem 3.5 if min(s1,s2)>0\min(s_{1},s_{2})>0. The case min(s1,s2)<0\min(s_{1},s_{2})<0 follows from a duality argument.

Proposition A.7.

Assume the multiplication hypothesis A.3 and that min(s1,s2)<0\min(s_{1},s_{2})<0. Multiplication of C(Ω)C^{\infty}(\Omega) functions extends to a continuous bilinear map Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\to F^{s,p}_{q}(\Omega) so long as

s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (A.21)
s\displaystyle s min(s1,s2)\displaystyle\leq\min(s_{1},s_{2}) (A.22)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (A.23)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (A.24)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (A.25)

with the following caveats:

  • Inequality (A.24) is strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

  • If s=sis=s_{i} for some ii, then qiqq_{i}\leq q.

  • If s1+s2=0s_{1}+s_{2}=0 then 1q1+1q21\frac{1}{q_{1}}+\frac{1}{q_{2}}\geq 1.

Proof.

Without loss of generality we can assume s1<0s_{1}<0, in which case s2>0s_{2}>0. Note moreover that s<0s<0 since ss1s\leq s_{1}.

We first show continuity of multiplication

Fq2s2,p2(Ω)×Fqs,p(Ω)Fq1s1,p1(Ω).F^{s_{2},p_{2}}_{q_{2}}(\Omega)\times F^{-s,p^{*}}_{q^{*}}(\Omega)\to F^{-s_{1},p_{1}^{*}}_{q_{1}^{*}}(\Omega).

Since s2,s,s1>0s_{2},-s,-s_{1}>0 we need only verify the conditions of Proposition A.5. These read

s1s2\displaystyle-s_{1}\leq s_{2}
s1s\displaystyle-s_{1}\leq-s
1p2s2n1p1+s1n\displaystyle\frac{1}{p_{2}}-\frac{s_{2}}{n}\leq\frac{1}{p_{1}^{*}}+\frac{s_{1}}{n}
1p+sn1p1+s1n\displaystyle\frac{1}{p^{*}}+\frac{s}{n}\leq\frac{1}{p_{1}^{*}}+\frac{s_{1}}{n}
1p2s2n+1psn1p1s1n\displaystyle\frac{1}{p_{2}}-\frac{s_{2}}{n}+\frac{1}{p^{*}}-\frac{-s}{n}\leq\frac{1}{p_{1}^{*}}-\frac{-s_{1}}{n}

with the final inequality strict if min(1p2s2n,1psn)=0\min(\frac{1}{p_{2}}-\frac{s_{2}}{n},\frac{1}{p^{*}}-\frac{-s}{n})=0 and additionally

q\displaystyle q^{*} q1if s=s1,\displaystyle\leq q_{1}^{*}\quad\text{if $-s=-s_{1}$},
q2\displaystyle q_{2} q1if s2=s1.\displaystyle\leq q_{1}^{*}\quad\text{if $s_{2}=-s_{1}$.}

These conditions can be rewritten

0s1+s2\displaystyle 0\leq s_{1}+s_{2}
ss1=min(s1,s2)\displaystyle s\leq s_{1}=\min(s_{1},s_{2})
1r211r\displaystyle\frac{1}{r_{2}}\leq 1-\frac{1}{r}
11r11r1\displaystyle 1-\frac{1}{r}\leq 1-\frac{1}{r_{1}}
1r2+11r11r1.\displaystyle\frac{1}{r_{2}}+1-\frac{1}{r}\leq 1-\frac{1}{r_{1}}.

with the final inequality strict if min(1/r2,11/r)=0\min(1/r_{2},1-1/r)=0 and additionally

q\displaystyle q q1if s=s1,\displaystyle\geq q_{1}\quad\text{if $s=s_{1}$},
1q1+1q2\displaystyle\frac{1}{q_{1}}+\frac{1}{q_{2}} 1if s1+s2=0.\displaystyle\geq 1\quad\text{if $s_{1}+s_{2}=0$.}

Note that since 1/r1>01/r_{1}>0, min(1/r2,11/r)=0\min(1/r_{2},1-1/r)=0 if and only if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0. Hence we have assumed all of these conditions.

The result now follows from a duality argument. Suppose uiFqisi,pi(Ω)u_{i}\in F^{s_{i},p_{i}}_{q_{i}}(\Omega), i=1,2i=1,2. We define an element zFqs,p(Ω)z\in F^{s,p}_{q}(\Omega) as follows. Let u~i\tilde{u}_{i} be an extension to n\mathbb{R}^{n} that has support in some large ball BR(0)¯\overline{B_{R}(0)} independent of the functions uiu_{i}, such that u~iFqisi,pi(n)uiFqisi,pi(Ω)||\tilde{u}_{i}||_{F^{s_{i},p_{i}}_{q_{i}}(\mathbb{R}^{n})}\lesssim||u_{i}||_{F^{s_{i},p_{i}}_{q_{i}}(\Omega)}. Given wFqs,p(n)w\in F^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n}), the product u~2w\tilde{u}_{2}w is an element of Fq1s1,p1(B2R(0))F^{-s_{1},p_{1}^{*}}_{q_{1}^{*}}(B_{2R(0)}) by the argument above, and because of the support of u~2\tilde{u}_{2} in BR(0)¯\overline{B_{R}(0)}, it extends continuously by zero to an element of Fq1s1,p1(n)F^{-s_{1},p_{1}^{*}}_{q_{1}^{*}}(\mathbb{R}^{n}). Using duality pairing on n\mathbb{R}^{n} we define f(w)=u~2w,u~1f(w)=\left<\tilde{u}_{2}w,\tilde{u}_{1}\right> and one readily verifies the estimate

|f(w)|u1Fq1s1,p1(Ω)u2Fq2s2,p2(Ω)wFqs,p(n)|f(w)|\lesssim||u_{1}||_{F^{s_{1},p_{1}}_{q_{1}}(\Omega)}||u_{2}||_{F^{s_{2},p_{2}}_{q_{2}}(\Omega)}||w||_{F^{-s,p^{*}}_{q^{*}}(\mathbb{R}^{n})} (A.26)

and hence ff determines an element of Fqs,p(n)F^{s,p}_{q}(\mathbb{R}^{n}). Let zz be its restriction to Ω\Omega. A routine computation shows that zz is independent of the choice of extensions, depends bilinearly (and via (A.26) continuously) on the factors uiu_{i}, and that if u1u_{1} and u2u_{2} are smooth, then zz is simply the product u1u2u_{1}u_{2}. ∎

It remains to establish Theorem 3.5 when min(s1,s2)=0\min(s_{1},s_{2})=0.

Proposition A.8.

Assume the multiplication hypothesis A.3 that min(s1,s2)=0\min(s_{1},s_{2})=0. Multiplication is continuous Fq1s1,p1(Ω)×Fq2s2,p2(Ω)Fqs,p(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{s_{2},p_{2}}_{q_{2}}(\Omega)\to F^{s,p}_{q}(\Omega) so long as

max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (A.27)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (A.28)

with the following caveats:

  • Inequality (A.28) is strict if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0.

  • If si=ss_{i}=s for some ii then qqiq\geq q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 then 1q1+1q21\frac{1}{q_{1}}+\frac{1}{q_{2}}\geq 1.

  • If s1=s2=s=0s_{1}=s_{2}=s=0 then q1,q22q_{1},q_{2}\leq 2 and q2q\geq 2.

Proof.

Without loss of generality we can assume s1s2=0s_{1}\geq s_{2}=0.

Suppose first that s1>0s_{1}>0 and s<0s<0. By a duality argument analogous to the one at the end of Proposition A.7 it suffices to show that multiplication is continuous Fq1s1,p1(Ω)×Fqs,p(Ω)Fq20,p2(Ω)F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{-s,p^{*}}_{q^{*}}(\Omega)\to F^{0,p_{2}^{*}}_{q_{2}^{*}}(\Omega). Proposition A.6 ensures this is possible so long as

1r11p2,1p+sn1p2,1r1+1p+sn,1r1+1p+sn1p2\frac{1}{r_{1}}\leq\frac{1}{p_{2}^{*}},\quad\frac{1}{p^{*}}+\frac{s}{n}\leq\frac{1}{p_{2}^{*}},\quad\frac{1}{r_{1}}+\frac{1}{p^{*}}+\frac{s}{n},\quad\frac{1}{r_{1}}+\frac{1}{p^{*}}+\frac{s}{n}\leq\frac{1}{p_{2}^{*}}

with the final inequality strict if min(1/r1,1/p+s/n,11/p2)=0\min(1/r_{1},1/p^{*}+s/n,1-1/p_{2}^{*})=0. But these are equivalent to

1r1+1r21,1r21r,1r11r,1r1+1r21r\frac{1}{r_{1}}+\frac{1}{r_{2}}\leq 1,\quad\frac{1}{r_{2}}\leq\frac{1}{r},\quad\frac{1}{r_{1}}\leq\frac{1}{r},\quad\frac{1}{r_{1}}+\frac{1}{r_{2}}\leq\frac{1}{r}

with the final inequality strict if min(1/r1,11/r,1/r2)=0\min(1/r_{1},1-1/r,1/r_{2})=0, which were all assumed.

Now consider the case s1>0s_{1}>0 but s=0s=0. Pick ϵ>0\epsilon>0 so that ϵ<s1\epsilon<s_{1} and so that

1t1\displaystyle\frac{1}{t_{1}} :=1r2+ϵn<1\displaystyle:=\frac{1}{r_{2}}+\frac{\epsilon}{n}<1 1t2\displaystyle\qquad\frac{1}{t_{2}} :=1r2ϵn>0\displaystyle:=\frac{1}{r_{2}}-\frac{\epsilon}{n}>0
1τ1\displaystyle\frac{1}{\tau_{1}} :=1r+ϵn<1\displaystyle:=\frac{1}{r}+\frac{\epsilon}{n}<1 1τ2\displaystyle\qquad\frac{1}{\tau_{2}} :=1rϵn>0\displaystyle:=\frac{1}{r}-\frac{\epsilon}{n}>0

This collection of inequalities can be satisfied because 1/r2=1/p2(0,1)1/r_{2}=1/p_{2}\in(0,1) and because 0<1/r21/r=1/p<10<1/r_{2}\leq 1/r=1/p<1. An easy computation shows that Proposition A.5 ensures continuity of multiplication

Fq1s1,p1(Ω)×Fq2ϵ,t1(Ω)Fqϵ,τ1(Ω);F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{\epsilon,t_{1}}_{q_{2}}(\Omega)\to F^{\epsilon,\tau_{1}}_{q}(\Omega);

note that this uses the hypothesis qq2q\geq q_{2} which we have assumed since s2=s=0s_{2}=s=0. Similarly, Proposition A.7 ensures continuity of multiplication

Fq1s1,p1(Ω)×Fq2ϵ,t2(Ω)Fqϵ,τ2(Ω).F^{s_{1},p_{1}}_{q_{1}}(\Omega)\times F^{-\epsilon,t_{2}}_{q_{2}}(\Omega)\to F^{-\epsilon,\tau_{2}}_{q}(\Omega).

The result now follows from interpolation, noting that 12(1t1+1t2)=1r2=1p2\frac{1}{2}(\frac{1}{t_{1}}+\frac{1}{t_{2}})=\frac{1}{r_{2}}=\frac{1}{p_{2}} and 12(1τ1+1τ2)=1r=1p\frac{1}{2}(\frac{1}{\tau_{1}}+\frac{1}{\tau_{2}})=\frac{1}{r}=\frac{1}{p}.

Finally suppose s1=0s_{1}=0 and s<0s<0. By duality it suffices to prove multiplication is continuous

Fq10,p1(Ω)×Fqs,p(Ω)Fq20,p2(Ω).F^{0,p_{1}}_{q_{1}}(\Omega)\times F^{-s,p^{*}}_{q^{*}}(\Omega)\to F^{0,p_{2}^{*}}_{q_{2}^{*}}(\Omega).

This follows from the case just considered, noting that we pick up the requirement, q1q2q_{1}\leq q_{2}^{*}, which is equivalent to 1/q1+1/q211/q_{1}+1/q_{2}\geq 1, which we have assumed since s1+s2=0s_{1}+s_{2}=0.

All that remains is the case s1=s2=s=0s_{1}=s_{2}=s=0. We have the obvious consequence of Hölder’s inequality:

Fq10,p1(Ω)×Fq20,p2(Ω)Lp1(Ω)×Lp2(Ω)Lp(Ω)Fq0,p(Ω).F^{0,p_{1}}_{q_{1}}(\Omega)\times F^{0,p_{2}}_{q_{2}}(\Omega)\hookrightarrow L^{p_{1}}(\Omega)\times L^{p_{2}}(\Omega)\to L^{p}(\Omega)\hookrightarrow F^{0,p}_{q}(\Omega).

if q1,q22q_{1},q_{2}\leq 2, q2q\geq 2, and 1/p1+1/p21/p1/p_{1}+1/p_{2}\leq 1/p. It is perhaps surprising that this cannot be improved ([ST95] Corollary 4.3.1(ii)). ∎

Appendix B Multiplication in Besov spaces

We prove the following multiplication theorem for Besov spaces following a strategy similar to that of Appendix A.

Theorem 5.4.

Let Ω\Omega be a bounded open subset of n\mathbb{R}^{n}. Suppose 1<p1,p2,p,q1,q2,q<1<p_{1},p_{2},p,q_{1},q_{2},q<\infty and s1,s2,ss_{1},s_{2},s\in\mathbb{R}. Let r1,r2r_{1},r_{2} and rr be defined by

1r1=1p1s1n,1r2=1p2s2n,and1r=1psn.\frac{1}{r_{1}}=\frac{1}{p_{1}}-\frac{s_{1}}{n},\qquad\frac{1}{r_{2}}=\frac{1}{p_{2}}-\frac{s_{2}}{n},\quad\text{\rm and}\quad\frac{1}{r}=\frac{1}{p}-\frac{s}{n}.

Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) so long as

min(s1,s2)\displaystyle\min(s_{1},s_{2}) s\displaystyle\geq s (B.1)
s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (B.2)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (B.3)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (B.4)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (B.5)

with the following caveats:

  • If s=sis=s_{i} or 1/r=1/ri1/r=1/r_{i} for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 or 1/r1+1/r2=11/r_{1}+1/r_{2}=1 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1.

  • If equality holds in (B.5) then

    • \circ

      min(1/r1,1/r2,11/r)0\min(1/r_{1},1/r_{2},1-1/r)\neq 0.

    • \circ

      If min(s1,s2)0\min(s_{1},s_{2})\leq 0 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1 and 1/q1/r1/q\leq 1/r.

    • \circ

      If sis_{i} has the same sign as min(s1,s2)\min(s_{1},s_{2}) for some ii then 1/q1/qi1/q\leq 1/q_{i}.

    • \circ

      If sis_{i} has the same sign as max(s1,s2)\max(s_{1},s_{2}) for some ii then 1/ri1/qi1/r_{i}\leq 1/q_{i}.

    • \circ

      If s=0s=0 then 1/q1/qi1/q\leq 1/q_{i} and 1/ri1/qi1/r_{i}\leq 1/q_{i} for both i=1,2i=1,2.

  • If s1=s2=s=0s_{1}=s_{2}=s=0 then 1qmin(12,1r)\displaystyle\frac{1}{q}\leq\min\left(\frac{1}{2},\frac{1}{r}\right) and max(12,1ri)1qi\displaystyle\max\left(\frac{1}{2},\frac{1}{r_{i}}\right)\leq\frac{1}{q_{i}} for both i=1,2i=1,2.

The large number of new caveats in the edge cases compared to those of Triebel-Lizorkin multiplication is a consequence of two phenomena related to Besov space embedding on a bounded domain Ω\Omega. First, recall from Proposition 5.1 that if 1p1s1n1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}\leq\frac{1}{p_{2}}-\frac{s_{2}}{n} and s1s2s_{1}\geq s_{2} then

Bq1s1,p1(Ω)Bq2s2,p2(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\hookrightarrow B^{s_{2},p_{2}}_{q_{2}}(\Omega)

just as for Triebel-Lizorkin embedding, except the marginal case 1p1s1n=1p2s2n\frac{1}{p_{1}}-\frac{s_{1}}{n}=\frac{1}{p_{2}}-\frac{s_{2}}{n} requires additionally q1q2q_{1}\leq q_{2}. Second, we require embeddings of Besov spaces into Lebesgue spaces Lp(Ω)L^{p}(\Omega), which are less straightforward than the Triebel-Lizorkin setting because Lebesgue spaces are not generically Besov spaces.

Proposition B.1.

Let Ω\Omega be an open set in n\mathbb{R}^{n}. Suppose 1<p,q,r<1<p,q,r<\infty and s>0s>0.

  1. 1.

    If 1psn=1r\displaystyle\frac{1}{p}-\frac{s}{n}=\frac{1}{r} and if 1q1r\displaystyle\frac{1}{q}\geq\frac{1}{r} then Bqs,p(Ω)Lr(Ω)B^{s,p}_{q}(\Omega)\hookrightarrow L^{r}(\Omega).

  2. 2.

    If q2q\leq 2 and qpq\leq p then Bq0,p(Ω)Lp(Ω)B^{0,p}_{q}(\Omega)\hookrightarrow L^{p}(\Omega).

  3. 3.

    If q2q\geq 2 and qpq\geq p then Lp(Ω)Bq0,p(Ω)L^{p}(\Omega)\hookrightarrow B^{0,p}_{q}(\Omega).

If Ω=n\Omega=\mathbb{R}^{n} then part 1 follows from [Fr86] Theorem 1 and the remaining parts are a consequence of [Tr10] Proposition 2.3.2/2. The same facts remain true for arbitrary open sets by the usual extension/restriction argument.

We now proceed with the sequence of results that prove Theorem 5.4. The following two lemmas are analogs of Lemmas A.1 and A.2 and are the technical foundation of the remainder of the appendix.

Lemma B.2.

Suppose 1<pp1<1<p\leq p_{1}<\infty, 1<q<1<q<\infty and s>n/p1s>n/p_{1}. If uBqs,p1(n)u\in B^{s,p_{1}}_{q}(\mathbb{R}^{n}) and vBqs,p(n)v\in B^{s,p}_{q}(\mathbb{R}^{n}) are both supported in BR(0)B_{R}(0) for some R>0R>0 then uvBqs,p(n)uv\in B^{s,p}_{q}(\mathbb{R}^{n}) and

uvBqs,puBqs,p1vBqs,p.||uv||_{B^{s,p}_{q}}\lesssim||u||_{B^{s,p_{1}}_{q}}||v||_{B^{s,p}_{q}}.

The implicit constant depends on ss, p1p_{1}, pp, qq and RR but is independent of uu and vv.

Proof.

By an obvious modification of Proposition 3.11(5)

uvBqs,puvLp(n)+(k102sqkPk(uv)Lp(n)q)1q||uv||_{B^{s,p}_{q}}\lesssim\ \left\|uv\right\|_{L^{p}(\mathbb{R}^{n})}+\left(\sum_{k\geq 10}2^{sqk}\|P_{k}(uv)\|_{L^{p}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}}

and we follow the pattern of Lemma A.1 to bound the right-hand side of this inequality.

Since s>n/p1s>n/p_{1}, the low frequency part admits the bound

uvLp(n)uL(n)vLp(n)uBqs,p1(n)vBqs,p(n).\|uv\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|u\|_{L^{\infty}(\mathbb{R}^{n})}\|v\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}\|v\|_{B^{s,p}_{q}(\mathbb{R}^{n})}.

For the high-frequency part we define P~k=Pk3k+3\widetilde{P}_{k}=P_{k-3\leq\cdot\leq k+3} and observe that the Littlewood-Paley trichotomy of Theorem 3.11(6) implies

Pk(uv)=Pk((Pk4u)(P~kv)low-high+(P~ku)(Pk+5v)high-low+kk+4(Pku)(P~kv)high-high).P_{k}(uv)=P_{k}\left(\underbrace{(P_{\leq k-4}u)(\widetilde{P}_{k}v)}_{\text{low-high}}+\underbrace{(\widetilde{P}_{k}u)(P_{\leq k+5}v)}_{\text{high-low}}+\underbrace{\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)}_{\text{high-high}}\right).

For the low-high term, we use Proposition 3.11 parts (4) and (3) along with the Hardy-Littlewood maximal inequality to compute

Pk((Pk4u)(P~kv))Lp(n)(Pk4u)(P~kv)Lp(n)Pk4uL(n)P~kvLp(n)MuL(n)P~kvLp(n)uL(n)P~kvLp(n)uBqs,p1(n)P~kvLp(n)\begin{split}\|P_{k}\left((P_{\leq k-4}u)(\widetilde{P}_{k}v)\right)\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|(P_{\leq k-4}u)(\widetilde{P}_{k}v)\|_{L^{p}(\mathbb{R}^{n})}&\leq\|P_{\leq k-4}u\|_{L^{\infty}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p}(\mathbb{R}^{n})}\\ &\lesssim\|Mu\|_{L^{\infty}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p}(\mathbb{R}^{n})}\\ &\lesssim\|u\|_{L^{\infty}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p}(\mathbb{R}^{n})}\\ &\lesssim\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p}(\mathbb{R}^{n})}\end{split}

where MM is, as usual, the maximal operator. Summing over kk, we get the desired bound

k102sqkPk((Pk+5u)(P~kv))Lp(n)quBqs,p1(n)qk102sqkP~kvLp(n)quBqs,p1(n)qvBqs,p(n)q.\begin{split}\sum_{k\geq 10}2^{sqk}\|P_{k}\left((P_{\leq k+5}u)(\widetilde{P}_{k}v)\right)\|_{L^{p}(\mathbb{R}^{n})}^{q}&\lesssim\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}\sum_{k\geq 10}2^{sqk}\|\widetilde{P}_{k}v\|_{L^{p}(\mathbb{R}^{n})}^{q}\lesssim\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}\|v\|_{B^{s,p}_{q}(\mathbb{R}^{n})}^{q}.\end{split}

Similarly, for the high-low term, we have

Pk((P~ku)(Pk+5v))Lp(n)(P~ku)(Pk+5v)Lp(n)P~kuLp1(n)Pk+5vLt(n)P~kuLp1(n)MvLt(n)P~kuLp1(n)vLt(n)\begin{split}\|P_{k}\left((\widetilde{P}_{k}u)(P_{\leq k+5}v)\right)\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|(\widetilde{P}_{k}u)(P_{\leq k+5}v)\|_{L^{p}(\mathbb{R}^{n})}&\leq\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|P_{\leq k+5}v\|_{L^{t}(\mathbb{R}^{n})}\\ &\lesssim\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|Mv\|_{L^{t}(\mathbb{R}^{n})}\\ &\lesssim\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|v\|_{L^{t}(\mathbb{R}^{n})}\end{split}

where t>1t>1 is defined by

1p1+1t=1p.\frac{1}{p_{1}}+\frac{1}{t}=\frac{1}{p}.

Then summing over kk gives

k102sqkPk((P~ku)(Pk+5v)Lp(n)qvLt(n)qk102sqkP~kuLp1(n)qvLt(n)quBqs,p1(n)q.\begin{split}\sum_{k\geq 10}2^{sqk}\|P_{k}\left((\widetilde{P}_{k}u)(P_{\leq k+5}v\right)\|_{L^{p}(\mathbb{R}^{n})}^{q}&\lesssim\|v\|_{L^{t}(\mathbb{R}^{n})}^{q}\sum_{k\geq 10}2^{sqk}\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}^{q}\lesssim\|v\|_{L^{t}(\mathbb{R}^{n})}^{q}\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}.\end{split} (B.6)

Using the fact that vv has support on a ball of fixed radius we control vLt(n)\|v\|_{L^{t}(\mathbb{R}^{n})}. If s>n/ps>n/p

vLt(n)vL(n)vBqs,p1(n),\|v\|_{L^{t}(\mathbb{R}^{n})}\lesssim\|v\|_{L^{\infty}(\mathbb{R}^{n})}\lesssim\|v\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})},

and otherwise, since

1t=1p1p1>1psn0,\frac{1}{t}=\frac{1}{p}-\frac{1}{p_{1}}>\frac{1}{p}-\frac{s}{n}\geq 0,

Proposition B.1 along with Sobolev embedding for functions of bounded support to lower pp and suitably adjust qq implies

vLt(n)vBqs,p(n).\|v\|_{L^{t}(\mathbb{R}^{n})}\lesssim\|v\|_{B^{s,p}_{q}(\mathbb{R}^{n})}.

In either case find that the left-hand side of inequality (B.6) is bounded by uBqs,p1(n)qvBqs,p(n)q||u||_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}||v||_{B^{s,p}_{q}(\mathbb{R}^{n})}^{q}

Finally, turning to the high-high term, we start with

Pkkk+4(Pku)(P~kv)Lp(n)kk+4(Pku)(P~kv)Lp(n)kk+4PkuL(n)P~kvLp(n)kk+4MuL(n)P~kvLp(n)uBqs,p1(n)kk+4P~kvLp(n).\begin{split}\left\|P_{k}\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right\|_{L^{p}(\mathbb{R}^{n})}\lesssim\left\|\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right\|_{L^{p}(\mathbb{R}^{n})}&\leq\sum_{k^{\prime}\geq k+4}\|P_{k^{\prime}}u\|_{L^{\infty}(\mathbb{R}^{n})}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p}(\mathbb{R}^{n})}\\ &\lesssim\sum_{k^{\prime}\geq k+4}\|Mu\|_{L^{\infty}(\mathbb{R}^{n})}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p}(\mathbb{R}^{n})}\\ &\lesssim\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}\sum_{k^{\prime}\geq k+4}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p}(\mathbb{R}^{n})}.\end{split}

Now sum over kk to get

k102sqkPkkk+4(Pku)(P~kv)Lp(n)quBqs,p1(n)qk10(kk+42skP~kvLp(n))q.\begin{split}\sum_{k\geq 10}2^{sqk}\left\|P_{k}\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right\|_{L^{p}(\mathbb{R}^{n})}^{q}&\lesssim\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}\sum_{k\geq 10}\left(\sum_{k^{\prime}\geq k+4}2^{sk}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p}(\mathbb{R}^{n})}\right)^{q}.\end{split}

and observe that the desired estimate holds if we can show

k10(kk+42skP~kvLp(n))qvBqs,p(n)q.\sum_{k\geq 10}\left(\sum_{k^{\prime}\geq k+4}2^{sk}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p}(\mathbb{R}^{n})}\right)^{q}\lesssim||v||_{B^{s,p}_{q}(\mathbb{R}^{n})}^{q}. (B.7)

However, setting bk=2skP~kvLp(n)b_{k}=2^{sk}\|\widetilde{P}_{k}v\|_{L^{p}(\mathbb{R}^{n})} for k1k\geq 1 we have

k10(kk+42skP~kvLp(n))q=k10(a42sa2s(k+a)P~k+avLp(n))q=k10(a42sabk+a)q.\sum_{k\geq 10}\left(\sum_{k^{\prime}\geq k+4}2^{sk}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p}(\mathbb{R}^{n})}\right)^{q}=\sum_{k\geq 10}\left(\sum_{a\geq 4}2^{-sa}2^{s(k+a)}\|\widetilde{P}_{k+a}v\|_{L^{p}(\mathbb{R}^{n})}\right)^{q}=\sum_{k\geq 10}\left(\sum_{a\geq 4}2^{-sa}b_{k+a}\right)^{q}.

Since a42sa\sum_{a\geq 4}2^{-sa} is finite we can apply Jensen’s inequality to conclude

k10(a42sabk+a)qk10a42sabk+aq=a4k102sabk+aqbqqa42sa.\sum_{k\geq 10}\left(\sum_{a\geq 4}2^{-sa}b_{k+a}\right)^{q}\lesssim\sum_{k\geq 10}\sum_{a\geq 4}2^{-sa}b_{k+a}^{q}=\sum_{a\geq 4}\sum_{k\geq 10}2^{-sa}b_{k+a}^{q}\leq||b||_{\ell_{q}}^{q}\sum_{a\geq 4}2^{-sa}.

This final sum is finite and bqvBqs,p2(n)||b||_{\ell_{q}}\lesssim||v||_{B^{s,p_{2}}_{q}(\mathbb{R}^{n})}, which leads to inequality (B.7). ∎

Lemma B.3.

Suppose 1<p<p2p1<1<p<p_{2}\leq p_{1}<\infty, 1<q1,q2<1<q_{1},q_{2}<\infty and 0<s<n/p10<s<n/p_{1}. Suppose moreover that

1p1p1+1p2sn,\frac{1}{p}\geq\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{s}{n}, (B.8)

and if (B.8) is an equality assume additionally

1q11p1sn,and1q21p2sn.\frac{1}{q_{1}}\geq\frac{1}{p_{1}}-\frac{s}{n},\qquad\textrm{and}\qquad\frac{1}{q_{2}}\geq\frac{1}{p_{2}}-\frac{s}{n}. (B.9)

If uBq1s,p1(n)u\in B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n}) and vBq2s,p2(n)v\in B^{s,p_{2}}_{q_{2}}(\mathbb{R}^{n}) are both supported in BR(0)B_{R}(0) for some R>0R>0 then uvBqs,p(n)uv\in B^{s,p}_{q}(\mathbb{R}^{n}) with q=max{q1,q2}q=\max\{q_{1},q_{2}\}, and

uvBqs,puBq1s,p1vBq2s,p2.||uv||_{B^{s,p}_{q}}\lesssim||u||_{B^{s,p_{1}}_{q_{1}}}||v||_{B^{s,p_{2}}_{q_{2}}}.

The implicit constant depends on ss, p1p_{1}, p2p_{2}, pp, q1q_{1}, q2q_{2} and RR but is independent of uu and vv.

Proof.

We follow the familiar pattern. For convenience, recall the bound

uvBqs,p(n)uvLp(n)+(k102sqkPk(uv)Lp(n)q)1q,||uv||_{B^{s,p}_{q}(\mathbb{R}^{n})}\lesssim\left\|uv\right\|_{L^{p}(\mathbb{R}^{n})}+\left(\sum_{k\geq 10}2^{sqk}\|P_{k}(uv)\|_{L^{p}(\mathbb{R}^{n})}^{q}\right)^{\frac{1}{q}},

and the Littlewood-Paley trichotomy

Pk(uv)=Pk((Pk4u)(P~kv)low-high+(P~ku)(Pk+5v)high-low+kk+4(Pku)(P~kv)high-high)P_{k}(uv)=P_{k}\left(\underbrace{(P_{\leq k-4}u)(\widetilde{P}_{k}v)}_{\text{low-high}}+\underbrace{(\widetilde{P}_{k}u)(P_{\leq k+5}v)}_{\text{high-low}}+\underbrace{\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)}_{\text{high-high}}\right)

where P~k=Pk3k+3\widetilde{P}_{k}=P_{k-3\leq\cdot\leq k+3}. For the low frequency part, Hölder’s inequality followed by Sobolev embedding (using the bounded support of uu) and Proposition B.1 yields

uvLp(n)uLt1(n)vLp2(n)uBq1s,p1(n)vBqs,p2(n),\|uv\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|u\|_{L^{t_{1}}(\mathbb{R}^{n})}\|v\|_{L^{p_{2}}(\mathbb{R}^{n})}\lesssim\|u\|_{B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})}\|v\|_{B^{s,p_{2}}_{q}(\mathbb{R}^{n})},

where t1(1,)t_{1}\in(1,\infty) is defined by

1t1=1p1p21p1sn,\frac{1}{t_{1}}=\frac{1}{p}-\frac{1}{p_{2}}\geq\frac{1}{p_{1}}-\frac{s}{n},

with the inequality strict if (B.8) is strict. If (B.8) is an equality, then we need q1t1q_{1}\leq t_{1}, since the embedding Bq1s,p1(n)Lt1(n)B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow L^{t_{1}}(\mathbb{R}^{n}) becomes borderline.

For the low-high term, applying now-familiar facts from Proposition 3.11 we have

Pk((Pk4u)(P~kv))Lp(n)(Pk4u)(P~kv)Lp(n)Pk4uLt1(n)P~kvLp2(n)MuLt1(n)P~kvLp2(n)uLt1(n)P~kvLp2(n)uBq1s,p1(n)P~kvLp2(n),\begin{split}\|P_{k}\left((P_{\leq k-4}u)(\widetilde{P}_{k}v)\right)\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|(P_{\leq k-4}u)(\widetilde{P}_{k}v)\|_{L^{p}(\mathbb{R}^{n})}&\leq\|P_{\leq k-4}u\|_{L^{t_{1}}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|Mu\|_{L^{t_{1}}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|u\|_{L^{t_{1}}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|u\|_{B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})}\|\widetilde{P}_{k}v\|_{L^{p_{2}}(\mathbb{R}^{n})},\end{split}

and summing over kk gives

k102sqkPk(Pk+5u)(P~kv)Lp(n)quBq1s,p1(n)qk02sqkP~kvLp2(n)quBq1s,p1(n)qvBqs,p2(n)q.\begin{split}\sum_{k\geq 10}2^{sqk}\|P_{k}(P_{\leq k+5}u)(\widetilde{P}_{k}v)\|_{L^{p}(\mathbb{R}^{n})}^{q}&\lesssim\|u\|_{B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})}^{q}\sum_{k\geq 0}2^{sqk}\|\widetilde{P}_{k}v\|_{L^{p_{2}}(\mathbb{R}^{n})}^{q}\lesssim\|u\|_{B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})}^{q}\|v\|_{B^{s,p_{2}}_{q}(\mathbb{R}^{n})}^{q}.\end{split}

Similarly, for the high-low term, we have

Pk((P~ku)(Pk+5v))Lp(n)(P~ku)(Pk+5v)Lp(n)P~kuLp1(n)Pk+5vLt2(n)P~kuLp1(n)MvLt2(n)P~kuLp1(n)vLt2(n)P~kuLp1(n)vBq2s,p2(n),\begin{split}\|P_{k}\left((\widetilde{P}_{k}u)(P_{\leq k+5}v)\right)\|_{L^{p}(\mathbb{R}^{n})}\lesssim\|(\widetilde{P}_{k}u)(P_{\leq k+5}v)\|_{L^{p}(\mathbb{R}^{n})}&\leq\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|P_{\leq k+5}v\|_{L^{t_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|Mv\|_{L^{t_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|v\|_{L^{t_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}\|v\|_{B^{s,p_{2}}_{q_{2}}(\mathbb{R}^{n})},\end{split}

where t2(1,)t_{2}\in(1,\infty) is defined by

1t2=1p1p11p2sn,\frac{1}{t_{2}}=\frac{1}{p}-\frac{1}{p_{1}}\geq\frac{1}{p_{2}}-\frac{s}{n},

with the inequality strict if (B.8) is strict. If (B.8) is an equality, then we need q2t2q_{2}\leq t_{2}, since the embedding Bq2s,p2(n)Lt2(n)B^{s,p_{2}}_{q_{2}}(\mathbb{R}^{n})\hookrightarrow L^{t_{2}}(\mathbb{R}^{n}) again becomes borderline. Summing over kk yields

k102sqkPk((P~ku)(Pk+5v))Lp(n)qvBr2s,p2(n)qk102sqkP~kuLp1(n)qvBr2s,p2(n)quBqs,p1(n)q.\begin{split}\sum_{k\geq 10}2^{sqk}\|P_{k}\left((\widetilde{P}_{k}u)(P_{\leq k+5}v)\right)\|_{L^{p}(\mathbb{R}^{n})}^{q}&\lesssim\|v\|_{B^{s,p_{2}}_{r_{2}}(\mathbb{R}^{n})}^{q}\sum_{k\geq 10}2^{sqk}\|\widetilde{P}_{k}u\|_{L^{p_{1}}(\mathbb{R}^{n})}^{q}\lesssim\|v\|_{B^{s,p_{2}}_{r_{2}}(\mathbb{R}^{n})}^{q}\|u\|_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}.\end{split}

Finally, turning to the high-high term, start with

Pkkk+4(Pku)(P~kv)Lp(n)kk+4(Pku)(P~kv)Lp(n)kk+4PkuLt1(n)P~kvLp2(n)kk+4MuLt1(n)P~kvLp2(n)uBq1s,p1(n)kk+4P~kvLp2(n),\begin{split}\left\|P_{k}\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right\|_{L^{p}(\mathbb{R}^{n})}\lesssim\left\|\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right\|_{L^{p}(\mathbb{R}^{n})}&\leq\sum_{k^{\prime}\geq k+4}\|P_{k^{\prime}}u\|_{L^{t_{1}}(\mathbb{R}^{n})}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\\ &\lesssim\sum_{k^{\prime}\geq k+4}\|Mu\|_{L^{t_{1}}(\mathbb{R}^{n})}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\\ &\lesssim\|u\|_{B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})}\sum_{k^{\prime}\geq k+4}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p_{2}}(\mathbb{R}^{n})},\end{split}

and sum over kk to get

k102sqkPkkk+4(Pku)(P~kv)Lp(n)quBq1s,p1(n)qk102sqk(kk+4P~kvLp2(n))q.\begin{split}\sum_{k\geq 10}2^{sqk}\left\|P_{k}\sum_{k^{\prime}\geq k+4}(P_{k^{\prime}}u)(\widetilde{P}_{k^{\prime}}v)\right\|_{L^{p}(\mathbb{R}^{n})}^{q}\lesssim\|u\|_{B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})}^{q}\sum_{k\geq 10}2^{sqk}\left(\sum_{k^{\prime}\geq k+4}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\right)^{q}.\end{split} (B.10)

Moreover, the same argument as at the end of Lemma B.2 shows

k102sqk(kk+4P~kvLp2(n))qvBqs,p2(n)\sum_{k\geq 10}2^{sqk}\left(\sum_{k^{\prime}\geq k+4}\|\widetilde{P}_{k^{\prime}}v\|_{L^{p_{2}}(\mathbb{R}^{n})}\right)^{q}\lesssim||v||_{B^{s,p_{2}}_{q}(\mathbb{R}^{n})}

and it follows that the left-hand side of inequality (B.10) is controlled by uBqs,p1(n)qvBqs,p2(n)q||u||_{B^{s,p_{1}}_{q}(\mathbb{R}^{n})}^{q}||v||_{B^{s,p_{2}}_{q}(\mathbb{R}^{n})}^{q}.

At this point we have shown

uvBqs,p(n)uBqs,p1vvBqs,p2(n)\|uv\|_{B^{s,p}_{q}(\mathbb{R}^{n})}\lesssim\|u\|_{B^{s,p_{1}}_{q}v}\|v\|_{B^{s,p_{2}}_{q}(\mathbb{R}^{n})}

which, combined with the embeddings Bq1s,p1(n)Bqs,p1(n)B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow B^{s,p_{1}}_{q}(\mathbb{R}^{n}) and Bq2s,p2(n)Bqs,p2(n)B^{s,p_{2}}_{q_{2}}(\mathbb{R}^{n})\hookrightarrow B^{s,p_{2}}_{q}(\mathbb{R}^{n}), establishes the proof. ∎

The following result consolidates the previous two lemmas and applies to bounded smooth domains Ω\Omega rather than n\mathbb{R}^{n}.

Proposition B.4.

Assume the multiplication hypothesis A.3 and that s1=s2=s>0s_{1}=s_{2}=s>0. Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s,p1(Ω)×Bq2s,p2(Ω)Bqs,p(Ω)B^{s,p_{1}}_{q_{1}}(\Omega)\times B^{s,p_{2}}_{q_{2}}(\Omega)\rightarrow B^{s,p}_{q}(\Omega) so long as

max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (B.11)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (B.12)
min(1q1,1q2)\displaystyle\min\left(\frac{1}{q_{1}},\frac{1}{q_{2}}\right) 1q\displaystyle\geq\frac{1}{q} (B.13)

with the following caveats:

  • Inequality (B.12) is strict if min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0.

  • If (B.12) is an equality, then 1/r11/q11/r_{1}\leq 1/q_{1} and 1/r21/q21/r_{2}\leq 1/q_{2}.

Proof.

Using the argument at the start of Proposition A.4 it suffices to show

uvBqs,p(n)uBq1s1,p1(n)vBq2s2,p2(n)||uv||_{B^{s,p}_{q}(\mathbb{R}^{n})}\lesssim||u||_{B^{s_{1},p_{1}}_{q_{1}}(\mathbb{R}^{n})}||v||_{B^{s_{2},p_{2}}_{q_{2}}(\mathbb{R}^{n})} (B.14)

whenever uBqs1,p1(n)u\in B^{s_{1},p_{1}}_{q}(\mathbb{R}^{n}) and vBqs2,p2(n)v\in B^{s_{2},p_{2}}_{q}(\mathbb{R}^{n}) are supported in some ball of radius RR large enough to contain Ω¯\overline{\Omega}. Since the conditions are symmetric with respect to the indices 1 and 2, without loss of generality, assume that p2p1p_{2}\leq p_{1}. We split the proof into 3 cases.

First, consider the case s>n/p1s>n/p_{1}, that is, 1/r1<01/r_{1}<0. Thus (B.11) becomes pp2p\leq p_{2}. Inequality (B.14) then follows from Lemma B.2 , the fact that vBqs2,p(n)vBqs2,p1(n)\|v\|_{B^{s_{2},p}_{q}(\mathbb{R}^{n})}\lesssim\|v\|_{B^{s_{2},p_{1}}_{q}(\mathbb{R}^{n})} with implicit constant depending on RR, and the embeddings Bqis,pi(n)Bqs,pi(n)B^{s,p_{i}}_{q_{i}}(\mathbb{R}^{n})\hookrightarrow B^{s,p_{i}}_{q}(\mathbb{R}^{n}) for i=1,2i=1,2.

Now suppose that 0<s<n/p10<s<n/p_{1}, that is, 1/r1>01/r_{1}>0. In this case, (B.12) becomes

1p1p1+1p2sn,\frac{1}{p}\geq\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{s}{n},

and we have assumed additionally that if this is an equality then qiriq_{i}\leq r_{i} for i=1,2i=1,2. These are exactly the hypotheses of Lemma B.3 and estimate (B.14) follows.

Finally, we look at the case s=n/p1s=n/p_{1}, that is, 1/r1=01/r_{1}=0. Then min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0 since 1/r21/r11/r_{2}\geq 1/r_{1} and we have therefore assumed (B.12) is strict. Hence we can pick η(1,p1)\eta\in(1,p_{1}) such that

1p>1η+1p2sn.\frac{1}{p}>\frac{1}{\eta}+\frac{1}{p_{2}}-\frac{s}{n}.

as well. Since s<n/ηs<n/\eta, estimate (B.14) now follows from Lemma B.3 and the continuous embedding Bq1s,p1(n)Bq1s,η(n)B^{s,p_{1}}_{q_{1}}(\mathbb{R}^{n})\hookrightarrow B^{s,\eta}_{q_{1}}(\mathbb{R}^{n}). ∎

The restriction s=s1=s2s=s_{1}=s_{2} of the previous result can easily be relaxed with the help of Sobolev embeddings.

Proposition B.5.

Assume the multiplication hypothesis A.3 and that min(s1,s2,s)>0\min(s_{1},s_{2},s)>0. Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) so long as

min(s1,s2)\displaystyle\min({s_{1},s_{2}}) s\displaystyle\geq s (B.15)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (B.16)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (B.17)

with the following caveats:

  • Inequality (B.17) is strict if min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0.

  • If s=sis=s_{i} or 1/r=1/ri1/r=1/r_{i} for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r then 1/ri1/qi1/r_{i}\leq 1/q_{i} for i=1,2i=1,2 and 1/qmin(1/q1,1/q2)1/q\leq\min(1/q_{1},1/q_{2}).

Proof.

The proof follows the outline of Proposition A.5, with some extra care with respect to the fine parameter.

Case: min(1/r1,1/r2)>0.\min(1/r_{1},1/r_{2})>0.
Suppose first that 1/r1+1/r2<1/r1/r_{1}+1/r_{2}<1/r. Since each 1/ri>01/r_{i}>0 we have max(1/r1,1/r2)<1/r\max(1/r_{1},1/r_{2})<1/r as well. For any si>ss_{i}>s we can then lower sis_{i} slightly while preserving these strict inequalities (B.16)–(B.17) to set qiq_{i} to any desired value. Hence, without loss of generality, if si>ss_{i}>s we can assume qiqq_{i}\leq q. Otherwise, if si=ss_{i}=s we have assumed qiqq_{i}\leq q. Following the technique of the corresponding case of Proposition A.5 we then embed Bqisi,pi(Ω)Bqis,tiB^{s_{i},p_{i}}_{q_{i}}(\Omega)\hookrightarrow B^{s,t_{i}}_{q_{i}} where 1/tis/n=1/ri1/t_{i}-s/n=1/r_{i} and apply Proposition (B.5) to obtain continuous multiplication Bq1s,t1(Ω)×Bq2s,t2(Ω)Bqs,p(Ω)B^{s,t_{1}}_{q_{1}}(\Omega)\times B^{s,t_{2}}_{q_{2}}(\Omega)\hookrightarrow B^{s,p}_{q}(\Omega), noting that inequalities (B.11)–(B.13) all hold and that the caveats are irrelevant.

If instead 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r the same technique applies, except we cannot adjust any qiq_{i} and must assume qiqq_{i}\leq q and qiriq_{i}\leq r_{i} in advance, as we have done.

Case: min(1/r1,1/r2)=0.\min(1/r_{1},1/r_{2})=0.
We have assumed that inequality (B.17) is strict. Since each 1/ri>01/r_{i}>0 we also know that inequality (B.16) is also strict. Hence we can lower each pip_{i} while leaving sis_{i} fixed and maintain these strict inequalities. The result now follows from the case min(1/r1,1/r2)>0\min(1/r_{1},1/r_{2})>0.

Case: min(1/r1,1/r2)<0.\min(1/r_{1},1/r_{2})<0.
Without loss of generality we can assume 1/r11/r21/r_{1}\leq 1/r_{2} and hence 1/r1<01/r_{1}<0. Since s2ss_{2}\geq s and 1/r21/r1/r_{2}\leq 1/r and since we have additionally assumed that q2qq_{2}\leq q if either s=s2s=s_{2} or r=r2r=r_{2} we know Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{2},p_{2}}_{q_{2}}(\Omega)\hookrightarrow B^{s,p}_{q}(\Omega). Hence we need only demonstrate continuity of multiplication Bq1s1,p1(Ω)×Bqs,p(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s,p}_{q}(\Omega)\to B^{s,p}_{q}(\Omega). Proposition B.4 implies multiplication Bqs,t×Bqs,p(Ω)Bqs,p(Ω)B^{s,t}_{q}\times B^{s,p}_{q}(\Omega)\to B^{s,p}_{q}(\Omega) is continuous so long as tpt\geq p and 1/ts/n<01/t-s/n<0. Hence we are done if we can show that Bq1s1,p1(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega) embeds into some Bqs,t(Ω)B^{s,t}_{q}(\Omega) satisfying these two conditions. The proof now follows the corresponding case of Proposition A.5 except we must now assume (as we have done) that q1qq_{1}\leq q if r1=rr_{1}=r in addition to assuming q1qq_{1}\leq q if s1=ss_{1}=s in order for the requisite Sobolev embeddings to be valid. ∎

What remains is the case where one or more of the indices s1s_{1}, s2s_{2} and ss is nonpositive. The following 3 propositions then explore the full range of the parameters s1s_{1}, s2s_{2} and ss, and correspond to the cases where min(s1,s2)\min(s_{1},s_{2}) is negative, positive, and zero. The main tool we employ is duality.

Proposition B.6.

Assume the multiplication hypothesis A.3 and that min(s1,s2)<0\min(s_{1},s_{2})<0. Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) so long as

min(s1,s2)\displaystyle\min(s_{1},s_{2}) s\displaystyle\geq s (B.18)
s1+s2\displaystyle s_{1}+s_{2} 0\displaystyle\geq 0 (B.19)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (B.20)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (B.21)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (B.22)

with the following caveats:

  • If s=sis=s_{i} or 1/r=1/ri1/r=1/r_{i} for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 or 1/r1+1/r2=11/r_{1}+1/r_{2}=1 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1.

  • If 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r then:

    • \circ

      min(1/r1,1/r2,11/r)0\min(1/r_{1},1/r_{2},1-1/r)\neq 0.

    • \circ

      1/q1+1/q211/q_{1}+1/q_{2}\geq 1 and 1/q1/r1/q\leq 1/r.

    • \circ

      If si<0s_{i}<0 for some ii then 1/q1/qi1/q\leq 1/q_{i}.

    • \circ

      If si>0s_{i}>0 for some ii then 1/ri1/qi1/r_{i}\leq 1/q_{i}.

Proof.

Without loss of generality, assume that s1>0s_{1}>0 and s2<0s_{2}<0. Following the duality technique of Proposition A.7, continuity of multiplication Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) follows from continuity of multiplication Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2}^{*},p_{2}^{*}}_{q_{2}^{*}}(\Omega)\to B^{s^{*},p^{*}}_{q^{*}}(\Omega), with

s2=s,1p2=11p,1q2=11q,s=s2,1p=11p2,1q=11q2,s_{2}^{*}=-s,\quad\frac{1}{p_{2}^{*}}=1-\frac{1}{p},\quad\frac{1}{q_{2}^{*}}=1-\frac{1}{q},\quad s^{*}=-s_{2},\quad\frac{1}{p^{*}}=1-\frac{1}{p_{2}},\quad\frac{1}{q^{*}}=1-\frac{1}{q_{2}},

and hence the problem falls under Proposition B.5. Note that

1r2=11r,and1r=11r2.\frac{1}{r_{2}^{*}}=1-\frac{1}{r},\qquad\textrm{and}\qquad\frac{1}{r^{*}}=1-\frac{1}{r_{2}}.

For clarity, let us display here what Proposition B.5 becomes when we write the conditions in terms of the un-starred parameters: multiplication Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2}^{*},p_{2}^{*}}_{q_{2}^{*}}(\Omega)\to B^{s^{*},p^{*}}_{q^{*}}(\Omega) is continuous so long as

s2\displaystyle-s_{2} min(s1,s)\displaystyle\leq\min({s_{1},-s}) (B.23)
max(1r1,11r)\displaystyle\max\left(\frac{1}{r_{1}},1-\frac{1}{r}\right) 11r2\displaystyle\leq 1-\frac{1}{r_{2}} (B.24)
1r1+11r\displaystyle\frac{1}{r_{1}}+1-\frac{1}{r} 11r2\displaystyle\leq 1-\frac{1}{r_{2}} (B.25)

with the following caveats:

  • Inequality (B.25) is strict if min(1/r1,11/r)=0\min(1/r_{1},1-1/r)=0.

  • If s2=s1-s_{2}=s_{1} or 11/r2=1/r11-1/r_{2}=1/r_{1} then 11/q21/q11-1/q_{2}\leq 1/q_{1}.

  • If s2=s-s_{2}=-s or 11/r2=11/r1-1/r_{2}=1-1/r then 11/q211/q1-1/q_{2}\leq 1-1/q.

  • If 1/r1+11/r=11/r21/r_{1}+1-1/r=1-1/r_{2} then q1r1q_{1}\leq r_{1}, 11/q11/r1-1/q\geq 1-1/r, and 11/q2min(1/q1,11/q)1-1/q_{2}\leq\min(1/q_{1},1-1/q).

Noting that min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0 if and only if min(1/r1,11/r)=0\min(1/r_{1},1-1/r)=0, all these conditions are implied by the hypotheses of the proposition. ∎

Now we treat the case min(s1,s2)>0\min(s_{1},s_{2})>0.

Proposition B.7.

Assume the multiplication hypothesis A.3 and that min(s1,s2)>0\min(s_{1},s_{2})>0. Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) so long as

min(s1,s2)\displaystyle\min(s_{1},s_{2}) s\displaystyle\geq s (B.26)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (B.27)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (B.28)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (B.29)

with the following caveats:

  • If s=sis=s_{i} or 1/r=1/ri1/r=1/r_{i} for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If 1/r1+1/r2=11/r_{1}+1/r_{2}=1 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1.

  • If 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r then:

    • \circ

      min(1/r1,1/r2,11/r)0\min(1/r_{1},1/r_{2},1-1/r)\neq 0.

    • \circ

      1/q1/qi1/q\leq 1/q_{i} and 1/ri1/qi1/r_{i}\leq 1/q_{i} for i=1,2i=1,2.

Proof.

Suppose s>0s>0. Then 1/r<11/r<1, so min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0 if and only if min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0. Using this observation it is easy to see that the hypotheses of the current result imply the hypotheses of Proposition B.5 and the desired continuity of multiplication when s>0s>0 follows.

We split the remaining case s0s\leq 0 into the following 4 subcases.

  • If 1/r<11/r<1, then let 0<σ<min(s1,s2)0<\sigma<\min(s_{1},s_{2}) be small enough so that σ/n+1/r<1\sigma/n+1/r<1 and define η\eta\in by 1/ησ/n=1/r1/\eta-\sigma/n=1/r. Observe that 0<1/η<10<1/\eta<1 since 1/r1/r and σ\sigma are both positive and since σ\sigma is sufficiently small. Using the fact that min(1/r1,1/r2)=0\min(1/r_{1},1/r_{2})=0 if and only if min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0 when 1/r<11/r<1 one then verifies that the hypotheses of Proposition B.5 are met to ensure multiplication is continuous Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqσ,η(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\rightarrow B^{\sigma,\eta}_{q}(\Omega). The result then follows from the embedding Bqσ,η(Ω)Bqs,p(Ω)B^{\sigma,\eta}_{q}(\Omega)\hookrightarrow B^{s,p}_{q}(\Omega).

  • If 1/r=11/r=1, we observe that inequality (B.29) is strict. Indeed, if min(1/r1,1/r2)0\min(1/r_{1},1/r_{2})\geq 0 then min(1/r1,1/r2,11/r)=0\min(1/r_{1},1/r_{2},1-1/r)=0 and this holds by hypothesis, and if min(1/r1,1/r2)<0\min(1/r_{1},1/r_{2})<0 it is an easy consequence of inequalities (B.27) and (B.29) and the fact that 1/r=11/r=1. Moreover each 1/ri<1/pi<1=1/r1/r_{i}<1/p_{i}<1=1/r. Hence we can pick rr^{\prime} with 0<1/r<10<1/r^{\prime}<1 such that 1/ri<1/r1/r_{i}<1/r^{\prime} for i=1,2i=1,2 and such that 1/r1+1/r2<1/r1/r_{1}+1/r_{2}<1/r^{\prime}. Now pick 0<σ<min(s1,s2)0<\sigma<\min(s_{1},s_{2}) such that σ\sigma is small enough so that η\eta defined by 1/η=1/r+σ/n1/\eta=1/r^{\prime}+\sigma/n lies in (0,1)(0,1). The proof now proceeds as in the previous subcase, verifying that the hypotheses of Proposition B.5 are met to get continuity of Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqσ,η(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\rightarrow B^{\sigma,\eta}_{q}(\Omega)\hookrightarrow B^{s,p}_{q}(\Omega). Note that this verification benefits from the observation 1/r1+1/r2<1/r1/r_{1}+1/r_{2}<1/r^{\prime} strictly.

  • If 1/r>11/r>1 and 1/r1+1/r2<11/r_{1}+1/r_{2}<1 we can again pick r>1r^{\prime}>1 with 1/ri<1/r<11/r_{i}<1/r^{\prime}<1 for i=1,2i=1,2 and with 1/r1+1/r1<1/r<11/r_{1}+1/r_{1}<1/r^{\prime}<1. The proof now proceeds exactly as in the previous subcase.

  • If 1/r>11/r>1 and 1/r1+1/r2=11/r_{1}+1/r_{2}=1, then we necessarily have the strict inequality s<0s<0. Without loss of generality we can assume 1/r11/r21/r_{1}\leq 1/r_{2}, and choose σ\sigma such that 0>σ>max(s,s1)0>\sigma>\max(s,-s_{1}) and such that 1/η:=1/r2+σ/n>01/\eta:=1/r_{2}+\sigma/n>0. Observe 1/η<11/\eta<1 as well. One now verifies that the hypotheses of Proposition B.6 are met to obtain continuity of multiplication Bq1s1,p1(Ω)×Bq2σ,η(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{\sigma,\eta}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega), and indeed the check of its caveats is straightforward because we know 1/r1+1/r2<1/r1/r_{1}+1/r_{2}<1/r.

The proof is complete. ∎

Finally, we have the case min(s1,s2)=0\min(s_{1},s_{2})=0.

Proposition B.8.

Assume the multiplication hypothesis A.3 and that min(s1,s2)=0\min(s_{1},s_{2})=0. Pointwise multiplication of C(Ω¯)C^{\infty}(\overline{\Omega}) functions extends to a continuous bilinear map Bq1s1,p1(Ω)×Bq2s2,p2(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{s_{2},p_{2}}_{q_{2}}(\Omega)\to B^{s,p}_{q}(\Omega) so long as

s\displaystyle s 0\displaystyle\leq 0 (B.30)
max(1r1,1r2)\displaystyle\max\left(\frac{1}{r_{1}},\frac{1}{r_{2}}\right) 1r\displaystyle\leq\frac{1}{r} (B.31)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1\displaystyle\leq 1 (B.32)
1r1+1r2\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}} 1r\displaystyle\leq\frac{1}{r} (B.33)

with the following caveats:

  • If s=sis=s_{i} or 1/r=1/ri1/r=1/r_{i} for some ii then 1/q1/qi1/q\leq 1/q_{i}.

  • If s1+s2=0s_{1}+s_{2}=0 or 1/r1+1/r2=11/r_{1}+1/r_{2}=1 then 1/q1+1/q211/q_{1}+1/q_{2}\geq 1.

  • If equality holds in (B.33) then

    • \circ

      min(1/r1,1/r2,11/r)0\min(1/r_{1},1/r_{2},1-1/r)\neq 0.

    • \circ

      1/q1+1/q211/q_{1}+1/q_{2}\geq 1 and 1/q1/r1/q\leq 1/r.

    • \circ

      If si=0s_{i}=0 for some ii then 1/q1/qi1/q\leq 1/q_{i}.

    • \circ

      If sis_{i} has the same sign as max(s1,s2)\max(s_{1},s_{2}) for some ii then 1/ri1/qi1/r_{i}\leq 1/q_{i}.

    • \circ

      If s=0s=0 then 1/q1/qi1/q\leq 1/q_{i} and 1/ri1/qi1/r_{i}\leq 1/q_{i} for both i=1,2i=1,2.

  • If s1=s2=s=0s_{1}=s_{2}=s=0 then 1qmin(12,1r)\displaystyle\frac{1}{q}\leq\min\left(\frac{1}{2},\frac{1}{r}\right) and max(12,1ri)1qi\displaystyle\max\left(\frac{1}{2},\frac{1}{r_{i}}\right)\leq\frac{1}{q_{i}} for both i=1,2i=1,2.

Proof.

First, consider the case s1>s2=0>ss_{1}>s_{2}=0>s. Pick σ\sigma such that 0>σ>max(s,s1)0>\sigma>\max(s,-s_{1}) and such that σ\sigma is close enough to zero such that 1/η:=1/r2+σ/n>01/\eta:=1/r_{2}+\sigma/n>0. This is possible since 1/r2=1/p2>01/r_{2}=1/p_{2}>0. Observe that 1/η<11/\eta<1 as well since 1/r2=1/p2<11/r_{2}=1/p_{2}<1 and since σ<0\sigma<0. By Sobolev embedding, Bq2s2,p2(Ω)Bq2σ,η(Ω)B^{s_{2},p_{2}}_{q_{2}}(\Omega)\hookrightarrow B^{\sigma,\eta}_{q_{2}}(\Omega). One now verifies that the hypotheses of Proposition B.6 are met to imply continuity of multiplication Bq1s1,p1(Ω)×Bq2σ,η(Ω)Bqs,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{\sigma,\eta}_{q_{2}}(\Omega)\rightarrow B^{s,p}_{q}(\Omega). The only interesting point in the verification is the fact that if (B.33) is an equality then we have assumed 1/r11/q11/r_{1}\leq 1/q_{1} and 1/q1/qi1/q\leq 1/q_{i}, which are fine parameter requirements needed to use Proposition B.6 with s1>0s_{1}>0 and σ<0\sigma<0.

Next suppose that s1>s2=s=0s_{1}>s_{2}=s=0. Let 0<σ<s10<\sigma<s_{1} be small enough so that η\eta, θ\theta, η2\eta_{2} and θ2\theta_{2} defined by

1η2σn=1θ2+σn=1r2,1ησn=1θ+σn=1r\frac{1}{\eta_{2}}-\frac{\sigma}{n}=\frac{1}{\theta_{2}}+\frac{\sigma}{n}=\frac{1}{r_{2}},\qquad\frac{1}{\eta}-\frac{\sigma}{n}=\frac{1}{\theta}+\frac{\sigma}{n}=\frac{1}{r}

all lie in (1,)(1,\infty). This is possible since 1/r=1/p(1,)1/r=1/p\in(1,\infty) and similarly for 1/r21/r_{2}. A computation verifies that multiplication is continuous Bq1s1,p1(Ω)×Bq2σ,η2(Ω)Bqσ,η(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{\sigma,\eta_{2}}_{q_{2}}(\Omega)\rightarrow B^{\sigma,\eta}_{q}(\Omega) due to Proposition B.7, and Bq1s1,p1(Ω)×Bq2σ,θ2(Ω)Bqσ,θ(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{-\sigma,\theta_{2}}_{q_{2}}(\Omega)\rightarrow B^{-\sigma,\theta}_{q}(\Omega) due to Proposition B.6. Note that Proposition B.7 requires 1/ri1/qi1/r_{i}\leq 1/q_{i} and 1/qqi1/q\leq q_{i} for i=1,2i=1,2 if (B.33) is an equality and that we have assumed this since s=0s=0. At this point, continuity of Bq1s1,p1(Ω)×Bq20,p2(Ω)Bq0,p(Ω)B^{s_{1},p_{1}}_{q_{1}}(\Omega)\times B^{0,p_{2}}_{q_{2}}(\Omega)\rightarrow B^{0,p}_{q}(\Omega) is guaranteed by complex interpolation.

The next case we consider is s1=s2=0>ss_{1}=s_{2}=0>s, which follows from the preceding case by the duality argument of Proposition A.7. Namely, continuity of Bq10,p1(Ω)×Bq20,p2(Ω)Bqs,p(Ω)B^{0,p_{1}}_{q_{1}}(\Omega)\times B^{0,p_{2}}_{q_{2}}(\Omega)\rightarrow B^{s,p}_{q}(\Omega) is implied by continuity of Bqs,p(Ω)×Bq20,p2(Ω)Bq10,p1(Ω)B^{-s,p^{*}}_{q^{*}}(\Omega)\times B^{0,p_{2}}_{q_{2}}(\Omega)\rightarrow B^{0,p_{1}^{*}}_{q_{1}^{*}}(\Omega), with

1p1=11p,1q1=11q,1p=11p1,1q=11q1.\frac{1}{p_{1}^{*}}=1-\frac{1}{p},\quad\frac{1}{q_{1}^{*}}=1-\frac{1}{q},\quad\frac{1}{p^{*}}=1-\frac{1}{p_{1}},\quad\frac{1}{q^{*}}=1-\frac{1}{q_{1}}.

A laborious but straightforward computation with these new parameters verifies that the interpolation technique of the previous case again applies. One finds again that 1/ri1/qi1/r_{i}\leq 1/q_{i} and 1/qqi1/q\leq q_{i} for i=1,2i=1,2 are all required if (B.33) is an equality, and these are assumed since s=0s=0.

Finally, suppose that s1=s2=s=0s_{1}=s_{2}=s=0. We have assumed max(1/ri,2)1/qi\max(1/r_{i},2)\leq 1/q_{i} for i=1,2i=1,2 and hence Proposition B.1 implies Bqi0,pi(Ω)Lri(Ω)=Lpi(Ω)B^{0,p_{i}}_{q_{i}}(\Omega)\hookrightarrow L^{r_{i}}(\Omega)=L^{p_{i}}(\Omega). We have also assumed 1/qmin(1/r,1/2)1/q\leq\min(1/r,1/2) and hence Lp(Ω)=Lr(Ω)Bq0,p(Ω)L^{p}(\Omega)=L^{r}(\Omega)\hookrightarrow B^{0,p}_{q}(\Omega). Since 1/p1+1/p2=1/r1+1/r21/r=1/p1/p_{1}+1/p_{2}=1/r_{1}+1/r_{2}\leq 1/r=1/p the continuous multiplication is a consequence of Hölder’s inequality. ∎

A routine verification shows that the hypotheses of Theorem 5.4 imply the hypotheses of Propositions B.6 B.7 and B.8 in each of these special cases, which proves Theorem 5.4 in the event that Ω\Omega is a bounded smooth domain. As discussed following the statement of Assumption A.3, an extension/restriction argument then proves the result for an arbitrary bounded domain.

Acknowledgements

MH was supported in part by NSF Award DMS-2012857. DM was supported in part by NSF Award DMS-1263544.

References

  • [ALM22] P. T. Allen, J. M. Lee, and D. Maxwell, Sobolev-class asymptotically hyperbolic manifolds and the Yamabe problem, June 2022, arxiv:2206.12854 [math].
  • [Am91] H. Amann, Multiplication in Sobolev and Besov spaces, Nonlinear Analysis: A Tribute in Honour of Giovanni Prodi (A. Ambrosetti, A. Marino, and G. Prodi, eds.), Pubblicazioni Della Classe Di Scienze: Quaderni, Scuola normale superiore, Pisa, 1991.
  • [Be87] A. L. Besse, Einstein Manifolds, Classics in Mathematics, Springer, 1987.
  • [BH21] A. Behzadan and M. Holst, Multiplication in Sobolev spaces, revisited, Arkiv för Matematik 59 (2021), no. 2, 275–306.
  • [CC81] Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in HδsH^{s}_{\delta} spaces on manifolds which are Euclidean at infinity, Acta Mathematica 146 (1981), 129–150.
  • [Ch04] Y. Choquet-Bruhat, Einstein constraints on compact nn-dimensional manifolds, Classical and Quantum Gravity 21 (2004), no. 3, S127–S151.
  • [Fr86] J. Franke, On the spaces FpqsF^{s}_{pq} of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains, Mathematische Nachrichten 125 (1986), no. 1, 29–68.
  • [FS71] C. Fefferman and E. M. Stein, Some maximal inequalities, American Journal of Mathematics 93 (1971), no. 1, 107.
  • [Gi93] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics ETH Zürich, Birkhäuser, 1993.
  • [GT01] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, vol. 224, Springer, 2001.
  • [HNT09] M. Holst, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions, Communications in Mathematical Physics 288 (2009), no. 2, 547–613.
  • [Is95] J. Isenberg, Constant mean curvature solutions of the Einstein constraint equations on closed manifolds, Classical and Quantum Gravity 12 (1995), no. 9, 2249–2274.
  • [Jo95] J. Johnsen, Pointwise multiplication of Besov and Triebel-Lizorkin spaces, Mathematische Nachrichten 175 (1995), no. 1, 85–133.
  • [KR05] S. Klainerman and I. Rodnianski, Rough solutions of the Einstein-vacuum equations, Annals of Mathematics 161 (2005), no. 3, 1143–1193.
  • [Ma88] J. Marschall, Pseudo-differential operators with coefficients in Sobolev spaces, Transactions of the American Mathematical Society 307 (1988), no. 1, 335.
  • [Ma05] D. Maxwell, Solutions of the Einstein constraint equations with apparent horizon boundaries, Communications in Mathematical Physics 253 (2005), no. 3, 561–583.
  • [Ma06]  , Rough solutions of the Einstein constraint equations, Journal fur die reine und angewandte Mathematik (Crelles Journal) 2006 (2006), no. 590, 1–29.
  • [Mc00] W. C. H. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000.
  • [Pa68] R. Palais, Foundations of global non-linear analysis, W. A. Benjamin, 1968.
  • [RS96] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, De Gruyter, 1996.
  • [St75] P. Stredder, Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups, Journal of Differential Geometry 10 (1975), no. 4, 647–660.
  • [ST95] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in function spaces of BpqsB^{s}_{pq} and FpqsF^{s}_{pq} type, Zeitschrift für Analysis und ihre Anwendungen 14 (1995), no. 1, 105–140.
  • [ST05] H. Smith and D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Annals of Mathematics 162 (2005), no. 1, 291–366.
  • [Ta91] M. E. Taylor, Pseudodifferential operators and nonlinear PDE, Birkhäuser, 1991.
  • [Ta01] T. Tao, Harmonic analysis in the phase plane, https://www.math.ucla.edu/~tao/254a.1.01w/, 2001, Lecture notes.
  • [Tr73] N. S. Trudinger, Linear elliptic operators with measurable coefficients, Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche Ser. 3, 27 (1973), no. 2, 265–308.
  • [Tr76] H. Triebel, Spaces of Kudrjavcev type I. Interpolation, embedding, and structure, Journal of Mathematical Analysis and Applications 56 (1976), no. 2, 253–277.
  • [Tr78]  , Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, North-Holland Pub. Co, 1978.
  • [Tr02]  , Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Revista Matemática Complutense 15 (2002), no. 2, 475–524.
  • [Tr10]  , Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser, 2010.
  • [Zo77] J. L. Zolesio, Multiplication dans les espaces de Besov, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 78 (1977), no. 1-2, 113–117.