This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

propthm \newaliascntcorthm \newaliascntlemthm \newaliascntclaimthm \newaliascntdefnthm \newaliascntquesthm \newaliascntconjthm \newaliascntfactthm \newaliascntremthm \newaliascntexthm \newaliascntsettthm \aliascntresettheprop \aliascntresetthecor \aliascntresetthelem \aliascntresettheclaim \aliascntresetthedefn \aliascntresettheques \aliascntresettheconj \aliascntresetthefact \aliascntresettherem \aliascntresettheex \aliascntresetthesett

A remark on some punctual Quot schemes on smooth projective curves

Atsushi Ito Department of Mathematics, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan [email protected]
Abstract.

For a locally free sheaf \mathcal{E} on a smooth projective curve, we can define the punctual Quot scheme which parametrizes torsion quotients of \mathcal{E} of length nn supported at a fixed point. It is known that the punctual Quot scheme is a normal projective variety with canonical Gorenstein singularities. In this note, we show that the punctual Quot scheme is a \mathbb{Q}-factorial Fano variety of Picard number one.

Key words and phrases:
Punctual Quot scheme, Quot-to-Chow morphism
2020 Mathematics Subject Classification:
14H60, 14E05

1. Introduction

Throughout this paper, we work over an algebraically closed field kk of any characteristic. For a locally free sheaf \mathcal{E} of rank rr on a smooth projective curve CC and n0n\geqslant 0, let QuotCn()\operatorname{Quot}_{C}^{n}(\mathcal{E}) be the Quot scheme which parametrizes torsion quotients of \mathcal{E} of length nn. It is known that QuotCn()\operatorname{Quot}_{C}^{n}(\mathcal{E}) is a smooth projective variety of dimension nrnr (see [BFP20, Lemma 2.2, Corollary 4.7] for instance). We can define the Quot-to-Chow morphism

(1.1) π:QuotCn()SymnC\displaystyle\pi:\operatorname{Quot}_{C}^{n}(\mathcal{E})\to\operatorname{Sym}^{n}C

sending the quotient [𝒬][\mathcal{E}\twoheadrightarrow\mathcal{Q}] to the effective divisor on CC determined by the torsion sheaf 𝒬\mathcal{Q}. For qCq\in C, the punctual Quot scheme QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is defined to be the scheme-theoretic fiber of π\pi over nqSymnCnq\in\operatorname{Sym}^{n}C. Recently, the fibers of π\pi are studied by many authors. For example, the following are known:

  • ([Ric20, §2.1]) The isomorphism class of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} depends only on rr and nn. In particular, it is independent of CC and qq.

  • ([GS20, Lemma 6.5], [BJS24, Theorem 1.2]) The fiber of π\pi over i=1lmiqiSymnC\sum_{i=1}^{l}m_{i}q_{i}\in\operatorname{Sym}^{n}C with qiqj(ij)q_{i}\neq q_{j}\ (i\neq j) is isomorphic to the product i=1lQuotCmi()qi\prod_{i=1}^{l}\operatorname{Quot}_{C}^{m_{i}}(\mathcal{E})_{q_{i}}.

  • ([GS20, Corollary 6.6], [BJS24, Theorem 1.2]) QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is a normal projective variety of dimension n(r1)n(r-1) with Cartier canonical divisor.

  • ([GS20, §4,5]) QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is birational to n(r1)\mathbb{P}^{n(r-1)}.

  • ([BGS24, Lemma 6.2]) QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} has a crepant resolution. In particular, QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} has canonical Gorenstein singularities.

If r=1r=1, 1.1 is an isomorphism and hence QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is a point. If n=1n=1, 1.1 coincides with the 1\mathbb{P}^{1}-bundle C()C\mathbb{P}_{C}(\mathcal{E})\to C and hence QuotC1()q=(k(q))r1\operatorname{Quot}_{C}^{1}(\mathcal{E})_{q}=\mathbb{P}(\mathcal{E}\otimes k(q))\simeq\mathbb{P}^{r-1}.

In [BJS24], the authors investigate the geometry of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} for r=2r=2 in detail. In particular, they prove that QuotCn(𝒪C2)q\operatorname{Quot}_{C}^{n}(\mathcal{O}_{C}^{\oplus 2})_{q} is

  • 1\mathbb{P}^{1} if n=1n=1,

  • a singular quadric in 3\mathbb{P}^{3} if n=2n=2,

  • a normal \mathbb{Q}-factorial Fano 33-fold of Picard number one with canonical singularities along a copy of 1\mathbb{P}^{1} if n=3n=3

in characteristic zero [BJS24, Theorems 1.3, 1.4, 1.5]. The purpose of this note is to show a similar statement for any n,rn,r as follows.

Theorem 1.1.

Let \mathcal{E} be a locally free sheaf on a smooth projective curve CC of rank r2r\geqslant 2 and qCq\in C. For n1n\geqslant 1, the following hold.

  1. (1)

    QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is a normal \mathbb{Q}-factorial Fano n(r1)n(r-1)-fold of Picard number one.

  2. (2)

    There exists an embedding QuotCn()qGr(nr,n)\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}\hookrightarrow\mathrm{Gr}(nr,n) to a Grassmannian such that 𝒪(1)𝒪Gr(nr,n)(1)|QuotCn()q\mathcal{O}(1)\coloneqq\mathcal{O}_{\mathrm{Gr}(nr,n)}(1)|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}} is the ample generator of the Picard group Pic(QuotCn()q)\operatorname{Pic}(\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q})\simeq\mathbb{Z}.

  3. (3)

    The Fano index of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is rr, that is, KQuotCn()q=𝒪(r)K_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}=\mathcal{O}(-r).

  4. (4)

    If n2n\geqslant 2, the singular locus of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is irreducible of codimension two in QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}.

  5. (5)

    There exists a prime divisor HQuotCn()qH\subset\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} such that the divisor class group Cl(QuotCn()q)\operatorname{Cl}(\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}) is generated by the class [H][H] and nH𝒪(1)nH\sim\mathcal{O}(1).

The idea of the proof essentially follows from [GS20], where the authors construct a resolution of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} as an iterated r1\mathbb{P}^{r-1}-bundle. Following their construction, we define a r1\mathbb{P}^{r-1}-bundle fn:QuotCn()q()QuotCn()qf_{n}:\mathbb{P}_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}(\mathcal{F})\to\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} and a divisorial contraction μn+1:QuotCn()q()QuotCn+1()q\mu_{n+1}:\mathbb{P}_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}(\mathcal{F})\to\operatorname{Quot}_{C}^{n+1}(\mathcal{E})_{q}. Then we can prove the theorem by the induction on nn.

This paper is organized as follows. In §2, we recall some notation and give an embedding of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} to a Grassmannian. In §3 and §4, we investigate the Picard group and the divisor class group of QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} respectively. In §5, we give a description of the exceptional divisor of the divisorial contraction μn+1:QuotCn()q()QuotCn+1()q\mu_{n+1}:\mathbb{P}_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}(\mathcal{F})\to\operatorname{Quot}_{C}^{n+1}(\mathcal{E})_{q} for r=2r=2.

Acknowledgments

The author was supported by JSPS KAKENHI Grant Numbers 17K14162, 21K03201.

2. Embedding to a Grassmannian

For a kk-vector space EE, Gr(E,s)\mathrm{Gr}(E,s) (resp. Gr(s,E)\mathrm{Gr}(s,E)) denotes the Grassmannian of ss-dimensional quotients (resp. subspaces) of EE. More generally, for a locally free sheaf \mathcal{E} on a variety XX, GrX(,s)\mathrm{Gr}_{X}(\mathcal{E},s) (resp. GrX(s,)\mathrm{Gr}_{X}(s,\mathcal{E})) denotes the Grassmannian bundle which parametrizes quotient bundles (resp.  subbundles) of φ\varphi^{*}\mathcal{E} of rank ss for each φ:TX\varphi:T\to X. We use the notation (E)Gr(E,1)=ProjSymE\mathbb{P}(E)\coloneqq\mathrm{Gr}(E,1)=\operatorname{Proj}\operatorname{Sym}E and X()GrX(,1)=ProjXSym\mathbb{P}_{X}(\mathcal{E})\coloneqq\mathrm{Gr}_{X}(\mathcal{E},1)=\operatorname{Proj}_{X}\operatorname{Sym}\mathcal{E}.

For a coherent sheaf of \mathcal{F} on XX, QuotXn()\operatorname{Quot}_{X}^{n}(\mathcal{F}) denotes the Quot scheme which parametrizes quotients of \mathcal{F} with zero-dimensional supports of degree nn. The point in QuotXn()\operatorname{Quot}_{X}^{n}(\mathcal{F}) corresponding to an exact sequence 0𝒜00\to\mathcal{A}\to\mathcal{F}\to\mathcal{B}\to 0 on CC is denoted by [𝒜][\mathcal{A}\hookrightarrow\mathcal{F}] or [][\mathcal{F}\twoheadrightarrow\mathcal{B}]. If the context is clear, we write it as [𝒜][\mathcal{A}] or [][\mathcal{B}] simply .

Let \mathcal{E} be a locally free sheaf of rank rr on a smooth projective curve CC and n0n\geqslant 0. Throughout this paper, pC:C×TCp_{C}:C\times T\to C and pT:C×TTp_{T}:C\times T\to T are the natural projections for a locally noetherian scheme TT over kk. Then a morphism TQuotCn()T\to\operatorname{Quot}_{C}^{n}(\mathcal{E}) corresponds to an exact sequence

(2.1) 0𝒜pC0\displaystyle 0\to\mathscr{A}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}\to 0

on C×TC\times T such that \mathscr{B} is locally free of rank nn as an 𝒪T\mathcal{O}_{T}-module. Since CC is a smooth curve, 𝒜\mathscr{A} is locally free of rank rr.

Recall the definition of the Quot-to-Chow morphism π:QuotCn()SymnC\pi:\operatorname{Quot}_{C}^{n}(\mathcal{E})\to\operatorname{Sym}^{n}C (see [GS20, Section 2] for the details). Let Q=QuotCn()Q=\operatorname{Quot}_{C}^{n}(\mathcal{E}) and let 0𝒜QpCQ00\to\mathscr{A}_{Q}\to p_{C}^{*}\mathcal{E}\to\mathcal{B}_{Q}\to 0 be the universal exact sequence on C×QC\times Q. Since CC is a smooth curve, 𝒜Q\mathscr{A}_{Q} is locally free of rank r=rankr=\operatorname{rank}\mathcal{E} and hence we obtain an exact sequence

0det𝒜QdetpC𝒞0.\displaystyle 0\to\det\mathscr{A}_{Q}\to\det p_{C}^{*}\mathcal{E}\to\mathscr{C}\to 0.

We can check that 𝒞\mathscr{C} is flat over QQ and hence

0det𝒜Q(detpC)1𝒪C×Q𝒞(detpC)100\to\det\mathscr{A}_{Q}\otimes(\det p_{C}^{*}\mathcal{E})^{-1}\to\mathcal{O}_{C\times Q}\to\mathscr{C}\otimes(\det p_{C}^{*}\mathcal{E})^{-1}\to 0

induces the Quot-to-Chow morphism π:Q=QuotCn()SymnC\pi:Q=\operatorname{Quot}_{C}^{n}(\mathcal{E})\to\operatorname{Sym}^{n}C.

For qCq\in C, let QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} be the scheme theoretic fiber of π:QuotCn()SymnC\pi:\operatorname{Quot}_{C}^{n}(\mathcal{E})\to\operatorname{Sym}^{n}C over nqnq. By the definition of π\pi, the morphism TQuotCn()T\to\operatorname{Quot}_{C}^{n}(\mathcal{E}) corresponding to 2.1 factors through π1(nq)=QuotCn()qQuotCn()\pi^{-1}(nq)=\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}\subset\operatorname{Quot}_{C}^{n}(\mathcal{E}) if and only if det𝒜=pC𝔪ndet\det\mathscr{A}=p_{C}^{*}\mathfrak{m}^{n}\det\mathcal{E}, where 𝔪=𝒪C(q)\mathfrak{m}=\mathcal{O}_{C}(-q) is the maximal ideal sheaf corresponding to qCq\in C.

The following proposition is essentially explained in [BJS24, §6.4], at least set-theoretically.

Proposition \theprop.

Under the above setting, QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} coincides with QuotCn(/𝔪n)redQuotCn()\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})_{\mathrm{red}}\subset\operatorname{Quot}_{C}^{n}(\mathcal{E}), where we embed111See [FGI+05, §5.5.3] for the embedding between Quot schemes induced by a surjection of coherent sheaves. QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}) to QuotCn()\operatorname{Quot}_{C}^{n}(\mathcal{E}) by the natural surjection /𝔪n\mathcal{E}\to\mathcal{E}/\mathfrak{m}^{n}\mathcal{E} and QuotCn(/𝔪n)red\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})_{\mathrm{red}} means the reduced scheme structure on QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}).

In particular, there exists an embedding QuotCn()q=QuotCn(/𝔪n)redGr(/𝔪n,n)=Gr(nr,n)\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}=\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})_{\mathrm{red}}\hookrightarrow\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)=\mathrm{Gr}(nr,n).

Proof.

Consider a morphism TQuotCn()qT\to\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}, which corresponds to an exact sequence 0𝒜pC00\to\mathscr{A}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}\to 0 on C×TC\times T. Then 𝒜\mathscr{A} is locally free of rank rr with det𝒜=pC𝔪ndet\det\mathscr{A}=p_{C}^{*}\mathfrak{m}^{n}\det\mathcal{E}. By Cramer’s rule, 𝒜\mathscr{A} contains pC𝔪np_{C}^{*}\mathfrak{m}^{n}\mathcal{E} and hence the morphism TQuotCn()qQuotCn()T\to\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}\subset\operatorname{Quot}_{C}^{n}(\mathcal{E}) factors through the subscheme QuotCn(/𝔪n)QuotCn()\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})\subset\operatorname{Quot}_{C}^{n}(\mathcal{E}). This means that QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is a subscheme of QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}).

A closed point of QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}) is a quotient [/𝔪n][\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}\to\mathcal{B}] on CC whose length is nn. As a point in QuotCn()\operatorname{Quot}_{C}^{n}(\mathcal{E}), this is the point [/𝔪n][\mathcal{E}\to\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}\to\mathcal{B}], which is contained in QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} since Supp()={q}\operatorname{Supp}(\mathcal{B})=\{q\}. Since QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is reduced by [GS20] or [BJS24], QuotCn()q=QuotCn(/𝔪n)red\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}=\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})_{\mathrm{red}} holds.

Since /𝔪n\mathcal{E}/\mathfrak{m}^{n}\mathcal{E} is a kk-vector space of dimension nrnr, the Quot scheme QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}) is naturally embedded to the Grassmannian Gr(/𝔪n,n)=Gr(nr,n)\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)=\mathrm{Gr}(nr,n). In fact, a morphism TQuotCn(/𝔪n)T\to\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}) corresponds to a quotient (/𝔪n)𝒪T(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})\otimes\mathcal{O}_{T}\to\mathscr{B} of 𝒪T𝒪C,q\mathcal{O}_{T}\otimes\mathcal{O}_{C,q}-modules such that \mathscr{B} is locally free of rank nn as 𝒪T\mathcal{O}_{T}-module. On the other hand, a morphism TGr(/𝔪n,n)T\to\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n) corresponds to a quotient (/𝔪n)𝒪T(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})\otimes\mathcal{O}_{T}\to\mathscr{B} of 𝒪T\mathcal{O}_{T}-modules such that \mathscr{B} is locally free of rank nn. Hence there exists a natural injection Homk-sch(T,QuotCn(/𝔪n))Homk-sch(T,Gr(/𝔪n,n))\operatorname{Hom}_{k\text{-}sch}(T,\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}))\to\operatorname{Hom}_{k\text{-}sch}(T,\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)). Thus QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}) is embedded into Gr(/𝔪n,n)=Gr(nr,n)\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)=\mathrm{Gr}(nr,n). ∎

Remark \therem.

Let 0𝒜npCn00\to\mathscr{A}_{n}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}_{n}\to 0 be the universal exact sequence on C×QuotCn()qC\times\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}. The embedding QuotCn()qGr(/𝔪n,n)\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}\to\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n) is induced by

0𝒜n/pC𝔪n¯pC/pC𝔪n¯=(/𝔪n)𝒪QuotCn()qn¯0,\displaystyle 0\to\overline{\mathscr{A}_{n}/p_{C}^{*}\mathfrak{m}^{n}\mathcal{E}}\to\overline{p_{C}^{*}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n}\mathcal{E}}=(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E})\otimes\mathcal{O}_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}\to\overline{\mathscr{B}_{n}}\to 0,

where ¯\overline{\mathcal{F}} is the pushforward of \mathcal{F} by pQuotCn()q:C×QuotCn()qQuotCn()qp_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}:C\times\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}\to\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}. In particular, 𝒪Gr(/𝔪n,n)(1)|QuotCn()q=detn¯\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1)|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}=\det\overline{\mathscr{B}_{n}} holds, where 𝒪Gr(/𝔪n,n)(1)\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1) is the Plücker line bundle of the Grassmannian Gr(/𝔪n,n)\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n).

Remark \therem.

The Picard group of the Quot scheme Q=QuotCn()Q=\operatorname{Quot}_{C}^{n}(\mathcal{E}) is computed by [GS21] as follows. Let 0𝒜QpCQ00\to\mathscr{A}_{Q}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}_{Q}\to 0 be the universal exact sequence on C×QC\times Q and let 𝒪Q(1)=det(pQ(Q))\mathcal{O}_{Q}(1)=\det({p_{Q}}_{*}(\mathscr{B}_{Q})). Then π:Pic0(SymnC)Pic(Q)\pi^{*}:\operatorname{Pic}^{0}(\operatorname{Sym}^{n}C)\to\operatorname{Pic}(Q) induced by the Quot-to-Chow morphism π:QSymnC\pi:Q\to\operatorname{Sym}^{n}C is injective and Pic(Q)=πPic0(SymnC)[𝒪Q(1)]\operatorname{Pic}(Q)=\pi^{*}\operatorname{Pic}^{0}(\operatorname{Sym}^{n}C)\oplus\mathbb{Z}[\mathcal{O}_{Q}(1)] by [GS21, Theorem 3.7].

Then 𝒪Gr(/𝔪n,n)(1)|QuotCn()q\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1)|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}} coincides with 𝒪Q(1)|QuotCn()q\mathcal{O}_{Q}(1)|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}} since

𝒪Gr(/𝔪n,n)(1)|QuotCn()q=detn¯=det(pQ(Q)|QuotCn()q)=𝒪Q(1)|QuotCn()q\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1)|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}=\det\overline{\mathscr{B}_{n}}=\det({p_{Q}}_{*}(\mathscr{B}_{Q})|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}})=\mathcal{O}_{Q}(1)|_{\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q}}

for n¯\overline{\mathscr{B}_{n}} in § 2.

Remark \therem.

In general, QuotCn(/𝔪n)\operatorname{Quot}_{C}^{n}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}) is non-reduced. For example, let =𝒪C2,n=2\mathcal{E}=\mathcal{O}_{C}^{\oplus 2},n=2. Then /𝔪2=(k[t]/(t2))2\mathcal{E}/\mathfrak{m}^{2}\mathcal{E}=(k[t]/(t^{2}))^{\oplus 2}, where tt is a local coordinate of CC at qq. For T=SpecR=Speck[ε]/(ε2)T=\operatorname{Spec}R=\operatorname{Spec}k[\varepsilon]/(\varepsilon^{2}), a quotient

pC(/𝔪2)=(R[t]/(t2))2R2:(f(t),g(t))(f(ε),g(ε))\displaystyle p_{C}^{*}(\mathcal{E}/\mathfrak{m}^{2}\mathcal{E})=(R[t]/(t^{2}))^{\oplus 2}\to R^{\oplus 2}:(f(t),g(t))\mapsto(f(\varepsilon),g(\varepsilon))

on C×TC\times T gives a morphism TQuotC2(/𝔪2)T\to\operatorname{Quot}_{C}^{2}(\mathcal{E}/\mathfrak{m}^{2}\mathcal{E}). This does not factor through QuotC2()q\operatorname{Quot}_{C}^{2}(\mathcal{E})_{q} if chark2\mathrm{char}\ k\neq 2 since the kernel of pC=𝒪C×T2(R[t]/(t2))2R2p_{C}^{*}\mathcal{E}=\mathcal{O}_{C\times T}^{\oplus 2}\to(R[t]/(t^{2}))^{\oplus 2}\to R^{\oplus 2} is (tε)𝒪C×T2(t-\varepsilon)\mathcal{O}_{C\times T}^{\oplus 2}, whose determinant is (t22εt)𝒪C×Tt2𝒪C×T(t^{2}-2\varepsilon t)\mathcal{O}_{C\times T}\neq t^{2}\mathcal{O}_{C\times T}.

3. Picard groups

Throughout this section, we fix a locally free sheaf \mathcal{E} of rank rr on a smooth projective curve CC and qCq\in C. Since the punctual Quot scheme QuotCn()q\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} is a point if r=1r=1, we assume r2r\geqslant 2 in the rest of this section. For simplicity, we set Fn=QuotCn()qF_{n}=\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} and 𝔪=𝒪C(q)𝒪C\mathfrak{m}=\mathcal{O}_{C}(-q)\subset\mathcal{O}_{C}. As in § 2, ¯\overline{\mathcal{F}} denotes the pushforward of a coherent sheaf \mathcal{F} on C×FnC\times F_{n} by the projection pFn:C×FnFnp_{F_{n}}:C\times F_{n}\to F_{n}.

Let

0𝒜npCn0\displaystyle 0\to\mathscr{A}_{n}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}_{n}\to 0

be the universal exact sequence on C×FnC\times F_{n}. Recall that 𝒜n\mathscr{A}_{n} is locally free of rank rr with det𝒜n=pC𝔪ndet\det\mathscr{A}_{n}=p_{C}^{*}\mathfrak{m}^{n}\det\mathcal{E}. Then 𝒜n/𝔪𝒜n¯=𝒜n|{q}×Fn\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}=\mathscr{A}_{n}|_{\{q\}\times F_{n}} is locally free of rank rr on FnF_{n} and hence we can define a r1\mathbb{P}^{r-1} bundle fn:Fn(𝒜n/𝔪𝒜n¯)Fnf_{n}:\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\to F_{n}. Let fn(𝒜n/𝔪𝒜n¯)𝒪fn(1)f_{n}^{*}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\to\mathcal{O}_{f_{n}}(1) be the tautological line bundle on Fn(𝒜n/𝔪𝒜n¯)\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}).

Lemma \thelem.

For n0n\geqslant 0, Fn(𝒜n/𝔪𝒜n¯)\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}) is isomorphic to

Fn,n+1\displaystyle F_{n,n+1} {([𝒜n],[𝒜n+1])Fn×Fn+1𝒜n+1𝒜n}\displaystyle\coloneqq\{([\mathcal{A}_{n}],[\mathcal{A}_{n+1}])\in F_{n}\times F_{n+1}\mid\mathcal{A}_{n+1}\subset\mathcal{A}_{n}\subset\mathcal{E}\}

with the reduced structure over FnF_{n}.

Proof.

Let prn:Fn,n+1Fn\operatorname{pr}_{n}:F_{n,n+1}\to F_{n} and prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1} be the natural projections. We first explain this lemma set-theoretically. Fix [𝒜n]Fn[\mathcal{A}_{n}]\in F_{n}. Then a point in prn1([𝒜n])\operatorname{pr}_{n}^{-1}([\mathcal{A}_{n}]) corresponds to a quotient 𝒪C\mathcal{O}_{C}-module 𝒜n𝒱\mathcal{A}_{n}\to\mathcal{V} of length one with Supp𝒱={q}\operatorname{Supp}\mathcal{V}=\{q\}. Since such 𝒱\mathcal{V} is isomorphic to 𝒪C/𝔪\mathcal{O}_{C}/\mathfrak{m}, such quotient 𝒜n𝒱\mathcal{A}_{n}\to\mathcal{V} corresponds to a quotient kk-vector space 𝒜n/𝔪𝒜nV\mathcal{A}_{n}/\mathfrak{m}\mathcal{A}_{n}\to V with dimkV=1\dim_{k}V=1, which is nothing but a point in (𝒜n/𝔪𝒜n)=(𝒜n/𝔪𝒜n¯k([𝒜n]))=fn1([𝒜n])\mathbb{P}(\mathcal{A}_{n}/\mathfrak{m}\mathcal{A}_{n})=\mathbb{P}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}\otimes k([\mathcal{A}_{n}]))=f_{n}^{-1}([\mathcal{A}_{n}]). Hence there exists a canonical bijection between Fn,n+1F_{n,n+1} and Fn(𝒜n/𝔪𝒜n¯)\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}).

We can construct this bijection as an isomorphism as follows. For simplicity, Fn\mathbb{P}_{F_{n}} denotes Fn(𝒜n/𝔪𝒜n¯)\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}). Let

ι:Fn={q}×FnC×Fn\iota:\mathbb{P}_{F_{n}}=\{q\}\times\mathbb{P}_{F_{n}}\hookrightarrow C\times\mathbb{P}_{F_{n}}

be the natural immersion. Since ((idC×fn)𝒜n)|{q}×Fn=(idC×fn)(𝒜n|{q}×Fn)=ιfn(𝒜n/𝔪𝒜n¯)\left((\operatorname{id}_{C}\times f_{n})^{*}\mathscr{A}_{n}\right)|_{\{q\}\times\mathbb{P}_{F_{n}}}=(\operatorname{id}_{C}\times f_{n})^{*}(\mathscr{A}_{n}|_{\{q\}\times F_{n}})=\iota_{*}f_{n}^{*}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}), we can consider the composite map

(3.1) (idC×fn)𝒜nιfn(𝒜n/𝔪𝒜n¯)ι𝒪fn(1)\displaystyle(\operatorname{id}_{C}\times f_{n})^{*}\mathscr{A}_{n}\to\iota_{*}f_{n}^{*}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\to\iota_{*}\mathcal{O}_{f_{n}}(1)

on C×FnC\times\mathbb{P}_{F_{n}}. Let 𝒜\mathscr{A}^{\prime} be the kernel of 3.1. Then we have a diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒜\textstyle{\mathscr{A}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pC\textstyle{p_{C}^{*}\mathcal{E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pC/𝒜\textstyle{p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(idC×fn)𝒜n\textstyle{(\operatorname{id}_{C}\times f_{n})^{*}\mathscr{A}_{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pC\textstyle{p_{C}^{*}\mathcal{E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(idC×fn)n\textstyle{(\operatorname{id}_{C}\times f_{n})^{*}\mathscr{B}_{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

on C×FnC\times\mathbb{P}_{F_{n}}. By the snake lemma, we have an exact sequence

(3.2) 0ι𝒪fn(1)pC/𝒜(idC×fn)n0.\displaystyle 0\to\iota_{*}\mathcal{O}_{f_{n}}(1)\to p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime}\to(\operatorname{id}_{C}\times f_{n})^{*}\mathscr{B}_{n}\to 0.

Since ι𝒪fn(1)\iota_{*}\mathcal{O}_{f_{n}}(1) and (idC×fn)n(\operatorname{id}_{C}\times f_{n})^{*}\mathscr{B}_{n} are flat over Fn\mathbb{P}_{F_{n}}, so is pC/𝒜p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime}. Since 𝒜\mathscr{A}^{\prime} is the kernel of 3.2, we see that 𝒜\mathscr{A}^{\prime} is a locally free of rank rr with det𝒜=𝔪(idC×fn)det𝒜n=pC𝔪n+1det\det\mathscr{A}^{\prime}=\mathfrak{m}(\operatorname{id}_{C}\times f_{n})^{*}\det\mathscr{A}_{n}=p_{C}^{*}\mathfrak{m}^{n+1}\det\mathcal{E}. Hence 0𝒜pCpC/𝒜00\to\mathscr{A}^{\prime}\to p_{C}^{*}\mathcal{E}\to p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime}\to 0 induces a morphism μn+1:FnFn+1=QuotCn+1()q\mu_{n+1}:\mathbb{P}_{F_{n}}\to F_{n+1}=\operatorname{Quot}_{C}^{n+1}(\mathcal{E})_{q}. Since 𝒜(idC×fn)𝒜n\mathscr{A}^{\prime}\subset(\operatorname{id}_{C}\times f_{n})^{*}\mathscr{A}_{n}, the image of fn×μn+1:FnFn×Fn+1f_{n}\times\mu_{n+1}:\mathbb{P}_{F_{n}}\to F_{n}\times F_{n+1} is contained in Fn,n+1F_{n,n+1}.

The inverse of fn×μn+1f_{n}\times\mu_{n+1} is constructed as follows. The composite morphism C×Fn,n+1idC×priC×FipriFiC\times F_{n,n+1}\xrightarrow{\operatorname{id}_{C}\times\operatorname{pr}_{i}}C\times F_{i}\xrightarrow{\operatorname{pr}_{i}}F_{i} is denoted by pr~i\tilde{\operatorname{pr}}_{i}. Then we have a diagram

0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr~n+1𝒜n+1\textstyle{\tilde{\operatorname{pr}}_{n+1}^{*}\mathscr{A}_{n+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pC\textstyle{p_{C}^{*}\mathcal{E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr~n+1n+1\textstyle{\tilde{\operatorname{pr}}_{n+1}^{*}\mathscr{B}_{n+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϖ\scriptstyle{\varpi}0\textstyle{0}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr~n𝒜n\textstyle{\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pC\textstyle{p_{C}^{*}\mathcal{E}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr~nn\textstyle{\tilde{\operatorname{pr}}_{n}^{*}\mathscr{B}_{n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

on C×Fn,n+1C\times F_{n,n+1}. Hence

(3.3) pr~n𝒜n/pr~n+1𝒜n+1¯kerϖ¯\displaystyle\overline{\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}/\tilde{\operatorname{pr}}_{n+1}^{*}\mathscr{A}_{n+1}}\simeq\overline{\ker\varpi}

is locally free of rank one on Fn,n+1F_{n,n+1}. Since detpr~n+1𝒜n+1=pC𝔪n+1det=𝔪detpr~n𝒜n\det\tilde{\operatorname{pr}}_{n+1}^{*}\mathscr{A}_{n+1}=p_{C}^{*}\mathfrak{m}^{n+1}\det\mathcal{E}=\mathfrak{m}\det\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}, we have 𝔪pr~n𝒜npr~n+1𝒜n+1\mathfrak{m}\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}\subset\tilde{\operatorname{pr}}_{n+1}^{*}\mathscr{A}_{n+1} by Cramer’s rule and hence 3.3 is a quotient of

pr~n𝒜n/𝔪pr~n𝒜n¯=prn(𝒜n/𝔪𝒜n¯).\displaystyle\overline{\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}/\mathfrak{m}\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}}=\operatorname{pr}_{n}^{*}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}).

Hence prn(𝒜n/𝔪𝒜n¯)pr~n𝒜n/pr~n+1𝒜n+1¯\operatorname{pr}_{n}^{*}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\to\overline{\tilde{\operatorname{pr}}_{n}^{*}\mathscr{A}_{n}/\tilde{\operatorname{pr}}_{n+1}^{*}\mathscr{A}_{n+1}} induces a morphism Fn,n+1FnF_{n,n+1}\to\mathbb{P}_{F_{n}}. By construction, this is the inverse of fn×μn+1:FnFn,n+1f_{n}\times\mu_{n+1}:\mathbb{P}_{F_{n}}\to F_{n,n+1}. ∎

By § 3, prn:Fn,n+1Fn\operatorname{pr}_{n}:F_{n,n+1}\to F_{n} is a r1\mathbb{P}^{r-1}-bundle. On the other hand, prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1} is birational as follows.

Lemma \thelem.

Set U{[n+1]Fn+1n+1𝒪C/𝔪n+1}U\coloneqq\{[\mathcal{E}\twoheadrightarrow\mathcal{B}_{n+1}]\in F_{n+1}\mid\mathcal{B}_{n+1}\simeq\mathcal{O}_{C}/\mathfrak{m}^{n+1}\}. Then

  1. (1)

    prn,n+1:Fn,n+1Fn+1\operatorname{pr}_{n,n+1}:F_{n,n+1}\to F_{n+1} is an isomorphism over UU.

  2. (2)

    The dimension of the fiber of prn+1\operatorname{pr}_{n+1} over a point in Fn+1UF_{n+1}\setminus U is positive.

  3. (3)

    The codimension of prn+11(Fn+1U)\operatorname{pr}_{n+1}^{-1}(F_{n+1}\setminus U) in Fn,n+1F_{n,n+1} is one.

Proof.

Let [𝒜n+1]Fn+1[\mathcal{A}_{n+1}]\in F_{n+1} be a point corresponding to 0𝒜n+1n+100\to\mathcal{A}_{n+1}\to\mathcal{E}\to\mathcal{B}_{n+1}\to 0. Let n+1={bn+1𝔪b=0}\mathcal{B}^{\prime}_{n+1}=\{b\in\mathcal{B}_{n+1}\mid\mathfrak{m}b=0\}. Then the fiber prn+11([𝒜n+1])\operatorname{pr}_{n+1}^{-1}([\mathcal{A}_{n+1}]) is canonically identified with Gr(1,n+1)\mathrm{Gr}(1,\mathcal{B}^{\prime}_{n+1}) as follows: A point in the fiber prn+11([𝒜n+1])\operatorname{pr}_{n+1}^{-1}([\mathcal{A}_{n+1}]) corresponds to a quotient n+1n\mathcal{B}_{n+1}\to\mathcal{B}_{n} of length nn. Such quotient corresponds to a submodule 𝒞n+1\mathcal{C}\subset\mathcal{B}_{n+1} of length one. Since such a submodule 𝒞\mathcal{C} is isomorphic to 𝒪C/𝔪\mathcal{O}_{C}/\mathfrak{m} and hence 𝔪𝒞=0\mathfrak{m}\mathcal{C}=0, a submodule 𝒞n+1\mathcal{C}\subset\mathcal{B}_{n+1} of length one is nothing but a one dimensional subspace of n+1\mathcal{B}^{\prime}_{n+1}. Hence there exists a bijection between the fiber prn+11([𝒜n+1])\operatorname{pr}_{n+1}^{-1}([\mathcal{A}_{n+1}]) and Gr(1,n+1)\mathrm{Gr}(1,\mathcal{B}^{\prime}_{n+1}).
(1) If n+1𝒪C/𝔪n+1\mathcal{B}_{n+1}\simeq\mathcal{O}_{C}/\mathfrak{m}^{n+1}, it holds that n+1=𝔪nn+1\mathcal{B}^{\prime}_{n+1}=\mathfrak{m}^{n}\mathcal{B}_{n+1} and n+1/n+1𝒪C/𝔪n\mathcal{B}_{n+1}/\mathcal{B}^{\prime}_{n+1}\simeq\mathcal{O}_{C}/\mathfrak{m}^{n}. Hence for the universal exact sequence 0𝒜n+1pCn+100\to\mathscr{A}_{n+1}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}_{n+1}\to 0 on C×Fn+1C\times F_{n+1}, the quotient n+1/𝔪nn+1\mathscr{B}_{n+1}/\mathfrak{m}^{n}\mathscr{B}_{n+1} is flat of length nn over UU. Hence pC|C×U(n+1/𝔪nn+1)|C×Up_{C}^{*}\mathcal{E}|_{C\times U}\to(\mathscr{B}_{n+1}/\mathfrak{m}^{n}\mathscr{B}_{n+1})|_{C\times U} gives a morphism g:UFng:U\to F_{n}. By construction, (g,idU):UFn,n+1(g,\operatorname{id}_{U}):U\to F_{n,n+1} is the inverse of prn,n+1\operatorname{pr}_{n,n+1} over UU.
(2) If n+1≄𝒪C/𝔪n+1\mathcal{B}_{n+1}\not\simeq\mathcal{O}_{C}/\mathfrak{m}^{n+1}, it holds that n+1i=1l𝒪C/𝔪ni\mathcal{B}_{n+1}\simeq\bigoplus_{i=1}^{l}\mathcal{O}_{C}/\mathfrak{m}^{n_{i}} with i=1lni=n+1\sum_{i=1}^{l}n_{i}=n+1 for some l2l\geqslant 2 and ni1n_{i}\geqslant 1 by the classification of modules over PID. Then n+1i=1l𝔪ni1/𝔪nikl\mathcal{B}^{\prime}_{n+1}\simeq\bigoplus_{i=1}^{l}\mathfrak{m}^{n_{i}-1}/\mathfrak{m}^{n_{i}}\simeq k^{l} and hence the dimension of Gr(1,n+1)=l1\mathrm{Gr}(1,\mathcal{B}^{\prime}_{n+1})=\mathbb{P}^{l-1} is positive.
(3) Since codimFn+1(Fn+1U)=2\operatorname{codim}_{F_{n+1}}(F_{n+1}\setminus U)=2 by [BJS24, §5], the codimension of the exceptional locus prn+11(Fn+1U)\operatorname{pr}_{n+1}^{-1}(F_{n+1}\setminus U) is one by (1), (2) and the irreducibility of Fn,n+1F_{n,n+1}. ∎

Proposition \theprop.

For each n1n\geqslant 1, the following hold.

  1. (1)

    FnF_{n} is \mathbb{Q}-factorial and PicFn=𝒪Fn(1)\operatorname{Pic}F_{n}=\mathbb{Z}\mathcal{O}_{F_{n}}(1), where 𝒪Fn(1)=𝒪Gr(/𝔪n,n)(1)|Fn\mathcal{O}_{F_{n}}(1)=\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1)|_{F_{n}} is the restriction of 𝒪Gr(/𝔪n,n)(1)\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1) to FnGr(/𝔪n,n)F_{n}\subset\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n).

  2. (2)

    KFn=𝒪Fn(r)K_{F_{n}}=\mathcal{O}_{F_{n}}(-r) and KFn,n+1=prn+1KFnK_{F_{n,n+1}}=\operatorname{pr}_{n+1}^{*}K_{F_{n}} hold.

  3. (3)

    prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1} is a divisorial contraction.

  4. (4)

    For n2n\geqslant 2, the singular locus of FnF_{n} is {[n]Fnn≄𝒪C/𝔪n}\{[\mathcal{E}\twoheadrightarrow\mathcal{B}_{n}]\in F_{n}\mid\mathcal{B}_{n}\not\simeq\mathcal{O}_{C}/\mathfrak{m}^{n}\}, which is irreducible of codimension two in FnF_{n}.

Proof.

We show (1) and (2) by the induction of nn. Since F1=(/𝔪)r1F_{1}=\mathbb{P}(\mathcal{E}/\mathfrak{m}\mathcal{E})\simeq\mathbb{P}^{r-1}, (1), (2) hold for n=1n=1. We assume (1), (2) for nn and show (1), (2) for n+1n+1.

By induction hypothesis, Fn(𝒜n/𝔪𝒜n¯)=Fn,n+1\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})=F_{n,n+1} is \mathbb{Q}-factorial with PicFn(𝒜n/𝔪𝒜n¯)=𝒪fn(1)fn𝒪Fn(1)\operatorname{Pic}\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})=\mathbb{Z}\mathcal{O}_{f_{n}}(1)\oplus\mathbb{Z}f_{n}^{*}\mathcal{O}_{F_{n}}(1), where 𝒪fn(1)\mathcal{O}_{f_{n}}(1) is the tautological line bundle of fn:Fn(𝒜n/𝔪𝒜n¯)Fnf_{n}:\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\to F_{n}. Since prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1} is birational and contracts a divisor by § 3, Fn+1F_{n+1} is \mathbb{Q}-factorial with Picard number one.

Recall that the embedding FiGr(/𝔪i,i)F_{i}\hookrightarrow\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{i}\mathcal{E},i) is induced by the quotient

(/𝔪i)𝒪Fi=pC/pC𝔪qi¯i¯\displaystyle(\mathcal{E}/\mathfrak{m}^{i}\mathcal{E})\otimes\mathcal{O}_{F_{i}}=\overline{p_{C}^{*}\mathcal{E}/p_{C}^{*}\mathfrak{m}_{q}^{i}\mathcal{E}}\to\overline{\mathscr{B}_{i}}

on FiF_{i} and hence 𝒪Fi(1)=deti¯\mathcal{O}_{F_{i}}(1)=\det\overline{\mathscr{B}_{i}} by § 2 for i=n,n+1i=n,n+1. On the other hand, prn+1:Fn(𝒜n/𝔪𝒜n¯)=Fn,n+1Fn+1\operatorname{pr}_{n+1}:\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})=F_{n,n+1}\to F_{n+1} is induced by the quotient pCpC/𝒜p_{C}^{*}\mathcal{E}\to p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime} on C×Fn(𝒜n/𝔪𝒜n¯)C\times\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}), where 𝒜\mathscr{A}^{\prime} in the kernel of 3.1. Hence prn+1:Fn(𝒜n/𝔪𝒜n¯)=Fn,n+1Fn+1Gr(/𝔪n+1,n+1)\operatorname{pr}_{n+1}:\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})=F_{n,n+1}\to F_{n+1}\subset\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E},n+1) is induced by the quotient

(/𝔪n+1)𝒪Fn(𝒜n/𝔪𝒜n¯)=p(pC/pC𝔪qn+1)p(pC/𝒜)\displaystyle(\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E})\otimes\mathcal{O}_{\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})}={p}_{*}(p_{C}^{*}\mathcal{E}/p_{C}^{*}\mathfrak{m}_{q}^{n+1}\mathcal{E})\to p_{*}(p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime})

on Fn(𝒜n/𝔪𝒜n¯)\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}), where p:C×Fn(𝒜n/𝔪𝒜n¯)Fn(𝒜n/𝔪𝒜n¯)p:C\times\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\to\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}) is the second projection. Taking pp_{*} of 3.2, we obtain

0𝒪fn(1)p(pC/𝒜)fnn¯0.\displaystyle 0\to\mathcal{O}_{f_{n}}(1)\to p_{*}(p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime})\to f_{n}^{*}\overline{\mathscr{B}_{n}}\to 0.

Thus it holds that

prn+1𝒪Fn+1(1)=detp(pC/𝒜)=𝒪fn(1)detfnn¯=𝒪fn(1)fn𝒪Fn(1),\displaystyle\operatorname{pr}_{n+1}^{*}\mathcal{O}_{F_{n+1}}(1)=\det p_{*}(p_{C}^{*}\mathcal{E}/\mathscr{A}^{\prime})=\mathcal{O}_{f_{n}}(1)\otimes\det f_{n}^{*}\overline{\mathscr{B}_{n}}=\mathcal{O}_{f_{n}}(1)\otimes f_{n}^{*}\mathcal{O}_{F_{n}}(1),

which is primitive in PicFn(𝒜n/𝔪𝒜n¯)=𝒪fn(1)fn𝒪Fn(1)\operatorname{Pic}\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})=\mathbb{Z}\mathcal{O}_{f_{n}}(1)\oplus\mathbb{Z}f_{n}^{*}\mathcal{O}_{F_{n}}(1). Hence PicFn+1\operatorname{Pic}F_{n+1} is generated by 𝒪Fn+1(1)\mathcal{O}_{F_{n+1}}(1), which proves (1) for n+1n+1.

To show (2), we determine det(𝒜n/𝔪𝒜n¯)PicFn\det(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})\in\operatorname{Pic}F_{n} first. For a generator t𝔪𝒪C,qt\in\mathfrak{m}\mathcal{O}_{C,q}, the kernel of pC/pC𝔪n+1t×pC/pC𝔪n+1p_{C}^{*}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}\xrightarrow{t\times}p_{C}^{*}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E} on C×FnC\times F_{n} is pC𝔪n/pC𝔪n+1p_{C}^{*}\mathfrak{m}^{n}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}, which is contained in 𝒜n/pC𝔪n+1\mathscr{A}_{n}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}. Hence we have an exact sequence

0pC𝔪n/pC𝔪n+1𝒜n/pC𝔪n+1t×𝒜n/pC𝔪n+1𝒜n/𝔪𝒜n0.\displaystyle 0\to p_{C}^{*}\mathfrak{m}^{n}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}\to\mathscr{A}_{n}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}\xrightarrow{t\times}\mathscr{A}_{n}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}\to\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}\to 0.

Taking pushforwards, we have an exact sequence

0pC𝔪n/pC𝔪n+1¯𝒜n/pC𝔪n+1¯𝒜n/pC𝔪n+1¯𝒜n/𝔪𝒜n¯0\displaystyle 0\to\overline{p_{C}^{*}\mathfrak{m}^{n}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}}\to\overline{\mathscr{A}_{n}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}}\to\overline{\mathscr{A}_{n}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}}\to\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}\to 0

of locally free sheaves on FnF_{n}. Since pC𝔪n/pC𝔪n+1¯=(𝔪n/𝔪n+1)𝒪Fn\overline{p_{C}^{*}\mathfrak{m}^{n}\mathcal{E}/p_{C}^{*}\mathfrak{m}^{n+1}\mathcal{E}}=(\mathfrak{m}^{n}\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E})\otimes\mathcal{O}_{F_{n}} is a trivial bundle of rank rr, it holds that det(𝒜n/𝔪𝒜n¯)=𝒪Fn\det(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})=\mathcal{O}_{F_{n}}.

Since KFn=𝒪Fn(r)K_{F_{n}}=\mathcal{O}_{F_{n}}(-r) by induction hypothesis, we have

KFn(𝒜n/𝔪𝒜n¯)=𝒪fn(r)fn(KFndet(𝒜n/𝔪𝒜n¯))=𝒪fn(r)fn𝒪Fn(r)=prn+1𝒪Fn+1(r).K_{\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})}=\mathcal{O}_{f_{n}}(-r)\otimes f_{n}^{*}(K_{F_{n}}\otimes\det(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}}))=\mathcal{O}_{f_{n}}(-r)\otimes f_{n}^{*}\mathcal{O}_{F_{n}}(-r)=\operatorname{pr}_{n+1}^{*}\mathcal{O}_{F_{n+1}}(-r).

Thus KFn+1=prn+1KFn(𝒜n/𝔪𝒜n¯)=𝒪Fn+1(r)K_{F_{n+1}}={\operatorname{pr}_{n+1}}_{*}K_{\mathbb{P}_{F_{n}}(\overline{\mathscr{A}_{n}/\mathfrak{m}\mathscr{A}_{n}})}=\mathcal{O}_{F_{n+1}}(-r), which proves (2) for n+1n+1.

Hence (1) and (2) are proved for any n1n\geqslant 1. Since Fn,n+1F_{n,n+1} and Fn+1F_{n+1} are \mathbb{Q}-factorial with Picard number two and one respectively, (3) holds.
(4) Assume n2n\geqslant 2. By § 3, Z={[n]Fnn≄𝒪C/𝔪n}Z=\{[\mathcal{E}\twoheadrightarrow\mathcal{B}_{n}]\in F_{n}\mid\mathcal{B}_{n}\not\simeq\mathcal{O}_{C}/\mathfrak{m}^{n}\} is the image of the exceptional divisor of prn:Fn1,nFn\operatorname{pr}_{n}:F_{n-1,n}\to F_{n}. Since the discrepancy of the exceptional divisor of prn:Fn1,nFn\operatorname{pr}_{n}:F_{n-1,n}\to F_{n} is zero by (2) of this proposition, {[n]Fnn≄𝒪C/𝔪n}\{[\mathcal{E}\twoheadrightarrow\mathcal{B}_{n}]\in F_{n}\mid\mathcal{B}_{n}\not\simeq\mathcal{O}_{C}/\mathfrak{m}^{n}\} is contained in the singular locus of FnF_{n}. On the other hand, FnF_{n} is smooth at [n][\mathcal{E}\twoheadrightarrow\mathcal{B}_{n}] if n𝒪C/𝔪n\mathcal{B}_{n}\simeq\mathcal{O}_{C}/\mathfrak{m}^{n} by [GS20, Lemma 3.3]. Thus ZZ is the singular locus of FnF_{n}. Since ZZ is the image of the exceptional divisor of the divisorial contraction prn+1\operatorname{pr}_{n+1}, ZZ is irreducible. By [BJS24, §5], codimFnZ=2\operatorname{codim}_{F_{n}}Z=2. ∎

4. Divisor class groups

In this section, let Fn=QuotCn()qF_{n}=\operatorname{Quot}_{C}^{n}(\mathcal{E})_{q} be the punctual Quot scheme with r=rank2r=\operatorname{rank}\mathcal{E}\geqslant 2 as in the previous section.

Proposition \theprop.

There exists a prime divisor HFnH\subset F_{n} such that the divisor class group Cl(Fn)\operatorname{Cl}(F_{n}) is generated by the class [H][H] and nH𝒪Fn(1)=𝒪Gr(/𝔪n,n)(1)|FnnH\sim\mathcal{O}_{F_{n}(1)}=\mathcal{O}_{\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n)}(1)|_{F_{n}}.

Proof.

If n=1n=1, F1r1F_{1}\simeq\mathbb{P}^{r-1} and hence we can take H𝒪r1(1)H\sim\mathcal{O}_{\mathbb{P}^{r-1}}(1).

Let n2n\geqslant 2. We may assume that =V𝒪C\mathcal{E}=V\otimes\mathcal{O}_{C} for V=krV=k^{r}. Let e1,,ere_{1},\dots,e_{r} be the standard basis of VV.

The smooth locus of FnF_{n} is {[V𝒪Cn]Fnn𝒪C/𝔪n}\{[V\otimes\mathcal{O}_{C}\twoheadrightarrow\mathcal{B}_{n}]\in F_{n}\mid\mathcal{B}_{n}\simeq\mathcal{O}_{C}/\mathfrak{m}^{n}\} by § 3 (4). Hence the smooth locus is covered by open subsets U1,,UrU_{1},\dots,U_{r} defined by

Ui{[V𝒪Cβ𝒪C/𝔪n]Fnthe image β(ei) is invertible in 𝒪C/𝔪n}U_{i}\coloneqq\{[V\otimes\mathcal{O}_{C}\stackrel{{\scriptstyle\beta}}{{\twoheadrightarrow}}\mathcal{O}_{C}/\mathfrak{m}^{n}]\in F_{n}\mid\text{the image $\beta(e_{i})$ is invertible in $\mathcal{O}_{C}/\mathfrak{m}^{n}$}\}

as explained in [BJS24, §5]. Furthermore, each UiU_{i} is isomorphic to 𝔸n(r1)\mathbb{A}^{n(r-1)}. For example, we have an isomorphism 𝔸n(r1)U1\mathbb{A}^{n(r-1)}\to U_{1} defined by

β(e1)\displaystyle\beta(e_{1}) =1,\displaystyle=1,
β(e2)\displaystyle\beta(e_{2}) =a2,0+a2,1t++a2,n1tn1,\displaystyle=a_{2,0}+a_{2,1}t+\cdots+a_{2,n-1}t^{n-1},
\displaystyle\vdots
β(er)\displaystyle\beta(e_{r}) =ar,0+ar,1t++ar,n1tn1,\displaystyle=a_{r,0}+a_{r,1}t+\cdots+a_{r,n-1}t^{n-1},

where tt is a generator of the ideal 𝔪/𝔪n𝒪C/𝔪n\mathfrak{m}/\mathfrak{m}^{n}\subset\mathcal{O}_{C}/\mathfrak{m}^{n} and ai,ja_{i,j}’s are the coordinates of 𝔸n(r1)\mathbb{A}^{n(r-1)}. Then U1Ui=(ai,0=0)U1=𝔸n(r1)U_{1}\setminus U_{i}=(a_{i,0}=0)\subset U_{1}=\mathbb{A}^{n(r-1)} and hence U1Ui𝔸n(r1)1U_{1}\setminus U_{i}\simeq\mathbb{A}^{n(r-1)-1}. Set

HU1U2¯Fn,\displaystyle H\coloneqq\overline{U_{1}\setminus U_{2}}\subset F_{n},

which is a prime divisor of FnF_{n}.

Consider the composite morphism 𝔸n(r1)U1FnGr(V𝒪C/𝔪n,n)\mathbb{A}^{n(r-1)}\simeq U_{1}\subset F_{n}\hookrightarrow\mathrm{Gr}(V\otimes\mathcal{O}_{C}/\mathfrak{m}^{n},n). Since V𝒪C/𝔪nV\otimes\mathcal{O}_{C}/\mathfrak{m}^{n} has a basis {eitj1ir,0jn1}\{e_{i}\otimes t^{j}\mid 1\leqslant i\leqslant r,0\leqslant j\leqslant n-1\} and β(eitj)=tjβ(ei)\beta(e_{i}\otimes t^{j})=t^{j}\beta(e_{i}) for β:V𝒪C𝒪C/𝔪n\beta:V\otimes\mathcal{O}_{C}\twoheadrightarrow\mathcal{O}_{C}/\mathfrak{m}^{n}, the morphism 𝔸n(r1)Gr(V𝒪C/𝔪n,n)\mathbb{A}^{n(r-1)}\hookrightarrow\mathrm{Gr}(V\otimes\mathcal{O}_{C}/\mathfrak{m}^{n},n) is described by the matrix of size n×nrn\times nr

(A1A2Ar),\displaystyle\begin{pmatrix}A_{1}&A_{2}&\cdots&A_{r}\end{pmatrix},

where A1=EnA_{1}=E_{n} is the identity matrix of size nn and

Ai=(ai,000ai,1ai,0ai,2ai,1ai,00ai,r1ai,r2ai,0)\displaystyle A_{i}=\begin{pmatrix}a_{i,0}&0&\cdots&\cdots&0\\ a_{i,1}&a_{i,0}&\ddots&&\vdots\\ a_{i,2}&a_{i,1}&a_{i,0}&\ddots&\vdots\\ \vdots&\vdots&&\ddots&0\\ a_{i,r-1}&a_{i,r-2}&\cdots&\cdots&a_{i,0}\end{pmatrix}

for 2ir2\leqslant i\leqslant r. For the Plücker coordinates p1,,np_{1,\dots,n} and pn+1,,2np_{n+1,\dots,2n} on Gr(V𝒪C/𝔪n,n)\mathrm{Gr}(V\otimes\mathcal{O}_{C}/\mathfrak{m}^{n},n), we have

p1,,n|U1=detA1=1,pn+1,,2n|U1=detA2=a2,0n.\displaystyle p_{1,\dots,n}|_{U_{1}}=\det A_{1}=1,\quad p_{n+1,\dots,2n}|_{U_{1}}=\det A_{2}=a_{2,0}^{n}.

Hence it holds that

div(p1,,n)|U1=0,div(pn+1,,2n)|U1=nH|U1.\displaystyle\operatorname{div}(p_{1,\dots,n})|_{U_{1}}=0,\quad\operatorname{div}(p_{n+1,\dots,2n})|_{U_{1}}=nH|_{U_{1}}.

By symmetry, we have div(pn+1,,2n)|U2=0\operatorname{div}(p_{n+1,\dots,2n})|_{U_{2}}=0. Since U2H=U2U1U2¯=U_{2}\cap H=U_{2}\cap\overline{U_{1}\setminus U_{2}}=\emptyset, it holds that div(pn+1,,2n)|U1U2=nH|U1U2\operatorname{div}(p_{n+1,\dots,2n})|_{U_{1}\cup U_{2}}=nH|_{U_{1}\cup U_{2}}.

Recall that the singular locus Fn(U1Ur)F_{n}\setminus(U_{1}\cup\cdots\cup U_{r}) has codimension two in FnF_{n}. For i3i\geqslant 3, Ui(U1U2)U_{i}\setminus(U_{1}\cup U_{2}) is isomorphic to 𝔸n(r1)2\mathbb{A}^{n(r-1)-2} and hence (U1Ur)(U1U2)(U_{1}\cup\cdots\cup U_{r})\setminus(U_{1}\cup U_{2}) has codimension two in U1UrU_{1}\cup\cdots\cup U_{r}. Thus Fn(U1U2)F_{n}\setminus(U_{1}\cup U_{2}) has codimension two in FnF_{n} and hence Cl(Fn)=Cl(U1U2)\operatorname{Cl}(F_{n})=\operatorname{Cl}(U_{1}\cup U_{2}). Since U1H=U1U2U_{1}\cap H=U_{1}\setminus U_{2} and U2H=U_{2}\cap H=\emptyset, we have (U1U2)H=U2(U_{1}\cup U_{2})\setminus H=U_{2}. Then there exists an exact sequence

[H|U1U2]Cl(U1U2)Cl(U2)0.\displaystyle\mathbb{Z}[H|_{U_{1}\cup U_{2}}]\to\operatorname{Cl}(U_{1}\cup U_{2})\to\operatorname{Cl}(U_{2})\to 0.

Since Cl(U2)Cl(𝔸n(r1))=0\operatorname{Cl}(U_{2})\simeq\operatorname{Cl}(\mathbb{A}^{n(r-1)})=0, it holds that Cl(Fn)=Cl(U1U2)=[H]\operatorname{Cl}(F_{n})=\operatorname{Cl}(U_{1}\cup U_{2})=\mathbb{Z}[H]. Since div(pn+1,,2n)|U1U2=nH|U1U2\operatorname{div}(p_{n+1,\dots,2n})|_{U_{1}\cup U_{2}}=nH|_{U_{1}\cup U_{2}} and codimFn(U1U2)=2\operatorname{codim}_{F_{n}}(U_{1}\cup U_{2})=2, it holds that nH=div(pn+1,,2n)𝒪Fn(1)nH=\operatorname{div}(p_{n+1,\dots,2n})\sim\mathcal{O}_{F_{n}}(1). ∎

Proof of Theorem 1.1.

(1)-(4) follow from Propositions 2 and 3. (5) is nothing but § 4. ∎

5. The case r=2r=2

We use the notation in §3. The purpose of this section is to give a description of the exceptional divisor of prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1} for r=2r=2. Throughout this section, we assume r=rank=2r=\operatorname{rank}\mathcal{E}=2 and hence dimFn=n(r1)=n\dim F_{n}=n(r-1)=n.

Lemma \thelem.

For n1n\geqslant 1, there exists a natural embedding

(5.1) Fn1Fn+1:[𝒜n1][𝔪𝒜n1].\displaystyle F_{n-1}\hookrightarrow F_{n+1}\ :\ [\mathcal{A}_{n-1}]\mapsto[\mathfrak{m}\mathcal{A}_{n-1}].
Proof.

Let 0𝒜n1pCn100\to\mathscr{A}_{n-1}\to p_{C}^{*}\mathcal{E}\to\mathscr{B}_{n-1}\to 0 be the universal exact sequence on C×Fn1C\times F_{n-1}. Then we have an exact sequence

0𝒜n1/𝔪𝒜n1pC/𝔪𝒜n1n10.0\to\mathscr{A}_{n-1}/\mathfrak{m}\mathscr{A}_{n-1}\to p_{C}^{*}\mathcal{E}/\mathfrak{m}\mathscr{A}_{n-1}\to\mathscr{B}_{n-1}\to 0.

Since 𝒜n1/𝔪𝒜n1\mathscr{A}_{n-1}/\mathfrak{m}\mathscr{A}_{n-1} and n1\mathscr{B}_{n-1} are flat over Fn1F_{n-1} of length 22 and n1n-1 respectively, pC/𝔪𝒜n1p_{C}^{*}\mathcal{E}/\mathfrak{m}\mathscr{A}_{n-1} is flat over Fn1F_{n-1} of length n+1n+1. Since det𝔪𝒜n1=𝔪2det𝒜n=pC𝔪n+1det\det\mathfrak{m}\mathscr{A}_{n-1}=\mathfrak{m}^{2}\det\mathscr{A}_{n}=p_{C}^{*}\mathfrak{m}^{n+1}\det\mathcal{E}, the exact sequence 0𝔪𝒜n1pCpC/𝔪𝒜n100\to\mathfrak{m}\mathscr{A}_{n-1}\to p_{C}^{*}\mathcal{E}\to p_{C}^{*}\mathcal{E}/\mathfrak{m}\mathscr{A}_{n-1}\to 0 induces the morphism 5.1.

Furthermore, 5.1 is an embedding since it is the restriction to Fn1Gr(/𝔪n1,n1)F_{n-1}\subset\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n-1}\mathcal{E},n-1) of the embedding

Gr(/𝔪n1,n1)\displaystyle\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n-1}\mathcal{E},n-1) Gr(/𝔪n,n1)\displaystyle\hookrightarrow\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n}\mathcal{E},n-1)
Gr(𝔪/𝔪n+1,n1)Gr(/𝔪n+1,n+1),\displaystyle\simeq\mathrm{Gr}(\mathfrak{m}\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E},n-1)\hookrightarrow\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E},n+1),

induced by the surjection /𝔪n/𝔪n1\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}\to\mathcal{E}/\mathfrak{m}^{n-1}\mathcal{E} and an isomorphism /𝔪n𝔪/𝔪n+1/𝔪n+1\mathcal{E}/\mathfrak{m}^{n}\mathcal{E}\simeq\mathfrak{m}\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E}\subset\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E}. The last embedding is obtained as Gr(𝔪/𝔪n+1,n1)=Gr(n+1,𝔪/𝔪n+1)Gr(n+1,/𝔪n+1)=Gr(/𝔪n+1,n+1)\mathrm{Gr}(\mathfrak{m}\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E},n-1)=\mathrm{Gr}(n+1,\mathfrak{m}\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E})\subset\mathrm{Gr}(n+1,\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E})=\mathrm{Gr}(\mathcal{E}/\mathfrak{m}^{n+1}\mathcal{E},n+1). ∎

Remark \therem.

We can check that the embedding 5.1 is the same as the one constructed in [BJS24, §6.4, Proposition 9.1].

Lemma \thelem.

For n1n\geqslant 1, the embedding 5.1 induces an embedding

(5.2) Fn1,nFn,n+1:([𝒜n1],[𝒜n])([𝒜n],[𝔪𝒜n1]).\displaystyle F_{n-1,n}\hookrightarrow F_{n,n+1}\ :\ ([\mathcal{A}_{n-1}],[\mathcal{A}_{n}])\mapsto([\mathcal{A}_{n}],[\mathfrak{m}\mathcal{A}_{n-1}]).
Proof.

The embedding 5.1 induces an embedding Fn1×FnFn×Fn+1:([𝒜n1],[𝒜n])([𝒜n],[𝔪𝒜n1])F_{n-1}\times F_{n}\to F_{n}\times F_{n+1}:([\mathcal{A}_{n-1}],[\mathcal{A}_{n}])\mapsto([\mathcal{A}_{n}],[\mathfrak{m}\mathcal{A}_{n-1}]). If ([𝒜n1],[𝒜n])Fn1,n([\mathcal{A}_{n-1}],[\mathcal{A}_{n}])\in F_{n-1,n}, it holds that 𝒜n1/𝒜n𝒪C/𝔪\mathcal{A}_{n-1}/\mathcal{A}_{n}\simeq\mathcal{O}_{C}/\mathfrak{m} and hence 𝔪𝒜n1𝒜n\mathfrak{m}\mathcal{A}_{n-1}\subset\mathcal{A}_{n}. Thus ([𝒜n],[𝔪𝒜n1])([\mathcal{A}_{n}],[\mathfrak{m}\mathcal{A}_{n-1}]) is contained in Fn,n+1F_{n,n+1}. ∎

The following proposition shows that the exceptional divisor of prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1} is a 1\mathbb{P}^{1}-bundle over Fn1Fn+1F_{n-1}\subset F_{n+1}.

Proposition \theprop.

If n1n\geqslant 1, Fn1,nF_{n-1,n} embedded in Fn,n+1F_{n,n+1} by 5.2 is the exceptional divisor of prn+1:Fn,n+1Fn+1\operatorname{pr}_{n+1}:F_{n,n+1}\to F_{n+1}. The restriction prn+1|Fn1,n:Fn1,nFn+1\operatorname{pr}_{n+1}|_{F_{n-1,n}}:F_{n-1,n}\to F_{n+1} coincides with the 1\mathbb{P}^{1}-bundle prn1:Fn1,nFn1Fn+1\operatorname{pr}_{n-1}:F_{n-1,n}\to F_{n-1}\subset F_{n+1}.

Proof.

By 5.2, prn+1\operatorname{pr}_{n+1} maps ([𝒜n1],[𝒜n])Fn1,n([\mathcal{A}_{n-1}],[\mathcal{A}_{n}])\in F_{n-1,n} to [𝔪𝒜n1]Fn+1[\mathfrak{m}\mathcal{A}_{n-1}]\in F_{n+1}, which is regarded as [𝒜n1]Fn1Fn+1[\mathcal{A}_{n-1}]\in F_{n-1}\subset F_{n+1} under the embedding 5.1. Hence the restriction prn+1|Fn1,n\operatorname{pr}_{n+1}|_{F_{n-1,n}} coincides with prn1:Fn1,nFn1Fn+1\operatorname{pr}_{n-1}:F_{n-1,n}\to F_{n-1}\subset F_{n+1}. Since dimFn1,n=n=dimFn,n+11\dim F_{n-1,n}=n=\dim F_{n,n+1}-1, Fn1,nF_{n-1,n} is the exceptional divisor of prn,n+1\operatorname{pr}_{n,n+1}. ∎

References

  • [BFP20] Massimo Bagnarol, Barbara Fantechi, and Fabio Perroni, On the motive of Quot schemes of zero-dimensional quotients on a curve, New York J. Math. 26 (2020), 138–148. MR 4063954
  • [BGS24] Indranil Biswas, Chandranandan Gangopadhyay, and Ronnie Sebastian, Infinitesimal deformations of some Quot schemes, Int. Math. Res. Not. IMRN (2024), no. 9, 8067–8100. MR 4742855
  • [BJS24] Caucher Birkar, Jia Jia, and Artan Sheshmani, Sheaf stable pairs, quot-schemes, and birational geometry, arXiv:2406.00230, 2024.
  • [FGI+05] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, Fundamental algebraic geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005, Grothendieck’s FGA explained. MR 2222646
  • [GS20] Chandranandan Gangopadhyay and Ronnie Sebastian, Fundamental group schemes of some Quot schemes on a smooth projective curve, J. Algebra 562 (2020), 290–305. MR 4124833
  • [GS21] by same author, Nef cones of some Quot schemes on a smooth projective curve, C. R. Math. Acad. Sci. Paris 359 (2021), 999–1022. MR 4323001
  • [Ric20] Andrea T. Ricolfi, On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl. (9) 144 (2020), 50–68. MR 4175444