This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Probabilistic Weyl-Law for Perturbed Berezin-Toeplitz Operators

Izak Oltman Department of Mathematics, University of California, Berkeley, CA 94720 [email protected]
Abstract.

This paper proves a probabilistic Weyl-law for the spectrum of randomly perturbed Berezin-Toeplitz operators, generalizing a result proven by Martin Vogel in [23]. This is done following the strategy of [23] using the exotic symbol calculus developed by the author in [13].

1. Introduction

This paper generalizes a result of Martin Vogel in [23] which proves a probabilistic Weyl-law for quantizations of functions on tori. Here we do the same, but with the tori replaced by arbitrary Kähler manifolds equipped with positive line bundles.

In [23], Vogel considers Toeplitz quantizations of smooth functions on a real 2d2d-dimensional torus, which associates every smooth function ff on the torus to a family of Nd×NdN^{d}\times N^{d} matrices, fNf_{N}, for all NN\in\mathbb{N} (here N1N^{-1} is the semi-classical parameter). A recent physical motivation for such constructions is written by Deleporte in [6, Section 1]. Next, a random matrix with sufficiently small norm is added to fNf_{N}, and the spectrum is shown to obey an almost-sure Weyl-law as NN goes to infinity. This was conjectured by Christiansen and Zworski in [4] and is a major extension of their work.

This result is most striking when the unperturbed matrix is non-self-adjoint. For example, if f(x)=cos(2πx)+icos(2πξ)f(x)=\cos(2\pi x)+i\cos(2\pi\xi), then the quantization is

fN=(cos(2π/N)i/200i/2i/2cos(4π/N)i/2000i/2cos(6π/N)i/2000i/2cos(2(N1)π/N)i/2i/200i/2cos(2π)),\displaystyle f_{N}=\begin{pmatrix}\cos(2\pi/N)&i/2&0&0&\cdots&i/2\\ i/2&\cos(4\pi/N)&i/2&0&\cdots&0\\ 0&i/2&\cos(6\pi/N)&i/2&\ddots&0\\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots\\ 0&\cdots&0&i/2&\cos(2(N-1)\pi/N)&i/2\\ i/2&0&\cdots&0&i/2&\cos(2\pi)\end{pmatrix}, (1.1)

which numerically has spectrum contained on two crossing lines in the complex plane. This operator is aptly named the Scottish flag operator and is further described by Embree and Trefethen in [9]. Interestingly, (as far as we are aware) it is unknown analytically where the spectrum of fNf_{N} lives. However, if randomly perturbed, the spectrum spreads out with density given by the push-forward of the Lebesgue measure on the torus by ff. Figure 1 plots the spectrum of fNf_{N} with no perturbation, and with a small perturbation.

Refer to caption
Figure 1. Left: Eigenvalues of the Scottish flag operator with N=50N=50. Right: Eigenvalues of the Scottish flag operator with a small random perturbation with N=1000N=1000.

The spectral properties of randomly perturbed non-self-adjoint operators was pioneered by Hager in [11], in which the operator hDx+g(x):L2(S1)L2(S1)hD_{x}+g(x):L^{2}(S^{1})\to L^{2}(S^{1}) was studied. This result, and numerous subsequent results are discussed by Sjöstrand in [16]. There are related results describing spectral properties of randomly perturbed Toeplitz matrices, which can be defined as quantizations of symbols on 𝕋2\mathbb{T}^{2} with symbol independent of xx. See Davies and Hager [5], Guionnet, Wood and Zeitouni [10], Sjöstrand and Vogel [18] [17], and references given there.

This paper is the natural generalization of Vogel’s result in [23]. Here we prove a similar result for quantizations of functions on Kähler manifolds (with sufficient structure, as discussed in Section 2). These quantizations, called Berezin-Toeplitz operators (or just Toeplitz operators) were first described by Berezin in [2] as a particular type of quantization of symplectic manifolds. Following [2], for every smooth function ff on a quantizable Kähler manifold XX, we get a family of finite rank operators, TNfT_{N}f, indexed by NN\in\mathbb{N} (see [14] for a connection between these quantizations, and quantizations on the torus) which have physical interpretations. Deleporte in [6, Appendix A] relates this quantization to spin systems in the large spin limit, and Douglas and Klevtsov in [7] use path integrals for particles in a magnetic field to derive the Bergman kernel (a key ingredient in constructing TNfT_{N}f).

Next, if we add a small Gaussian-type random perturbation 𝒢ω\mathcal{G}_{\omega} to these operators (see Definition 2.3), the empirical measures weakly converge almost surely (see Theorem 2 in Section 2 for a precise statement). Theorem 3 states a result about more general random perturbations 𝒲ω\mathcal{W}_{\omega} (see Definition 2.3) but with a more restrictive coupling constant. A consequence of Theorem 3 is the following probabilistic Weyl-law.

Theorem 1 (A Probabilistic Weyl-law).

Given a quantizable Kähler manifold XX, fC(X;)f\in C^{\infty}(X;\mathbb{C}) such that there exists κ(0,1]\kappa\in(0,1] so that

μd({xX:|f(x)z|2t})=𝒪(tκ)\displaystyle\mu_{d}(\left\{x\in X:|f(x)-z|^{2}\leq t\right\})=\mathcal{O}(t^{\kappa}) (1.2)

as t0t\to 0 uniformly for zz\in\mathbb{C} (where μd\mu_{d} is the Liouville volume form on XX), 𝒲ω\mathcal{W}_{\omega} a random matrix (see Definition 2.3), and Λ\Lambda\subset\mathbb{C}. Then almost surely

(2πN)d#{Spec(TNf+Nd𝒲ω)Λ}Nμd(xX:f(x)Λ).\displaystyle\left(\frac{2\pi}{N}\right)^{d}\#\left\{\operatorname{Spec}(T_{N}f+N^{-d}\mathcal{W}_{\omega})\cap\Lambda\right\}\xrightarrow{N\to\infty}\mu_{d}(x\in X:f(x)\in\Lambda). (1.3)

Finer results are expected for describing the spectrum of randomly perturbed Toeplitz operators. In [23], precise statements about the number of eigenvalues are obtained using counting functions of holomorphic functions. Here we only show weak convergence of the empirical measures, but achieve this in a relatively simple way using logarithmic potentials as presented in [20].

Here we present numerical examples to motivate the main result of this paper. Consider the Kähler manifold 1\mathbb{C}\mathbb{P}^{1} (complex protective space of dimension 11) which can be identified with the real 22-sphere with coordinates (x1,x2,x3)(x_{1},x_{2},x_{3}). In Figure 2, we compute the spectrum of the quantization of the function f=x1+2x22+ix2f=x_{1}+2x_{2}^{2}+ix_{2}. Before perturbation, the spectrum lies on several lines in the complex plane, somewhat analogous to the Scottish flag operator. However, as a perturbation is added, the spectrum fills in. This paper describes the structure of the spectrum of this perturbed operator in the semiclassical limit, as NN\to\infty.

Refer to caption
Figure 2. Left: Eigenvalues of the Toeplitz operator on 1\mathbb{C}\mathbb{P}^{1} identified with the real 22-sphere with symbol x1+2x12+ix2x_{1}+2x_{1}^{2}+ix_{2} and N=50N=50. Right: Eigenvalues of the same operator but with a small random perturbation and N=1000N=1000.

Numerical verification of this paper’s result can be seen if f=ix1+x2f=ix_{1}+x_{2} (still on 1\mathbb{C}\mathbb{P}^{1}). Figure 3 computes the spectrum of TNfT_{N}f with a random perturbation added, and plots the number of eigenvalues in circles of increasing radii versus the predicted number of such eigenvalues by Theorem 1. More animations can be found on my website111 https://math.berkeley.edu/~izak/research/toeplitz/movies.html.

Refer to caption
Figure 3. Left: Eigenvalues of the randomly perturbed Toeplitz operator on 1\mathbb{C}\mathbb{P}^{1} identified with the real 22-sphere with symbol ix1+x2ix_{1}+x_{2} an N=2000N=2000. Right: The number of eigenvalues within circles in the complex plane centered at zero with radii ranging from 0 to 11, plotted against the predicted distribution of eigenvalues from Theorem 1.

Outline of Paper. Section 2 reviews background material and states the main result of this paper (Theorem 2). In Section 3, a series of preliminary results about Toeplitz operators are presented. Section 4 reviews logarithmic potentials and reduces Theorem 2 to proving a probabilistic bound involving logarithmic derivatives of Toeplitz operators. Section 5 sets up a Grushin problem to further reduce the problem to prove probabilistic bounds on spectral properties of self-adjoint operators. Section 6 proves a deterministic bound involving the logarithmic derivative of Toeplitz operators. The technique involves scaling the symbol by a power of NN, and therefore relies on the exotic calculus presented in Section 3. Finally, Section 7 chooses constants to establish the required probabilistic bound for the almost sure convergence in Theorem 2. In Section 8, we describe how to extend this result to the more general random perturbations as stated in Theorem 3.

Notation. We will use the following notation in this paper for functions ff and gg depending on NN. We write f=𝒪(g)f=\mathcal{O}(g) if there exists C>0C>0 independent of NN such that |f|Cg|f|\leq Cg. We write f=𝒪(N)f=\mathcal{O}(N^{-\infty}) if for every MM\in\mathbb{N}, f=𝒪(NM)f=\mathcal{O}(N^{-M}). Any subscript in the big-O will denote dependence of CC of what is in the subscript. We will write fgf\lesssim g if there exists a C>0C>0 independent of NN such that fCgf\leq Cg. We write fgf\ll g to mean that CfgCf\leq g for some sufficiently large C>0C>0 independent of NN. For a u,v,wu,v,w elements of a Hilbert space, denote uvu\otimes v the map that sends ww to uw,vu\left\langle w,v\right\rangle.

2. Main Result

Let (X,σ)(X,\sigma) be a compact, connected, dd-dimensional Kähler manifold with a holomorphic line bundle LL with positively curved Hermitian metric locally given by h=eφh=e^{-\varphi}. That is over each fiber xXx\in X, vh:=eφ(x)|v|\left\|v\right\|_{h}:=e^{-\varphi(x)}|v|. Given this, the globally defined symplectic form, σ\sigma, is related to the Hermitian metric by i¯φ=σi\partial\overline{\partial}\varphi=\sigma. Fixing local trivializations, φ\varphi can be described as a strictly plurisubharmonic smooth real-valued function (called the Kähler potential). This is further outlined by Le Floch in [12].

Let LNL^{N} be the NNth tensor power of LL, which has Hermitian metric hN:=eNφh_{N}:=e^{-N\varphi}. Let μd=σd/d!\mu_{d}=\sigma^{\land d}/d! be the Liouville volume form on XX. This provides an L2L^{2} structure on sections of LNL^{N}. Indeed, if uu and vv are smooth sections on LNL^{N}, then define

u,vLN:=XhN(u,v)dμd.\displaystyle\left\langle u,v\right\rangle_{L^{N}}:=\int_{X}h_{N}(u,v)\mathop{}\!\mathrm{d}\mu_{d}. (2.1)

Define L2(X,LN)L^{2}(X,L^{N}) to be the space of smooth sections of LNL^{N} with finite L2L^{2} norm. In this L2L^{2} space, let H0(X,LN)H^{0}(X,L^{N}) be the space of holomorphic sections.

Proposition 2.1.

The dimension of H0(X,LN)H^{0}(X,L^{N}) is finite, and is asymptotically

(N2π)dvol(X)+𝒪(Nd1).\displaystyle\left(\frac{N}{2\pi}\right)^{d}\operatorname{vol}(X)+\mathcal{O}(N^{d-1}). (2.2)
Proof.

See [3, Corollary 2]. ∎

For the remainder of this paper, denote dim(H0,(X,LN))\dim(H^{0},(X,L^{N})) by 𝒩=𝒩(N)\mathcal{N}=\mathcal{N}(N). The orthogonal projection from L2(X,LN)L^{2}(X,L^{N}) to H0(X,LN)H^{0}(X,L^{N}) is called the Bergman projector and is denoted by ΠN\Pi_{N}. Finally, given fC(X;)f\in C^{\infty}(X;\mathbb{C}), the Toeplitz operators associated to ff, written TNfT_{N}f, are defined for each NN\in\mathbb{N} as TNf(u)=ΠN(fu)T_{N}f(u)=\Pi_{N}(fu), where uH0(X,LN)u\in H^{0}(X,L^{N}). In this way, TNfT_{N}f are finite rank operators mapping H0(X,LN)H^{0}(X,L^{N}) to itself. For the remainder of this paper, we will fix a basis for H0(X,LN)H^{0}(X,L^{N}) so that TNfT_{N}f (and similar operators) can be considered as matrices.

The class of functions to quantize will often depend on NN. To define this symbol class requires local control of functions. Fix a finite atlas of neighborhoods (Ui,ζi)i(U_{i},\zeta_{i})_{i\in\mathcal{I}} for the Kähler manifold XX.

Definition 2.2 (𝑺(𝟏)\bm{S(1)}).

S(1)S(1) is the set of all smooth functions ff on XX taking complex values which can be written asymptotically fNjfjf\sim\sum N^{-j}f_{j}, where fjC(X;)f_{j}\in C^{\infty}(X;\mathbb{C}) do not depend on NN. This tilde means that for all α\alpha\in\mathbb{N}

xα(fζi(x)j=0MNjfjζi(x))=𝒪α(Nj1)\displaystyle\partial^{\alpha}_{x}\left(f\circ\zeta_{i}(x)-\sum_{j=0}^{M}N^{-j}f_{j}\circ\zeta_{i}(x)\right)=\mathcal{O}_{\alpha}(N^{-j-1}) (2.3)

for all ii\in\mathcal{I}, and all αd\alpha\in\mathbb{N}^{d}. By Borel’s theorem, given any fjS(1)f_{j}\in S(1) not depending on NN, there exists fS(1)f\in S(1) such that fNjfjf\sim\sum N^{-j}f_{j}.

If fNjfjf\sim\sum N^{-j}f_{j}, we call f0f_{0} the principal symbol of ff, which is unique modulo 𝒪(N1)\mathcal{O}(N^{-1}).

We next add a random perturbation to these Toeplitz operators. For this we must fix a probability space Ω\Omega with probability measure \mathbb{P}.

Definition 2.3 (𝓖𝝎\bm{\mathcal{G}_{\omega}} and 𝓦𝝎\bm{\mathcal{W}_{\omega}}).

For each NN, let {ei:i=1,,𝒩}\left\{e_{i}:i=1,\dots,\mathcal{N}\right\} be an orthonormal basis of H0(X,LN)H^{0}(X,L^{N}). Define:

𝒢ω=i,j=1𝒩αj,keiej:H0(X,LN)H0(X,LN)\displaystyle\mathcal{\textbullet G}_{\omega}=\sum_{i,j=1}^{\mathcal{N}}\alpha_{j,k}e_{i}\otimes e_{j}:H^{0}(X,L^{N})\to H^{0}(X,L^{N}) (2.4)

where αj,k\alpha_{j,k} are independent identically distributed complex Gaussian random variables with mean zero and variance 11.

Similarly define 𝒲ω=i,j=1𝒩α~j,keiej\mathcal{W}_{\omega}=\sum_{i,j=1}^{\mathcal{N}}\tilde{\alpha}_{j,k}e_{i}\otimes e_{j}, with α~j,k\tilde{\alpha}_{j,k} independent identically distributed copies of a complex random variable with mean zero and bounded second moment.

The ω\omega in the subscript of these objects is to emphasize that these objects are random. That is for each ωΩ\omega\in\Omega, 𝒢ω\mathcal{G}_{\omega} is a finite rank operator. The majority of this article describes perturbations by 𝒢ω\mathcal{G}_{\omega} (the Gaussian case), while a brief note at the end concerns the more general perturbations by 𝒲ω\mathcal{\textbullet W}_{\omega}.

This paper will prove almost sure weak convergence of the empirical distribution of eigenvalues of randomly perturbed Toeplitz operators. The principal symbol of ff must also satisfy the property that there exists κ(0,1]\kappa\in(0,1] such that

μd({xX:|f0(x)z|2t})=𝒪(tκ)\displaystyle\mu_{d}(\{x\in X:|f_{0}(x)-z|^{2}\leq t\})=\mathcal{O}(t^{\kappa}) (2.5)

as t0t\to 0 uniformly for all zz\in\mathbb{C}. It is observed in [4] that if ff is real analytic, then (2.5) holds. See [4], and references presented there, for further discussion of (2.5).

Theorem 2 (Main Theorem).

Given fS(1)f\in S(1) which satisfies (2.5) and 𝒢ω\mathcal{G}_{\omega}, a family of random operators on H0(X,LN)H^{0}(X,L^{N}), as defined in Definition 2.3, then for each ε>0\varepsilon>0 there exists β=β(ε)(0,1)\beta=\beta(\varepsilon)\in(0,1) and C>0C>0 such that if δ=δ(N)\delta=\delta(N) satisfies

CeNβ<δ<C1Nd/2ε\displaystyle Ce^{-N^{\beta}}<\delta<C^{-1}N^{-d/2-\varepsilon} (2.6)

then we have almost sure weak convergence of the empirical measures of TNf+δ𝒢ωT_{N}f+\delta\mathcal{G}_{\omega} to vol(X)1(f0)μd\operatorname{vol}(X)^{-1}(f_{0})_{*}\mu_{d}.

More precisely, if λi=λi(N,ω)\lambda_{i}=\lambda_{i}(N,\omega) are the (random) eigenvalues of TNf+δ𝒢ωT_{N}f+\delta\mathcal{G}_{\omega}, then for all φC0()\varphi\in C_{0}^{\infty}(\mathbb{C})

1𝒩i=1𝒩φ(λi)N1vol(X)φ(z)[(f0)μd](dz)\displaystyle\frac{1}{\mathcal{N}}\sum_{i=1}^{\mathcal{N}}\varphi(\lambda_{i})\xrightarrow{N\to\infty}\frac{1}{\operatorname{vol}(X)}\int_{\mathbb{C}}\varphi(z)[(f_{0})_{*}\mu_{d}](\mathop{}\!\mathrm{d}z) (2.7)

almost surely, where (f0)μd(f_{0})_{*}\mu_{d} is the push-forward of the volume form μd\mu_{d} on XX by f0f_{0}.

Moreover, for each ε>0\varepsilon>0, the constant β(ε)\beta(\varepsilon) in (2.6) can be chosen at most strictly less than

{2εκif ε<12(κ+1)κκ+1if ε12(κ+1)\displaystyle\begin{cases}2\varepsilon\kappa&\text{if }\varepsilon<\frac{1}{2(\kappa+1)}\\ \frac{\kappa}{\kappa+1}&\text{if }\varepsilon\geq\frac{1}{2(\kappa+1)}\end{cases} (2.8)

where κ\kappa is defined in (2.5).

We expect Theorem 2 to hold for a much larger class of random perturbations than described in Definition 2.3. Indeed, the only properties of 𝒢ω\mathcal{G}_{\omega} we use is a norm bound (Lemma 4.6) and an anti-concentration bound (Proposition 5.7). See [24] where Vogel and Zeitouni establish similar logarithmic determinant estimates with these classes of random perturbations, and [1, Remark 1.3] where Basak, Paquette, and Zeitouni describe random perturbations satisfying these properties.

Here we present a version of Theorem 2 for the more general random perturbations 𝒲ω\mathcal{W}_{\omega} as described in Definition 2.3.

Theorem 3 (General Perturbations).

For 𝒲ω\mathcal{W}_{\omega} defined in Definition 2.3, fS(1)f\in S(1) satisfying (2.5), δ=Nd\delta=N^{-d}, then the empirical measures of TNf+δ𝒲ωT_{N}f+\delta\mathcal{W}_{\omega} converge almost surely to (vol(X))1(f0)μd(\operatorname{vol}(X))^{-1}(f_{0})_{*}\mu_{d}.

A proof of this result is presented in Section 8.

Remark 2.1.

We expect a wider range of δ\delta’s and more general random perturbations in Theorem 3 should lead to the same conclusion.

3. Review of an Exotic Calculus of Toeplitz Operators

In proving Theorem 2, non-negative symbols are scaled by powers of N1N^{-1}. These functions belong to a more exotic symbol class than smooth functions uniformly bounded in NN. Toeplitz operators of functions in this symbol class still have natural composition formulas. A summary of these results is contained in this section. For proofs see [13].

Definition 3.1 (Order Function).

For ρ[0,1/2)\rho\in[0,1/2), a ρ\rho-order function mm on XX is a function mC(X;>0)m\in C^{\infty}(X;\mathbb{R}_{>0}), depending on NN, such that there exists M0M_{0}\in\mathbb{N} such that for all x,yXx,y\in X:

m(x)/m(y)(1+dist(x,y)Nρ)M0,\displaystyle m(x)/m(y)\lesssim(1+\operatorname{dist}(x,y)N^{\rho})^{M_{0}}, (3.1)

where dist(x,y)\operatorname{dist}(x,y) is the distance between xx and yy with respect to the Riemannian metric on XX induced by the symplectic form σ\sigma.

Definition 3.2 (𝑺𝝆(𝒎)\bm{S_{\rho}(m)}).

Given ρ[0,1/2)\rho\in[0,1/2) and a ρ\rho-order function mm on XX. Sρ(m)S_{\rho}(m) is defined as the set of smooth functions on XX depending on NN such that for all ii\in\mathcal{I}, αd\alpha\in\mathbb{N}^{d}:

|α(fζi1(x))|αNδ|ρ|mζi1(x)\displaystyle|\partial^{\alpha}(f\circ\zeta_{i}^{-1}(x))|\lesssim_{\alpha}N^{\delta|\rho|}m\circ\zeta_{i}^{-1}(x) (3.2)

for all xζi(Ui)x\in\zeta_{i}(U_{i}) (recall {(Ui,ζi):i}\left\{(U_{i},\zeta_{i}):i\in\mathcal{I}\right\} is a finite atlas on XX).

Proposition 3.3 (Composition).

Given ρ[0,1/2)\rho\in[0,1/2), ρ\rho-order functions m1,m2m_{1},m_{2} on XX, fSρ(m1)f\in S_{\rho}(m_{1}) and gSρ(m2)g\in S_{\rho}(m_{2}). Then there exists hSρ(m1m2)h\in S_{\rho}(m_{1}m_{2}) such that:

TNfTNg=TNh+𝒪(N),\displaystyle T_{N}f\circ T_{N}g=T_{N}h+\mathcal{O}(N^{-\infty}), (3.3)

where 𝒪\mathcal{O} is in terms of the norm from L2(X,LN)L2(X,LN)L^{2}(X,L^{N})\to L^{2}(X,L^{N}). Moreover, the principal symbol of hh is f0g0f_{0}g_{0}.

Claim 3.1.

Given fS(1)f\in S(1) with f00f_{0}\geq 0, then if ρ[0,1/2)\rho\in[0,1/2), m(x)=f0N2ρ+1m(x)=f_{0}N^{2\rho}+1 is a ρ\rho-order function on XX and fN2ρSρ(m)fN^{2\rho}\in S_{\rho}(m).

Proposition 3.4 (Parametrix Construction).

Given ρ[0,1/2)\rho\in[0,1/2), a ρ\rho-order function mm on XX, ρ[0,1/2)\rho\in[0,1/2), and fSρ(m)f\in S_{\rho}(m) such that there exists C>0C>0 so that f>Cmf>Cm. Then there exists gSρ(m1)g\in S_{\rho}(m^{-1}) such that:

TNfTNg\displaystyle T_{N}f\circ T_{N}g =1+𝒪(N),\displaystyle=1+\mathcal{O}(N^{-\infty}), TNgTNf=1+𝒪(N).\displaystyle T_{N}g\circ T_{N}f=1+\mathcal{O}(N^{-\infty}). (3.4)
Proposition 3.5 (Functional Calculus).

Given a ρ\rho-order function m1m\geq 1 on XX (for a fixed ρ[0,1/2)\rho\in[0,1/2)), a family of operators {RN}N\left\{R_{N}\right\}_{N\in\mathbb{N}} mapping H0(X,LN)H^{0}(X,L^{N}) to itself such that RN=𝒪(N)\left\|R_{N}\right\|=\mathcal{O}(N^{-\infty}) and TNf+RNT_{N}f+R_{N} is self-adjoint for all NN, and fSρ(m)f\in S_{\rho}(m) taking real non-negative values such that there exists C>0C>0 with |f|mC1C|f|\geq mC^{-1}-C. Then for any χC(;)\chi\in C^{\infty}(\mathbb{R};\mathbb{C}), there exists gSρ(m1)g\in S_{\rho}(m^{-1}) such that

χ(TNf+RN)=TNg+𝒪(N)\displaystyle\chi(T_{N}f+R_{N})=T_{N}g+\mathcal{O}(N^{-\infty}) (3.5)

and gg has principal symbol χ(f0)\chi(f_{0}).

Typically, Proposition 3.5 will be applied with RN=0R_{N}=0 for all NN.

Proposition 3.6 (Trace Formula).

If mm is a ρ\rho-order function on XX (for fixed ρ[0,1/2)\rho\in[0,1/2)), and fSρ(m)f\in S_{\rho}(m), then

TrTNf\displaystyle\operatorname{Tr}T_{N}f =(N2π)dXf(x)dμd(x)+𝒪(Nd(12ρ))maxxXm(x)\displaystyle=\left(\frac{N}{2\pi}\right)^{d}\int_{X}f(x)\mathop{}\!\mathrm{d}\mu_{d}(x)+\mathcal{O}(N^{d-(1-2\rho)})\max_{x\in X}m(x) (3.6)
=(N2π)dXf0(x)dμd(x)+𝒪(Nd(12ρ))maxxXm(x),\displaystyle=\left(\frac{N}{2\pi}\right)^{d}\int_{X}f_{0}(x)\mathop{}\!\mathrm{d}\mu_{d}(x)+\mathcal{O}(N^{d-(1-2\rho)})\max_{x\in X}m(x), (3.7)

where f0f_{0} is the principal symbol of ff.

Note that if f=1f=1, then TrTN1=Tr(ΠN)=dim(H0(X,LN))=𝒩\operatorname{Tr}T_{N}1=\operatorname{Tr}(\Pi_{N})=\dim(H^{0}(X,L^{N}))=\mathcal{N} which is an alternative way of proving that 𝒩=vol(X)(N/2π)d+𝒪(Nd1)\mathcal{N}=\operatorname{vol}(X)(N/2\pi)^{d}+\mathcal{O}(N^{d-1}).

4. Probabilistic Preliminaries

This paper uses the probabilistic machinery of logarithmic potentials. A brief overview is presented in this section.

Definition 4.1 (𝓟()\bm{\mathcal{P}(\mathbb{C})}).

Let 𝒫()\mathcal{P}(\mathbb{C}) be the collection of probability measures μ\mu on \mathbb{C} such that log(1+|z|)dμ(z)<\int\log(1+|z|)\mathop{}\!\mathrm{d}\mu(z)<\infty.

Definition 4.2 (Logarithmic Potential).

For ν𝒫()\nu\in\mathcal{P}(\mathbb{C}), define the logarithmic potential as: Uν(z):=log|zw|dν(w)U_{\nu}(z):=\int_{\mathbb{C}}\log|z-w|\mathop{}\!\mathrm{d}\nu(w).

Using the fact that log|z|\log|z| is the fundamental solution of the Laplacian, it can be shown that, in the sense of distributions, ΔUν=2πν\Delta U_{\nu}=2\pi\nu, which is the key ingredient in proving the following theorem.

Proposition 4.3 (Convergence of Random Measures by Logarithmic Potentials).

Given {νN}𝒫()\left\{\nu_{N}\right\}\subset\mathcal{P}(\mathbb{C}) random measures such that almost surely suppνNΛ\operatorname{supp}\nu_{N}\subset\Lambda for N1N\gg 1 (with ΛΛ¯Λ\Lambda\Subset\bar{\Lambda}\Subset\Lambda^{\prime}\Subset\mathbb{C}) and for almost all zΛz\in\Lambda^{\prime}: UνN(z)Uν(z)U_{\nu_{N}}(z)\to U_{\nu}(z) almost surely for some ν𝒫(C)\nu\in\mathcal{P}(C) with suppνΛ\operatorname{supp}\nu\subset\Lambda. Then almost surely νNν\nu_{N}\to\nu weakly.

Proof.

See [20, Theorem 7.1]. ∎

We wish to use Proposition 4.3 to prove almost sure weak convergence of the empirical measures of TNf+δ𝒢ωT_{N}f+\delta\mathcal{G}_{\omega}.

Definition 4.4 (𝝂𝑵\bm{\nu_{N}}).

Let σN\sigma_{N} be the spectrum of TNf+δ𝒢ωT_{N}f+\delta\mathcal{G}_{\omega}. Let νN=𝒩1λσNδ^λ\nu_{N}=\mathcal{N}^{-1}\sum_{\lambda\in\sigma_{N}}\hat{\delta}_{\lambda} where δ>0\delta>0 depends on NN, and δ^λ\hat{\delta}_{\lambda} is the Dirac distribution centered at λ\lambda. The logarithmic potentials for these random measures are

UνN(z)=1𝒩λσNlog|zλ|=1𝒩log|det(TNf+δ𝒢ωz)|.\displaystyle U_{\nu_{N}}(z)=\frac{1}{\mathcal{N}}\sum_{\lambda\in\sigma_{N}}\log|z-\lambda|=\frac{1}{\mathcal{N}}\log|\det(T_{N}f+\delta\mathcal{G}_{\omega}-z)|. (4.1)
Definition 4.5 (𝝂\bm{\nu}).

Let ν=vol(X)1(f0)μd\nu=\operatorname{vol}(X)^{-1}(f_{0})_{*}\mu_{d} (recall μd\mu_{d} is the volume measure on XX) which has logarithmic potential

Uν(z)=\strokedintXlog|zf0(x)|dμd(x).\displaystyle U_{\nu}(z)=\strokedint_{X}\log|z-f_{0}(x)|\mathop{}\!\mathrm{d}\mu_{d}(x). (4.2)

Where \strokedintXfdμd\strokedint_{X}f\mathop{}\!\mathrm{d}\mu_{d} is defined as vol(X)1fdμd\operatorname{vol}(X)^{-1}\int f\mathop{}\!\mathrm{d}\mu_{d}.

Claim 4.1.

For all NN, νN,ν𝒫()\nu_{N},\nu\in\mathcal{P}(\mathbb{C}).

Proof.

For each NN\in\mathbb{N}

log(1+|z|)dνN(z)\displaystyle\int_{\mathbb{C}}\log(1+|z|)\mathop{}\!\mathrm{d}\nu_{N}(z) =1𝒩λσNlog(1+|λ|)\displaystyle=\frac{1}{\mathcal{N}}\sum_{\lambda\in\sigma_{N}}\log(1+|\lambda|) (4.3)
maxλσNlog(1+|λ|)\displaystyle\leq\max_{\lambda\in\sigma_{N}}\log(1+|\lambda|) (4.4)
log(1+TNf+δ𝒢ω)<.\displaystyle\leq\log(1+\left\|T_{N}f+\delta\mathcal{G}_{\omega}\right\|)<\infty. (4.5)

And similarly,

log(1+|z|)dν(z)\displaystyle\int_{\mathbb{C}}\log(1+|z|)\mathop{}\!\mathrm{d}\nu(z) =1vol(X)log(1+|z|)[(f0)μd](dz)\displaystyle=\frac{1}{\operatorname{vol}(X)}\int_{\mathbb{C}}\log(1+|z|)[(f_{0})_{*}\mu_{d}](\mathop{}\!\mathrm{d}z) (4.6)
maxxXlog(1+|f(x)|)<.\displaystyle\leq\max_{x\in X}\log(1+|f(x)|)<\infty. (4.7)

Let Λ\Lambda be a neighborhood of f(X)f(X). Clearly suppνΛ\operatorname{supp}\nu\subset\Lambda, the same is true with probability 11 for νN\nu_{N}, for sufficiently large NN. A standard random matrix lemma is required to show this.

Lemma 4.6 (Norm of Gaussian Matrix).

There exists C>0C>0 such that

(𝒢ωC𝒩1/2)1exp(𝒩).\displaystyle\mathbb{P}(\left\|\mathcal{G}_{\omega}\right\|\leq C\mathcal{N}^{1/2})\geq 1-\exp(-\mathcal{N}). (4.8)

If an event has this lower bound of probability, it is said to occur with overwhelming probability.

Proof.

See [21, Exercise 2.3.3]. ∎

For a fixed ε>0\varepsilon>0, we will choose δ=δ(N)\delta=\delta(N) such that

0<δ=𝒪(𝒩1/2ε).\displaystyle 0<\delta=\mathcal{O}(\mathcal{N}^{-1/2-\varepsilon}). (4.9)
Lemma 4.7 (Borel–Cantelli).

If AnA_{n} are events such that 1(An)<\sum_{1}^{\infty}\mathbb{P}(A_{n})<\infty, then the probability that AnA_{n} occurs infinitely often is 0.

Proof.

See [8]. ∎

Lemma 4.8 (Bound of TNf\bm{T_{N}f}).

Given fS(1)f\in S(1), then TNfLNLNsup|f|\left\|T_{N}f\right\|_{L^{N}\to L^{N}}\leq\sup|f|.

Proof.

This follows immediately by writing TNf=ΠNMfΠNT_{N}f=\Pi_{N}\circ M_{f}\circ\Pi_{N} and recalling that ΠN\Pi_{N} is unitary. ∎

Claim 4.2.

Almost surely, suppνNΛ\operatorname{supp}\nu_{N}\subset\Lambda for N1N\gg 1.

Proof.

First note that TNf+δ𝒢ωTNf+δ𝒢ωsupf+𝒩ε\left\|T_{N}f+\delta\mathcal{G}_{\omega}\right\|\leq\left\|T_{N}f\right\|+\delta\left\|\mathcal{G}_{\omega}\right\|\leq\sup f+\mathcal{N}^{-\varepsilon} with overwhelming probability (by Lemma 4.6, (4.9), and Lemma 4.8). Let σN\sigma_{N} be the spectrum of TNf+δ𝒢ωT_{N}f+\delta\mathcal{G}_{\omega}. In this event, for sufficiently large NN, σNΛ\sigma_{N}\subset\Lambda. So if ANcA_{N}^{c} is the event that σNΛ\sigma_{N}\subset\Lambda, then (ANc)1e𝒩\mathbb{P}(A_{N}^{c})\geq 1-e^{-\mathcal{N}}. Therefore (AN)<\sum\mathbb{P}(A_{N})<\infty and so by Lemma 4.7, almost surely P(ANc)=1P(A_{N}^{c})=1 for N1N\gg 1.

Lemma 4.9 (Almost Sure Convergence).

If {YN}N\left\{Y_{N}\right\}_{N\in\mathbb{N}} and YY are random variables on a probability space (Ω,)(\Omega,\mathbb{P}) and εN\varepsilon_{N} is a sequence of numbers converging to 0 such that

N=1(|YNY|>εN)<,\displaystyle\sum_{N=1}^{\infty}\mathbb{P}(|Y_{N}-Y|>\varepsilon_{N})<\infty, (4.10)

then YNYY_{N}\to Y almost surely.

Proof.

See [8]. ∎

Therefore νN\nu_{N} and ν\nu satisfy the conditions of Proposition 4.3. So it suffices to show that UνN(z)Uν(z)U_{\nu_{N}}(z)\to U_{\nu}(z) for almost all zz in the bounded set containing Λ\Lambda. To prove this almost sure convergence, it suffices to apply Lemma 4.9 with YN=𝒩1log|det(TNf+δ𝒢ωz)|Y_{N}=\mathcal{N}^{-1}\log|\det(T_{N}f+\delta\mathcal{G}_{\omega}-z)| and Y=\strokedintlog|zf0(x)|dμd(x)Y=\strokedint\log|z-f_{0}(x)|\mathop{}\!\mathrm{d}\mu_{d}(x) for suitably chosen εN\varepsilon_{N}.

5. Setting up a Grushin Problem

To control log|det(TNf+δ𝒢ωz)|\log|\det(T_{N}f+\delta\mathcal{G}_{\omega}-z)| we follow the now standard method of setting up a Grushin problem. This approach was used in [23] and [11], and is comprehensively reviewed in [19].

Let P=TNfP=T_{N}f and N=H0(X,LN)\mathcal{H}_{N}=H^{0}(X,L^{N}). Define the zz-dependent self-adjoint operators Q=(Pz)(Pz)Q=(P-z)^{*}(P-z) and Q~=(Pz)(Pz)\tilde{Q}=(P-z)(P-z)^{*}. These operators share the same eigenvalues 0t12t𝒩20\leq t_{1}^{2}\leq\cdots\leq t_{\mathcal{N}}^{2}. We can find an orthonormal basis of eigenvectors of QQ for these eigenvalues, denoted by eie_{i}, and similarly, and orthonormal basis of eigenvectors of Q~\tilde{Q} denoted by fif_{i}. These eigenvectors can be chosen such that

(Pz)fi=tiei,\displaystyle(P-z)^{*}f_{i}=t_{i}e_{i}, (Pz)ei=tifi,\displaystyle(P-z)e_{i}=t_{i}f_{i}, i=1,,𝒩.\displaystyle i=1,\dots,\ \mathcal{N}. (5.1)

Next we fix ρ(0,min(1/2,ε))\rho\in(0,\min(1/2,\varepsilon)), and define:

α:=N2ρ,\displaystyle\alpha:=N^{-2\rho}, A:=max{i:ti2α}.\displaystyle A:=\max\left\{i\in\mathbb{Z}:t_{i}^{2}\leq\alpha\right\}. (5.2)
Definition 5.1 (𝓟𝜹\bm{\mathcal{P}^{\delta}}).

Let δj\delta_{j} be the standard basis of A\mathbb{C}^{A}, and define the operators R+(z)=1Aδiei:NAR_{+}(z)=\sum_{1}^{A}\delta_{i}\otimes e_{i}:\mathcal{H}_{N}\to\mathbb{C}^{A} and R(z)=1Afiδi:ANR_{-}(z)=\sum_{1}^{A}f_{i}\otimes\delta_{i}:\mathbb{C}^{A}\to\mathcal{H}_{N}, where we use the notation (uv)(w)=w,vu(u\otimes v)(w)=\left\langle w,v\right\rangle u. For each zz\in\mathbb{C} and δ0\delta\geq 0, define

𝒫δ(z):=(P+δ𝒢ωzR(z)R+(z)0):(NA)(NA).\displaystyle\mathcal{P}^{\delta}(z):=\begin{pmatrix}P+\delta\mathcal{G}_{\omega}-z&R_{-}(z)\\ R_{+}(z)&0\end{pmatrix}:\begin{pmatrix}\mathcal{H}_{N}\\ \mathbb{C}^{A}\end{pmatrix}\to\begin{pmatrix}\mathcal{H}_{N}\\ \mathbb{C}^{A}\end{pmatrix}. (5.3)
Lemma 5.2.

If δ=0\delta=0, then 𝒫δ\mathcal{P}^{\delta}, as defined in (5.3), is bijective with inverse

0(z)=(A+1𝒩1tieifi1Aeiδi1Aδifi1Atiδiδi):=(E0(z)E+0(z)E0(z)E+0(z)).\displaystyle\mathcal{E}^{0}(z)=\begin{pmatrix}\sum_{A+1}^{\mathcal{N}}\frac{1}{t_{i}}e_{i}\otimes f_{i}&&\sum_{1}^{A}e_{i}\otimes\delta_{i}\\ \sum_{1}^{A}\delta_{i}\otimes f_{i}&&-\sum_{1}^{A}t_{i}\delta_{i}\otimes\delta_{i}\end{pmatrix}:=\begin{pmatrix}E^{0}(z)&E_{+}^{0}(z)\\ E^{0}_{-}(z)&E_{-+}^{0}(z)\end{pmatrix}. (5.4)
Proof.

See [23, Section 5.1]. ∎

To ease notation, the zz in the argument for these operators will often be dropped. Unless specified, all estimates are uniform in zz.

Claim 5.1 (Invertibility of 𝒫δ\bm{\mathcal{P}^{\delta}$}).

𝒫δ\mathcal{P}^{\delta} is invertible if δ𝒢ωE01\delta\left\|\mathcal{G}_{\omega}E^{0}\right\|\ll 1.

Proof.

By computation

𝒫δ0=1+(δ𝒢ωE0δ𝒢ωE+000):=1+K.\displaystyle\mathcal{P}^{\delta}\mathcal{E}^{0}=1+\begin{pmatrix}\delta\mathcal{G}_{\omega}E^{0}&\delta\mathcal{G}_{\omega}E_{+}^{0}\\ 0&0\end{pmatrix}:=1+K. (5.5)

If K<1\left\|K\right\|<1 (which is true given the hypothesis), then (I+K)1(I+K)^{-1} exists as a Neumann series, and we get 𝒫δ0(I+K)1=I\mathcal{P}^{\delta}\mathcal{E}^{0}(I+K)^{-1}=I (a similar argument shows this is a left inverse as well). ∎

Lemma 5.3 (Norm of E𝟎\bm{E^{0}}).

In the notation of (5.4), E0α1/2\left\|E^{0}\right\|\leq\alpha^{-1/2}.

Proof.

By construction, E0=M+1𝒩(ti)1eifiE^{0}=\sum_{M+1}^{\mathcal{N}}(t_{i})^{-1}e_{i}\otimes f_{i}, so that E0=E0fM+1=(tM+1)1α1/2\left\|E^{0}\right\|=\left\|E^{0}f_{M+1}\right\|=(t_{M+1})^{-1}\leq\alpha^{-1/2}. ∎

Lemma 5.4 (Norm of E+0\bm{E}_{+}^{0}).

In the notation of (5.4), E+0=1\left\|E_{+}^{0}\right\|=1.

Proof.

By construction E+0(z)=1MeiδiE_{+}^{0}(z)=\sum_{1}^{M}e_{i}\otimes\delta_{i} which has norm 1. ∎

These lemmas, along with Lemma 4.6, guarantee that if δ=𝒪(α1/2𝒩1/2)\delta=\mathcal{O}(\alpha^{1/2}\mathcal{N}^{-1/2}), then 𝒫δ\mathcal{P}^{\delta} is invertible with overwhelming probability. Denote the inverse of 𝒫δ\mathcal{P}^{\delta} by δ\mathcal{E}^{\delta} with the same notation for its components as in (5.4).

Define Pδ=P+δ𝒢ωP^{\delta}=P+\delta\mathcal{G}_{\omega}. By Schur’s complement formula, if PδzP^{\delta}-z is invertible,

det(PδzRR+0)=det(Pδz)det(R+(Pδz)1R).\displaystyle\det\begin{pmatrix}P^{\delta}-z&R_{-}\\ R_{+}&0\end{pmatrix}=\det(P^{\delta}-z)\det(-R_{+}(P^{\delta}-z)^{-1}R_{-}). (5.6)

Writing 𝒫δδ=1\mathcal{P}^{\delta}\mathcal{E}^{\delta}=1, we get that R=(Pδz)E+δ(E+δ)1-R_{-}=(P^{\delta}-z)E_{+}^{\delta}(E_{-+}^{\delta})^{-1} and R+E+δ=1R_{+}E_{+}^{\delta}=1. Therefore R+(Pδz)1R=(E+δ)1-R_{+}(P^{\delta}-z)^{-1}R_{-}=(E_{-+}^{\delta})^{-1}, so that

log|det(Pδz)|=log|det𝒫δ(z)|+log|detE+δ(z)|.\displaystyle\log|\det(P^{\delta}-z)|=\log|\det\mathcal{P}^{\delta}(z)|+\log|\det E_{-+}^{\delta}(z)|. (5.7)

Note that PδzP^{\delta}-z is invertible if and only if E+δE_{-+}^{\delta} is invertible. Therefore (5.7) holds even when PδzP^{\delta}-z is not invertible.

Therefore, to prove Theorem 2, it suffices to show summability of the probability of the events:

𝒜N:={|(𝒩)1(log|det𝒫δ|+log|detE+δ(z)|)Xlog|zf0(x)|dμ:=B|>εN}.\displaystyle\mathcal{A}_{N}:=\left\{\left|\underbrace{(\mathcal{N})^{-1}(\log|\det\mathcal{P}^{\delta}|+\log|\det E_{-+}^{\delta}(z)|)-\fint_{X}\log|z-f_{0}(x)|\mathop{}\!\mathrm{d}\mu}_{:=B}\right|>\varepsilon_{N}\right\}. (5.8)

We let εN=Nγ\varepsilon_{N}=N^{-\gamma} for a suitably chosen γ=γ(d,κ)>0\gamma=\gamma(d,\kappa)>0. Expand B=B1+B2+B3B=B_{1}+B_{2}+B_{3} where:

B1\displaystyle B_{1} =𝒩1log|det𝒫0|\strokedintXlog|zf0(x)|dμ(x),\displaystyle=\mathcal{N}^{-1}\log|\det\mathcal{P}^{0}|-\strokedint_{X}\log|z-f_{0}(x)|\mathop{}\!\mathrm{d}\mu(x), (5.9)
B2\displaystyle B_{2} =𝒩1(log|det𝒫δ|log|det𝒫0|),\displaystyle=\mathcal{N}^{-1}(\log|\det\mathcal{P}^{\delta}|-\log|\det\mathcal{P}^{0}|), (5.10)
B3\displaystyle B_{3} =𝒩1log|detE+δ|.\displaystyle=\mathcal{N}^{-1}\log|\det E_{-+}^{\delta}|. (5.11)

Controlling B1B_{1} requires the most work as it requires utilizing the calculus of Toeplitz operators. However, it is completely deterministic, and remains true for unperturbed operators. B2B_{2} will be easily shown to be negligible. Proving a lower bound on B3B_{3} is the key ingredient in proving Theorem 2, as it will force the events 𝒜N\mathcal{A}_{N} to sufficiently small probability. Without a perturbation, B3B_{3} will have no lower bound.

Proving bounds on B2B_{2} and B3B_{3} closely follow [23].

Lemma 5.5 (Bound on E+\bm{E_{-+}}).

In the notation of (5.4), E+0α\left\|E_{-+}^{0}\right\|\leq\sqrt{\alpha}.

Proof.

By construction, E+0=1AtjδjδjE_{-+}^{0}=-\sum_{1}^{A}t_{j}\delta_{j}\otimes\delta_{j}, so E+0=|E+0(δA)|=tAα\left\|E_{-+}^{0}\right\|=|E_{-+}^{0}(\delta_{A})|=t_{A}\leq\sqrt{\alpha}. ∎

Lemma 5.6 (Bound on Eδ\bm{E^{\delta}}).

In the notation of (5.4), Eδ2α1/2\left\|E^{\delta}\right\|\leq 2\alpha^{-1/2} with overwhelming probability.

Proof.

By the Neumann construction, Eδ=E0(1+δ𝒢ωE0)12E0\left\|E^{\delta}\right\|=\left\|E^{0}(1+\delta\mathcal{G}_{\omega}E^{0})^{-1}\right\|\leq 2\left\|E^{0}\right\| which is bounded by 2α1/22\alpha^{-1/2} by Lemma 5.3. ∎

Claim 5.2 (Bound on B𝟐\bm{B_{2}}).

In the notation of (5.10), B2=𝒪(δα1/2𝒩1/2)B_{2}=\mathcal{O}(\delta\alpha^{-1/2}\mathcal{N}^{1/2}) with overwhelming probability.

Proof.

Using Jacobi’s formula, (logdetA)=Tr(A1A)(\log\det A)^{\prime}=\operatorname{Tr}(A^{-1}A^{\prime}), we have that

𝒩B2\displaystyle\mathcal{N}B_{2} =log|det𝒫δ|log|det𝒫|=0δddτlog|det𝒫τ|dτ\displaystyle=\log|\det\mathcal{P}^{\delta}|-\log|\det\mathcal{P}|=\int_{0}^{\delta}\frac{d}{d\tau}\log|\det\mathcal{P}^{\tau}|\mathop{}\!\mathrm{d}\tau (5.12)
=0δRe(Tr(τddτ𝒫τ))dτ=0δRe(Tr(Eτ𝒢ω))dτ.\displaystyle=\int_{0}^{\delta}{\rm{Re}}\left(\operatorname{Tr}(\mathcal{E}^{\tau}\frac{d}{d\tau}\mathcal{P}^{\tau})\right)\mathop{}\!\mathrm{d}\tau=\int_{0}^{\delta}{\rm{Re}}\left(\operatorname{Tr}(E^{\tau}\mathcal{G}_{\omega})\right)\mathop{}\!\mathrm{d}\tau. (5.13)

Taking absolute values and using properties of trace norms

|log|det𝒫δ|log|det𝒫0||\displaystyle|\log|\det\mathcal{P}^{\delta}|-\log|\det\mathcal{P}^{0}|| δsupτ[0,δ]Eτ𝒢ωtr𝒪(δα1/2𝒩𝒢ω),\displaystyle\leq\delta\sup_{\tau\in[0,\delta]}\left\|E^{\tau}\right\|\left\|\mathcal{G}_{\omega}\right\|_{tr}\leq\mathcal{O}(\delta\alpha^{-1/2}\mathcal{N}\left\|\mathcal{G}_{\omega}\right\|), (5.14)

where we used Lemma 5.6, and Hölder’s inequality for the Schatten norm. Recalling the bound on 𝒢ω\mathcal{G}_{\omega}, (5.14) is 𝒪(δα1/2𝒩3/2)\mathcal{O}(\delta\alpha^{-1/2}\mathcal{N}^{3/2}) with overwhelming probability. ∎

The following theorem about singular values of randomly perturbed matrices is required for proving a lower bound of B3B_{3}. Given a matrix BB, let s1(B)s2(B)sN(B)s_{1}(B)\geq s_{2}(B)\geq\cdots\geq s_{N}(B) be its singular values.

Proposition 5.7.

If BB is an N×NN\times N complex matrix and 𝒢ω\mathcal{G}_{\omega} is a random matrix with independent identically distributed complex Gaussian entries of mean 0 and variance 11, then there exists C>0C>0 such that for all δ>0\delta>0, t>0t>0:

(sN(B+δ𝒢ω)<δt)CNt2.\displaystyle\mathbb{P}(s_{N}(B+\delta\mathcal{G}_{\omega})<\delta t)\leq CNt^{2}. (5.15)
Proof.

See [23, Theorem 23], which is a complex version proven by Sankar, Spielmann and Teng in [15, Lemma 3.2]. ∎

Claim 5.3 (Bound on B𝟑\bm{B_{3}}).

In the notation of (5.11), B3B_{3} obeys the probabilistic upper bound

(𝒩1log|detE+δ|<0)>1e𝒩,\displaystyle\mathbb{P}(\mathcal{N}^{-1}\log|\det E_{-+}^{\delta}|<0)>1-e^{-\mathcal{N}}, (5.16)

for N1N\gg 1. And B3B_{3} obeys the probabilistic lower bound: there exists there exists C>0C>0 such that for all δ>0\delta>0

(𝒩1log|detE+δ|A𝒩1log(δt))>1C𝒩t2e𝒩.\displaystyle\mathbb{P}\left(\mathcal{N}^{-1}\log|\det E_{-+}^{\delta}|\geq A\mathcal{N}^{-1}\log(\delta t)\right)>1-C\mathcal{N}t^{2}-e^{-\mathcal{N}}. (5.17)
Proof.

First, by the Neumann series construction and choice of δ\delta, with overwhelming probability,

E+δE+δE+0+E+0\displaystyle\left\|E_{-+}^{\delta}\right\|\leq\left\|E_{-+}^{\delta}-E_{-+}^{0}\right\|+\left\|E_{-+}^{0}\right\| =E0(1δ𝒢ωE0)1δ𝒢ωE+0+E+0\displaystyle=\left\|E_{-}^{0}(1-\delta\mathcal{G}_{\omega}E^{0})^{-1}\delta\mathcal{G}_{\omega}E_{+}^{0}\right\|+\left\|E_{-+}^{0}\right\| (5.18)
2δ𝒢ω+α1/2Cα1/2.\displaystyle\leq 2\left\|\delta\mathcal{G}_{\omega}\right\|+\alpha^{1/2}\leq C\alpha^{1/2}. (5.19)

So, in this event, E+δCα1/2<1\left\|E_{-+}^{\delta}\right\|\leq C\alpha^{1/2}<1 for N1N\gg 1, and therefore log|detE+δ|<0\log|\det E_{-+}^{\delta}|<0 proving (5.16).

For the lower bound, first note that

log|detE+δ|=1Alogsj(E+δ)AlogsA(E+δ).\displaystyle\log|\det E_{-+}^{\delta}|=\sum_{1}^{A}\log s_{j}(E_{-+}^{\delta})\geq A\log s_{A}(E_{-+}^{\delta}). (5.20)

For a matrix BB, let t1(B)t_{1}(B) be the smallest eigenvalue of BB\sqrt{B^{*}B}, so sA(E+δ)=t1(E+δ)s_{A}(E_{-+}^{\delta})=t_{1}(E_{-+}^{\delta}). Assume that PzP-z is invertible. Using that (E+0)1=R+(Pz)1R(E_{-+}^{0})^{-1}=-R_{+}(P-z)^{-1}R_{-} and properties of singular values of sums and products of trace class operators, we get

(t1(E+0))1\displaystyle(t_{1}(E_{-+}^{0}))^{-1} =s1((E+0)1)s1(R)s1(R+)s1((Pz)1)=R+Rs1((Pz)1)\displaystyle=s_{1}((E_{-+}^{0})^{-1})\leq s_{1}(R_{-})s_{1}(R_{+})s_{1}((P-z)^{-1})=\left\|R_{+}\right\|\left\|R_{-}\right\|s_{1}((P-z)^{-1}) (5.21)
=s1((Pz)1)=(t1(Pz))1=s𝒩((Pz)1).\displaystyle=s_{1}((P-z)^{-1})=(t_{1}(P-z))^{-1}=s_{\mathcal{N}}((P-z)^{-1}). (5.22)

For δ=𝒪(𝒩1/2α1/2)\delta=\mathcal{O}(\mathcal{N}^{-1/2}\alpha^{1/2}), this holds for E+δE_{-+}^{\delta} (the event of a singular matrix has probability zero and the singular values depend continuously on δ\delta) so sA(E+δ)=t1(E+δ)s𝒩(P+δ𝒢ωz)s_{A}(E_{-+}^{\delta})=t_{1}(E_{-+}^{\delta})\geq s_{\mathcal{N}}(P+\delta\mathcal{G}_{\omega}-z) with overwhelming probability.

Using Proposition 5.7, in the event that 𝒢ωC𝒩1/2\left\|\mathcal{G}_{\omega}\right\|\leq C\mathcal{N}^{1/2} (overwhelming probability) and s𝒩(Pz+δ𝒢ω)>δts_{\mathcal{N}}(P-z+\delta\mathcal{G}_{\omega})>\delta t (probability at least 1C𝒩t21-C\mathcal{N}t^{2}), we have that sA(E+δ)>δts_{A}(E_{-+}^{\delta})>\delta t with probability greater than 1C𝒩t2e𝒩1-C\mathcal{N}t^{2}-e^{-\mathcal{N}}. Therefore

log|detE+δ|AlogsA(E+δ)Alog(δt)\displaystyle\log|\det E_{-+}^{\delta}|\geq A\log s_{A}(E_{-+}^{\delta})\geq A\log(\delta t) (5.23)

with probability 1e𝒩C𝒩t2\geq 1-e^{-\mathcal{N}}-C\mathcal{N}t^{2}. ∎

6. Bound on B1B_{1}

This section is devoted to estimating B1B_{1} (as in (5.9)) which involves computing the trace of a function of a Toeplitz operator belonging to an exotic symbol class. This closely follows [23], however several simplifications arise partially due to requiring weaker bounds, and several modifications are required as we are working with Toeplitz operators.

Claim 6.1 (Bound on B𝟏\bm{B_{1}}).

For 𝒫\mathcal{P} defined in (5.3),

log|det𝒫0|=Nd\strokedintXlog|f0(x)z|2dμ+𝒪(Ndmin(2ρκ,(12ρ))log(N)).\displaystyle\log|\det\mathcal{P}^{0}|=N^{d}\strokedint_{X}\log|f_{0}(x)-z|^{2}\mathop{}\!\mathrm{d}\mu+\mathcal{O}(N^{d-\min(2\rho\kappa,(1-2\rho))}\log(N)). (6.1)
Proof.

Let’s first consider some preliminary reductions in computing log|det𝒫0|\log|\det\mathcal{P}^{0}|. By Schur’s complement formula, |det𝒫0|2=|det(Pz)|2|detE+0|2|\det\mathcal{P}^{0}|^{2}=|\det(P-z)|^{2}|\det E_{-+}^{0}|^{-2}. The first term is:

|det(Pz)|2=detQ=i=1𝒩ti2.\displaystyle|\det(P-z)|^{2}=\det Q=\prod_{i=1}^{\mathcal{N}}t_{i}^{2}. (6.2)

Because E+0=1AtjδjδjE_{-+}^{0}=-\sum_{1}^{A}t_{j}\delta_{j}\otimes\delta_{j} (recall AA is the largest integer such that tA2αt^{2}_{A}\leq\alpha), the second term is

|detE+0|2=(i=1Ati2)2,\displaystyle|\det E_{-+}^{0}|^{-2}=\left(\prod_{i=1}^{A}t_{i}^{2}\right)^{-2}, (6.3)

therefore

|det𝒫0|2=i=A+1𝒩ti2=αAi=1𝒩1α(ti2)=αAdet1α(Q)\displaystyle|\det\mathcal{P}^{0}|^{2}=\prod_{i=A+1}^{\mathcal{N}}t_{i}^{2}=\alpha^{-A}\prod_{i=1}^{\mathcal{N}}1_{\alpha}(t_{i}^{2})=\alpha^{-A}\det 1_{\alpha}(Q) (6.4)

where 1α=max(x,α)1_{\alpha}=\max(x,\alpha). If χ\chi is a cut-off function identically 11 on [0,1][0,1], and supported in [1/2,2][-1/2,2], then x+(α/4)χ(4x/α)1α(x)x+αχ(x/α)x+(\alpha/4)\chi(4x/\alpha)\leq 1_{\alpha}(x)\leq x+\alpha\chi(x/\alpha) for x0x\geq 0. Therefore

det(Q+41αχ(Q/(41α)))det(1α(Q))det(Q+αχ(Q/α)).\displaystyle\det\left(Q+4^{-1}\alpha\chi\left(Q/(4^{-1}\alpha)\right)\right)\leq\det(1_{\alpha}(Q))\leq\det\left(Q+\alpha\chi(Q/\alpha)\right). (6.5)

Now fix 1α1>α1\gg\alpha_{1}>\alpha, so that logdet(Q+αχ(Q/α))\log\det(Q+\alpha\chi(Q/\alpha)) can be written

αα1ddtlogdet(Q+tχ(Q/t))dt+logdet(Q+α1χ(Q/α1)).\displaystyle-\int_{\alpha}^{\alpha_{1}}\frac{d}{dt}\log\det(Q+t\chi(Q/t))\mathop{}\!\mathrm{d}t+\log\det(Q+\alpha_{1}\chi(Q/\alpha_{1})). (6.6)

First the integrand is estimated. Let ψ(t)=(ttχ(t))(1+χ(t))1\psi(t)=(t-t\chi^{\prime}(t))(1+\chi(t))^{-1} so that

ddtlog(x+tχ(x/t))=t1ψ(x/t)\displaystyle\frac{d}{dt}\log(x+t\chi(x/t))=t^{-1}\psi(x/t) (6.7)

for t>0t>0 and ψC0(0)\psi\in C_{0}^{\infty}(\mathbb{R}_{\geq 0}). Therefore, by Jacobi’s identity,

ddtlogdet(Q+tχ(Q/t))=Tr(t1ψ(Q/t)).\displaystyle\frac{d}{dt}\log\det(Q+t\chi(Q/t))=\operatorname{Tr}(t^{-1}\psi(Q/t)). (6.8)

While morally the same, here we diverge from [23]’s proof to handle this trace term, and must rely on Section 3. The main issues are that QQ is the composition of Toeplitz operators, which may no longer be a Toeplitz operator (but is modulo 𝒪(N)\mathcal{O}(N^{-\infty}) error), Q/tQ/t belongs to an exotic symbol class so to compute ψ(Q/t)\psi(Q/t) requires an exotic calculus, and the trace formula (Proposition 3.6) has weaker remainder than for quantizations of tori.

Let ρt\rho_{t} be such that t=N2ρtt=N^{-2\rho_{t}}. By Proposition 3.3, Q=TNq+𝒪(N)Q=T_{N}q+\mathcal{O}(N^{-\infty}), where the principal symbol of qq is |f0z|2|f_{0}-z|^{2}. For each tt, Q/tQ/t is (modulo 𝒪(N)\mathcal{O}(N^{-\infty})) a Toeplitz operator with symbol in Sρt(mt)S_{\rho_{t}}(m_{t}) where mt=q0/t+1m_{t}=q_{0}/t+1, by Claim 3.1. And so, by Proposition 3.5, there exists qtSρt(mt1)q_{t}\in S_{\rho_{t}}(m_{t}^{-1}), such that ψ(Q/t)=TN(qt)+EN(t)\psi(Q/t)=T_{N}(q_{t})+E_{N}(t). Where qtq_{t} has principal symbol ψ(q/t)\psi(q/t) and EN(t)=𝒪(N)E_{N}(t)=\mathcal{O}(N^{-\infty}) (with estimates uniform over tt). Therefore

αα1ddtlogdet(Q+tχ(Q/t))dt\displaystyle\int_{\alpha}^{\alpha_{1}}\frac{d}{dt}\log\det(Q+t\chi(Q/t))\mathop{}\!\mathrm{d}t =αα1Tr(t1ψ(Q/t))dt\displaystyle=\int_{\alpha}^{\alpha_{1}}\operatorname{Tr}(t^{-1}\psi(Q/t))\mathop{}\!\mathrm{d}t (6.9)
=αα1t1Tr(TN(qt)+EN(t))dt.\displaystyle=\int_{\alpha}^{\alpha_{1}}t^{-1}\operatorname{Tr}(T_{N}(q_{t})+E_{N}(t))\mathop{}\!\mathrm{d}t. (6.10)

The error term is

αα1t1Tr(EN(t))𝑑t=𝒪(N)\displaystyle\int_{\alpha}^{\alpha_{1}}t^{-1}\operatorname{Tr}(E_{N}(t))dt=\mathcal{O}(N^{-\infty}) (6.11)

because EN(t)E_{N}(t) is uniformly 𝒪(N)\mathcal{O}(N^{-\infty}). While for each tt, Proposition 3.6 shows that

Tr(TN(qt))=(N2π)dXψ(q0/t)dμd(x)+t1𝒪(Nd1)\displaystyle\operatorname{Tr}(T_{N}(q_{t}))=\left(\frac{N}{2\pi}\right)^{d}\int_{X}\psi(q_{0}/t)\mathop{}\!\mathrm{d}\mu_{d}(x)+t^{-1}\mathcal{O}(N^{d-1}) (6.12)

because m1m^{-1} is bounded. Therefore

αα1ddtlogdet(Q+tχ(Q/t))dt\displaystyle\int_{\alpha}^{\alpha_{1}}\frac{d}{dt}\log\det(Q+t\chi(Q/t))\mathop{}\!\mathrm{d}t =αα1(X(N2π)dt1ψ(q0/t)dμd(x)+t2𝒪(Nd1))dt\displaystyle=\int_{\alpha}^{\alpha_{1}}\left(\int_{X}\left(\frac{N}{2\pi}\right)^{d}t^{-1}\psi(q_{0}/t)\mathop{}\!\mathrm{d}\mu_{d}(x)+t^{-2}\mathcal{O}(N^{d-1})\right)\mathop{}\!\mathrm{d}t (6.13)
=(N2π)dXlog(q0+tχ(q0/t))|t=αt=α1dμ(x)+𝒪(Nd1α).\displaystyle=\left(\frac{N}{2\pi}\right)^{d}\int_{X}\log(q_{0}+t\chi(q_{0}/t))\Big{|}_{t=\alpha}^{t=\alpha_{1}}\mathop{}\!\mathrm{d}\mu(x)+\mathcal{O}(N^{d-1}\alpha). (6.14)

Next the second term of (6.6) is computed. Because α1\alpha_{1} is fixed, Q/α1Q/\alpha_{1} has symbol in S(1)S(1). Therefore, by Proposition 3.5, Q+α1χ(Q/α1)=TNr+ENQ+\alpha_{1}\chi(Q/\alpha_{1})=T_{N}r+E_{N} (with EN=𝒪(N)\left\|E_{N}\right\|=\mathcal{O}(N^{-\infty})) where rS(1)r\in S(1) with principal symbol q0+α1χ(q0/α1)q_{0}+\alpha_{1}\chi(q_{0}/\alpha_{1}). Let rt=tr+(1t)S(1)r^{t}=tr+(1-t)\in S(1), so that

logdet(Q+α1χ(Q/α1))\displaystyle\log\det(Q+\alpha_{1}\chi(Q/\alpha_{1})) =01ddtlogdet(TNrt+tEN)dt\displaystyle=\int_{0}^{1}\frac{d}{dt}\log\det(T_{N}r^{t}+tE_{N})\mathop{}\!\mathrm{d}t (6.15)
=01Tr((TNrt+tEN)1(ddtTNrt+EN))dt.\displaystyle=\int_{0}^{1}\operatorname{Tr}\left(\left(T_{N}r^{t}+tE_{N}\right)^{-1}\left(\frac{d}{dt}T_{N}r^{t}+E_{N}\right)\right)\mathop{}\!\mathrm{d}t. (6.16)

The principal symbol of rtr^{t} is r01=t(q0+α1χ(q0/α1))+(1t)r_{0}^{1}=t(q_{0}+\alpha_{1}\chi(q_{0}/\alpha_{1}))+(1-t). Note that when x0x\geq 0, then x+α1χ(x/α1)α1>0x+\alpha_{1}\chi(x/\alpha_{1})\geq\alpha_{1}>0. Therefore (r0t)α1(r_{0}^{t})\geq\alpha_{1} .

Lemma 6.1.

There exists s(t)S(1)s(t)\in S(1) (with bounds uniform in tt) such that (TNrt+tEN)1=TNs(t)+𝒪(N)(T_{N}r^{t}+tE_{N})^{-1}=T_{N}s(t)+\mathcal{O}(N^{-\infty}), and the principal symbol of s(t)s(t) is (r0t)1(r^{t}_{0})^{-1}.

Proof.

By Proposition 3.4, there exists a symbol =(t)S(1)\ell=\ell(t)\in S(1) which inverts (modulo 𝒪(N)\mathcal{O}(N^{-\infty}) error) TNrtT_{N}r^{t}, and has principal symbol (r0t)1(r_{0}^{t})^{-1}. But then

(TNrt+tEN)TN=1+K\displaystyle(T_{N}r^{t}+tE_{N})T_{N}\ell=1+K (6.17)

with K=𝒪(N)K=\mathcal{O}(N^{-\infty}), using that tEN=𝒪(N)tE_{N}=\mathcal{O}(N^{-\infty}) and TNT_{N}\ell has norm bounded independent of NN. By Neumann series, for N1N\gg 1, (1+K)(1+K) is invertible, so that:

(TNrt+tEN)(TN)(1+K)1=1.\displaystyle(T_{N}r^{t}+tE_{N})(T_{N}\ell)(1+K)^{-1}=1. (6.18)

(TN)(1+K)1(T_{N}\ell)(1+K)^{-1} will be a Toeplitz operator, modulo a 𝒪(N)\mathcal{O}(N^{-\infty}) term, with symbol \ell which has principal symbol (r0t)1(r_{0}^{t})^{-1}. By repeating this argument, but left-composing by TNT_{N}\ell, we get the lemma. ∎

Clearly ddtTNrt=TN(r1)\frac{d}{dt}T_{N}r^{t}=T_{N}(r-1) so using Lemma 6.1, we get that

(TNrt+tEN)1(ddtTNrt+EN)\displaystyle\left(T_{N}r^{t}+tE_{N}\right)^{-1}\left(\frac{d}{dt}T_{N}r^{t}+E_{N}\right) (6.19)

is (modulo 𝒪(N)\mathcal{O}(N^{-\infty})) a Toeplitz operator with principal symbol (r0t)1(ddtr0t)(r_{0}^{t})^{-1}(\frac{d}{dt}r_{0}^{t}). So by Proposition 3.6

Tr((TNrt+tEN)1(ddtTNrt+EN))=(N2π)dX(r0t)1(ddtr0t)dμd(x)+𝒪(Nd1)\displaystyle\operatorname{Tr}\left(\left(T_{N}r^{t}+tE_{N}\right)^{-1}\left(\frac{d}{dt}T_{N}r^{t}+E_{N}\right)\right)=\left(\frac{N}{2\pi}\right)^{d}\int_{X}(r_{0}^{t})^{-1}\left(\frac{d}{dt}r_{0}^{t}\right)\mathop{}\!\mathrm{d}\mu_{d}(x)+\mathcal{O}(N^{d-1}) (6.20)

which when integrated from t=0t=0 to t=1t=1 becomes:

(N2π)dXlog(r01)𝑑x+𝒪(Nd1)=(N2π)dXlog(q0+α1χ(q0/α1))dμd(x)+𝒪(Nd1).\displaystyle\left(\frac{N}{2\pi}\right)^{d}\int_{X}\log(r_{0}^{1})dx+\mathcal{O}(N^{d-1})=\left(\frac{N}{2\pi}\right)^{d}\int_{X}\log(q_{0}+\alpha_{1}\chi(q_{0}/\alpha_{1}))\mathop{}\!\mathrm{d}\mu_{d}(x)+\mathcal{O}(N^{d-1}). (6.21)

Therefore (6.6) becomes:

(N2π)dXlog(q0+αχ(q0/α))dμd+𝒪(Nd1α1).\displaystyle\left(\frac{N}{2\pi}\right)^{d}\int_{X}\log(q_{0}+\alpha\chi(q_{0}/\alpha))\mathop{}\!\mathrm{d}\mu_{d}+\mathcal{O}(N^{d-1}\alpha^{-1}). (6.22)

A calculus lemma is required to estimate Xlog(q0+αχ(q0/α))dx\int_{X}\log(q_{0}+\alpha\chi(q_{0}/\alpha))\mathop{}\!\mathrm{d}x.

Lemma 6.2.

Given qC(X;0)q\in C^{\infty}(X;\mathbb{R}_{\geq 0}) such that μd({xX:q(x)t})=𝒪(tκ)\mu_{d}\left(\left\{x\in X:q(x)\leq t\right\}\right)=\mathcal{O}(t^{\kappa}) as t0t\to 0 for κ(0,1]\kappa\in(0,1], and χC0((1/2,2);[0,1])\chi\in C_{0}^{\infty}((-1/2,2);[0,1]) identically 11 on [0,1][0,1]. Then

Xlog(q+αχ(q/α))dμd=Xlog(q)dμd+𝒪(ακ).\displaystyle\int_{X}\log(q+\alpha\chi(q/\alpha))\mathop{}\!\mathrm{d}\mu_{d}=\int_{X}\log(q)\mathop{}\!\mathrm{d}\mu_{d}+\mathcal{O}(\alpha^{\kappa}). (6.23)
Proof.

Let g(t)=log(t+αχ(t/α))g(t)=\log(t+\alpha\chi(t/\alpha)) and m(t)=μd({xX:q(x)t})m(t)=\mu_{d}(\left\{x\in X:q(x)\leq t\right\}). Then, letting q1=maxq+2αq_{1}=\max q+2\alpha,

Xlog(q+αχ(q/α))log(α)dμd\displaystyle\int_{X}\log(q+\alpha\chi(q/\alpha))-\log(\alpha)\mathop{}\!\mathrm{d}\mu_{d} =Xg(q(x))g(0)dμd=X0q(x)g(t)dtdμd\displaystyle=\int_{X}g(q(x))-g(0)\mathop{}\!\mathrm{d}\mu_{d}=\int_{X}\int_{0}^{q(x)}g^{\prime}(t)\mathop{}\!\mathrm{d}t\mathop{}\!\mathrm{d}\mu_{d} (6.24)
=0q1g(t)q(x)>tdμddt=0q1g(t)(vol(X)m(t))dt\displaystyle=\int_{0}^{q_{1}}g^{\prime}(t)\int_{q(x)>t}\mathop{}\!\mathrm{d}\mu_{d}\mathop{}\!\mathrm{d}t=\int_{0}^{q_{1}}g^{\prime}(t)(\operatorname{vol}(X)-m(t))\mathop{}\!\mathrm{d}t (6.25)
=vol(X)(g(q1)log(α))0q1g(t)m(t)dt.\displaystyle=\operatorname{vol}(X)(g(q_{1})-\log(\alpha))-\int_{0}^{q_{1}}g^{\prime}(t)m(t)\mathop{}\!\mathrm{d}t. (6.26)

So that:

Xlog(q+αχ(q/α)dμd=vol(X)g(q1)0q1g(t)m(t)dt.\displaystyle\int_{X}\log(q+\alpha\chi(q/\alpha)\mathop{}\!\mathrm{d}\mu_{d}=\operatorname{vol}(X)g(q_{1})-\int_{0}^{q_{1}}g^{\prime}(t)m(t)\mathop{}\!\mathrm{d}t. (6.27)

Similarly, if g~(t)=log(t)\tilde{g}(t)=\log(t), we get an analogous expression as (6.27), that is:

Xlog(q)dμd=vol(X)g~(q1)0q1g~(t)m(t)dt.\displaystyle\int_{X}\log(q)\mathop{}\!\mathrm{d}\mu_{d}=\operatorname{vol}(X)\tilde{g}(q_{1})-\int_{0}^{q_{1}}\tilde{g}^{\prime}(t)m(t)\mathop{}\!\mathrm{d}t. (6.28)

Note that g(q1)=g~(q1)g(q_{1})=\tilde{g}(q_{1}). Therefore:

|Xlog(q+αχ(q/α))log(q)dμd|\displaystyle\left|\int_{X}\log(q+\alpha\chi(q/\alpha))-\log(q)\mathop{}\!\mathrm{d}\mu_{d}\right| =|0q1(g~(t)g(t))m(t)dt|\displaystyle=\left|\int_{0}^{q_{1}}(\tilde{g}^{\prime}(t)-g^{\prime}(t))m(t)\mathop{}\!\mathrm{d}t\right| (6.29)
=|0q1(1t1+χ(t/α))t+αχ(t/α))m(t)dt|\displaystyle=\left|\int_{0}^{q_{1}}\left(\frac{1}{t}-\frac{1+\chi^{\prime}(t/\alpha))}{t+\alpha\chi(t/\alpha)}\right)m(t)\mathop{}\!\mathrm{d}t\right| (6.30)
=|0q1/α(1s1+χ(s)s+χ(s))m(sα)ds|\displaystyle=\left|\int_{0}^{q_{1}/\alpha}\left(\frac{1}{s}-\frac{1+\chi^{\prime}(s)}{s+\chi(s)}\right)m(s\alpha)\mathop{}\!\mathrm{d}s\right| (6.31)
02s1m(sα)ds\displaystyle\lesssim\int_{0}^{2}s^{-1}m(s\alpha)\mathop{}\!\mathrm{d}s (6.32)
ακ02sκ1dsακ.\displaystyle\lesssim\alpha^{\kappa}\int_{0}^{2}s^{\kappa-1}\mathop{}\!\mathrm{d}s\lesssim\alpha^{\kappa}. (6.33)

Here we use that χ(0)=1\chi(0)=1 to get a lower bound on |s+χ(s)||s+\chi(s)|, and the fact that χ(s)sχ(s)\chi(s)-s\chi^{\prime}(s) is supported in (0,2)(0,2). ∎

Applying this lemma, we get:

logdet(Q+αχ(Q/α))=(N2π)dXlog(q)dμd(x)+𝒪(ακ)+𝒪(Nd(12ρ)).\displaystyle\log\det(Q+\alpha\chi(Q/\alpha))=\left(\frac{N}{2\pi}\right)^{d}\int_{X}\log(q)\mathop{}\!\mathrm{d}\mu_{d}(x)+\mathcal{O}(\alpha^{\kappa})+\mathcal{O}(N^{d-(1-2\rho)}). (6.34)

Recalling that (N/2π)d𝒩1=vol(X)1+𝒪(N1)(N/2\pi)^{d}\mathcal{N}^{-1}=\operatorname{vol}(X)^{-1}+\mathcal{O}(N^{-1}), we get that:

logdet(Q+αχ(Q/α))=(𝒩+𝒪(N1))\strokedintlog(q)dμd+𝒪(Nd(12ρ)).\displaystyle\log\det(Q+\alpha\chi(Q/\alpha))=(\mathcal{N}+\mathcal{O}(N^{-1}))\strokedint\log(q)\mathop{}\!\mathrm{d}\mu_{d}+\mathcal{O}(N^{d-(1-2\rho)}). (6.35)

Xlog(q)dμd\int_{X}\log(q)\mathop{}\!\mathrm{d}\mu_{d} can be uniformly bounded in zz, so that the 𝒪(N1)\mathcal{O}(N^{-1}) term can be absorbed into 𝒪(Nd(12ρ))\mathcal{O}(N^{d-(1-2\rho)}). By (6.5), we get the following lower bound by replacing α\alpha by α/4\alpha/4:

logdet(Q+αχ(Q/α))𝒩\strokedintlog(q)dμd+𝒪(Nd(12ρ)).\displaystyle\log\det(Q+\alpha\chi(Q/\alpha))\geq\mathcal{N}\strokedint\log(q)\mathop{}\!\mathrm{d}\mu_{d}+\mathcal{O}(N^{d-(1-2\rho)}). (6.36)
Lemma 6.3 (Bound on A\bm{A}).

The number of eigenvalues of QQ that are less than α\alpha is 𝒪(NdNmin(2ρκ,(12ρ)))\mathcal{O}(N^{d}N^{-\min(2\rho\kappa,(1-2\rho))}).

Proof.

Let ψC0([1/2,3/2];[0,1])\psi\in C_{0}^{\infty}([-1/2,3/2];[0,1]) be identically 11 on [0,1][0,1]. It then suffices to estimate Tr(ψ(Q/α))\operatorname{Tr}(\psi(Q/\alpha)). By Proposition 3.5, ψ(Q/α)=TN,q2+𝒪(N)\psi(Q/\alpha)=T_{N,q_{2}}+\mathcal{O}(N^{-\infty}), where q2Sρ(1)q_{2}\in S_{\rho}(1) with principal symbol ψ(q/α)\psi(q/\alpha).

Then by Proposition 3.6

Tr(ψ(Q/α))\displaystyle\operatorname{Tr}(\psi(Q/\alpha)) =Tr(TN,q2+𝒪(N))\displaystyle=\operatorname{Tr}(T_{N,q_{2}}+\mathcal{O}(N^{-\infty})) (6.37)
=(N/2π)dXψ(q/α)dμd(x)+𝒪(Nd(12ρ))\displaystyle=(N/2\pi)^{d}\int_{X}\psi(q/\alpha)\mathop{}\!\mathrm{d}\mu_{d}(x)+\mathcal{O}(N^{d-(1-2\rho)}) (6.38)
Ndακ+Nd(12ρ)=𝒪(NdNmin(2ρκ,12ρ)).\displaystyle\lesssim N^{d}\alpha^{\kappa}+N^{d-(1-2\rho)}=\mathcal{O}(N^{d}N^{-\min(2\rho\kappa,1-2\rho)}). (6.39)

Therefore, putting everything together, we get that

log|det𝒫0|\displaystyle\log|\det\mathcal{P}^{0}| =12log(|det𝒫0|2)=12log(αAdet1α(Q))=A2log(1/α)+12logdet(1αQ)).\displaystyle=\frac{1}{2}\log(|\det\mathcal{P}^{0}|^{2})=\frac{1}{2}\log(\alpha^{-A}\det 1_{\alpha}(Q))=\frac{A}{2}\log(1/\alpha)+\frac{1}{2}\log\det(1_{\alpha}Q)). (6.40)

(6.35) and (6.36) provide upper and lower bounds of 21logdet(1α(Q))2^{-1}\log\det(1_{\alpha}(Q)). Then using that 21logq0=|f0z|2^{-1}\log q_{0}=|f_{0}-z| and Lemma 6.3 we get:

|log|det𝒫0|𝒩\strokedintXlog|f0z|dμd|\displaystyle\left|\log|\det\mathcal{P}^{0}|-\mathcal{N}\strokedint_{X}\log|f_{0}-z|d\mu_{d}\right| Alog(1/α)+ακ+Nd(12ρ)\displaystyle\lesssim A\log(1/\alpha)+\alpha^{\kappa}+N^{d-(1-2\rho)} (6.41)
Ndmin(2ρκ,(12ρ))log(N)+N2ρκ+Nd(12ρ)\displaystyle\lesssim N^{d-\min(2\rho\kappa,(1-2\rho))}\log(N)+N^{-2\rho\kappa}+N^{d-(1-2\rho)} (6.42)
Ndmin(2ρκ,(12ρ))log(N).\displaystyle\lesssim N^{d-\min(2\rho\kappa,(1-2\rho))}\log(N). (6.43)

Recall 𝒩B1=log|det𝒫0|𝒩\strokedintlog|zf0(x)|dμd\mathcal{N}B_{1}=\log|\det\mathcal{P}^{0}|-\mathcal{N}\strokedint\log|z-f_{0}(x)|\mathop{}\!\mathrm{d}\mu_{d}, so that

B1=𝒪(Nmin(2ρκ,(12ρ))log(N)).\displaystyle B_{1}=\mathcal{O}(N^{-\min(2\rho\kappa,(1-2\rho))}\log(N)). (6.44)

7. Summability of 𝒜N\mathcal{A}_{N}

Recall that 𝒜N={|B(N)|>εN}\mathcal{A}_{N}=\left\{|B(N)|>\varepsilon_{N}\right\}, where B(N)=B1+B2+B3B(N)=B_{1}+B_{2}+B_{3} with:

B1\displaystyle B_{1} =𝒩1log|det𝒫0|\strokedintlog|zf0(x)|dμd(x),\displaystyle=\mathcal{N}^{-1}\log|\det\mathcal{P}^{0}|-\strokedint\log|z-f_{0}(x)|\mathop{}\!\mathrm{d}\mu_{d}(x), (7.1)
B2\displaystyle B_{2} =𝒩1(log|det𝒫δ|log|det𝒫0|),\displaystyle=\mathcal{N}^{-1}(\log|\det\mathcal{P}^{\delta}|-\log|\det\mathcal{P}^{0}|), (7.2)
B3\displaystyle B_{3} =𝒩1log|detE+δ|.\displaystyle=\mathcal{N}^{-1}\log|\det E_{-+}^{\delta}|. (7.3)

The following table summarizes the bounds on B1,B2,B_{1},B_{2}, and B3B_{3}.

Bound Probability of Bound Reference
B1=𝒪(Nmin(2ρκ,(12ρ))log(N))B_{1}=\mathcal{O}(N^{-\min(2\rho\kappa,(1-2\rho))}\log(N)) 11 Claim 6.1
B2=𝒪(δα1/2𝒩1/2)B_{2}=\mathcal{O}(\delta\alpha^{-1/2}\mathcal{N}^{1/2}) >1exp(𝒩)>1-\exp(-\mathcal{N}) Claim 5.2
B3𝒩1Alog(tδ)B_{3}\geq\mathcal{N}^{-1}A\log(t\delta) >1C𝒩t2exp(𝒩)>1-C\mathcal{N}t^{2}-\exp(-\mathcal{N}) Claim 5.3
B3<0B_{3}<0 >1exp(𝒩)>1-\exp(-\mathcal{N}) Claim 5.3

Recall that ρ(0,min(1/2,ε))\rho\in(0,\min(1/2,\varepsilon)) and α=N2ρ\alpha=N^{-2\rho}. Theorem 2 will follow if (𝒜N)<\sum\mathbb{P}(\mathcal{A}_{N})<\infty for εN=Nγ\varepsilon_{N}=N^{-\gamma}. Recall that δ=𝒪(Nd/2ε)=𝒪(Nd/2α1/2)\delta=\mathcal{O}(N^{-d/2-\varepsilon})=\mathcal{O}(N^{-d/2}\alpha^{1/2}). Fix 0<γ<min(ερ,2ρκ,12ρ)0<\gamma<\min(\varepsilon-\rho,2\rho\kappa,1-2\rho).

Then (𝒜N)=(B>Nγ)+(B<Nγ)\mathbb{P}(\mathcal{A}_{N})=\mathbb{P}(B>N^{-\gamma})+\mathbb{P}(B<-N^{-\gamma}). The first term is:

(B>Nγ)=(B3>NγB2B1).\displaystyle\mathbb{P}(B>N^{-\gamma})=\mathbb{P}(B_{3}>N^{-\gamma}-B_{2}-B_{1}). (7.4)

Because γ<ερ\gamma<\varepsilon-\rho and B2=𝒪(Nρε)B_{2}=\mathcal{O}(N^{\rho-\varepsilon}) (with overwhelming probability), we see that B2=𝒪(Nγ)B_{2}=\mathcal{O}(N^{-\gamma}) (with overwhelming probability). Similarly, because of the bound on B1B_{1} and the choice of γ\gamma, B1=𝒪(Nγ)B_{1}=\mathcal{O}(N^{-\gamma}). So if NN is sufficiently large, NγB2B1CNγ>0N^{-\gamma}-B_{2}-B_{1}\geq CN^{-\gamma}>0. But then by Claim 5.3, (B>Nγ)eNd\mathbb{P}(B>N^{-\gamma})\leq e^{-N^{d}} for N1N\gg 1.

Similarly, for NN sufficiently large, there exists C0(0,1/2)C_{0}\in(0,1/2) such that, |B1|+|B2|<C0Nγ|B_{1}|+|B_{2}|<C_{0}N^{-\gamma}, so (B<Nγ)(B3<(1C0)Nγ)=1(B3(1C0)Nγ)\mathbb{P}(B<-N^{-\gamma})\leq\mathbb{P}(B_{3}<-(1-C_{0})N^{-\gamma})=1-\mathbb{P}(B_{3}\geq-(1-C_{0})N^{-\gamma}). By the choice of γ\gamma, bound on AA from Lemma 6.3, and selecting t=𝒩2/d1/2t=\mathcal{N}^{-2/d-1/2}, we get for large enough NN: (1C0)Nγ𝒩1Alog(δt)-(1-C_{0})N^{-\gamma}\leq\mathcal{N}^{-1}A\log(\delta t) as long as:

Nγ(1C0)𝒩1Alog(δ).\displaystyle-N^{-\gamma}(1-C_{0})\leq\mathcal{N}^{-1}A\log(\delta). (7.5)

This requires that δeNβ\delta\gg e^{-N^{\beta}} for β=min(2ρκ,12ρ)γ(0,1)\beta=\min(2\rho\kappa,1-2\rho)-\gamma\in(0,1). In this case, by Claim 5.3,

(B3>Nγ)\displaystyle\mathbb{P}(B_{3}>-N^{-\gamma}) (B3>A𝒩1log(δt))\displaystyle\geq\mathbb{P}(B_{3}>A\mathcal{N}^{-1}\log(\delta t)) (7.6)
1C𝒩t2e𝒩\displaystyle\geq 1-C\mathcal{N}t^{2}-e^{-\mathcal{N}} (7.7)
=1C𝒩2/d+e𝒩.\displaystyle=1-C\mathcal{N}^{-2/d}+e^{-\mathcal{N}}. (7.8)

Therefore (B<Nγ)CN2+eNd\mathbb{P}(B<-N^{-\gamma})\leq CN^{-2}+e^{-N^{d}} for N1N\gg 1.

With this, N=1(𝒜N)=C+N1(AN)C+N1(N2+2eNd)<\sum_{N=1}^{\infty}\mathbb{P}(\mathcal{A}_{N})=C+\sum_{N\gg 1}\mathbb{P}(A_{N})\leq C+\sum_{N\gg 1}(N^{-2}+2e^{-N^{d}})<\infty which proves Theorem 2.

Note that if ε>(2(κ+1))1\varepsilon>(2(\kappa+1))^{-1}, then we can select ρ=(2(κ+1))1\rho=(2(\kappa+1))^{-1} and choose γ\gamma arbitrarily small, so that β=κ(κ+1)1γ\beta=\kappa(\kappa+1)^{-1}-\gamma. While if ε<(2(κ+1))1\varepsilon<(2(\kappa+1))^{-1}, then the maximum β\beta can be is 2εκ2\varepsilon\kappa. Therefore we have:

β<{2εκif ε<12(κ+1)κκ+1if ε12(κ+1)\displaystyle\beta<\begin{cases}2\varepsilon\kappa&\text{if }\varepsilon<\frac{1}{2(\kappa+1)}\\ \frac{\kappa}{\kappa+1}&\text{if }\varepsilon\geq\frac{1}{2(\kappa+1)}\end{cases} (7.9)

8. General random perturbations

In this section we provide a discussion about how to modify the proof of Theorem 2 (Gaussian random perturbations) to prove Theorem 3 (more general random perturbations). We also deduce Theorem 1 (stated in the introduction) from Theorem 3.

Proof.

Under the assumptions of 𝒲ω\mathcal{W}_{\omega} (see Definition 2.3), we have the following probabilistic norm bound:

𝔼[𝒲ω2]=i,j=1𝒩𝔼[|(𝒲ω)i,j|2]=𝒪(𝒩2),\displaystyle\mathbb{E}[\left\|\mathcal{W}_{\omega}\right\|^{2}]=\sum_{i,j=1}^{\mathcal{N}}\mathbb{E}[|(\mathcal{W}_{\omega})_{i,j}|^{2}]=\mathcal{O}(\mathcal{N}^{2}), (8.1)

as well as the following anti-concentration bound (from [22, Theorem 3.2]): for γ01/2\gamma_{0}\geq 1/2, A00A_{0}\geq 0, there exists a c>0c>0 such that if MM is a deterministic matrix with M𝒩γ0\left\|M\right\|\leq\mathcal{N}^{\gamma_{0}} then

(s𝒩(M+𝒲ω)𝒩(2A0+1)γ0)c(𝒩A0+o(1)+(𝒲ω𝒩γ0)).\displaystyle\mathbb{P}(s_{\mathcal{N}}(M+\mathcal{W}_{\omega})\leq\mathcal{N}^{-(2A_{0}+1)\gamma_{0}})\leq c\left(\mathcal{N}^{-A_{0}+o(1)}+\mathbb{P}(\left\|\mathcal{W}_{\omega}\right\|\geq\mathcal{N}^{\gamma_{0}})\right). (8.2)

Recall, for an N×NN\times N matrix AA, we denote s1s2sN(A)s_{1}\geq s_{2}\geq\cdots\geq s_{N}(A) the singular values of AA.

From (8.1), and Markov’s inequality, we get

(𝒲ωNd1)=𝒪(N2)\displaystyle\mathbb{P}(\left\|\mathcal{W}_{\omega}\right\|\geq N^{d-1})=\mathcal{O}(N^{-2}) (8.3)

therefore if δ=Nd\delta=N^{-d} then δ𝒲ω=𝒪(N1)\delta\left\|\mathcal{W}_{\omega}\right\|=\mathcal{O}(N^{-1}) with probability at least 1CN21-CN^{-2}. From this, Claim 4.2 (the supports of the random empirical measures being contained in a bounded set for N1N\gg 1) will follow by an identical argument.

Next, with probability at least 1CN21-CN^{-2}, we have δ𝒲ωα1/21\delta\left\|\mathcal{W}_{\omega}\right\|_{\textbullet}\alpha^{1/2}\ll 1. In this event, we can build our perturbed Grushin problem the same way as in Section 5.

Next, we have to modify the estimate of B2B_{2} which was estimated in Claim 5.2. For this, we simply modify (5.14) with a weaker estimate on the probability 𝒲ω\left\|\mathcal{W}_{\omega}\right\| is small. Specifically, we see there exists C>0C>0 such that

(B2=𝒪(α1/2N1))>1CN2.\displaystyle\mathbb{P}(B_{2}=\mathcal{O}(\alpha^{-1/2}N^{-1}))>1-CN^{-2}. (8.4)

The final modification is in estimating B3=𝒩1log|detE+δ|B_{3}=\mathcal{N}^{-1}\log|\det E_{-+}^{\delta}|. We see, by the same argument presented in Section 5, that

(B3<0)1CN2.\displaystyle\mathbb{P}(B_{3}<0)\geq 1-CN^{-2}. (8.5)

To prove a lower bound, we go through the same argument, to get that:

log|detE+δ|Alog|s𝒩(TNfz+δ𝒲ω)|.\displaystyle\log|\det E_{-+}^{\delta}|\geq A\log|s_{\mathcal{N}}(T_{N}f-z+\delta\mathcal{W}_{\omega})|. (8.6)

Next, let

K0:=supzΛTNfz=𝒪(1)\displaystyle K_{0}:=\sup_{z\in\Lambda}\left\|T_{N}f-z\right\|=\mathcal{O}(1) (8.7)

(recall Λ\Lambda is a neighborhood of f(X)f(X)). By (8.2) (with γ0=1\gamma_{0}=1 and A0=2A_{0}=2), we have (for N1N\gg 1)

(s𝒩(TNfz+δ𝒲ω)N7d)\displaystyle\mathbb{P}(s_{\mathcal{N}}(T_{N}f-z+\delta\mathcal{W}_{\omega})\leq N^{-7d}) =(s𝒩(δ1K01(TNfz)+K01𝒲ω)(Nd)(2A0+1)γ0)\displaystyle=\mathbb{P}(s_{\mathcal{\textbullet N}}(\delta^{-1}K_{0}^{-1}(T_{N}f-z)+K_{0}^{-1}\mathcal{W}_{\omega})\leq(N^{d})^{-(2A_{0}+1)\gamma_{0}}) (8.8)
c(N2d+o(1)+(K01𝒲ωNd))\displaystyle\leq c(N^{-2d+o(1)}+\mathbb{P}(\left\|K_{0}^{-1}\mathcal{W}_{\omega}\right\|_{\textbullet}\geq N^{-d})) (8.9)
cN2.\displaystyle\leq cN^{-2}. (8.10)

Here we use that δ1K01(TNfz)Nd\left\|\delta^{-1}K_{0}^{-1}(T_{N}f-z)\right\|\leq N^{d}. With this, we can proceed as in Section 7, with weaker probabilistic estimates. We choose ρ(0,1/2)\rho\in(0,1/2), and 0<γ<min(2ρκ,12ρ)0<\gamma<\min(2\rho\kappa,1-2\rho). Writing (𝒜N)=(B>Nγ)+(B<Nγ)\mathbb{P}(\mathcal{A}_{N})=\mathbb{P}(B>N^{-\gamma})+\mathbb{P}(B<-N^{-\gamma}), we see that

(B>Nγ)CN2\displaystyle\mathbb{P}(B>N^{-\gamma})\leq CN^{-2} (8.11)

for N1N\gg 1. Similarly, in the event s𝒩(TNfz+δ𝒲ω)N7ds_{\mathcal{N}}(T_{N}f-z+\delta\mathcal{W}_{\omega})\geq N^{-7d}, we have (for N1N\gg 1)

Alog|s𝒩(TNfz+δ𝒲ω)|Ndγ\displaystyle A\log|s_{\mathcal{N}}(T_{N}f-z+\delta\mathcal{W}_{\omega})|\leq N^{d-\gamma} (8.12)

so that

(B3>Nγ)(B3>A𝒩1log|s𝒩(TNfz+δ𝒲ω)|)1CN2.\displaystyle\mathbb{P}(B_{3}>-N^{-\gamma})\geq\mathbb{P}(B_{3}>A\mathcal{N}^{-1}\log|s_{\mathcal{N}}(T_{N}f-z+\delta\mathcal{W}_{\omega})|)\geq 1-CN^{-2}. (8.13)

Therefore (B<Nγ)CN2\mathbb{P}(B<-N^{-\gamma})\leq CN^{-2} for N1N\gg 1. With this, 1(𝒜N)<\sum_{1}^{\infty}\mathbb{P}(\mathcal{A}_{N})<\infty, and we have almost sure weak convergence of the empirical measures of TNf+δ𝒲ωT_{N}f+\delta\mathcal{W}_{\omega} to vol(X)1(f0)μd\operatorname{vol}(X)^{-1}(f_{0})_{*}\mu_{d}. ∎

Proposition 8.1.

Theorem 3 implies the probabilistic Weyl law (Theorem 1) stated in the introduction.

Proof.

For Λ\Lambda\subset\mathbb{C} given in the hypothesis, let AN=(vol(X)/𝒩)#{Spec(TNf+Nd𝒲ω)Λ}A_{N}=(\operatorname{vol}(X)/\mathcal{N})\#\left\{\operatorname{Spec}(T_{N}f+N^{-d}\mathcal{W}_{\omega})\cap\Lambda\right\}. It suffices to show that for each ε>0\varepsilon>0

(lim supN|ANμd(fΛ)|>ε)=0.\displaystyle\mathbb{P}\left(\limsup_{N\to\infty}|A_{N}-\mu_{d}(f\in\Lambda)|>\varepsilon\right)=0. (8.14)

We may assume Λ\Lambda is bounded. If not, let Λ~\tilde{\Lambda} be an open, bounded neighborhood of f(X)f(X). Recall that almost surely Spec(TNf+δ𝒲ω)Λ~\operatorname{Spec}(T_{N}f+\delta\mathcal{W}_{\omega})\subset\tilde{\Lambda} for N1N\gg 1. Therefore if A~N=(vol(X)/𝒩)#{Spec(TNf+Nd𝒲ω)ΛΛ~}\tilde{A}_{N}=(\operatorname{vol}(X)/\mathcal{N})\#\left\{\operatorname{Spec}(T_{N}f+N^{-d}\mathcal{W}_{\omega})\cap\Lambda\cap\tilde{\Lambda}\right\}, then

(lim supN|ANμd(fΛ)|>ε)=(lim supN|A~Nμd(fΛ)|>ε).\displaystyle\mathbb{P}\left(\limsup_{N\to\infty}|A_{N}-\mu_{d}(f\in\Lambda)|>\varepsilon\right)=\mathbb{P}\left(\limsup_{N\to\infty}|\tilde{A}_{N}-\mu_{d}(f\in\Lambda)|>\varepsilon\right). (8.15)

Now relabel ΛΛ~\Lambda\cap\tilde{\Lambda} as Λ\Lambda. Let φ,ψC0(;[0,1])\varphi,\psi\in C_{0}^{\infty}(\mathbb{C};[0,1]) be such that suppφΛ\operatorname{supp}\varphi\subset\Lambda, φ(x)1\varphi(x)\equiv 1 for dist(x,Λ)>ε\operatorname{dist}(x,\partial\Lambda)>\varepsilon, ψ(x)1\psi(x)\equiv 1 for xΛx\in\Lambda, and ψ(x)=0\psi(x)=0 for dist(x,Λ)>ε\operatorname{dist}(x,\partial\Lambda)>\varepsilon (here Λ\partial\Lambda is the boundary of Λ\Lambda). Therefore we have

vol(X)𝒩j=1𝒩φ(λi)ANvol(X)𝒩j=1𝒩ψ(λi).\displaystyle\frac{\operatorname{vol}(X)}{\mathcal{N}}\sum_{j=1}^{\mathcal{N}}\varphi(\lambda_{i})\leq A_{N}\leq\frac{\operatorname{vol}(X)}{\mathcal{N}}\sum_{j=1}^{\mathcal{N}}\psi(\lambda_{i}). (8.16)

By Theorem 3, the lower bound of (8.16) convergences almost surely to

φ(z)(fμd)(dz)=μd(fΛ)+𝒪(εκ).\displaystyle\int_{\mathbb{C}}\varphi(z)(f_{*}\mu_{d})(\mathop{}\!\mathrm{d}z)=\mu_{d}(f\in\Lambda)+\mathcal{O}(\varepsilon^{\kappa}). (8.17)

And similarly the upper bound of (8.16) converges almost surely to μd(fΛ)+𝒪(εκ)\mu_{d}(f\in\Lambda)+\mathcal{O}(\varepsilon^{\kappa}) (where the constant in 𝒪(εκ)\mathcal{O}(\varepsilon^{\kappa}) is deterministic). Therefore there exists C>0C>0 such that

(lim supN|ANμd(fΛ)|>Cεκ)=0.\displaystyle\mathbb{P}\left(\limsup_{N\to\infty}|A_{N}-\mu_{d}(f\in\Lambda)|>C\varepsilon^{\kappa}\right)=0. (8.18)

Because ε>0\varepsilon>0 is arbitrary, this implies ANA_{N} converges almost surely to μd(fΛ)\mu_{d}(f\in\Lambda). Then, because 𝒩=vol(X)(N/2π)d+𝒪(Nd1)\mathcal{N}=\operatorname{vol}(X)(N/2\pi)^{d}+\mathcal{O}(N^{d-1}), (N/2π)dvol(X)𝒩1AN(N/2\pi)^{d}\operatorname{vol}(X)\mathcal{N}^{-1}A_{N} converges almost surely to μd(fΛ)\mu_{d}(f\in\Lambda). ∎

Acknowledgements. The author is grateful to Maciej Zworski for suggesting this problem and many helpful discussions, to Martin Vogel for helpful insights and catching many errors in an earlier draft, and to an anonymous referee for several helpful suggestions. This paper is based upon work jointly supported by the National Science Foundation Graduate Research Fellowship under grant DGE-1650114 and by grant DMS-1952939.

References

  • [1] A. Basak, E. Paquette, and O. Zeitouni, Spectrum of random perturbations of Toeplitz matrices with finite symbols, Transactions of the American Mathematical Society, 373 (2020), pp. 4999–5023.
  • [2] F. A. Berezin, General concept of quantization, Communications in Mathematical Physics, 40 (1975), pp. 153–174.
  • [3] L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Communications in Mathematical Physics, 239 (2003), pp. 1–28.
  • [4] T. Christiansen and M. Zworski, Probabilistic Weyl laws for quantized tori, Communications in Mathematical Physics, 299 (2010), pp. 305–334.
  • [5] E. B. Davies and M. Hager, Perturbations of Jordan matrices, Journal of Approximation Theory, 156 (2009), pp. 82–94.
  • [6] A. Deleporte, Low-energy Spectrum of Toeplitz Operators, theses, Université de Strasbourg, Mar. 2019.
  • [7] M. R. Douglas and S. Klevtsov, Bergman kernel from path integral, Communications in Mathematical Physics, 293 (2010), pp. 205–230.
  • [8] R. Durrett, Probability: theory and examples, vol. 49, Cambridge university press, 2019.
  • [9] M. Embree and L. N. Trefethen, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, 2005.
  • [10] A. Guionnet, P. Wood, and O. Zeitouni, Convergence of the spectral measure of non-normal matrices, Proceedings of the American Mathematical Society, 142 (2014), pp. 667–679.
  • [11] M. Hager, Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints i: un modèle, in Annales de la Faculté des sciences de Toulouse: Mathématiques, vol. 15, 2006, pp. 243–280.
  • [12] Y. Le Floch, A brief introduction to Berezin-Toeplitz operators on compact Kähler manifolds, Springer, 2018.
  • [13] I. Oltman, An exotic calculus of Berezin-Toeplitz operators, arXiv:2207.09596, (2022).
  • [14] O. Rouby, Berezin-Toeplitz quantization and complex Weyl quantization of the torus, Portugaliae Methematics, 74 (2017), pp. 315–354.
  • [15] A. Sankar, D. A. Spielmann, and S. H. Teng, Smoothed analysis of the condition numbers and growth factors of matrices, SIAM J, Matrix Anal. Appl, 2 (2006), pp. 446–476.
  • [16] J. Sjöstrand, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Springer, 2019.
  • [17] J. Sjöstrand and M. Vogel, General Toeplitz matrices subject to Gaussian perturbations, in Annales Henri Poincaré, vol. 22, Springer, 2021, pp. 49–81.
  • [18]  , Toeplitz band matrices with small random perturbations, Indagationes Mathematicae, 32 (2021), pp. 275–322.
  • [19] J. Sjöstrand and M. Zworski, Elementary linear algebra for advanced spectral problems, Annales de L’Institute Fourier, 57 (2007), pp. 2095–2141.
  • [20] J. Sjöstrand and M. Vogel, Toeplitz band matrices with small random perturbations, Indagationes Mathematicae, 32 (2021), pp. 275–322. Special Issue in memory of Hans Duistermaat.
  • [21] T. Tao, Topics in Random Matrix Theory, vol. 132 of Graduate Studies in Mathematics, American Mathematical Society, 2012.
  • [22] T. Tao and V. Vu, Smooth analysis of the condition number and the least singular value, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques: 12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, Springer, 2009, pp. 714–737.
  • [23] M. Vogel, Almost sure Weyl law for quantized tori, Communications in Mathematical Physics, 378 (2020), pp. 1539–1585.
  • [24] M. Vogel and O. Zeitouni, Deterministic equivalence for noisy perturbations, Proceedings of the American Mathematical Society, 149 (2021), pp. 3905–3911.