This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A remark on elastic graphs with the symmetric cone obstacle

Kensuke Yoshizawa Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan [email protected]
Abstract.

This paper is concerned with the variational problem for the elastic energy defined on symmetric graphs under the unilateral constraint. Assuming that the obstacle function satisfies the symmetric cone condition, we prove (i) uniqueness of minimizers, (ii) loss of regularity of minimizers, and give (iii) complete classification of existence and non-existence of minimizers in terms of the size of obstacle. As an application, we characterize the solution of the obstacle problem as equilibrium of the corresponding dynamical problem.

Key words and phrases:
obstacle problem; elastic energy; shooting method; fourth order.
2020 Mathematics Subject Classification:
49J40; 34B15; 53A04; 53C44

1. Introduction

For a given smooth curve γ2\gamma\subset\mathbb{R}^{2}, Bernoulli–Euler’s elastic energy, also known as bending energy, is defined by

𝒲(γ)=γκ2𝑑s,\mathcal{W}(\gamma)=\int_{\gamma}\kappa^{2}\,ds,

where κ\kappa and ss denote the curvature and the arclength parameter of γ\gamma, respectively. The variational problems of 𝒲\mathcal{W} have been studied as the model of the elastic rods and due to the geometric interest. In this paper we consider curves given as graphs with fixed ends. For a curve written as the graph of a function u:[0,1]u:[0,1]\to\mathbb{R}, the elastic energy of the curve (x,u(x))(x,u(x)) is given by

𝒲(u):=01κu(x)21+u(x)2𝑑x=01(u′′(x)(1+u(x)2)32)21+u(x)2𝑑x,\mathcal{W}(u):=\int_{0}^{1}\kappa_{u}(x)^{2}\sqrt{1+u^{\prime}(x)^{2}}\,dx=\int_{0}^{1}\left(\frac{u^{\prime\prime}(x)}{\left(1+u^{\prime}(x)^{2}\right)^{\frac{3}{2}}}\right)^{2}\sqrt{1+u^{\prime}(x)^{2}}\,dx,

where κu\kappa_{u} denotes the curvature of the curve (x,u(x))(x,u(x)).

Recently, the obstacle problems for 𝒲\mathcal{W} were studied by [7, 14, 16]. This paper is concerned with the minimization problem for 𝒲\mathcal{W} with the unilateral constraint that the curve lies above a given function ψ:[0,1]\psi:[0,1]\to\mathbb{R}. That is, we consider

(M) minvMsym𝒲(v),\displaystyle\min_{v\in M_{\rm sym}}\mathcal{W}(v),

where MsymM_{\rm sym} is a convex set of H(0,1):=H2(0,1)H01(0,1)H(0,1):=H^{2}(0,1)\cap H^{1}_{0}(0,1) as follows:

Msym:={vH(0,1)|vψin[0,1],v(x)=v(1x)for 0x12}.M_{\rm sym}:=\Set{v\in H(0,1)}{v\geq\psi\ \ \text{in}\ \ [0,1],\quad v(x)=v(1-x)\ \ \text{for}\ \ 0\leq x\leq\frac{1}{2}}.

In this paper we say that uu is a solution of (M) if uMsymu\in M_{\rm sym} attains infvMsym𝒲(v)\inf_{v\in M_{\rm sym}}\mathcal{W}(v). We shall assume the following:

Assumption 1.1.

We say that ψ:[0,1]\psi:[0,1]\to\mathbb{R} satisfies the symmetric cone condition if the following hold:

  • (i)

    ψ(x)=ψ(1x)\psi(x)=\psi(1-x)  for  x[0,1]x\in[0,1];

  • (ii)

    ψ(0)<0\psi(0)<0,  ψ(12)>0\psi(\tfrac{1}{2})>0   and

(1.1) ψ(x)=(12x)ψ(0)+2xψ(12)for0x12.\displaystyle\psi(x)=(1-2x)\psi(0)+2x\,\psi\Big{(}\frac{1}{2}\Big{)}\quad\text{for}\quad 0\leq x\leq\frac{1}{2}.

Let 𝖲𝖢\mathsf{SC} denote the class of functions satisfying the symmetric cone condition.

Our concern in this paper is to study the following open problems on (M): solvability in the case of ψ(12)=c\psi(\frac{1}{2})=c_{*}, uniqueness, regularity, under the assumption ψ𝖲𝖢\psi\in\mathsf{SC}. Here

(1.2) c:=2c0=0.8346262684\displaystyle c_{*}:=\frac{2}{c_{0}}=0.8346262684\ldots

and c0c_{0} is a constant given by

c0:=1(1+t2)54𝑑t=(12,34)=πΓ(3/4)Γ(5/4)=2.396280469.c_{0}:=\int_{\mathbb{R}}\frac{1}{(1+t^{2})^{\frac{5}{4}}}\,dt=\mathcal{B}\Big{(}\frac{1}{2},\frac{3}{4}\Big{)}=\sqrt{\pi}\frac{\Gamma(3/4)}{\Gamma(5/4)}=2.396280469\ldots.

With the argument in [7] we see that (M) has a solution if ψ𝖲𝖢\psi\in\mathsf{SC} satisfies ψ(12)<c\psi(\frac{1}{2})<c_{*}. On the other hand, according to [16], (M) has no solution if ψ𝖲𝖢\psi\in\mathsf{SC} satisfies ψ(12)>c\psi(\frac{1}{2})>c_{*}. Moreover, due to the lack of the convexity of 𝒲\mathcal{W}, the uniqueness of solutions to (M) is an outstanding problem. In this paper, we are interested in the following:

  1. (i)

    Is problem (M) solvable under the assumption ψ(12)=c\psi(\frac{1}{2})=c_{*}?

  2. (ii)

    Does the uniqueness of solutions to problem (M) hold?

If uu is a minimizer of 𝒲\mathcal{W} without obstacle, uu satisfies the equation on (0,1)(0,1)

(1.3) 11+(u(x))2ddx(κu(x)1+(u(x))2)+12κu(x)3=0\displaystyle\frac{1}{\sqrt{1+(u^{\prime}(x))^{2}}}\frac{d}{dx}\left(\frac{\kappa_{u}^{\prime}(x)}{\sqrt{1+(u^{\prime}(x))^{2}}}\right)+\frac{1}{2}\kappa_{u}(x)^{3}=0

and the regularity of solutions of (1.3) is expected to be improved up to C(0,1)C^{\infty}(0,1). However, the obstacle prevents us from applying arguments for (1.3) to problem (M). We are also interested in the question

  1. (iii)

    whether the regularity can be improved up to C(0,1)C^{\infty}(0,1) or not.

Although Dall’Acqua and Deckelnick have shown in [7] that third (weak) derivative of solutions to (M) is of bounded variation in (0,1)(0,1), it is not clear that solutions to (M) do not belong to C(0,1)C^{\infty}(0,1) in general.

We are ready to state our main result of this paper:

Theorem 1.2.

Let ψ𝖲𝖢\psi\in\mathsf{SC} satisfy

(1.4) ψ(12)<c.\displaystyle\psi\Big{(}\frac{1}{2}\Big{)}<c_{*}.

Then problem (M) has a unique solution uu. In addition, uC2([0,1])u\in C^{2}([0,1]) holds and the third derivative of uu belongs to BV(0,1)BV(0,1), while

(1.5) uC3([0,1]).\displaystyle u\notin C^{3}([0,1]).

On the other hand, if ψ𝖲𝖢\psi\in\mathsf{SC} satisfies

(1.6) ψ(12)c,\displaystyle\psi\Big{(}\frac{1}{2}\Big{)}\geq c_{*},

then (M) has no solution.

Recently, Miura [15] obtained the same uniqueness result in a different way; he focuses on the curvature and the proof is more geometric. In Theorem 1.2, we restrict the class of obstacle to 𝖲𝖢\mathsf{SC} for a simplicity. For a more general assumption on ψ\psi, see Remark 3.3. The reason why we employ Assumption 1.1 is to reduce problem (M) into the boundary value problem

(BVP) {11+(u(x))2ddx(κu(x)1+(u(x))2)+12κu(x)3=0in0<x<12,u(0)=0,u′′(0)=0,u(12)=ψ(12),u(12)=0,\displaystyle\begin{cases}\frac{1}{\sqrt{1+(u^{\prime}(x))^{2}}}\frac{d}{dx}\left(\frac{\kappa_{u}^{\prime}(x)}{\sqrt{1+(u^{\prime}(x))^{2}}}\right)+\frac{1}{2}\kappa_{u}(x)^{3}=0\quad\text{in}\quad 0<x<\frac{1}{2},\\ u(0)=0,\quad u^{\prime\prime}(0)=0,\\ u(\frac{1}{2})=\psi(\tfrac{1}{2}),\quad u^{\prime}(\tfrac{1}{2})=0,\end{cases}

more precisely, see Section 3. Hence we can obtain details of solutions to (M) via the shooting method, which is a method to know the properties of solutions of boundary value problems (see e.g.  [10, 19, 22, 24]). As in [7, 16], the study on problem (M) is done by variational approaches. One of novelties of this paper is to give another strategy, which makes use of the shooting method. Furthermore, the shooting method enables us not only to give the complete classification of existence and non-existence of solutions to (M), but also to make the graph of (M) via MAPLE since we can regard (M) as the Cauchy problem (see Figure 1).

Refer to caption
Refer to caption
Figure 1. The solution of (M) for the obstacle ψ(12)0.16\psi(\frac{1}{2})\approx 0.16 (left). The top line is the solution uu of (M) with u(0)=0.5u^{\prime}(0)=0.5 and the other is the symmetric solution vv of (1.3) with v(0)=0v(0)=0 and v(0)=0.5v^{\prime}(0)=0.5 (right).

The shooting method is a useful tool to analyze the second order differential equations (see e.g.  [2, 3, 4, 23]). On the other hand, it is not a standard matter to apply the shooting method to fourth order problems. Indeed, equation (1.3) is a quasilinear fourth order equation. However, using a geometric structure of (1.3), we can reduce (1.3) into a second order semilinear equation. Then the standard shooting argument can work well for our problem. The reduction strategy is expected to be applicable to other fourth order geometric equations.

In this paper we are also interested in the “variational inequality”. For a solution uu of (M), u+ε(vu)u+\varepsilon(v-u) also belongs to MsymM_{\rm sym} for vMsymv\in M_{\rm sym} and for ε[0,1]\varepsilon\in[0,1] by the convexity of MsymM_{\rm sym}. Then using the minimality of uu, we have

ddε𝒲(u+ε(vu))|ε=00,\displaystyle\frac{d}{d\varepsilon}\mathcal{W}(u+\varepsilon(v-u))\Big{|}_{\varepsilon=0}\geq 0,

which leads the inequality

(1.7) 𝒲(u)(vu)0forvMsym,\displaystyle\mathcal{W}^{\prime}(u)(v-u)\geq 0\quad\text{for}\quad v\in M_{\rm sym},

where 𝒲(u)(φ)\mathcal{W}^{\prime}(u)(\varphi) denotes the first variation of 𝒲\mathcal{W} at uu in direction φ\varphi given by

(1.8) 𝒲(u)(φ)=01[2u′′φ′′(1+(u)2)525(u′′)2uφ(1+(u)2)72]𝑑x.\displaystyle\mathcal{W}^{\prime}(u)(\varphi)=\int_{0}^{1}\bigg{[}2\frac{u^{\prime\prime}\varphi^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}-5\frac{(u^{\prime\prime})^{2}u^{\prime}\varphi^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\bigg{]}\,dx.

Hence we see that a solution uu of (M) also solves the following problem:

(P) finduMsymsuch that𝒲(u)(vu)0for allvMsym.\displaystyle\text{find}\quad u\in M_{\rm sym}\quad\text{such that}\quad\mathcal{W}^{\prime}(u)(v-u)\geq 0\quad\text{for all}\quad v\in M_{\rm sym}.

We can obtain the same results on (P) as well as Theorem 1.2:

Theorem 1.3.

Assume that ψ𝖲𝖢\psi\in\mathsf{SC}. Then each of the following holds::

  • (i)

    If (1.4) holds, then (P) has a unique solution, which is obtained in Theorem 1.2;

  • (ii)

    If (1.6) holds, then (P) has no solution.

Since every solution of (M) also solves (P), we shall prove Theorem 1.3 and then Theorem 1.2 can be deduced as a corollary of Theorem 1.3. The uniqueness of solutions of (P) is so important that the minimizer of 𝒲\mathcal{W} in MsymM_{\rm sym} can be also characterized as the equilibrium of the corresponding parabolic problem (see Section 5). Very recently Müller [18] also considered (P) and the corresponding parabolic problem under a bit different assumption on ψ\psi. In [18] he approached problem (P) by another way which is based on Talenti’s symmetrization.

This paper is organized as follows: In Section 2, we collect notation and known results which are used in this paper. In Section 3, we identify coincidence sets of solutions to (P) and prove the concavity of solutions. In Section 4, we prove the uniqueness and regularity of (P), using the shooting method. Finally, we apply these results to a parabolic problem in Section 5: we show that the solution of the corresponding dynamical problem converges to the solution of (M).

Acknowledgments

The author would like to thank Professor Shinya Okabe for fruitful discussions. The author would also like to thank referees for their careful reading and useful comments. The author was supported by JSPS KAKENHI Grant Number 19J20749.

2. Preliminaries

In this section, we collect notation and some known properties on (M) and (P).

First, we see the relationship between (1.3) and the first variation of uu. For φCc(0,1)\varphi\in C^{\infty}_{\rm c}(0,1) and a sufficiently smooth uu, it follows from integration by parts that

(2.1) 𝒲(u)(φ)=01(2u′′(1+(u)2)52φ′′5(u′′)2u(1+(u)2)72φ)𝑑x=01(2u′′′(1+(u)2)52+5(u′′)2u(1+(u)2)72)φ𝑑x=012(11+(u)2ddx(κu1+(u)2)+12κu3)φ𝑑x.\displaystyle\begin{split}\mathcal{W}^{\prime}(u)(\varphi)&=\int_{0}^{1}\bigg{(}2\frac{u^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}\varphi^{\prime\prime}-5\frac{(u^{\prime\prime})^{2}u^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\varphi^{\prime}\bigg{)}\,dx\\ &=\int_{0}^{1}\bigg{(}-2\frac{u^{\prime\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}+5\frac{(u^{\prime\prime})^{2}u^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\bigg{)}\varphi^{\prime}\,dx\\ &=\int_{0}^{1}2\left(\frac{1}{\sqrt{1+(u^{\prime})^{2}}}\frac{d}{dx}\bigg{(}\frac{\kappa_{u}^{\prime}}{\sqrt{1+(u^{\prime})^{2}}}\bigg{)}+\frac{1}{2}\kappa_{u}^{3}\right)\varphi\,dx.\end{split}
Lemma 2.1.

uu is a solution of (P) if and only if uu solves

(2.2) finduMsymsuch that𝒲(u)(vu)0for allvM,\displaystyle\text{find}\quad u\in M_{\rm sym}\quad\text{such that}\quad\mathcal{W}^{\prime}(u)(v-u)\geq 0\quad\text{for all}\quad v\in M,

where MM is the convex set of H(0,1)H(0,1) defined by

M:={vH(0,1)|vψin[0,1]}.M:=\Set{v\in H(0,1)}{v\geq\psi\ \ \text{in}\ \ [0,1]}.
Proof.

Since we see at once that the sufficiency of (2.2) is clear, we show the necessity of (2.2). Let uu be a solution of (P) and fix vMv\in M arbitrarily. Set

v1(x):=12(v(x)+v(1x)),v2(x):=v(x)v1(x).v_{1}(x):=\frac{1}{2}\Big{(}v(x)+v(1-x)\Big{)},\quad v_{2}(x):=v(x)-v_{1}(x).

Then we find v1Msymv_{1}\in M_{\rm sym}. Taking v1v_{1} as the test function in (1.7), we have

0𝒲(u)(v1u)=𝒲(u)(vu)𝒲(u)(v2)0\leq\mathcal{W}^{\prime}(u)(v_{1}-u)=\mathcal{W}^{\prime}(u)(v-u)-\mathcal{W}^{\prime}(u)(v_{2})

and hence it suffices to show 𝒲(u)(v2)=0\mathcal{W}^{\prime}(u)(v_{2})=0. Since uMsymu\in M_{\rm sym} and v2v_{2} satisfies v2(1x)=v2(x)v_{2}(1-x)=-v_{2}(x), in view of (1.8) we see that

121(2u′′v2′′(1+(u)2)52\displaystyle\int_{\frac{1}{2}}^{1}\bigg{(}2\frac{u^{\prime\prime}v_{2}^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}} 5(u′′)2uv2(1+(u)2)72)dx\displaystyle-5\frac{(u^{\prime\prime})^{2}u^{\prime}v_{2}^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\bigg{)}\,dx
=012(2u′′v2′′(1+(u)2)525(u′′)2uv2(1+(u)2)72)𝑑x,\displaystyle=-\int_{0}^{\frac{1}{2}}\bigg{(}2\frac{u^{\prime\prime}v_{2}^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}-5\frac{(u^{\prime\prime})^{2}u^{\prime}v_{2}^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\bigg{)}\,dx,

which clearly yields 𝒲(u)(v2)=0\mathcal{W}^{\prime}(u)(v_{2})=0. Therefore we obtain

(2.3) 𝒲(u)(vu)0forvM.\displaystyle\mathcal{W}^{\prime}(u)(v-u)\geq 0\quad\text{for}\quad v\in M.

The proof is complete. ∎

Next we define a useful function GG introduced in [8]. Let G:(c02,c02)G:\mathbb{R}\to(-\tfrac{c_{0}}{2},\tfrac{c_{0}}{2}) be

(2.4) G(x):=0x1(1+t2)54𝑑t,\displaystyle G(x):=\int_{0}^{x}\frac{1}{(1+t^{2})^{\frac{5}{4}}}\,dt,

where c0:=(1+t2)54𝑑tc_{0}:=\int_{\mathbb{R}}(1+t^{2})^{-\frac{5}{4}}\,dt. The function GG is bijective and strictly increasing since G(x)>0G^{\prime}(x)>0. Therefore G1G^{-1} exists, is smooth, and satisfies

(2.5) ddxG1(x)=(1+G1(x)2)54.\displaystyle\dfrac{d}{dx}G^{-1}(x)=\Big{(}1+G^{-1}(x)^{2}\Big{)}^{\frac{5}{4}}.
Proposition 2.2 (Known results on (M), [7]).

Assume that ψ𝖲𝖢\psi\in\mathsf{SC} and let cc_{*} be the constant given by (1.4). Then the following hold::

  • (i)

    If ψ\psi satisfies ψ(12)<c\psi(\frac{1}{2})<c_{*}, then (M) has a solution.

  • (ii)

    Solutions of (M) are concave.

These are shown in [7, Section 4.1].

Proposition 2.3 (Known results on (P), [7]).

Assume that ψ\psi satisfies

(2.6) ψC([0,1]),ψ(0)<0,ψ(1)<0andmax0x1ψ(x)>0\displaystyle\psi\in C([0,1]),\quad\psi(0)<0,\ \ \psi(1)<0\quad\text{and}\quad\max_{0\leq x\leq 1}\psi(x)>0

and let uu be a solution of (P). Then the following hold::

(i) Suppose that u(x)>ψ(x)u(x)>\psi(x) for all xE:=(x1,x2)(0,1)x\in E:=(x_{1},x_{2})\subset(0,1).

  • (a)

    uC(E¯)u\in C^{\infty}(\bar{E}) and uu satisfies (1.3) on EE.

  • (b)

    v(x):=κu(x)(1+u(x)2)14=u′′(x)(1+(u(x))2)54v(x):=\kappa_{u}(x)(1+u^{\prime}(x)^{2})^{\frac{1}{4}}=\frac{u^{\prime\prime}(x)}{(1+(u^{\prime}(x))^{2})^{\frac{5}{4}}} satisfies on EE

    (2.7) ddx(v(x)(1+(u(x))2)34)+κu(x)u(x)(1+(u(x))2)14v(x)=0.\displaystyle-\frac{d}{dx}\left(\frac{v^{\prime}(x)}{(1+(u^{\prime}(x))^{2})^{\frac{3}{4}}}\right)+\frac{\kappa_{u}(x)u^{\prime}(x)}{(1+(u^{\prime}(x))^{2})^{\frac{1}{4}}}v^{\prime}(x)=0.

(ii) κu(0)=κu(1)=0\kappa_{u}(0)=\kappa_{u}(1)=0, i.e., u′′(0)=u′′(1)=0u^{\prime\prime}(0)=u^{\prime\prime}(1)=0.

(iii) Every solution uu of (P) satisfies

(2.8) uC2([0,1])andu′′′BV(0,1).\displaystyle u\in C^{2}([0,1])\quad\text{and}\quad u^{\prime\prime\prime}\in BV(0,1).

The proofs of (i), (ii) and (iii) are given in [7, Proposition 3.2], [7, Corollary 3.3] and [7, Theorem 5.1], respectively. If ψ\psi belongs to 𝖲𝖢\mathsf{SC}, then ψ\psi clearly satisfies (2.6).

The representation of (2.7) is so important that the following comparison principle holds.

Proposition 2.4.

If uu satisfies (1.3) on (x1,x2)(x_{1},x_{2}), then v(x)=u′′(x)(1+(u(x))2)54v(x)=\frac{u^{\prime\prime}(x)}{(1+(u^{\prime}(x))^{2})^{\frac{5}{4}}} satisfies

(2.9) min{v(x1),v(x2)}v(x)max{v(x1),v(x2)}forx1<x<x2.\displaystyle\min\{v(x_{1}),v(x_{2})\}\leq v(x)\leq\max\{v(x_{1}),v(x_{2})\}\quad\text{for}\quad x_{1}<x<x_{2}.

For the proof we refer the reader to [8].

3. Concavity and coincidence set

According to [16, Proposition 3.2], solutions of (M) touch ψ\psi only at x=1/2x=1/2 under the assumption ψ𝖲𝖢\psi\in\mathsf{SC}. In this section we deduce that solutions of (P) also touch ψ\psi only at x=1/2x=1/2. From this fact, we also show that solutions of (P) are concave. We remark here that the results in Section 3 do not depend on the height of ψ\psi.

Thanks to (2.8), every solution uu of (P) satisfies u′′′BV(0,1)u^{\prime\prime\prime}\in BV(0,1). For φCc(0,12)\varphi\in C^{\infty}_{\rm c}(0,\frac{1}{2}) with φ0\varphi\geq 0, by using v=u+φv=u+\varphi as a test function in (2.3), we find that uu satisfies

(3.1) 012(2u′′′(x)(1+u(x)2)52+5u′′(x)2u(x)(1+u(x)2)72)φ(x)𝑑x0\displaystyle\int_{0}^{\frac{1}{2}}\bigg{(}-2\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{2}}}+5\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{7}{2}}}\bigg{)}\varphi^{\prime}(x)\,dx\geq 0

for any 0φCc(0,12)0\leq\varphi\in C^{\infty}_{\rm c}(0,\frac{1}{2}).

Lemma 3.1.

Let ψ𝖲𝖢\psi\in\mathsf{SC} and uu be a solution of (P). Then uu satisfies u(12)=ψ(12)u(\tfrac{1}{2})=\psi(\tfrac{1}{2}). Moreover, u(x)ψ(x)u(x)\neq\psi(x) for x12x\neq\tfrac{1}{2}.

Proof.

Fix uu as a solution of (P). We divide the proof into three steps.

Step 1. uu touches ψ\psi at x=12x=\tfrac{1}{2} Assume that u(12)>ψ(12)u(\tfrac{1}{2})>\psi(\tfrac{1}{2}). First let us suppose that

I:={x(0,12)|u(x)=ψ(x)}.I:=\Set{x\in(0,\tfrac{1}{2})}{u(x)=\psi(x)}\neq\emptyset.

Then we can define x1:=supI(0,12)x_{1}:=\sup I\in(0,\tfrac{1}{2}) such that u(x1)=ψ(x1)u(x_{1})=\psi(x_{1}) and u(x1)=ψ(x1)u^{\prime}(x_{1})=\psi^{\prime}(x_{1}). By symmetry we obtain

u(x)>ψ(x)inx(x1,1x1).u(x)>\psi(x)\quad\text{in}\quad x\in(x_{1},1-x_{1}).

Therefore by Propositions 2.3 and 2.4, v(x)=u′′(x)(1+u(x)2)54v(x)=u^{\prime\prime}(x)(1+u^{\prime}(x)^{2})^{-\frac{5}{4}} satisfies

min{v(x1),v(1x1)}v(x)max{v(x1),v(1x1)}forx(x1,1x1),\min\Set{v(x_{1}),v(1-x_{1})}\leq v(x)\leq\max\Set{v(x_{1}),v(1-x_{1})}\quad\text{for}\quad x\in(x_{1},1-x_{1}),

which implies that vv\equiv const. in [x1,1x1][x_{1},1-x_{1}] since v(x1)=v(1x1)v(x_{1})=v(1-x_{1}) holds. Then by the same argument as in [8, Lemma 4], there exists c(c02,c02)c\in(-\tfrac{c_{0}}{2},\tfrac{c_{0}}{2}) such that uu satisfies

(3.2) u(x)=G1(c2cx)in[x1,1x1].\displaystyle u^{\prime}(x)=G^{-1}\Big{(}\frac{c}{2}-cx\Big{)}\quad\text{in}\quad[x_{1},1-x_{1}].

Here we note that the curve uu given by (3.2) is concave for all cc. However, taking account of the shape of ψ𝖲𝖢\psi\in\mathsf{SC}, u(x1)=ψ(x1)u^{\prime}(x_{1})=\psi^{\prime}(x_{1}), and the concavity of (3.2), we find the contradiction to u>ψu>\psi in (x1,1x1)(x_{1},1-x_{1}) (see e.g. Figure 2).

Next, if I=I=\emptyset, Proposition 2.3(i) implies that uu satisfies uC([0,1])u\in C^{\infty}([0,1]) and that uu satisfies (1.3) on (0,1)(0,1). Moreover, it follows from Proposition 2.3(ii) that uu also satisfies u′′(0)=0u^{\prime\prime}(0)=0. However, according to [8, Theorem 1], such uu is limited to u0u\equiv 0, which contradicts to uψu\geq\psi. Hence no matter whether II is empty or not, u(12)=ψ(12)u(\tfrac{1}{2})=\psi(\tfrac{1}{2}) holds.

Refer to caption
Refer to caption
Figure 2. When II is non-empty, u|[x1,1x1]u|_{[x_{1},1-x_{1}]} must be the dotted curve (left), while uu must be trivial when II is empty (right).

Step 2. The coincidence set has zero Lebesgue measure.  Let

N:={x(0,12)|u(x)>ψ(x)}.N:=\{x\in(0,\tfrac{1}{2})\,|\,u(x)>\psi(x)\}.

If there exist x2,x3(0,12)x_{2},x_{3}\in(0,\tfrac{1}{2}) such that (x2,x3)(x_{2},x_{3}) is a connected component of NN, then it follows from Proposition 2.3(i) that uu satisfies (1.3) on (x2,x3)(x_{2},x_{3}). By Proposition 2.4, v=u′′(1+(u)2)54v=u^{\prime\prime}(1+(u^{\prime})^{2})^{-\frac{5}{4}} satisfies

(3.3) v(x)min{v(x2),v(x3)}forx(x2,x3).\displaystyle v(x)\geq\min\{v(x_{2}),v(x_{3})\}\quad\text{for}\quad x\in(x_{2},x_{3}).

Moreover, since uψu-\psi attains minimum at x=x2,x3x=x_{2},x_{3}, it holds that u′′(x2)u^{\prime\prime}(x_{2}), u′′(x3)0u^{\prime\prime}(x_{3})\geq 0, which in combination with (3.3) gives u′′0u^{\prime\prime}\geq 0 in [x2,x3][x_{2},x_{3}]. However, u′′0u^{\prime\prime}\geq 0 in [x2,x3][x_{2},x_{3}] and u(x2)=u(x3)u^{\prime}(x_{2})=u^{\prime}(x_{3}) imply that uψu\equiv\psi in [x2,x3][x_{2},x_{3}], which contradicts the fact that (x2,x3)(x_{2},x_{3}) is a connected component of NN.

Next let us suppose that there are 0<x4<x5<1/20<x_{4}<x_{5}<{1}/{2} such that (0,x4)(0,x_{4}) and (x5,12)(x_{5},\tfrac{1}{2}) are connected components of NN, respectively. The previous argument implies that uψu\equiv\psi in [x4,x5][x_{4},x_{5}] and hence that u′′=0u^{\prime\prime}=0 in [x4,x5][x_{4},x_{5}] since ψ′′0\psi^{\prime\prime}\equiv 0. Moreover, recalling that v=u′′(1+(u)2)54v=u^{\prime\prime}(1+(u^{\prime})^{2})^{-\frac{5}{4}} satisfies the comparison principle (2.9) on (x5,12)(x_{5},\tfrac{1}{2}), we find that one of the following holds:

(3.4) {(i)u′′(12)0andu′′(x)0in[x5,12];(ii)u′′(12)<0andu′′(x)0in[x5,12].\displaystyle\begin{cases}\text{(i)}\quad&u^{\prime\prime}(\tfrac{1}{2})\geq 0\quad\text{and}\quad u^{\prime\prime}(x)\geq 0\quad\text{in}\quad[x_{5},\tfrac{1}{2}];\\ \text{(ii)}&u^{\prime\prime}(\tfrac{1}{2})<0\quad\text{and}\quad u^{\prime\prime}(x)\leq 0\quad\text{in}\quad[x_{5},\tfrac{1}{2}].\end{cases}

In the case of (i), it holds that u′′0u^{\prime\prime}\geq 0 in [x5,12][x_{5},\frac{1}{2}] and u(x5)>0u^{\prime}(x_{5})>0, which contradicts u(12)=0u^{\prime}(\frac{1}{2})=0. Supposing (ii), we infer from u(x5)=ψ(x5)u^{\prime}(x_{5})=\psi^{\prime}(x_{5}) that u(12)<ψ(12)u(\frac{1}{2})<\psi(\frac{1}{2}). Therefore both (i) and (ii) do not occur and we conclude that either N=(0,12)N=(0,\frac{1}{2}) or

(3.5) N=(0,a)(a,12)for some0<a<12\displaystyle N=(0,a)\cup\Big{(}a,\frac{1}{2}\Big{)}\quad\text{for some}\quad 0<a<\frac{1}{2}

holds.

Step 3. We show that u(x)>ψ(x)u(x)>\psi(x) if x12x\neq\tfrac{1}{2} It is sufficient to show that (3.5) does not occur. Suppose, to the contrary, that there exists a(0,12)a\in(0,\tfrac{1}{2}) satisfying u(a)=ψ(a)u(a)=\psi(a). Then u′′(a)0u^{\prime\prime}(a)\geq 0 since uψu-\psi attains the minimum at x=ax=a. Moreover, we have

(3.6) u′′(a)>0.\displaystyle u^{\prime\prime}(a)>0.

In fact, if u′′(a)=0u^{\prime\prime}(a)=0, then we obtain the same contradiction as in (3.4). Let us recall that

u(0)=0,u(12)=0andu′′(0)=0.\displaystyle u(0)=0,\quad u^{\prime}(\tfrac{1}{2})=0\quad\text{and}\quad u^{\prime\prime}(0)=0.

Set A1:=(0,a)A_{1}:=(0,a) and A2:=(a,12)A_{2}:=(a,\tfrac{1}{2}). Then u>ψu>\psi in AiA_{i}, i=1,2i=1,2. Therefore Proposition 2.3(a) implies that uC(Ai¯)u\in C^{\infty}(\bar{A_{i}}) and we have

(3.7) (2u′′′(x)(1+u(x)2)52+5u′′(x)2u(x)(1+u(x)2)72)=0inAi\displaystyle\bigg{(}-2\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{2}}}+5\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{7}{2}}}\bigg{)}^{\prime}=0\quad\text{in}\quad A_{i}

for i=1,2i=1,2, respectively.

First we focus on A1A_{1}. Since u′′(0)=0u^{\prime\prime}(0)=0 and u′′(a)>0u^{\prime\prime}(a)>0 hold, combining these with (2.9) we have u′′(x)0u^{\prime\prime}(x)\geq 0 for xA1x\in A_{1}. Hence u′′′(0)0u^{\prime\prime\prime}(0)\geq 0. If u′′′(0)=0u^{\prime\prime\prime}(0)=0, then uu satisfies (1.3) with u(0)=u′′(0)=u′′′(0)=0u(0)=u^{\prime\prime}(0)=u^{\prime\prime\prime}(0)=0 and such uu is limited to a line segment. This contradicts u(12)=0u^{\prime}(\tfrac{1}{2})=0. Therefore u′′′(0)>0u^{\prime\prime\prime}(0)>0, which in combination with (3.7) and u′′(0)=0u^{\prime\prime}(0)=0 gives

(3.8) 2u′′′(x)(1+u(x)2)525u′′(x)2u(x)(1+u(x)2)72=2u′′′(0)(1+u(0)2)52=:η1>0\displaystyle 2\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{2}}}-5\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{7}{2}}}=2\frac{u^{\prime\prime\prime}(0)}{(1+u^{\prime}(0)^{2})^{\frac{5}{2}}}=:\eta_{1}>0

for all x(0,a)=A1x\in(0,a)=A_{1}.

Next we focus on A2A_{2}. If u′′(12)>0u^{\prime\prime}(\tfrac{1}{2})>0, then (2.9) and (3.6) imply that u′′(x)0u^{\prime\prime}(x)\geq 0 for xA2¯x\in\bar{A_{2}}. However this leads to a contradiction by the same method as in (3.4) and hence we have u′′(12)0.u^{\prime\prime}(\frac{1}{2})\leq 0. Combining the comparison principle for v(x)=u′′(x)(1+u(x)2)54v(x)=u^{\prime\prime}(x)(1+u^{\prime}(x)^{2})^{-\frac{5}{4}} with v(a)>0v(a)>0 and v(12)0v(\tfrac{1}{2})\leq 0, we find that vv attains the minimum at x=12x=\tfrac{1}{2} in ax12a\leq x\leq\tfrac{1}{2}. Then it holds that

v(x)|x=12=u′′′(x)(1+u(x)2)5452u′′(x)2u(x)(1+u(x)2)94|x=120.v^{\prime}(x)\Big{|}_{x=\frac{1}{2}}=\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{4}}}-\frac{5}{2}\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{9}{4}}}\Bigg{|}_{x=\frac{1}{2}}\leq 0.

This together with u(12)=0u^{\prime}(\frac{1}{2})=0 implies that u′′′(12)0u^{\prime\prime\prime}(\tfrac{1}{2})\leq 0. Following the same way as in (3.8), we infer from (3.7) that

(3.9) 2u′′′(x)(1+u(x)2)525u′′(x)2u(x)(1+u(x)2)72=2u′′′(12)(1+u(12)2)52=:η20\displaystyle 2\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{2}}}-5\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{7}{2}}}=2\frac{u^{\prime\prime\prime}(\tfrac{1}{2})}{(1+u^{\prime}(\tfrac{1}{2})^{2})^{\frac{5}{2}}}=:\eta_{2}\leq 0

for all x(a,12)=A2x\in(a,\frac{1}{2})=A_{2}.

Finally, fix 0φCc(0,12)0\leq\varphi\in C^{\infty}_{\rm c}(0,\frac{1}{2}) such that φ(a)>0\varphi(a)>0. Then the left-hand side of (3.1) is reduced into

012(2u′′′(x)(1+u(x)2)52\displaystyle\int_{0}^{\frac{1}{2}}\bigg{(}-2\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{2}}} +5u′′(x)2u(x)(1+u(x)2)72)φ(x)dx\displaystyle+5\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{7}{2}}}\bigg{)}\varphi^{\prime}(x)\,dx
=0aη1φ(x)dx+a12η2φ(x)dx\displaystyle=\int_{0}^{a}-\eta_{1}\varphi^{\prime}(x)\,dx+\int_{a}^{\frac{1}{2}}-\eta_{2}\varphi^{\prime}(x)\,dx
=(η1+η2)φ(a)<0,\displaystyle=(-\eta_{1}+\eta_{2})\varphi(a)<0,

where we used (3.8) and (3.9). However, this clearly contradicts (3.1). The proof is complete. ∎

By Proposition 2.3, Lemma 3.1, and the symmetry property of MsymM_{\rm sym}, solutions of (P) satisfy (BVP). From this fact, we deduce the concavity of solutions of (P).

Proposition 3.2.

Let ψ𝖲𝖢\psi\in\mathsf{SC}. Then every solution uu of (P) is concave if it exists. Moreover, it holds that

u′′(12)<0.u^{\prime\prime}\Big{(}\frac{1}{2}\Big{)}<0.
Proof.

Recall that all solutions of (P) satisfy (BVP). Let uu be a solution of (BVP). It suffices to show that u′′(12)<0u^{\prime\prime}(\tfrac{1}{2})<0 since we infer from Proposition 2.4(i) that if u′′(12)<0u^{\prime\prime}(\tfrac{1}{2})<0, then

u′′(x)(1+(u(x))2)54=v(x)max{v(0),v(12)}=0forx(0,12).\displaystyle\frac{u^{\prime\prime}(x)}{(1+(u^{\prime}(x))^{2})^{\frac{5}{4}}}=v(x)\leq\max\Set{v(0),v(\tfrac{1}{2})}=0\quad\text{for}\quad x\in\Big{(}0,\frac{1}{2}\Big{)}.

This clearly implies that u′′(x)0u^{\prime\prime}(x)\leq 0 in [0,12][0,\tfrac{1}{2}], and u′′(x)0u^{\prime\prime}(x)\leq 0 in [12,1][\tfrac{1}{2},1] also holds by symmetry.

Suppose, to the contrary, that u′′(12)0u^{\prime\prime}(\tfrac{1}{2})\geq 0. Then comparison principle (2.9) implies that

u′′(x)(1+(u(x))2)54=v(x)min{v(0),v(12)}=0forx(0,12).\displaystyle\frac{u^{\prime\prime}(x)}{(1+(u^{\prime}(x))^{2})^{\frac{5}{4}}}=v(x)\geq\min\Set{v(0),v(\tfrac{1}{2})}=0\quad\text{for}\quad x\in\Big{(}0,\frac{1}{2}\Big{)}.

Hence u′′(x)0u^{\prime\prime}(x)\geq 0 in [0,12][0,\tfrac{1}{2}]. However, such uu does not satisfy u(12)=0u^{\prime}(\tfrac{1}{2})=0 since u(12)=ψ(12)u(\frac{1}{2})=\psi(\frac{1}{2}). This contradicts our assumption and hence we obtain u′′(12)<0u^{\prime\prime}(\frac{1}{2})<0. The proof is complete. ∎

Remark 3.3.

Thanks to Proposition 2.2(ii), solutions of (M) are concave and hence (M) can be reduced to (BVP) under the assumption that

(3.10) ψC2([0,12])satisfiesψ(0)0andψ′′0in[0,12],\displaystyle\psi\in C^{2}([0,\tfrac{1}{2}])\quad\text{satisfies}\quad\psi^{\prime}(0)\geq 0\quad\text{and}\quad\psi^{\prime\prime}\geq 0\ \ \text{in}\ \ [0,\tfrac{1}{2}],

which includes (1.1). Then, from the argument in Section 4, we can prove Theorem 1.2 under assumption (3.10) instead of (1.1). On the other hand, in general, problem (P) cannot be reduced to (BVP) under assumption (3.10). Indeed, it is not so clear that Lemma 3.1 holds under assumption (3.10).

4. Shooting method

Due to the arguments in Section 3, solutions of (P) satisfy (BVP). In Subsection 4.1 we show some properties of solutions of (BVP). Applying them, we show the uniqueness and the regularity of the solution of (P) in Subsection 4.2.

4.1. Two-point boundary value problem

In this subsection, we consider the multiplicity of solutions to (BVP), that is,

11+(u(x))2ddx(κu(x)1+(u(x))2)+12κu(x)3=0,0<x<12\displaystyle\frac{1}{\sqrt{1+(u^{\prime}(x))^{2}}}\frac{d}{dx}\left(\frac{\kappa_{u}^{\prime}(x)}{\sqrt{1+(u^{\prime}(x))^{2}}}\right)+\frac{1}{2}\kappa_{u}(x)^{3}=0,\quad 0<x<\frac{1}{2}

with the boundary conditions

(4.1) u(0)=0,u′′(0)=0,u(12)=ψ(12),u(12)=0.\displaystyle u(0)=0,\quad u^{\prime\prime}(0)=0,\quad u\Big{(}\frac{1}{2}\Big{)}=\psi\Big{(}\frac{1}{2}\Big{)},\quad u^{\prime}\Big{(}\frac{1}{2}\Big{)}=0.

We shall show that (BVP) has at most one solution, using the shooting method. In the following we consider the initial condition

(4.2) u(0)=0,u(0)=α,u′′(0)=0,u′′′(0)=β\displaystyle u(0)=0,\quad u^{\prime}(0)=\alpha,\quad u^{\prime\prime}(0)=0,\quad u^{\prime\prime\prime}(0)=\beta

instead of the boundary condition (4.1) and find the condition of (α,β)(\alpha,\beta) to satisfy u(12)=ψ(12)u(\tfrac{1}{2})=\psi(\tfrac{1}{2}) and u(12)=0u^{\prime}(\tfrac{1}{2})=0. Since it follows from Proposition 3.2 that solutions of (P) are concave, we only focus on u(0)=α>0u^{\prime}(0)=\alpha>0.

To begin with, as discussed in (2.1), we can reduce (1.3) into

(4.3) (2u′′′(x)(1+u(x)2)525u′′(x)2u(x)(1+u(x)2)72)=0.\displaystyle\left(2\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{2}}}-5\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{7}{2}}}\right)^{\prime}=0.

Let us set

u(x)=:w(x).u^{\prime}(x)=:w(x).

Then by (4.3) ww satisfies

(4.4) w′′(x)(1+w(x)2)5252w(x)2w(x)(1+w(x)2)72=w′′(0)(1+w(0)2)5252w(0)2w(0)(1+w(0)2)72=β(1+α2)52,\displaystyle\begin{split}\frac{w^{\prime\prime}(x)}{(1+w(x)^{2})^{\frac{5}{2}}}-\frac{5}{2}\frac{w^{\prime}(x)^{2}w(x)}{(1+w(x)^{2})^{\frac{7}{2}}}&=\frac{w^{\prime\prime}(0)}{(1+w(0)^{2})^{\frac{5}{2}}}-\frac{5}{2}\frac{w^{\prime}(0)^{2}w(0)}{(1+w(0)^{2})^{\frac{7}{2}}}\\ &=\dfrac{\beta}{(1+\alpha^{2})^{\frac{5}{2}}},\end{split}

where we used the initial data (4.2). Using GG, which is defined in (2.4), we set

(4.5) y(x):=G(w(x))=G(u(x)).\displaystyle y(x):=G(w(x))=G(u^{\prime}(x)).

Then combining (4.4) and (4.5) with

y(x)=u′′(x)(1+u(x)2)54,y′′(x)=u′′′(x)(1+u(x)2)5452u′′(x)2u(x)(1+u(x)2)94,\displaystyle y^{\prime}(x)=\frac{u^{\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{4}}},\quad y^{\prime\prime}(x)=\frac{u^{\prime\prime\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{5}{4}}}-\frac{5}{2}\frac{u^{\prime\prime}(x)^{2}u^{\prime}(x)}{(1+u^{\prime}(x)^{2})^{\frac{9}{4}}},

we obtain

(4.6) y′′(x)(1+G1(y(x))2)54=β(1+α2)52.\displaystyle\dfrac{y^{\prime\prime}(x)}{\big{(}1+G^{-1}(y(x))^{2}\big{)}^{\frac{5}{4}}}=\dfrac{\beta}{(1+\alpha^{2})^{\frac{5}{2}}}.

By w(0)=αw(0)=\alpha and w(0)=0w^{\prime}(0)=0, we consider

(4.7) y(0)=G(α)>0andy(0)=w(0)(1+w(0)2)54=0\displaystyle y(0)=G(\alpha)>0\quad\text{and}\quad y^{\prime}(0)=\dfrac{w^{\prime}(0)}{(1+w(0)^{2})^{\frac{5}{4}}}=0

as the initial data for (4.6). If uu satisfies u(12)=0u^{\prime}(\tfrac{1}{2})=0, then yy must attain zero at x=12x=\tfrac{1}{2}. Therefore at first we seek the condition (α,β)(\alpha,\beta) to satisfy y(12)=0y(\tfrac{1}{2})=0. By the representation of (4.6) and the initial condition (4.7), we notice that

β<0\displaystyle\beta<0

if and only if the solution yy has zero. Furthermore, if β<0\beta<0 then zero of yy is unique since β<0\beta<0 implies that y′′(x)<0y^{\prime\prime}(x)<0. The point where yy achieves zero, which is often called time map formula, is given as follows:

Lemma 4.1.

Let (α,β)>0×<0(\alpha,\beta)\in\mathbb{R}_{>0}\times\mathbb{R}_{<0} be arbitrary and yy be the solution of (4.6) with (4.7). The point where yy achieves zero is given by

(4.8) Zα,β=(1+α2)542|β|0α1αtdt(1+t2)54.\displaystyle Z_{\alpha,\beta}=\dfrac{(1+\alpha^{2})^{\frac{5}{4}}}{\sqrt{2}\sqrt{|\beta|}}\int_{0}^{\alpha}\dfrac{1}{\sqrt{\alpha-t}}\dfrac{\,dt}{(1+t^{2})^{\frac{5}{4}}}.
Proof.

Fix (α,β)>0×<0(\alpha,\beta)\in\mathbb{R}_{>0}\times\mathbb{R}_{<0} arbitrarily and let yy be the solution of (4.6) with (4.7). Let us define

f(t):=(1+G1(t)2)54,F(X):=20Xf(t)𝑑t.f(t):=(1+G^{-1}(t)^{2})^{\frac{5}{4}},\quad F(X):=2\int_{0}^{X}f(t)\,dt.

Set Z(0,)Z\in(0,\infty) as the point where yy achieves zero. Then we deduce from (4.6) that

ddx(y(x)2β(1+α2)52F(y(x)))\displaystyle\dfrac{d}{dx}\bigg{(}y^{\prime}(x)^{2}-\dfrac{\beta}{(1+\alpha^{2})^{\frac{5}{2}}}F(y(x))\bigg{)} =2y(y′′β(1+α2)52(1+G1(y)2)54)=0,\displaystyle=2y^{\prime}\bigg{(}y^{\prime\prime}-\dfrac{\beta}{(1+\alpha^{2})^{\frac{5}{2}}}\big{(}1+G^{-1}(y)^{2}\big{)}^{\frac{5}{4}}\bigg{)}=0,

which in combination with (4.7) gives

(4.9) y(x)2β(1+α2)52F(y(x))=β(1+α2)52F(y(0))forx(0,Z).\displaystyle y^{\prime}(x)^{2}-\dfrac{\beta}{(1+\alpha^{2})^{\frac{5}{2}}}F(y(x))=-\dfrac{\beta}{(1+\alpha^{2})^{\frac{5}{2}}}F(y(0))\quad\text{for}\quad x\in(0,Z).

Moreover, since y(0)=0y^{\prime}(0)=0 and y′′<0y^{\prime\prime}<0 in (0,Z)(0,Z), we find y(x)<0y^{\prime}(x)<0 in (0,Z)(0,Z). Combining this with (4.9), we obtain

(4.10) y(x)=|β|(1+α2)54F(G(α))F(y(x))=|β|(1+α2)542α2G1(y(x)).\displaystyle\begin{split}y^{\prime}(x)&=-\dfrac{\sqrt{|\beta|}}{(1+\alpha^{2})^{\frac{5}{4}}}\sqrt{F(G(\alpha))-F(y(x))}\\ &=-\dfrac{\sqrt{|\beta|}}{(1+\alpha^{2})^{\frac{5}{4}}}\sqrt{2\alpha-2G^{-1}(y(x))}.\end{split}

Here we used

F(s)=20s(1+G1(t)2)54𝑑t=20s(G1(t))𝑑t=2G1(s),\displaystyle F(s)=2\int_{0}^{s}\big{(}1+G^{-1}(t)^{2}\big{)}^{\frac{5}{4}}\,dt=2\int_{0}^{s}\big{(}G^{-1}(t)\big{)}^{\prime}\,dt=2G^{-1}(s),

which follows from (2.5) and G1(0)=0G^{-1}(0)=0. Integrating (4.10) on (0,Z)(0,Z), we obtain

|β|(1+α2)54Z\displaystyle\dfrac{\sqrt{|\beta|}}{(1+\alpha^{2})^{\frac{5}{4}}}Z =0Zy(t)2α2G1(y(t))dt=0G(α)ds2α2G1(s),\displaystyle=\int_{0}^{Z}-\dfrac{y^{\prime}(t)}{\sqrt{2\alpha-2G^{-1}(y(t))}}\,dt=\int_{0}^{G(\alpha)}\dfrac{\,ds}{\sqrt{2\alpha-2G^{-1}(s)}},

where we used the change of the variables s=y(t)s=y(t) in the last equality. Therefore we have

Z=(1+α2)54|β|0G(α)ds2α2G1(s).\displaystyle Z=\dfrac{(1+\alpha^{2})^{\frac{5}{4}}}{\sqrt{|\beta|}}\int_{0}^{G(\alpha)}\dfrac{\,ds}{\sqrt{2\alpha-2G^{-1}(s)}}.

By the change of variables t=G1(s)t=G^{-1}(s), we obtain (4.8). ∎

By Lemma 4.1, for each α>0\alpha>0 the map on <0\mathbb{R}_{<0}

βZα,β\beta\mapsto Z_{\alpha,\beta}

is strictly increasing and satisfies

limβ0Zα,β=andlimβZα,β=0.\lim_{\beta\uparrow 0}Z_{\alpha,\beta}=\infty\quad\text{and}\quad\lim_{\beta\to-\infty}Z_{\alpha,\beta}=0.

Therefore (4.8) implies that for each α>0\alpha>0 there exists a unique β<0\beta<0 such that Zα,β=1/2Z_{\alpha,\beta}=1/2. Replacing Zα,βZ_{\alpha,\beta} with 1/21/2 in (4.8), we obtain the following.

Proposition 4.2.

For each α>0\alpha>0, Zα,β=1/2Z_{\alpha,\beta}=1/2 holds if and only if

β=β(α):=2(1+α2)52(0α1αtdt(1+t2)54)2.\displaystyle\beta=\beta_{*}(\alpha):=-2(1+\alpha^{2})^{\frac{5}{2}}\left(\int_{0}^{\alpha}\dfrac{1}{\sqrt{\alpha-t}}\dfrac{\,dt}{(1+t^{2})^{\frac{5}{4}}}\right)^{2}.

Thus for α=u(0)\alpha=u^{\prime}(0),

u′′′(0)=β(α)u^{\prime\prime\prime}(0)=\beta_{*}(\alpha)

is needed in (4.2) so that the solution uu of (1.3) with (4.2) satisfies u(12)=0u^{\prime}(\tfrac{1}{2})=0. Hence we should consider

(4.11) u(0)=0,u(0)=α,u′′(0)=0,u′′′(0)=β(α).\displaystyle u(0)=0,\quad u^{\prime}(0)=\alpha,\quad u^{\prime\prime}(0)=0,\quad u^{\prime\prime\prime}(0)=\beta_{*}(\alpha).

Next we investigate the relationship between u(0)=αu^{\prime}(0)=\alpha and u(12)=ψ(12)u(\tfrac{1}{2})=\psi(\tfrac{1}{2}). To this end, hereafter we consider only the case β=β(α)\beta=\beta_{*}(\alpha) in (4.2). Let u(x;α)u(x;\alpha) denote the solution of (1.3) with (4.11). Then y(x;α):=G(u(x;α))y(x;\alpha):=G(u^{\prime}(x;\alpha)) is the solution of

(4.12) y′′(x)(1+G1(y(x))2)54=β(α)(1+α2)52\displaystyle\dfrac{y^{\prime\prime}(x)}{\big{(}1+G^{-1}(y(x))^{2}\big{)}^{\frac{5}{4}}}=\dfrac{\beta_{*}(\alpha)}{(1+\alpha^{2})^{\frac{5}{2}}}

with the initial data (4.7). For short we denote the right-hand side of (4.12) by

γ(α):=β(α)(1+α2)52=2(0α1αtdt(1+t2)54)2.\displaystyle\gamma(\alpha):=\dfrac{\beta_{*}(\alpha)}{(1+\alpha^{2})^{\frac{5}{2}}}=-2\left(\int_{0}^{\alpha}\dfrac{1}{\sqrt{\alpha-t}}\dfrac{\,dt}{(1+t^{2})^{\frac{5}{4}}}\right)^{2}.
Lemma 4.3.

Let u(x;α)u(x;\alpha) be the solution of (1.3) with (4.11) for α>0\alpha>0. Then

(4.13) u(12;α)=0αsαsds(1+s2)5420α1αsds(1+s2)54.\displaystyle u\Big{(}\frac{1}{2};\alpha\Big{)}=\frac{\displaystyle\int_{0}^{\alpha}\frac{s}{\sqrt{\alpha-s}}\frac{\,ds}{(1+s^{2})^{\frac{5}{4}}}}{\displaystyle 2\int_{0}^{\alpha}\frac{1}{\sqrt{\alpha-s}}\frac{\,ds}{(1+s^{2})^{\frac{5}{4}}}}.
Proof.

Let y(x;α)y(x;\alpha) be the function given by y(x;α)=G(u(x;α))y(x;\alpha)=G(u^{\prime}(x;\alpha)). Then y(;α)y(\cdot;\alpha) satisfies (4.12) and y(;α)y(\cdot;\alpha) is strictly decreasing in (0,1/2)(0,1/2) by (4.10). Using this yy, we have

u(12;α)=012u(x;α)𝑑x=012G1(y(x;α))𝑑x,\displaystyle u\Big{(}\frac{1}{2};\alpha\Big{)}=\int_{0}^{\frac{1}{2}}u^{\prime}(x;\alpha)\,dx=\int_{0}^{\frac{1}{2}}G^{-1}(y(x;\alpha))\,dx,

where we used u(0;α)=0u(0;\alpha)=0. We infer from the change of variables y(x;α)=sy(x;\alpha)=s and (4.10) that

u(12;α)\displaystyle u\Big{(}\frac{1}{2};\alpha\Big{)} =G(α)0G1(s)1y(x;α)𝑑s\displaystyle=\int_{G(\alpha)}^{0}G^{-1}(s)\frac{1}{y^{\prime}(x;\alpha)}\,ds
=G(α)0G1(s)((1+α2)54|β(α)|1212α2G1(s))𝑑s.\displaystyle=\int_{G(\alpha)}^{0}G^{-1}(s)\left(-\frac{(1+\alpha^{2})^{\frac{5}{4}}}{|\beta_{*}(\alpha)|^{\frac{1}{2}}}\frac{1}{\sqrt{2\alpha-2G^{-1}(s)}}\right)\,ds.

By the change of variables G1(s)=xG^{-1}(s)=x, we have

u(12;α)\displaystyle u\Big{(}\frac{1}{2};\alpha\Big{)} =(1+α2)54|β(α)|120αx2α2x1(1+x2)54𝑑x=0αxαxdx(1+x2)5420α1αsds(1+s2)54,\displaystyle=\frac{(1+\alpha^{2})^{\frac{5}{4}}}{|\beta_{*}(\alpha)|^{\frac{1}{2}}}\int_{0}^{\alpha}\frac{x}{\sqrt{2\alpha-2x}}\frac{1}{(1+x^{2})^{\frac{5}{4}}}\,dx=\frac{\displaystyle\int_{0}^{\alpha}\frac{x}{\sqrt{\alpha-x}}\frac{\,dx}{(1+x^{2})^{\frac{5}{4}}}}{\displaystyle 2\int_{0}^{\alpha}\frac{1}{\sqrt{\alpha-s}}\frac{\,ds}{(1+s^{2})^{\frac{5}{4}}}},

which is the desired formula. Here we used

(4.14) |β(α)|12(1+α2)54=20α1αsds(1+s2)54,\displaystyle\frac{|\beta_{*}(\alpha)|^{\frac{1}{2}}}{(1+\alpha^{2})^{\frac{5}{4}}}=\sqrt{2}\int_{0}^{\alpha}\frac{1}{\sqrt{\alpha-s}}\frac{\,ds}{(1+s^{2})^{\frac{5}{4}}},

which follows from (4.2). We complete the proof. ∎

Let us set

(4.15) I(α):=0αααsds(1+s2)54,J(α):=0αααxx(1+x2)54𝑑x.\displaystyle I(\alpha):=\int_{0}^{\alpha}\frac{\sqrt{\alpha}}{\sqrt{\alpha-s}}\frac{\,ds}{(1+s^{2})^{\frac{5}{4}}},\quad J(\alpha):=\int_{0}^{\alpha}\frac{\sqrt{\alpha}}{\sqrt{\alpha-x}}\frac{x}{(1+x^{2})^{\frac{5}{4}}}\,dx.

Then thanks to Lemma 4.3, we notice that

u(12;α)=J(α)2I(α).u\Big{(}\frac{1}{2};\alpha\Big{)}=\frac{J(\alpha)}{2I(\alpha)}.
Lemma 4.4.

For J(α)J(\alpha) given by (4.15), it holds that

J(α)>0forα>0.J^{\prime}(\alpha)>0\quad\text{for}\quad\alpha>0.
Proof.

By the change of variables we reduce J(α)J(\alpha) into

(4.16) J(α)=01t1tα2(1+α2t2)54𝑑t.\displaystyle J(\alpha)=\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt.

Let F12{}_{2}F_{1} denote the Gaussian hypergeometric function (cf. Definition A.1). Note that for each α>0\alpha>0

(4.17) 01t1tα2(1+α2t2)54𝑑t\displaystyle\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt =23α21+α2F12[1,32;74;α21+α2]\displaystyle=\frac{2}{3}\frac{\alpha^{2}}{1+\alpha^{2}}{}_{2}F_{1}\big{[}1,\tfrac{3}{2};\tfrac{7}{4};\tfrac{\alpha^{2}}{1+\alpha^{2}}\big{]}
=23α21+α2n=0(1)n(32)n(74)nn!(α21+α2)n\displaystyle=\frac{2}{3}\frac{\alpha^{2}}{1+\alpha^{2}}\sum_{n=0}^{\infty}\frac{(1)_{n}(\tfrac{3}{2})_{n}}{(\frac{7}{4})_{n}\,n!}\Big{(}\frac{\alpha^{2}}{1+\alpha^{2}}\Big{)}^{n}

(see Proposition A.4 for a rigorous derivation). Here (x)n(x)_{n} is the Pochhammer symbol, and (x)n>0(x)_{n}>0 holds for any n{0}n\in\mathbb{N}\cup\{0\} and x>0x>0. Therefore, setting

j(α):=α21+α2forα>0,j(\alpha):=\frac{\alpha^{2}}{1+\alpha^{2}}\quad\text{for}\quad\alpha>0,

we obtain

(4.18) J(α)=23j(α)n=0(1)n(32)n(74)nn!j(α)n+23j(α)j(α)n=1(1)n(32)n(74)n(n1)!j(α)n1>0\displaystyle\begin{split}J^{\prime}(\alpha)&=\frac{2}{3}j^{\prime}(\alpha)\sum_{n=0}^{\infty}\frac{(1)_{n}(\tfrac{3}{2})_{n}}{(\frac{7}{4})_{n}\,n!}j(\alpha)^{n}\\ &\qquad+\frac{2}{3}j(\alpha)j^{\prime}(\alpha)\sum_{n=1}^{\infty}\frac{(1)_{n}(\tfrac{3}{2})_{n}}{(\frac{7}{4})_{n}\,(n-1)!}j(\alpha)^{n-1}>0\end{split}

with the help of the fact that 0<j(α)<10<j(\alpha)<1. The proof is complete. ∎

Next, we show that αu(12;α)\alpha\mapsto u(\frac{1}{2};\alpha) is strictly increasing. To this end, let us set

ξ(x,α):=yα(x;α),\xi(x,\alpha):=\frac{\partial y}{\partial\alpha}(x;\alpha),

where we regarded y(x;α)y(x;\alpha) as a function on [0,12]×>0[0,\frac{1}{2}]\times\mathbb{R}_{>0}. Then it follows from (4.12) that

(4.19) ξ′′γ(α)f(y)ξγ(α)f(y)=0,\displaystyle\xi^{\prime\prime}-\gamma(\alpha)f^{\prime}(y)\xi-\gamma^{\prime}(\alpha)f(y)=0,

where f(t)=(1+G1(t)2)54f(t)=(1+G^{-1}(t)^{2})^{\frac{5}{4}} and =x{}^{\prime}=\frac{\partial}{\partial x}. By the definition f(t)0f^{\prime}(t)\geq 0 holds for t0t\geq 0. Moreover, y(0;α)=G(α)y(0;\alpha)=G(\alpha), y(0;α)=0y^{\prime}(0;\alpha)=0, and y(12;α)=0y(\frac{1}{2};\alpha)=0 imply that

ξ(0,α)=G(α),ξ(0,α)=0,andξ(12,α)=0.\displaystyle\xi(0,\alpha)=G^{\prime}(\alpha),\quad\xi^{\prime}(0,\alpha)=0,\quad\text{and}\quad\xi\Big{(}\frac{1}{2},\alpha\Big{)}=0.
Proposition 4.5.

Let u(x;α)u(x;\alpha) be the solution of (1.3) with (4.11) for α>0\alpha>0. Then

(4.20) ddα[u(12;α)]>0forα>0.\displaystyle\frac{d}{d\alpha}\left[u\Big{(}\frac{1}{2};\alpha\Big{)}\right]>0\quad\text{for}\quad\alpha>0.
Proof.

To begin with, recall that y(;α)y(\cdot;\alpha) is decreasing in [0,12][0,\frac{1}{2}] for each α>0\alpha>0, in partucular,

(4.21) 0<y(x;α)<y(0;α)=G(α)andy(x;α)<0for0<x<12.\displaystyle 0<y(x;\alpha)<y(0;\alpha)=G(\alpha)\quad\text{and}\quad y^{\prime}(x;\alpha)<0\quad\text{for}\quad 0<x<\frac{1}{2}.

We infer from (4.10) that

(4.22) y(x;α)2\displaystyle y^{\prime}(x;\alpha)^{2} =γ(α)(2α2G1(y(x;α))).\displaystyle=-\gamma(\alpha)\big{(}2\alpha-2G^{-1}(y(x;\alpha))\big{)}.

Differentiating (4.22) with respect to α\alpha, we have

(4.23) 2yξ=2γ(α)[αG1(y)]2γ(α)[1(1+G1(y)2)54ξ].\displaystyle 2y^{\prime}\cdot\xi^{\prime}=-2\gamma^{\prime}(\alpha)\bigg{[}\alpha-G^{-1}(y)\bigg{]}-2\gamma(\alpha)\bigg{[}1-\Big{(}1+G^{-1}(y)^{2}\Big{)}^{\frac{5}{4}}\xi\bigg{]}.

Set Γ+:={α(0,)|γ(α)>0}\Gamma_{+}:=\Set{\alpha\in(0,\infty)}{\gamma^{\prime}(\alpha)>0} and Γ:={α(0,)|γ(α)0}\Gamma_{-}:=\Set{\alpha\in(0,\infty)}{\gamma^{\prime}(\alpha)\leq 0}. We divide the proof into two cases.

Case I. We show (4.20) for αΓ\alpha\in\Gamma_{-} Fix αΓ\alpha\in\Gamma_{-} arbitrarily. Combining (4.23) with (4.21), γ(α)<0\gamma(\alpha)<0, and γ(α)0\gamma^{\prime}(\alpha)\leq 0, we deduce that

if c(0,12)c\in(0,\tfrac{1}{2}) satisfies ξ(c,α)0\xi(c,\alpha)\leq 0, then cc also satisfies ξ(c,α)<0\xi^{\prime}(c,\alpha)<0.

Therefore if there is a point c(0,12)c\in(0,\frac{1}{2}) such that ξ(c,α)=0\xi(c,\alpha)=0, then ξ(x,α)<0\xi(x,\alpha)<0 holds for x(c,12]x\in(c,\frac{1}{2}], which contradicts ξ(12,α)=0\xi(\frac{1}{2},\alpha)=0. Therefore we may assume that ξ(x,α)0\xi(x,\alpha)\neq 0 for x[0,12)x\in[0,\frac{1}{2}). This together with ξ(0,α)=G(α)=(1+α2)54>0\xi(0,\alpha)=G^{\prime}(\alpha)=(1+\alpha^{2})^{\frac{5}{4}}>0 implies that

(4.24) ξ(x,α)0for0x12.\displaystyle\xi(x,\alpha)\geq 0\quad\text{for}\quad 0\leq x\leq\frac{1}{2}.

On the other hand, it follows from u(0;α)=0u(0;\alpha)=0 that

u(12;α)=012u(x;α)𝑑x=012G1(y(x;α))𝑑x,\displaystyle u\Big{(}\frac{1}{2};\alpha\Big{)}=\int_{0}^{\frac{1}{2}}u^{\prime}(x;\alpha)\,dx=\int_{0}^{\frac{1}{2}}G^{-1}(y(x;\alpha))\,dx,

which in combination with (4.24) gives

(4.25) ddα[u(12;α)]=012(1+G1(y)2)54ξ(x,α)𝑑x0.\displaystyle\frac{d}{d\alpha}\left[u\Big{(}\frac{1}{2};\alpha\Big{)}\right]=\int_{0}^{\frac{1}{2}}\big{(}1+G^{-1}(y)^{2}\big{)}^{\frac{5}{4}}\xi(x,\alpha)\,dx\geq 0.

The last equality does not hold due to ξ(0,α)>0\xi(0,\alpha)>0. Therefore we obtain (4.20) for αΓ\alpha\in\Gamma_{-}.

Case II. Show (4.20) for αΓ+\alpha\in\Gamma_{+} Since y(12;α)=0y(\frac{1}{2};\alpha)=0 and ξ(12,α)=0\xi(\frac{1}{2},\alpha)=0 hold for all α>0\alpha>0, substituting x=1/2x={1}/{2} into (4.23), we obtain

(4.26) 2y(12;α)ξ(12,α)=2(αγ(α)+γ(α)).\displaystyle 2y^{\prime}\Big{(}\frac{1}{2};\alpha\Big{)}\cdot\xi^{\prime}\Big{(}\frac{1}{2},\alpha\Big{)}=-2\Big{(}\alpha\gamma^{\prime}(\alpha)+\gamma(\alpha)\Big{)}.

To continue, we distinguish two subcases:

(i) We consider αΓ+\alpha\in\Gamma_{+} satisfying αγ(α)+γ(α)0\alpha\gamma^{\prime}(\alpha)+\gamma(\alpha)\leq 0. Then such α\alpha satisfies

ξ(12,α)0,\displaystyle\xi^{\prime}\Big{(}\frac{1}{2},\alpha\Big{)}\leq 0,

where we used (4.26) and y(12;α)<0y^{\prime}(\frac{1}{2};\alpha)<0. Here, combining straightforward calculations with (4.12) and (4.19), we obtain

(4.27) (ξyξγ(α)f(y))=γ(α)f(y)yin(0,12)\displaystyle\Big{(}\xi^{\prime}y^{\prime}-\xi\gamma(\alpha)f(y)\Big{)}^{\prime}=\gamma^{\prime}(\alpha)f(y)y^{\prime}\quad\text{in}\quad(0,\tfrac{1}{2})

for each α>0\alpha>0. Assume that

ξ(x0,α¯)<0for some0<x0<12\xi(x_{0},\bar{\alpha})<0\quad\text{for some}\quad 0<x_{0}<\frac{1}{2}

holds for some α¯Γ+\bar{\alpha}\in\Gamma_{+} with α¯γ(α¯)+γ(α¯)0\bar{\alpha}\gamma^{\prime}(\bar{\alpha})+\gamma(\bar{\alpha})\leq 0. This together with ξ(12,α¯)=0\xi(\frac{1}{2},\bar{\alpha})=0 implies that there exists x1(0,12)x_{1}\in(0,\frac{1}{2}) satisfying ξ(x1,α¯)<0\xi(x_{1},\bar{\alpha})<0 and ξ(x1,α¯)=0\xi^{\prime}(x_{1},\bar{\alpha})=0. Then integrating (4.27) on (x1,12)(x_{1},\frac{1}{2}), we have

ξ(12,α¯)y(12;α¯)+ξ(x1,α¯)γ(α¯)f(y(x1;α¯))=γ(α¯)x112f(y)y𝑑x.\xi^{\prime}\Big{(}\frac{1}{2},\bar{\alpha}\Big{)}y^{\prime}\Big{(}\frac{1}{2};\bar{\alpha}\Big{)}+\xi(x_{1},\bar{\alpha})\gamma(\bar{\alpha})f(y(x_{1};\bar{\alpha}))=\gamma^{\prime}(\bar{\alpha})\int_{x_{1}}^{\frac{1}{2}}f(y)y^{\prime}\,dx.

However, the left-hand side takes a non-negative value while the right-hand side is negative, which is impossible. Hence it holds that

ξ(x,α)0forx(0,12)\xi(x,\alpha)\geq 0\quad\text{for}\quad x\in\Big{(}0,\frac{1}{2}\Big{)}

and for αΓ+\alpha\in\Gamma_{+} with αγ(α)+γ(α)0\alpha\gamma^{\prime}(\alpha)+\gamma(\alpha)\leq 0. Similar to (4.25), we have (4.20).

(ii) We assume that αΓ+\alpha\in\Gamma_{+} satisfies αγ(α)+γ(α)>0\alpha\gamma^{\prime}(\alpha)+\gamma(\alpha)>0. The assumption implies that (αγ(α))>0(\alpha\gamma(\alpha))^{\prime}>0. Let I(α)I(\alpha) and J(α)J(\alpha) be given by (4.15). Then by the fact that

αγ(α)=2(α0α1αtdt(1+t2)54)2=2I(α)2,\alpha\gamma(\alpha)=-2\left(\sqrt{\alpha}\int_{0}^{\alpha}\frac{1}{\sqrt{\alpha-t}}\frac{\!\,dt}{(1+t^{2})^{\frac{5}{4}}}\right)^{2}=-2I(\alpha)^{2},

αγ(α)+γ(α)>0\alpha\gamma^{\prime}(\alpha)+\gamma(\alpha)>0 gives I(α)<0I^{\prime}(\alpha)<0. Since u(12;α)=J(α)/2I(α)u(\frac{1}{2};\alpha)=J(\alpha)/2I(\alpha), we have

ddα[u(12;α)]=J(α)I(α)J(α)I(α)2I(α)2>J(α)I(α)2I(α)2,\displaystyle\frac{d}{d\alpha}\left[u\Big{(}\frac{1}{2};\alpha\Big{)}\right]=\frac{J^{\prime}(\alpha)I(\alpha)-J(\alpha)I^{\prime}(\alpha)}{2I(\alpha)^{2}}>\frac{J^{\prime}(\alpha)I(\alpha)}{2I(\alpha)^{2}},

where in the last inequality we used I(α)<0I^{\prime}(\alpha)<0 and J(α)>0J(\alpha)>0. Combining this with Lemma 4.4, we obtain (4.20). We complete the proof. ∎

Proposition 4.6.

Let α>0\alpha>0 and u(x;α)u(x;\alpha) be the solution of (1.3) with (4.11). Then

(4.28) u(12;α)casα,\displaystyle u\Big{(}\frac{1}{2};\alpha\Big{)}\to c_{*}\quad\text{as}\quad\alpha\to\infty,

where cc_{*} is the constant given by (1.2).

Proof.

Let α1\alpha\gg 1 and I(α)I(\alpha) be given by (4.15). Set

I(α)\displaystyle I(\alpha) =0α3/411s/α1(1+s2)54𝑑s+α3/4α11s/α1(1+s2)54𝑑s\displaystyle=\int_{0}^{\alpha^{{3}/{4}}}\frac{1}{\sqrt{1-s/\alpha}}\frac{1}{(1+s^{2})^{\frac{5}{4}}}\,ds+\int_{\alpha^{{3}/{4}}}^{\alpha}\frac{1}{\sqrt{1-s/\alpha}}\frac{1}{(1+s^{2})^{\frac{5}{4}}}\,ds
=:I1(α)+I2(α).\displaystyle=:I_{1}(\alpha)+I_{2}(\alpha).

Since (1+s2)54(1+s^{2})^{\frac{5}{4}} is integrable on (0,)(0,\infty), we obtain

I1(α)=0χ(0,α3/4)11s/α1(1+s2)54𝑑s01(1+s2)54𝑑sasα.I_{1}(\alpha)=\int_{0}^{\infty}\chi_{(0,\alpha^{{3}/{4}})}\frac{1}{\sqrt{1-s/\alpha}}\frac{1}{(1+s^{2})^{\frac{5}{4}}}\,ds\to\int_{0}^{\infty}\frac{1}{(1+s^{2})^{\frac{5}{4}}}\,ds\quad\text{as}\quad\alpha\to\infty.

On the other hand, we observe that

|I2(α)|\displaystyle|I_{2}(\alpha)| 1(1+α32)54α3/4α11s/α𝑑s=1(1+α32)542ααα340\displaystyle\leq\frac{1}{(1+\alpha^{\frac{3}{2}})^{\frac{5}{4}}}\int_{\alpha^{{3}/{4}}}^{\alpha}\frac{1}{\sqrt{1-s/\alpha}}\,ds=\frac{1}{(1+\alpha^{\frac{3}{2}})^{\frac{5}{4}}}\cdot 2\alpha\sqrt{\alpha-\alpha^{\frac{3}{4}}}\to 0

as α\alpha\to\infty. Therefore we obtain

(4.29) I(α)01(1+s2)54𝑑s=c02asα.\displaystyle I(\alpha)\to\int_{0}^{\infty}\frac{1}{(1+s^{2})^{\frac{5}{4}}}\,ds=\frac{c_{0}}{2}\quad\text{as}\quad\alpha\to\infty.

By the same argument we have

(4.30) J(α)0x(1+x2)54𝑑x=2asα.\displaystyle J(\alpha)\to\int_{0}^{\infty}\frac{x}{(1+x^{2})^{\frac{5}{4}}}\,dx=2\quad\text{as}\quad\alpha\to\infty.

Combining (4.13) with (4.29) and (4.30), we obtain (4.28). ∎

In fact, we can obtain another characterization of the limit of u(x;α)u(x;\alpha) (see Appendix B).

Remark 4.7.

Even if u(x;α)u(x;\alpha) exists in x1x\geq 1, uu never satisfies u(1;α)=0u(1;\alpha)=0 for any α>0\alpha>0 since the solution of (1.3) with u(0)=u′′(0)=u(1)=u(12)=0u(0)=u^{\prime\prime}(0)=u(1)=u^{\prime}(\frac{1}{2})=0 is limited to u0u\equiv 0. Therefore u(x;α)u(x;\alpha) is far different from the function obtained in [8]. For the comparison, see Figure 3: one is u(x;12)u(x;\frac{1}{2}); the other is the solution of (1.3) with u(0)=u(1)=0u(0)=u(1)=0 and u(0)=12u^{\prime}(0)=\frac{1}{2}, and both of them satisfy u(0)=12u^{\prime}(0)=\frac{1}{2}.

Refer to caption
Figure 3. u(x;0.5)u(x;0.5) has a singularity.

4.2. Proof of Theorem 1.3

In this subsection, we turn to problem (P). The results in Subsection 4.2 also hold for (M) since the same argument is applicable.

Proof of Theorem 1.3.

We first show uniqueness and existence. Assume that ψ(12)<c\psi(\frac{1}{2})<c_{*}. Then it follows from Proposition 2.2 that (M) has a solution. As mentioned earlier, solutions of (M) also solve (P). Namely, a minimizer of 𝒲\mathcal{W} in MsymM_{\rm sym} exists and it is a solution of (P).

We show the uniqueness of solutions of (P). By the argument in Section 3, every solution uu of (P) satisfies (BVP) on [0,12][0,\frac{1}{2}]. For H:=ψ(12)(0,c)H:=\psi(\frac{1}{2})\in(0,c_{*}), there exists α~=α~(H)>0\tilde{\alpha}=\tilde{\alpha}(H)>0 such that

u(12;α~)=H.u\Big{(}\frac{1}{2};\tilde{\alpha}\Big{)}=H.

We infer from Proposition 4.5 that such α~\tilde{\alpha} is unique, so we obtain the conclusion.

Next we show non-existence if ψ(12)c\psi(\tfrac{1}{2})\geq c_{*}. Suppose that (P) has a solution uu under the assumption ψ(12)c\psi(\frac{1}{2})\geq c_{*}. Then by the argument in Section 3, uu satisfies (BVP) on [0,12][0,\frac{1}{2}]. However, Proposition 4.6 implies that u(12;α)u(\frac{1}{2};\alpha) cannot reach cc_{*} for any α:=u(0)\alpha:=u^{\prime}(0), which contradicts our assumption. Therefore if ψ(12)c\psi(\frac{1}{2})\geq c_{*}, (P) does not have a solution.

We discuss the regularity. We assume that ψ(12)<c\psi(\frac{1}{2})<c_{*} and then (P) has a unique solution uu. Set u(0)=:α>0u^{\prime}(0)=:\alpha>0. Then uu satisfies u|[0,1/2]=u(;α)|[0,1/2]u|_{[0,1/2]}=u(\cdot;\alpha)|_{[0,1/2]}, where u(;α)u(\cdot;\alpha) is the solution of (1.3) with (4.11). We infer from (4.4) that

limx12u′′′(x;α)=β(α)(1+α2)54<0.\lim_{x\nearrow\frac{1}{2}}u^{\prime\prime\prime}(x;\alpha)=\frac{\beta_{*}(\alpha)}{(1+\alpha^{2})^{\frac{5}{4}}}<0.

However, if uC3(0,1)u\in C^{3}(0,1), by symmetry u′′′(12)=0u^{\prime\prime\prime}(\tfrac{1}{2})=0 must hold. This contradicts our assumption. ∎

Remark 4.8.

We refer to [6] as an example of the loss of regularity induced by obstacle. They considered a linear fourth order obstacle problem:

(4.31) findu𝒜such thatΩΔuΔ(vu)𝑑x0forv𝒜,\displaystyle\text{find}\quad u\in\mathcal{A}\quad\text{such that}\quad\int_{\Omega}\Delta u\Delta(v-u)\,dx\geq 0\quad\text{for}\quad v\in\mathcal{A},

where ΩN\Omega\subset\mathbb{R}^{N} is a bounded domain and

𝒜:={vH02(Ω)|vψa.e. inΩ}.\mathcal{A}:=\Set{v\in H^{2}_{0}(\Omega)}{v\geq\psi\ \ \text{a.e.\ in}\ \ \Omega}.

It is shown that there cannot exist an a priori W3,p(K)W^{3,p}(K) estimate on the solution of (4.31) for p>np>n and for any compact subdomain KΩK\subset\subset\Omega (see [6, Section 7]).

5. Application to the parabolic problem

Dynamical approaches are also useful to study variational problems. In this section we show that the solution of (M) obtained in Theorem 1.2 can be characterized as equilibrium of the corresponding parabolic problem:

(GF) {tu+𝒲(u)0in(0,1)×(0,T),tu+𝒲(u)=0in{(x,t)(0,1)×(0,T)|u>ψ},uψin(0,1)×(0,T),u=u′′=0on{0,1}×(0,T),u(,0)=u0()in(0,1),\displaystyle\begin{cases}\partial_{t}u+\nabla\mathcal{W}(u)\geq 0&\quad\text{in}\quad(0,1)\times(0,T),\\ \partial_{t}u+\nabla\mathcal{W}(u)=0&\quad\text{in}\quad\{(x,t)\in(0,1)\times(0,T)\ |\ u>\psi\},\\ u\geq\psi&\quad\text{in}\quad(0,1)\times(0,T),\\ u=u^{\prime\prime}=0&\quad\text{on}\quad\{0,1\}\times(0,T),\\ u(\cdot,0)=u_{0}(\cdot)&\quad\text{in}\quad(0,1),\end{cases}

where 𝒲(u)\nabla\mathcal{W}(u) is the Euler–Lagrange operator of 𝒲(u)\mathcal{W}(u), i.e.,

01𝒲(u)φ𝑑x\displaystyle\int_{0}^{1}\nabla\mathcal{W}(u)\cdot\varphi\,dx :=ddε𝒲(u+εφ)|ε=0\displaystyle:=\frac{d}{d\varepsilon}\mathcal{W}(u+\varepsilon\varphi)\big{|}_{\varepsilon=0}
=01[(2u′′(1+|u|2)52)′′+5(|u′′|2u(1+|u|2)72)]φ𝑑x\displaystyle\ =\int_{0}^{1}\bigg{[}\Big{(}2\frac{u^{\prime\prime}}{(1+|u^{\prime}|^{2})^{\frac{5}{2}}}\Big{)}^{\prime\prime}+5\Big{(}\frac{|u^{\prime\prime}|^{2}u^{\prime}}{(1+|u^{\prime}|^{2})^{\frac{7}{2}}}\Big{)}^{\prime}\bigg{]}\varphi\,dx

for φCc(0,1)\varphi\in C^{\infty}_{\rm c}(0,1). If there is no obstacle, it is a standard matter to obtain global solvability and asymptotic stability for the L2L^{2}-gradient flow with initial data sufficiently close to stable equilibrium (see e.g. [9, 20]). However, since the solution of (M) and the solution of (GF) are not in general regular, the standard argument cannot work. In particular, (1.5) implies that the solution of (GF) never converges to the solution of (M) in the CC^{\infty}-topology. A new ingredient for the following results is that we obtain global existence and asymptotic behavior in the full limit sense while the solution of (M) does not belong to C3(0,1)C^{3}(0,1).

Let u0u_{0} satisfy

(5.1) u0H(0,1),u0(x)ψ(x)forx[0,1].\displaystyle u_{0}\in H(0,1),\quad u_{0}(x)\geq\psi(x)\quad\text{for}\quad x\in[0,1].

For T>0T>0, we define the convex set 𝒦T\mathcal{K}_{T} by

𝒦T:={vL(0,T;H(0,1))H1(0,T;L2(0,1))|vψin(0,1)×[0,T],v|t=0=u0in(0,1)},\displaystyle\mathcal{K}_{T}:=\Set{v\in L^{\infty}(0,T;H(0,1))\cap H^{1}(0,T;L^{2}(0,1))}{\begin{array}[]{l}v\geq\psi\,\,\,\text{in}\,\,\,(0,1)\times[0,T],\\ v|_{t=0}=u_{0}\,\,\,\text{in}\,\,(0,1)\end{array}},

where H(0,1)H(0,1) is the Hilbert space H(0,1)=H2(0,1)H01(0,1)H(0,1)=H^{2}(0,1)\cap H^{1}_{0}(0,1) equipped with the scalar product

(u,v)H(0,1):=01u′′v′′𝑑xforu,vH(0,1).(u,v)_{H(0,1)}:=\int_{0}^{1}u^{\prime\prime}v^{\prime\prime}\,dx\quad\text{for}\quad u,v\in H(0,1).

In this paper we employ the norm H(0,1)\|\cdot\|_{H(0,1)} on H(0,1)H(0,1) as

uH(0,1):=(u,u)H(0,1)1/2foruH(0,1),\|u\|_{H(0,1)}:=(u,u)_{H(0,1)}^{1/2}\quad\text{for}\quad u\in H(0,1),

which is equivalent to H2(0,1)\|\cdot\|_{H^{2}(0,1)}. In fact, there exist cH,CH>0c_{H},C_{H}>0 such that

cHuH(0,1)uH2(0,1)CHuH(0,1)\displaystyle c_{H}\|u\|_{H(0,1)}\leq\|u\|_{H^{2}(0,1)}\leq C_{H}\|u\|_{H(0,1)}

(see e.g.  [11, Theorem 2.31]).

We formulate the definition of solutions to (GF) as follows.

Definition 5.1.

We say that uu is a weak solution to (GF) in (0,1)×[0,T](0,1)\times[0,T] if the following hold:\colon

  1. (i)

    u𝒦T;u\in\mathcal{K}_{T};

  2. (ii)

    For any v𝒦Tv\in\mathcal{K}_{T} it holds that

    (5.2) 0T01[tu(vu)\displaystyle\int_{0}^{T}\!\!\int_{0}^{1}\bigg{[}\partial_{t}u(v-u) +2u′′(vu)′′(1+(u)2)525|u′′|2u(vu)(1+(u)2)72]dxdt0.\displaystyle+2\frac{u^{\prime\prime}(v-u)^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}-5\frac{|u^{\prime\prime}|^{2}u^{\prime}(v-u)^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\bigg{]}\,dx\!\,dt\geq 0.

We are now ready to state a local-in-time existence and uniqueness result proved in [21].

Proposition 5.2 (Local-in-time existence and uniqueness, [21]).

Let ψ\psi satisfy

(5.3) ψC([0,1]),ψ(0)<0,ψ(1)<0\displaystyle\psi\in C([0,1]),\quad\psi(0)<0,\quad\psi(1)<0

and u0u_{0} satisfy (5.1). Then there exists a constant T=T(u0)>0T=T(u_{0})>0 such that (GF) has a unique weak solution in (0,1)×[0,T](0,1)\times[0,T]. Moreover, u(,t)H2(0,1)u(\cdot,t)\in H^{2}(0,1) for all 0tT0\leq t\leq T and it holds that

(5.4) 𝒲(u(t2))𝒲(u(t1))12t1t201|tu|2𝑑x𝑑tfor all0t1t2T.\displaystyle\mathcal{W}(u(t_{2}))-\mathcal{W}(u(t_{1}))\leq-\frac{1}{2}\int_{t_{1}}^{t_{2}}\!\!\int_{0}^{1}|\partial_{t}u|^{2}\,dx\!\,dt\quad\text{for all}\quad 0\leq t_{1}\leq t_{2}\leq T.
Remark 5.3.

Let uu be the weak solution uu to (GF) in (0,1)×[0,T](0,1)\times[0,T]. If there exists M>0M>0 such that

sup0tTu(,t)L(0,1)M,\sup_{0\leq t\leq T}\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}\leq M,

then uu can be uniquely extended to the solution in (0,1)×[0,T+L(u0)](0,1)\times[0,T+L(u_{0})], where

0<L(u0):=cH(1+M2)52𝒲(u0)12.\displaystyle 0<L(u_{0}):=c_{H}\left(1+M^{2}\right)^{\frac{5}{2}}\mathcal{W}(u_{0})^{\frac{1}{2}}.

This extension is justified by solving (GF) with the initial datum u(T)u(T) (more precisely, see [21, proof of Theorem 1.1]). Namely, it is important to deduce a uniform estimate for uu on W˙1,(0,1)\dot{W}^{1,\infty}(0,1) to extend the time of existence of the solution.

In order to discuss the asymptotic behavior of the solution uu of (GF), we prepare two lemmas.

Lemma 5.4 (Preservation of symmetry).

Let ψ\psi be a symmetric function satisfying (5.3) and uu be the solution of (GF) in (0,1)×[0,T](0,1)\times[0,T] with the initial datum u0Msym.u_{0}\in M_{\rm sym}. Then u(,t)Msymu(\cdot,t)\in M_{\rm sym} for 0tT0\leq t\leq T.

Proof.

Let uu be a weak solution of (GF) in (0,1)×[0,T](0,1)\times[0,T] and v𝒦Tv\in\mathcal{K}_{T} be arbitrary. Setting u~(x,t):=u(1x,t)\tilde{u}(x,t):=u(1-x,t) and v~(x,t):=v(1x,t)\tilde{v}(x,t):=v(1-x,t), we find that u~\tilde{u}, v~𝒦T\tilde{v}\in\mathcal{K}_{T} by symmetry of ψ\psi and u0u_{0}. Then

0T01[tu~\displaystyle\int_{0}^{T}\!\!\int_{0}^{1}\bigg{[}\partial_{t}\tilde{u} (vu~)+2u~′′(vu~)′′(1+(u~)2)525|u~′′|2u~(vu~)(1+(u~)2)72]dxdt\displaystyle(v-\tilde{u})+2\frac{\tilde{u}^{\prime\prime}(v-\tilde{u})^{\prime\prime}}{(1+(\tilde{u}^{\prime})^{2})^{\frac{5}{2}}}-5\frac{|\tilde{u}^{\prime\prime}|^{2}\tilde{u}^{\prime}(v-\tilde{u})^{\prime}}{(1+(\tilde{u}^{\prime})^{2})^{\frac{7}{2}}}\bigg{]}\,dx\!\,dt
=0T10[tu(v~u)+2u′′(v~u)′′(1+(u)2)525|u′′|2u(v~u)(1+(u)2)72]dxdt0,\displaystyle=\int_{0}^{T}\!\!\int_{1}^{0}-\bigg{[}\partial_{t}u(\tilde{v}-u)+2\frac{u^{\prime\prime}(\tilde{v}-u)^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}-5\frac{|u^{\prime\prime}|^{2}u^{\prime}(\tilde{v}-u)^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\bigg{]}\,dx\!\,dt\geq 0,

where in the last inequality we used (5.2) taking v~\tilde{v} as the test function. It follows from the uniqueness of solutions of (GF) that u~=u\tilde{u}=u and this implies u(,t)Msymu(\cdot,t)\in M_{\rm sym} for any 0tT0\leq t\leq T. ∎

Lemma 5.5.

Let ψ\psi satisfy (5.3) and uu be the solution of (GF) in (0,1)×[0,T](0,1)\times[0,T] with the initial datum u0H(0,1)u_{0}\in H(0,1) satisfying 𝒲(u0)<c02\mathcal{W}(u_{0})<c_{0}^{2}. Then

u(,t)L(0,1)G1(𝒲(u0)2):=M(u0)for all0tT.\displaystyle\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}\leq G^{-1}\left(\frac{\sqrt{\mathcal{W}(u_{0})}}{2}\right):=M^{*}(u_{0})\quad\text{for all}\quad 0\leq t\leq T.
Proof.

By Lemma 5.4, u(,t)Msymu(\cdot,t)\in M_{\rm sym} holds for 0tT0\leq t\leq T. Fix x[0,12)x\in[0,\frac{1}{2}) and t[0,T]t\in[0,T]. Then it follows from the definition of GG that

(5.5) 𝒲(u(t))x1xu′′(x,t)2G(u(x,t))2𝑑x.\displaystyle\mathcal{W}(u(t))\geq\int_{x}^{1-x}u^{\prime\prime}(x,t)^{2}G^{\prime}(u^{\prime}(x,t))^{2}\,dx.

By the Cauchy–Schwarz inequality we have

|G(u(x,t))G(u(1x,t))|=|x1xG(u(x,t))u′′(x,t)𝑑x|12x(x1xG(u(x,t))2u′′(x,t)2𝑑x)1212x𝒲(u(t))12,\displaystyle\begin{split}\left|G(u^{\prime}(x,t))-G(u^{\prime}(1-x,t))\right|&=\left|\int_{x}^{1-x}G^{\prime}(u^{\prime}(x,t))u^{\prime\prime}(x,t)\,dx\right|\\ &\leq\sqrt{1-2x}\left(\int_{x}^{1-x}G^{\prime}(u^{\prime}(x,t))^{2}u^{\prime\prime}(x,t)^{2}\,dx\right)^{\frac{1}{2}}\\ &\leq\sqrt{1-2x}\ \mathcal{W}(u(t))^{\frac{1}{2}},\end{split}

where the last inequality holds by (5.5). By symmetry we have u(x,t)=u(1x,t)u^{\prime}(x,t)=-u^{\prime}(1-x,t). Therefore since GG is an odd function, we obtain G(u(1x,t))=G(u(x,t))G(u^{\prime}(1-x,t))=-G(u^{\prime}(x,t)), and hence

G(|u(x,t)|)=|G(u(x,t))|12𝒲(u(t))12.\displaystyle G(|u^{\prime}(x,t)|)=|G(u^{\prime}(x,t))|\leq\frac{1}{2}\mathcal{W}(u(t))^{\frac{1}{2}}.

This together with (5.4) implies that

u(x,t)L(0,1)G1(𝒲(u(t))2)G1(𝒲(u0)2),\displaystyle\|u^{\prime}(x,t)\|_{L^{\infty}(0,1)}\leq G^{-1}\left(\frac{\sqrt{\mathcal{W}(u(t))}}{2}\right)\leq G^{-1}\left(\frac{\sqrt{\mathcal{W}(u_{0})}}{2}\right),

where we used the monotonicity of G1G^{-1} and 𝒲(u0)<c02\mathcal{W}(u_{0})<c_{0}^{2}. ∎

We close this paper with the result on the relationship between (M) and (GF):

Theorem 5.6 (Asymptotic behavior).

Let ψ𝖲𝖢\psi\in\mathsf{SC} and ψ(12)<c\psi(\frac{1}{2})<c_{*}, where cc_{*} is given by (1.2). Let u0Msymu_{0}\in M_{\rm sym} satisfy (5.1) and 𝒲(u0)<c02\mathcal{W}(u_{0})<c_{0}^{2}. Then (GF) has a unique solution uu in (0,1)×[0,)(0,1)\times[0,\infty). Moreover, uu satisfies

(5.6) u(,t)UinH2(0,1)ast,\displaystyle u(\cdot,t)\to U\quad\text{in}\quad H^{2}(0,1)\quad\text{as}\quad t\to\infty,

where UU is the solution obtained by Theorem 1.2.

Remark 5.7.

As used in Lemma 5.5, the assumption 𝒲(u0)<c02\mathcal{W}(u_{0})<c_{0}^{2} plays an important role for the uniform bound of u(,t)L(0,1)\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)} (see [7, Lemma 2.4] and [17, Corollary 5.16]). Therefore, no matter whether ψ(12)<c\psi(\frac{1}{2})<c_{*} or not, we can obtain the global-in-time existence result under the assumption that 𝒲(u0)<c02\mathcal{W}(u_{0})<c_{0}^{2}.

Proof of Theorem 5.6.

We first show the global-in-time existence. Let uu be the solution in (0,1)×[0,T](0,1)\times[0,T]. Set

L:=cH(1+M(u0)2)52𝒲(u0)12.L^{*}:=c_{H}\left(1+M^{*}(u_{0})^{2}\right)^{\frac{5}{2}}\mathcal{W}(u_{0})^{\frac{1}{2}}.

Since Lemma 5.5 gives the uniform estimate of u(,t)L(0,1)\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}, we can extend the solution uu to (0,1)×[0,T+L](0,1)\times[0,T+L^{*}] by considering (GF) with the initial datum u(T)u(T), as mentioned in Remark 5.3. Then by Lemma 5.5 it holds that

u(,t)L(0,1)G1(𝒲(u(T))2)for allTtT+L.\displaystyle\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}\leq G^{-1}\left(\frac{\sqrt{\mathcal{W}(u(T))}}{2}\right)\quad\text{for all}\quad T\leq t\leq T+L^{*}.

This together with (5.4) gives

u(,t)L(0,1)G1(𝒲(u0)2)=M(u0)for all0tT+L.\displaystyle\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}\leq G^{-1}\left(\frac{\sqrt{\mathcal{W}(u_{0})}}{2}\right)=M^{*}(u_{0})\quad\text{for all}\quad 0\leq t\leq T+L^{*}.

By solving (GF) with the initial datum u(T+L)u(T+L^{*}), and by following the same argument as above, we can extend the solution u(x,t)u(x,t) to t=T+2Lt=T+2L^{*} and it follows from (5.4) that

𝒲(u(T+2L))𝒲(u(T+L))𝒲(u0),\mathcal{W}(u(T+2L^{*}))\leq\mathcal{W}(u(T+L^{*}))\leq\mathcal{W}(u_{0}),

which yields

u(,t)L(0,1)M(u0)for allT+LtT+2L.\displaystyle\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}\leq M^{*}(u_{0})\quad\text{for all}\quad T+L^{*}\leq t\leq T+2L^{*}.

Repeating this argument, we can extend the solution to an arbitrary time and find that uu satisfies

(5.7) u(,t)L(0,1)G1(𝒲(u0)2)for0t<.\displaystyle\|u^{\prime}(\cdot,t)\|_{L^{\infty}(0,1)}\leq G^{-1}\left(\frac{\sqrt{\mathcal{W}(u_{0})}}{2}\right)\quad\text{for}\quad 0\leq t<\infty.

Thus the solution uu of (GF) with the initial datum u0u_{0} can be extended to (0,1)×[0,)(0,1)\times[0,\infty) and satisfies

(5.8) 001[tu(vu)\displaystyle\int_{0}^{\infty}\!\!\int_{0}^{1}\Bigl{[}\partial_{t}u(v-u) +2u′′(vu)′′(1+(u)2)525|u′′|2u(vu)(1+(u)2)72]dxdt0\displaystyle+2\frac{u^{\prime\prime}(v-u)^{\prime\prime}}{(1+(u^{\prime})^{2})^{\frac{5}{2}}}-5\frac{|u^{\prime\prime}|^{2}u^{\prime}(v-u)^{\prime}}{(1+(u^{\prime})^{2})^{\frac{7}{2}}}\Bigr{]}\,dx\!\,dt\geq 0

for v𝒦v\in\mathcal{K}_{\infty}. Moreover, since it holds by (5.4), the energy monotonicity, that

01|u′′(x,t)|2(1+M(u0)2)52𝑑x𝒲(u(t))𝒲(u0)for0t<,\displaystyle\int_{0}^{1}\frac{|u^{\prime\prime}(x,t)|^{2}}{(1+M^{*}(u_{0})^{2})^{\frac{5}{2}}}\,dx\leq\mathcal{W}(u(t))\leq\mathcal{W}(u_{0})\quad\text{for}\quad 0\leq t<\infty,

we obtain the H2H^{2}-uniform boundness of u(,t)u(\cdot,t), that is,

(5.9) u′′(,t)L2(0,1)2(1+M(u0)2)52𝒲(u0)for0t<.\displaystyle\|u^{\prime\prime}(\cdot,t)\|^{2}_{L^{2}(0,1)}\leq(1+M^{*}(u_{0})^{2})^{\frac{5}{2}}\mathcal{W}(u_{0})\quad\text{for}\quad 0\leq t<\infty.

Furthermore, (5.7) and (5.9) clearly imply that u(,t)H2(0,1)\|u(\cdot,t)\|_{H^{2}(0,1)} is uniformly bounded.

Next we prepare ω\omega-limit set. We will prove this with the help of the argument used in [12, Section 3.1]. Let uu be the solution in (0,1)×[0,)(0,1)\times[0,\infty) with the initial datum u0u_{0}. To begin with, we define ω\omega-limit set by

ω(u0):={wC1([0,1])|u(tk)w in C1([0,1]) for some sequence tk}\omega(u_{0}):=\Set{w\in C^{1}([0,1])}{u(t_{k})\to w\text{ in }C^{1}([0,1])\text{ for some sequence }t_{k}\to\infty}

and we shall show that

(5.10) ω(u0)={U},\displaystyle\omega(u_{0})=\{U\},

where UU is the unique solution of (P). Since every wω(u0)w\in\omega(u_{0}) satisfies

wψin[0,1],w\geq\psi\quad\text{in}\quad[0,1],

in order to obtain (5.10) it is sufficient to show that ww satisfies (1.7).

Fix wω(u0)w\in\omega(u_{0}) arbitrarily. Then there exists {tk}\{t_{k}\} such that u(,tk)wu(\cdot,t_{k})\to w in L2(0,1)L^{2}(0,1) with 1<tk1<t_{k}\to\infty. Define a sequence of functions {uk}\{u_{k}\} by

uk(x,τ):=u(x,tk+τ),(x,τ)(0,1)×(1,1).u_{k}(x,\tau):=u(x,t_{k}+\tau),\quad(x,\tau)\in(0,1)\times(-1,1).

Since (5.4) and Step 1 imply that tuL2((0,1)×(0,))\partial_{t}u\in L^{2}((0,1)\times(0,\infty)), it holds that

(5.11) 1101|tuk|2𝑑x𝑑τ\displaystyle\int_{-1}^{1}\int_{0}^{1}|\partial_{t}u_{k}|^{2}\,dx\!\,d\tau =tk1tk+101|tu|2𝑑x𝑑t0ask.\displaystyle=\int_{t_{k}-1}^{t_{k}+1}\!\int_{0}^{1}|\partial_{t}u|^{2}\,dx\!\,dt\to 0\quad\text{as}\quad k\to\infty.

Therefore, by (5.11) and the Cauchy–Schwarz inequality we have

1101|u(x,tk+τ)\displaystyle\int_{-1}^{1}\int_{0}^{1}|u(x,t_{k}+\tau) u(x,tk)|2dτdx\displaystyle-u(x,t_{k})|^{2}\,d\tau\!\,dx
=0111|tktk+τtu(x,s)ds|2𝑑x𝑑τ\displaystyle=\int_{0}^{1}\int_{-1}^{1}\left|\int_{t_{k}}^{t_{k}+\tau}\partial_{t}u(x,s)\,ds\right|^{2}\,dx\!\,d\tau
01tk1|tu(x,s)|2𝑑s𝑑x0ask,\displaystyle\leq\int_{0}^{1}\int_{t_{k}-1}^{\infty}\left|\partial_{t}u(x,s)\right|^{2}\,ds\!\,dx\ \to 0\quad\text{as}\quad k\to\infty,

which yields

(5.12) ukwinL2(1,1;L2(0,1)).\displaystyle u_{k}\to w\quad\text{in}\quad L^{2}(-1,1;L^{2}(0,1)).

Moreover, by the same argument as in [21, Lemma 4.10], uk(,s)H3(0,1)u_{k}(\cdot,s)\in H^{3}(0,1) for a.e. s(1,1)s\in(-1,1) and

(5.13) 11uk′′′(,s)L2(0,1)2𝑑sC(11tuk(,s)L2(0,1)2𝑑s+1)\displaystyle\int_{-1}^{1}\|u^{\prime\prime\prime}_{k}(\cdot,s)\|_{L^{2}(0,1)}^{2}\,ds\leq C\left(\int_{-1}^{1}\|\partial_{t}u_{k}(\cdot,s)\|^{2}_{L^{2}(0,1)}\,ds+1\right)

holds and hence {uk}\{u_{k}\} is uniformly bounded in L2(1,1;H3(0,1))L^{2}(-1,1;H^{3}(0,1)). By the Aubin–Lions–Simon compactness theorem, we find that wH2(0,1)w\in H^{2}(0,1) and there exists a subsequence, which we still denote by {uk}\{u_{k}\}, such that

(5.14) ukwinL2(1,1;H2(0,1))ask.\displaystyle u_{k}\to w\quad\text{in}\quad L^{2}(-1,1;H^{2}(0,1))\quad\text{as}\quad k\to\infty.

Next, we show that ww satisfies (1.7). Fix VMV\in M arbitrarily and take a function ζCc(1,1)\zeta\in C^{\infty}_{\rm c}(-1,1) satisfying 0ζ10\leq\zeta\leq 1 and ζ0\zeta\not\equiv 0. Since u(x,t)+ζ(ttk)(V(x)u(x,t))u(x,t)+\zeta(t-t_{k})\big{(}V(x)-u(x,t)\big{)} belongs to 𝒦\mathcal{K}_{\infty}, using this as a test function in (5.8) we have

1101[tuk(Vuk)+2uk′′(Vuk)′′(1+(uk)2)525|uk′′|2uk(Vuk)(1+(uk)2)72]ζ𝑑x𝑑τ0,\displaystyle\int_{-1}^{1}\int_{0}^{1}\bigg{[}\partial_{t}u_{k}(V-u_{k})+2\frac{u_{k}^{\prime\prime}(V-u_{k})^{\prime\prime}}{(1+(u_{k}^{\prime})^{2})^{\frac{5}{2}}}-5\frac{|u_{k}^{\prime\prime}|^{2}u_{k}^{\prime}(V-u_{k})^{\prime}}{(1+(u_{k}^{\prime})^{2})^{\frac{7}{2}}}\bigg{]}\zeta\,dx\!\,d\tau\geq 0,

where we used the change of variables τ=ttk\tau=t-t_{k}. Combining this with (5.11) and (5.14), letting kk\to\infty, we obtain

11ζ𝑑τ(01[2w′′(Vw)′′(1+(w)2)525|w′′|2w(Vw)(1+(w)2)72]𝑑x)0.\displaystyle\int_{-1}^{1}\zeta\,d\tau\left(\int_{0}^{1}\bigg{[}2\frac{w^{\prime\prime}(V-w)^{\prime\prime}}{(1+(w^{\prime})^{2})^{\frac{5}{2}}}-5\frac{|w^{\prime\prime}|^{2}w^{\prime}(V-w)^{\prime}}{(1+(w^{\prime})^{2})^{\frac{7}{2}}}\bigg{]}\,dx\right)\geq 0.

Hence dividing the above by 11ζ𝑑τ\int_{-1}^{1}\zeta\,d\tau, we find that ww satisfies (1.7) and ww is a solution of (P). We have already shown in Theorem 1.3 that a solution of (P) is unique if ψ𝖲𝖢\psi\in\mathsf{SC} satisfies ψ(12)<c\psi(\frac{1}{2})<c_{*}. Therefore we obtain (5.10).

We show the the full-limit convergence. First we show that

(5.15) u(,t)UinC1([0,1])\displaystyle u(\cdot,t)\to U\quad\text{in}\quad C^{1}([0,1])

as tt\to\infty. Suppose that (5.15) does not hold. Then there exists ϵ>0\epsilon>0 and sequence tjt_{j}\to\infty such that

(5.16) u(,tj)UC1([0,1])ϵ.\displaystyle\|u(\cdot,t_{j})-U\|_{C^{1}([0,1])}\geq\epsilon.

However, (5.9) implies that {u(,tj)}\{u(\cdot,t_{j})\} is bounded in H2(0,1)H^{2}(0,1) and hence by the Rellich–Kondrachov compactness theorem there exist {tjk}{tj}\{t_{j_{k}}\}\subset\{t_{j}\} and u¯H2(0,1)\bar{u}\in H^{2}(0,1) such that

u(,tjk)u¯inC1([0,1])u(\cdot,t_{j_{k}})\to\bar{u}\quad\text{in}\quad C^{1}([0,1])

as kk\to\infty. Since (5.10) yields u¯=U\bar{u}=U, this contradicts (5.16). Thus we obtain (5.15).

Next we prove that

(5.17) u′′(,t)(1+u(,t)2)54U′′(1+(U)2)54weakly inL2(0,1)\displaystyle\frac{u^{\prime\prime}(\cdot,t)}{(1+u^{\prime}(\cdot,t)^{2})^{\frac{5}{4}}}\rightharpoonup\frac{U^{\prime\prime}}{(1+(U^{\prime})^{2})^{\frac{5}{4}}}\quad\text{weakly in}\quad L^{2}(0,1)

as tt\to\infty. Using GG, given by (2.4), we see that

G(u(x,t))=u′′(x,t)(1+u(x,t)2)54,G(U)=U′′(1+(U)2)54.G\big{(}u^{\prime}(x,t)\big{)}^{\prime}=\frac{u^{\prime\prime}(x,t)}{(1+u^{\prime}(x,t)^{2})^{\frac{5}{4}}},\quad G\big{(}U^{\prime}\big{)}^{\prime}=\frac{U^{\prime\prime}}{(1+(U^{\prime})^{2})^{\frac{5}{4}}}.

For any ϕCc1(0,1)\phi\in C^{1}_{\rm c}(0,1), it holds that

01[u′′(x,t)(1+u(x,t)2)54U′′(x)(1+U(x)2)54]ϕ𝑑x\displaystyle\int_{0}^{1}\bigg{[}\frac{u^{\prime\prime}(x,t)}{(1+u^{\prime}(x,t)^{2})^{\frac{5}{4}}}-\frac{U^{\prime\prime}(x)}{(1+U^{\prime}(x)^{2})^{\frac{5}{4}}}\bigg{]}\phi\,dx =01[G(u(,t))G(U)]ϕ𝑑x\displaystyle=-\int_{0}^{1}\bigg{[}G\big{(}u^{\prime}(\cdot,t)\big{)}-G\big{(}U^{\prime}\big{)}\bigg{]}\phi^{\prime}\,dx
0ast,\displaystyle\to 0\quad\text{as}\quad t\to\infty,

where we used the continuity of GG and (5.15). Therefore we obtain (5.17).

Finally, we show that

(5.18) 01(u′′(,t)(1+u(,t)2)54)2𝑑x01(U′′(1+(U)2)54)2𝑑x\displaystyle\int_{0}^{1}\bigg{(}\frac{u^{\prime\prime}(\cdot,t)}{(1+u^{\prime}(\cdot,t)^{2})^{\frac{5}{4}}}\bigg{)}^{2}\,dx\to\int_{0}^{1}\bigg{(}\frac{U^{\prime\prime}}{(1+(U^{\prime})^{2})^{\frac{5}{4}}}\bigg{)}^{2}\,dx

as tt\to\infty. We can regard the left-hand side of (5.18) as 𝒲(u(t))\mathcal{W}(u(t)). Since (5.4) implies that 𝒲(u(t))\mathcal{W}(u(t)) is non-increasing with respect to tt, there exists AA\in\mathbb{R} such that

(5.19) A=inft>0𝒲(u(t))=limt𝒲(u(t)).\displaystyle A=\inf_{t>0}\mathcal{W}(u(t))=\lim_{t\to\infty}\mathcal{W}(u(t)).

Suppose that 𝒲(U)<A\mathcal{W}(U)<A. Similar to [21, proof of Lemma 6.3] we can construct {tj}j\{t_{j}\}_{j\in\mathbb{N}} satisfying

u(,tj)UinH2(0,1).u(\cdot,t_{j})\to U\quad\text{in}\quad H^{2}(0,1).

This together with (5.19) implies that

A=limt𝒲(u(t))=limj𝒲(u(tj))=𝒲(U),A=\lim_{t\to\infty}\mathcal{W}(u(t))=\lim_{j\to\infty}\mathcal{W}(u(t_{j}))=\mathcal{W}(U),

which contradicts 𝒲(U)<A\mathcal{W}(U)<A and we obtain 𝒲(U)A\mathcal{W}(U)\geq A. Since UU is a unique minimizer of 𝒲\mathcal{W} in MsymM_{\rm sym}, 𝒲(U)>A\mathcal{W}(U)>A does not occur. Therefore 𝒲(U)=A\mathcal{W}(U)=A, which in combination with (5.19) gives

limt𝒲(u(t))=𝒲(U).\lim_{t\to\infty}\mathcal{W}(u(t))=\mathcal{W}(U).

This clearly asserts that (5.18) holds. It follows from (5.17) and (5.18) that

u′′(,t)(1+u(,t)2)54U′′(1+(U)2)54inL2(0,1)\frac{u^{\prime\prime}(\cdot,t)}{(1+u^{\prime}(\cdot,t)^{2})^{\frac{5}{4}}}\to\frac{U^{\prime\prime}}{(1+(U^{\prime})^{2})^{\frac{5}{4}}}\quad\text{in}\quad L^{2}(0,1)

as tt\to\infty. This together with (5.15) implies that (5.6) holds. ∎

Appendix A The Gaussian hypergeometric functions

In this section we introduce the Gaussian hypergeometric function and give the proof of (4.17).

Definition A.1 (The Gaussian hypergeometric function).

For parameters a,b,ca,b,c\in\mathbb{R}, the Gaussian hypergeometric function F12[a,b;c;x]{}_{2}F_{1}[a,b;c;x] is defined by

(A.1) F12[a,b;c;x]:=k=0(a)k(b)k(c)kk!xk,x<1,\displaystyle{}_{2}F_{1}[a,b;c;x]:=\sum_{k=0}^{\infty}\frac{(a)_{k}(b)_{k}}{(c)_{k}\,k!}x^{k},\quad x<1,

where (a)k(a)_{k} denotes the Pochhammer symbol:

(a)k:={1k=0,a(a+1)(a+n1)k1.\displaystyle(a)_{k}:=\begin{cases}1\quad&\quad k=0,\\ a(a+1)\cdots(a+n-1)&\quad k\geq 1.\end{cases}

In general, the Gaussian hypergeometric function is defined with the parameters a,b,ca,b,c\in\mathbb{C} and xx\in\mathbb{C} (see e.g. [1, Definition 2.1.5]).

Remark A.2.

The series in the right-hand side of (A.1) converges for |x|<1|x|<1. Elsewhere F12{}_{2}F_{1} is understood as the analytic continuation to the complex plane from which a line joining 11 to \infty deleted.

Proposition A.3 (Pfaff’s transformation formula, [1, Theorem 2.2.5]).

For each a,b,c>0a,b,c>0 and x<1x<-1, it follows that

F12[a,b;c;x]=1(1x)aF12[a,b;c;xx1].{}_{2}F_{1}[a,b;c;x]=\frac{1}{(1-x)^{a}}{}_{2}F_{1}\big{[}a,b;c;\tfrac{x}{x-1}\big{]}.

We are now ready to prove (4.17) and the proof is given as the following proposition. The key idea is to use Proposition A.3 and [16, Lemma C.5].

Proposition A.4.

Let α>0\alpha>0. Then

01t1tα2(1+α2t2)54𝑑t=23α21+α2F12[1,32;74;α21+α2].\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt=\frac{2}{3}\frac{\alpha^{2}}{1+\alpha^{2}}{}_{2}F_{1}\big{[}1,\tfrac{3}{2};\tfrac{7}{4};\tfrac{\alpha^{2}}{1+\alpha^{2}}\big{]}.
Proof.

We infer from the binomial theorem that

01t1tα2(1+α2t2)54𝑑t\displaystyle\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt =α201t1tk=0(54k)(α2t2)kdt\displaystyle=\alpha^{2}\int_{0}^{1}\frac{t}{\sqrt{1-t}}\sum_{k=0}^{\infty}\begin{pmatrix}-\frac{5}{4}\\ k\end{pmatrix}(\alpha^{2}t^{2})^{k}\,dt
=α2k=0(54k)(α2)k01t2k+11t𝑑t.\displaystyle=\alpha^{2}\sum_{k=0}^{\infty}\begin{pmatrix}-\frac{5}{4}\\ k\end{pmatrix}(\alpha^{2})^{k}\int_{0}^{1}\frac{t^{2k+1}}{\sqrt{1-t}}\,dt.

From the fact that for any mm\in\mathbb{N}

01tm1t𝑑t=l=1m2l2l+1\int_{0}^{1}\frac{t^{m}}{\sqrt{1-t}}\,dt=\prod_{l=1}^{m}\frac{2l}{2l+1}

(see e.g. [16, Lemma C.4]), it follows that

01t1tα2(1+α2t2)54𝑑t\displaystyle\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt =α2k=0(54k)(α2)kl=12k+12l2l+1.\displaystyle=\alpha^{2}\sum_{k=0}^{\infty}\begin{pmatrix}-\frac{5}{4}\\ k\end{pmatrix}(\alpha^{2})^{k}\prod_{l=1}^{2k+1}\frac{2l}{2l+1}.

Moreover, noting that for any aa\in\mathbb{R} and kk\in\mathbb{N}

(a)k\displaystyle(-a)_{k} =(a)(a+1)(a+k1)\displaystyle=(-a)(-a+1)\cdots(-a+k-1)
=(1)ka(a1)(ak+1)=(1)k(ak)k!,\displaystyle=(-1)^{k}a(a-1)\cdots(a-k+1)=(-1)^{k}\begin{pmatrix}a\\ k\end{pmatrix}k!,

we obtain

01t1tα2(1+α2t2)54𝑑t\displaystyle\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt =α2k=0(54)kk!(α2)kl=12k+12l2l+1\displaystyle=\alpha^{2}\sum_{k=0}^{\infty}\frac{\big{(}\frac{5}{4}\big{)}_{k}}{k!}(-\alpha^{2})^{k}\prod_{l=1}^{2k+1}\frac{2l}{2l+1}
=α2k=0[(α2)kk!(54944k+34)\displaystyle=\alpha^{2}\sum_{k=0}^{\infty}\Bigg{[}\frac{(-\alpha^{2})^{k}}{k!}\left(\frac{5}{4}\cdot\frac{9}{4}\cdots\frac{4k+3}{4}\right)
×22k+1l=12k+1l3(l=1k(4l+3))(l=1k(4l3))]\displaystyle\qquad\qquad\qquad\times\frac{2^{2k+1}\prod_{l=1}^{2k+1}l}{3\big{(}\prod_{l=1}^{k}(4l+3)\big{)}\big{(}\prod_{l=1}^{k}(4l-3)\big{)}}\Bigg{]}
=23α2k=0(α2)kk!l=12k+1ll=1k(4l3).\displaystyle=\frac{2}{3}\alpha^{2}\sum_{k=0}^{\infty}\frac{(-\alpha^{2})^{k}}{k!}\frac{\prod_{l=1}^{2k+1}l}{\prod_{l=1}^{k}(4l-3)}.

Since we infer from definition that

l=1k(4l3)=4kl=1k(l1+74)=4k(74)k,\prod_{l=1}^{k}(4l-3)=4^{k}\prod_{l=1}^{k}\left(l-1+\tfrac{7}{4}\right)=4^{k}\big{(}\tfrac{7}{4}\big{)}_{k},

it turns out that

01t1tα2(1+α2t2)54𝑑t\displaystyle\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt =23α2k=0(α2)kk!(l=1k2l)(l=1k(2l+1))4k(74)k\displaystyle=\frac{2}{3}\alpha^{2}\sum_{k=0}^{\infty}\frac{(-\alpha^{2})^{k}}{k!}\frac{\big{(}\prod_{l=1}^{k}2l\big{)}\big{(}\prod_{l=1}^{k}(2l+1)\big{)}}{4^{k}\big{(}\tfrac{7}{4}\big{)}_{k}}
=23α2k=0(α2)kl=1k(2l+1)2k(74)k,\displaystyle=\frac{2}{3}\alpha^{2}\sum_{k=0}^{\infty}(-\alpha^{2})^{k}\frac{\prod_{l=1}^{k}(2l+1)}{2^{k}\big{(}\tfrac{7}{4}\big{)}_{k}},

where in the last equality we used the fact that l=1k2l=2kk!\prod_{l=1}^{k}2l=2^{k}k!. Furthermore, we have

l=1k(2l+1)=2kl=1k(l32+1)=2k(32)k,\prod_{l=1}^{k}(2l+1)=2^{k}\prod_{l=1}^{k}\big{(}l-\tfrac{3}{2}+1\big{)}=2^{k}\big{(}\tfrac{3}{2}\big{)}_{k},

which in combination with (1)k=k!(1)_{k}=k! yields

01t1tα2(1+α2t2)54𝑑t\displaystyle\int_{0}^{1}\frac{t}{\sqrt{1-t}}\frac{\alpha^{2}}{(1+\alpha^{2}t^{2})^{\frac{5}{4}}}\,dt =23α2k=0(α2)k(32)k(74)k\displaystyle=\frac{2}{3}\alpha^{2}\sum_{k=0}^{\infty}(-\alpha^{2})^{k}\frac{\big{(}\tfrac{3}{2}\big{)}_{k}}{\big{(}\tfrac{7}{4}\big{)}_{k}}
=23α2k=0(α2)k(1)k(32)kk!(74)k=23α2F12[1,32;74;α2].\displaystyle=\frac{2}{3}\alpha^{2}\sum_{k=0}^{\infty}(-\alpha^{2})^{k}\frac{(1)_{k}\big{(}\tfrac{3}{2}\big{)}_{k}}{k!\big{(}\tfrac{7}{4}\big{)}_{k}}=\frac{2}{3}\alpha^{2}{}_{2}F_{1}\big{[}1,\tfrac{3}{2};\tfrac{7}{4};-\alpha^{2}\big{]}.

Combining this with Proposition A.3, we obtain the desired expression. ∎

Appendix B Convergence to the singular curve

Let u(;α)u(\cdot;\alpha) be the solution of (1.3) with (4.11) for α>0\alpha>0. Then one may conjecture that

(B.1) u(;α)U0asα,\displaystyle u(\cdot;\alpha)\to U_{0}\quad\text{as}\quad\alpha\to\infty,

where U0U_{0} is defined by

(B.2) U0(x):={2c01+G1(c02c0x)24if 0<x12,0ifx=0.\displaystyle U_{0}(x):=\begin{cases}\dfrac{2}{c_{0}\sqrt[4]{1+G^{-1}(\frac{c_{0}}{2}-c_{0}x)^{2}}}\quad&\text{if}\ \ 0<x\leq\frac{1}{2},\\ \quad\quad\quad\quad\quad 0&\text{if}\ \ x=0.\end{cases}

This function U0U_{0} is obtained by Deckelnick and Grunau in [8], as a limit of the solution of (1.3) with some Navier boundary conditions (see [8, equation 25]). However, it is not easy to show (B.1) by the previous argument, due to the gap between u′′(0;α)=0u^{\prime\prime}(0;\alpha)=0 and limx0U0′′(x)=\lim_{x\downarrow 0}U_{0}^{\prime\prime}(x)=-\infty.

It is known that U0U_{0} is not smooth as a graph but smooth as a curve in 2\mathbb{R}^{2}. Focusing on this property, we discuss the convergence of u(;α)u(\cdot;\alpha) as a planar curve by applying the shooting method to

(B.3) κss+12κ3=0.\displaystyle\kappa_{ss}+\frac{1}{2}\kappa^{3}=0.

If uu satisfies (1.3), then the curvature of (x,u(x))(x,u(x)), up to reparametrization, satisfies (B.3). For the initial value problem on (B.3), we refer the result in [13, Proposition 3.3].

Proposition B.1 ([13]).

Given any real numbers φ0\varphi_{0} and φ˙0\dot{\varphi}_{0} the unique solution of the initial value problem,

φss(s)+12φ(s)3=0,φ(0)=φ0,φs(0)=φ˙0\displaystyle\varphi_{ss}(s)+\frac{1}{2}\varphi(s)^{3}=0,\quad\varphi(0)=\varphi_{0},\ \ \varphi_{s}(0)=\dot{\varphi}_{0}

is given by

(B.4) φ(s)=2acn(as+b)with2acn(b)=φ0,2a2sn(b)dn(b)=φ˙0.\displaystyle\varphi(s)=\sqrt{2}a\,{\rm cn}(as+b)\quad\text{with}\quad\sqrt{2}a\,{\rm cn}(b)=\varphi_{0},\quad-\sqrt{2}a^{2}\,{\rm sn}(b){\rm dn}(b)=\dot{\varphi}_{0}.

Here cn{\rm cn}, sn{\rm sn} and dn{\rm dn} denote Jacobi’s elliptic functions with modulus 1/21/\sqrt{2}. Set

K(12):=011(1x2)(112x2)𝑑x,K(\tfrac{1}{\sqrt{2}}):=\int_{0}^{1}\frac{1}{\sqrt{(1-x^{2})(1-\frac{1}{2}x^{2})}}\,dx,

which is called the elliptic integral of the first kind of modulus 1/21/\sqrt{2}. Since

cn(K(12))=0,sn(K(12))=1anddn(K(12))=12{\rm cn}(K(\tfrac{1}{\sqrt{2}}))=0,\ \ {\rm sn}(K(\tfrac{1}{\sqrt{2}}))=1\ \ \text{and}\ \ {\rm dn}(K(\tfrac{1}{\sqrt{2}}))=\frac{1}{\sqrt{2}}

hold, bb in (B.4) coincides with K(12)K(\tfrac{1}{\sqrt{2}}) if we take φ0=0\varphi_{0}=0. For more details of elliptic functions we refer the reader to [5].

Definition B.2.

Let γU:[0,1/2]2\gamma_{U}:[0,1/2]\to\mathbb{R}^{2} denote the curve (x,U0(x))(x,U_{0}(x)). Let ss and κU\kappa_{U} denote the arclength parameter and the curvature of γU\gamma_{U}, respectively.

Lemma B.3.
(B.5) LU\displaystyle L_{U} :=0121+U0(x)2𝑑x=12c0dt(1+t2)34,\displaystyle:=\int_{0}^{\frac{1}{2}}\sqrt{1+U_{0}^{\prime}(x)^{2}}\,dx=\frac{1}{2c_{0}}\int_{\mathbb{R}}\frac{dt}{(1+t^{2})^{\frac{3}{4}}},
(B.6) κU(s)\displaystyle\kappa_{U}(s) =c0cn(c02s+K(12)).\displaystyle=c_{0}\,{\rm cn}\left(\tfrac{c_{0}}{\sqrt{2}}s+K(\tfrac{1}{\sqrt{2}})\right).
Proof.

To begin with, for U0U_{0} defined by (B.2) it holds that

U0(x)\displaystyle U^{\prime}_{0}(x) =G1(c02c0x),\displaystyle=G^{-1}\left(\frac{c_{0}}{2}-c_{0}x\right),
(B.7) U0′′(x)\displaystyle U^{\prime\prime}_{0}(x) =c0(1+G1(c02c0x)2)54=c0(1+U0(x)2)54,\displaystyle=-c_{0}\left(1+G^{-1}(\tfrac{c_{0}}{2}-c_{0}x)^{2}\right)^{\frac{5}{4}}=-c_{0}\left(1+U^{\prime}_{0}(x)^{2}\right)^{\frac{5}{4}},

for x(0,1/2]x\in(0,{1}/{2}]. Then we infer from the change of variables G1(c02c0x)=tG^{-1}(\tfrac{c_{0}}{2}-c_{0}x)=t that

LU\displaystyle L_{U} =0121+G1(c02c0x)2𝑑x\displaystyle=\int_{0}^{\frac{1}{2}}\sqrt{1+G^{-1}(\tfrac{c_{0}}{2}-c_{0}x)^{2}}\,dx
=01+t2dt(c0)(1+t2)54=12c0dt(1+t2)34,\displaystyle=\int_{\infty}^{0}\sqrt{1+t^{2}}\frac{dt}{(-c_{0})(1+t^{2})^{\frac{5}{4}}}=\frac{1}{2c_{0}}\int_{\mathbb{R}}\frac{dt}{(1+t^{2})^{\frac{3}{4}}},

which is the desired formula (B.5).

Next we show (B.6). Recalling the definition of γU\gamma_{U}, by (B.7) we have

(B.8) κU(x)=U0′′(x)(1+U0(x)2)32=c0(1+U0(x)2)14.\displaystyle\kappa_{U}(x)=\frac{U^{\prime\prime}_{0}(x)}{(1+U^{\prime}_{0}(x)^{2})^{\frac{3}{2}}}=-\frac{c_{0}}{(1+U^{\prime}_{0}(x)^{2})^{\frac{1}{4}}}.

Since s(x)=0x1+U0(y)2𝑑ys(x)=\int_{0}^{x}\sqrt{1+U^{\prime}_{0}(y)^{2}}\,dy, it holds that

(B.9) ddsκU(s)\displaystyle\frac{d}{ds}\kappa_{U}(s) =dκUdxdxds=c0221+U0(x)2U0(x),\displaystyle=\frac{d\kappa_{U}}{dx}\frac{dx}{ds}=-\frac{c_{0}^{2}}{2\sqrt{1+U^{\prime}_{0}(x)^{2}}}U_{0}^{\prime}(x),
d2ds2κU(s)\displaystyle\frac{d^{2}}{ds^{2}}\kappa_{U}(s) =c022U0′′(x)(1+U0(x)2)52,\displaystyle=-\frac{c_{0}^{2}}{2}\frac{U^{\prime\prime}_{0}(x)}{(1+U^{\prime}_{0}(x)^{2})^{\frac{5}{2}}},

which in combination with (B.8) gives

d2ds2κU(s)+12κU(s)3=0.\frac{d^{2}}{ds^{2}}\kappa_{U}(s)+\frac{1}{2}\kappa_{U}(s)^{3}=0.

Moreover, thanks to (B.9) we obtain

(B.10) lims0ddsκU(s)=c022,\displaystyle\lim_{s\to 0}\frac{d}{ds}\kappa_{U}(s)=-\frac{c_{0}^{2}}{2},

and hence we find that

(B.11) κUis the solution of (B.3) withφ(0)=0andφ(0)=c022.\displaystyle\kappa_{U}\ \ \text{is the solution of \eqref{S0727-3} with}\ \ \varphi(0)=0\ \ \text{and}\ \ \varphi^{\prime}(0)=-\frac{c_{0}^{2}}{2}.

Therefore Proposition B.1 yields (B.6). ∎

Let us turn to u(x;α)u(x;\alpha). To begin with, we prepare the following lemma.

Lemma B.4.

Let u(x;α)u(x;\alpha) be the solution of (1.3) with (4.11). Then it holds that

(B.12) Lα:=0121+u(x;α)2𝑑x=12I(α)0αααxdx(1+x2)34,\displaystyle L_{\alpha}:=\int_{0}^{\frac{1}{2}}\sqrt{1+u^{\prime}(x;\alpha)^{2}}\,dx=\frac{1}{2I(\alpha)}\int_{0}^{\alpha}\frac{\sqrt{\alpha}}{\sqrt{\alpha-x}}\frac{dx}{(1+x^{2})^{\frac{3}{4}}},
(B.13) limαLα=LU,\displaystyle\lim_{\alpha\to\infty}L_{\alpha}=L_{U},

where I(α)I(\alpha) is defined by (4.15).

Proof.

Similar to Lemma 4.3 we have

Lα\displaystyle L_{\alpha} =0121+u(x;α)2𝑑x\displaystyle=\int_{0}^{\frac{1}{2}}\sqrt{1+u^{\prime}(x;\alpha)^{2}}\,dx
=G(α)01+G1(s)2((1+α2)54|β(α)|12)ds2α2G1(s)\displaystyle=\int^{0}_{G(\alpha)}\sqrt{1+G^{-1}(s)^{2}}\left(-\frac{(1+\alpha^{2})^{\frac{5}{4}}}{|\beta_{*}(\alpha)|^{\frac{1}{2}}}\right)\frac{ds}{\sqrt{2\alpha-2G^{-1}(s)}}
=(1+α2)54|β(α)|120α1+x212α2xdx(1+x2)54\displaystyle=\frac{(1+\alpha^{2})^{\frac{5}{4}}}{|\beta_{*}(\alpha)|^{\frac{1}{2}}}\int_{0}^{\alpha}\sqrt{1+x^{2}}\frac{1}{\sqrt{2\alpha-2x}}\frac{dx}{(1+x^{2})^{\frac{5}{4}}}
=12I(α)0αααxdx(1+x2)34,\displaystyle=\frac{1}{2I(\alpha)}\int_{0}^{\alpha}\frac{\sqrt{\alpha}}{\sqrt{\alpha-x}}\frac{dx}{(1+x^{2})^{\frac{3}{4}}},

where we used (4.14) and (4.15) in the last equality. Hence we obtain (B.12). By the same argument as in (4.29) it follows that

limα0αααxdx(1+x2)34=0dx(1+x2)34.\lim_{\alpha\to\infty}\int_{0}^{\alpha}\frac{\sqrt{\alpha}}{\sqrt{\alpha-x}}\frac{dx}{(1+x^{2})^{\frac{3}{4}}}=\int_{0}^{\infty}\frac{dx}{(1+x^{2})^{\frac{3}{4}}}.

Combining this with (4.29) and (B.5), we obtain (B.13). ∎

For each α>0\alpha>0, let kαk_{\alpha} be the solution of (B.3) with

φ(0)=0andφ(0)=21+α2αI(α)2.\displaystyle\ \varphi(0)=0\quad\text{and}\quad\varphi^{\prime}(0)=-\frac{2\sqrt{1+\alpha^{2}}}{\alpha}I(\alpha)^{2}.

Then Proposition B.1 yields

(B.14) kα(τ)=2I(α)1+α24αcn(2I(α)1+α24ατ+K(12)).\displaystyle k_{\alpha}(\tau)=\frac{2I(\alpha)\sqrt[4]{1+\alpha^{2}}}{\sqrt{\alpha}}{\rm cn}\left(\frac{\sqrt{2}I(\alpha)\sqrt[4]{1+\alpha^{2}}}{\sqrt{\alpha}}\tau+K(\tfrac{1}{\sqrt{2}})\right).

Using this kαk_{\alpha}, we define γαC([0,Lα];2)\gamma_{\alpha}\in C^{\infty}([0,L_{\alpha}];\mathbb{R}^{2}) by

(B.15) γα(τ):=Qα0τ(cosθα(t),sinθα(t))𝑑tτ[0,Lα],\displaystyle\gamma_{\alpha}(\tau):=Q_{\alpha}\int_{0}^{\tau}\Big{(}\cos\theta_{\alpha}(t),\sin\theta_{\alpha}(t)\Big{)}\,dt\quad\tau\in[0,L_{\alpha}],

where LαL_{\alpha} is given by (B.12) and

θα(t):=0tkα(z)𝑑z,Qα:=11+α2(1αα1).\theta_{\alpha}(t):=\int_{0}^{t}k_{\alpha}(z)dz,\quad Q_{\alpha}:=\frac{1}{\sqrt{1+\alpha^{2}}}\left(\begin{array}[]{cc}1&-\alpha\\ \alpha&1\end{array}\right).

Then we notice that τ[0,Lα]\tau\in[0,L_{\alpha}] is the arclength parameter of γα\gamma_{\alpha}, and that kαk_{\alpha} stands for the curvature of γα\gamma_{\alpha}. Moreover, it follows that

(B.16) γα(0)=(0,0),γα(0)=(11+α2,α1+α2).\displaystyle\gamma_{\alpha}(0)=(0,0),\quad\gamma^{\prime}_{\alpha}(0)=\left(\frac{1}{\sqrt{1+\alpha^{2}}},\frac{\alpha}{\sqrt{1+\alpha^{2}}}\right).

We shall show that the image of γα\gamma_{\alpha} is equal to that of the curve (x,u(x;α))(x,u(x;\alpha)). As mentioned before, since u(x;α)u(x;\alpha) satisfies (1.3), the curvature κα\kappa_{\alpha} of (x,u(x;α))(x,u(x;\alpha)) satisfies (B.3) after reparametrization. By (4.11), the initial conditions in terms of κα\kappa_{\alpha} are given by

κα(0)\displaystyle\kappa_{\alpha}(0) =u′′(0;α)(1+u(0;α)2)32=0,\displaystyle=\frac{u^{\prime\prime}(0;\alpha)}{(1+u^{\prime}(0;\alpha)^{2})^{\frac{3}{2}}}=0,
κ˙α(0)\displaystyle\dot{\kappa}_{\alpha}(0) =11+u(x;α)2ddx(u′′(x;α)(1+u(x;α)2)32)|x=0\displaystyle=\frac{1}{\sqrt{1+u^{\prime}(x;\alpha)^{2}}}\frac{d}{dx}\left(\frac{u^{\prime\prime}(x;\alpha)}{(1+u^{\prime}(x;\alpha)^{2})^{\frac{3}{2}}}\right)\bigg{|}_{x=0}
=11+u(0;α)2(u′′′(0;α)(1+u(0;α)2)325u′′(0;α)2u(0;α)(1+u(0;α)2)52)\displaystyle=\frac{1}{\sqrt{1+u^{\prime}(0;\alpha)^{2}}}\left(\frac{u^{\prime\prime\prime}(0;\alpha)}{(1+u^{\prime}(0;\alpha)^{2})^{\frac{3}{2}}}-5\frac{u^{\prime\prime}(0;\alpha)^{2}u^{\prime}(0;\alpha)}{(1+u^{\prime}(0;\alpha)^{2})^{\frac{5}{2}}}\right)
=β(α)(1+α2)2=21+α2αI(α)2,\displaystyle=\frac{\beta_{*}(\alpha)}{(1+\alpha^{2})^{2}}=-\frac{2\sqrt{1+\alpha^{2}}}{\alpha}I(\alpha)^{2},

where we used (4.14) and (4.15) in the last equality and  ˙\dot{}  denotes the derivative with respect to the arclength parameter of (x,u(x;α))(x,u(x;\alpha)). Thus we find that

καis the solution of (B.3) withφ(0)=0andφ(0)=21+α2αI(α)2,\displaystyle\kappa_{\alpha}\ \text{is the solution of \eqref{S0727-3} with}\ \varphi(0)=0\ \text{and}\ \varphi^{\prime}(0)=-\frac{2\sqrt{1+\alpha^{2}}}{\alpha}I(\alpha)^{2},

which implies that κα=kα\kappa_{\alpha}=k_{\alpha} in [0,Lα][0,L_{\alpha}]. Moreover, combining (B.16) with u(0;α)=0u(0;\alpha)=0 and u(0;α)=αu^{\prime}(0;\alpha)=\alpha, we infer from fundamental theorem of plane curves that the image of γα\gamma_{\alpha} is equal to that of the curve (x,u(x;α))(x,u(x;\alpha)). Then we can show the following theorem, which implies (x,u(x;α))(x,u(x;\alpha)) converges to U0(x)U_{0}(x) in a sense of planar curves.

Theorem B.5.

Let γα\gamma_{\alpha}, γU\gamma_{U} be the curve defined by (B.15), Definition B.2, respectively. Then

γα(LαLUs)γU(s)uniformly on[0,LU]\displaystyle\gamma_{\alpha}(\tfrac{L_{\alpha}}{L_{U}}s)\to\gamma_{U}(s)\quad\text{uniformly on}\ [0,L_{U}]

as α\alpha\to\infty.

Proof.

It follows from γU(0)=(0,0)\gamma_{U}(0)=(0,0) and γU(0)=(0,1)\gamma_{U}^{\prime}(0)=(0,1) that

(B.19) γU(s)=(0110)0s(cosθU(t),sinθU(t))𝑑ts[0,LU],\displaystyle\gamma_{U}(s)=\left(\begin{array}[]{cc}0&-1\\ 1&0\end{array}\right)\int_{0}^{s}\Big{(}\cos\theta_{U}(t),\sin\theta_{U}(t)\Big{)}\,dt\quad s\in[0,L_{U}],

where θU(t):=0tκU(z)𝑑z\theta_{U}(t):=\int_{0}^{t}\kappa_{U}(z)dz. Since it follows from (4.29) that

kα(z)\displaystyle k_{\alpha}(z) =2I(α)1+α24αcn(2I(α)1+α24αz+K(12))\displaystyle=\frac{2I(\alpha)\sqrt[4]{1+\alpha^{2}}}{\sqrt{\alpha}}{\rm cn}\left(\frac{\sqrt{2}I(\alpha)\sqrt[4]{1+\alpha^{2}}}{\sqrt{\alpha}}z+K(\tfrac{1}{\sqrt{2}})\right)
c0cn(c02z+K(12))=κU(z)uniformly on[0,LU]\displaystyle\to c_{0}\,{\rm cn}\left(\tfrac{c_{0}}{\sqrt{2}}z+K(\tfrac{1}{\sqrt{2}})\right)=\kappa_{U}(z)\quad\text{uniformly on}\quad[0,L_{U}]

as α\alpha\to\infty, we observe that

(B.20) θα(t)θU(t)uniformly on[0,LU].\displaystyle\theta_{\alpha}(t)\to\theta_{U}(t)\quad\text{uniformly on}\quad[0,L_{U}].

Moreover, it follows from (B.15) that for each s[0,LU]s\in[0,L_{U}]

γα(LαLUs)\displaystyle\gamma_{\alpha}(\tfrac{L_{\alpha}}{L_{U}}s) =Qα0LαLUs(cosθα(t),sinθα(t))𝑑t\displaystyle=Q_{\alpha}\int_{0}^{\tfrac{L_{\alpha}}{L_{U}}s}\Big{(}\cos\theta_{\alpha}(t),\sin\theta_{\alpha}(t)\Big{)}\,dt
=Qα0s(cosθα(t),sinθα(t))𝑑t+QαsLαLUs(cosθα(t),sinθα(t))𝑑t\displaystyle=Q_{\alpha}\int_{0}^{s}\Big{(}\cos\theta_{\alpha}(t),\sin\theta_{\alpha}(t)\Big{)}\,dt+Q_{\alpha}\int_{s}^{\tfrac{L_{\alpha}}{L_{U}}s}\Big{(}\cos\theta_{\alpha}(t),\sin\theta_{\alpha}(t)\Big{)}\,dt
=:I1+I2.\displaystyle=:I_{1}+I_{2}.

It follows from (B.19) and (B.20) that

I1γU(s)asuniformly on[0,LU]I_{1}\to\gamma_{U}(s)\quad\text{as}\quad\text{uniformly on}\quad[0,L_{U}]

as α\alpha\to\infty. Furthermore, by Lemma B.4 we see that

I2(0,0)asα.I_{2}\to(0,0)\quad\text{as}\quad\alpha\to\infty.

Therefore Theorem B.5 follows. ∎

References

  • [1] G. E. Andrews, R. Askey, and R. Roy, Special functions, vol. 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999.
  • [2] A. Azzollini, Ground state solution for a problem with mean curvature operator in Minkowski space, J. Funct. Anal., 266 (2014), pp. 2086–2095.
  • [3] S. C. Brenner, L.-Y. Sung, Z. Wang, and Y. Xu, A finite element method for the one-dimensional prescribed curvature problem, Int. J. Numer. Anal. Model., 14 (2017), pp. 646–669.
  • [4] N. D. Brubaker and J. A. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal., 75 (2012), pp. 5086–5102.
  • [5] P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised.
  • [6] L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6 (1979), pp. 151–184.
  • [7] A. Dall’Acqua and K. Deckelnick, An obstacle problem for elastic graphs, SIAM J. Math. Anal., 50 (2018), pp. 119–137.
  • [8] K. Deckelnick and H.-C. Grunau, Boundary value problems for the one-dimensional Willmore equation, Calc. Var. Partial Differential Equations, 30 (2007), pp. 293–314.
  • [9]  , Stability and symmetry in the Navier problem for the one-dimensional Willmore equation, SIAM J. Math. Anal., 40 (2008/09), pp. 2055–2076.
  • [10] F. Gazzola and H.-C. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann., 334 (2006), pp. 905–936.
  • [11] F. Gazzola, H.-C. Grunau, and G. Sweers, Polyharmonic boundary value problems, vol. 1991 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. Positivity preserving and nonlinear higher order elliptic equations in bounded domains.
  • [12] B. B. King, O. Stein, and M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), pp. 459–490.
  • [13] A. Linnér, Unified representations of nonlinear splines, J. Approx. Theory, 84 (1996), pp. 315–350.
  • [14] T. Miura, Singular perturbation by bending for an adhesive obstacle problem, Calc. Var. Partial Differential Equations, 55 (2016), pp. Art. 19, 24.
  • [15]  , Polar tangential angles and free elasticae, Math. Eng., 3 (2021), pp. Paper No. 034, 12.
  • [16] M. Müller, An obstacle problem for elastic curves: existence results, Interfaces Free Bound., 21 (2019), pp. 87–129.
  • [17] M. Müller, On gradient flows with obstacles and Euler’s elastica, Nonlinear Anal., 192 (2020), pp. 111676, 48.
  • [18]  , The elastic flow with obstacles: small obstacle results, Appl. Math. Optim., 84 (2021), pp. S355–S402.
  • [19] Y. Naito and S. Tanaka, On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations, Nonlinear Anal., 56 (2004), pp. 919–935.
  • [20] M. Novaga and S. Okabe, Convergence to equilibrium of gradient flows defined on planar curves, J. Reine Angew. Math., 733 (2017), pp. 87–119.
  • [21] S. Okabe and K. Yoshizawa, A dynamical approach to the variational inequality on modified elastic graphs, Geom. Flows, 5 (2020), pp. 78–101.
  • [22] H. Pan, One-dimensional prescribed mean curvature equation with exponential nonlinearity, Nonlinear Anal., 70 (2009), pp. 999–1010.
  • [23] L. A. Peletier and J. Serrin, Ground states for the prescribed mean curvature equation, Proc. Amer. Math. Soc., 100 (1987), pp. 694–700.
  • [24] R. Schaaf, Global solution branches of two-point boundary value problems, vol. 1458 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1990.