This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A probabilistic Extension of the fubini polynomials

R. Soni1 A. K. Pathak1∗  and  P. Vellaisamy2
1Department of Mathematics and Statistics, Central University of Punjab,
Bathinda, Punjab-151401, India.
2Department of Mathematics, Indian Institute of Technology Bombay,
Powai, Mumbai-400076, India
Abstract.

In this paper, we present a probabilistic extension of the Fubini polynomials and numbers associated with a random variable satisfying some appropriate moment conditions. We obtain the exponential generating function and an integral representation for it. The higher order Fubini polynomials and recurrence relations are also derived. A probabilistic generalization of a series transformation formula and some interesting examples are discussed. A connection between the probabilistic Fubini polynomials and Bernoulli, Poisson, and geometric random variables are also established. Finally, a determinant expression formula is presented.

2010 Mathematics Subject Classification:
Primary : 60E05, 05A19; Secondary : 11B73, 11C08
*Corresponding Author
E-mail Address: [email protected] (R. Soni), [email protected] (A. K. Pathak),
[email protected] (P. Vellaisamy)
The research of R. Soni was supported by CSIR, Government of India.

Keywords: Stirling numbers of the second kind, Bell polynomials, Fubini polynomials, Polylogarithm function.

1. Introduction

Recently, certain polynomials and numbers have received growing attention in many branches of mathematics, computer science, and physics. More specifically, the study on the Stirling numbers of the second kind has progressed significantly during the past few decades. The Stirling numbers of the second kind, denoted by S(n,k)S(n,k), count the total number of partitions of a set of nn elements into kk non-empty disjoint subsets and play an important role in combinatorics. It is defined by (see [23])

S(n,k)=1k!j=0k(1)kj(kj)jn.S(n,k)=\frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}j^{n}. (1.1)

Its exponential generating function is given by (see [23, Chapter 9])

n=kS(n,k)tnn!=(et1)kk!,t,\sum_{n=k}^{\infty}S(n,k)\frac{t^{n}}{n!}=\frac{(e^{t}-1)^{k}}{k!},\;\;t\in\mathbb{C}, (1.2)

where \mathbb{C} is the set of complex numbers. For more details on the Stirling numbers of the second kind and its properties, one may refer to Comtet [10] and Gould [23].

A number of polynomials are defined through S(n,k)S(n,k). For instance, the Bell polynomials Bn(x)B_{n}(x) are defined as (see [14] and [15])

Bn(x)=k=0nS(n,k)xk.B_{n}(x)=\sum_{k=0}^{n}S(n,k)x^{k}.

An alternate expression for Bn(x)B_{n}(x) is

Bn(x)=k=0knexxkk!=E(Yn(x)),B_{n}(x)=\sum_{k=0}^{\infty}k^{n}\frac{e^{-x}x^{k}}{k!}=E(Y^{n}(x)), (1.3)

which is the nn-th moment of the Poisson variable Y(x)Y(x) with mean x>0x>0.

Besides the Bell polynomials, the Fubini polynomials are also applied in various disciplines of the applied sciences and combinatorics. These polynomials are also known as the geometric polynomials or the ordered Bell polynomials. Through the Stirling numbers of the second kind, Fubini polynomials are defined by the relation (see [2, 9, 22, 27])

Wn(x)=k=0nk!S(n,k)xk.W_{n}(x)=\sum_{k=0}^{n}k!S(n,k)x^{k}. (1.4)

The exponential generating function of Wn(x)W_{n}(x) is

n=0Wn(x)tnn!=[1x(et1)]1.\sum_{n=0}^{\infty}W_{n}(x)\frac{t^{n}}{n!}=\Big{[}1-x\left(e^{t}-1\right)\Big{]}^{-1}. (1.5)

Note that, when x=1x=1, (1.4) yields

Wn=Wn(1)=k=0nS(n,k)k!,W_{n}=W_{n}(1)=\sum_{k=0}^{n}S(n,k)k!, (1.6)

which are called Fubini numbers (see [6, 8]) and satisfy the recurrence relation (see [12])

Wn=k=1n(nk)Wnj.W_{n}=\sum_{k=1}^{n}\binom{n}{k}W_{n-j}. (1.7)

Recently, Adell and Lekuona [5] defined a probabilistic version of the Stirling numbers of the second kind. Let YY be a real valued random variable (rv) having finite moment generating function (mgfmgf) and {Yj}j0\{Y_{j}\}_{j\geq 0} be a sequence of independent and identically distributed (IID) random variables (rvs) with distribution as that of the rv Y.Y. Define S0=0S_{0}=0 and Sj=Y1+Y2++Yj,j1.S_{j}=Y_{1}+Y_{2}+\cdots+Y_{j},~{}j\geq 1. The probabilistic Stirling numbers of the second kind SY(n,k)S_{Y}(n,k), associated with the rv YY, is defined via the relation

SY(n,k)=1k!j=0k(1)kj(kj)𝔼Sjn.S_{Y}(n,k)=\frac{1}{k!}\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}\mathbb{E}S_{j}^{n}. (1.8)

Its exponential generating function is (see [1] and [5])

n=kSY(n,k)tnn!=(𝔼etY1)kk!,t.\sum_{n=k}^{\infty}S_{Y}(n,k)\frac{t^{n}}{n!}=\frac{\left(\mathbb{E}e^{tY}-1\right)^{k}}{k!},\;\;t\in\mathbb{C}. (1.9)

When YY is degenerate at 1, (1.8) and (1.9) reduces to (1.1) and (1.2), respectively. They obtained the moments of SjS_{j} as (see [1])

𝔼Sjn=k=0njSY(n,k)(j)k,\mathbb{E}S_{j}^{n}=\sum_{k=0}^{n\wedge j}S_{Y}(n,k)(j)_{k}, (1.10)

where nj=min{n,j}n\wedge j=\min\{n,j\} and (j)k=j(j1)(jk+1)(j)_{k}=j(j-1)\cdots(j-k+1) is the falling factorial.
Soni et al. [25] discussed the probabilistic Bell polynomials defined by

BnY(x)=k=0nSY(n,k)xk,B_{n}^{Y}(x)=\sum_{k=0}^{n}S_{Y}(n,k)x^{k}, (1.11)

which has the exponential generating function

e(𝔼etY1)=n=0BnY(x)tnn!.e^{\left(\mathbb{E}e^{tY}-1\right)}=\sum_{n=0}^{\infty}B_{n}^{Y}(x)\frac{t^{n}}{n!}. (1.12)

An alternative representation of BnY(x)B_{n}^{Y}(x) in terms of the Poisson moments is given by

BnY(x)=k=0𝔼Sknexxkk!.B_{n}^{Y}(x)=\sum_{k=0}^{\infty}\mathbb{E}S_{k}^{n}\frac{e^{-x}x^{k}}{k!}. (1.13)

When YY is degenerate at 11, it coincides with (1.3), the famous Dobiński’s formula.

Kim [16] established a connection between the geometric rv and the Fubini polynomials. For p(0,1]p\in(0,1], let GpG_{p} be a geometric rv with probability mass function (pmfpmf) P{Gp=i}=p(1p)i1,i1.P\{G_{p}=i\}=p(1-p)^{i-1},\;i\geq 1. Note that GpG_{p} denotes the number of trials needed for the first success, when a coin with success probability pp is tossed. It follows easily that

𝔼[Gp1]n=\displaystyle\mathbb{E}[G_{p}-1]^{n}= i=1(i1)nP{Gp=i}\displaystyle\sum_{i=1}^{\infty}(i-1)^{n}P\{G_{p}=i\}
=\displaystyle= pi=1(i1)n(1p)i1\displaystyle p\sum_{i=1}^{\infty}(i-1)^{n}(1-p)^{i-1}
=\displaystyle= pi=0in(1p)i.\displaystyle p\sum_{i=0}^{\infty}i^{n}(1-p)^{i}. (1.14)

For x0x\geq 0, let η(x)=(1+x)1.\eta(x)=(1+x)^{-1}. Then the connection between the geometric rv Gη(x)G_{\eta(x)} and the Fubini polynomials is

Wn(x)=\displaystyle W_{n}(x)= i=0inP{Gη(x)=i+1}=𝔼[Gη(x)1]n.\displaystyle\sum_{i=0}^{\infty}i^{n}P\{G_{\eta_{(x)}}=i+1\}=\mathbb{E}[G_{\eta_{(x)}}-1]^{n}. (1.15)

As mentioned earlier, a probabilistic representation of the Stirling numbers of the second kind in terms of IID rvs is studied by Adell and Lekuona [5] and Adell [1]. These results are very useful in the analytical number theory and in generalizing different classical sums of powers of arithmetic progression formulas. Laskin [19] studied a fractional generalization of the Bell polynomials and the Stirling numbers of the second kind. Guo and Zhu [13] introduced the generalized Fubini polynomials and studied their logarithmic properties. Motivated by the work of Adell and Lekuona [5] and Guo and Zhu [13], we consider a probabilistic generalization of the Fubini polynomials and numbers and explore their important properties. The connections of these polynomials with the known families of the probability distributions are explored. A simple determinant formula for the probabilistic Fubini numbers is also derived along with some combinatorial sums.

The paper is organized as follows. In Section 2, we present a probabilistic extension of the Fubini polynomials and numbers. The exponential generating function, integral representation, and some recurrence relations are obtained. A connection between the higher order probabilistic Fubini polynomials and the negative binomial process is also discussed. In Section 3, we obtain a probabilistic generalization of a series transformation formula and illustrate it with some examples. A new relationship between the rising factorial and the Lah numbers is deduced. A connection of the probabilistic Fubini polynomials with Bernoulli, Poisson, and geometric random variates are discussed in Section 4. Finally, a determinant expression for the probabilistic Fubini numbers and a combinatorial sum formula is also obtained in Section 5.

2. Probabilistic Fubini Polynomials and Numbers

Let 𝒢\mathcal{G} be the set of rvs YY satisfying the following moment conditions

𝔼|Y|n<,n0,limn|t|n𝔼|Y|nn!=0,|t|<r,\mathbb{E}|Y|^{n}<\infty,\;\;\;\;n\in\mathbb{N}_{0},\;\;\;\;\lim_{n\rightarrow\infty}\frac{|t|^{n}\mathbb{E}|Y|^{n}}{n!}=0,\;\;\;|t|<r, (2.1)

where 0={0}\mathbb{N}_{0}=\mathbb{N}\cup\{0\}, r>0,r>0, \mathbb{N} is the set of natural numbers and 𝔼\mathbb{E} denotes the mathematical expectation. Equation (2.1) confirms the existence of the moment generating function for rv YY (see [7, p. 344]).

Let Yii0\langle Y_{i}\rangle_{i\geq 0} be independent and identically distributed (IID) copies of a rv Y𝒢.Y\in\mathcal{G}. By Jensen’s inequality, we have

𝔼|Si|ni1/n𝔼|Y|n, for n,\mathbb{E}|S_{i}|^{n}\leq i^{1/n}\mathbb{E}|Y|^{n},~{}~{}\text{ for }~{}~{}n\in\mathbb{N},

where Si=Y1+Y2++YiS_{i}=Y_{1}+Y_{2}+\cdots+Y_{i} and S0=0S_{0}=0.

In view of (1.15), we define the probabilistic Fubini polynomials associated with the rv YY as

WnY(x)=i=0𝔼[Sin]P{Gη(x)=i+1},W_{n}^{Y}(x)=\sum_{i=0}^{\infty}\mathbb{E}\left[S_{i}^{n}\right]P\{G_{\eta(x)}=i+1\}, (2.2)

where GpG_{p} follows the geometric distribution with parameter pp and η(x)=(1+x)1.\eta(x)=(1+x)^{-1}. In case of the degeneracy of the rv YY at 1, (2.2) leads to the classical Fubini polynomials. In particular, when Y=1Y=1 and x=1x=1 in (2.2), we get the nnth order moments of the geometric rvs with probability of success equals 1/2. These moments are well-known as the Fubini numbers.

Next, we present the exponential generating function for the probabilistic Fubini polynomials.

Proposition 2.1.

Let |x(𝔼etY1)|1|x\left(\mathbb{E}e^{tY}-1\right)|\leq 1. Then,

11x(𝔼etY1)=n=0WnY(x)tnn!.\frac{1}{1-x\left(\mathbb{E}e^{tY}-1\right)}=\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!}. (2.3)
Proof.

For the IID copies of the rv YY, we have, from (2.2),

n=0WnY(x)tnn!\displaystyle\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!} =n=0(k=0𝔼Skn(11+x)(x1+x)k)tnn!\displaystyle=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty}\mathbb{E}S_{k}^{n}\left(\frac{1}{1+x}\right)\left(\frac{x}{1+x}\right)^{k}\right)\frac{t^{n}}{n!}
=k=0(11+x)(x1+x)k(𝔼etSk)\displaystyle=\sum_{k=0}^{\infty}\left(\frac{1}{1+x}\right)\left(\frac{x}{1+x}\right)^{k}\left(\mathbb{E}e^{tS_{k}}\right)
=k=0(11+x)(x1+x)k(𝔼etY)k\displaystyle=\sum_{k=0}^{\infty}\left(\frac{1}{1+x}\right)\left(\frac{x}{1+x}\right)^{k}\left(\mathbb{E}e^{tY}\right)^{k}
=11x(𝔼etY1).\displaystyle=\frac{1}{1-x\left(\mathbb{E}e^{tY}-1\right)}.

Hence, the proposition is proved. ∎

The series expansion of (2.3) in the light of (1.9) gives an alternative representation of the probabilistic Fubini polynomials in terms of the probabilistic Stirling numbers of the second kind of the following form

WnY(x)=k=0nSY(n,k)k!xk.W_{n}^{Y}(x)=\sum_{k=0}^{n}S_{Y}(n,k)k!x^{k}. (2.4)

It may be observed that for x=1x=1, (2.4) gives a probabilistic generalization of the classical Fubini numbers given by

WnY=k=0nSY(n,k)k!.W_{n}^{Y}=\sum_{k=0}^{n}S_{Y}(n,k)k!. (2.5)

We call it the probabilistic Fubini numbers.

When YY follows an exponential distribution with mean 1, we establish a connection between the probabilistic Fubini polynomials and the Lah numbers of the following form

WnY(x)=k=0nL(n,k)k!xk.W_{n}^{Y}(x)=\sum_{k=0}^{n}L(n,k)k!x^{k}. (2.6)

In the literature, (2.6) is termed as 0-Fubini-Lah polynomials (see [24]).

In the following proposition, we give an integral representation for the probabilistic Fubini polynomials.

Proposition 2.2.

Let Y𝒢Y\in\mathcal{G}. Then

WnY(x)=0BnY(xv)ev𝑑v=𝔼V[BnY(xV)],W_{n}^{Y}(x)=\int_{0}^{\infty}B_{n}^{Y}(xv)e^{-v}dv=\mathbb{E}_{V}[B_{n}^{Y}(xV)], (2.7)

where VV is the standard exponential rv with probability density function f(v)=ev,v0f(v)=e^{-v},v\geq 0 and 𝔼V\mathbb{E}_{V} stands for the mathematical expectation for rv VV.

Proof.

Considering (2.4) and with the help of the gamma integral, we have

𝔼V[BnY(xV)]\displaystyle\mathbb{E}_{V}[B_{n}^{Y}(xV)] =0BnY(xv)ev𝑑v\displaystyle=\int_{0}^{\infty}B_{n}^{Y}(xv)e^{-v}dv
=0(k=0nSY(n,k)xkvk)ev𝑑v\displaystyle=\int_{0}^{\infty}\left(\sum_{k=0}^{n}S_{Y}(n,k)x^{k}v^{k}\right)e^{-v}dv
=k=0nSY(n,k)k!xk\displaystyle=\sum_{k=0}^{n}S_{Y}(n,k)k!x^{k}
=WnY(x),\displaystyle=W_{n}^{Y}(x),

where k!=0vkev𝑑vk!=\int_{0}^{\infty}v^{k}e^{-v}dv. ∎

For nn and kk be two non-negative integers such that nk,n\geq k, the partial exponential Bell polynomials Bn,k(x1,x2,,xnk+1)B_{n,k}(x_{1},x_{2},\dots,x_{n-k+1}) have the following form (see [10])

Bn,k(x1,x2,x3,.,xnk+1)=n!(Λnkj=1nk+11kj!(xjj!)kj),B_{n,k}(x_{1},x_{2},x_{3},....,x_{n-k+1})=n!\biggl{(}\sum_{\Lambda_{n}^{k}}\prod_{j=1}^{n-k+1}\frac{1}{k_{j}!}\biggl{(}\frac{x_{j}}{j!}\biggr{)}^{k_{j}}\biggr{)},

where the summation is taken over the following set

Λnk={(k1,k2,.,knk+1):j=1nk+1kj=k,j=1nk+1jkj=n,kj0}.\Lambda_{n}^{k}=\biggl{\{}(k_{1},k_{2},....,k_{n-k+1}):\sum_{j=1}^{n-k+1}k_{j}=k,\sum_{j=1}^{n-k+1}jk_{j}=n,k_{j}\in\mathbb{N}_{0}\biggr{\}}.

A connection between the probabilistic Stirling numbers of the second kind and the partial exponential Bell polynomials is obtained and is given by (see [25])

SY(n,k)=Bn,k(𝔼Y,𝔼Y2,,𝔼Yn).S_{Y}(n,k)=B_{n,k}\left(\mathbb{E}Y,\mathbb{E}Y^{2},\dots,\mathbb{E}Y^{n}\right). (2.8)

When x=1x=1, and using (2.8) and Proposition 2.2, we get

WnY=𝔼VBn(V𝔼Y,V𝔼Y2,,V𝔼Yn),W_{n}^{Y}=\mathbb{E}_{V}B_{n}\left(V\mathbb{E}Y,V\mathbb{E}Y^{2},\dots,V\mathbb{E}Y^{n}\right),

where BnB_{n} are the complete exponential Bell polynomials which can be expressed in terms of the partial exponential Bell polynomials as (see [10, p. 133])

Bn(x1,x2,,xn)=k=0nBn,k(x1,x2,,xnk+1).B_{n}(x_{1},x_{2},\dots,x_{n})=\sum_{k=0}^{n}B_{n,k}(x_{1},x_{2},\dots,x_{n-k+1}).

It is well-known that geometric distribution is a special case of the negative binomial distribution. For α>0\alpha>0 and 0<p<10<p<1, let ZpZ_{p} follows negative binomial distribution denoted by NB(α,p)(\alpha,p) with pmfpmf

P{Zp=i}=(αi)(p1)ipα,i0.P\{Z_{p}=i\}=\binom{-\alpha}{i}\left(p-1\right)^{i}p^{\alpha},\;\;i\in\mathbb{N}_{0}.

When p=η(x)=1/(1+x)p=\eta(x)=1/(1+x), the mgfmgf of Zη(x)Z_{\eta(x)} is given by

𝔼etZη(x)=i=0(αi)(etx1+x)i(11+x)α=1(1x(et1))α,\mathbb{E}e^{tZ_{\eta(x)}}=\sum_{i=0}^{\infty}\binom{-\alpha}{i}\left(-\frac{e^{t}x}{1+x}\right)^{i}\left(\frac{1}{1+x}\right)^{\alpha}=\frac{1}{\left(1-x\left(e^{t}-1\right)\right)^{\alpha}},

provided t<log(1+1/x)t<\log\left(1+1/x\right).
We define the α\alpha-th order probabilistic Fubini polynomials as

WnY(x;α)=i=0𝔼[Sin]P{Zη(x)=i},α0.W_{n}^{Y}(x;\alpha)=\sum_{i=0}^{\infty}\mathbb{E}\left[S_{i}^{n}\right]P\{Z_{\eta(x)}=i\},\;\;\;\alpha\in\mathbb{N}_{0}.

It has following exponential generating function

n=0WnY(x;α)tnn!=1(1x(𝔼etY1))α.\sum_{n=0}^{\infty}W_{n}^{Y}(x;\alpha)\frac{t^{n}}{n!}=\frac{1}{(1-x\left(\mathbb{E}e^{tY}-1\right))^{\alpha}}. (2.9)

Using the series expansion formula 1(1x)α=i=0(αi)(x)i\frac{1}{(1-x)^{\alpha}}=\sum_{i=0}^{\infty}\binom{-\alpha}{i}(-x)^{i}, the exponential generating function (2.9) is simplified as

1(1x(𝔼etY1))α\displaystyle\frac{1}{(1-x\left(\mathbb{E}e^{tY}-1\right))^{\alpha}} =i=0(x)i(αi)(𝔼etY1)i\displaystyle=\sum_{i=0}^{\infty}(-x)^{i}\binom{-\alpha}{i}\left(\mathbb{E}e^{tY}-1\right)^{i}
=i=0(x)i(αi)n=iSY(n,i)tnn!,(using (1.9))\displaystyle=\sum_{i=0}^{\infty}(-x)^{i}\binom{-\alpha}{i}\sum_{n=i}^{\infty}S_{Y}(n,i)\frac{t^{n}}{n!},\;\;\;(\text{using }(\ref{0001}))
=n=0i=0n(α+i1i)i!xiSY(n,i)tnn!.\displaystyle=\sum_{n=0}^{\infty}\sum_{i=0}^{n}\binom{\alpha+i-1}{i}i!x^{i}S_{Y}(n,i)\frac{t^{n}}{n!}.

On comparing with (2.9), we get

WnY(x;α)=i=0n(α+i1i)i!xiSY(n,i),W_{n}^{Y}(x;\alpha)=\sum_{i=0}^{n}\binom{\alpha+i-1}{i}i!x^{i}S_{Y}(n,i), (2.10)

which can be viewed as an alternate representation for the α\alphath order probabilistic Fubini polynomials. We also obtain some identities and interconnections of α\alphath order probabilistic Fubini polynomials in the subsequent sections.

Next, we obtain some recurrence relations for the probabilistic Fubini polynomials and also discuss their special cases.

Proposition 2.3.

Let WnY(x)W_{n}^{Y}(x) be the probabilistic Fubini polynomials. Then, we have

WnY(x)=xk=1n(nk)𝔼YkWnkY(x).W_{n}^{Y}(x)=x\sum_{k=1}^{n}\binom{n}{k}\mathbb{E}Y^{k}W_{n-k}^{Y}(x). (2.11)
Proof.

Using (2.3), we get

n=1WnY(x)tnn!\displaystyle\sum_{n=1}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!} =11x(𝔼etY1)1=x(𝔼etY1)1x(𝔼etY1)\displaystyle=\frac{1}{1-x\left(\mathbb{E}e^{tY}-1\right)}-1=\frac{x\left(\mathbb{E}e^{tY}-1\right)}{1-x\left(\mathbb{E}e^{tY}-1\right)}
=x(k=0𝔼Yktkk)(n=kWnkY(x)tnk(nk)!)x(n=0WnY(x)tnn!)\displaystyle=x\left(\sum_{k=0}^{\infty}\mathbb{E}Y^{k}\frac{t^{k}}{k}\right)\left(\sum_{n=k}^{\infty}W_{n-k}^{Y}(x)\frac{t^{n-k}}{(n-k)!}\right)-x\left(\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!}\right)
=n=1(xk=1n(nk)𝔼YkWnkY(x))tnn!.\displaystyle=\sum_{n=1}^{\infty}\left(x\sum_{k=1}^{n}\binom{n}{k}\mathbb{E}Y^{k}W_{n-k}^{Y}(x)\right)\frac{t^{n}}{n!}.

Comparing the coefficients of tnt^{n} on both sides, we get required result. ∎

With the help of the Proposition 2.3, one can deduce recurrence relation for the probabilistic Fubini numbers. In particular, when Y=1Y=1, it reduces to (1.7).

Theorem 2.1.

Let Y𝒢Y\in\mathcal{G}. Then, for nkin\geq k\geq i, we have

Wn+1Y(x)=xk=0n(nk)𝔼Ynk+1i=0k(ki)WiY(x)WkiY(x).W_{n+1}^{Y}(x)=x\sum_{k=0}^{n}\binom{n}{k}\mathbb{E}Y^{n-k+1}\sum_{i=0}^{k}\binom{k}{i}W_{i}^{Y}(x)W_{k-i}^{Y}(x).
Proof.

Differentiating (2.3) with respect to tt on both sides, we get

n=0Wn+1Y(x)tnn!\displaystyle\sum_{n=0}^{\infty}W_{n+1}^{Y}(x)\frac{t^{n}}{n!} =ddt[11x(𝔼etY1)]\displaystyle=\frac{d}{dt}\left[\frac{1}{1-x\left(\mathbb{E}e^{tY}-1\right)}\right]
=x𝔼[YetY][1x(𝔼etY1)]2\displaystyle=x\frac{\mathbb{E}\left[Ye^{tY}\right]}{\left[1-x\left(\mathbb{E}e^{tY}-1\right)\right]^{2}}
=x(i=0WiY(x)tii!)(k=0WkY(x)tkk!)(n=0𝔼Yn+1tnn!)\displaystyle=x\left(\sum_{i=0}^{\infty}W_{i}^{Y}(x)\frac{t^{i}}{i!}\right)\left(\sum_{k=0}^{\infty}W_{k}^{Y}(x)\frac{t^{k}}{k!}\right)\left(\sum_{n=0}^{\infty}\mathbb{E}Y^{n+1}\frac{t^{n}}{n!}\right)
=n=0(xk=0n(nk)𝔼Ynk+1i=0k(ki)WiY(x)WkiY(x))tnn!.\displaystyle=\sum_{n=0}^{\infty}\left(x\sum_{k=0}^{n}\binom{n}{k}\mathbb{E}Y^{n-k+1}\sum_{i=0}^{k}\binom{k}{i}W_{i}^{Y}(x)W_{k-i}^{Y}(x)\right)\frac{t^{n}}{n!}.

Equating the coefficients of tnt^{n}, we get the result. ∎

Next, the following proposition is a recurrence relation in terms of derivative for the probabilistic Fubini polynomials.

Theorem 2.2.

For Y𝒢Y\in\mathcal{G}, we have

ddxWnY(x)=k=0n(nk)𝔼Ynki=0k(ki)WiY(x)WkiY(x)WkY(x)WnkY(x).\frac{d}{dx}W_{n}^{Y}(x)=\sum_{k=0}^{n}\binom{n}{k}\mathbb{E}Y^{n-k}\sum_{i=0}^{k}\binom{k}{i}W_{i}^{Y}(x)W_{k-i}^{Y}(x)-W_{k}^{Y}(x)W_{n-k}^{Y}(x). (2.12)
Proof.

Differentiating (2.3) with respect to xx, we get

ddxn=0WnY(x)tnn!\displaystyle\frac{d}{dx}\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!} =𝔼etY1(1x(𝔼etY1))2\displaystyle=\frac{\mathbb{E}e^{tY}-1}{(1-x\left(\mathbb{E}e^{tY}-1\right))^{2}}
=1(1x(𝔼etY1))2𝔼etY1(1x(𝔼etY1))2.\displaystyle=\frac{1}{(1-x\left(\mathbb{E}e^{tY}-1\right))^{2}}\mathbb{E}e^{tY}-\frac{1}{(1-x\left(\mathbb{E}e^{tY}-1\right))^{2}}.

Making series expansion of 1/(1x(𝔼etY1))21/(1-x\left(\mathbb{E}e^{tY}-1\right))^{2} and with the help of Theorem 2.1, we get

ddxn=0WnY(x)tnn!=1(1x(𝔼etY1))2𝔼etY(k=0WkY(x)tkk!)(n=0WnY(x)tnn!)\displaystyle\frac{d}{dx}\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!}=\frac{1}{(1-x\left(\mathbb{E}e^{tY}-1\right))^{2}}\mathbb{E}e^{tY}-\left(\sum_{k=0}^{\infty}W_{k}^{Y}(x)\frac{t^{k}}{k!}\right)\left(\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!}\right)
=n=0k=0n(nk)𝔼Ynki=0k(ki)WiY(x)WkiY(x)tnn!n=0k=0n(nk)WkY(x)WnkY(x)tnn!\displaystyle=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\binom{n}{k}\mathbb{E}Y^{n-k}\sum_{i=0}^{k}\binom{k}{i}W_{i}^{Y}(x)W_{k-i}^{Y}(x)\frac{t^{n}}{n!}-\sum_{n=0}^{\infty}\sum_{k=0}^{n}\binom{n}{k}W_{k}^{Y}(x)W_{n-k}^{Y}(x)\frac{t^{n}}{n!}
=n=0k=0n(nk)𝔼Ynki=0k(ki)WiY(x)WkiY(x)WkY(x)WnkY(x)tnn!.\displaystyle=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\binom{n}{k}\mathbb{E}Y^{n-k}\sum_{i=0}^{k}\binom{k}{i}W_{i}^{Y}(x)W_{k-i}^{Y}(x)-W_{k}^{Y}(x)W_{n-k}^{Y}(x)\frac{t^{n}}{n!}.

On comparing the coefficients of tnt^{n} on both sides, the result in (2.12) follows. ∎

3. Probabilistic Generalization of a Series Transformation Formula

Spivey [26] recently unveiled a new approach to evaluate combinatorial sums formula using a finite difference technique. These combinatorial sums can be obtained in terms of the Stirling numbers of the second kind. Adell and Lekuona [3] and Adell [5], studied the applications of the probabilistic Stirling numbers of the second kind and obtained the probabilistic extension of some known combinatorial identities. Boyadzhiev [8] considered a series transformation formula with numerous examples. Let f(x)f(x) and g(x)g(x) be two arbitrary functions such that f(x)f(x) is entire and g(x)g(x) is analytic on D={x,r<|x|<R}D=\{x,r<|x|<R\} with 0r<R0\leq r<R. Then, f(x)f(x) and g(x)g(x) can be written as

f(x)=n=0fnxn,g(x)=n=gnxn,f(x)=\sum_{n=0}^{\infty}f_{n}x^{n},\;\;\;\;\;g(x)=\sum_{n=-\infty}^{\infty}g_{n}x^{n}, (3.1)

where fnf_{n} and gng_{n} denotes the nnth coefficient of series for the functions ff and gg, respectively.

Motivated by Boyadzhiev [8] work, we present, in the next result, a probabilistic generalization of the series transformation formula. An important feature of this generalization is that for an appropriate choice of the functions ff and gg, and for a suitable rv YY in the class 𝒢\mathcal{G}, several well-known series sums formulas can be obtained in the closed forms involving some known classical polynomials and probability distribution functions.

Theorem 3.1.

For nin\leq i, we have

i=0g(i)(0)𝔼f(Si)xii!=n=0f(n)(0)n!k=0nSY(n,k)g(k)(x)xk,\sum_{i=0}^{\infty}g^{(i)}(0)\mathbb{E}f(S_{i})\frac{x^{i}}{i!}=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}\sum_{k=0}^{n}S_{Y}(n,k)g^{(k)}(x)x^{k}, (3.2)

where SiS_{i} is sum of IID copies of the rv Y𝒢.Y\in\mathcal{G}.

Proof.

Using (1.10) for nin\leq i , we get

i=0gi(0)i!xi𝔼Sin\displaystyle\sum_{i=0}^{\infty}\frac{g^{i}(0)}{i!}x^{i}\mathbb{E}S_{i}^{n} =i=0gi(0)i!xi(k=0n(ik)k!SY(n,k))\displaystyle=\sum_{i=0}^{\infty}\frac{g^{i}(0)}{i!}x^{i}\left(\sum_{k=0}^{n}\binom{i}{k}k!S_{Y}(n,k)\right)
=k=0nSY(n,k)i=0(ik)k!gi(0)i!xi\displaystyle=\sum_{k=0}^{n}S_{Y}(n,k)\sum_{i=0}^{\infty}\binom{i}{k}k!\frac{g^{i}(0)}{i!}x^{i}
=k=0nSY(n,k)xki=kgi(0)i!i!xik(ik)!\displaystyle=\sum_{k=0}^{n}S_{Y}(n,k)x^{k}\sum_{i=k}^{\infty}\frac{g^{i}(0)}{i!}i!\frac{x^{i-k}}{(i-k)!}
=k=0nSY(n,k)xkg(k)(x).\displaystyle=\sum_{k=0}^{n}S_{Y}(n,k)x^{k}g^{(k)}(x).

On multiplying both sides with f(n)(0)/n!{f^{(n)}(0)}/{n!} and summing over nn from 0 to \infty, we get the result. ∎

Remark 3.1.

When YY is degenerate at 11, (3.2) reduces to the following series transformation formula (see [8, Eq. 4.11])

i=0g(i)(0)f(i)xii!=n=0f(n)(0)n!k=0nS(n,k)g(k)(x)xk.\sum_{i=0}^{\infty}g^{(i)}(0)f(i)\frac{x^{i}}{i!}=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}\sum_{k=0}^{n}S(n,k)g^{(k)}(x)x^{k}. (3.3)
Example 3.1.

For g(x)=exg(x)=e^{x} in (3.2), we get a new identity which is given by

i=0𝔼f(Si)xii!=n=0f(n)(0)n!k=0nSY(n,k)exxk=exn=0f(n)(0)n!BnY(x).\sum_{i=0}^{\infty}\mathbb{E}f(S_{i})\frac{x^{i}}{i!}=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}\sum_{k=0}^{n}S_{Y}(n,k)e^{x}x^{k}=e^{x}\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}B_{n}^{Y}(x). (3.4)

On rearrangement of terms in (3.4), we obtain a connection of the probabilistic Bell polynomials with Poisson rv of the form

i=0𝔼f(Si)P{Y(x)=i}=n=0f(n)(0)n!BnY(x),\sum_{i=0}^{\infty}\mathbb{E}f(S_{i})P\{Y(x)=i\}=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}B_{n}^{Y}(x), (3.5)

where Y(x)Y(x) follows Poisson distribution with parameter xx.

Moreover, for f(x)=xnf(x)=x^{n}, (3.5) leads to the probabilistic Bell polynomials defined in (1.13).

Corollary 3.1.

If f(x)f(x) be the polynomial of degree nn, then

n=0f(n)(0)n!Bn(x)=k=0nxkk!j=0k(1)j(kj)f(kj),\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}B_{n}(x)=\sum_{k=0}^{n}\frac{x^{k}}{k!}\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}f(k-j),

where Bn(x)B_{n}(x) are the Bell polynomials.

Proof of the corollary can be executed by the idea of (3.5) and Theorem 9.2 of [23].

Example 3.2.

For g(x)=11xg(x)=\frac{1}{1-x} with |x|<1|x|<1 and f(x)=xnf(x)=x^{n}, from (3.2) we get

i=0𝔼Sinxi=11xWnY(x1x)=k=0xkj=0nk(kj)j!SY(n,j),\sum_{i=0}^{\infty}\mathbb{E}S_{i}^{n}x^{i}=\frac{1}{1-x}W_{n}^{Y}\left(\frac{x}{1-x}\right)=\sum_{k=0}^{\infty}x^{k}\sum_{j=0}^{n\wedge k}\binom{k}{j}j!S_{Y}(n,j), (3.6)

where nk=min(n,k)n\wedge k=\min(n,k). This is a probabilistic generalization of the following identity studied in [8].

i=0inxi=11xWn(x1x).\sum_{i=0}^{\infty}i^{n}x^{i}=\frac{1}{1-x}W_{n}\left(\frac{x}{1-x}\right).

It may be observed that for x=12x=\frac{1}{2}, (3.6) gives

WnY(1)=12i=0𝔼Sin2i,W_{n}^{Y}(1)=\frac{1}{2}\sum_{i=0}^{\infty}\frac{\mathbb{E}S_{i}^{n}}{2^{i}}, (3.7)

which is a probabilistic extension of the Fubini numbers.

Also, when YY follows a standard exponential distribution, we have a new connection between nn-th sum of rising factorial and the Lah numbers, which is given as

12i=0in2i=k=0nL(n,k)k!.\frac{1}{2}\sum_{i=0}^{\infty}\frac{\langle i\rangle_{n}}{2^{i}}=\sum_{k=0}^{n}L(n,k)k!.
Example 3.3.

For g(x)=1(1x)rg(x)=\frac{1}{(1-x)^{r}} with Re(r)>0Re(r)>0 and |x|<1,|x|<1, (3.2) yields

i=0(1)i(ri)𝔼f(Si)xi=n=0f(n)(0)n!k=0nSY(n,k)(k+r1)!xk1(1x)k+r.\sum_{i=0}^{\infty}(-1)^{i}\binom{-r}{i}\mathbb{E}f(S_{i})x^{i}=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}\sum_{k=0}^{n}S_{Y}(n,k)(k+r-1)!x^{k}\frac{1}{(1-x)^{k+r}}. (3.8)

Alternatively, (3.8) may be expressed as

i=0(1)i(ri)𝔼f(Si)xi=1(1x)rn=0f(n)(0)n!WnY(x1x;r),\sum_{i=0}^{\infty}(-1)^{i}\binom{-r}{i}\mathbb{E}f(S_{i})x^{i}=\frac{1}{(1-x)^{r}}\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}W_{n}^{Y}\left(\frac{x}{1-x};r\right), (3.9)

where WnY(x1x;r)W_{n}^{Y}\left(\frac{x}{1-x};r\right) are the rrth order probabilistic Fubini polynomials coincides with (2.10).
For a particular choice f(x)=xnf(x)=x^{n}, from (3.8), we have

i=0(ri)𝔼Sinxi=1(1x)rWnY(x1+x;r).\sum_{i=0}^{\infty}\binom{-r}{i}\mathbb{E}S_{i}^{n}x^{i}=\frac{1}{(1-x)^{r}}W_{n}^{Y}\left(-\frac{x}{1+x};r\right). (3.10)

This is a probabilistic extension of the formula (3.28) studied in [8].
Now, in the following propositions, we prove some intresting identities for the probabilistic Fubini polynomials.

Proposition 3.1.

For k0k\in\mathbb{N}_{0}, we have

11xm=k(mk)umm!vmkWmY(x1x)=ukk!Duvk(11x𝔼euvY),\frac{1}{1-x}\sum_{m=k}^{\infty}\binom{m}{k}\frac{u^{m}}{m!}v^{m-k}W_{m}^{Y}\left(\frac{x}{1-x}\right)=\frac{u^{k}}{k!}D_{uv}^{k}\left(\frac{1}{1-x\mathbb{E}e^{uvY}}\right), (3.11)

provided Dtk(11x𝔼etY)D_{t}^{k}\left(\displaystyle\frac{1}{1-x\mathbb{E}e^{tY}}\right) exists for Y𝒢,Y\in\mathcal{G}, where DtkD_{t}^{k} is kkth order differential operator with respect to tt.

Proof.

We start with left hand side of (3.11) and with the help of (3.6), we get

m=k(mk)umm!vmkWmY(x1x)\displaystyle\sum_{m=k}^{\infty}\binom{m}{k}\frac{u^{m}}{m!}v^{m-k}W_{m}^{Y}\left(\frac{x}{1-x}\right) =(1x)m=k(mk)umm!vmkn=0𝔼Snmxn\displaystyle=(1-x)\sum_{m=k}^{\infty}\binom{m}{k}\frac{u^{m}}{m!}v^{m-k}\sum_{n=0}^{\infty}\mathbb{E}S_{n}^{m}x^{n}
=(1x)𝔼[n=0xnm=k(mk)umm!vmkSnm]\displaystyle=(1-x)\mathbb{E}\left[\sum_{n=0}^{\infty}x^{n}\sum_{m=k}^{\infty}\binom{m}{k}\frac{u^{m}}{m!}v^{m-k}S_{n}^{m}\right]
=(1x)ukk!𝔼[n=0xnSnkeuvSn].\displaystyle=(1-x)\frac{u^{k}}{k!}\mathbb{E}\left[\sum_{n=0}^{\infty}x^{n}S_{n}^{k}e^{uvS_{n}}\right].

Using Dtk𝔼etSn=𝔼SnketSn,D_{t}^{k}\mathbb{E}e^{tS_{n}}=\mathbb{E}S_{n}^{k}e^{tS_{n}}, we get

11xm=k(mk)umm!vmkWmY(x1x)\displaystyle\frac{1}{1-x}\sum_{m=k}^{\infty}\binom{m}{k}\frac{u^{m}}{m!}v^{m-k}W_{m}^{Y}\left(\frac{x}{1-x}\right) =ukk!n=0xnDuvk𝔼euvSn\displaystyle=\frac{u^{k}}{k!}\sum_{n=0}^{\infty}x^{n}D_{uv}^{k}\mathbb{E}e^{uvS_{n}}
=ukk!Duvk(n=0xn(𝔼euvY)n)\displaystyle=\frac{u^{k}}{k!}D_{uv}^{k}\left(\sum_{n=0}^{\infty}x^{n}\left(\mathbb{E}e^{uvY}\right)^{n}\right)
=ukk!Duvk(11x𝔼euvY).\displaystyle=\frac{u^{k}}{k!}D_{uv}^{k}\left(\frac{1}{1-x\mathbb{E}e^{uvY}}\right).

Hence, the identity is proved. ∎

Remark 3.2.

The Proposition 3.1 may be viewed as a probabilistic extension to the identity proved in [20].

Proposition 3.2.

For kk\in\mathbb{N}, we have

11xm=1𝔼Smkymm!WmY(x1x)=j=0xjBkY(yDy)(𝔼eyY)j,\frac{1}{1-x}\sum_{m=1}^{\infty}\mathbb{E}S_{m}^{k}\frac{y^{m}}{m!}W_{m}^{Y}\left(\frac{x}{1-x}\right)=\sum_{j=0}^{\infty}x^{j}B_{k}^{Y}\left(yD_{y}\right)\left(\mathbb{E}e^{yY}\right)^{j}, (3.12)

provided Dyi(𝔼eyY)jD_{y}^{i}\left(\mathbb{E}e^{yY}\right)^{j} exists for Y𝒢.Y\in\mathcal{G}.

Proof.

Using (3.6), we get

11xm=1𝔼Smkymm!WmY(x1x)\displaystyle\frac{1}{1-x}\sum_{m=1}^{\infty}\mathbb{E}S_{m}^{k}\frac{y^{m}}{m!}W_{m}^{Y}\left(\frac{x}{1-x}\right) =m=1𝔼Smkymm!j=0xj𝔼Sjm\displaystyle=\sum_{m=1}^{\infty}\mathbb{E}S_{m}^{k}\frac{y^{m}}{m!}\sum_{j=0}x^{j}\mathbb{E}S_{j}^{m}
=j=0xj𝔼[m=1(𝔼Smk)(ySj)mm!]\displaystyle=\sum_{j=0}^{\infty}x^{j}\mathbb{E}\left[\sum_{m=1}^{\infty}\left(\mathbb{E}S_{m}^{k}\right)\frac{(yS_{j})^{m}}{m!}\right]
=j=0xj𝔼[eySjBkY(ySj)],(using (1.13)),\displaystyle=\sum_{j=0}^{\infty}x^{j}\mathbb{E}\left[e^{yS_{j}}B_{k}^{Y}(yS_{j})\right],\;\;\;(\text{using }(\ref{0009})),
=j=0xji=0kSY(k,i)yiDyi(𝔼eySj).\displaystyle=\sum_{j=0}^{\infty}x^{j}\sum_{i=0}^{k}S_{Y}(k,i)y^{i}D_{y}^{i}\left(\mathbb{E}e^{yS_{j}}\right).

With the help of (1.11), we get the proposition. ∎

4. Probabilistic Fubini Polynomials and Some Probability Distributions

For different choices of probability distribution of the rv YY, we obtain the different representations of the probabilistic Fubini polynomials and the numbers. These representations may be in terms of the Stirling numbers of the second kind, polylogarithm functions, and the Apostol-Euler polynomials. Some spacial choices of the rvs Y𝒢Y\in\mathcal{G}, we have the following examples.

Example 4.1.

Let YY be a Poisson random variate with pmfpmf and the moment generating function (mgfmgf) {Y=k}=eλλkk!,\mathbb{P}\{Y=k\}=e^{-\lambda}\frac{\lambda^{k}}{k!}, and 𝔼(etY)=eλ(et1),λ>0\mathbb{E}\left(e^{tY}\right)=e^{\lambda(e^{t}-1)},\;\lambda>0, respectively.
Substituting the mgfmgf into (2.3) and using (1.2), we obtain

n=0WnY(x)tnn!=11x(eλ(et1)1)\displaystyle\sum_{n=0}^{\infty}W_{n}^{Y}(x)\frac{t^{n}}{n!}=\frac{1}{1-x\left(e^{\lambda(e^{t}-1)}-1\right)} =i=0λiWi(x)(et1)ii!=n=0(i=0nλiWi(x)S(n,i))tnn!.\displaystyle=\sum_{i=0}^{\infty}\lambda^{i}W_{i}(x)\frac{(e^{t}-1)^{i}}{i!}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}\lambda^{i}W_{i}(x)S(n,i)\right)\frac{t^{n}}{n!}.

Finally, comparing the coefficients of powers of tt, we get a convolution result of the form

WnY(x)=i=0nλiWi(x)S(n,i).W_{n}^{Y}(x)=\sum_{i=0}^{n}\lambda^{i}W_{i}(x)S(n,i).

Let Y1,Y2,,YiY_{1},Y_{2},\dots,Y_{i} be IID copies of Poisson rv with mean λ\lambda. Then, Si=Y1+Y2++YiPoisson(iλ)S_{i}=Y_{1}+Y_{2}+\cdots+Y_{i}\sim\text{Poisson}(i\lambda) for i=1,2,i=1,2,\dots. Using (1.3) and (3.6), we obtain a relationship between the Bell polynomials and the probabilistic Fubini polynomials as

i=0Bn(iλ)xi=11xWnY(x1x)=k=0xkj=0nk(kj)j!SY(n,j).\sum_{i=0}^{\infty}B_{n}(i\lambda)x^{i}=\frac{1}{1-x}W_{n}^{Y}\left(\frac{x}{1-x}\right)=\sum_{k=0}^{\infty}x^{k}\sum_{j=0}^{n\wedge k}\binom{k}{j}j!S_{Y}(n,j).
Example 4.2.

Let YY be a geometric rv different from GpG_{p} with the pmfpmf

{Y=k}=rsk1,k=1,2,,\mathbb{P}\{Y=k\}=rs^{k-1},\;\;\;k=1,2,\dots,

where s=1r,  0<r1.s=1-r,\;\;0<r\leq 1.

One can verify the following interconnection between the polylogarithms and the geometric variate

Lin(s)=sr𝔼Yn,Li_{-n}(s)=\frac{s}{r}\mathbb{E}Y^{n},

where Liz(y)=i=1yjizLi_{z}(y)=\sum_{i=1}^{\infty}\frac{y^{j}}{i^{z}} with y,zy,z\in\mathbb{C} and |y|<1|y|<1.

We define the kkth multinomial convolution of the polylogarithm function as

Link(s)=n1+n2++nk=nn!n1!n2!nk!Lin1(s)Lin2(s)Link(s),k,Li_{-n}^{*k}(s)=\sum_{n_{1}+n_{2}+\cdots+n_{k}=n}\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}Li_{-n_{1}}(s)Li_{-n_{2}}(s)\cdots Li_{-n_{k}}(s),~{}~{}k\in\mathbb{N},

with Li00(s)=1Li_{0}^{*0}(s)=1.

Let Yii0\langle Y_{i}\rangle_{i\geq 0} be the sequence of independent copies of the geometric rv YY. Then, we obtain

Link(s)=skrk𝔼Skn,k.Li_{-n}^{*k}(s)=\frac{s^{k}}{r^{k}}\mathbb{E}S_{k}^{n},\;\;\;\forall\;k\in\mathbb{N}. (4.1)
Theorem 4.1.

Let YY be the geometric rv as considered in Example 4.2. Then

𝔼((rs)Gp1Lin(Gp1)(s))=limmk=0mrk+1Link(s)=WnY(x),\mathbb{E}\left(\left(\frac{r}{s}\right)^{G_{p}-1}Li_{-n}^{*(G_{p}-1)}(s)\right)=\lim_{m\rightarrow\infty}\sum_{k=0}^{m}r^{k+1}Li_{-n}^{*k}(s)=W_{n}^{Y}(x), (4.2)

where GpG_{p} is geometric variate with parameter p=η(x)=1/(1+x)p=\eta(x)=1/(1+x) as defined in (1).
Also, for p=(1+x)/(1+2x),p=(1+x)/(1+2x), we have

limmk=0m(rs)kLink(s)xk=(1+x)WnY(x),\lim_{m\rightarrow\infty}\sum_{k=0}^{m}\left(\frac{r}{s}\right)^{k}Li_{-n}^{*k}(s)x^{k}=(1+x)W_{n}^{Y}(x), (4.3)

provided above limits exist.

Proof.

On multiplying with pqkpq^{k} both sides of (4.1) and using (1), we get

rkskLink(s)pqk\displaystyle\frac{r^{k}}{s^{k}}Li_{-n}^{*k}(s)pq^{k} =𝔼Sknpqk,k\displaystyle=\mathbb{E}S_{k}^{n}pq^{k},\;\;\forall k\in\mathbb{N}
limmk=0mrkskLink(s)pqk\displaystyle\lim_{m\rightarrow\infty}\sum_{k=0}^{m}\frac{r^{k}}{s^{k}}Li_{-n}^{*k}(s)pq^{k} =limmk=0m𝔼Sknpqk,\displaystyle=\lim_{m\rightarrow\infty}\sum_{k=0}^{m}\mathbb{E}S_{k}^{n}pq^{k}, (4.4)

where q=1η(x)q=1-\eta(x). For p=η(x),p=\eta(x), the right hand side quantity of (4.2) converges to the nnth order moment of geometric rv provided the limit exists. Hence, using (2.2), we get the desired result. The result (4.3) is the consequence of identity (3.6) with the help of (4.2). ∎

Example 4.3.

Let YY be a Bernoulli rv with 𝔼(etY)1=p(et1), 0<p1\mathbb{E}(e^{tY})-1=p(e^{t}-1),\;0<p\leq 1. Clearly, from (2.3), we get

WnY(x)=Wn(px).W_{n}^{Y}(x)=W_{n}(px).

On the other hand, the Apostol-Euler polynomials E(c;x)E(c;x) are defined by the exponential generating function of the form (see [4])

ext1+c(et1)=n=0E(c;x)tnn!,\frac{e^{xt}}{1+c(e^{t}-1)}=\sum_{n=0}^{\infty}E(c;x)\frac{t^{n}}{n!}, (4.5)

where tt\in\mathbb{R} and c[0,1].c\in[0,1].
For 1cp0,-1\leq cp\leq 0, consider (4.5) and with the help of (2.3), we get

n=0E(cp;x)tnn!\displaystyle\sum_{n=0}^{\infty}E(-cp;x)\frac{t^{n}}{n!} =(k=0WkY(c)tkk!)(i=0xitii!)=n=0(k=0n(nk)WkY(c)xnk)tnn!.\displaystyle=\left(\sum_{k=0}^{\infty}W_{k}^{Y}(c)\frac{t^{k}}{k!}\right)\left(\sum_{i=0}^{\infty}x^{i}\frac{t^{i}}{i!}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}W_{k}^{Y}(c)x^{n-k}\right)\frac{t^{n}}{n!}.

We establish an interconnection between the Apostol-Euler polynomials and the probabilistic Fubini polynomials by comparing the coefficients of tt. It is given by

E(cp;x)=k=0n(nk)WkY(c)xnk.E(-cp;x)=\sum_{k=0}^{n}\binom{n}{k}W_{k}^{Y}(c)x^{n-k}. (4.6)
Remark 4.1.

For x=0x=0, (4.6) gives

E(cp)=WnY(c),E(-cp)=W_{n}^{Y}(c),

where E()E(\cdot) are the Apostol-Euler numbers.

For any α\alpha\in\mathbb{R}, we have established an interconnection between higher order probabilistic Fubini polynomials and the generalized Apostol-Euler polynomials of the following form

E(α,cp;x)=k=0n(nk)WkY(c;α)xnk,E(\alpha,-cp;x)=\sum_{k=0}^{n}\binom{n}{k}W_{k}^{Y}(c;\alpha)x^{n-k},

where E(α,cp;x)E(\alpha,-cp;x) are the generalized Apostol-Euler polynomials defined in [4].

5. Probabilistic Fubini Numbers and Its Determinant Expressions

Recently, the determinant expressions of several polynomials and numbers are obtained in the literature. Komatsu [18] and Glaisher [11] studied the determinant expressions for the Cauchy polynomials, Bernoulli numbers and the Euler numbers.
The following theorem provides a determinant expression for a sequence of the real numbers.

Theorem 5.1.

(Komatsu [17]) Let f(n)n\langle f(n)\rangle_{n\in\mathbb{N}} be a sequence with f(0)=1f(0)=1 and let w(k)w(k) be an arbitrary function independent of nn. Then

f(n)=|w(1)1000w(2)w(1)100w(3)w(2)w(1)10w(n1)w(n2)w(n3)w(n4)1w(n)w(n1)w(n2)w(n3)w(1)|f(n)=\begin{vmatrix}w(1)&1&0&0&\cdots&0\\ \\ w(2)&w(1)&1&0&\cdots&0\\ \\ w(3)&w(2)&w(1)&1&\cdots&0\\ \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ \\ w(n-1)&w(n-2)&w(n-3)&w(n-4)&\cdots&1\\ \\ w(n)&w(n-1)&w(n-2)&w(n-3)&\cdots&w(1)\end{vmatrix}

if and only if

f(n)=k=1n(1)k1w(k)f(nk) with n1.f(n)=\sum_{k=1}^{n}(-1)^{k-1}w(k)f(n-k)\text{ with }n\geq 1. (5.1)

Also, function w(k)w(k) is expressed as

w(k)=|f(1)    1000f(2)f(1)100f(3)f(2)f(1)10f(k1)f(k2)f(k3)f(k4)1f(k)f(k1)f(k2)f(k3)f(1)|.w(k)=\begin{vmatrix}f(1)&\;\;\;\;1&0&0&\cdots&0\\ \\ f(2)&\;\;f(1)&1&0&\cdots&0\\ \\ f(3)&f(2)&f(1)&1&\cdots&0\\ \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ \\ f(k-1)&f(k-2)&f(k-3)&f(k-4)&\cdots&1\\ \\ f(k)&f(k-1)&f(k-2)&f(k-3)&\cdots&f(1)\\ \end{vmatrix}. (5.2)

The following lemma (see [17, 18, 21]) will be used to obtain the explicit expression for sequence of the probabilistic Fubini numbers.

Lemma 5.1.

Let AA be a square matrix of order (k+1)(k+1) defined by

A=[100f(1)10f(k)f(k1)1].A=\begin{bmatrix}1&0&\cdots&0\\ \\ f(1)&1&\cdots&0\\ \\ \vdots&\vdots&\ddots&\vdots\\ \\ f(k)&f(k-1)&\cdots&1\\ \end{bmatrix}.

Also, inverse of AA is given by

A1=[100w(1)10w(k)w(k1)1].A^{-1}=\begin{bmatrix}1&0&\cdots&0\\ \\ w(1)&1&\cdots&0\\ \\ \vdots&\vdots&\ddots&\vdots\\ \\ w(k)&w(k-1)&\cdots&1\\ \end{bmatrix}.

Using Trudi’s formula (see [17, 21]), the combinatorial expression of sequence f(n)f(n) is obtained. It has the following combinatorial form

f(n)=l1+2l2++nln=n(l1++lnl1,,ln)(1)nl1lnw(1)l1w(2)l2w(n)ln,f(n)=\sum_{l_{1}+2l_{2}+\cdots+nl_{n}=n}\binom{l_{1}+\cdots+l_{n}}{l_{1},\dots,l_{n}}(-1)^{n-l_{1}-\cdots-l_{n}}w(1)^{l_{1}}w(2)^{l_{2}}\cdots w(n)^{l_{n}},

where (l1++lnl1,,ln)\binom{l_{1}+\cdots+l_{n}}{l_{1},\dots,l_{n}} are multinomial coefficients and lil_{i}’s stand for the numbers of blocks with ii elements while partitioning a set with nn elements.

In the next result, we obtain a determinant expression to the probabilistic Fubini numbers and present a combinatorial sum formula for the probabilistic Fubini numbers.

Theorem 5.2.

For n1n\geq 1, we have

WnY=n!|𝔼Y1!1000𝔼Y22!𝔼Y1!100𝔼Y33!𝔼Y22!𝔼Y1!10(1)n2𝔼Yn1(n1)!(1)n3𝔼Yn2(n2)!(1)n4𝔼Yn3(n3)!(1)n5𝔼Yn4(n4)!1(1)n1𝔼Ynn!(1)n2𝔼Yn1(n1)!(1)n3𝔼Yn2(n2)!(1)n4𝔼Yn3(n3)!𝔼Y1!|.W_{n}^{Y}=n!\begin{vmatrix}\frac{\mathbb{E}Y}{1!}&1&0&0&\cdots&0\\ \\ -\frac{\mathbb{E}Y^{2}}{2!}&\frac{\mathbb{E}Y}{1!}&1&0&\cdots&0\\ \\ \frac{\mathbb{E}Y^{3}}{3!}&-\frac{\mathbb{E}Y^{2}}{2!}&\frac{\mathbb{E}Y}{1!}&1&\cdots&0\\ \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ \\ (-1)^{n-2}\frac{\mathbb{E}Y^{n-1}}{(n-1)!}&(-1)^{n-3}\frac{\mathbb{E}Y^{n-2}}{(n-2)!}&(-1)^{n-4}\frac{\mathbb{E}Y^{n-3}}{(n-3)!}&(-1)^{n-5}\frac{\mathbb{E}Y^{n-4}}{(n-4)!}&\cdots&1\\ \\ (-1)^{n-1}\frac{\mathbb{E}Y^{n}}{n!}&(-1)^{n-2}\frac{\mathbb{E}Y^{n-1}}{(n-1)!}&(-1)^{n-3}\frac{\mathbb{E}Y^{n-2}}{(n-2)!}&(-1)^{n-4}\frac{\mathbb{E}Y^{n-3}}{(n-3)!}&\cdots&\frac{\mathbb{E}Y}{1!}\end{vmatrix}. (5.3)

Moreover, it has a explicit combinatorial expression of the form

WnY=n!l1+2l2++nln=n(l1++lnl1,,ln)(𝔼Y1!)l1(𝔼Y22!)l2(𝔼Ynn!)ln.W_{n}^{Y}=n!\sum_{l_{1}+2l_{2}+\cdots+nl_{n}=n}\binom{l_{1}+\cdots+l_{n}}{l_{1},\dots,l_{n}}\left(\frac{\mathbb{E}Y}{1!}\right)^{l_{1}}\left(\frac{\mathbb{E}Y^{2}}{2!}\right)^{l_{2}}\cdots\left(\frac{\mathbb{E}Y^{n}}{n!}\right)^{l_{n}}. (5.4)
Proof.

Simplifying the recurrence relation obtained in Proposition 2.3 for x=1x=1, we get

WnYn!=k=1n𝔼Ykk!WnkY(nk)!.\frac{W_{n}^{Y}}{n!}=\sum_{k=1}^{n}\frac{\mathbb{E}Y^{k}}{k!}\frac{W_{n-k}^{Y}}{(n-k)!}. (5.5)

Observe that (5.5) has a similar expression as (5.1) with

f(n)=WnYn! and w(k)=(1)k1𝔼Ykk!.f(n)=\frac{W_{n}^{Y}}{n!}\text{ and }w(k)=(-1)^{k-1}\frac{\mathbb{E}Y^{k}}{k!}. (5.6)

Using Theorem 5.1, the required determinant expression (5.3) can be obtained.

From (5.6), we also have

[10000𝔼Y1!1000𝔼Y22!𝔼Y1!100w(n1)w(n2)w(n3)w(n4)0w(n)w(n1)w(n2)w(n3)1]1=[10000W1Y1!1000W2Y2!W1Y1!100Wn1Y(n1)!Wn2Y(n2)!Wn3Y(n3)!Wn4Y(n4)!0WnYn!Wn1Y(n1)!Wn2Y(n2)!Wn3Y(n3)!1].\begin{bmatrix}1&0&0&0&\cdots&0\\ \\ \frac{\mathbb{E}Y}{1!}&1&0&0&\cdots&0\\ \\ -\frac{\mathbb{E}Y^{2}}{2!}&\frac{\mathbb{E}Y}{1!}&1&0&\cdots&0\\ \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ \\ w(n-1)&w(n-2)&w(n-3)&w(n-4)&\cdots&0\\ \\ w(n)&w(n-1)&w(n-2)&w(n-3)&\cdots&1\end{bmatrix}^{-1}=\begin{bmatrix}1&0&0&0&\cdots&0\\ \\ \frac{W_{1}^{Y}}{1!}&1&0&0&\cdots&0\\ \\ \frac{W_{2}^{Y}}{2!}&\frac{W_{1}^{Y}}{1!}&1&0&\cdots&0\\ \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ \\ \frac{W_{n-1}^{Y}}{(n-1)!}&\frac{W_{n-2}^{Y}}{(n-2)!}&\frac{W_{n-3}^{Y}}{(n-3)!}&\frac{W_{n-4}^{Y}}{(n-4)!}&\cdots&0\\ \\ \frac{W_{n}^{Y}}{n!}&\frac{W_{n-1}^{Y}}{(n-1)!}&\frac{W_{n-2}^{Y}}{(n-2)!}&\frac{W_{n-3}^{Y}}{(n-3)!}&\cdots&1\end{bmatrix}.

Hence, using Lemma 5.1 and Trudi’s formula (see [17, 21]), we get the required combinatorial interpretation of the probabilistic Fubini numbers. ∎

For degenerate rv YY at 11, we get the combinatorial interpretation of the Fubini numbers as (see [17])

Wn=n!l1+2l2++nln=n(l1++lnl1,,ln)(11!)l1(12!)l2(1n!)ln.W_{n}=n!\sum_{l_{1}+2l_{2}+\cdots+nl_{n}=n}\binom{l_{1}+\cdots+l_{n}}{l_{1},\dots,l_{n}}\left(\frac{1}{1!}\right)^{l_{1}}\left(\frac{1}{2!}\right)^{l_{2}}\cdots\left(\frac{1}{n!}\right)^{l_{n}}.
Example 5.1.

Suppose YY follows standard exponential distribution. Then, using (5.3) and (5.6), we get

(1)n1=|W1Y1!1000W2Y2!W1Y1!100W3Y3!W2Y2!W1Y1!10Wn1Y(n1)!Wn2Y(n2)!Wn3Y(n3)!Wn4Y(n4)!1WnYn!Wn1Y(n1)!Wn2Y(n2)!Wn3Y(n3)!W1Y1!|.(-1)^{n-1}=\begin{vmatrix}\frac{W_{1}^{Y}}{1!}&1&0&0&\cdots&0\\ \\ \frac{W_{2}^{Y}}{2!}&\frac{W_{1}^{Y}}{1!}&1&0&\cdots&0\\ \\ \frac{W_{3}^{Y}}{3!}&\frac{W_{2}^{Y}}{2!}&\frac{W_{1}^{Y}}{1!}&1&\cdots&0\\ \\ \vdots&\vdots&\vdots&\vdots&\ddots&\vdots\\ \\ \frac{W_{n-1}^{Y}}{(n-1)!}&\frac{W_{n-2}^{Y}}{(n-2)!}&\frac{W_{n-3}^{Y}}{(n-3)!}&\frac{W_{n-4}^{Y}}{(n-4)!}&\cdots&1\\ \\ \frac{W_{n}^{Y}}{n!}&\frac{W_{n-1}^{Y}}{(n-1)!}&\frac{W_{n-2}^{Y}}{(n-2)!}&\frac{W_{n-3}^{Y}}{(n-3)!}&\cdots&\frac{W_{1}^{Y}}{1!}\end{vmatrix}.

Also, from (5.4), we have weighted sum of multinomial coefficients as

WnY=n!l1+2l2++nln=n(l1++lnl1,,ln).W_{n}^{Y}=n!\sum_{l_{1}+2l_{2}+\cdots+nl_{n}=n}\binom{l_{1}+\cdots+l_{n}}{l_{1},\dots,l_{n}}.

References

  • [1] Adell, J. A. Probabilistic stirling numbers of the second kind and applications. Journal of Theoretical Probability (2020), 1–17.
  • [2] Adell, J. A., Bényi, B., and Nkonkobe, S. On higher order generalized geometric polynomials with shifted parameters. Quaestiones Mathematicae (2022), 1–17.
  • [3] Adell, J. A., and Lekuona, A. Note on two extensions of the classical formula for sums of powers on arithmetic progressions. Advances in Difference Equations 2017, 1 (2017), 1–5.
  • [4] Adell, J. A., and Lekuona, A. Closed form expressions for appell polynomials. The Ramanujan Journal 49, 3 (2019), 567–583.
  • [5] Adell, J. A., and Lekuona, A. A probabilistic generalization of the stirling numbers of the second kind. Journal of Number Theory 194 (2019), 335–355.
  • [6] Belbachir, H., and Djemmada, Y. On central fubini-like numbers and polynomials. Miskolc Mathematical Notes 22, 1 (2021), 77–90.
  • [7] Billingsley, P. Probability and measure. John Wiley & Sons, 2008.
  • [8] Boyadzhiev, K. N. A series transformation formula and related polynomials. International Journal of Mathematics and Mathematical Sciences 2005, 23 (2005), 3849–3866.
  • [9] Boyadzhiev, K. N., et al. Geometric polynomials: properties and applications to series with zeta values. Analysis Mathematica 42, 3 (2016), 203–224.
  • [10] Comtet, L. Advanced Combinatorics: The art of finite and infinite expansions. Springer Science & Business Media, 1974.
  • [11] Glaisher, J. W. L. Expressions for Laplace’s Coefficients, Bernoullian and Eulerian Numbers, &c., as Determinants. Verlag nicht ermittelbar, 1876.
  • [12] Gross, O. A. Preferential arrangements. The American Mathematical Monthly 69, 1 (1962), 4–8.
  • [13] Guo, W.-M., and Zhu, B.-X. A generalized ordered bell polynomial. Linear Algebra and its Applications 588 (2020), 458–470.
  • [14] Kataria, K. K., Vellaisamy, P., and Kumar, V. A probabilistic interpretation of the bell polynomials. Stochastic Analysis and Applications 40, 4 (2022), 610–622.
  • [15] Kim, T., Kim, D. S., and Jang, G.-W. On central complete and incomplete bell polynomials i. Symmetry 11, 2 (2019), 288.
  • [16] Kim, T., San Kim, D., Lee, H., and Kwon, J. On degenerate generalized fubini polynomials. AIMS Mathematics 7, 7 (2022), 12227–12240.
  • [17] Komatsu, T., and Ramírez, J. L. Some determinants involving incomplete fubini numbers. Analele ştiinţifice ale Universităţii ”Ovidius” Constanţa. Seria Matematică 26, 3 (2018), 143–170.
  • [18] Komatsu, T., and Yuan, P. Hypergeometric cauchy numbers and polynomials. Acta Mathematica Hungarica 153, 2 (2017), 382–400.
  • [19] Laskin, N. Some applications of the fractional poisson probability distribution. Journal of Mathematical Physics 50, 11 (2009), 113513.
  • [20] Meoli, A. Some poisson-based processes at geometric times. Journal of Statistical Physics 190, 6 (2023), 107.
  • [21] Merca, M. A note on the determinant of a toeplitz-hessenberg matrix. Special Matrices 1, 2013 (2013), 10–16.
  • [22] Qi, F. Determinantal expressions and recurrence relations for fubini and eulerian polynomials. Journal of Interdisciplinary Mathematics 22, 3 (2019), 317–335.
  • [23] Quaintance, J., and Gould, H. W. Combinatorial identities for Stirling numbers: the unpublished notes of HW Gould. World Scientific, 2015.
  • [24] Rácz, G. The r-fubini-lah numbers and polynomials. Australas. J Comb. 78 (2020), 145–153.
  • [25] Soni, R., Vellaisamy, P., and Pathak, A. K. A probabilistic generaliization of the bell polynomials. The Journal of Analysis (2023).
  • [26] Spivey, M. Z. Combinatorial sums and finite differences. Discrete Mathematics 307, 24 (2007), 3130–3146.
  • [27] Tanny, S. M. On some numbers related to the bell numbers. Canadian Mathematical Bulletin 17, 5 (1975), 733–738.