This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A PIE Representation of Coupled Linear 2D PDEs and Stability Analysis using LPIs

Declan S. Jagt    Matthew M. Peet Acknowledgement: This work was supported by National Science Foundation grant CMMI-1935453.
Abstract

We introduce a Partial Integral Equation (PIE) representation of Partial Differential Equations (PDEs) in two spatial variables. PIEs are an algebraic state-space representation of infinite-dimensional systems and have been used to model 1D PDEs and time-delay systems without continuity constraints or boundary conditions – making these PIE representations amenable to stability analysis using convex optimization. To extend the PIE framework to 2D PDEs, we first construct an algebra of Partial Integral (PI) operators on the function space L2[x,y]L_{2}[x,y], providing formulae for composition, adjoint, and inversion. We then extend this algebra to n×L2[x]×L2[y]×L2[x,y]\mathbb{R}^{n}\times L_{2}[x]\times L_{2}[y]\times L_{2}[x,y] and demonstrate that, for any suitable coupled, linear PDE in 2 spatial variables, there exists an associated PIE whose solutions bijectively map to solutions of the original PDE – providing conversion formulae between these representations. Next, we use positive matrices to parameterize the convex cone of 2D PI operators – allowing us to optimize PI operators and solve Linear PI Inequality (LPI) feasibility problems. Finally, we use the 2D LPI framework to provide conditions for stability of 2D linear PDEs. We test these conditions on 2D heat and wave equations and demonstrate that the stability condition has little to no conservatism.

1 INTRODUCTION

In this paper, we consider the problem of representation and stability analysis of linear Partial Differential Equations (PDEs) with multiple states evolving in 2 spatial dimensions.

First, consider how a PDE is defined. When we refer to a PDE, we are actually referring to 3 separate governing equations: The partial differential equation itself; a continuity constraint on the solution; and a set of boundary conditions (BCs). Any solution of the PDE is required to satisfy all three constraints at all times – leading to challenging questions of existence and uniqueness of solutions. Furthermore, suppose we seek to examine whether all solutions to a PDE exhibit a common evolutionary trait, such as stability or L2L_{2}-gain. How does each of the 3 governing equations affect this property? The fact that we have 3 governing equations significantly complicates the analysis and control of PDEs.

For comparison, consider the stability question for a system defined by a linear Ordinary Differential Equation (ODE) in state-space form, x˙(t)=Ax(t)\dot{x}(t)=Ax(t), where the ODE itself is the only constraint on the solutions of the system. In this case, a necessary and sufficient (N+S) condition for stability of the solutions of the system is the existence of a quadratic measure of energy (Lyapunov Function (LF)), V(x)=xTPxV(x)=x^{T}Px with P>0P>0, such that for any solution x(t)0x(t)\neq 0 of the ODE, V(x(t))V(x(t)) is decreasing for all t0t\geq 0. A N+S condition for stability will then be existence of a matrix P>0P>0 such that V˙(x(t))=xT(t)(PA+ATP)x(t)0\dot{V}(x(t))=x^{T}(t)(PA+A^{T}P)x(t)\leq 0 for all x(t)nx(t)\in\mathbb{R}^{n}. This constraint is in the form of a Linear Matrix Inequality (LMI), and can be solved using convex optimization algorithms [1].

Now, let us consider the problems with extending this state-space approach to stability analysis of 2D PDEs. In this case, the state at time tt of the PDE is a function 𝐮(t,x,y)\mathbf{u}(t,x,y) of 2 spatial variables – raising the question of how one can parameterize the convex cone of LFs which are positive on this 2D function space without introducing significant conservatism. Moreover, we recall that solutions to the ‘PDE’ are required to satisfy not only the PDE itself (e.g. 𝐮t=𝐮xx+𝐮yy\mathbf{u}_{t}=\mathbf{u}_{xx}+\mathbf{u}_{yy}), but are also required to satisfy both continuity constraints (e.g. 𝐮(t,,)H2\mathbf{u}(t,\cdot,\cdot)\in H_{2}) and boundary conditions (e.g. 𝐮(t,0,y)=𝐮(t,1,y)=𝐮(t,x,0)=𝐮(t,x,1)=0\mathbf{u}(t,0,y)=\mathbf{u}(t,1,y)=\mathbf{u}(t,x,0)=\mathbf{u}(t,x,1)=0). The second problem is then, given a Lyapunov function of the form V(𝐮)V(\mathbf{u}), how to determine whether V˙(𝐮(t))<0\dot{V}(\mathbf{u}(t))<0 for all 𝐮\mathbf{u} satisfying all three constraints. In particular, how do the BCs and continuity constraints influence V˙(𝐮(t))\dot{V}(\mathbf{u}(t))?

Regarding the first problem, it is known that for linear PDEs, as was the case for ODEs, existence of a decreasing quadratic LF is N+S for stability of solutions [2] - so that we may assume the LF has the form V(𝐮)=𝐮,𝒫𝐮L2V(\mathbf{u})=\left\langle\mathbf{u},\mathcal{P}\mathbf{u}\right\rangle_{L_{2}} for some positive operator 𝒫>0\mathcal{P}>0. However, it is unclear how to parameterize a set of linear operators which is suitably rich so as to avoid significant conservatism, whilst still allowing positivity of the operators to be efficiently enforced. As a result, most prior work has been restricted to employing variations of the identity operator for 𝒫\mathcal{P}. For example, in [3], a Lypanunov function of the form V=αuL22V=\alpha\left\lVert{u}\right\rVert_{L_{2}}^{2} was used. Meanwhile, in [4], [5], and [6], the authors assumed 𝒫\mathcal{P} to be a multiplier operator of the form 𝒫𝐮=M𝐮(s)\mathcal{P}\mathbf{u}=M\mathbf{u}(s), with positivity implied by the matrix inequality M>0M>0. In [7], the authors extended these functionals somewhat, using polynomial multipliers 𝒫𝐮=M(s)𝐮(s)\mathcal{P}\mathbf{u}=M(s)\mathbf{u}(s) with the Sum-of-Squares (SOS) constraint M(s)0M(s)\geq 0. However, in each of these cases, the use of multiplier operators (analagous to the use of diagonal matrices in an LMI) implies significant conservatism in any stability analysis using such results.

We now turn to the second problem with stability analysis of PDEs: enforcing negativity of the derivative. As stated, for linear ODEs x˙(t)=Ax(t)\dot{x}(t)=Ax(t), this condition is easy to enforce: V˙(x(t))=x(t)T(PA+ATP)x(t)0\dot{V}(x(t))=x(t)^{T}(PA+A^{T}P)x(t)\leq 0 for all solutions x(t)x(t) and all t0t\geq 0 if and only if PA+ATPPA+A^{T}P is a negative definite matrix - an LMI constraint. However, for a PDE 𝐮˙=𝒜𝐮\dot{\mathbf{u}}=\mathcal{A}\mathbf{u}, the state space has more structure. That is, while it is true that if V=𝐮,𝒫𝐮V=\left\langle\mathbf{u},\mathcal{P}\mathbf{u}\right\rangle then V˙(𝐮)=𝐮,[𝒫𝒜+𝒜𝒫]𝐮\dot{V}(\mathbf{u})=\left\langle\mathbf{u},[\mathcal{P}\mathcal{A}+\mathcal{A}^{*}\mathcal{P}]\mathbf{u}\right\rangle, negativity of the operator 𝒫𝒜+𝒜𝒫\mathcal{P}\mathcal{A}+\mathcal{A}^{*}\mathcal{P} is not a N+S condition for stability, as V˙(𝐮)0\dot{V}(\mathbf{u})\leq 0 need only hold for solutions 𝐮X\mathbf{u}\in X satisfying the BCs and continuity constraints. To account for this, in [4], [5], and [6], the authors consider particular types of BCs, allowing the use of known integral inequalities such as Poincare, Wirtinger, etc. to prove negativity. In [7], it was proposed to use a more general set of inqualities defined by Green’s functions. In all these cases, however, the process of identification and application of useful inequalities to prove negativity requires significant expertise and insight.

To avoid having to manually integrate boundary conditions and continuity constraints into the expression for V˙\dot{V}, [8, 9, 10] suggest representing the PDE as a Partial Integral Equation (PIE). A PIE is a unitary representation of the PDE whose solution is defined on L2L_{2} and hence does not require boundary conditions or continuity constraints.

For autonomous systems, PIEs are parameterized by the Partial Integral (PI) operators 𝒯\mathcal{T} and 𝒜\mathcal{A}, and take the form 𝒯𝐮^˙=𝒜𝐮^\mathcal{T}\dot{\hat{\mathbf{u}}}=\mathcal{A}\hat{\mathbf{u}}, where 𝐮^\hat{\mathbf{u}} is the so-called “fundamental state”. This fundamental state 𝐮^L2\hat{\mathbf{u}}\in L_{2} is free of boundary and continuity constraints, and is associated to the PDE state through the transformation 𝐮=𝒯𝐮^\mathbf{u}=\mathcal{T}\hat{\mathbf{u}}. PI operators form a Banach *-algebra, with analytic expressions for composition, adjoint, etc. Furthermore, positive PI operators can be parameterized by positive matrices – allowing us to solve Linear PI Inequality (LPI) optimization problems using semidefinite programming. Thus, the use of PIEs and PI operators also resolves the difficulty with parameterizing positive LFs, taking these to be of the form V(𝐮)=𝐮,𝒫𝐮V(\mathbf{u})=\left\langle\mathbf{u},\mathcal{P}\mathbf{u}\right\rangle, where 𝒫\mathcal{P} is a PI operator. In 1D, the Matlab toolbox PIETOOLS [8] can be used for parsing and solving LPI optimization problems.

Thus, through use of the LPI and PIE framework, stability analysis, as well as tasks like HH_{\infty}-optimal controller design [11], can be efficiently performed for almost any 1D PDE using convex optimization. However, as of yet, none of this architecture exists for 2D PDEs. Specifically, no concept of fundamental state has been defined for 2D PDEs, and there is no known algebra of 2D PI operators which could be used to parameterize a PIE representation, or be incorporated into some form of LPI optimization algorithm.

The goal of this paper, then, is to recreate the PIE framework for linear, 2nd order PDEs on a 2D domain (x,y)[a,b]×[c,d](x,y)\in[a,b]\times[c,d] with non-periodic boundary conditions. To this end, the paper makes the following contributions.

1) Identify an algebra of 2D PI operators.
In Section 3, we parameterize a set of PI operators with domain L2[x,y]L_{2}[x,y], which we combine with the algebra of 4-PI operators on n×L2[x]×L2[y]\mathbb{R}^{n}\times L_{2}[x]\times L_{2}[y] (representing the boundary of the domain) to yield a Banach *-algebra of PI operators on n×L2[x]×L2[y]×L2[x,y]\mathbb{R}^{n}\times L_{2}[x]\times L_{2}[y]\times L_{2}[x,y]. We demonstrate that this set of PI operators is closed under, addition, adjoint, and composition – deriving analytic expressions for the result of each operation. In Section 4, we further derive analytic expressions for the inverse of a suitable PI operator on n×L2[x]×L2[y]\mathbb{R}^{n}\times L_{2}[x]\times L_{2}[y], and the composition of a differential operator with a suitable 2D PI operator, showing that the result of each is a PI operator.

2) Identify the fundamental state for a 2D PDE.
In Subsection 6.1, we differentiate (𝒟\mathcal{D}) the PDE state 𝐮X\mathbf{u}\in X up to the maximal degree allowed per the continuity constraints. The resulting 𝐮^=𝒟𝐮L2\hat{\mathbf{u}}=\mathcal{D}\mathbf{u}\in L_{2} will then be free of boundary and continuity constraints.

3) Reconstruct the PDE state from the fundamental state.
Having defined a fundamental state 𝐮^\hat{\mathbf{u}}, we isolate a set of “core” and ”full” boundary values of the PDE state as Λbc𝐮\Lambda_{\text{bc}}\mathbf{u} and Λbf𝐮\Lambda_{\text{bf}}\mathbf{u} respectively. Using the fundamental theorem of calculus, we can then express 𝐮=𝒦1Λbc𝐮+𝒦2𝐮^\mathbf{u}=\mathcal{K}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{K}_{2}\hat{\mathbf{u}} and Λbf𝐮=1Λbc𝐮+2𝐮^\Lambda_{\text{bf}}\mathbf{u}=\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{H}_{2}\hat{\mathbf{u}}, where 𝒦1\mathcal{K}_{1}, 𝒦2\mathcal{K}_{2}, 1\mathcal{H}_{1} and 2\mathcal{H}_{2} are 2D PI operators. Next, we impose the boundary conditions as Λbf𝐮=0\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0, where \mathcal{B} is a PI operator, allowing us to write 1Λbc𝐮+2𝐮^=0\mathcal{B}\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{B}\mathcal{H}_{2}\hat{\mathbf{u}}=0 and thus Λbc𝐮=(1)12𝐮^\Lambda_{\text{bc}}\mathbf{u}=-(\mathcal{B}\mathcal{H}_{1})^{-1}\mathcal{B}\mathcal{H}_{2}\hat{\mathbf{u}}. Finally, we retrieve the PDE state as 𝐮=𝒯𝐮^=[𝒦2(1)12𝒦1]𝐮^\mathbf{u}=\mathcal{T}\hat{\mathbf{u}}=[\mathcal{K}_{2}-(\mathcal{B}\mathcal{H}_{1})^{-1}\mathcal{B}\mathcal{H}_{2}\mathcal{K}_{1}]\hat{\mathbf{u}}, where 𝒯\mathcal{T} is a 2D PI operator.

4) Derive a PIE representation for a standardized PDE.
In Section 5, we present a standardized format for writing coupled PDEs. In Subsection 6.2, we then use the transformation 𝐮=𝒯𝐮^\mathbf{u}=\mathcal{T}\hat{\mathbf{u}} and the composition rules for differential operators with PI operators, to derive an equivalent PIE representation as 𝒯𝐮^˙=𝒜𝐮^\mathcal{T}\dot{\hat{\mathbf{u}}}=\mathcal{A}\hat{\mathbf{u}}.

5) Derive an LPI stability test.
In Subsection 7.1, we parameterize a LF V(𝐮^)=T𝐮^,𝒫𝒯𝐮^V(\hat{\mathbf{u}})=\left\langle T\hat{\mathbf{u}},\mathcal{P}\mathcal{T}\hat{\mathbf{u}}\right\rangle as a PI operator 𝒫\mathcal{P}. Using this LF, we prove that existence of a PI operator 𝒫>0\mathcal{P}>0 satisfying the LPI 𝒜𝒫𝒯+𝒯𝒫𝒜<0\mathcal{A}^{*}\mathcal{P}\mathcal{T}+\mathcal{T}^{*}\mathcal{P}\mathcal{A}<0 certifies stability of the PDE.

6) Parameterize the convex cone of positive PI operators.
In Subsection 7.2, we introduce a PI operator 𝒵\mathcal{Z}, defined by monomial basis functions Z(x,y)Z(x,y). For any positive matrix P>0P>0, then, the product 𝒫=𝒵P𝒵\mathcal{P}=\mathcal{Z}^{*}P\mathcal{Z} will be a PI operator satisfying 𝐮^,𝒫𝐮^>0\left\langle\hat{\mathbf{u}},\mathcal{P}\hat{\mathbf{u}}\right\rangle>0 for any 𝐮^L2[x,y]\hat{\mathbf{u}}\in L_{2}[x,y].

7) Implement this methodology in PIETOOLS.
In Section 8, we implement a class of 2D-PI operators in the MATLAB toolbox PIETOOLS 2021b, along with the formulae for constructing the PIE representation of a PDE. This allows an arbitrary PDE to be converted to an equivalent PIE, at which point stability may be tested by solving the LPI [𝒜𝒫𝒯+𝒯𝒫𝒜]<0\Bigl{[}\mathcal{A}^{*}\mathcal{P}\mathcal{T}+\mathcal{T}^{*}\mathcal{P}\mathcal{A}\Bigr{]}<0 for a positive operator 𝒫>0\mathcal{P}>0. Parameterizing the cone of positive operators as positive matrices, this problem may then be solved using semidefinite programming. We test this implementation on a heat equation and a wave equation in Section 9.

Parameter space Explicit notation Associated PI mapping
𝒩1Dn×m\mathcal{N}_{1D}^{n\times m} L2n×m[x]×L2n×m[x,θ]×L2n×m[x,θ]L_{2}^{n\times m}[x]\times L_{2}^{n\times m}[x,\theta]\times L_{2}^{n\times m}[x,\theta] L2m[x]L2n[x]L_{2}^{m}[x]\rightarrow L_{2}^{n}[x]
𝒩011[n0m0n1m1]\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right] [n0×m0L2n0×m1[x]L2n0×m1[y]L2n1×m0[x]𝒩1Dn1×m1L2n1×m1[x,y]L2n1×m0[y]L2n1×m1[x,y]𝒩1Dn1×m1]\begin{bmatrix}\mathbb{R}^{n_{0}\times m_{0}}&L_{2}^{n_{0}\times m_{1}}[x]&L_{2}^{n_{0}\times m_{1}}[y]\\ L_{2}^{n_{1}\times m_{0}}[x]&\mathcal{N}_{1D}^{n_{1}\times m_{1}}&L_{2}^{n_{1}\times m_{1}}[x,y]\\ L_{2}^{n_{1}\times m_{0}}[y]&L_{2}^{n_{1}\times m_{1}}[x,y]&\mathcal{N}_{1D}^{n_{1}\times m_{1}}\end{bmatrix} [m0L2m1[x]L2m1[y]][n0L2n1[x]L2n1[y]]\begin{bmatrix}\mathbb{R}^{m_{0}}\\ L_{2}^{m_{1}}[x]\\ L_{2}^{m_{1}}[y]\end{bmatrix}\rightarrow\begin{bmatrix}\mathbb{R}^{n_{0}}\\ L_{2}^{n_{1}}[x]\\ L_{2}^{n_{1}}[y]\end{bmatrix}
𝒩2Dn×m\mathcal{N}_{2D}^{n\times m} [L2n×m[x,y]L2n×m[x,y,ν]L2n×m[x,y,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]]\begin{bmatrix}L_{2}^{n\times m}[x,y]&L_{2}^{n\times m}[x,y,\nu]&L_{2}^{n\times m}[x,y,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&L_{2}^{n\times m}[x,y,\theta,\nu]&L_{2}^{n\times m}[x,y,\theta,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&L_{2}^{n\times m}[x,y,\theta,\nu]&L_{2}^{n\times m}[x,y,\theta,\nu]\end{bmatrix} L2m[x,y]L2n[x,y]L_{2}^{m}[x,y]\rightarrow L_{2}^{n}[x,y]
𝒩2D1Dn×m\mathcal{N}_{2D\rightarrow 1D}^{n\times m} L2n×m[x,y]×L2n×m[x,y,θ]×L2n×m[x,y,θ]L_{2}^{n\times m}[x,y]\times L_{2}^{n\times m}[x,y,\theta]\times L_{2}^{n\times m}[x,y,\theta] L2m[x,y]L2n[x]L_{2}^{m}[x,y]\rightarrow L_{2}^{n}[x]
𝒩1D2Dn×m\mathcal{N}_{1D\rightarrow 2D}^{n\times m} L2n×m[x,y]×L2n×m[x,y,ν]×L2n×m[x,y,ν]L_{2}^{n\times m}[x,y]\times L_{2}^{n\times m}[x,y,\nu]\times L_{2}^{n\times m}[x,y,\nu] L2m[x]L2n[x,y]L_{2}^{m}[x]\rightarrow L_{2}^{n}[x,y]
𝒩0112[n0m0n1m1n2m2]\mathcal{N}_{0112}{\begin{bmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{bmatrix}} [𝒩011[n0m0n1m1]L2n0×m2[x,y]𝒩2D1Dn1×m2𝒩2D1Dn1×m2L2n2×m0[x,y]𝒩1D2Dn2×m1𝒩1D2Dn2×m1𝒩2Dn2×n2]\begin{bmatrix}\mathcal{N}_{011}{\begin{bmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{bmatrix}}&\begin{matrix}L_{2}^{n_{0}\times m_{2}}[x,y]\\ \mathcal{N}^{n_{1}\times m_{2}}_{2D\rightarrow 1D}\\ \mathcal{N}^{n_{1}\times m_{2}}_{2D\rightarrow 1D}\end{matrix}\\ \begin{matrix}L_{2}^{n_{2}\times m_{0}}[x,y]&\mathcal{N}^{n_{2}\times m_{1}}_{1D\rightarrow 2D}&\mathcal{N}^{n_{2}\times m_{1}}_{1D\rightarrow 2D}\end{matrix}&\mathcal{N}_{2D}^{n_{2}\times n_{2}}\end{bmatrix} [m0L2m1[x]L2m1[y]L2m2[x,y]][n0L2n1[x]L2n1[y]L2n2[x,y]]\left[\scriptsize\begin{smallmatrix}\mathbb{R}^{m_{0}}\\ L_{2}^{m_{1}}[x]\\ L_{2}^{m_{1}}[y]\\ L_{2}^{m_{2}}[x,y]\end{smallmatrix}\right]\rightarrow\left[\scriptsize\begin{smallmatrix}\mathbb{R}^{n_{0}}\\ L_{2}^{n_{1}}[x]\\ L_{2}^{n_{1}}[y]\\ L_{2}^{n_{2}}[x,y]\end{smallmatrix}\right]
Table 1: Parameter spaces for PI operators introduced in Section 3

2 Notation

For a given domain x[a,b]x\in[a,b] and y[c,d]y\in[c,d], let L2n[x,y]L_{2}^{n}[x,y] denote the set of n\mathbb{R}^{n}-valued square-integrable functions on [a,b]×[c,d][a,b]\times[c,d], with the standard inner product. L2n[x]L_{2}^{n}[x] is defined similarly and we omit the domain when clear from context. For any α2\alpha\in\mathbb{N}^{2}, we denote α:=max{α1,α2}\left\lVert{\alpha}\right\rVert_{\infty}:=\max\{\alpha_{1},\alpha_{2}\}. Using this notation, we define Hkn[x,y]H_{k}^{n}[x,y] as a Sobolev subspace of L2n[x,y]L_{2}^{n}[x,y], where

Hkn[x,y]={𝐮xα1yα2𝐮L2n[x,y],αk}.\displaystyle H_{k}^{n}[x,y]=\{\mathbf{u}\mid\partial_{x}^{\alpha_{1}}\partial_{y}^{\alpha_{2}}\mathbf{u}\in L_{2}^{n}[x,y],\enspace\forall\|\alpha\|_{\infty}\leq k\}.

As for L2L_{2}, we occasionally use Hkn:=Hkn[x,y]H_{k}^{n}:=H_{k}^{n}[x,y] or Hkn:=Hkn[x]H_{k}^{n}:=H_{k}^{n}[x] when the domain is clear from context. For 𝐮Hkn[x,y]\mathbf{u}\in H_{k}^{n}[x,y], we use the norm

𝐮Hk=αkxα1yα2𝐮L2\displaystyle\left\lVert{\mathbf{u}}\right\rVert_{H_{k}}=\sum_{\left\lVert{\alpha}\right\rVert_{\infty}\leq k}\left\lVert{\partial_{x}^{\alpha_{1}}\partial_{y}^{\alpha_{2}}\mathbf{u}}\right\rVert_{L_{2}}

For any 𝐮L2n[x,y]\mathbf{u}\in L_{2}^{n}[x,y], we denote the Dirac delta operators

[Λxa𝐮](y):=𝐮(a,y)and[Λyc𝐮](x):=𝐮(x,c).[\Lambda_{x}^{a}\mathbf{u}](y):=\mathbf{u}(a,y)\quad\text{and}\quad[\Lambda_{y}^{c}\mathbf{u}](x):=\mathbf{u}(x,c).

3 Algebras of PI Operators

In [10], we parameterized an algebra of PI operators whose domain was functions L2[x]L_{2}[x] of a single spatial variable, x[a,b]x\in[a,b]. These operators took the form

(𝒫[N]𝐮)(x)\displaystyle(\mathcal{P}[N]\mathbf{u})(x) =N0(x)𝐮(x)+axN1(x,θ)𝐮(θ)𝑑θ\displaystyle=N_{0}(x)\mathbf{u}(x)+\int_{a}^{x}N_{1}(x,\theta)\mathbf{u}(\theta)d\theta (1)
+xbN2(x,θ)𝐮(θ)𝑑θ.\displaystyle\qquad+\int_{x}^{b}N_{2}(x,\theta)\mathbf{u}(\theta)d\theta.

with polynomial parameters NiN_{i}. In [9], these PI operators were generalized, yielding operators with domain n×L2[x]\mathbb{R}^{n}\times L_{2}[x]. These extended operators then had the form

[Pv+ab(Q1(θ)𝐮(θ))𝑑θQ2(x)v+(𝒫[N]𝐮)(x)]\begin{bmatrix}Pv+\int_{a}^{b}\bigl{(}Q_{1}(\theta)\mathbf{u}(\theta)\bigr{)}d\theta\\ Q_{2}(x)v+(\mathcal{P}[N]\mathbf{u})(x)\end{bmatrix}

with parameters P,Q1,Q2P,Q_{1},Q_{2}, and 𝒫[N]\mathcal{P}[N] – where we note that the third parameter is itself a parameterized PI operator on the domain L2L_{2}. In this paper, we are tasked with further generalizing the algebra of PI operators to functions of two spatial variables – i.e. L2[x,y]L_{2}[x,y]. Operators in this rather more complicated algebra take the form of

(𝒫[N]𝐮)(x,y):=N00(x,y)𝐮(x,y)\displaystyle(\mathcal{P}[N]\mathbf{u})(x,y):=N_{00}(x,y)\mathbf{u}(x,y) (2)
+axN10(x,y,θ)𝐮(θ,y)𝑑θ+xbN20(x,y,θ)𝐮(θ,y)𝑑θ\displaystyle+\int_{a}^{x}N_{10}(x,y,\theta)\mathbf{u}(\theta,y)d\theta+\int_{x}^{b}N_{20}(x,y,\theta)\mathbf{u}(\theta,y)d\theta
+cyN01(x,y,ν)𝐮(x,ν)𝑑ν+ydN02(x,y,ν)𝐮(x,ν)𝑑ν\displaystyle+\int_{c}^{y}N_{01}(x,y,\nu)\mathbf{u}(x,\nu)d\nu+\int_{y}^{d}N_{02}(x,y,\nu)\mathbf{u}(x,\nu)d\nu
+axcyN11(x,y,θ,ν)𝐮(θ,ν)𝑑ν𝑑θ\displaystyle\qquad+\int_{a}^{x}\int_{c}^{y}N_{11}(x,y,\theta,\nu)\mathbf{u}(\theta,\nu)d\nu d\theta
+xbcyN21(x,y,θ,ν)𝐮(θ,ν)𝑑ν𝑑θ\displaystyle\qquad\qquad+\int_{x}^{b}\int_{c}^{y}N_{21}(x,y,\theta,\nu)\mathbf{u}(\theta,\nu)d\nu d\theta
+axydN12(x,y,θ,ν)𝐮(θ,ν)𝑑ν𝑑θ\displaystyle\qquad\qquad\qquad+\int_{a}^{x}\int_{y}^{d}N_{12}(x,y,\theta,\nu)\mathbf{u}(\theta,\nu)d\nu d\theta
+xbydN22(x,y,θ,ν)𝐮(θ,ν)𝑑ν𝑑θ.\displaystyle\qquad\qquad\qquad\qquad+\int_{x}^{b}\int_{y}^{d}N_{22}(x,y,\theta,\nu)\mathbf{u}(\theta,\nu)d\nu d\theta.

where we now have 9 polynomial parameters NijN_{ij}. Making matters worse, we will also need to include cross-terms from n\mathbb{R}^{n}, L2[x]L_{2}[x] and L2[y]L_{2}[y] in our algebra. In the following subsections, to make presentation of this class of operators somewhat tractable, we will make heavy use of an “operator parameterization of operators” approach, whereby we parameterize simpler algebras of operators using polynomials and embed these simpler algebras in the more complex ones. To aid in keeping track of these algebras, we use, e.g. the term 0112-PI algrebra to indicate its domain and range include n\mathbb{R}^{n} (indicated by ‘0’), L2[x]L_{2}[x] (indicated by 11), L2[y]L_{2}[y] (indicated by 11), and L2[x,y]L_{2}[x,y] (indicated by 22).

Note that throughout this article we overload the 𝒫[N]\mathcal{P}[N] notation for a PI operator with parameters N𝒩N\in\mathcal{N}, where the structure and parameterization of the operator varies depending on the specific parameter space 𝒩\mathcal{N}. The different parameter spaces we consider are listed in Table 1.

3.1 An Algebra of 2D to 2D PI Operators

We start by parameterizing operators on L2m[x,y]L_{2}^{m}[x,y], for which we define the parameter space

𝒩2Dn×m\displaystyle\mathcal{N}_{2D}^{n\times m} :=[L2n×m[x,y]L2n×m[x,y,ν]L2n×m[x,y,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]].\displaystyle\!\!:=\!\!\left[\!\!\!\begin{array}[]{lll}L_{2}^{n\times m}[x,y]&\!\!\!L_{2}^{n\times m}[x,y,\nu]&\!\!\!L_{2}^{n\times m}[x,y,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&\!\!\!L_{2}^{n\times m}[x,y,\theta,\nu]&\!\!\!L_{2}^{n\times m}[x,y,\theta,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&\!\!\!L_{2}^{n\times m}[x,y,\theta,\nu]&\!\!\!L_{2}^{n\times m}[x,y,\theta,\nu]\end{array}\!\!\!\right]\!.

Then, for any N:=[N00N01N02N10N11N12N20N21N22]𝒩2Dn×mN:=\left[\scriptsize\begin{smallmatrix}N_{00}&N_{01}&N_{02}\\ N_{10}&N_{11}&N_{12}\\ N_{20}&N_{21}&N_{22}\end{smallmatrix}\right]\in\mathcal{N}_{2D}^{n\times m}, we let the associated 2D-PI operator 𝒫[N]:L2m[x,y]L2n[x,y]\mathcal{P}[N]:L_{2}^{m}[x,y]\rightarrow L_{2}^{n}[x,y] be as in Eqn. (2). Defining addition and scalar multiplication of the parameters N,M𝒩2Dn×mN,M\in\mathcal{N}_{2D}^{n\times m} in the obvious manner, it immediately follows that 𝒫[N]+𝒫[M]=𝒫[N+M]\mathcal{P}[N]+\mathcal{P}[M]=\mathcal{P}[N+M], and λ𝒫[N]=𝒫[λN]\lambda\mathcal{P}[N]=\mathcal{P}[\lambda N], for any λ\lambda\in\mathbb{R}. Further defining multiplication of 2D-PI operators as in the following lemma, we conclude that the set of 2D-PI operators is an algebra.

Lemma 1

For any N𝒩2Dn×pN\in\mathcal{N}_{2D}^{n\times p} and M𝒩2Dp×mM\in\mathcal{N}_{2D}^{p\times m}, there exists a unique Q𝒩2Dn×mQ\in\mathcal{N}_{2D}^{n\times m} such that 𝒫[N]𝒫[M]=𝒫[Q]\mathcal{P}[N]\mathcal{P}[M]=\mathcal{P}[Q]. Specifically, we may choose

Q=2D(N,M)𝒩2Dn×m,Q=\mathcal{L}_{2D}(N,M)\in\mathcal{N}_{2D}^{n\times m},

where 2D:𝒩2Dn×p×𝒩2Dp×m𝒩2Dn×m\mathcal{L}_{2D}:\mathcal{N}_{2D}^{n\times p}\times\mathcal{N}_{2D}^{p\times m}\rightarrow\mathcal{N}_{2D}^{n\times m} is defined in Eqn. (43) in Appendix 11.4.

3.2 An Algebra of 011-PI Operators

Having defined an algebra of operators on L2[x,y]L_{2}[x,y], we now consider a parameterization of operators on RLn0,n1:=n0×L2n1[x]×L2n1[y]RL^{n_{0},n_{1}}:=\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y]. To this end, we first let for any N={N0,N1,N2}𝒩1Dn×m:=L2n×m[x]×L2n×m[x,θ]×L2n×m[x,θ]N=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}_{1D}^{n\times m}:=L_{2}^{n\times m}[x]\times L_{2}^{n\times m}[x,\theta]\times L_{2}^{n\times m}[x,\theta], the associated 1D-PI operator be as in (1). Next, we define a parameter space for 011-PI operators as

𝒩011[n0m0n1m1]:=[n0×m0L2n0×m1[x]L2n0×m1[y]L2n1×m0[x]𝒩1Dn1×m1L2n1×m1[x,y]L2n1×m0[y]L2n1×m1[y,x]𝒩1Dn1×m1].\displaystyle\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]}\!:=\!\begin{bmatrix}\mathbb{R}^{n_{0}\times m_{0}}&\!L_{2}^{n_{0}\times m_{1}}[x]&\!L_{2}^{n_{0}\times m_{1}}[y]\\ L_{2}^{n_{1}\times m_{0}}[x]&\!\mathcal{N}_{1D}^{n_{1}\times m_{1}}&\!L_{2}^{n_{1}\times m_{1}}[x,y]\\ L_{2}^{n_{1}\times m_{0}}[y]&\!L_{2}^{n_{1}\times m_{1}}[y,x]&\!\mathcal{N}_{1D}^{n_{1}\times m_{1}}\end{bmatrix}\!.

Then, for any B:=[B00B01B02B10B11B12B20B21B22]𝒩011[n0m0n1m1]B:=\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\in\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]}, we let the associated PI operator 𝒫[B]:RLm0,m1RLn0,n1\mathcal{P}[B]:RL^{m_{0},m_{1}}\rightarrow RL^{n_{0},n_{1}} be given by

𝒫[B]:=[M[B00]x=ab[B01]y=cd[B02]M[B10]𝒫[B11]y=cd[B12]M[B20]x=ab[B21]𝒫[B22]],\displaystyle\mathcal{P}[B]:=\begin{bmatrix}\text{M}[B_{00}]&\smallint_{x=a}^{b}[B_{01}]&\smallint_{y=c}^{d}[B_{02}]\\ \text{M}[B_{10}]&\mathcal{P}[B_{11}]&\smallint_{y=c}^{d}[B_{12}]\\ \text{M}[B_{20}]&\smallint_{x=a}^{b}[B_{21}]&\mathcal{P}[B_{22}]\end{bmatrix},

where M is the multiplier operator and \smallint is the integral operator, so that (through some abuse of notation)

(M[N]𝐮)(x,y):=N(x,y)𝐮(y),(\text{M}[N]\mathbf{u})(x,y):=N(x,y)\mathbf{u}(y),

and

(y=cd[N]𝐮)(x):=cdN(x,y)𝐮(y)𝑑y.\left(\smallint_{y=c}^{d}[N]\mathbf{u}\right)(x):=\int_{c}^{d}N(x,y)\mathbf{u}(y)dy.

Clearly then, 𝒫[B]+𝒫[D]=𝒫[B+D]\mathcal{P}[B]+\mathcal{P}[D]=\mathcal{P}[B+D] and λ𝒫[B]=𝒫[λB]\lambda\mathcal{P}[B]=\mathcal{P}[\lambda B] for any B,D𝒩011B,D\in\mathcal{N}_{011} and λ\lambda\in\mathbb{R}. Moreover, we can also compose 011-PI operators, as per the following lemma.

Lemma 2

For any B𝒩011[n0p0n1p1]B\in\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\end{smallmatrix}\right]}, D𝒩011[p0m0p1m1]D\in\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\end{smallmatrix}\right]}, there exists a unique R𝒩011[n0m0n1m1]R\in\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]} such that 𝒫[B]𝒫[D]=𝒫[R]\mathcal{P}[B]\mathcal{P}[D]=\mathcal{P}[R]. Specifically, we may choose

R=011(B,D)𝒩011[n0m0n1m1],R=\mathcal{L}_{011}(B,D)\in\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]},

where the linear parameter map 011:𝒩011[n0p0n1p1]×𝒩011[p0m0p1m1]𝒩011[n0m0n1m1]\mathcal{L}_{011}:\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\end{smallmatrix}\right]}\times\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\end{smallmatrix}\right]}\rightarrow\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]} is defined in Eqn. (41) in Appendix 11.3.

3.3 An Algebra of 0112-PI Operators

We now combine the 011-PI algebra and the 2D-PI algebra to obtain an algebra of operators on RLn0,n1×L2n2[x,y]=n0×L2n1[x]×L2n1[y]×L2n2[x,y]RL^{n_{0},n_{1}}\times L_{2}^{n_{2}}[x,y]=\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y]\times L_{2}^{n_{2}}[x,y]. Specifically, for any

C=[BC03C13C23C30C31C32N]𝒩0112[n0m0n1m1n2m2]:=\displaystyle C=\begin{bmatrix}B&\begin{matrix}C_{03}\\ C_{13}\\ C_{23}\end{matrix}\\ \begin{matrix}C_{30}&C_{31}&C_{32}\end{matrix}&N\end{bmatrix}\in\mathcal{N}_{0112}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right]}:=
[𝒩011[n0m0n1m1]L2n0×m2[x,y]𝒩2D1Dn1×m2𝒩2D1Dn1×m2L2n2×m0[x,y]𝒩1D2Dn2×m1𝒩1D2Dn2×m1𝒩2Dn2×n2],\displaystyle\begin{bmatrix}\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]}&\begin{matrix}L_{2}^{n_{0}\times m_{2}}[x,y]\\ \mathcal{N}^{n_{1}\times m_{2}}_{2D\rightarrow 1D}\\ \mathcal{N}^{n_{1}\times m_{2}}_{2D\rightarrow 1D}\end{matrix}\\ \begin{matrix}L_{2}^{n_{2}\times m_{0}}[x,y]&\mathcal{N}^{n_{2}\times m_{1}}_{1D\rightarrow 2D}&\mathcal{N}^{n_{2}\times m_{1}}_{1D\rightarrow 2D}\end{matrix}&\mathcal{N}_{2D}^{n_{2}\times n_{2}}\end{bmatrix},

where

𝒩2D1Dn×m:=L2n×m[x,y]×L2n×m[x,y,θ]×L2n×m[x,y,θ],\mathcal{N}_{2D\rightarrow 1D}^{n\times m}:=L_{2}^{n\times m}[x,y]\times L_{2}^{n\times m}[x,y,\theta]\times L_{2}^{n\times m}[x,y,\theta],
𝒩1D2Dn×m:=L2n×m[x,y]×L2n×m[x,y,ν]×L2n×m[x,y,ν],\mathcal{N}_{1D\rightarrow 2D}^{n\times m}:=L_{2}^{n\times m}[x,y]\times L_{2}^{n\times m}[x,y,\nu]\times L_{2}^{n\times m}[x,y,\nu],

we may define the 0112-PI operator 𝒫[C]:RLm0,m1[x,y]×L2m2[x,y]RLn0,n1[x,y]×L2n2[x,y]\mathcal{P}[C]:RL^{m_{0},m_{1}}[x,y]\times L_{2}^{m_{2}}[x,y]\rightarrow RL^{n_{0},n_{1}}[x,y]\times L_{2}^{n_{2}}[x,y] as

𝒫[C]=[𝒫[B]x=ab[I]y=cd[C03]𝒫[C13]𝒫[C23]M[C30]𝒫[C31]𝒫[C32]𝒫[N]],\mathcal{P}[C]=\begin{bmatrix}\mathcal{P}[B]&\begin{matrix}\smallint_{x=a}^{b}[I]\circ\smallint_{y=c}^{d}[C_{03}]\\ \mathcal{P}[C_{13}]\\ \mathcal{P}[C_{23}]\end{matrix}\\ \begin{matrix}\text{M}[C_{30}]&\mathcal{P}[C_{31}]&\mathcal{P}[C_{32}]\end{matrix}&\mathcal{P}[N]\end{bmatrix},

where for D={D0,D1,D2}𝒩2D1Dn×mD=\{D_{0},D_{1},D_{2}\}\in\mathcal{N}_{2D\rightarrow 1D}^{n\times m}, we have

(𝒫[D]𝐮)(x):=cd[D0(x,y)𝐮(x,y)\displaystyle(\mathcal{P}[D]\mathbf{u})(x):=\int_{c}^{d}\biggl{[}D_{0}(x,y)\mathbf{u}(x,y)
+axD1(x,y,θ)𝐮(θ,y)dθ+xbD2(x,y,θ)𝐮(θ,y)dθ]dy,\displaystyle+\int_{a}^{x}D_{1}(x,y,\theta)\mathbf{u}(\theta,y)d\theta+\int_{x}^{b}D_{2}(x,y,\theta)\mathbf{u}(\theta,y)d\theta\biggr{]}dy,

and for E={E0,E1,E2}𝒩1D2Dn×mE=\{E_{0},E_{1},E_{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{n\times m}, we have

(𝒫[E]𝐮)(x,y):=E0(x,y)𝐮(y)\displaystyle(\mathcal{P}[E]\mathbf{u})(x,y):=E_{0}(x,y)\mathbf{u}(y)
+cyE1(x,y,ν)𝐮(ν)𝑑ν+ydE2(x,y,ν)𝐮(ν)𝑑ν.\displaystyle\quad+\int_{c}^{y}E_{1}(x,y,\nu)\mathbf{u}(\nu)d\nu+\int_{y}^{d}E_{2}(x,y,\nu)\mathbf{u}(\nu)d\nu.

Clearly, the set of operators parameterized in this manner is closed under addition and scalar multiplication. By the following lemma, then, the set of 0112-PI operators is an algebra.

Lemma 3

For any B𝒩0112[n0p0n1p1n2p2]B\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\\ n_{2}&p_{2}\end{smallmatrix}\right] and D𝒩0112[p0m0p1m1p2m2]D\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\\ p_{2}&m_{2}\end{smallmatrix}\right], there exists a unique R𝒩0112[n0m0n1m1n2m2]R\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right] such that 𝒫[B]𝒫[D]=𝒫[R]\mathcal{P}[B]\mathcal{P}[D]=\mathcal{P}[R]. Specifically, we may choose

R=0112(B,D)𝒩0112[n0m0n1m1n2m2],R=\mathcal{L}_{0112}(B,D)\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right],

where the linear parameter map 0112:𝒩0112[n0p0n1p1n2p2]×𝒩0112[p0m0p1m1p2m2]𝒩0112[n0m0n1m1n2m2]\mathcal{L}_{0112}:\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\\ n_{2}&p_{2}\end{smallmatrix}\right]\times\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\\ p_{2}&m_{2}\end{smallmatrix}\right]\rightarrow\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right] is defined in Eqn. (53) in Appendix 11.7.

For the purpose of implementation in Section 8, we will be considering only PI operators parameterized by polynomial functions, exploiting the following result:

Corollary 4

For any polynomial parameters B𝒩0112[n0p0n1p1n2p2]B\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\\ n_{2}&p_{2}\end{smallmatrix}\right] and D𝒩0112[p0m0p1m1p2m2]D\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\\ p_{2}&m_{2}\end{smallmatrix}\right], the composite parameters R=0112(B,D)𝒩0112[n0m0n1m1n2m2]R=\mathcal{L}_{0112}(B,D)\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right] are also polynomial.

4 Useful Properties of PI Operators

Having defined the different algebras of PI operators to be used in later sections, we now derive several critical properties of such operators. Specifically, we focus on obtaining an analytic expression for the inverse of a 011-PI operator, using a generalization of the formula in [12]. This result will be used to enforce the boundary conditions when deriving the mapping from fundamental state to PDE state in Section 6. In addition, we consider composition of differential operators with a PI operator, proving that the result is a PI operator, and obtaining an analytic expression for this operator. This result will be used to relate differential operators in the PDE to PI operators in the equivalent PIE representation in Section 6. Finally, we give a formula for the adjoint of a PI operator, necessary for deriving and enforcing LPI stability conditions in Section 7.

4.1 Inverse of 011-PI Operators

First, given a 011-PI operator 𝒫[Q]\mathcal{P}[Q] defined by parameters Q𝒩011[n0n0n1n1]Q\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right], we prove that 𝒫[Q]1=𝒫[Q^]\mathcal{P}[Q]^{-1}=\mathcal{P}[\hat{Q}] is a 011-PI operator and obtain an analytic expression for the parameters of the inverse Q^𝒩011[n0n0n1n1]\hat{Q}\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right]. As is typical, we restrict ourselves to the case where the operator has a separable structure and the parameters are polynomial (and hence have a finite-dimensional parameterization).

Lemma 5

Suppose

Q=[Q00Q0xQ0yQx0QxxQxyQy0QyxQyy]N011[n0n0n1n1]Q=\begin{bmatrix}Q_{00}&Q_{0x}&Q_{0y}\\ Q_{x0}&Q_{xx}&Q_{xy}\\ Q_{y0}&Q_{yx}&Q_{yy}\end{bmatrix}\in{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right]

where Qxx={Qxx0,Qxx1,Qxx1}𝒩1Dn1×n1Q_{xx}=\{Q_{xx}^{0},Q^{1}_{xx},Q^{1}_{xx}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}} (separable) and Qyy={Qyy0,Qyy1,Qyy1}𝒩1Dn1×n1Q_{yy}=\{Q^{0}_{yy},Q^{1}_{yy},Q^{1}_{yy}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}} (separable). Suppose that Qx0,Qy0,Q0x,Q0y,Qxx1,Qxy,Qyx,Qyy1Q_{x0},Q_{y0},Q_{0x},Q_{0y},Q^{1}_{xx},Q_{xy},Q_{yx},Q^{1}_{yy} can be decomposed as

[Q0x(x)Q0y(y)Qx0(x)Qxx1(x,θ)Qxy(x,y)Qy0(y)Qyx(x,y)Qyy1(y,ν)]=\displaystyle\begin{bmatrix}&Q_{0x}(x)&Q_{0y}(y)\\ Q_{x0}(x)&Q_{xx}^{1}(x,\theta)&Q_{xy}(x,y)\\ Q_{y0}(y)&Q_{yx}(x,y)&Q_{yy}^{1}(y,\nu)\end{bmatrix}=
[H0xZ(x)H0yZ(y)ZT(x)Hx0ZT(x)ΓxxZ(θ)ZT(x)ΓxyZ(y)ZT(y)Hy0ZT(y)ΓyxZ(x)ZT(y)ΓyyZ(ν)]\displaystyle\qquad\begin{bmatrix}&H_{0x}Z(x)&H_{0y}Z(y)\\ Z^{T}(x)H_{x0}&Z^{T}(x)\Gamma_{xx}Z(\theta)&Z^{T}(x)\Gamma_{xy}Z(y)\\ Z^{T}(y)H_{y0}&Z^{T}(y)\Gamma_{yx}Z(x)&Z^{T}(y)\Gamma_{yy}Z(\nu)\end{bmatrix}

where ZL2q×n1Z\in L_{2}^{q\times n_{1}} and

[H0xH0yHx0ΓxxΓxyHy0ΓyxΓyy][n0×qn0×qq×n0q×qq×qq×n0q×qq×q],\begin{bmatrix}&H_{0x}&H_{0y}\\ H_{x0}&\Gamma_{xx}&\Gamma_{xy}\\ H_{y0}&\Gamma_{yx}&\Gamma_{yy}\end{bmatrix}\in\begin{bmatrix}&\mathbb{R}^{n_{0}\times q}&\mathbb{R}^{n_{0}\times q}\\ \mathbb{R}^{q\times n_{0}}&\mathbb{R}^{q\times q}&\mathbb{R}^{q\times q}\\ \mathbb{R}^{q\times n_{0}}&\mathbb{R}^{q\times q}&\mathbb{R}^{q\times q}\end{bmatrix},

for some qq\in\mathbb{N}. Now suppose that Q^=inv(Q)𝒩011[n0n0n1n1]\hat{Q}=\mathcal{L}_{\text{inv}}(Q)\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right], with inv:𝒩011[n0n0n1n1]𝒩011[n0n0n1n1]\mathcal{L}_{\text{inv}}:\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right]\rightarrow\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right] defined as in Eqn. (54) in Appendix 12.1. Then for any 𝐮n0×L2n1[x]×L2n1[y]\mathbf{u}\in\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y],

(𝒫[Q^]𝒫[Q])𝐮=(𝒫[Q]𝒫[Q^])𝐮=𝐮.\displaystyle(\mathcal{P}[\hat{Q}]\circ\mathcal{P}[Q])\mathbf{u}=(\mathcal{P}[Q]\circ\mathcal{P}[\hat{Q}])\mathbf{u}=\mathbf{u}.
Proof 4.1.

See Appendix 12.1 for a proof.

4.2 Differentiation and 2D-PI Operators

While differentiation is an unbounded operator and PI operators are bounded, we now show that for a PI operator with no multipliers, composition of the differential operator with this PI operator is a PI operator and hence bounded. This will be used in Section 6 to show that the dynamics of a PDE can be equivalently represented using only bounded operators (the PIE representation).

Lemma 6.

Suppose

N=[000N10N11N12N20N21N22]\displaystyle N\!=\!\begin{bmatrix}0&\!\!0&\!\!0\\ N_{10}&\!\!N_{11}&\!\!N_{12}\\ N_{20}&\!\!N_{21}&\!\!N_{22}\end{bmatrix}\! [000H1n×mH1n×mH1n×mH1n×mH1n×mH1n×m]𝒩2Dn×m,\displaystyle\in\!\begin{bmatrix}0&\!\!\!0&\!\!\!0\\ H_{1}^{n\times m}&\!\!\!H_{1}^{n\times m}&\!\!\!H_{1}^{n\times m}\\ H_{1}^{n\times m}&\!\!\!H_{1}^{n\times m}&\!\!\!H_{1}^{n\times m}\end{bmatrix}\!\subset\!\mathcal{N}_{2D}^{n\times m},

and let

M=[M00M01M02M10M11M12M20M21M22]𝒩2Dn×m,\displaystyle M=\begin{bmatrix}M_{00}&M_{01}&M_{02}\\ M_{10}&M_{11}&M_{12}\\ M_{20}&M_{21}&M_{22}\end{bmatrix}\in\mathcal{N}_{2D}^{n\times m}, (3)

where

M00(x,y)=N10(x,y,x)N20(x,y,x),\displaystyle M_{00}(x,y)=N_{10}(x,y,x)-N_{20}(x,y,x),
M01(x,y,ν)=N11(x,y,x,ν)N21(x,y,x,ν),\displaystyle M_{01}(x,y,\nu)=N_{11}(x,y,x,\nu)-N_{21}(x,y,x,\nu),
M02(x,y,ν)=N12(x,y,x,ν)N22(x,y,x,ν),\displaystyle M_{02}(x,y,\nu)=N_{12}(x,y,x,\nu)-N_{22}(x,y,x,\nu),
M10(x,y,θ)=xN10(x,y,θ),\displaystyle M_{10}(x,y,\theta)=\partial_{x}N_{10}(x,y,\theta),
M20(x,y,θ)=xN20(x,y,θ),\displaystyle M_{20}(x,y,\theta)=\partial_{x}N_{20}(x,y,\theta),
M11(x,y,θ,ν)=xN11(x,y,θ,ν),\displaystyle M_{11}(x,y,\theta,\nu)=\partial_{x}N_{11}(x,y,\theta,\nu),
M21(x,y,θ,ν)=xN21(x,y,θ,ν),\displaystyle M_{21}(x,y,\theta,\nu)=\partial_{x}N_{21}(x,y,\theta,\nu),
M12(x,y,θ,ν)=xN12(x,y,θ,ν),\displaystyle M_{12}(x,y,\theta,\nu)=\partial_{x}N_{12}(x,y,\theta,\nu),
M22(x,y,θ,ν)=xN22(x,y,θ,ν).\displaystyle M_{22}(x,y,\theta,\nu)=\partial_{x}N_{22}(x,y,\theta,\nu).

Then, for any 𝐮L2m[x,y]\mathbf{u}\in L_{2}^{m}[x,y],

x(𝒫[N]𝐮)(x,y)=(𝒫[M]𝐮)(x,y).\displaystyle\partial_{x}(\mathcal{P}[N]\mathbf{u})(x,y)=(\mathcal{P}[M]\mathbf{u})(x,y).
Proof 4.2.

To prove this result, we exploit the linearity of the PI operator, splitting

𝒫[N]=𝒫[000N1000N2000]+𝒫[0000N1100N210]+𝒫[00000N1200N22].\displaystyle\mathcal{P}[N]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ N_{10}&0&0\\ N_{20}&0&0\end{smallmatrix}\right]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&N_{11}&0\\ 0&N_{21}&0\end{smallmatrix}\right]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&0&N_{12}\\ 0&0&N_{22}\end{smallmatrix}\right].

Recall now the Leibniz integral rule, stating that, for arbitrary PL2[x,θ]P\in L_{2}[x,\theta],

ddx(a(x)b(x)P(x,θ)𝑑θ)=a(x)b(x)xP(x,θ)dθ\displaystyle\frac{d}{dx}\left(\int_{a(x)}^{b(x)}P(x,\theta)d\theta\right)=\int_{a(x)}^{b(x)}\partial_{x}P(x,\theta)d\theta
+P(x,b(x))ddxb(x)P(x,a(x))ddxa(x).\displaystyle\hskip 56.9055pt+P(x,b(x))\frac{d}{dx}b(x)-P(x,a(x))\frac{d}{dx}a(x).

Then, for arbitrary 𝐮L2[x,y]\mathbf{u}\in L_{2}[x,y],

x(𝒫[000N1000N2000]𝐮)(x,y)\displaystyle\partial_{x}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ N_{10}&0&0\\ N_{20}&0&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)
=x(axN10(x,y,θ)𝐮(θ)𝑑θ+xbN20(x,y,θ)𝐮(θ)𝑑θ)\displaystyle=\partial_{x}\biggl{(}\int_{a}^{x}N_{10}(x,y,\theta)\mathbf{u}(\theta)d\theta+\int_{x}^{b}N_{20}(x,y,\theta)\mathbf{u}(\theta)d\theta\biggr{)}
=N10(x,y,x)𝐮(x)+axxN10(x,y,θ)𝐮(θ)dθ\displaystyle=N_{10}(x,y,x)\mathbf{u}(x)+\int_{a}^{x}\partial_{x}N_{10}(x,y,\theta)\mathbf{u}(\theta)d\theta
N20(x,y,x)𝐮(x)+xbxN20(x,y,θ)𝐮(θ)dθ\displaystyle\qquad-N_{20}(x,y,x)\mathbf{u}(x)+\int_{x}^{b}\partial_{x}N_{20}(x,y,\theta)\mathbf{u}(\theta)d\theta
=(𝒫[M0000M1000M2000]𝐮)(x,y)\displaystyle=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}M_{00}&0&0\\ M_{10}&0&0\\ M_{20}&0&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)

Repeating these steps, it also follows that

x(𝒫[0000N1100N210]𝐮)(x,y)=(𝒫[0M0100M1100M210]𝐮)(x,y),\displaystyle\partial_{x}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&N_{11}&0\\ 0&N_{21}&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&M_{01}&0\\ 0&M_{11}&0\\ 0&M_{21}&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y),
x(𝒫[00000N1200N22]𝐮)(x,y)=(𝒫[00M0200M1200M22]𝐮)(x,y).\displaystyle\partial_{x}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&0&N_{12}\\ 0&0&N_{22}\end{smallmatrix}\right]\mathbf{u}\right)(x,y)=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&M_{02}\\ 0&0&M_{12}\\ 0&0&M_{22}\end{smallmatrix}\right]\mathbf{u}\right)(x,y).

Finally, by linearity of the derivative and PI operators,

x(𝒫[N]𝐮)(x,y)=x(𝒫[000N1000N2000]𝐮)(x,y)\displaystyle\partial_{x}\left(\mathcal{P}[N]\mathbf{u}\right)(x,y)=\partial_{x}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ N_{10}&0&0\\ N_{20}&0&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)
+x(𝒫[0000N1100N210]𝐮)(x,y)+x(𝒫[00000N1200N22]𝐮)(x,y)\displaystyle\quad+\partial_{x}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&N_{11}&0\\ 0&N_{21}&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)+\partial_{x}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&0&N_{12}\\ 0&0&N_{22}\end{smallmatrix}\right]\mathbf{u}\right)(x,y)
=(𝒫[M0000M1000M2000]𝐮)(x,y)+(𝒫[0M0100M1100M210]𝐮)(x,y)\displaystyle=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}M_{00}&0&0\\ M_{10}&0&0\\ M_{20}&0&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)+\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&M_{01}&0\\ 0&M_{11}&0\\ 0&M_{21}&0\end{smallmatrix}\right]\mathbf{u}\right)(x,y)
+(𝒫[00M0200M1200M22]𝐮)(x,y)=(𝒫[M]𝐮)(x,y).\displaystyle\hskip 56.9055pt+\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&M_{02}\\ 0&0&M_{12}\\ 0&0&M_{22}\end{smallmatrix}\right]\mathbf{u}\right)(x,y)=\left(\mathcal{P}[M]\mathbf{u}\right)(x,y).
Lemma 7.

Suppose

N=[0N01N020N11N120N21N22]\displaystyle N\!=\!\begin{bmatrix}0&\!\!N_{01}&\!\!N_{02}\\ 0&\!\!N_{11}&\!\!N_{12}\\ 0&\!\!N_{21}&\!\!N_{22}\end{bmatrix}\! [0H1n×mH1n×m0H1n×mH1n×m0H1n×mH1n×m]𝒩2Dn×m,\displaystyle\in\!\begin{bmatrix}0&\!H_{1}^{n\times m}&\!H_{1}^{n\times m}\\ 0&\!H_{1}^{n\times m}&\!H_{1}^{n\times m}\\ 0&\!H_{1}^{n\times m}&\!H_{1}^{n\times m}\end{bmatrix}\!\subset\!\mathcal{N}_{2D}^{n\times m},

and let

M=[M00M01M02M10M11M12M20M21M22]𝒩2Dn×m,\displaystyle M=\begin{bmatrix}M_{00}&M_{01}&M_{02}\\ M_{10}&M_{11}&M_{12}\\ M_{20}&M_{21}&M_{22}\end{bmatrix}\in\mathcal{N}_{2D}^{n\times m}, (4)

where

M00(x,y)=N01(x,y,y)N02(x,y,y),\displaystyle M_{00}(x,y)=N_{01}(x,y,y)-N_{02}(x,y,y),
M10(x,y,θ)=N11(x,y,θ,y)N12(x,y,θ,y),\displaystyle M_{10}(x,y,\theta)=N_{11}(x,y,\theta,y)-N_{12}(x,y,\theta,y),
M20(x,y,θ)=N21(x,y,θ,y)N22(x,y,θ,y),\displaystyle M_{20}(x,y,\theta)=N_{21}(x,y,\theta,y)-N_{22}(x,y,\theta,y),
M01(x,y,ν)=yN01(x,y,ν),\displaystyle M_{01}(x,y,\nu)=\partial_{y}N_{01}(x,y,\nu),
M02(x,y,ν)=yN02(x,y,ν),\displaystyle M_{02}(x,y,\nu)=\partial_{y}N_{02}(x,y,\nu),
M11(x,y,θ,ν)=yN11(x,y,θ,ν),\displaystyle M_{11}(x,y,\theta,\nu)=\partial_{y}N_{11}(x,y,\theta,\nu),
M21(x,y,θ,ν)=yN21(x,y,θ,ν),\displaystyle M_{21}(x,y,\theta,\nu)=\partial_{y}N_{21}(x,y,\theta,\nu),
M12(x,y,θ,ν)=yN12(x,y,θ,ν),\displaystyle M_{12}(x,y,\theta,\nu)=\partial_{y}N_{12}(x,y,\theta,\nu),
M22(x,y,θ,ν)=yN22(x,y,θ,ν).\displaystyle M_{22}(x,y,\theta,\nu)=\partial_{y}N_{22}(x,y,\theta,\nu).

Then for any 𝐮L2m[x,y]\mathbf{u}\in L_{2}^{m}[x,y],

y(𝒫[N]𝐮)(x,y)=(𝒫[M]𝐮)(x,y).\displaystyle\partial_{y}(\mathcal{P}[N]\mathbf{u})(x,y)=(\mathcal{P}[M]\mathbf{u})(x,y).
Proof 4.3.

The proof follows along the same lines as that of Lemma 6.

Whenever a 2D-PI operator 𝒫[N]\mathcal{P}[N] has no multipliers along the xx-direction (as in Lemma 6), or along the yy-direction (as in Lemma 7), we will denote the composition of the differential operator x\partial_{x} or y\partial_{y} with this PI operator in the obvious manner as x𝒫[N]\partial_{x}\mathcal{P}[N] or y𝒫[N]\partial_{y}\mathcal{P}[N] respectively, such that, e.g.

[(x𝒫[N])𝐮](x,y)=x(𝒫[N]𝐮)(x,y).\left[\bigl{(}\partial_{x}\mathcal{P}[N]\bigr{)}\mathbf{u}\right](x,y)=\partial_{x}\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}(x,y).

4.3 Adjoint of 2D-PI Operators

Finally, we give an expression for the adjoint of a 2D-PI operator.

Lemma 8.

Suppose N𝒩2Dn×mN\in\mathcal{N}_{2D}^{n\times m} and define N^𝒩2Dm×n\hat{N}\in\mathcal{N}_{2D}^{m\times n} such that

N^(x,y,θ,ν)\displaystyle\hat{N}(x,y,\theta,\nu)
=[N^00(x,y)N^01(x,y,ν)N^02(x,y,ν)N^10(x,y,θ)N^11(x,y,θ,ν)N^12(x,y,θ,ν)N^20(x,y,θ)N^21(x,y,θ,ν)N^22(x,y,θ,ν)]\displaystyle=\begin{bmatrix}\hat{N}_{00}(x,y)&\hat{N}_{01}(x,y,\nu)&\hat{N}_{02}(x,y,\nu)\\ \hat{N}_{10}(x,y,\theta)&\hat{N}_{11}(x,y,\theta,\nu)&\hat{N}_{12}(x,y,\theta,\nu)\\ \hat{N}_{20}(x,y,\theta)&\hat{N}_{21}(x,y,\theta,\nu)&\hat{N}_{22}(x,y,\theta,\nu)\end{bmatrix}
=[N00T(x,y)N02T(x,ν,y)N01T(x,ν,y)N20T(θ,y,x)N22T(θ,ν,x,y)N21T(θ,ν,x,y)N10T(θ,y,x)N12T(θ,ν,x,y)N11T(θ,ν,x,y)].\displaystyle=\begin{bmatrix}N_{00}^{T}(x,y)&N^{T}_{02}(x,\nu,y)&N^{T}_{01}(x,\nu,y)\\ N^{T}_{20}(\theta,y,x)&N^{T}_{22}(\theta,\nu,x,y)&N^{T}_{21}(\theta,\nu,x,y)\\ N^{T}_{10}(\theta,y,x)&N^{T}_{12}(\theta,\nu,x,y)&N^{T}_{11}(\theta,\nu,x,y)\end{bmatrix}. (5)

Then for any 𝐮L2m[x,y]\mathbf{u}\in L_{2}^{m}[x,y] and 𝐯L2n[x,y]\mathbf{v}\in L_{2}^{n}[x,y],

𝐯,𝒫[N]𝐮L2=𝒫[N^]𝐯,𝐮L2.\left\langle\mathbf{v},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}}=\left\langle\mathcal{P}[\hat{N}]\mathbf{v},\mathbf{u}\right\rangle_{L_{2}}.
Proof 4.4.

See Appendix 12.2 for a proof.

5 A Standardized PDE Format in 2D

Having formulated the required hierarchy of algebras of PI operators, we now introduce a class of linear 2D PDEs, the solutions of which may be represented using 2D PIEs. These 2D PDEs are represented in a standardized format, allowing for efficient construction of a general mapping between the PDE and PIE state spaces – this construction being found in Section 6.

We consider a coupled PDE in the following compact representation

𝐮˙(t,x,y)=i,j=02Aijxiyj(Nmax{i,j}𝐮(t,x,y)),\displaystyle\dot{\mathbf{u}}(t,x,y)=\sum_{i,j=0}^{2}A_{ij}\thinspace\partial_{x}^{i}\partial_{y}^{j}\bigl{(}N_{\max\{i,j\}}\mathbf{u}(t,x,y)\bigr{)}, (6)

where the matrices

N0\displaystyle N_{0} =In0+n1+n2,\displaystyle=I_{n_{0}+n_{1}+n_{2}},
N1\displaystyle N_{1} =[0(n1+n2)×n0In1+n2],\displaystyle=\begin{bmatrix}0_{(n_{1}+n_{2})\times n_{0}}&I_{n_{1}+n_{2}}\end{bmatrix},
N2\displaystyle N_{2} =[0n2×n00n2×n1In2],\displaystyle=\begin{bmatrix}0_{n_{2}\times n_{0}}&0_{n_{2}\times n_{1}}&I_{n_{2}}\end{bmatrix},

allow us to partition the states according to differentiability, so that 𝐮(t)X()\mathbf{u}(t)\in X(\mathcal{B}) for all t0t\geq 0, where X()X(\mathcal{B}) also includes boundary conditions, parameterized by the 011-PI operator :=𝒫[B]\mathcal{B}:=\mathcal{P}[B] as

X():=\displaystyle X(\mathcal{B}):= {[𝐮0𝐮1𝐮2][L2n0H1n1H2n2]|Λbf𝐮=0},\displaystyle\left\{\begin{bmatrix}\mathbf{u}_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}\in\begin{bmatrix}L_{2}^{n_{0}}\\ H_{1}^{n_{1}}\\ H_{2}^{n_{2}}\end{bmatrix}\thinspace\Biggr{|}~{}\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0\right\}, (7)

where B𝒩011[n1+4n24n1+16n2n1+2n22n1+4n2]B\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{1}+4n_{2}&4n_{1}+16n_{2}\\ n_{1}+2n_{2}&2n_{1}+4n_{2}\end{smallmatrix}\right] and where Λbf\Lambda_{\text{bf}} allows us to list all the possible boundary values for the state components 𝐮1\mathbf{u}_{1} and 𝐮2\mathbf{u}_{2}, and as limited by differentiability. In particular,

Λbf=[𝒞1𝒞2𝒞3]:L2n0×H1n1×H2n2[4n1+16n2L22n1+4n2[x]L22n1+4n2[y]],\displaystyle\Lambda_{\text{bf}}=\begin{bmatrix}\mathcal{C}_{1}\\ \mathcal{C}_{2}\\ \mathcal{C}_{3}\end{bmatrix}:L_{2}^{n_{0}}\times H_{1}^{n_{1}}\times H_{2}^{n_{2}}\rightarrow\begin{bmatrix}\mathbb{R}^{4n_{1}+16n_{2}}\\ L_{2}^{2n_{1}+4n_{2}}[x]\\ L_{2}^{2n_{1}+4n_{2}}[y]\end{bmatrix}, (8)

where

𝒞1\displaystyle\mathcal{C}_{1} :=[0Λ1 000Λ100Λ1x00Λ1y00Λ1xy],[𝒞2𝒞3]:=[0Λ2x 000Λ2x200Λ2x2y0Λ3y 000Λ3y200Λ3xy2]\displaystyle:=\begin{bmatrix}\begin{array}[]{l}0~{}~{}\Lambda_{1}~{}\thinspace 0\\ 0~{}~{}0~{}~{}~{}\Lambda_{1}\\ 0~{}~{}0~{}~{}~{}\Lambda_{1}\partial_{x}\\ 0~{}~{}0~{}~{}~{}\Lambda_{1}\partial_{y}\\ 0~{}~{}0~{}~{}~{}\Lambda_{1}\partial_{xy}\end{array}\end{bmatrix},\quad\begin{bmatrix}\mathcal{C}_{2}\\ \mathcal{C}_{3}\end{bmatrix}:=\begin{bmatrix}\begin{array}[]{l}0~{}~{}\Lambda_{2}\partial_{x}~{}\thinspace 0\\ 0~{}~{}0~{}~{}~{}~{}~{}~{}\Lambda_{2}\partial_{x}^{2}\\ 0~{}~{}0~{}~{}~{}~{}~{}~{}\Lambda_{2}\partial_{x}^{2}\partial_{y}\\ 0~{}~{}\Lambda_{3}\partial_{y}~{}\thinspace 0\\ 0~{}~{}0~{}~{}~{}~{}~{}~{}\Lambda_{3}\partial_{y}^{2}\\ 0~{}~{}0~{}~{}~{}~{}~{}~{}\Lambda_{3}\partial_{x}\partial_{y}^{2}\end{array}\end{bmatrix}

where we use the Dirac operators Λk\Lambda_{k} defined as

Λ1=[ΛxaΛycΛxbΛycΛxaΛydΛxbΛyd],Λ2=[ΛycΛyd],Λ3=[ΛxaΛxb].\Lambda_{1}=\begin{bmatrix}\Lambda_{x}^{a}\Lambda_{y}^{c}\\ \Lambda_{x}^{b}\Lambda_{y}^{c}\\ \Lambda_{x}^{a}\Lambda_{y}^{d}\\ \Lambda_{x}^{b}\Lambda_{y}^{d}\end{bmatrix},\quad\Lambda_{2}=\begin{bmatrix}\Lambda_{y}^{c}\\ \Lambda_{y}^{d}\end{bmatrix},\quad\Lambda_{3}=\begin{bmatrix}\Lambda_{x}^{a}\\ \Lambda_{x}^{b}\end{bmatrix}.

This formulation is very general and allows us to express almost any linear 2D PDE. For examples of this representation, see the examples in Section 9.

Definition of Solution

For a given initial condition 𝐮IX()\mathbf{u}_{\text{I}}\in X(\mathcal{B}), we say that a function 𝐮(t)\mathbf{u}(t) satisfies the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\} if 𝐮\mathbf{u} is Frechét differentiable, 𝐮(0)=𝐮I\mathbf{u}(0)=\mathbf{u}_{\text{I}}, 𝐮(t)X\mathbf{u}(t)\in X for all t0t\geq 0 and Equation (6) is satisfied for all t0t\geq 0.

Definition 9.

We say that a solution 𝐮\mathbf{u} with initial condition 𝐮I\mathbf{u}_{\text{I}} of the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\} is exponentially stable in L2L_{2} if there exist constants K,γ>0K,\gamma>0 such that

𝐮(t)L2Keγt𝐮IL2\left\lVert{\mathbf{u}(t)}\right\rVert_{L_{2}}\leq Ke^{-\gamma t}\left\lVert{\mathbf{u}_{\text{I}}}\right\rVert_{L_{2}}

We say the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\} is exponentially stable in L2L_{2} if any solution 𝐮\mathbf{u} of the PDE is exponentially stable in L2L_{2}.

6 The Fundamental State on 2D

In this section, we provide the main technical result of the paper, wherein we show that for a suitably well-posed set of boundary conditions, \mathcal{B}, there exists a unitary 2D-PI operator 𝒯:L2X()\mathcal{T}:L_{2}\rightarrow X(\mathcal{B}) (where X()X(\mathcal{B}) is defined in Eqn. (7)) such that if we define the differentiation operator

𝒟:=[Ixyx2y2]\displaystyle\mathcal{D}:=\begin{bmatrix}I&&\\ &\partial_{x}\partial_{y}&\\ &&\partial_{x}^{2}\partial_{y}^{2}\end{bmatrix} (9)

then for any 𝐮X(){\mathbf{u}}\in X(\mathcal{B}) and 𝐮^L2n0+n1+n2\hat{\mathbf{u}}\in L_{2}^{n_{0}+n_{1}+n_{2}}, we have

𝐮=𝒯𝒟𝐮and𝐮^=𝒟𝒯𝐮^.\mathbf{u}=\mathcal{T}\mathcal{D}\mathbf{u}\qquad\text{and}\qquad\hat{\mathbf{u}}=\mathcal{D}\mathcal{T}\hat{\mathbf{u}}.

This implies that for any 𝐮X()\mathbf{u}\in X(\mathcal{B}), there exists a unique 𝐮^L2\hat{\mathbf{u}}\in L_{2} where the map from 𝐮^\hat{\mathbf{u}} to 𝐮\mathbf{u} is defined by a 2D-PI operator. Because differentiation of a PI operator is a PI operator (Section 4.2), this implies that derivatives of 𝐮\mathbf{u} can be expressed in terms of a PI operator acting on 𝐮^\hat{\mathbf{u}}. Using these results, in Thm. 13, we show that for any suitable PDE defined by {Aij,}\{A_{ij},\mathcal{B}\}, there exist 2D-PI operators 𝒯,𝒜\mathcal{T},\mathcal{A} such that 𝐮^L2\hat{\mathbf{u}}\in L_{2} satisfies

𝒯𝐮^˙(t)=𝒜𝐮^(t)\mathcal{T}\dot{\hat{\mathbf{u}}}(t)=\mathcal{A}\hat{\mathbf{u}}(t)

if and only if 𝒯𝐮^X()\mathcal{T}\hat{\mathbf{u}}\in X(\mathcal{B}) satisfies the PDE.

K1=[K30{0,K31,0}{0,K32,0}][L2𝒩1D2D𝒩1D2D],\displaystyle K_{1}=\begin{bmatrix}K_{30}\\ \{0,K_{31},0\}\\ \{0,K_{32},0\}\end{bmatrix}\in\begin{bmatrix}L_{2}\\ \mathcal{N}_{1D\rightarrow 2D}\\ \mathcal{N}_{1D\rightarrow 2D}\end{bmatrix}, K2=[T00000K330000]𝒩2D,\displaystyle K_{2}=\begin{bmatrix}T_{00}&0&0\\ 0&K_{33}&0\\ 0&0&0\end{bmatrix}\in\mathcal{N}_{2D}, (10)
H1\displaystyle H_{1} =[H00H01H020{H11,0,0}000{H22,0,0}]𝒩011,\displaystyle=\begin{bmatrix}H_{00}&H_{01}&H_{02}\\ 0&\{H_{11},0,0\}&0\\ 0&0&\{H_{22},0,0\}\end{bmatrix}\in\mathcal{N}_{011}, H2\displaystyle H_{2} =[H03{H13,0,0}{H23,0,0}][L2𝒩2D1D𝒩2D1D],\displaystyle=\begin{bmatrix}H_{03}\\ \{H_{13},0,0\}\\ \{H_{23},0,0\}\end{bmatrix}\in\begin{bmatrix}L_{2}\\ \mathcal{N}_{2D\rightarrow 1D}\\ \mathcal{N}_{2D\rightarrow 1D}\end{bmatrix}, (11)

where T00T_{00} is as defined in (13) in Fig. 2, and

K31(x,y,θ)=[000In1000(xθ)(yc)(xθ)],K32(x,y,ν)=[000In1000(yν)(xa)(yν)],T00=[In000000000],\displaystyle\begin{matrix}K_{31}(x,y,\theta)=\begin{bmatrix}0&0&0\\ I_{n_{1}}&0&0\\ 0&(x-\theta)&(y-c)(x-\theta)\end{bmatrix},&&\hskip 46.94687ptK_{32}(x,y,\nu)=\begin{bmatrix}0&0&0\\ I_{n_{1}}&0&0\\ 0&(y-\nu)&(x-a)(y-\nu)\end{bmatrix},&&T_{00}=\begin{bmatrix}I_{n_{0}}&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}\end{matrix},
K30(x,y)=[00000In100000In2(xa)(yc)(yc)(xa)],K33(x,y,θ,ν)=[0000In1000(xθ)(yν)].\displaystyle\begin{matrix}K_{30}(x,y)=\begin{bmatrix}0&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ 0&I_{n_{2}}&(x-a)&(y-c)&(y-c)(x-a)\end{bmatrix},&\hskip 56.9055pt&K_{33}(x,y,\theta,\nu)=\begin{bmatrix}0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&(x-\theta)(y-\nu)\end{bmatrix}\end{matrix}.

and where,

H00=[In10000In10000In10000In100000In20000In2(ba)000In20(dc)00In2(ba)(dc)(dc)(ba)00In20000In20000In20(dc)00In20(dc)000In20000In2(ba)000In20000In2(ba)0000In20000In20000In20000In2],\displaystyle H_{00}=\begin{bmatrix}I_{n_{1}}&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ 0&I_{n_{2}}&0&0&0\\ 0&I_{n_{2}}&(b-a)&0&0\\ 0&I_{n_{2}}&0&(d-c)&0\\ 0&I_{n_{2}}&(b-a)&(d-c)&(d-c)(b-a)\\ 0&0&I_{n_{2}}&0&0\\ 0&0&I_{n_{2}}&0&0\\ 0&0&I_{n_{2}}&0&(d-c)\\ 0&0&I_{n_{2}}&0&(d-c)\\ 0&0&0&I_{n_{2}}&0\\ 0&0&0&I_{n_{2}}&(b-a)\\ 0&0&0&I_{n_{2}}&0\\ 0&0&0&I_{n_{2}}&(b-a)\\ 0&0&0&0&I_{n_{2}}\\ 0&0&0&0&I_{n_{2}}\\ 0&0&0&0&I_{n_{2}}\\ 0&0&0&0&I_{n_{2}}\end{bmatrix}, H01(x)=[000In100000In1000000(bx)00000(bx)(dc)(bx)0000In200000In2(dc)00000(bx)00000(bx)00000In200000In2],\displaystyle H_{01}(x)=\begin{bmatrix}0&0&0\\ I_{n_{1}}&0&0\\ 0&0&0\\ I_{n_{1}}&0&0\\ 0&0&0\\ 0&(b-x)&0\\ 0&0&0\\ 0&(b-x)&(d-c)(b-x)\\ 0&0&0\\ 0&I_{n_{2}}&0\\ 0&0&0\\ 0&I_{n_{2}}&(d-c)\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&I_{n_{2}}\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix}, H02(y)=[000000In100In1000000000(dy)00(dy)(ba)(dy)00000000(dy)00(dy)0000000In200In2(ba)00000000In200In2],\displaystyle H_{02}(y)=\begin{bmatrix}0&0&0\\ 0&0&0\\ I_{n_{1}}&0&0\\ I_{n_{1}}&0&0\\ 0&0&0\\ 0&0&0\\ 0&(d-y)&0\\ 0&(d-y)&(b-a)(d-y)\\ 0&0&0\\ 0&0&0\\ 0&0&(d-y)\\ 0&0&(d-y)\\ 0&0&0\\ 0&0&0\\ 0&I_{n_{2}}&0\\ 0&I_{n_{2}}&(b-a)\\ 0&0&0\\ 0&0&0\\ 0&0&I_{n_{2}}\\ 0&0&I_{n_{2}}\end{bmatrix},
H11=[In100In1000In200In2(dc)00In200In2],H22=[In100In1000In200In2(ba)00In200In2],\displaystyle\begin{array}[]{l}H_{11}=\begin{bmatrix}I_{n_{1}}&0&0\\ I_{n_{1}}&0&0\\ 0&I_{n_{2}}&0\\ 0&I_{n_{2}}&(d-c)\\ 0&0&I_{n_{2}}\\ 0&0&I_{n_{2}}\end{bmatrix},\\ \\ H_{22}=\begin{bmatrix}I_{n_{1}}&0&0\\ I_{n_{1}}&0&0\\ 0&I_{n_{2}}&0\\ 0&I_{n_{2}}&(b-a)\\ 0&0&I_{n_{2}}\\ 0&0&I_{n_{2}}\end{bmatrix},\end{array} H13(y)=[0000In1000000(dy)00000In2],H23(x)=[0000In1000000(bx)00000In2],\displaystyle\begin{array}[]{l}H_{13}(y)=\begin{bmatrix}0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&0\\ 0&0&(d-y)\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix},\\ \\ H_{23}(x)=\begin{bmatrix}0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix},\end{array} H03(x,y)=[0000000000In1000000000000(dy)(bx)00000000000(dy)00000000000(bx)00000000000In2].\displaystyle H_{03}(x,y)=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&(d-y)(b-x)\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&(d-y)\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix}.
Figure 1: Parameters K1K_{1}, K2K_{2}, H1H_{1} and H2H_{2} defining the mappings in Lemma 10 and in Corollary 11

6.1 Map From Fundamental State to PDE State

As mentioned above, given the boundary-constrained “PDE state” 𝐮X()\mathbf{u}\in X(\mathcal{B}), we associate a corresponding “fundamental state” 𝐮^L2n0+n1+n2\hat{\mathbf{u}}\in L_{2}^{n_{0}+n_{1}+n_{2}}, defined as

𝐮^(t):=[𝐮^0(t)𝐮^1(t)𝐮^2(t)]=[Ixyx2y2][𝐮0(t)𝐮1(t)𝐮2(t)]\displaystyle\hat{\mathbf{u}}(t):=\begin{bmatrix}\hat{\mathbf{u}}_{0}(t)\\ \hat{\mathbf{u}}_{1}(t)\\ \hat{\mathbf{u}}_{2}(t)\end{bmatrix}=\begin{bmatrix}I&&\\ &\partial_{x}\partial_{y}&\\ &&\partial_{x}^{2}\partial_{y}^{2}\end{bmatrix}\begin{bmatrix}\mathbf{u}_{0}(t)\\ \mathbf{u}_{1}(t)\\ \mathbf{u}_{2}(t)\end{bmatrix} (12)

In the following lemma, we temporarily ignore boundary conditions and use the fundamental theorem of calculus to express any 𝐮L2×H1×H2\mathbf{u}\in L_{2}\times H_{1}\times H_{2} in terms of 𝐮^\hat{\mathbf{u}}, and a set of “core” boundary values.

Lemma 10.

Let 𝐮L2[x,y]×H1[x,y]×H2[x,y]\mathbf{u}\in L_{2}[x,y]\times H_{1}[x,y]\times H_{2}[x,y]. If 𝒦1=𝒫[K1]\mathcal{K}_{1}=\mathcal{P}[K_{1}] and 𝒦2=𝒫[K2]\mathcal{K}_{2}=\mathcal{P}[K_{2}] with K1L2×𝒩1D2D×𝒩1D2DK_{1}\in L_{2}\times\mathcal{N}_{1D\rightarrow 2D}\times\mathcal{N}_{1D\rightarrow 2D} and K2𝒩2DK_{2}\in\mathcal{N}_{2D} as defined in Eqn. (10) in Fig. 1, then

𝐮=𝒦1Λbc𝐮+𝒦2𝐮^\mathbf{u}=\mathcal{K}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{K}_{2}\hat{\mathbf{u}}

where 𝐮^=𝒟𝐮\hat{\mathbf{u}}=\mathcal{D}\mathbf{u} and

Λbc:=[0ΛxaΛyc000ΛxaΛyc00ΛxaΛycx00ΛxaΛycy00ΛxaΛycxy0Λycx000Λycx200Λycx2y0Λxay000Λxay200Λxaxy2]\Lambda_{\text{bc}}:=\begin{bmatrix}\begin{array}[]{lll}0&\Lambda_{x}^{a}\Lambda_{y}^{c}&0\\ 0&0&\Lambda_{x}^{a}\Lambda_{y}^{c}\\ 0&0&\Lambda_{x}^{a}\Lambda_{y}^{c}\partial_{x}\\ 0&0&\Lambda_{x}^{a}\Lambda_{y}^{c}\partial_{y}\\ 0&0&\Lambda_{x}^{a}\Lambda_{y}^{c}\partial_{x}\partial_{y}\\ 0&\Lambda_{y}^{c}\partial_{x}&0\\ 0&0&\Lambda_{y}^{c}\partial_{x}^{2}\\ 0&0&\Lambda_{y}^{c}\partial_{x}^{2}\partial_{y}\\ 0&\Lambda_{x}^{a}\partial_{y}&0\\ 0&0&\Lambda_{x}^{a}\partial_{y}^{2}\\ 0&0&\Lambda_{x}^{a}\partial_{x}\partial_{y}^{2}\end{array}\end{bmatrix}
Proof 6.1.

The proof follows directly from the identities

𝐮(x,y)\displaystyle\mathbf{u}(x,y) =𝐮(a,c)+ax𝐮x(θ,c)𝑑θ\displaystyle=\mathbf{u}(a,c)+\int_{a}^{x}\mathbf{u}_{x}(\theta,c)d\theta
+cy𝐮y(a,ν)𝑑ν+cyax𝐮xy(θ,ν)𝑑θ𝑑ν,\displaystyle\quad+\int_{c}^{y}\mathbf{u}_{y}(a,\nu)d\nu+\int_{c}^{y}\int_{a}^{x}\mathbf{u}_{xy}(\theta,\nu)d\theta d\nu,

and

𝐮(x,y)\displaystyle\mathbf{u}(x,y) =𝐮(a,c)+(xa)𝐮x(a,c)\displaystyle=\mathbf{u}(a,c)+(x-a)\mathbf{u}_{x}(a,c)
+(yc)𝐮y(a,c)+(yc)(xa)𝐮xy(a,c)\displaystyle\hskip 7.11317pt+(y-c)\mathbf{u}_{y}(a,c)+(y-c)(x-a)\mathbf{u}_{xy}(a,c)
+ax(xθ)𝐮xx(θ,c)𝑑θ\displaystyle\hskip 14.22636pt+\int_{a}^{x}(x-\theta)\mathbf{u}_{xx}(\theta,c)d\theta
+cy(yν)𝐮yy(a,ν)𝑑ν\displaystyle\hskip 21.33955pt+\int_{c}^{y}(y-\nu)\mathbf{u}_{yy}(a,\nu)d\nu
+(yc)ax(xθ)𝐮xxy(θ,c)𝑑θ\displaystyle\hskip 28.45274pt+(y-c)\int_{a}^{x}(x-\theta)\mathbf{u}_{xxy}(\theta,c)d\theta
+(xa)cy(yν)𝐮xyy(a,ν)𝑑ν\displaystyle\hskip 35.56593pt+(x-a)\int_{c}^{y}(y-\nu)\mathbf{u}_{xyy}(a,\nu)d\nu
+cyax(yν)(xθ)𝐮xxyy(θ,ν)𝑑θ𝑑ν,\displaystyle\hskip 42.67912pt+\int_{c}^{y}\int_{a}^{x}(y-\nu)(x-\theta)\mathbf{u}_{xxyy}(\theta,\nu)d\theta d\nu,

which follow from the fundamental theorem of calculus.

Corollary 11.

Let 𝐮L2[x,y]×H1[x,y]×H2[x,y]\mathbf{u}\in L_{2}[x,y]\times H_{1}[x,y]\times H_{2}[x,y]. Then, if 1=𝒫[H1]\mathcal{H}_{1}=\mathcal{P}[H_{1}] and 2=𝒫[H2]\mathcal{H}_{2}=\mathcal{P}[H_{2}] with H1𝒩011H_{1}\in\mathcal{N}_{011} and H2L2×𝒩2D1D×𝒩2D1DH_{2}\in L_{2}\times\mathcal{N}_{2D\rightarrow 1D}\times\mathcal{N}_{2D\rightarrow 1D} as defined in Eqn. (11) in Fig. 1, then

Λbf𝐮=1Λbc𝐮+2𝐮^\Lambda_{\text{bf}}\mathbf{u}=\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{H}_{2}\hat{\mathbf{u}}

where 𝐮^=𝒟𝐮\hat{\mathbf{u}}=\mathcal{D}\mathbf{u}, and Λbf\Lambda_{\text{bf}} is as defined in Eqn. (8).

With these definitions, we can express an arbitrary PDE state 𝐮X()\mathbf{u}\in X(\mathcal{B}) in terms of a corresponding state 𝐮^L2n0×n1×n2\hat{\mathbf{u}}\in L_{2}^{n_{0}\times n_{1}\times n_{2}} and Λbc𝐮\Lambda_{\text{bc}}\mathbf{u}. In the following theorem, we describe this relation as a PI operator, incorporating the boundary conditions to describe a map from L2n0×n1×n2L_{2}^{n_{0}\times n_{1}\times n_{2}} to X()X(\mathcal{B}). In doing so, we will require the operator \mathcal{B} to be well-posed, defining sufficient boundary conditions for the solution to the PDE to be uniquely defined. We express this restriction through invertibility of a 011-PI operator.

Definition 12.

Let 1=𝒫[H1]\mathcal{H}_{1}=\mathcal{P}[H_{1}], where H1𝒩011H_{1}\in\mathcal{N}_{011} is as defined in Eqn. (11) in Fig. 1. Then, we say that =𝒫[B]\mathcal{B}=\mathcal{P}[B] for B𝒩011B\in\mathcal{N}_{011} defines a set of well-posed boundary conditions if the operator 1\mathcal{B}\mathcal{H}_{1} is invertible, so that there exist parameters E^𝒩011\hat{E}\in\mathcal{N}_{011} such that 𝒫[E^]=(1)1\mathcal{P}[\hat{E}]=(\mathcal{B}\mathcal{H}_{1})^{-1}.

Define

T:=[T00000T11T120T21T22]𝒩2D\displaystyle T:=\begin{bmatrix}T_{00}&0&0\\ 0&T_{11}&T_{12}\\ 0&T_{21}&T_{22}\end{bmatrix}\in\mathcal{N}_{2D} (13)

where

T11(x,y,θ,ν)=K33(x,y,θ,ν)+T21(x,y,θ,ν)+T12(x,y,θ,ν)T22(x,y,θ,ν),T21(x,y,θ,ν)=K32(x,y,ν)G230(θ,ν)+T22(x,y,θ,ν),T12(x,y,θ,ν)=K311(x,y,θ)G130(θ,ν)+T22(x,y,θ,ν),T22(x,y,θ,ν)=K30(x,y)G03(θ,ν)axK31(x,y,η)G131(η,ν,θ)𝑑ηcyK32(x,y,μ)G231(θ,μ,ν)𝑑μ,T00=[In000000000],\displaystyle\begin{matrix}\begin{array}[]{l}T_{11}(x,y,\theta,\nu)=K_{33}(x,y,\theta,\nu)+T_{21}(x,y,\theta,\nu)+T_{12}(x,y,\theta,\nu)-T_{22}(x,y,\theta,\nu),\\ T_{21}(x,y,\theta,\nu)=-K_{32}(x,y,\nu)G_{23}^{0}(\theta,\nu)+T_{22}(x,y,\theta,\nu),\\ T_{12}(x,y,\theta,\nu)=-K_{31}^{1}(x,y,\theta)G_{13}^{0}(\theta,\nu)+T_{22}(x,y,\theta,\nu),\\ T_{22}(x,y,\theta,\nu)=-K_{30}(x,y)G_{03}(\theta,\nu)-\int_{a}^{x}K_{31}(x,y,\eta)G_{13}^{1}(\eta,\nu,\theta)d\eta-\int_{c}^{y}K_{32}(x,y,\mu)G_{23}^{1}(\theta,\mu,\nu)d\mu,\end{array}&T_{00}=\begin{bmatrix}I_{n_{0}}&0&0\\ 0&0&0\\ 0&0&0\end{bmatrix}\end{matrix},
with the functions KijK_{ij} as defined in (10), and
G0(x,y)=E^00F0(x,y)+E^01(x)F10(x,y)+abE^01(θ)F11(θ,y,x)𝑑θ+E^02(y)F20(x,y)+cdE^02(ν)F21(x,ν,y),\displaystyle\enspace G_{0}(x,y)=\hat{E}_{00}F_{0}(x,y)+\hat{E}_{01}(x)F_{1}^{0}(x,y)+\int_{a}^{b}\hat{E}_{01}(\theta)F_{1}^{1}(\theta,y,x)d\theta+\hat{E}_{02}(y)F_{2}^{0}(x,y)+\int_{c}^{d}\hat{E}_{02}(\nu)F_{2}^{1}(x,\nu,y),
G10(x,y)=E^110(x)F10(x,y),G11(x,y,θ)=E^10(x)F0(θ,y)+E^110(x)F11(x,y,θ)+E^111(x,θ)F10(θ,y)+abE^111(x,η)F11(η,y,θ)𝑑η+E^12(x,y)F20(θ,y)+cdE^12(x,ν)F21(θ,ν,y)𝑑ν,G20(x,y)=E^220(y)F20(x,y),G21(x,y,ν)=E^20(y)F0(x,ν)+E^220(y)F21(x,y,ν)+E^221(y,ν)F20(x,ν)+cdE^221(y,μ)F21(x,μ,ν)𝑑μ+E^21(x,y)F10(x,ν)+abE^21(θ,y)F11(θ,ν,x)𝑑θ,\displaystyle\begin{array}[]{l}G_{1}^{0}(x,y)=\hat{E}_{11}^{0}(x)F_{1}^{0}(x,y),\\ G_{1}^{1}(x,y,\theta)=\hat{E}_{10}(x)F_{0}(\theta,y)+\hat{E}_{11}^{0}(x)F_{1}^{1}(x,y,\theta)\\ \quad+\hat{E}_{11}^{1}(x,\theta)F_{1}^{0}(\theta,y)+\int_{a}^{b}\hat{E}_{11}^{1}(x,\eta)F_{1}^{1}(\eta,y,\theta)d\eta\\ \qquad+\hat{E}_{12}(x,y)F_{2}^{0}(\theta,y)+\int_{c}^{d}\hat{E}_{12}(x,\nu)F_{2}^{1}(\theta,\nu,y)d\nu,\end{array}\hskip 71.13188pt\begin{array}[]{l}G_{2}^{0}(x,y)=\hat{E}_{22}^{0}(y)F_{2}^{0}(x,y),\\ G_{2}^{1}(x,y,\nu)=\hat{E}_{20}(y)F_{0}(x,\nu)+\hat{E}_{22}^{0}(y)F_{2}^{1}(x,y,\nu)\\ \quad+\hat{E}_{22}^{1}(y,\nu)F_{2}^{0}(x,\nu)+\int_{c}^{d}\hat{E}_{22}^{1}(y,\mu)F_{2}^{1}(x,\mu,\nu)d\mu\\ \qquad+\hat{E}_{21}(x,y)F_{1}^{0}(x,\nu)+\int_{a}^{b}\hat{E}_{21}(\theta,y)F_{1}^{1}(\theta,\nu,x)d\theta,\end{array} (22)
with
F0(x,y)=B00H03(x,y)+B01(x)H13(x,y)+B02(y)H23(x,y),F11(x,y,θ)=B10(x)H03(θ,y)+B111(x,θ)H13(θ,y)+B12(x,y)H23(θ,y),F10(x,y)=B110(x)H13(x,y),F21(x,y,ν)=B20(y)H03(x,ν)+B221(y,ν)H23(x,ν)+B21(x,y)H13(x,ν),F20(x,y)=B220(y)H23(x,y),\displaystyle\begin{array}[]{l l}F_{0}(x,y)=B_{00}H_{03}(x,y)+B_{01}(x)H_{13}(x,y)+B_{02}(y)H_{23}(x,y),\\ F_{1}^{1}(x,y,\theta)=B_{10}(x)H_{03}(\theta,y)+B_{11}^{1}(x,\theta)H_{13}(\theta,y)+B_{12}(x,y)H_{23}(\theta,y),&\quad F_{1}^{0}(x,y)=B_{11}^{0}(x)H_{13}(x,y),\\ F_{2}^{1}(x,y,\nu)=B_{20}(y)H_{03}(x,\nu)+B_{22}^{1}(y,\nu)H_{23}(x,\nu)+B_{21}(x,y)H_{13}(x,\nu),&\quad F_{2}^{0}(x,y)=B_{22}^{0}(y)H_{23}(x,y),\end{array} (26)
and [E^00E^01E^02E^10E^11E^12E^20E^21E^22]=inv([E00E01E02E10E11E12E20E21E22])𝒩011\left[\scriptsize\begin{smallmatrix}\hat{E}_{00}&\hat{E}_{01}&\hat{E}_{02}\\ \hat{E}_{10}&\hat{E}_{11}&\hat{E}_{12}\\ \hat{E}_{20}&\hat{E}_{21}&\hat{E}_{22}\end{smallmatrix}\right]=\mathcal{L}_{\text{inv}}\left(\left[\scriptsize\begin{smallmatrix}E_{00}&E_{01}&E_{02}\\ E_{10}&E_{11}&E_{12}\\ E_{20}&E_{21}&E_{22}\end{smallmatrix}\right]\right)\in\mathcal{N}_{011}, where inv:𝒩011𝒩011\mathcal{L}_{\text{inv}}:\mathcal{N}_{011}\rightarrow\mathcal{N}_{011} is defined as in Equation (54) in 12.1, and
E11={E110,E111,E111}𝒩1D,andE22={E220,E221,E221}𝒩1D,with\displaystyle\enspace E_{11}=\{E_{11}^{0},E_{11}^{1},E_{11}^{1}\}\in\mathcal{N}_{1D},\qquad\text{and}\qquad E_{22}=\{E_{22}^{0},E_{22}^{1},E_{22}^{1}\}\in\mathcal{N}_{1D},\qquad\text{with}
E00=B00H00+abB01(x)H10(x)𝑑x+cdB02(y)H20(y)𝑑y,E01(x)=B00H01(x)+B01(x)H11(x),E02(y)=B00H02(y)+B02(y)H22(y),E10(x)=B10(x)H00,E20(y)=B20(y)H00,E110(x)=B110H11,E220(y)=B220H22,E111(x,θ)=B10(x)H01(θ)+B111(x,θ)H11,E221(y,ν)=B20(y)H02(ν)+B221(y,ν)H22,E12(x,y)=B10(x)H02(y)+B12(x,y)H22(y),E21(x,y)=B20(y)H01(x)+B21(x,y)H11(x),\displaystyle\begin{array}[]{l l}E_{00}=B_{00}H_{00}+\int_{a}^{b}B_{01}(x)H_{10}(x)dx+\int_{c}^{d}B_{02}(y)H_{20}(y)dy,\\ E_{01}(x)=B_{00}H_{01}(x)+B_{01}(x)H_{11}(x),&E_{02}(y)=B_{00}H_{02}(y)+B_{02}(y)H_{22}(y),\\ E_{10}(x)=B_{10}(x)H_{00},&E_{20}(y)=B_{20}(y)H_{00},\\ E_{11}^{0}(x)=B_{11}^{0}H_{11},&E_{22}^{0}(y)=B_{22}^{0}H_{22},\\ E_{11}^{1}(x,\theta)=B_{10}(x)H_{01}(\theta)+B_{11}^{1}(x,\theta)H_{11},&E_{22}^{1}(y,\nu)=B_{20}(y)H_{02}(\nu)+B_{22}^{1}(y,\nu)H_{22},\\ E_{12}(x,y)=B_{10}(x)H_{02}(y)+B_{12}(x,y)H_{22}(y),&E_{21}(x,y)=B_{20}(y)H_{01}(x)+B_{21}(x,y)H_{11}(x),\end{array} (33)

where the functions HijH_{ij} are as defined in (11).

Figure 2: Parameters TT describing PI operator 𝒯=𝒫[T]\mathcal{T}=\mathcal{P}[T] mapping the fundamental state back to the PDE state in Theorem 13
Theorem 13.

Let B=[B00B01B02B10B11B12B20B21B22]𝒩011B=\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\in\mathcal{N}_{011} be given, where B11={B110,B111,B111}𝒩1DB_{11}=\{B_{11}^{0},B_{11}^{1},B_{11}^{1}\}\in\mathcal{N}_{1D} and B22={B220,B221,B221}𝒩1DB_{22}=\{B_{22}^{0},B_{22}^{1},B_{22}^{1}\}\in\mathcal{N}_{1D} are separable, and such that :=𝒫[B]\mathcal{B}:=\mathcal{P}[B] defines a set of well-posed boundary conditions as Λbf𝐮=0\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0. Let associated parameters T𝒩2DT\in\mathcal{N}_{2D} be as defined in Eqn. (13) in Fig 2. Then if 𝒯=𝒫[T]\mathcal{T}=\mathcal{P}[T], for any 𝐮X()\mathbf{u}\in X(\mathcal{B}) and 𝐮^L2[x,y]\hat{\mathbf{u}}\in L_{2}[x,y], we have

𝐮=𝒯𝒟𝐮and𝐮^=𝒟𝒯𝐮^.\displaystyle\mathbf{u}=\mathcal{T}\mathcal{D}\mathbf{u}\qquad\text{and}\qquad\hat{\mathbf{u}}=\mathcal{D}\mathcal{T}\hat{\mathbf{u}}.
Proof 6.2.

Suppose 𝐮X()\mathbf{u}\in X(\mathcal{B}), and define 𝐮^=𝒟𝐮L2n0+n1+n2[x,y]\hat{\mathbf{u}}=\mathcal{D}\mathbf{u}\in L_{2}^{n_{0}+n_{1}+n_{2}}[x,y]. Furthermore, let K1K_{1} and K2K_{2} be as defined in Eqn. (10), and H1H_{1} and H2H_{2} be as defined in Eqn. (11), such that (by Lemma 10 and Corollary 11)

Λbf𝐮\displaystyle\Lambda_{\text{bf}}\mathbf{u} =1Λbc𝐮+2𝐮^\displaystyle=\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{H}_{2}\hat{\mathbf{u}}
𝐮\displaystyle\mathbf{u} =𝒦1Λbc𝐮+𝒦2𝐮^,\displaystyle=\mathcal{K}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{K}_{2}\hat{\mathbf{u}}, (34)

where 1=𝒫[H1]\mathcal{H}_{1}=\mathcal{P}[H_{1}], 2=𝒫[H2]\mathcal{H}_{2}=\mathcal{P}[H_{2}], 𝒦1=𝒫[K1]\mathcal{K}_{1}=\mathcal{P}[K_{1}], and 𝒦2=𝒫[K2]\mathcal{K}_{2}=\mathcal{P}[K_{2}]. Enforcing the boundary conditions Λbf𝐮=0\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0, we may use the composition rules of PI operators to express

0=Λbf𝐮=1Λbc𝐮+2𝐮^=Λbc𝐮+𝐮^,\displaystyle 0=\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=\mathcal{B}\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{B}\mathcal{H}_{2}\hat{\mathbf{u}}=\mathcal{E}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{F}\hat{\mathbf{u}},

where =𝒫[E]\mathcal{E}=\mathcal{P}[E] and =𝒫[F]\mathcal{F}=\mathcal{P}[F], with

E\displaystyle E =[E00E01E02E10E11E12E20E21E22]𝒩011,\displaystyle\!=\!\begin{bmatrix}E_{00}&E_{01}&E_{02}\\ E_{10}&E_{11}&E_{12}\\ E_{20}&E_{21}&E_{22}\end{bmatrix}\!\in\mathcal{N}_{011}, F\displaystyle F =[F0F1F2][L2𝒩2D1D𝒩2D1D],\displaystyle\!=\!\begin{bmatrix}F_{0}\\ F_{1}\\ F_{2}\end{bmatrix}\!\in\begin{bmatrix}L_{2}\\ \mathcal{N}_{2D\rightarrow 1D}\\ \mathcal{N}_{2D\rightarrow 1D}\end{bmatrix},

and

E11\displaystyle E_{11} ={E110,E111,E111}𝒩1D\displaystyle=\{E_{11}^{0},E_{11}^{1},E_{11}^{1}\}\in\mathcal{N}_{1D}
E22\displaystyle E_{22} ={E220,E221,E221}𝒩1D\displaystyle=\{E_{22}^{0},E_{22}^{1},E_{22}^{1}\}\in\mathcal{N}_{1D}
F1\displaystyle F_{1} ={F10,F11,F11}𝒩2D1D\displaystyle=\{F_{1}^{0},F_{1}^{1},F_{1}^{1}\}\in\mathcal{N}_{2D\rightarrow 1D}
F2\displaystyle F_{2} ={F20,F21,F21}𝒩2D1D\displaystyle=\{F_{2}^{0},F_{2}^{1},F_{2}^{1}\}\in\mathcal{N}_{2D\rightarrow 1D}

defined as in Equations (26) and (33). By well-posedness of the boundary conditions, operator \mathcal{E} is invertible, so that the boundary state Λbc𝐮\Lambda_{\text{bc}}\mathbf{u} may be expressed directly in terms of the fundamental state 𝐮^\hat{\mathbf{u}} as

Λbc𝐮=1𝐮^=𝒢𝐮^,\displaystyle\Lambda_{\text{bc}}\mathbf{u}=-\mathcal{E}^{-1}\mathcal{F}\hat{\mathbf{u}}=-\mathcal{G}\hat{\mathbf{u}},

where 𝒢=𝒫[G]\mathcal{G}=\mathcal{P}[G] with

G\displaystyle G =[G0G1G2][L2𝒩2D1D𝒩2D1D]\displaystyle=\begin{bmatrix}G_{0}\\ G_{1}\\ G_{2}\end{bmatrix}\in\begin{bmatrix}L_{2}\\ \mathcal{N}_{2D\rightarrow 1D}\\ \mathcal{N}_{2D\rightarrow 1D}\end{bmatrix}
G1\displaystyle G_{1} ={G10,G11,G11}𝒩2D1D\displaystyle=\{G_{1}^{0},G_{1}^{1},G_{1}^{1}\}\in\mathcal{N}_{2D\rightarrow 1D}
G2\displaystyle G_{2} ={G20,G21,G21}𝒩2D1D\displaystyle=\{G_{2}^{0},G_{2}^{1},G_{2}^{1}\}\in\mathcal{N}_{2D\rightarrow 1D}

defined as in Equations (22). Finally, substituting this expression into Equation (6.2), we obtain

𝐮=𝒦1Λbc𝐮+𝒦2𝐮^\displaystyle\mathbf{u}=\mathcal{K}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{K}_{2}\hat{\mathbf{u}} =𝒦1𝒢𝐮^+𝒦2𝐮^\displaystyle=-\mathcal{K}_{1}\mathcal{G}\hat{\mathbf{u}}+\mathcal{K}_{2}\hat{\mathbf{u}}
=(𝒦2𝒦1𝒢)𝐮^=𝒯𝐮^=𝒯𝒟𝐮,\displaystyle=(\mathcal{K}_{2}-\mathcal{K}_{1}\mathcal{G})\hat{\mathbf{u}}=\mathcal{T}\hat{\mathbf{u}}=\mathcal{T}\mathcal{D}\mathbf{u},

as desired.

The converse result 𝐮^=𝒟𝒯𝐮^\hat{\mathbf{u}}=\mathcal{D}\mathcal{T}\hat{\mathbf{u}} for 𝐮^L2\hat{\mathbf{u}}\in L_{2} may be derived using the composition rules for differential operators with PI operators (Lemmas 6 and  7), showing that 𝒟𝒯\mathcal{D}\mathcal{T} describes an identity operation. A full proof of this result can be found in Appendix 12.3.

Corollary 14.

Let 𝒯\mathcal{T} be as defined in Theorem 13. Then 𝒯:L2X()\mathcal{T}:L_{2}\rightarrow X(\mathcal{B}) is unitary with respect to

𝐮,𝐯X:=𝒟𝐮,𝒟𝐯L2\left\langle\mathbf{u},\mathbf{v}\right\rangle_{X}:=\left\langle\mathcal{D}\mathbf{u},\mathcal{D}\mathbf{v}\right\rangle_{L_{2}}
Proof 6.3.

By Thm. 13, for any 𝐮X()\mathbf{u}\in X(\mathcal{B}), there exists 𝐮^=𝒟𝐮L2\hat{\mathbf{u}}=\mathcal{D}\mathbf{u}\in L_{2} such that 𝐮=𝒯𝐮^\mathbf{u}=\mathcal{T}\hat{\mathbf{u}}, hence 𝒯\mathcal{T} is surjective. Furthermore, for any 𝐮^,𝐯^L2\hat{\mathbf{u}},\hat{\mathbf{v}}\in L_{2},

𝒯𝐮^,𝒯𝐯^X=𝒟𝒯𝐮^,𝒟𝒯𝐯^L2=𝐮^,𝐯^L2,\displaystyle\left\langle\mathcal{T}\hat{\mathbf{u}},\mathcal{T}\hat{\mathbf{v}}\right\rangle_{X}=\left\langle\mathcal{D}\mathcal{T}\hat{\mathbf{u}},\mathcal{D}\mathcal{T}\hat{\mathbf{v}}\right\rangle_{L_{2}}=\left\langle\hat{\mathbf{u}},\hat{\mathbf{v}}\right\rangle_{L_{2}},

concluding the proof.

6.2 PDE to PIE conversion

We now demonstrate that, given a PDE defined by {Aij,}\{A_{ij},\mathcal{B}\}, for appropriate choice of 𝒜,𝒯\mathcal{A},\mathcal{T}, we may define a Partial Integral Equation (PIE) whose solutions are equivalent to those of the PDE. Specifically, for given PI operators 𝒯,𝒜\mathcal{T},\mathcal{A}, and an initial condition 𝐮^I\hat{\mathbf{u}}_{\text{I}}, we say 𝐮^(t)\hat{\mathbf{u}}(t) solves the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} for initial condition 𝐮^I\hat{\mathbf{u}}_{\text{I}} if 𝐮^(0)=𝐮^I\hat{\mathbf{u}}(0)=\hat{\mathbf{u}}_{\text{I}}, 𝐮^(t)L2n[x,y]\hat{\mathbf{u}}(t)\in L_{2}^{n}[x,y] for all t0t\geq 0 and for all t0t\geq 0

𝒯𝐮^˙(t)=𝒜𝐮^(t).\displaystyle\mathcal{T}\dot{\hat{\mathbf{u}}}(t)=\mathcal{A}\hat{\mathbf{u}}(t). (35)

The following result shows that if 𝒯\mathcal{T} is as defined in Theorem 13, then 𝐮(t)\mathbf{u}(t) satisfies the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\} if and only if 𝐮^(t)=𝒯𝐮(t)\hat{\mathbf{u}}(t)=\mathcal{T}\mathbf{u}(t) satisfies the PIE defined by {𝒜,𝒯}\{\mathcal{A},\mathcal{T}\}.

Lemma 15.

Suppose 𝒯\mathcal{T} is as defined in Theorem 13, and let

𝒜=i,j=02Aij(xiyj[Nmax{i,j}𝒯]),\displaystyle\mathcal{A}=\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathcal{T}\Bigr{]}\Bigr{)}, (36)

where

N0\displaystyle N_{0} =In0+n1+n2,\displaystyle=I_{n_{0}+n_{1}+n_{2}},
N1\displaystyle N_{1} =[0(n1+n2)×n0In1+n2].\displaystyle=\begin{bmatrix}0_{(n_{1}+n_{2})\times n_{0}}&I_{n_{1}+n_{2}}\end{bmatrix}.
N2\displaystyle N_{2} =[0n2×n00n2×n1In2].\displaystyle=\begin{bmatrix}0_{n_{2}\times n_{0}}&0_{n_{2}\times n_{1}}&I_{n_{2}}\end{bmatrix}.

Then, given 𝐮^IL2n0+n1+n2[x,y]\hat{\mathbf{u}}_{\text{I}}\in L_{2}^{n_{0}+n_{1}+n_{2}}[x,y], 𝐮^(t)\hat{\mathbf{u}}(t) solves the PIE (35) defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} with the initial condition 𝐮^I\hat{\mathbf{u}}_{\text{I}} if and only if 𝐮(t)=𝒯𝐮^(t)\mathbf{u}(t)=\mathcal{T}\hat{\mathbf{u}}(t) satisfies the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\} with the initial condition 𝐮I=𝒯𝐮^I\mathbf{u}_{\text{I}}=\mathcal{T}\hat{\mathbf{u}}_{\text{I}}.

Proof 6.4.

Let 𝐮^L2\hat{\mathbf{u}}\in L_{2} be such that 𝐮=𝒯𝐮^X()\mathbf{u}=\mathcal{T}\hat{\mathbf{u}}\in X(\mathcal{B}) is a solution to the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\}, and with initial condition 𝐮I=𝒯𝐮^I\mathbf{u}_{\text{I}}=\mathcal{T}\hat{\mathbf{u}}_{\text{I}}. Then, by Theorem 13,

𝐮^(t=0)=𝒟𝐮(t=0)=𝒟𝐮I=𝒟𝒯𝐮^I=𝐮^I,\hat{\mathbf{u}}(t=0)=\mathcal{D}\mathbf{u}(t=0)=\mathcal{D}\mathbf{u}_{\text{I}}=\mathcal{D}\mathcal{T}\hat{\mathbf{u}}_{\text{I}}=\hat{\mathbf{u}}_{\text{I}},

and, invoking Eqn. (6) for the standardized PDE,

𝒯𝐮^˙(t)\displaystyle\mathcal{T}\dot{\hat{\mathbf{u}}}(t) =𝐮˙(t)\displaystyle=\dot{\mathbf{u}}(t)
=i,j=02Aij(xiyj[Nmax{i,j}𝐮(t)])\displaystyle=\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathbf{u}(t)\Bigr{]}\Bigr{)}
=i,j=02Aij(xiyj[Nmax{i,j}𝒯𝐮^(t)])\displaystyle=\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathcal{T}\hat{\mathbf{u}}(t)\Bigr{]}\Bigr{)}
=i,j=02Aij(xiyj[Nmax{i,j}𝒯])𝐮^(t)=𝒜𝐮^(t),\displaystyle=\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathcal{T}\Bigr{]}\Bigr{)}\hat{\mathbf{u}}(t)=\mathcal{A}\hat{\mathbf{u}}(t),

suggesting 𝐮^\hat{\mathbf{u}} is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\}.

Conversely, let 𝐮^\hat{\mathbf{u}} be a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\}, and with initial condition 𝐮^I\hat{\mathbf{u}}_{\text{I}}. Then, by Theorem 13,

𝐮(t=0)=𝒯𝐮^(t=0)=𝒯𝐮^I=𝐮I,\mathbf{u}(t=0)=\mathcal{T}\hat{\mathbf{u}}(t=0)=\mathcal{T}\hat{\mathbf{u}}_{\text{I}}=\mathbf{u}_{\text{I}},

and, invoking Eqn. (6) for the standardized PDE,

𝐮˙(t)\displaystyle\dot{\mathbf{u}}(t) =𝒯𝐮^˙(t)=𝒜𝐮^(t)\displaystyle=\mathcal{T}\dot{\hat{\mathbf{u}}}(t)=\mathcal{A}\hat{\mathbf{u}}(t)
=[i,j=02Aij(xiyj[Nmax{i,j}𝒯])]𝐮^(t)\displaystyle=\left[\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathcal{T}\Bigr{]}\Bigr{)}\right]\hat{\mathbf{u}}(t)
=i,j=02Aij(xiyj[Nmax{i,j}𝒯𝐮^(t)])\displaystyle=\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathcal{T}\hat{\mathbf{u}}(t)\Bigr{]}\Bigr{)}
=i,j=02Aij(xiyj[Nmax{i,j}𝐮(t)]),\displaystyle=\sum_{i,j=0}^{2}A_{ij}\Bigl{(}\partial_{x}^{i}\partial_{y}^{j}\Bigl{[}N_{\max\{i,j\}}\mathbf{u}(t)\Bigr{]}\Bigr{)},

suggesting 𝐮=𝒯𝐮^\mathbf{u}=\mathcal{T}\hat{\mathbf{u}} is a solution to the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\}, as desired.

Specific examples of PDEs and their PIE equivalents are given in Section 9. In the following section, we propose stability conditions for the PIE which can be enforced using LMIs.

7 Stability as an LPI

Having derived an equivalent PIE representation of PDEs, we now show how this representation can be used for stability analysis. First, we show that existence of a quadratic Lyapunov function for a PIE can be posed as a convex Linear PI Inequality (LPI) optimization problem, with variables of the form 𝒫=𝒫[P]\mathcal{P}=\mathcal{P}[P] for P𝒩2DP\in\mathcal{N}_{2D}, and inequality constraints of the form 𝒫0\mathcal{P}\geq 0. Next, we show how to use LMIs to parameterize the cone of positive semidefinite 2D-PI operators - allowing us to test the Lyapunov stability criterion. Finally, we will discuss a PIETOOLS numerical implementation of this stability test, which will be applied to several numerical examples in Section 9.

7.1 Lyapunov Stability Criterion

We first express the problem of existence of a quadratic Lyapunov function as an LPI, whose feasibility implies stability of the associated PIE and PDE. Specifically, the following theorem tests for existence of a quadratic Lyapunov function of the form V(𝐮)=𝐮,𝒫𝐮L2=𝐮^,𝒯𝒫𝒯𝐮^L2α𝐮L22V(\mathbf{u})=\left\langle\mathbf{u},\mathcal{P}\mathbf{u}\right\rangle_{L_{2}}=\left\langle\hat{\mathbf{u}},\mathcal{T}^{*}\mathcal{P}\mathcal{T}\hat{\mathbf{u}}\right\rangle_{L_{2}}\geq\alpha\left\lVert{\mathbf{u}}\right\rVert^{2}_{L_{2}} such that V˙(𝐮(t))δ𝐮(t)L22\dot{V}(\mathbf{u}(t))\leq\delta\left\lVert{\mathbf{u}(t)}\right\rVert^{2}_{L_{2}} for any solution 𝐮\mathbf{u} of the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\}.

Theorem 16.

Suppose 𝒯\mathcal{T} and 𝒜\mathcal{A} are as defined in Theorem 13 and Lemma 15 respectively, and that there exist ϵ,δ>0\epsilon,\delta>0 and P𝒩2DP\in\mathcal{N}_{2D} such that the PI operator 𝒫:=𝒫[P]\mathcal{P}:=\mathcal{P}[P] satisfies 𝒫=𝒫\mathcal{P}=\mathcal{P}^{*}, 𝒫ϵI\mathcal{P}\geq\epsilon I, and

𝒜𝒫𝒯+𝒯𝒫𝒜δ𝒯𝒯.\mathcal{A}^{*}\mathcal{P}\mathcal{T}+\mathcal{T}^{*}\mathcal{P}\mathcal{A}\leq-\delta\mathcal{T}^{*}\mathcal{T}.

Then, any solution 𝐮(t)X()\mathbf{u}(t)\in X(\mathcal{B}) of the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\} satisfies

𝐮(t)L22ζϵ𝐮(0)L22eδζt,\|\mathbf{u}(t)\|_{L_{2}}^{2}\leq\frac{\zeta}{\epsilon}\|\mathbf{u}(0)\|_{L_{2}}^{2}e^{-\frac{\delta}{\zeta}t},

where ζ=𝒫L2\zeta=\|\mathcal{P}\|_{\mathcal{L}_{L_{2}}}.

Proof 7.1.

Let 𝐮X\mathbf{u}\in X be an arbitrary solution to the PDE defined by {Aij,}\{A_{ij},\mathcal{B}\}, so that 𝐮^=𝒟𝐮L2\hat{\mathbf{u}}=\mathcal{D}\mathbf{u}\in L_{2} is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\}. Consider the candidate Lyapunov function V:L2V:L_{2}\rightarrow\mathbb{R} defined as

V(𝐯^)=𝒯𝐯^,𝒫𝒯𝐯^L2ϵ𝒯𝐯^L22.\displaystyle V(\hat{\mathbf{v}})=\left\langle\mathcal{T}\hat{\mathbf{v}},\mathcal{P}\mathcal{T}\hat{\mathbf{v}}\right\rangle_{L_{2}}\geq\epsilon\|\mathcal{T}\hat{\mathbf{v}}\|^{2}_{L_{2}}.

Since 𝒫L2=ζ\|\mathcal{P}\|_{\mathcal{L}_{L_{2}}}=\zeta, this function is bounded from above as

V(𝐯^)=𝒯𝐯^,𝒫𝒯𝐯^L2ζ𝒯𝐯^L22.\displaystyle V(\hat{\mathbf{v}})=\left\langle\mathcal{T}\hat{\mathbf{v}},\mathcal{P}\mathcal{T}\hat{\mathbf{v}}\right\rangle_{L_{2}}\leq\zeta\|\mathcal{T}\hat{\mathbf{v}}\|_{L_{2}}^{2}.

In addition, since 𝐮^\hat{\mathbf{u}} is a solution to the PIE, the temporal derivative of VV along 𝐮^\hat{\mathbf{u}} satisfies

V˙(𝐮^)\displaystyle\dot{V}(\hat{\mathbf{u}}) =𝒯𝐮^˙,𝒫𝒯𝐮^L2+𝒯𝐮^,𝒫𝒯𝐮^˙L2\displaystyle=\left\langle\mathcal{T}\dot{\hat{\mathbf{u}}},\mathcal{P}\mathcal{T}\hat{\mathbf{u}}\right\rangle_{L_{2}}+\left\langle\mathcal{T}\hat{\mathbf{u}},\mathcal{P}\mathcal{T}\dot{\hat{\mathbf{u}}}\right\rangle_{L_{2}}
=𝒜𝐮^,𝒫𝒯𝐮^L2+𝒯𝐮^,𝒫𝒜𝐮^L2\displaystyle=\left\langle\mathcal{A}\hat{\mathbf{u}},\mathcal{P}\mathcal{T}\hat{\mathbf{u}}\right\rangle_{L_{2}}+\left\langle\mathcal{T}\hat{\mathbf{u}},\mathcal{P}\mathcal{A}\hat{\mathbf{u}}\right\rangle_{L_{2}}
=𝐮^,(𝒜𝒫𝒯+𝒯𝒫𝒜)𝐮^L2\displaystyle=\left\langle\hat{\mathbf{u}},\left(\mathcal{A}^{*}\mathcal{P}\mathcal{T}+\mathcal{T}^{*}\mathcal{P}\mathcal{A}\right)\hat{\mathbf{u}}\right\rangle_{L_{2}}
δ𝒯𝐮^L22δζV(𝐮^).\displaystyle\leq-\delta\|\mathcal{T}\hat{\mathbf{u}}\|^{2}_{L_{2}}\leq-\frac{\delta}{\zeta}V(\hat{\mathbf{u}}).

Applying the Grönwell-Bellman inequality, it immediately follows that

V(𝐮^(t))V(𝐮^(0))eδζt,\displaystyle V(\hat{\mathbf{u}}(t))\leq V(\hat{\mathbf{u}}(0))e^{-\frac{\delta}{\zeta}t},

implying

𝒯𝐮^(t)L22ζϵ𝒯𝐮^(0)L22eδζt,\displaystyle\|\mathcal{T}\hat{\mathbf{u}}(t)\|^{2}_{L_{2}}\leq\frac{\zeta}{\epsilon}\|\mathcal{T}\hat{\mathbf{u}}(0)\|_{L_{2}}^{2}e^{-\frac{\delta}{\zeta}t},

and thus

𝐮(t)L22ζϵ𝐮(0)L22eδζt.\displaystyle\|\mathbf{u}(t)\|^{2}_{L_{2}}\leq\frac{\zeta}{\epsilon}\|\mathbf{u}(0)\|_{L_{2}}^{2}e^{-\frac{\delta}{\zeta}t}.

In this stability condition, the decision variable is P𝒩2Dn×nP\in\mathcal{N}_{2D}^{n\times n} and the constraints are operator inequalities on the inner product space L2L_{2}. While the decision variables may be readily parameterized using polynomials, to numerically enforce the inequality constraints, we need to parameterize the cone of operators in 𝒩2Dn×n\mathcal{N}_{2D}^{n\times n} which are positive semidefinite. This problem will be addressed in the following subsection.

7.2 A Parameterization of Positive PI Operators

Having posed the PDE stability problem as an LPI, we now show how to parameterize the cone of positive 2D-PI operators using positive matrices. Specifically, we have the following result.

Proposition 17.

For any ZL2q×n[x,y,θ,ν]Z\in L_{2}^{q\times n}[x,y,\theta,\nu] and scalar function gL2[x,y]g\in L_{2}[x,y] satisfying g(x,y)0g(x,y)\geq 0 for all x,y[a,b]×[c,d]x,y\in[a,b]\times[c,d] let PI:9q×9q𝒩2Dn×n\mathcal{L}_{\text{PI}}:\mathbb{R}^{9q\times 9q}\rightarrow\mathcal{N}_{2D}^{n\times n} be as defined in Eqn. (81) in Appendix 12.4. Then for any P0P\geq 0, if N=PI(P)N=\mathcal{L}_{\text{PI}}(P), we have that 𝒫[N]=𝒫[N]\mathcal{P}^{*}[N]=\mathcal{P}[N], and 𝐮,𝒫[N]𝐮L20\left\langle\mathbf{u},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}}\geq 0 for any 𝐮L2n[x,y]\mathbf{u}\in L_{2}^{n}[x,y].

Outline of Proof

Given ZZ and scalar function gg, a 2D-PI operator 𝒵:L2n[x,y]L2n[x,y]\mathcal{Z}:L_{2}^{n}[x,y]\rightarrow L_{2}^{n}[x,y] is defined as in Eqn. (91), where each of the defining parameters is a product of ZZ and g\sqrt{g}. Then, if N=PI(P)N=\mathcal{L}_{\text{PI}}(P) for some matrix PP, by definition of the map PI\mathcal{L}_{\text{PI}}, the associated PI operator is such that 𝒫[N]=𝒵P𝒵\mathcal{P}[N]=\mathcal{Z}^{*}P\mathcal{Z}. It follows that, for any P0P\geq 0,

𝐮,𝒫[N]𝐮L2\displaystyle\left\langle\mathbf{u},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}} =𝒵𝐮,P𝒵𝐮L2=P12𝒵𝐮,P12𝒵𝐮L20\displaystyle=\left\langle\mathcal{Z}\mathbf{u},P\mathcal{Z}\mathbf{u}\right\rangle_{L_{2}}=\left\langle P^{\frac{1}{2}}\mathcal{Z}\mathbf{u},P^{\frac{1}{2}}\mathcal{Z}\mathbf{u}\right\rangle_{L_{2}}\geq 0

for any 𝐮L2n[x,y]\mathbf{u}\in L_{2}^{n}[x,y], as desired. For the full proof of this proposition, please see Appendix 12.4.

Using Prop. 17, we may enforce an LPI with variable 𝒫[PI(P)]\mathcal{P}[\mathcal{L}_{\text{PI}}(P)] using an LMI constraint on PP. For this test, we use a monomial basis, ZdZ_{d} for ZZ, thus implying the parameters in N=PI(P)N=\mathcal{L}_{\text{PI}}(P) will be polynomial. For our choice of g(x,y)0g(x,y)\geq 0, we may choose g(x,y)=1g(x,y)=1 (implying the inequality is valid over any domain), or g(x,y)=(xa)(bx)(yc)(dy)g(x,y)=(x-a)(b-x)(y-c)(d-y), implying the operator is positive only on the domain (x,y)[a,b]×[c,d](x,y)\in[a,b]\times[c,d].

In the following section, we will apply Prop 17 to obtain an LMI for stability of a given PDE. For this section we use the notation

Ωd:={\displaystyle\Omega_{d}:=\{ 𝒫[N]+𝒫[M]N,M𝒩2D are of Form (81)\displaystyle\mathcal{P}[N]+\mathcal{P}[M]\mid N,M\in\mathcal{N}_{2D}\text{ are of Form~{}\eqref{eq_posmat_to_posPI_appendix}}
with Zi=Zd and g(x,y)=1 and respectively\displaystyle~{}\text{with }Z_{i}=Z_{d}\text{ and }g(x,y)=1\text{ and respectively}
g(x,y)=(xa)(bx)(yc)(dy)}\displaystyle\hskip 31.2982ptg(x,y)=(x-a)(b-x)(y-c)(d-y)\}

where now 𝒫Ωd\mathcal{P}\in\Omega_{d} is an LMI constraint which implies 𝒫:L2[x,y]L2[x,y]\mathcal{P}:L_{2}[x,y]\rightarrow L_{2}[x,y] is a positive operator on L2[x,y]L_{2}[x,y].

8 PIETOOLS Implementation

In this section, we show how the PIETOOLS 2021b toolbox may be used to perform stability analysis of PDEs. This toolbox offers a framework for implementation and manipulation of PI operators in MATLAB, allowing e.g. Lyapunov stability analysis [9], robust stability analysis [13], and HH_{\infty}-optimal control [11] of PDEs. For a detailed manual of the PIETOOLS toolbox we refer to [8].

To implement PI operators in MATLAB, the dpvar class of polynomial objects is used to define the polynomial functions NN parameterizing PI operators 𝒫[N]\mathcal{P}[N]. A class of 0112-PI operators is then defined as opvar2d objects, and overloaded with standard operations such as multiplication (*), addition (+) and adjoint (’) presented in earlier sections. Defining decision operators dopvar2d in terms of positive matrices, we may also enforce positivity conditions 𝒫Ωd\mathcal{P}\in\Omega_{d}, allowing stability to be tested with any LMI solver.

An overview of the steps performed in this process is provided below.

  1. 1.

    Define the independent polynomial variables. These are the spatial variables in the PDE. Also define the “dummy” variables θ\theta and ν\nu.

     pvar x y tt nu; 
    
  2. 2.

    Initialize an optimization program structure X.

     X = sosprogram([x y tt nu]); 
    
  3. 3.

    Construct the PDE, defining the sizes n0,n1,n2n_{0},n_{1},n_{2} of the state variables, the matrices AijA_{ij} defining the PDE, and an opvar2d object Ebb defining \mathcal{B}. Convert these to a corresponding PIE using convert_PIETOOLS_PDE, and extract opvar2d objects 𝒯\mathcal{T} and 𝒜\mathcal{A}.

     PDE.n.n_pde = [n0,n1,n2];
     PDE.dom = [a,b;c,d];
     PDE.PDE.A = ...;ΨPDE.BC.Ebb = ...;
     PIE = convert_PIETOOLS_PDE(PDE);
     T = PIE.T;        A = PIE.A; 
    
  4. 4.

    Declare a positive operator 𝒫Ωd\mathcal{P}\in\Omega_{d} as a dopvar2d object, using maximal monomial degree dd\in\mathbb{N}, and spatial domain dom. Add a small constant ϵ<<1\epsilon<<1 to ensure strict positivity. Impose the additional requirement δ𝒯𝒯𝒜𝒫𝒯𝒯𝒫𝒜Ωd-\delta\mathcal{T}^{*}\mathcal{T}-\mathcal{A}^{*}\mathcal{P}\mathcal{T}-\mathcal{T}^{*}\mathcal{P}\mathcal{A}\in\Omega_{d} for some δ>0\delta>0.

      [X, P] = poslpivar_2d(X,n,dom,d);
      P = P + eps;
      D = -del*(T’*T) - A’*P*T - T’*P*A;
      X = lpi_ineq_2d(X,D); 
    
  5. 5.

    Call the SDP solver.

      X = sossolve(X); 
    
  6. 6.

    Get the solution 𝒫\mathcal{P}, certifying stability.

      Psol = getsol_lpivar_2d(X,P); 
    

9 Illustrative Examples

To illustrate the techniques described in the previous sections, we will apply them to several simple examples. In each case, we will show how the problem may be expressed in the standardized format, as well as how the corresponding PIE is defined, and we will numerically test stability.

9.1 Heat Equation

As a first example, we consider a 2D heat equation

ut(t,x,y)\displaystyle u_{t}(t,x,y) =uxx(t,x,y)+uyy(t,x,y),\displaystyle=u_{xx}(t,x,y)+u_{yy}(t,x,y),
u(x,0)\displaystyle u(x,0) =uy(x,0)=u(0,y)=ux(0,y)=0.\displaystyle=u_{y}(x,0)=u(0,y)=u_{x}(0,y)=0.

To describe this system in the standardized Format (6), we use PDE state 𝐮=𝐮2=uH2n2[x,y]\mathbf{u}=\mathbf{u}_{2}=u\in H_{2}^{n_{2}}[x,y] with n2=1n_{2}=1, and define A20=A02=1A_{20}=A_{02}=1, setting Aij=0A_{ij}=0 for all other i,j{0,1,2}i,j\in\{0,1,2\}. To enforce the boundary conditions, we require 𝐮(1,0)=𝐮x(0,0)=𝐮y(0,1)=𝐮xy(0,0)=0\mathbf{u}(1,0)=\mathbf{u}_{x}(0,0)=\mathbf{u}_{y}(0,1)=\mathbf{u}_{xy}(0,0)=0, as well as 𝐮xx(x,0)=𝐮xxy(x,0)=𝐮yy(0,y)=𝐮xyy(0,y)=0\mathbf{u}_{xx}(x,0)=\mathbf{u}_{xxy}(x,0)=\mathbf{u}_{yy}(0,y)=\mathbf{u}_{xyy}(0,y)=0, which can be expressed as BΛbf𝐮=0B\Lambda_{\text{bf}}\mathbf{u}=0 where

B\displaystyle B =[010000000000000000000000000010000000000000000000000000000010000000000000000000000000100000000000000000000000000010000000000000000000000000100000000000000000000000001000000000000000000000000010]8×24\displaystyle=\left[\scriptsize\setcounter{MaxMatrixCols}{24}\begin{smallmatrix}0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0\end{smallmatrix}\right]\in\mathbb{R}^{8\times 24}

Here we note that, any matrix Bm0+2m1×n0+2n1B\in\mathbb{R}^{m_{0}+2m_{1}\times n_{0}+2n_{1}} may be represented as a diagonal PI operator =𝒫[B00000B11000B22]\mathcal{B}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&0&0\\ 0&B_{11}&0\\ 0&0&B_{22}\end{smallmatrix}\right] through appropriate choice of the parameters B00m0×n0B_{00}\in\mathbb{R}^{m_{0}\times n_{0}}, B11={B110,0,0}𝒩1Dm1×n1B_{11}=\{B_{11}^{0},0,0\}\in\mathcal{N}_{1D}^{m_{1}\times n_{1}} and B22={B220,0,0}𝒩1Dm1×n1B_{22}=\{B_{22}^{0},0,0\}\in\mathcal{N}_{1D}^{m_{1}\times n_{1}}, so that the boundary conditions BΛbf𝐮=0B\Lambda_{\text{bf}}\mathbf{u}=0 may also be written in the standardized format Λbf𝐮=0\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0. Then, we may describe the system as a PDE defined by {Aij,B}\{A_{ij},B\} (or really {Aij,}\{A_{ij},\mathcal{B}\}), for which we obtain a corresponding PIE representation

𝒯𝐮^˙\displaystyle\mathcal{T}\dot{\hat{\mathbf{u}}} =0x0y(xθ)(yν)𝐮^˙(θ,ν)𝑑ν𝑑θ\displaystyle=\int_{0}^{x}\int_{0}^{y}(x-\theta)(y-\nu)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu d\theta
=0x(xθ)𝐮^(θ,y)𝑑θ+0y(yν)𝐮^(x,ν)𝑑ν=𝒜𝐮^,\displaystyle=\int_{0}^{x}(x-\theta)\hat{\mathbf{u}}(\theta,y)d\theta+\int_{0}^{y}(y-\nu)\hat{\mathbf{u}}(x,\nu)d\nu=\mathcal{A}\hat{\mathbf{u}},

where 𝐮^=uxxyy\hat{\mathbf{u}}=u_{xxyy} is the fundamental state.

For the purpose of testing accuracy of the stability analysis, we consider the following system, as presented in [14],

ut(t,x,y)\displaystyle u_{t}(t,x,y) =uxx(t,x,y)+uyy(t,x,y)+ru(t,x,y),\displaystyle=u_{xx}(t,x,y)+u_{yy}(t,x,y)+ru(t,x,y),
u(x,0)\displaystyle u(x,0) =u(0,y)=u(x,1)=u(1,y)=0,\displaystyle=u(0,y)=u(x,1)=u(1,y)=0,

where h,r>0h,r>0 are positive constants. This system may be represented in the standardized format by letting A20=A02=hA_{20}=A_{02}=h, as well as A00=rA_{00}=r, with all other matrices Aij=0A_{ij}=0. For the boundary conditions, we require 𝐮(0,0)=𝐮y(1,0)=𝐮x(1,1)=𝐮y(0,1)=0\mathbf{u}(0,0)=\mathbf{u}_{y}(1,0)=\mathbf{u}_{x}(1,1)=\mathbf{u}_{y}(0,1)=0, as well as 𝐮xx(x,0)=𝐮xx(x,1)=𝐮yy(0,y)=𝐮yy(1,y)=0\mathbf{u}_{xx}(x,0)=\mathbf{u}_{xx}(x,1)=\mathbf{u}_{yy}(0,y)=\mathbf{u}_{yy}(1,y)=0, which may be enforced as BΛbc𝐮=0B\Lambda_{\text{bc}}\mathbf{u}=0, where

B\displaystyle B =[100000000000000000000000000000010000000000000000000000000100000000000000000000000010000000000000000000000000000010000000000000000000000001000000000000000000000000001000000000000000000000000100]8×24\displaystyle=\left[\scriptsize\setcounter{MaxMatrixCols}{24}\begin{smallmatrix}1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\end{smallmatrix}\right]\in\mathbb{R}^{8\times 24}

Implementing this system in PIETOOLS 2021b, we obtain a PIE representation

0xg(x,θ)[0yg(y,ν)𝐮^˙(θ,ν)dν+y1g(ν,y)𝐮^˙(θ,ν)dν]dθ\displaystyle\int_{0}^{x}\!g(x,\theta)\biggl{[}\int_{0}^{y}\!g(y,\nu)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu\!+\!\int_{y}^{1}\!g(\nu,y)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu\biggl{]}d\theta
+x1g(θ,x)[0yg(y,ν)𝐮^˙(θ,ν)dν+y1g(ν,y)𝐮^˙(θ,ν)dν]dθ\displaystyle+\!\int_{x}^{1}\!g(\theta,x)\biggl{[}\int_{0}^{y}\!g(y,\nu)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu\!+\!\int_{y}^{1}\!g(\nu,y)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu\biggl{]}d\theta
=r0xg(x,θ)[0yg(y,ν)𝐮^(θ,ν)dν+y1g(ν,y)𝐮^(θ,ν)dν]dθ\displaystyle=\!r\int_{0}^{x}\!g(x,\theta)\biggl{[}\int_{0}^{y}\!g(y,\nu)\hat{\mathbf{u}}(\theta,\nu)d\nu\!+\!\int_{y}^{1}\!g(\nu,y)\hat{\mathbf{u}}(\theta,\nu)d\nu\biggl{]}d\theta
+rx1g(θ,x)[0yg(y,ν)𝐮^(θ,ν)dν+y1g(ν,y)𝐮^(θ,ν)dν]dθ\displaystyle+\!r\int_{x}^{1}\!g(\theta,x)\biggl{[}\int_{0}^{y}\!g(y,\nu)\hat{\mathbf{u}}(\theta,\nu)d\nu\!+\!\int_{y}^{1}\!g(\nu,y)\hat{\mathbf{u}}(\theta,\nu)d\nu\biggl{]}d\theta
+h0xg(x,θ)𝐮^(θ,y)𝑑θ+x1g(θ,x)𝐮^(θ,y)𝑑θ\displaystyle\quad+\!h\int_{0}^{x}\!g(x,\theta)\hat{\mathbf{u}}(\theta,y)d\theta\!+\!\int_{x}^{1}\!g(\theta,x)\hat{\mathbf{u}}(\theta,y)d\theta
+h0yg(y,ν)𝐮^(x,ν)𝑑ν+y1g(ν,y)𝐮^(x,ν)𝑑ν,\displaystyle\qquad+\!h\int_{0}^{y}\!g(y,\nu)\hat{\mathbf{u}}(x,\nu)d\nu\!+\!\int_{y}^{1}\!g(\nu,y)\hat{\mathbf{u}}(x,\nu)d\nu,

where we define

g(s,η)=(s1)η\displaystyle g(s,\eta)=(s-1)\eta

Letting =1\ell=1 and h=1h=1, stability of this system can be proven analytically whenever r2π2=19.739r\leq 2\pi^{2}=19.739.... Using PIETOOLS 2021b, performing a bisection search over rr and using monomial degree d=3d=3, exponential stability can be verified for any r19.736r\leq 19.736.

9.2 Wave Equation

As a second example, we consider a 2D wave equation

u¨(t,x,y)\displaystyle\ddot{u}(t,x,y) =uxx(t,x,y)+uyy(t,x,y),\displaystyle=u_{xx}(t,x,y)+u_{yy}(t,x,y),
u(x,0)\displaystyle u(x,0) =uy(x,0)=ux(0,y)=u(0,y)=0.\displaystyle=u_{y}(x,0)=u_{x}(0,y)=u(0,y)=0.

To write this system in the standardized form, we define 𝐮1=u\mathbf{u}_{1}=u and 𝐮2=u˙\mathbf{u}_{2}=\dot{u}, so that the PDE may be denoted as

[𝐮˙1𝐮˙2]\displaystyle\begin{bmatrix}\dot{\mathbf{u}}_{1}\\ \dot{\mathbf{u}}_{2}\end{bmatrix} =[0100][𝐮1𝐮2]+[0010]x2[𝐮1𝐮2]+[0010]y2[𝐮1𝐮2]\displaystyle=\begin{bmatrix}0&1\\ 0&0\end{bmatrix}\begin{bmatrix}\mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}+\begin{bmatrix}0&0\\ 1&0\end{bmatrix}\partial_{x}^{2}\begin{bmatrix}\mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}+\begin{bmatrix}0&0\\ 1&0\end{bmatrix}\partial_{y}^{2}\begin{bmatrix}\mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}
=A00𝐮+A20x2𝐮+A02y2𝐮\displaystyle=A_{00}\mathbf{u}+A_{20}\partial_{x}^{2}\mathbf{u}+A_{02}\partial_{y}^{2}\mathbf{u}

Requiring 𝐮(1,0)=𝐮x(0,0)=𝐮y(0,1)=𝐮xy(0,0)=0\mathbf{u}(1,0)=\mathbf{u}_{x}(0,0)=\mathbf{u}_{y}(0,1)=\mathbf{u}_{xy}(0,0)=0, and 𝐮xx(x,0)=𝐮xxy(x,0)=𝐮yy(0,y)=𝐮xyy(0,y)=0\mathbf{u}_{xx}(x,0)=\mathbf{u}_{xxy}(x,0)=\mathbf{u}_{yy}(0,y)=\mathbf{u}_{xyy}(0,y)=0, we may write the boundary conditions as BΛbf𝐮=0B\Lambda_{\text{bf}}\mathbf{u}=0, where

B\displaystyle B =[0I00000000000000000000000000I00000000000000000000000000000I0000000000000000000000000I000000000000000000000000000I0000000000000000000000000I00000000000000000000000000I0000000000000000000000000I]16×48.\displaystyle=\left[\scriptsize\setcounter{MaxMatrixCols}{24}\begin{smallmatrix}0&I&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&I&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&I&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&I&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&I&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&I&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&I&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&I\end{smallmatrix}\right]\in\mathbb{R}^{16\times 48}.

Letting 𝐮^=𝐮xxyy\hat{\mathbf{u}}=\mathbf{u}_{xxyy}, the associated PIE representation is

𝒯𝐮^˙=0x0y[(xθ)(yν)00(xθ)(yν)]𝐮^˙(θ,ν)𝑑ν𝑑θ\displaystyle\mathcal{T}\dot{\hat{\mathbf{u}}}\!=\!\int_{0}^{x}\!\int_{0}^{y}\begin{bmatrix}(x-\theta)(y-\nu)&\!\!\!0\\ 0&\!\!\!(x-\theta)(y-\nu)\end{bmatrix}\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu d\theta
=0x[0(xθ)00]𝐮^(θ,y)𝑑θ+0y[0(yν)00]𝐮^(x,ν)𝑑ν\displaystyle=\!\int_{0}^{x}\begin{bmatrix}0&\!\!(x-\theta)\\ 0&\!\!0\end{bmatrix}\hat{\mathbf{u}}(\theta,y)d\theta+\int_{0}^{y}\begin{bmatrix}0&\!\!(y-\nu)\\ 0&\!\!0\end{bmatrix}\hat{\mathbf{u}}(x,\nu)d\nu
+0x0y[00(xθ)(yν)0]𝐮^(θ,ν)𝑑ν𝑑θ=𝒜𝐮^,\displaystyle\qquad+\int_{0}^{x}\int_{0}^{y}\begin{bmatrix}0&\!0\\ (x-\theta)(y-\nu)&\!0\end{bmatrix}\hat{\mathbf{u}}(\theta,\nu)d\nu d\theta=\mathcal{A}\hat{\mathbf{u}},

where 𝐮^=𝐮xxyy\hat{\mathbf{u}}=\mathbf{u}_{xxyy} is the fundamental state. Simulation suggests the system is neutrally stable (γ=0\gamma=0 in Defn. 9) with the alternative boundary conditions u(x,0)=u(x,1)=u(0,y)=u(1,y)=0u(x,0)=u(x,1)=u(0,y)=u(1,y)=0. Setting δ=0\delta=0 (see Thm. 16), and using a monomial degree d=3d=3, this can be verified with PIETOOLS.

9.3 Coupled ODE-PDE System

As a final example, we consider a diffusion equation coupled to an ODE, a s appearing in [15],

X˙(t)\displaystyle\dot{X}(t) =(A+BK)X(t)+Bu(t,0,0)\displaystyle=(A+BK)X(t)+Bu(t,0,0)
u˙(t,x,y)\displaystyle\dot{u}(t,x,y) =uxx(t,x,y)+uyy(t,x,y),\displaystyle=u_{xx}(t,x,y)+u_{yy}(t,x,y),
ux(t,0,y)\displaystyle u_{x}(t,0,y) =u(t,1,y)=0,\displaystyle=u(t,1,y)=0,
uy(t,x,0)\displaystyle u_{y}(t,x,0) =u(t,x,1)=0,\displaystyle=u(t,x,1)=0,

which is stable whenever the matrix A+BKA+BK is Hurwitz. An equivalent PIE representation of this system may be obtained by first deriving a PIE representation of the PDE subsystem. To this end, we use as PDE state 𝐮=𝐮2=uH2n2[x,y]\mathbf{u}=\mathbf{u}_{2}=u\in H_{2}^{n_{2}}[x,y] with n2=1n_{2}=1, and let A20=A02=1A_{20}=A_{02}=1 to describe the PDE in the standardized format (6). For the boundary conditions, we enforce 𝐮(0,1)=𝐮x(1,1)=𝐮y(1,0)=𝐮xy(0,0)\mathbf{u}(0,1)=\mathbf{u}_{x}(1,1)=\mathbf{u}_{y}(1,0)=\mathbf{u}_{xy}(0,0), as well as 𝐮xx(x,1)=𝐮xxy(x,0)=𝐮yy(1,y)=𝐮xyy(0,y)=0\mathbf{u}_{xx}(x,1)=\mathbf{u}_{xxy}(x,0)=\mathbf{u}_{yy}(1,y)=\mathbf{u}_{xyy}(0,y)=0, enforcing the conditions as BΛ𝐛𝐟𝐮=0B\Lambda_{\mathbf{bf}}\mathbf{u}=0, where

B\displaystyle B =[001000000000000000000000000000010000000000000000000000000100000000000000000000000000100000000000000000000000000001000000000000000000000000100000000000000000000000000100000000000000000000000010]8×24.\displaystyle=\left[\scriptsize\setcounter{MaxMatrixCols}{24}\begin{smallmatrix}0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1&0\end{smallmatrix}\right]\in\mathbb{R}^{8\times 24}.

Using PIETOOLS 2021b , the associated PIE representation is found to be

𝒯𝐮^˙=\displaystyle\mathcal{T}\dot{\hat{\mathbf{u}}}=
0x(1x)[0y(1y)𝐮^˙(θ,ν)dν+y1(1ν)𝐮^˙(θ,ν)dν]dθ\displaystyle\int_{0}^{x}(1-x)\biggl{[}\int_{0}^{y}(1-y)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu+\int_{y}^{1}(1-\nu)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu\biggl{]}d\theta
+x1(1θ)[0y(1y)𝐮^˙(θ,ν)dν+y1(1ν)𝐮^˙(θ,ν)dν]dθ\displaystyle+\int_{x}^{1}(1-\theta)\biggl{[}\int_{0}^{y}(1-y)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu+\int_{y}^{1}(1-\nu)\dot{\hat{\mathbf{u}}}(\theta,\nu)d\nu\biggl{]}d\theta
=0x(x1)𝐮^(θ,y)𝑑θ+x1(θ1)𝐮^(θ,y)𝑑θ\displaystyle=\int_{0}^{x}(x-1)\hat{\mathbf{u}}(\theta,y)d\theta+\int_{x}^{1}(\theta-1)\hat{\mathbf{u}}(\theta,y)d\theta
+0y(y1)𝐮^(x,ν)𝑑ν+y1(ν1)𝐮^(x,ν)𝑑ν=𝒜𝐮^,\displaystyle\qquad+\int_{0}^{y}(y-1)\hat{\mathbf{u}}(x,\nu)d\nu+\int_{y}^{1}(\nu-1)\hat{\mathbf{u}}(x,\nu)d\nu=\mathcal{A}{\hat{\mathbf{u}}},

where 𝐮^=𝐮xxyy\hat{\mathbf{u}}=\mathbf{u}_{xxyy}. Now, to incorporate the ODE dynamics, we note that the boundary value 𝐮(0,0)\mathbf{u}(0,0) may be written in terms of the PIE state 𝐮^\hat{\mathbf{u}} as

𝐮=0101(1x)(1y)𝐮^(x,y)𝑑x𝑑y,\mathbf{u}=\int_{0}^{1}\int_{0}^{1}(1-x)(1-y)\hat{\mathbf{u}}(x,y)dxdy,

allowing the ODE dynamics to described using 0112-PI operators as

[I00𝒯][X˙𝐮^˙]\displaystyle\begin{bmatrix}I&0\\ 0&\mathcal{T}\end{bmatrix}\begin{bmatrix}\dot{X}\\ \dot{\hat{\mathbf{u}}}\end{bmatrix} =[A+BKx=01[I]y=01[B~]0𝒜][X𝐮^],\displaystyle=\begin{bmatrix}A+BK&\smallint_{x=0}^{1}[I]\circ\smallint_{y=0}^{1}[\tilde{B}]\\ 0&\mathcal{A}\end{bmatrix}\begin{bmatrix}X\\ \hat{\mathbf{u}}\end{bmatrix},

where B~(x,y)=(1x)(1y)B\tilde{B}(x,y)=(1-x)(1-y)B. In this representation, stability analysis can also be performed as discussed in Section 7, using a Lyapunov function based on the 0112-PI operators describing the system. This was done for a simple scalar case where A=B=1A=B=1, and K=kK=k, in which case stability can be proven analytically whenever k1k\leq-1. Using degree d=2d=2 and performing bisection on kk, stability could be verified for k1.0410k\leq-1.0410.

10 Conclusion

In this paper, we have shown that any well-posed, linear, second order 2D PDE can be converted to an equivalent PIE, and we have provided the formulae describing this conversion. To derive these formulae, we have introduced different PI operators in 2D, showing that the product, inverse, adjoint, and composition with differential operators of these operators are described by PI operators as well. Exploiting these relations, we derived a mapping 𝐮=𝒯𝐮^\mathbf{u}=\mathcal{T}\hat{\mathbf{u}} between the PDE state 𝐮X()\mathbf{u}\in X(\mathcal{B}), constrained by the boundary conditions as described by \mathcal{B}, and a fundamental state 𝐮^L2\hat{\mathbf{u}}\in L_{2}, free of any such constraints. Accordingly, the solution to the PIE is not constrained by boundary or continuity constraints, which allowed us to derive LPI conditions for stability of the system. Finally, by paramaterizing PI operators as matrices, we showed how stability may be tested using semidefinite programming, as implemented in the MATLAB toolbox PIETOOLS 2021b.
Having demonstrated that the PIE representation can be extended to 2D PDEs, an obvious next step would be to extend it to 3D, and possibly ND systems. In addition, we may expand upon our results to include more complicated systems, such as those involving higher order spatial derivatives or alternative boundary conditions. Moreover, different LPIs may also be introduced for HH_{\infty}-gain analysis and (robust) controller synthesis, as was done for 1D systems. Finally, alternative spatial domains may also be considered, extending the PIE methodology to more complex geometries.

References

  • [1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory.   SIAM, 1994.
  • [2] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory.   Berlin, Heidelberg: Springer-Verlag, 1995.
  • [3] M. Ahmadi, G. Valmorbida, D. Gayme, and A. Papachristodoulou, “A framework for input-output analysis of wall-bounded shear flows,” arXiv preprint arXiv:1802.04974, 2018.
  • [4] E. Fridman and M. Terushkin, “New stability and exact observability conditions for semilinear wave equations,” Automatica, vol. 63, pp. 1–10, 2016.
  • [5] O. Solomon and E. Fridman, “Stability and passivity analysis of semilinear diffusion PDEs with time-delays,” International Journal of Control, vol. 88, no. 1, pp. 180–192, 2015.
  • [6] M. Wakaiki, “An LMI approach to stability analysis of coupled parabolic systems,” IEEE Transactions on Automatic Control, vol. 65, no. 1, pp. 404–411, 2019.
  • [7] G. Valmorbida, M. Ahmadi, and A. Papachristodoulou, “Convex solutions to integral inequalities in two-dimensional domains,” in 2015 54th IEEE Conference on Decision and Control (CDC).   IEEE, 2015, pp. 7268–7273.
  • [8] S. Shivakumar, A. Das, and M. M. Peet, “PIETOOLS: A MATLAB toolbox for manipulation and optimization of partial integral operators,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 2667–2672.
  • [9] S. Shivakumar, A. Das, S. Weiland, and M. M. Peet, “A generalized LMI formulation for input-output analysis of linear systems of ODEs coupled with PDEs,” in 2019 IEEE 58th Conference on Decision and Control (CDC).   IEEE, 2019, pp. 280–285.
  • [10] M. M. Peet, S. Shivakumar, A. Das, and S. Weiland, “Discussion paper: A new mathematical framework for representation and analysis of coupled PDEs,” IFAC-PapersOnLine, vol. 52, no. 2, pp. 132–137, 2019.
  • [11] S. Shivakumar, A. Das, S. Weiland, and M. M. Peet, “Duality and HH_{\infty}-optimal control of coupled ODE-PDE systems,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 5689–5696.
  • [12] G. Miao, M. M. Peet, and K. Gu, “Inversion of separable kernel operator and its application in control synthesis,” in Delays and Interconnections: Methodology, Algorithms and Applications.   Springer, 2019, pp. 265–280.
  • [13] A. Das, S. Shivakumar, M. M. Peet, and S. Weiland, “Robust analysis of uncertain ODE-PDE systems using PI multipliers, PIEs and LPIs,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 634–639.
  • [14] E. E. Holmes, M. Lewis, J. Banks, and R. R. Veit, “Partial differential equations in ecology: Spatial interactions and population dynamics,” Ecology, vol. 75, pp. 17–29, 1994.
  • [15] M. Krstic, “Compensating actuator and sensor dynamics governed by diffusion PDEs,” Systems & Control Letters, vol. 58, no. 5, pp. 372–377, 2009.
  • [16]
{appendices}

11 Algebras of PI Operators

11.1 Notation

In this section, we will prove the composition rules of PI operators in 2D, as outlined in the article. In describing these results, we will (for the sake of compactness) use subscripts and superscripts to denote the free variables of a function NL2[x,y,θ,ν]N\in L_{2}[x,y,\theta,\nu], so that:

Nxyθν=Nνxyθ=Nθνxy=Nyθνx=Nxyθν=N(x,y,θ,ν).\displaystyle N\rrbracket^{xy\theta\nu}\!=N\rrbracket^{xy\theta}_{\nu}\!=N\rrbracket^{xy}_{\theta\nu}\!=N\rrbracket^{x}_{y\theta\nu}\!=N\rrbracket_{xy\theta\nu}\!=N(x,y,\theta,\nu).

For the sake of simplicity, we will also let (x,y)[0,1]2(x,y)\in[0,1]^{2}, though the results presented in this section extend to any domain (x,y)[a,b]×[c,d](x,y)\in[a,b]\times[c,d]. We denote the integral of a function NL2[x,y,θ,ν]N\in L_{2}[x,y,\theta,\nu] accordingly as:

θ,ν=01(Nθνxy)=0101N(x,y,θ,ν)dνdθ\displaystyle\int_{\theta,\nu=0}^{1}\Bigl{(}N\rrbracket^{xy}_{\theta\nu}\Bigr{)}=\int_{0}^{1}\int_{0}^{1}N(x,y,\theta,\nu)d\nu d\theta

In addition, we will rely on the functions 𝜹\boldsymbol{\delta}, 𝐈\mathbf{I}, and to a lesser extent 𝐇\mathbf{H}, to limit the domains of integration in subsequent results. Here, 𝜹xθ\boldsymbol{\delta}\rrbracket^{x}_{\theta} denotes a Dirac delta function, such that, for any NL2[x]N\in L_{2}[x],

θ=01(𝜹θxNθ)=θ=01(𝜹xθNθ)=Nx,\displaystyle\int_{\theta=0}^{1}\Bigl{(}\boldsymbol{\delta}\rrbracket^{x}_{\theta}\thinspace N\rrbracket^{\theta}\Bigr{)}=\int_{\theta=0}^{1}\Bigl{(}\boldsymbol{\delta}\rrbracket^{\theta}_{x}\thinspace N\rrbracket^{\theta}\Bigr{)}=N\rrbracket^{x},

for x[a,b]x\in[a,b]. Similarly, 𝐈L2[x,θ]\mathbf{I}\in L_{2}[x,\theta] denotes an indicator function,

𝐈xθ={1if θ<x,0otherwise.\displaystyle\mathbf{I}\rrbracket^{x}_{\theta}=\begin{cases}1&\text{if }\theta<x,\\ 0&\text{otherwise.}\end{cases}

so that

θ=01(𝐈θxNθx)=θ=0x(Nθx)\displaystyle\int_{\theta=0}^{1}\Bigl{(}\mathbf{I}\rrbracket^{x}_{\theta}\thinspace N\rrbracket^{x}_{\theta}\Bigr{)}=\int_{\theta=0}^{x}\Bigl{(}N\rrbracket^{x}_{\theta}\Bigr{)}

and

θ=01(𝐈xθNθx)=θ=x1(Nθx)\displaystyle\int_{\theta=0}^{1}\Bigl{(}\mathbf{I}\rrbracket^{\theta}_{x}\thinspace N\rrbracket^{x}_{\theta}\Bigr{)}=\int_{\theta=x}^{1}\Bigl{(}N\rrbracket^{x}_{\theta}\Bigr{)}

Finally, we let 𝐇L2[x,η,θ]\mathbf{H}\in L_{2}[x,\eta,\theta] denote a “rectangular” function,

𝐇ηθx={1if θ<η<x,0otherwise.\displaystyle\mathbf{H}^{x}_{\eta\theta}=\begin{cases}1&\text{if }\theta<\eta<x,\\ 0&\text{otherwise}.\end{cases}

so that

η=01(𝐇ηθxNηθx)=η=θx(Nηθx).\displaystyle\int_{\eta=0}^{1}\Bigl{(}\mathbf{H}\rrbracket^{x}_{\eta\theta}\thinspace N\rrbracket^{x}_{\eta\theta}\Bigr{)}=\int_{\eta=\theta}^{x}\Bigl{(}N\rrbracket^{x}_{\eta\theta}\Bigr{)}.

Based on these definitions, the following identities follow trivially:

𝜹ηx𝜹ηθ\displaystyle\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\delta}\rrbracket^{\eta}_{\theta} =𝜹θx𝜹xη,\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\delta}\rrbracket^{x}_{\eta},
𝜹ηx𝐈ηθ\displaystyle\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta} =𝐈θx𝜹xη,\displaystyle=\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\delta}\rrbracket^{x}_{\eta}, 𝜹ηx𝐈θη\displaystyle\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta} =𝐈xθ𝜹xη,\displaystyle=\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\boldsymbol{\delta}\rrbracket^{x}_{\eta},
𝐈ηx𝜹ηθ\displaystyle\mathbf{I}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\delta}\rrbracket^{\eta}_{\theta} =𝐈θx𝜹θη,\displaystyle=\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\delta}\rrbracket^{\theta}_{\eta}, 𝐈xη𝜹ηθ\displaystyle\mathbf{I}\rrbracket^{\eta}_{x}\thinspace\boldsymbol{\delta}\rrbracket^{\eta}_{\theta} =𝐈xθ𝜹θη,\displaystyle=\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\boldsymbol{\delta}\rrbracket^{\theta}_{\eta},
𝐈ηx𝐈ηθ\displaystyle\mathbf{I}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta} =𝐈θx𝐇xηθ,\displaystyle=\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\mathbf{H}\rrbracket^{x}_{\eta\theta}, 𝐈xη𝐈ηθ\displaystyle\mathbf{I}\rrbracket^{\eta}_{x}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta}\thinspace =𝐈θx𝐈xη+𝐈xθ𝐈ηθ,\displaystyle=\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\mathbf{I}\rrbracket^{\eta}_{x}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta},
𝐈ηx𝐈θη\displaystyle\mathbf{I}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta} =𝐈θx𝐈ηθ+𝐈xθ𝐈xη,\displaystyle=\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\mathbf{I}\rrbracket^{x}_{\eta}, 𝐈xη𝐈θη\displaystyle\mathbf{I}\rrbracket^{\eta}_{x}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta} =𝐈xθ𝐇θηx.\displaystyle=\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\mathbf{H}\rrbracket^{\theta}_{\eta x}. (37)

11.2 Preliminaries

Using the notation introduced in the previous subsection, we may compactly define different parameterizations of PI operators, as well as their compositions. For example, recall that for N={N0,N1,N2}𝒩1Dn×mN=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}_{1D}^{n\times m}, we define an associated PI operator as

(𝒫[N]𝐮)x\displaystyle\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{x} =N0x𝐮x+θ=0x(N1θx𝐮θ)\displaystyle=N_{0}\rrbracket^{x}\thinspace\mathbf{u}\rrbracket^{x}+\int_{\theta=0}^{x}\Bigl{(}N_{1}\rrbracket^{x}_{\theta}\thinspace\mathbf{u}\rrbracket^{\theta}\Bigr{)}
+θ=x1(N2θx𝐮θ),\displaystyle\quad+\int_{\theta=x}^{1}\Bigl{(}N_{2}\rrbracket^{x}_{\theta}\thinspace\mathbf{u}\rrbracket^{\theta}\Bigr{)},

for arbitrary 𝐮L2m[x]\mathbf{u}\in L_{2}^{m}[x]. Using the Dirac delta function 𝜹\boldsymbol{\delta}, and the indicator function 𝐈\mathbf{I} as introduced earlier, we may equivalently denote this operation as

(𝒫[N]𝐮)x\displaystyle\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{x} =θ=01([𝜹θxN0x+𝐈θxN1θx+𝐈xθN2θx]𝐮θ).\displaystyle=\int_{\theta=0}^{1}\biggl{(}\Bigl{[}\boldsymbol{\delta}\rrbracket^{x}_{\theta}\thinspace N_{0}\rrbracket^{x}+\mathbf{I}\rrbracket^{x}_{\theta}\thinspace N_{1}\rrbracket^{x}_{\theta}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace N_{2}\rrbracket^{x}_{\theta}\Bigl{]}\mathbf{u}\rrbracket^{\theta}\biggr{)}.

Then, defining functions 𝚽i\boldsymbol{\Phi}_{i} for i={0,1,2}i=\{0,1,2\} as

𝚽0xθ\displaystyle\boldsymbol{\Phi}_{0}\rrbracket^{x}_{\theta} =𝜹xθ,\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\theta}, 𝚽1xθ\displaystyle\boldsymbol{\Phi}_{1}\rrbracket^{x}_{\theta} =𝐈xθ,\displaystyle=\mathbf{I}\rrbracket^{x}_{\theta}, 𝚽2xθ\displaystyle\boldsymbol{\Phi}_{2}\rrbracket^{x}_{\theta} =𝐈θx,\displaystyle=\mathbf{I}\rrbracket^{\theta}_{x}, (38)

we can describe the operation using a single sum as

(𝒫[N]𝐮)x\displaystyle\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{x} =θ=01(i=02[𝚽iθxNiθx]𝐮θ).\displaystyle=\int_{\theta=0}^{1}\biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace N_{i}\rrbracket^{x}_{\theta}\Bigl{]}\mathbf{u}\rrbracket^{\theta}\biggr{)}.

This notation will allow us to compactly write the composition rules for different PI operators, using the following corollary.

Corollary 18.

Let 𝚽i\mathbf{\Phi}_{i} for i{0,1,2}i\in\{0,1,2\} be as defined in Eqn. 38. Then, for any WL2[x,θ]W\in L_{2}[x,\theta],

θ=01(Wθx)=θ=01(i=12𝚽iθxWθx)\displaystyle\int_{\theta=0}^{1}\Bigl{(}W\rrbracket^{x}_{\theta}\Bigr{)}=\int_{\theta=0}^{1}\Biggl{(}\sum_{i=1}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace W\rrbracket^{x}_{\theta}\Biggr{)}

In addition, we will rely heavily on the following proposition.

Proposition 19.

Let 𝚽i\mathbf{\Phi}_{i} for i{0,1,2}i\in\{0,1,2\} be as defined in Eqn. 38. Then, for any WijL2[x,θ]W_{ij}\in L_{2}[x,\theta] with i,j{0,1,2}i,j\in\{0,1,2\},

i,j=02𝚽iηx𝚽jθηWijηθx=k=02𝚽kθx(i,j=02𝚿kijθηWijηθx),\displaystyle\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace W_{ij}\rrbracket^{x}_{\eta\theta}=\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{\eta}_{\theta}\thinspace W_{ij}\rrbracket^{x}_{\eta\theta}\Biggr{)},

where

𝚿000xηθ\displaystyle\boldsymbol{\Psi}_{000}\rrbracket^{x}_{\eta\theta} =𝜹xη\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\eta}
𝚿101xηθ\displaystyle\boldsymbol{\Psi}_{101}\rrbracket^{x}_{\eta\theta} =𝜹xη\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\eta} 𝚿202xηθ\displaystyle\boldsymbol{\Psi}_{202}\rrbracket^{x}_{\eta\theta} =𝜹xη\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\eta}
𝚿110xηθ\displaystyle\boldsymbol{\Psi}_{110}\rrbracket^{x}_{\eta\theta} =𝜹θη\displaystyle=\boldsymbol{\delta}\rrbracket^{\theta}_{\eta} 𝚿220xηθ\displaystyle\boldsymbol{\Psi}_{220}\rrbracket^{x}_{\eta\theta} =𝜹θη\displaystyle=\boldsymbol{\delta}\rrbracket^{\theta}_{\eta}
𝚿111xηθ\displaystyle\boldsymbol{\Psi}_{111}\rrbracket^{x}_{\eta\theta} =𝐇xηθ\displaystyle=\mathbf{H}\rrbracket^{x}_{\eta\theta} 𝚿222xηθ\displaystyle\boldsymbol{\Psi}_{222}\rrbracket^{x}_{\eta\theta} =𝐇θηx\displaystyle=\mathbf{H}\rrbracket^{\theta}_{\eta x}
𝚿112xηθ\displaystyle\boldsymbol{\Psi}_{112}\rrbracket^{x}_{\eta\theta} =𝐈θη\displaystyle=\mathbf{I}\rrbracket^{\theta}_{\eta} 𝚿212xηθ\displaystyle\boldsymbol{\Psi}_{212}\rrbracket^{x}_{\eta\theta} =𝐈xη\displaystyle=\mathbf{I}\rrbracket^{x}_{\eta}
𝚿121xηθ\displaystyle\boldsymbol{\Psi}_{121}\rrbracket^{x}_{\eta\theta} =𝐈ηx\displaystyle=\mathbf{I}\rrbracket^{\eta}_{x} 𝚿221xηθ\displaystyle\boldsymbol{\Psi}_{221}\rrbracket^{x}_{\eta\theta} =𝐈ηθ,\displaystyle=\mathbf{I}\rrbracket^{\eta}_{\theta}, (39)

and 𝚿kijxηθ=0\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}=0 for any other indices k,i,j{0,1,2}k,i,j\in\{0,1,2\}.

Proof 11.1.

Expanding the sums, invoking the definition of 𝚽\boldsymbol{\Phi}, and applying identities (11.1), we find

i,j=02𝚽iηx𝚽jθηWijxηθ\displaystyle\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace W_{ij}\rrbracket^{x}_{\eta\theta}
=𝜹ηx𝜹θηW00ηθx+𝜹ηx𝐈θηW01ηθx+𝜹ηx𝐈ηθW02xηθ\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\delta}\rrbracket^{\eta}_{\theta}\thinspace W_{00}\rrbracket^{x}_{\eta\theta}+\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta}\thinspace W_{01}\rrbracket^{x}_{\eta\theta}+\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta}\thinspace W_{02}\rrbracket^{x}_{\eta\theta}
+𝐈ηx𝜹θηW10ηθx+𝐈ηx𝐈θηW11ηθx+𝐈ηx𝐈ηθW12xηθ\displaystyle\quad+\mathbf{I}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\delta}\rrbracket^{\eta}_{\theta}\thinspace W_{10}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta}\thinspace W_{11}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{x}_{\eta}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta}\thinspace W_{12}\rrbracket^{x}_{\eta\theta}
+𝐈xη𝜹θηW20ηθx+𝐈xη𝐈θηW21ηθx+𝐈xη𝐈ηθW22xηθ\displaystyle\qquad+\mathbf{I}\rrbracket^{\eta}_{x}\thinspace\boldsymbol{\delta}\rrbracket^{\eta}_{\theta}\thinspace W_{20}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{\eta}_{x}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta}\thinspace W_{21}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{\eta}_{x}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta}\thinspace W_{22}\rrbracket^{x}_{\eta\theta}
=𝜹θx𝜹ηxW00ηθx+𝐈θx𝜹ηxW01ηθx+𝐈xθ𝜹ηxW02xηθ\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace W_{00}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace W_{01}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\boldsymbol{\delta}\rrbracket^{x}_{\eta}\thinspace W_{02}\rrbracket^{x}_{\eta\theta}
+𝐈θx𝜹ηθW10ηθx+𝐈θx𝐇ηθxW11xηθ\displaystyle\quad+\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\delta}\rrbracket^{\theta}_{\eta}\thinspace W_{10}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\mathbf{H}\rrbracket^{x}_{\eta\theta}\thinspace W_{11}\rrbracket^{x}_{\eta\theta}
+(𝐈θx𝐈ηθ+𝐈xθ𝐈ηx)W12ηθx+𝐈xθ𝜹ηθW20xηθ\displaystyle\qquad+\Bigl{(}\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\mathbf{I}\rrbracket^{\theta}_{\eta}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\mathbf{I}\rrbracket^{x}_{\eta}\Bigr{)}W_{12}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\boldsymbol{\delta}\rrbracket^{\theta}_{\eta}\thinspace W_{20}\rrbracket^{x}_{\eta\theta}
+(𝐈θx𝐈xη+𝐈xθ𝐈θη)W21ηθx+𝐈xθ𝐇ηxθW22xηθ\displaystyle\qquad\quad+\Bigl{(}\mathbf{I}\rrbracket^{x}_{\theta}\thinspace\mathbf{I}\rrbracket^{\eta}_{x}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\mathbf{I}\rrbracket^{\eta}_{\theta}\Bigr{)}W_{21}\rrbracket^{x}_{\eta\theta}+\mathbf{I}\rrbracket^{\theta}_{x}\thinspace\mathbf{H}\rrbracket^{\theta}_{\eta x}\thinspace W_{22}\rrbracket^{x}_{\eta\theta}
=𝜹θx𝚿000ηθxW00xηθ\displaystyle=\boldsymbol{\delta}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Psi}_{000}\rrbracket^{x}_{\eta\theta}\thinspace W_{00}\rrbracket^{x}_{\eta\theta}
+𝐈θx(𝚿101ηθxW01ηθx+𝚿110ηθxW10xηθ\displaystyle\quad+\mathbf{I}\rrbracket^{x}_{\theta}\biggl{(}\boldsymbol{\Psi}_{101}\rrbracket^{x}_{\eta\theta}\thinspace W_{01}\rrbracket^{x}_{\eta\theta}+\boldsymbol{\Psi}_{110}\rrbracket^{x}_{\eta\theta}\thinspace W_{10}\rrbracket^{x}_{\eta\theta}
+𝚿112ηθxW12ηθx+𝚿111ηθxW11xηθ\displaystyle\hskip 42.67912pt+\boldsymbol{\Psi}_{112}\rrbracket^{x}_{\eta\theta}\thinspace W_{12}\rrbracket^{x}_{\eta\theta}+\boldsymbol{\Psi}_{111}\rrbracket^{x}_{\eta\theta}\thinspace W_{11}\rrbracket^{x}_{\eta\theta}
+𝚿121ηθxW21ηθx)\displaystyle\hskip 122.34692pt+\boldsymbol{\Psi}_{121}\rrbracket^{x}_{\eta\theta}\thinspace W_{21}\rrbracket^{x}_{\eta\theta}\biggr{)}
+𝐈xθ(𝚿202ηθxW02ηθx+𝚿220ηθxW20xηθ\displaystyle\quad+\mathbf{I}\rrbracket^{\theta}_{x}\biggl{(}\boldsymbol{\Psi}_{202}\rrbracket^{x}_{\eta\theta}\thinspace W_{02}\rrbracket^{x}_{\eta\theta}+\boldsymbol{\Psi}_{220}\rrbracket^{x}_{\eta\theta}\thinspace W_{20}\rrbracket^{x}_{\eta\theta}
+𝚿212ηθxW12ηθx+𝚿222ηθxW22xηθ\displaystyle\hskip 42.67912pt+\boldsymbol{\Psi}_{212}\rrbracket^{x}_{\eta\theta}\thinspace W_{12}\rrbracket^{x}_{\eta\theta}+\boldsymbol{\Psi}_{222}\rrbracket^{x}_{\eta\theta}\thinspace W_{22}\rrbracket^{x}_{\eta\theta}
+𝚿221ηθxW21ηθx)\displaystyle\hskip 122.34692pt+\boldsymbol{\Psi}_{221}\rrbracket^{x}_{\eta\theta}\thinspace W_{21}\rrbracket^{x}_{\eta\theta}\biggr{)}
=𝚽0θxi=02j=02𝚿0ijηθxWijxηθ\displaystyle=\boldsymbol{\Phi}_{0}\rrbracket^{x}_{\theta}\sum_{i=0}^{2}\sum_{j=0}^{2}\boldsymbol{\Psi}_{0ij}\rrbracket^{x}_{\eta\theta}\thinspace W_{ij}\rrbracket^{x}_{\eta\theta}
+𝚽1θxi=02j=02𝚿1ijηθxWijxηθ\displaystyle\qquad+\boldsymbol{\Phi}_{1}\rrbracket^{x}_{\theta}\sum_{i=0}^{2}\sum_{j=0}^{2}\boldsymbol{\Psi}_{1ij}\rrbracket^{x}_{\eta\theta}\thinspace W_{ij}\rrbracket^{x}_{\eta\theta}
+𝚽2θxi=02j=02𝚿2ijηθxWijxηθ\displaystyle\qquad\qquad+\boldsymbol{\Phi}_{2}\rrbracket^{x}_{\theta}\sum_{i=0}^{2}\sum_{j=0}^{2}\boldsymbol{\Psi}_{2ij}\rrbracket^{x}_{\eta\theta}\thinspace W_{ij}\rrbracket^{x}_{\eta\theta}
=k=02𝚽kθxi,p=02𝚿kijηθxWijxηθ,\displaystyle=\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\sum_{i,p=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}W_{ij}\rrbracket^{x}_{\eta\theta}\thinspace,

as desired.

Applying this result, the composition rules of 1D-PI operators follow immediately.

Lemma 20.

For any N:={N0,N1,N2}𝒩1DN:=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}_{1D} and M:={M0,M1,M2}𝒩1DM:=\{M_{0},M_{1},M_{2}\}\in\mathcal{N}_{1D}, there exists a unique Q𝒩1DQ\in\mathcal{N}_{1D} such that 𝒫[N]𝒫[M]=𝒫[Q]\mathcal{P}[N]\circ\mathcal{P}[M]=\mathcal{P}[Q]. Specifically, we may choose Q=1D(N,M)𝒩1DQ=\mathcal{L}_{1D}(N,M)\in\mathcal{N}_{1D}, where the linear parameter map 1D:𝒩1D×𝒩1D𝒩1D\mathcal{L}_{1D}:\mathcal{N}_{1D}\times\mathcal{N}_{1D}\rightarrow\mathcal{N}_{1D} is such that

1D(N,M)={Q0,Q1,Q2}𝒩1D,\displaystyle\mathcal{L}_{1D}(N,M)=\{Q_{0},Q_{1},Q_{2}\}\in\mathcal{N}_{1D},

where, defining functions 𝚿kij\boldsymbol{\Psi}_{kij} as in Eqn. (19),

Qkθx=η=01(i,j=02𝚿kijηθxNiηxMjθη),\displaystyle Q_{k}\rrbracket^{x}_{\theta}=\int_{\eta=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace N_{i}\rrbracket^{x}_{\eta}\thinspace M_{j}\rrbracket^{\eta}_{\theta}\Biggr{)},

for each k{0,1,2}k\in\{0,1,2\}.

Proof 11.2.

Let 𝐮L2[x]\mathbf{u}\in L_{2}[x] be arbitrary. Then, applying the results from Proposition 19, we find

(𝒫[N]𝒫[M]𝐮)x\displaystyle\bigl{(}\mathcal{P}[N]\mathcal{P}[M]\mathbf{u}\bigr{)}\rrbracket^{x}
=η=01[i=02𝚽iηxNiηxθ=01(j=02𝚽jθηMjθη𝐮θ)]\displaystyle=\int_{\eta=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace N_{i}\rrbracket^{x}_{\eta}\int_{\theta=0}^{1}\biggl{(}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace M_{j}\rrbracket^{\eta}_{\theta}\thinspace\mathbf{u}\rrbracket^{\theta}\biggr{)}\Biggr{]}
=θ=01[η=01(i,j=02𝚽iηx𝚽jθηNiηxMjθη)𝐮θ]\displaystyle=\int_{\theta=0}^{1}\Biggl{[}\int_{\eta=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace N_{i}\rrbracket^{x}_{\eta}\thinspace M_{j}\rrbracket^{\eta}_{\theta}\Biggr{)}\mathbf{u}\rrbracket^{\theta}\Biggr{]}
=θ=01[k=02𝚽kθxη=01(i,j=02𝚿kijηθxNiηxMjθη)𝐮θ]\displaystyle=\int_{\theta=0}^{1}\Biggl{[}\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\eta=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace N_{i}\rrbracket^{x}_{\eta}\thinspace M_{j}\rrbracket^{\eta}_{\theta}\Biggr{)}\mathbf{u}\rrbracket^{\theta}\Biggr{]}
=θ=01(k=02𝚽kθxQkθx𝐮θ)=(𝒫[Q]𝐮)x\displaystyle=\int_{\theta=0}^{1}\Biggl{(}\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace Q_{k}\rrbracket^{x}_{\theta}\thinspace\mathbf{u}\rrbracket^{\theta}\Biggr{)}=(\mathcal{P}[Q]\mathbf{u})\rrbracket^{x}

Expanding the terms in this expression for the composition, it is easy to verify that these composition rules for 1D-PI operators match those (for 3-PI operators) presented in [16]. Using this same approach, we can also derive composition rules for PI operators on additional dimensions.

11.3 An Algebra of 011-PI Operators

Recall that we defined a parameter space for 011-PI operators as

𝒩011[n0m0n1m1]\displaystyle\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]} :=[n0×m0L2n0×m1[θ]L2n0×m1[ν]L2n1×m0[x]𝒩1Dn1×m1L2n1×m1[x,ν]L2n1×m0[y]L2n1×m1[y,θ]𝒩1Dn1×m1].\displaystyle:=\begin{bmatrix}\mathbb{R}^{n_{0}\times m_{0}}&\!L_{2}^{n_{0}\times m_{1}}[\theta]&\!L_{2}^{n_{0}\times m_{1}}[\nu]\\ L_{2}^{n_{1}\times m_{0}}[x]&\!\mathcal{N}_{1D}^{n_{1}\times m_{1}}&\!L_{2}^{n_{1}\times m_{1}}[x,\nu]\\ L_{2}^{n_{1}\times m_{0}}[y]&\!L_{2}^{n_{1}\times m_{1}}[y,\theta]&\!\mathcal{N}_{1D}^{n_{1}\times m_{1}}\end{bmatrix}. (40)

Then, for any

B\displaystyle B =[B00B01B02B10B11B12B20B21B22]𝒩011[n0m0n1m1],\displaystyle=\begin{bmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{bmatrix}\in\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]},

we may write the associated PI operation using the functions 𝚽i\boldsymbol{\Phi}_{i} as defined in Eqn. (38) as

(𝒫[B]𝐮)xy\displaystyle\bigl{(}\mathcal{P}[B]\mathbf{u}\bigr{)}\rrbracket^{xy}
=[B00u0θ=01(B01θ𝐮1θ)ν=01(B02ν𝐮2ν)B10xu0(𝒫[B11]𝐮1)xν=01(B12νx𝐮2ν)B20yu0θ=01(B21θy𝐮1θ)(𝒫[B22]𝐮2)y],\displaystyle=\begin{bmatrix}B_{00}u_{0}&\int_{\theta=0}^{1}\Bigl{(}B_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}&\int_{\nu=0}^{1}\Bigl{(}B_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\\ B_{10}\rrbracket^{x}\thinspace u_{0}&\bigl{(}\mathcal{P}[B_{11}]\mathbf{u}_{1}\bigr{)}\rrbracket^{x}&\int_{\nu=0}^{1}\Bigl{(}B_{12}\rrbracket^{x}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\\ B_{20}\rrbracket^{y}\thinspace u_{0}&\int_{\theta=0}^{1}\Bigl{(}B_{21}\rrbracket^{y}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}&\bigl{(}\mathcal{P}[B_{22}]\mathbf{u}_{2}\bigr{)}\rrbracket^{y}\end{bmatrix},

for any 𝐮=[u0𝐮1𝐮2][m0L2m1[x]L2m1[y]]\mathbf{u}=\begin{bmatrix}u_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}\in\begin{bmatrix}\mathbb{R}^{m_{0}}\\ L_{2}^{m_{1}}[x]\\ L_{2}^{m_{1}}[y]\end{bmatrix}.

Lemma 21.

For any B=[B00B01B02B10B11B12B20B21B22]𝒩011[n0p0n1p1]B=\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\end{smallmatrix}\right] and D=[D00D01D02D10D11D12D20D21D22]𝒩011[p0m0p1m1]D=\left[\scriptsize\begin{smallmatrix}D_{00}&D_{01}&D_{02}\\ D_{10}&D_{11}&D_{12}\\ D_{20}&D_{21}&D_{22}\end{smallmatrix}\right]\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\end{smallmatrix}\right], where B11={B110,B111,B112}𝒩1DB_{11}=\{B_{11}^{0},B_{11}^{1},B_{11}^{2}\}\in\mathcal{N}_{1D}, B22={B220,B221,B222}𝒩1DB_{22}=\{B_{22}^{0},B_{22}^{1},B_{22}^{2}\}\in\mathcal{N}_{1D} and D11={D110,D111,D112}𝒩1DD_{11}=\{D_{11}^{0},D_{11}^{1},D_{11}^{2}\}\in\mathcal{N}_{1D}, D22={D220,D221,D222}𝒩1DD_{22}=\{D_{22}^{0},D_{22}^{1},D_{22}^{2}\}\in\mathcal{N}_{1D}, there exists a unique R𝒩011[n0m0n1m1]R\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right] such that 𝒫[B]𝒫[D]=𝒫[R]\mathcal{P}[B]\circ\mathcal{P}[D]=\mathcal{P}[R]. Specifically, we may choose R=011(B,D)𝒩011[n0m0n1m1]R=\mathcal{L}_{011}(B,D)\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right], where the linear parameter map 011:𝒩011×𝒩011𝒩011\mathcal{L}_{011}:\mathcal{N}_{011}\times\mathcal{N}_{011}\rightarrow\mathcal{N}_{011} is defined such that

011(B,D)=[R00R01R02R10R11R12R20R21R22]𝒩011[n0m0n1m1],\displaystyle\mathcal{L}_{011}(B,D)=\begin{bmatrix}R_{00}&R_{01}&R_{02}\\ R_{10}&R_{11}&R_{12}\\ R_{20}&R_{21}&R_{22}\end{bmatrix}\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right], (41)

where

R00=B00D00+η=01(B01ηD10η)+μ=01(B02ηD20η)\displaystyle R_{00}=B_{00}D_{00}+\int_{\eta=0}^{1}\Bigl{(}B_{01}\rrbracket_{\eta}\thinspace D_{10}\rrbracket^{\eta}\Bigr{)}+\int_{\mu=0}^{1}\Bigl{(}B_{02}\rrbracket_{\eta}\thinspace D_{20}\rrbracket^{\eta}\Bigr{)}
R01θ=B00D01θ+η=01(B01ηi=02[𝚽iθηD11iθη])\displaystyle R_{01}\rrbracket_{\theta}=B_{00}D_{01}\rrbracket_{\theta}+\int_{\eta=0}^{1}\Biggl{(}B_{01}\rrbracket_{\eta}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{11}^{i}\rrbracket^{\eta}_{\theta}\Bigr{]}\Biggr{)}
+μ=01(B02μD21θμ)\displaystyle\qquad\quad+\int_{\mu=0}^{1}\biggl{(}B_{02}\rrbracket_{\mu}\thinspace D_{21}\rrbracket^{\mu}_{\theta}\biggr{)}
R02ν=B00D02ν+η=01(B01ηD12νη)\displaystyle R_{02}\rrbracket_{\nu}=B_{00}D_{02}\rrbracket_{\nu}+\int_{\eta=0}^{1}\biggl{(}B_{01}\rrbracket_{\eta}\thinspace D_{12}\rrbracket^{\eta}_{\nu}\biggr{)}
+μ=01(B02μi=02[𝚽iνμD22iνμ])\displaystyle\qquad\quad+\int_{\mu=0}^{1}\Biggl{(}B_{02}\rrbracket_{\mu}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{22}^{i}\rrbracket^{\mu}_{\nu}\Bigr{]}\Biggr{)}
R10x=B10xD00+η=01(i=02[𝚽iηxB11iηx]D10η)\displaystyle R_{10}\rrbracket^{x}=B_{10}\rrbracket^{x}\thinspace D_{00}+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace B_{11}^{i}\rrbracket^{x}_{\eta}\Bigr{]}D_{10}\rrbracket^{\eta}\Biggr{)}
+μ=01(B12μxD20μ)\displaystyle\qquad\quad+\int_{\mu=0}^{1}\biggl{(}B_{12}\rrbracket^{x}_{\mu}\thinspace D_{20}\rrbracket^{\mu}\biggr{)}
R11=101(B10,D01)+1D(B11,D11)+111(B12,D21),\displaystyle R_{11}=\mathcal{L}_{101}\bigl{(}B_{10},D_{01}\bigr{)}+\mathcal{L}_{1D}\bigl{(}B_{11},D_{11}\bigr{)}+\mathcal{L}_{111}\bigl{(}B_{12},D_{21}\bigr{)},
R12νx=B10xD02ν+η=01(i=02[𝚽iηxB11iηx]D12νη)\displaystyle R_{12}\rrbracket^{x}_{\nu}=B_{10}\rrbracket^{x}\thinspace D_{02}\rrbracket_{\nu}+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace B_{11}^{i}\rrbracket^{x}_{\eta}\Bigr{]}D_{12}\rrbracket^{\eta}_{\nu}\Biggr{)}
+μ=01(B12μxi=02[𝚽iνμD22iνμ])\displaystyle\qquad\quad+\int_{\mu=0}^{1}\Biggl{(}B_{12}\rrbracket^{x}_{\mu}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{22}^{i}\rrbracket^{\mu}_{\nu}\Bigr{]}\Biggr{)}
R20y=B20yD00+η=01(B21ηyD10η)\displaystyle R_{20}\rrbracket^{y}=B_{20}\rrbracket^{y}\thinspace D_{00}+\int_{\eta=0}^{1}\Biggl{(}B_{21}\rrbracket^{y}_{\eta}\thinspace D_{10}\rrbracket^{\eta}\Biggr{)}
+μ=01(i=02[𝚽iμyB22iμy]D20μ)\displaystyle\qquad\quad+\int_{\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace B_{22}^{i}\rrbracket^{y}_{\mu}\Bigr{]}D_{20}\rrbracket^{\mu}\Biggr{)}
R21θy=B20yD01θ+η=01(B21ηyi=02[𝚽iθηD11iθη])\displaystyle R_{21}\rrbracket^{y}_{\theta}=B_{20}\rrbracket^{y}\thinspace D_{01}\rrbracket_{\theta}+\int_{\eta=0}^{1}\Biggl{(}B_{21}\rrbracket^{y}_{\eta}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{11}^{i}\rrbracket^{\eta}_{\theta}\Bigr{]}\Biggr{)}
+μ=01(i=02[𝚽iμyB22iμy]D21θμ)\displaystyle\qquad\quad+\int_{\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace B_{22}^{i}\rrbracket^{y}_{\mu}\Bigr{]}D_{21}\rrbracket^{\mu}_{\theta}\Biggr{)}
R22=101(B20,D02)+111(B21,D12)+1D(B22,D22),\displaystyle R_{22}=\mathcal{L}_{101}\bigl{(}B_{20},D_{02}\bigr{)}+\mathcal{L}_{111}\bigl{(}B_{21},D_{12}\bigr{)}+\mathcal{L}_{1D}\bigl{(}B_{22},D_{22}\bigr{)},

and where 101:L2[x]×L2[x]𝒩1D\mathcal{L}_{101}:L_{2}[x]\times L_{2}[x]\rightarrow\mathcal{N}_{1D} is defined such that, for arbitrary N,ML2[x]N,M\in L_{2}[x], 101(N,M)=Q={0,Q1,Q2}\mathcal{L}_{101}(N,M)=Q=\{0,Q_{1},Q_{2}\}, where

Q1xθ\displaystyle Q_{1}\rrbracket^{x}_{\theta} =Q2θx=NxMθ,\displaystyle=Q_{2}\rrbracket^{x}_{\theta}=N\rrbracket^{x}\thinspace M\rrbracket_{\theta},

and 111:L2[x,y]×L2[y,x]𝒩1D\mathcal{L}_{111}:L_{2}[x,y]\times L_{2}[y,x]\rightarrow\mathcal{N}_{1D} is defined such that, for arbitrary NL2[x,y]N\in L_{2}[x,y] and ML2[y,θ]M\in L_{2}[y,\theta], 111(N,M)=Q={0,Q1,Q2}\mathcal{L}_{111}(N,M)=Q=\{0,Q_{1},Q_{2}\}, where

Q1xθ\displaystyle Q_{1}\rrbracket^{x}_{\theta} =Q2θx=μ=01(NμxMθμ)\displaystyle=Q_{2}\rrbracket^{x}_{\theta}=\int_{\mu=0}^{1}\biggl{(}N\rrbracket^{x}_{\mu}\thinspace M\rrbracket^{\mu}_{\theta}\biggr{)}
Proof 11.3.

To prove this lemma, we will exploit the linear structure of 011-PI operators, allowing us to express

𝒫[B00B01B02B10B11B12B20B21B22]=𝒫[B0000000000]++𝒫[00000000B22].\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&0&0\\ 0&0&0\\ 0&0&0\end{smallmatrix}\right]+\ldots+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0&\\ 0&0&0\\ 0&0&B_{22}\end{smallmatrix}\right].

Then, 𝒫[B]𝒫[D]\mathcal{P}[B]\circ\mathcal{P}[D] maps a vector u0m0u_{0}\in\mathbb{R}^{m_{0}}, and functions 𝐮1L2m1[x]\mathbf{u}_{1}\in L_{2}^{m_{1}}[x] and 𝐮2L2m1[y]\mathbf{u}_{2}\in L_{2}^{m_{1}}[y] to n0\mathbb{R}^{n_{0}} as

𝒫[B00B01B02()()()()()()]𝒫[D00()()D10()()D20()()]u0=B00D00u0\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{00}&()&()\\ D_{10}&()&()\\ D_{20}&()&()\end{smallmatrix}\right]u_{0}=B_{00}D_{00}u_{0}
+η=01(B01ηD10ηu0)+μ=01(B02μD20μu0)\displaystyle\quad+\int_{\eta=0}^{1}\Bigl{(}B_{01}\rrbracket_{\eta}\thinspace D_{10}\rrbracket^{\eta}\thinspace u_{0}\Bigr{)}+\int_{\mu=0}^{1}\Bigl{(}B_{02}\rrbracket_{\mu}\thinspace D_{20}\rrbracket^{\mu}\thinspace u_{0}\Bigr{)}
=R00u0=𝒫[R00()()()()()()()()]u0,\displaystyle\hskip 135.15059pt=R_{00}u_{0}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}R_{00}&()&()\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\!u_{0},

and

𝒫[B00B01B02()()()()()()]𝒫[()D01()()D11()()D21()]𝐮1=B00θ=01(D01θ𝐮1θ)\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&D_{01}&()\\ ()&D_{11}&()\\ ()&D_{21}&()\end{smallmatrix}\right]\mathbf{u}_{1}=B_{00}\int_{\theta=0}^{1}\Bigl{(}D_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}
+η=01[B01ηθ=01(i=02𝚽iθηD11iθη𝐮1θ)]\displaystyle\qquad+\int_{\eta=0}^{1}\Biggl{[}B_{01}\rrbracket_{\eta}\int_{\theta=0}^{1}\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{11}^{i}\rrbracket^{\eta}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\biggr{)}\Biggr{]}
+μ=01[B02μθ=01(D21θμ𝐮1θ)]\displaystyle\qquad+\int_{\mu=0}^{1}\biggl{[}B_{02}\rrbracket_{\mu}\int_{\theta=0}^{1}\Bigl{(}D_{21}\rrbracket^{\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}\biggr{]}
=θ=01(R01θ𝐮1θ)=𝒫[()R01()()()()()()()]𝐮1,\displaystyle\hskip 71.13188pt=\int_{\theta=0}^{1}\Bigl{(}R_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&R_{01}&()\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{1},

and finally

𝒫[B00B01B02()()()()()()]𝒫[()()D02()()D12()()D22]𝐮2=B00ν=01(D02ν𝐮2ν)\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&D_{02}\\ ()&()&D_{12}\\ ()&()&D_{22}\end{smallmatrix}\right]\mathbf{u}_{2}=B_{00}\int_{\nu=0}^{1}\Bigl{(}D_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}
+η=01[B01ην=01(D12νη𝐮2ν)]\displaystyle\qquad+\int_{\eta=0}^{1}\biggl{[}B_{01}\rrbracket_{\eta}\int_{\nu=0}^{1}\Bigl{(}D_{12}\rrbracket^{\eta}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\biggr{]}
+μ=01[B02μν=01(i=02𝚽iνμD22iνμ𝐮2ν)]\displaystyle\qquad+\int_{\mu=0}^{1}\Biggl{[}B_{02}\rrbracket_{\mu}\int_{\nu=0}^{1}\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{22}^{i}\rrbracket^{\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\biggr{)}\Biggr{]}
=ν=01(R02ν𝐮2ν)=𝒫[()()R02()()()()()()]𝐮2.\displaystyle\hskip 71.13188pt=\int_{\nu=0}^{1}\Bigl{(}R_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&R_{02}\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{2}.

Similarly, such states get mapped to functions in L2n1[x]L_{2}^{n_{1}}[x] as

(𝒫[()()()B10B11B12()()()]𝒫[D00()()D10()()D20()()]u0)x=B10xD00u0\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ B_{10}&B_{11}&B_{12}\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{00}&()&()\\ D_{10}&()&()\\ D_{20}&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{x}=B_{10}\rrbracket^{x}\thinspace D_{00}u_{0}
+η=01(i=02𝚽iηxB11ηxD10ηu0)+μ=01(B12μxD20μu0)\displaystyle+\int_{\eta=0}^{1}\!\biggl{(}\sum_{i=0}^{2}\!\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace B_{11}\rrbracket^{x}_{\eta}\thinspace D_{10}\rrbracket^{\eta}\thinspace u_{0}\biggr{)}\!+\!\int_{\mu=0}^{1}\!\Bigl{(}B_{12}\rrbracket^{x}_{\mu}\thinspace D_{20}\rrbracket^{\mu}\thinspace u_{0}\Bigr{)}
=R10xu0=(𝒫[()()()R10()()()()()]u0)x,\displaystyle\hskip 99.58464pt=R_{10}\rrbracket^{x}\thinspace u_{0}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ R_{10}&()&()\\ ()&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{x},

and

(𝒫[()()()B10B11B12()()()]𝒫[()D01()()D11()()D21()]𝐮1)x\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ B_{10}&B_{11}&B_{12}\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&D_{01}&()\\ ()&D_{11}&()\\ ()&D_{21}&()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{x}
=B10xθ=01(D01θ𝐮1θ)+(𝒫[B11]𝒫[D11]𝐮1)x\displaystyle=B_{10}\rrbracket^{x}\int_{\theta=0}^{1}\Bigl{(}D_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}+\bigl{(}\mathcal{P}[B_{11}]\mathcal{P}[D_{11}]\mathbf{u}_{1}\bigl{)}\rrbracket^{x}
+μ=01[B12μxθ=01(D21θμ𝐮1θ)]\displaystyle\quad+\int_{\mu=0}^{1}\biggl{[}B_{12}\rrbracket^{x}_{\mu}\int_{\theta=0}^{1}\Bigl{(}D_{21}\rrbracket^{\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}\biggr{]}
=θ=01(B10xD01θ𝐮1θ)+([𝒫[B11]𝒫[D11]]𝐮1)x\displaystyle=\int_{\theta=0}^{1}\Bigl{(}B_{10}\rrbracket^{x}D_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}+\Bigl{(}\bigl{[}\mathcal{P}[B_{11}]\circ\mathcal{P}[D_{11}]\bigr{]}\mathbf{u}_{1}\Bigl{)}\rrbracket^{x}
+θ=01[μ=01(B12μxD21θμ)𝐮1θ]\displaystyle\quad+\int_{\theta=0}^{1}\biggl{[}\int_{\mu=0}^{1}\Bigl{(}B_{12}\rrbracket^{x}_{\mu}\thinspace D_{21}\rrbracket^{\mu}_{\theta}\thinspace\Bigr{)}\mathbf{u}_{1}\rrbracket^{\theta}\biggr{]}
=(𝒫[101(B10,D01)]𝐮1)x+(𝒫[1D(B11,D11)]𝐮1)x\displaystyle=\bigl{(}\mathcal{P}[\mathcal{L}_{101}(B_{10},D_{01})]\mathbf{u}_{1}\bigr{)}\rrbracket^{x}+\bigl{(}\mathcal{P}[\mathcal{L}_{1D}(B_{11},D_{11})]\mathbf{u}_{1}\bigr{)}\rrbracket^{x}
+(𝒫[111(B12,D21)]𝐮1)x=(𝒫[R11]𝐮1)x\displaystyle\quad+\bigl{(}\mathcal{P}[\mathcal{L}_{111}(B_{12},D_{21})]\mathbf{u}_{1}\bigr{)}\rrbracket^{x}=\bigl{(}\mathcal{P}[R_{11}]\mathbf{u}_{1}\bigr{)}\rrbracket^{x}
=(𝒫[()()()()R11()()()()]𝐮1)x,\displaystyle\hskip 130.88284pt=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&R_{11}&()\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{x},

and finally

(𝒫[()()()B10B11B12()()()]𝒫[()()D02()()D12()()D22]𝐮2)x\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ B_{10}&B_{11}&B_{12}\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&D_{02}\\ ()&()&D_{12}\\ ()&()&D_{22}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{x}
=B10xν=01(D02ν𝐮2ν)\displaystyle=B_{10}\rrbracket^{x}\int_{\nu=0}^{1}\Bigl{(}D_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}
+η=01[i=02𝚽iηxB11ηxν=01(D12νη𝐮2ν)]\displaystyle\quad+\int_{\eta=0}^{1}\biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace B_{11}\rrbracket^{x}_{\eta}\int_{\nu=0}^{1}\Bigl{(}D_{12}\rrbracket^{\eta}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\biggr{]}
+μ=01[B12μxν=01(i=02𝚽iνμD22iνμ𝐮2ν)]\displaystyle\quad+\int_{\mu=0}^{1}\Biggl{[}B_{12}\rrbracket^{x}_{\mu}\int_{\nu=0}^{1}\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{22}^{i}\rrbracket^{\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\biggr{)}\Biggr{]}
=ν=01(R12νx𝐮2ν)=(𝒫[()()()()()R12()()()]𝐮2)x.\displaystyle\hskip 56.9055pt=\int_{\nu=0}^{1}\Bigl{(}R_{12}\rrbracket^{x}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&R_{12}\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{x}.

Similarly, we attain a mapping to L2n1[y]L_{2}^{n_{1}}[y] as

(𝒫[()()()()()()B20B21B22]𝒫[D00()()D10()()D20()()]u0)y=B20yD00u0\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{00}&()&()\\ D_{10}&()&()\\ D_{20}&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{y}=B_{20}\rrbracket^{y}\thinspace D_{00}u_{0}
+η=01(B21ηyD10ηu0)+μ=01(i=02𝚽iμyB22μyD20μu0)\displaystyle+\!\int_{\eta=0}^{1}\!\Bigl{(}B_{21}\rrbracket^{y}_{\eta}\thinspace D_{10}\rrbracket^{\eta}\thinspace u_{0}\Bigr{)}+\!\int_{\mu=0}^{1}\!\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace B_{22}\rrbracket^{y}_{\mu}\thinspace D_{20}\rrbracket^{\mu}\thinspace u_{0}\biggr{)}
=R20yu0=(𝒫[()()()()()()R20()()]u0)y,\displaystyle\hskip 99.58464pt=R_{20}\rrbracket^{y}\thinspace u_{0}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ R_{20}&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{y},

and

(𝒫[()()()()()()B20B21B22]𝒫[()D01()()D11()()D21()]𝐮1)y\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&D_{01}&()\\ ()&D_{11}&()\\ ()&D_{21}&()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{y}
=B20yθ=01(D01θ𝐮1θ)\displaystyle=B_{20}\rrbracket^{y}\int_{\theta=0}^{1}\Bigl{(}D_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}
+η=01[B21ηyθ=01(i=02𝚽iθηD11iθη𝐮1θ)]\displaystyle\quad+\int_{\eta=0}^{1}\Biggl{[}B_{21}\rrbracket^{y}_{\eta}\int_{\theta=0}^{1}\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{11}^{i}\rrbracket^{\eta}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\biggr{)}\Biggr{]}
+μ=01[i=02𝚽iμyB22μyθ=01(D21θμ𝐮1θ)]\displaystyle\quad+\int_{\mu=0}^{1}\biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace B_{22}\rrbracket^{y}_{\mu}\int_{\theta=0}^{1}\Bigl{(}D_{21}\rrbracket^{\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}\biggr{]}
=θ=01(R21θy𝐮1θ)=(𝒫[()()()()()()()R21()]𝐮1)y,\displaystyle\hskip 56.9055pt=\int_{\theta=0}^{1}\Bigl{(}R_{21}\rrbracket^{y}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ ()&R_{21}&()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{y},

and finally

(𝒫[()()()()()()B20B21B22]𝒫[()()D02()()D12()()D22]𝐮2)y\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&D_{02}\\ ()&()&D_{12}\\ ()&()&D_{22}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{y}
=B20yν=01(D02ν𝐮2ν)+(𝒫[B22]𝒫[D22]𝐮2)y\displaystyle=B_{20}\rrbracket^{y}\int_{\nu=0}^{1}\Bigl{(}D_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}+\bigl{(}\mathcal{P}[B_{22}]\mathcal{P}[D_{22}]\mathbf{u}_{2}\bigl{)}\rrbracket^{y}
+η=01[B21ηyν=01(D12νη𝐮2ν)]\displaystyle\quad+\int_{\eta=0}^{1}\biggl{[}B_{21}\rrbracket^{y}_{\eta}\int_{\nu=0}^{1}\Bigl{(}D_{12}\rrbracket^{\eta}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\biggr{]}
=ν=01(B20yD02ν𝐮2ν)+([𝒫[B22]𝒫[D22]]𝐮2)y\displaystyle=\int_{\nu=0}^{1}\Bigl{(}B_{20}\rrbracket^{y}D_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}+\Bigl{(}\bigl{[}\mathcal{P}[B_{22}]\circ\mathcal{P}[D_{22}]\bigr{]}\mathbf{u}_{2}\Bigl{)}\rrbracket^{y}
+ν=01[η=01(B21ηyD12νη)𝐮2ν]\displaystyle\quad+\int_{\nu=0}^{1}\biggl{[}\int_{\eta=0}^{1}\Bigl{(}B_{21}\rrbracket^{y}_{\eta}\thinspace D_{12}\rrbracket^{\eta}_{\nu}\thinspace\Bigr{)}\mathbf{u}_{2}\rrbracket^{\nu}\biggr{]}
=(𝒫[101(B20,D02)]𝐮2)y+(𝒫[1D(B22,D22)]𝐮2)y\displaystyle=\bigl{(}\mathcal{P}[\mathcal{L}_{101}(B_{20},D_{02})]\mathbf{u}_{2}\bigr{)}\rrbracket^{y}+\bigl{(}\mathcal{P}[\mathcal{L}_{1D}(B_{22},D_{22})]\mathbf{u}_{2}\bigr{)}\rrbracket^{y}
+(𝒫[111(B21,D12)]𝐮2)y=(𝒫[R22]𝐮2)x\displaystyle\quad+\bigl{(}\mathcal{P}[\mathcal{L}_{111}(B_{21},D_{12})]\mathbf{u}_{2}\bigr{)}\rrbracket^{y}=\bigl{(}\mathcal{P}[R_{22}]\mathbf{u}_{2}\bigr{)}\rrbracket^{x}
=(𝒫[()()()()()()()()R22]𝐮2)y.\displaystyle\hskip 130.88284pt=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ ()&()&R_{22}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{y}.

Combining these results, we conclude 𝒫[B]𝒫[D]=𝒫[R]\mathcal{P}[B]\circ\mathcal{P}[D]=\mathcal{P}[R].

11.4 An Algebra of 2D-PI Operators

We now consider 2D-PI operators, acting on functions 𝐮L2[x,y]\mathbf{u}\in L_{2}[x,y]. Defining a parameter space for these operators as

𝒩2Dn×m\displaystyle\mathcal{N}_{2D}^{n\times m}\! :=[L2n×m[x,y]L2n×m[x,y,ν]L2n×m[x,y,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]],\displaystyle:=\!\begin{bmatrix}L_{2}^{n\times m}[x,y]&\!\!L_{2}^{n\times m}[x,y,\nu]&\!\!L_{2}^{n\times m}[x,y,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&\!\!L_{2}^{n\times m}[x,y,\theta,\nu]&\!\!L_{2}^{n\times m}[x,y,\theta,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&\!\!L_{2}^{n\times m}[x,y,\theta,\nu]&\!\!L_{2}^{n\times m}[x,y,\theta,\nu]\end{bmatrix}, (42)

for any

N\displaystyle N =[N00N01N02N10N11N12N20N21N22]𝒩2Dn×m,\displaystyle=\begin{bmatrix}N_{00}&N_{01}&N_{02}\\ N_{10}&N_{11}&N_{12}\\ N_{20}&N_{21}&N_{22}\end{bmatrix}\in\mathcal{N}_{2D}^{n\times m},

we may write the associated PI operation using the functions 𝚽i\boldsymbol{\Phi}_{i} as defined in Eqn. (38) as

(𝒫[N]𝐮)xy\displaystyle\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy} =θ,ν=01(i,j=02[𝚽iθx𝚽jνyNijθνxy]𝐮θν).\displaystyle=\int_{\theta,\nu=0}^{1}\biggl{(}\sum_{i,j=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{y}_{\nu}\thinspace N_{ij}\rrbracket^{xy}_{\theta\nu}\Bigl{]}\mathbf{u}\rrbracket^{\theta\nu}\biggr{)}.
Lemma 22.

For any N:=[N00N01N02N10N11N12N20N21N22]𝒩2Dn×kN:=\left[\scriptsize\begin{smallmatrix}N_{00}&N_{01}&N_{02}\\ N_{10}&N_{11}&N_{12}\\ N_{20}&N_{21}&N_{22}\end{smallmatrix}\right]\in\mathcal{N}_{2D}^{n\times k} and M:=[M00M01M02M10M11M12M20M21M22]𝒩2Dk×mM:=\left[\scriptsize\begin{smallmatrix}M_{00}&M_{01}&M_{02}\\ M_{10}&M_{11}&M_{12}\\ M_{20}&M_{21}&M_{22}\end{smallmatrix}\right]\in\mathcal{N}_{2D}^{k\times m}, there exists a unique Q𝒩2Dn×mQ\in\mathcal{N}_{2D}^{n\times m} such that 𝒫[N]𝒫[M]=𝒫[Q]\mathcal{P}[N]\circ\mathcal{P}[M]=\mathcal{P}[Q]. Specifically, we may choose Q=2D(N,M)𝒩2Dn×mQ=\mathcal{L}_{2D}(N,M)\in\mathcal{N}_{2D}^{n\times m}, where the linear parameter map 2D:𝒩2D×𝒩2D𝒩2D\mathcal{L}_{2D}:\mathcal{N}_{2D}\times\mathcal{N}_{2D}\rightarrow\mathcal{N}_{2D} is such that

2D(N,M)=[Q00Q01Q02Q10Q11Q12Q20Q21Q22]𝒩2Dn×m,\displaystyle\mathcal{L}_{2D}(N,M)=\left[\scriptsize\begin{smallmatrix}Q_{00}&Q_{01}&Q_{02}\\ Q_{10}&Q_{11}&Q_{12}\\ Q_{20}&Q_{21}&Q_{22}\end{smallmatrix}\right]\in\mathcal{N}_{2D}^{n\times m}, (43)

where, defining functions 𝚿kij\boldsymbol{\Psi}_{kij} as in Eqn. (19),

Qkrθx=η,μ=01(i,j,p,q=02𝚿kijηθx𝚿rpqμνyNipημxyMjqθνημ),\displaystyle Q_{kr}\rrbracket^{x}_{\theta}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j,p,q=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace M_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{)},

for each k{0,1,2}k\in\{0,1,2\}.

Proof 11.4.

Let 𝐮L2m[x,y]\mathbf{u}\in L_{2}^{m}[x,y] be arbitrary. Then, applying the results from Proposition 19, we find

(𝒫[N]𝒫[M]𝐮)xy\displaystyle\bigl{(}\mathcal{P}[N]\mathcal{P}[M]\mathbf{u}\bigr{)}\rrbracket^{xy}
=η,μ=01[i,p=02𝚽iηx𝚽pμyNipxyημ\displaystyle=\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i,p=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}
θ,ν=01(j,q=02𝚽jθη𝚽qνμMjqθνημ𝐮θν)]\displaystyle\hskip 64.01869pt\int_{\theta,\nu=0}^{1}\biggl{(}\sum_{j,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace M_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\biggr{)}\Biggr{]}
=θ,ν=01[η,μ=01\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{[}\int_{\eta,\mu=0}^{1}
(i,j,p,q=02𝚽iηx𝚽jθη𝚽pμy𝚽qνμNipημxyMjqθνημ)𝐮θν]\displaystyle\hskip 19.91684pt\Biggl{(}\sum_{i,j,p,q=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace M_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{)}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}
=θ,ν=01[k,r=02𝚽kθx𝚽ryνη,μ=01\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{[}\sum_{k,r=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\int_{\eta,\mu=0}^{1}
(i,j,p,q=02𝚿kijηθx𝚿rpqμνyNipημxyMjqθνημ)𝐮θν]\displaystyle\hskip 42.67912pt\Biggl{(}\sum_{i,j,p,q=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace M_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{)}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}
=θ,ν=01(k,r=02𝚽kθx𝚽rνyQkrθνxy𝐮θν)=(𝒫[Q]𝐮)xy\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k,r=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\thinspace Q_{kr}\rrbracket^{xy}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}=(\mathcal{P}[Q]\mathbf{u})\rrbracket^{xy}

11.5 An Operator from 2D to 011

Having defined algebras of operators on RLn0,n1[x,y]:=n0×L2n1[x]×L2n1[y]RL^{n_{0},n_{1}}[x,y]:=\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y] and L2n2[x,y]L_{2}^{n_{2}}[x,y], it remains to define operators mapping L2[x,y]RL[x,y]L_{2}[x,y]\rightarrow RL[x,y] and back. For this first mapping, we first define a parameter space

𝒩2D1Dn×m\displaystyle\mathcal{N}^{n\times m}_{2D\rightarrow 1D} :=L2n×m[x,ν]×L2n×m[x,θ,ν]×L2n×m[x,θ,ν],\displaystyle:=L_{2}^{n\times m}[x,\nu]\times L_{2}^{n\times m}[x,\theta,\nu]\times L_{2}^{n\times m}[x,\theta,\nu],

with associated operator 𝒫[N]:L2m[x,y]L2n[x]\mathcal{P}[N]:L_{2}^{m}[x,y]\rightarrow L_{2}^{n}[x] defined such that, for arbitrary N={N0,N1,N2}𝒩2D1Dn×mN=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}^{n\times m}_{2D\rightarrow 1D},

(𝒫[N]𝐮)x:=θ,μ=01(i=02[𝚽iθxNiθνx𝐮θν]).\displaystyle(\mathcal{P}[N]\mathbf{u})\rrbracket^{x}:=\int_{\theta,\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace N_{i}\rrbracket^{x}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{]}\Biggl{)}.

This operator maps functions on two variables to functions on a single variable, allowing us to build a mapping from L2[x,y]L_{2}[x,y] to RL[x,y]RL[x,y]. In particular, letting

𝒩2D011[n0n1m2]\displaystyle\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right] :=[L2n0×m2[θ,ν]𝒩2D1Dn1×m2𝒩2D1Dn1×m2],\displaystyle:=\begin{bmatrix}L_{2}^{n_{0}\times m_{2}}[\theta,\nu]\\ \mathcal{N}_{2D\rightarrow 1D}^{n_{1}\times m_{2}}\\ \mathcal{N}_{2D\rightarrow 1D}^{n_{1}\times m_{2}}\end{bmatrix}, (44)

an associated operator 𝒫[D]:L2m2[x,y]RLn0,n1[x,y]\mathcal{P}[D]:L_{2}^{m_{2}}[x,y]\rightarrow RL^{n_{0},n_{1}}[x,y] may be defined such that, for any D=[D0D1D2]𝒩2D011[n0n1m2]D=\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right] and 𝐮L2m2[x,y]\mathbf{u}\in L_{2}^{m_{2}}[x,y],

(𝒫[D]𝐮)xy:=[θ,ν=01(D0θν𝐮θν)(𝒫[D1]𝐮)x(𝒫[D2]𝐮)y].\displaystyle(\mathcal{P}[D]\mathbf{u})\rrbracket^{xy}:=\begin{bmatrix}\int_{\theta,\nu=0}^{1}\Bigl{(}D_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}\\ (\mathcal{P}[D_{1}]\mathbf{u})\rrbracket^{x}\\ (\mathcal{P}[D_{2}]\mathbf{u})\rrbracket^{y}\end{bmatrix}.

This operator allows us to map functions 𝐮L2[x,y]\mathbf{u}\in L_{2}[x,y] to functions 𝐯=[v0𝐯1𝐯2][L2[x]L2[y]]\mathbf{v}=\left[\scriptsize\begin{smallmatrix}v_{0}\\ \mathbf{v}_{1}\\ \mathbf{v}_{2}\end{smallmatrix}\right]\in\left[\scriptsize\begin{smallmatrix}\mathbb{R}\\ L_{2}[x]\\ L_{2}[y]\end{smallmatrix}\right], which is necessary to map state variables living on the interior of a 2D domain to state variables living on the boundary. An important property of this operator is also that its composition with 011- and 2D-PI operators returns another 2D\rightarrow011-PI operator, as described in the following lemmas.

Lemma 23.

For any B=[B00B01B02B10B11B12B20B21B22]𝒩011[n0p0n1p1]B=\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\end{smallmatrix}\right] and D=[D0D1D2]𝒩2D011[p0p1m2]D=\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}p_{0}\\ p_{1}\\ m_{2}\end{smallmatrix}\right], where

B11={B110,B111,B112}𝒩1D,\displaystyle B_{11}=\{B_{11}^{0},B_{11}^{1},B_{11}^{2}\}\in\mathcal{N}_{1D},
B22={B220,B221,B222}𝒩1D,\displaystyle B_{22}=\{B_{22}^{0},B_{22}^{1},B_{22}^{2}\}\in\mathcal{N}_{1D},
D1={D10,D11,D12}𝒩2D1D,\displaystyle D_{1}=\{D_{1}^{0},D_{1}^{1},D_{1}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D},
D2={D20,D21,D22}𝒩2D1D,\displaystyle D_{2}=\{D_{2}^{0},D_{2}^{1},D_{2}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D},

there exists a unique S𝒩2D011[n0n1m2]S\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right] such that 𝒫[B]𝒫[D]=𝒫[S]\mathcal{P}[B]\circ\mathcal{P}[D]=\mathcal{P}[S]. Specifically, we may choose S=2D0111(B,D)𝒩2D011[n0n1m2]S=\mathcal{L}_{2D\rightarrow 011}^{1}(B,D)\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right], where the linear parameter map 2D0111:𝒩011×𝒩2D011𝒩2D011\mathcal{L}_{2D\rightarrow 011}^{1}:\mathcal{N}_{011}\times\mathcal{N}_{2D\rightarrow 011}\rightarrow\mathcal{N}_{2D\rightarrow 011} is defined such that

2D0111(B,D)=[S0S1S2]𝒩2D011[n0n1m2],\displaystyle\mathcal{L}_{2D\rightarrow 011}^{1}(B,D)=\begin{bmatrix}S_{0}\\ S_{1}\\ S_{2}\end{bmatrix}\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right], (45)

with

S0θν\displaystyle S_{0}\rrbracket_{\theta\nu} =B00D0θν+η=01(B01ηi=02[𝚽iθηD1iθνη])\displaystyle=B_{00}D_{0}\rrbracket_{\theta\nu}+\int_{\eta=0}^{1}\Biggl{(}B_{01}\rrbracket_{\eta}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{1}^{i}\rrbracket^{\eta}_{\theta\nu}\Bigr{]}\Biggr{)}
+μ=01(B02μi=02[𝚽iνμD2iθνμ])\displaystyle\qquad+\int_{\mu=0}^{1}\Biggl{(}B_{02}\rrbracket_{\mu}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{2}^{i}\rrbracket^{\mu}_{\theta\nu}\Bigr{]}\Biggr{)}
S1\displaystyle S_{1} =0(B10,D0)+1(B11,D1)+2(B12,D2)\displaystyle=\mathcal{L}_{0}(B_{10},D_{0})+\mathcal{L}_{1}(B_{11},D_{1})+\mathcal{L}_{2}(B_{12},D_{2})
S2\displaystyle S_{2} =0(B20,D0)+2(B21,D1)+1(B22,D2),\displaystyle=\mathcal{L}_{0}(B_{20},D_{0})+\mathcal{L}_{2}(B_{21},D_{1})+\mathcal{L}_{1}(B_{22},D_{2}),

where 0:L2[x]×L2[θ,ν]𝒩2D1D\mathcal{L}_{0}:L_{2}[x]\times L_{2}[\theta,\nu]\rightarrow\mathcal{N}_{2D\rightarrow 1D} is defined such that, for arbitrary NL2[x]N\in L_{2}[x], ML2[θ,ν]M\in L_{2}[\theta,\nu], 0(N,M)={Q0,Q1,Q2}\mathcal{L}_{0}(N,M)=\{Q_{0},Q_{1},Q_{2}\} with

Q0xθν\displaystyle Q_{0}\rrbracket^{x}_{\theta\nu} =0\displaystyle=0 Q1xθν\displaystyle Q_{1}\rrbracket^{x}_{\theta\nu} =Q2θνx=NxMθν,\displaystyle=Q_{2}\rrbracket^{x}_{\theta\nu}=N\rrbracket^{x}\thinspace M\rrbracket_{\theta\nu},

1:𝒩1D×𝒩2D1D𝒩2D1D\mathcal{L}_{1}:\mathcal{N}_{1D}\times\mathcal{N}_{2D\rightarrow 1D}\rightarrow\mathcal{N}_{2D\rightarrow 1D} is defined such that, for arbitrary N={N0,N1,N2}𝒩1DN=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}_{1D}, M={M0,M1,M2}𝒩2D1DM=\{M_{0},M_{1},M_{2}\}\in\mathcal{N}_{2D\rightarrow 1D}, 1(N,M)={Q0,Q1,Q2}\mathcal{L}_{1}(N,M)=\{Q_{0},Q_{1},Q_{2}\} with

Qkxθν\displaystyle Q_{k}\rrbracket^{x}_{\theta\nu} =η=01(i,j=02𝚿kijηθxNiηxMjθνη)\displaystyle=\int_{\eta=0}^{1}\biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace N_{i}\rrbracket^{x}_{\eta}\thinspace M_{j}\rrbracket^{\eta}_{\theta\nu}\biggr{)}

for k{0,1,2}k\in\{0,1,2\}, and 2:L2[x,ν]×𝒩2D1D𝒩2D1D\mathcal{L}_{2}:L_{2}[x,\nu]\times\mathcal{N}_{2D\rightarrow 1D}\rightarrow\mathcal{N}_{2D\rightarrow 1D} is defined such that, for arbitrary NL2[x,ν]N\in L_{2}[x,\nu], M={M0,M1,M2}𝒩2D1DM=\{M_{0},M_{1},M_{2}\}\in\mathcal{N}_{2D\rightarrow 1D}, 2(N,M)={Q0,Q1,Q2}\mathcal{L}_{2}(N,M)=\{Q_{0},Q_{1},Q_{2}\}, where

Q0xθν\displaystyle Q_{0}\rrbracket^{x}_{\theta\nu} =0\displaystyle=0 Q1xθν\displaystyle Q_{1}\rrbracket^{x}_{\theta\nu} =Q2θνx=μ=01(i=02𝚽iνμNμxMiθνμ).\displaystyle=Q_{2}\rrbracket^{x}_{\theta\nu}=\int_{\mu=0}^{1}\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace N\rrbracket^{x}_{\mu}\thinspace M_{i}\rrbracket^{\mu}_{\theta\nu}\biggr{)}.
Proof 11.5.

To prove this lemma, we will exploit the linear structure of 011-PI operators, allowing us to express

𝒫[B00B01B02B10B11B12B20B21B22]𝒫[D0D1D2]=𝒫[B00B01B02000000]𝒫[D0D1D2]\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ 0&0&0\\ 0&0&0\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]
+𝒫[000B10B11B12000]𝒫[D0D1D2]+𝒫[000000B20B21B22]𝒫[D0D1D2].\displaystyle\quad+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ B_{10}&B_{11}&B_{12}\\ 0&0&0\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&0&0\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right].

Considering each of these terms separately, we may invoke the definitions of the different operators to find that, for arbitrary 𝐮L2m2[x,y]\mathbf{u}\in L_{2}^{m_{2}}[x,y],

𝒫[B00B01B02()()()()()()]𝒫[D0D1D2]𝐮=B00θ,ν=01(D0θν𝐮θν)\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\mathbf{u}=B_{00}\int_{\theta,\nu=0}^{1}\Bigl{(}D_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}
+η=01B01η(θ,μ=01[i=02(𝚽iθηD1iθνη𝐮θν)])\displaystyle\qquad+\int_{\eta=0}^{1}B_{01}\rrbracket_{\eta}\Biggl{(}\int_{\theta,\mu=0}^{1}\biggl{[}\sum_{i=0}^{2}\Bigl{(}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{1}^{i}\rrbracket^{\eta}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}\biggl{]}\Biggr{)}
+μ=01B02μ(θ,μ=01[i=02(𝚽iνμD2iθνμ𝐮θν)])\displaystyle\qquad+\int_{\mu=0}^{1}B_{02}\rrbracket_{\mu}\Biggl{(}\int_{\theta,\mu=0}^{1}\biggl{[}\sum_{i=0}^{2}\Bigl{(}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{2}^{i}\rrbracket^{\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}\biggl{]}\Biggr{)}
=θ,ν=01(S0θν𝐮θν)=𝒫[S0()()]𝐮.\displaystyle\hskip 78.24507pt=\int_{\theta,\nu=0}^{1}\Bigl{(}S_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}S_{0}\\ ()\\ ()\end{smallmatrix}\right]\mathbf{u}.

In addition, using Corollary 18 and Proposition 19, it follows that

(𝒫[()()()B10B11B12()()()]𝒫[D0D1D2]𝐮)x=B10xθ,ν=01(D0θν𝐮θν)\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ B_{10}&B_{11}&B_{12}\\ ()&()&()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\mathbf{u}\right)\rrbracket^{x}\!=\!B_{10}\rrbracket^{x}\!\int_{\theta,\nu=0}^{1}\!\Bigl{(}D_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}
+η=01(i=02[𝚽iηxB11iηxθ,ν=01(j=02[𝚽jθηD1jθνη𝐮θν])])\displaystyle+\!\int_{\eta=0}^{1}\!\Biggl{(}\sum_{i=0}^{2}\!\biggl{[}\mathbf{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace B_{11}^{i}\rrbracket^{x}_{\eta}\int_{\theta,\nu=0}^{1}\!\biggl{(}\sum_{j=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{]}\biggl{)}\biggr{]}\Biggr{)}
+μ=01B12μx(θ,ν=01[i=02(𝚽iνμD2iθνμ𝐮θν)])\displaystyle\hskip 45.52458pt+\!\int_{\mu=0}^{1}\!B_{12}\rrbracket^{x}_{\mu}\Biggl{(}\int_{\theta,\nu=0}^{1}\!\Biggl{[}\sum_{i=0}^{2}\Bigl{(}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{2}^{i}\rrbracket^{\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}\Biggl{]}\Biggr{)}
=θ,ν=01(k=12[𝚽kθxB10xD0θν]𝐮θν)\displaystyle=\int_{\theta,\nu=0}^{1}\biggl{(}\sum_{k=1}^{2}\Bigl{[}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace B_{10}\rrbracket^{x}\thinspace D_{0}\rrbracket_{\theta\nu}\Bigr{]}\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}
+θ,ν=01(k=02𝚽kθxη=01[i,j=02𝚿kijηθxB11iηxD1jθνη]𝐮θν)\displaystyle+\!\int_{\theta,\nu=0}^{1}\!\Biggl{(}\sum_{k=0}^{2}\mathbf{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\eta=0}^{1}\!\Biggl{[}\sum_{i,j=0}^{2}\mathbf{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace B_{11}^{i}\rrbracket^{x}_{\eta}D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
+θ,ν=01(k=12𝚽kθxμ=01[i=02𝚽iνμB12μxD2iθνμ]𝐮θν)\displaystyle\hskip 15.6491pt+\!\int_{\theta,\nu=0}^{1}\!\Biggl{(}\sum_{k=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\mu=0}^{1}\!\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace B_{12}\rrbracket^{x}_{\mu}\thinspace D_{2}^{i}\rrbracket^{\mu}_{\theta\nu}\Biggl{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
=(𝒫[0(B10,D0)]𝐮)x+(𝒫[1(B11,D1)]𝐮)x\displaystyle=\bigl{(}\mathcal{P}[\mathcal{L}_{0}(B_{10},D_{0})]\mathbf{u}\bigr{)}\rrbracket^{x}+\bigl{(}\mathcal{P}[\mathcal{L}_{1}(B_{11},D_{1})]\mathbf{u}\bigr{)}\rrbracket^{x}
+(𝒫[2(B12,D2)]𝐮)x=(𝒫[()S1()]𝐮)x.\displaystyle\hskip 71.13188pt+\bigl{(}\mathcal{P}[\mathcal{L}_{2}(B_{12},D_{2})]\mathbf{u}\bigr{)}\rrbracket^{x}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ S_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}\right)\rrbracket^{x}_{.}

Finally, by the same approach,

(𝒫[()()()()()()B20B21B22]𝒫[D0D1D2]𝐮)y=B20yθ,ν=01(D0θν𝐮θν)\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\mathbf{u}\right)\rrbracket^{y}\!=\!B_{20}\rrbracket^{y}\!\int_{\theta,\nu=0}^{1}\!\Bigl{(}D_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}
+μ=01(i=02[𝚽iμyB22iμyθ,ν=01(j=02[𝚽jνμD2jθνμ𝐮θν])])\displaystyle+\!\int_{\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{2}\biggl{[}\mathbf{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace B_{22}^{i}\rrbracket^{y}_{\mu}\int_{\theta,\nu=0}^{1}\!\biggl{(}\sum_{j=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{j}\rrbracket^{\mu}_{\nu}\thinspace D_{2}^{j}\rrbracket^{\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{]}\biggl{)}\biggr{]}\Biggr{)}
+η=01B21ηy(θ,ν=01[i=02(𝚽iθηD1iθνη𝐮θν)])\displaystyle\hskip 45.52458pt+\!\int_{\eta=0}^{1}\!B_{21}\rrbracket^{y}_{\eta}\Biggl{(}\int_{\theta,\nu=0}^{1}\!\Biggl{[}\sum_{i=0}^{2}\Bigl{(}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{1}^{i}\rrbracket^{\eta}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}\Biggl{]}\Biggr{)}
=θ,ν=01(k=12[𝚽kνyB20yD0θν]𝐮θν)\displaystyle=\int_{\theta,\nu=0}^{1}\biggl{(}\sum_{k=1}^{2}\Bigl{[}\boldsymbol{\Phi}_{k}\rrbracket^{y}_{\nu}\thinspace B_{20}\rrbracket^{y}\thinspace D_{0}\rrbracket_{\theta\nu}\Bigr{]}\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}
+θ,ν=01(k=02𝚽kνyμ=01[i,j=02𝚿kijμνyB22iμyD2jθνμ]𝐮θν)\displaystyle+\!\int_{\theta,\nu=0}^{1}\!\Biggl{(}\sum_{k=0}^{2}\mathbf{\Phi}_{k}\rrbracket^{y}_{\nu}\int_{\mu=0}^{1}\!\Biggl{[}\sum_{i,j=0}^{2}\mathbf{\Psi}_{kij}\rrbracket^{y}_{\mu\nu}\thinspace B_{22}^{i}\rrbracket^{y}_{\mu}D_{2}^{j}\rrbracket^{\mu}_{\theta\nu}\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
+θ,ν=01(k=12𝚽kνyη=01[i=02𝚽iθηB21ηyD1iθνη]𝐮θν)\displaystyle\hskip 15.6491pt+\!\int_{\theta,\nu=0}^{1}\!\Biggl{(}\sum_{k=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{y}_{\nu}\int_{\eta=0}^{1}\!\biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace B_{21}\rrbracket^{y}_{\eta}\thinspace D_{1}^{i}\rrbracket^{\eta}_{\theta\nu}\biggl{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
=(𝒫[0(B20,D0)]𝐮)x+(𝒫[1(B22,D2)]𝐮)x\displaystyle\quad=\bigl{(}\mathcal{P}[\mathcal{L}_{0}(B_{20},D_{0})]\mathbf{u}\bigr{)}\rrbracket^{x}+\bigl{(}\mathcal{P}[\mathcal{L}_{1}(B_{22},D_{2})]\mathbf{u}\bigr{)}\rrbracket^{x}
+(𝒫[2(B21,D1)]𝐮)x=(𝒫[()()S2]𝐮)y.\displaystyle\hskip 71.13188pt+\bigl{(}\mathcal{P}[\mathcal{L}_{2}(B_{21},D_{1})]\mathbf{u}\bigr{)}\rrbracket^{x}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ S_{2}\end{smallmatrix}\right]\mathbf{u}\right)\rrbracket^{y}.

Combining the results, we conclude that 𝒫[B]𝒫[D]=𝒫[S]\mathcal{P}[B]\circ\mathcal{P}[D]=\mathcal{P}[S].

Lemma 24.

For any N=[N00N01N02N10N11N12N20N21N22]𝒩2Dp2×m2N=\left[\scriptsize\begin{smallmatrix}N_{00}&N_{01}&N_{02}\\ N_{10}&N_{11}&N_{12}\\ N_{20}&N_{21}&N_{22}\end{smallmatrix}\right]\in\mathcal{N}_{2D}^{p_{2}\times m_{2}} and D=[D0D1D2]𝒩2D011[n0n1p2]D=\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ p_{2}\end{smallmatrix}\right], where

D1={D10,D11,D12}𝒩2D1D,\displaystyle D_{1}=\{D_{1}^{0},D_{1}^{1},D_{1}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D},
D2={D20,D21,D22}𝒩2D1D,\displaystyle D_{2}=\{D_{2}^{0},D_{2}^{1},D_{2}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D},

there exists a unique S𝒩2D011[n0n1m2]S\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right] such that 𝒫[D]𝒫[N]=𝒫[S]\mathcal{P}[D]\circ\mathcal{P}[N]=\mathcal{P}[S]. Specifically, we may choose S=2D0112(D,N)𝒩2D011[n0n1m2]S=\mathcal{L}_{2D\rightarrow 011}^{2}(D,N)\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right], where the linear parameter map 2D0112:𝒩2D011×𝒩2D𝒩2D011\mathcal{L}_{2D\rightarrow 011}^{2}:\mathcal{N}_{2D\rightarrow 011}\times\mathcal{N}_{2D}\rightarrow\mathcal{N}_{2D\rightarrow 011} is defined such that

2D0112(D,N)=[S0S1S2]𝒩2D011[n0n1m2],\displaystyle\mathcal{L}_{2D\rightarrow 011}^{2}(D,N)=\begin{bmatrix}S_{0}\\ S_{1}\\ S_{2}\end{bmatrix}\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right], (46)

where

S0θν=η,μ=01(j,q=02𝚽jθη𝚽qνμD0ημNjqθνημ)\displaystyle S_{0}\rrbracket_{\theta\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{j,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace D_{0}\rrbracket_{\eta\mu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{)}

and where

S1={S10,S11,S12},\displaystyle S_{1}=\{S_{1}^{0},S_{1}^{1},S_{1}^{2}\}, S2={S20,S21,S22},\displaystyle S_{2}=\{S_{2}^{0},S_{2}^{1},S_{2}^{2}\},

with

S1kθνx=η,μ=01(i,j,q=02𝚿kijηθx𝚽qνμD1iημxNjqθνημ)\displaystyle S_{1}^{k}\rrbracket^{x}_{\theta\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j,q=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{)}
S2rθνy=η,μ=01(j,p,q=02𝚽jθη𝚿rpqμνyD2pημyNjqθνημ),\displaystyle S_{2}^{r}\rrbracket^{y}_{\theta\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{j,p,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace D_{2}^{p}\rrbracket^{y}_{\eta\mu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{)},

for k,r{0,1,2}k,r\in\{0,1,2\}.

Proof 11.6.

To prove this result, we once again note that, by linearity of the PI operators,

𝒫[D]𝒫[N]=𝒫[D000]𝒫[N]+𝒫[0D10]𝒫[N]+𝒫[00D2]𝒫[N].\displaystyle\mathcal{P}[D]\mathcal{P}[N]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ 0\\ 0\end{smallmatrix}\right]\mathcal{P}[N]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ D_{1}\\ 0\end{smallmatrix}\right]\mathcal{P}[N]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ 0\\ D_{2}\end{smallmatrix}\right]\mathcal{P}[N].

Considering each of these terms separately, we find that, for arbitrary 𝐮L2[x,y]\mathbf{u}\in L_{2}[x,y],

𝒫[D0()()]𝒫[N]𝐮\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ ()\\ ()\end{smallmatrix}\right]\mathcal{P}[N]\mathbf{u}
=η,μ=01(D0ημθ,ν=01[j,q=02𝚽jθη𝚽qνμNjqθνημ𝐮θν])\displaystyle=\int_{\eta,\mu=0}^{1}\Biggl{(}D_{0}\rrbracket_{\eta\mu}\int_{\theta,\nu=0}^{1}\Biggl{[}\sum_{j,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}\Biggr{)}
=θ,ν=01(η,μ=01[j,q=02𝚽jθη𝚽qνμD0ημNjqθνημ]𝐮θν)\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{j,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace D_{0}\rrbracket_{\eta\mu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
=θ,ν=01(S0θν𝐮θν)=𝒫[S0()()]𝐮.\displaystyle=\int_{\theta,\nu=0}^{1}\Bigl{(}S_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}S_{0}\\ ()\\ ()\end{smallmatrix}\right]\mathbf{u}.

Similarly, using Proposition 19, we find

(𝒫[()D1()]𝒫[N]𝐮)x\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ D_{1}\\ ()\end{smallmatrix}\right]\mathcal{P}[N]\mathbf{u}\right)\rrbracket^{x}
=η,μ=01(i=02𝚽iηxD1ixημθ,ν=01\displaystyle=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\int_{\theta,\nu=0}^{1}
[j,q=02𝚽jθη𝚽qνμNjqθνημ𝐮θν])\displaystyle\hskip 113.81102pt\Biggl{[}\sum_{j,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}\Biggr{)}
=θ,ν=01(k=02𝚽kθxη,μ=01\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\eta,\mu=0}^{1}
[i,j,q=02𝚿kijηθx𝚽qνμD1iημxNjqθνημ]𝐮θν)\displaystyle\hskip 71.13188pt\Biggl{[}\sum_{i,j,q=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
=θ,ν=01(k=02𝚽kθνxS1kθνx𝐮θν)=(𝒫[()S1()]𝐮)x,\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta\nu}\thinspace S_{1}^{k}\rrbracket^{x}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ S_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}\right)\rrbracket^{x},

and

(𝒫[()()D2]𝒫[N]𝐮)y\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ D_{2}\end{smallmatrix}\right]\mathcal{P}[N]\mathbf{u}\right)\rrbracket^{y}
=η,μ=01(p=02𝚽pμyD2pyημθ,ν=01\displaystyle=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{p=0}^{2}\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace D_{2}^{p}\rrbracket^{y}_{\eta\mu}\int_{\theta,\nu=0}^{1}
[j,q=02𝚽jθη𝚽qνμNjqθνημ𝐮θν])\displaystyle\hskip 113.81102pt\Biggl{[}\sum_{j,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}\Biggr{)}
=θ,ν=01(r=02𝚽rνyη,μ=01\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{r=0}^{2}\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\int_{\eta,\mu=0}^{1}
[j,p,q=02𝚽jθη𝚿rpqμνyD2pημyNjqθνημ]𝐮θν)\displaystyle\hskip 71.13188pt\Biggl{[}\sum_{j,p,q=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace D_{2}^{p}\rrbracket^{y}_{\eta\mu}\thinspace N_{jq}\rrbracket^{\eta\mu}_{\theta\nu}\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
=θ,ν=01(r=02𝚽rθνxS2rθνy𝐮θν)=(𝒫[()()S2]𝐮)y.\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{r=0}^{2}\boldsymbol{\Phi}_{r}\rrbracket^{x}_{\theta\nu}\thinspace S_{2}^{r}\rrbracket^{y}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ S_{2}\end{smallmatrix}\right]\mathbf{u}\right)\rrbracket^{y}.

Combining the results, we conclude that 𝒫[D]𝒫[N]=𝒫[S]\mathcal{P}[D]\circ\mathcal{P}[N]=\mathcal{P}[S].

11.6 An Operator from 011 to 2D

In addition to the operator mapping L2n2[x,y]L_{2}^{n_{2}}[x,y] to RLn0,n1[x,y]:=n0×L2n1[x]×L2n1[y]RL^{n_{0},n_{1}}[x,y]:=\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y] defined in the previous section, we also define an operator performing the inverse of this mapping. For this, we first define a parameter space

𝒩1D2Dn×m\displaystyle\mathcal{N}^{n\times m}_{1D\rightarrow 2D} :=L2n×m[x,y]×L2n×m[x,y,θ]×L2n×m[x,y,θ]\displaystyle:=L_{2}^{n\times m}[x,y]\times L_{2}^{n\times m}[x,y,\theta]\times L_{2}^{n\times m}[x,y,\theta]

with associated operator 𝒫[N]:L2m[x]L2n[x,y]\mathcal{P}[N]:L_{2}^{m}[x]\rightarrow L_{2}^{n}[x,y] defined such that, for arbitrary N={N0,N1,N2}𝒩1D2Dn×mN=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}^{n\times m}_{1D\rightarrow 2D} and 𝐮L2m[x]\mathbf{u}\in L_{2}^{m}[x],

(𝒫[N]𝐮)xy:=θ=01(i=02[𝚽iθxNiθxy𝐮θ]).\displaystyle(\mathcal{P}[N]\mathbf{u})\rrbracket^{xy}:=\int_{\theta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace N_{i}\rrbracket^{xy}_{\theta}\thinspace\mathbf{u}\rrbracket^{\theta}\Bigr{]}\Biggl{)}.

Building upon this, we define yet another space

𝒩0112D[m0m1n2]\displaystyle\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right] :=[L2n2×m0[x,y]𝒩1D2Dn2×m1𝒩1D2Dn2×m1],\displaystyle:=\begin{bmatrix}L_{2}^{n_{2}\times m_{0}}[x,y]\\ \mathcal{N}_{1D\rightarrow 2D}^{n_{2}\times m_{1}}\\ \mathcal{N}_{1D\rightarrow 2D}^{n_{2}\times m_{1}}\end{bmatrix}, (47)

with associated PI operator 𝒫[E]:RLm0,m1L2n2[x,y]\mathcal{P}[E]:RL^{m_{0},m_{1}}\rightarrow L_{2}^{n_{2}}[x,y] such that, for arbitrary E=[E0E1E2]𝒩0112D[m0m1n2]E=\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right] and 𝐮=[u0𝐮1𝐮2]RLm0,m1[x,y]\mathbf{u}=\left[\scriptsize\begin{smallmatrix}u_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{smallmatrix}\right]\in RL^{m_{0},m_{1}}[x,y],

(𝒫[E]𝐮)xy:=E0xyu0+(𝒫[E1]𝐮1)xy+(𝒫[E2]𝐮)xy.\displaystyle(\mathcal{P}[E]\mathbf{u})\rrbracket^{xy}:=E_{0}\rrbracket^{xy}\thinspace u_{0}+(\mathcal{P}[E_{1}]\mathbf{u}_{1})\rrbracket^{xy}+(\mathcal{P}[E_{2}]\mathbf{u})\rrbracket^{xy}.

This operator maps functions in 𝐮=[u0𝐮1𝐮2][L2[x]L2[y]]\mathbf{u}=\left[\scriptsize\begin{smallmatrix}u_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{smallmatrix}\right]\in\left[\scriptsize\begin{smallmatrix}\mathbb{R}\\ L_{2}[x]\\ L_{2}[y]\end{smallmatrix}\right] to functions 𝐯L2[x,y]\mathbf{v}\in L_{2}[x,y], allowing us to map state variables living on the boundary of a 2D domain to state variables living on its interior. As was the case for 2D\rightarrow011-PI operators, the composition of 011\rightarrow2D-PI operators with 011- and 2D-PI operators too can be expressed as a PI operator, as described in the following lemmas.

Lemma 25.

For any E=[E0E1E2]𝒩0112D[p0p1n2]E=\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}p_{0}\\ p_{1}\\ n_{2}\end{smallmatrix}\right] and B=[B00B01B02B10B11B12B20B21B22]𝒩011[p0m0p1m1]B=\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\end{smallmatrix}\right], where

B11={B110,B111,B112}𝒩1Dp1×m1,\displaystyle B_{11}=\{B_{11}^{0},B_{11}^{1},B_{11}^{2}\}\in\mathcal{N}_{1D}^{p_{1}\times m_{1}},
B22={B220,B221,B222}𝒩1Dp1×m1,\displaystyle B_{22}=\{B_{22}^{0},B_{22}^{1},B_{22}^{2}\}\in\mathcal{N}_{1D}^{p_{1}\times m_{1}},
E1={E10,E11,E12}𝒩1D2Dn2×m1,\displaystyle E_{1}=\{E_{1}^{0},E_{1}^{1},E_{1}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{n_{2}\times m_{1}},
E2={E20,E21,E22}𝒩1D2Dn2×m1,\displaystyle E_{2}=\{E_{2}^{0},E_{2}^{1},E_{2}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{n_{2}\times m_{1}},

there exists a unique T𝒩0112D[m0m1n2]T\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right] such that 𝒫[E]𝒫[B]=𝒫[T]\mathcal{P}[E]\circ\mathcal{P}[B]=\mathcal{P}[T]. Specifically, we may choose T=0112D1(E,B)𝒩0112D[m0m1n2]T=\mathcal{L}_{011\rightarrow 2D}^{1}(E,B)\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right], where the linear parameter map 0112D1:𝒩0112D×𝒩011𝒩0112D\mathcal{L}_{011\rightarrow 2D}^{1}:\mathcal{N}_{011\rightarrow 2D}\times\mathcal{N}_{011}\rightarrow\mathcal{N}_{011\rightarrow 2D} is defined such that

0112D1(E,B)=[T0T1T2]𝒩0112D[m0m1n2],\displaystyle\mathcal{L}_{011\rightarrow 2D}^{1}(E,B)=\begin{bmatrix}T_{0}\\ T_{1}\\ T_{2}\end{bmatrix}\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right], (48)

where

T0xy=E0xyB00+η=01(i=02[𝚽iηxE1iηxyB10η])\displaystyle T_{0}\rrbracket^{xy}=E_{0}\rrbracket^{xy}B_{00}+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}B_{10}\rrbracket^{\eta}\Bigr{]}\Biggr{)}
+μ=01(i=02[𝚽iμyE2iμxyB20μ])\displaystyle\qquad\quad+\int_{\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace E_{2}^{i}\rrbracket^{xy}_{\mu}B_{20}\rrbracket^{\mu}\Bigr{]}\Biggr{)}
T1=0(E0,B01)+1(E1,B11)+2(E2,B21)\displaystyle T_{1}=\mathcal{L}_{0}(E_{0},B_{01})+\mathcal{L}_{1}(E_{1},B_{11})+\mathcal{L}_{2}(E_{2},B_{21})
T2=0(E0,B02)+2(E1,B12)+1(E2,B22),\displaystyle T_{2}=\mathcal{L}_{0}(E_{0},B_{02})+\mathcal{L}_{2}(E_{1},B_{12})+\mathcal{L}_{1}(E_{2},B_{22}),

and where 0:L2[θ,ν]×L2[x]𝒩1D2D\mathcal{L}_{0}:L_{2}[\theta,\nu]\times L_{2}[x]\rightarrow\mathcal{N}_{1D\rightarrow 2D} is defined such that, for arbitrary NL2[x,y]N\in L_{2}[x,y], ML2[θ]M\in L_{2}[\theta], 0(N,M)={Q0,Q1,Q2}\mathcal{L}_{0}(N,M)=\{Q_{0},Q_{1},Q_{2}\} with

Q0xyθ\displaystyle Q_{0}\rrbracket^{xy}_{\theta} =0\displaystyle=0 Q1xyθ\displaystyle Q_{1}\rrbracket^{xy}_{\theta} =Q2θxy=NxyMθ,\displaystyle=Q_{2}\rrbracket^{xy}_{\theta}=N\rrbracket^{xy}\thinspace M\rrbracket_{\theta},

and 1:𝒩1D2D×𝒩1D𝒩1D2D\mathcal{L}_{1}:\mathcal{N}_{1D\rightarrow 2D}\times\mathcal{N}_{1D}\rightarrow\mathcal{N}_{1D\rightarrow 2D} is defined such that, for arbitrary N={N0,N1,N2}𝒩1D2DN=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}_{1D\rightarrow 2D}, M={M0,M1,M2}𝒩1DM=\{M_{0},M_{1},M_{2}\}\in\mathcal{N}_{1D}, 1(N,M)={Q0,Q1,Q2}\mathcal{L}_{1}(N,M)=\{Q_{0},Q_{1},Q_{2}\} with

Qkxyθ\displaystyle Q_{k}\rrbracket^{xy}_{\theta} =η=01(i,j=02𝚿kijηθxNiηxyMjθη)\displaystyle=\int_{\eta=0}^{1}\biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace N_{i}\rrbracket^{xy}_{\eta}\thinspace M_{j}\rrbracket^{\eta}_{\theta}\biggr{)}

for k{0,1,2}k\in\{0,1,2\}, and 2:𝒩1D2D×L2[x,ν]𝒩1D2D\mathcal{L}_{2}:\mathcal{N}_{1D\rightarrow 2D}\times L_{2}[x,\nu]\rightarrow\mathcal{N}_{1D\rightarrow 2D} is defined such that, for arbitrary N={N0,N1,N2}𝒩1D2DN=\{N_{0},N_{1},N_{2}\}\in\mathcal{N}_{1D\rightarrow 2D}, ML2[y,θ]M\in L_{2}[y,\theta], 2(N,M)={Q0,Q1,Q2}\mathcal{L}_{2}(N,M)=\{Q_{0},Q_{1},Q_{2}\}, where

Q0xyθ\displaystyle Q_{0}\rrbracket^{xy}_{\theta} =0\displaystyle=0 Q1xyθ\displaystyle Q_{1}\rrbracket^{xy}_{\theta} =Q2θxy=μ=01(i=02𝚽iμyNiμxyMθμ).\displaystyle=Q_{2}\rrbracket^{xy}_{\theta}=\int_{\mu=0}^{1}\biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace N_{i}\rrbracket^{xy}_{\mu}\thinspace M\rrbracket^{\mu}_{\theta}\biggr{)}.
Proof 11.7.

To prove this lemma, we will exploit the linear structure of 011-PI operators, allowing us to express

𝒫[E0E1E2]𝒫[B00B01B02B10B11B12B20B21B22]=𝒫[E0E1E2]𝒫[B0000B1000B2000]\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{smallmatrix}\right]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&0&0\\ B_{10}&0&0\\ B_{20}&0&0\end{smallmatrix}\right]
+𝒫[E0E1E2]𝒫[0B0100B1100B210]+𝒫[E0E1E2]𝒫[00B0200B1200B22].\displaystyle\qquad\qquad+\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&B_{01}&0\\ 0&B_{11}&0\\ 0&B_{21}&0\end{smallmatrix}\right]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&B_{02}\\ 0&0&B_{12}\\ 0&0&B_{22}\end{smallmatrix}\right].

Considering each of these terms separately, we find that for an arbitrary function 𝐮=[u0𝐮1𝐮2]RLm0,m1\mathbf{u}=\left[\scriptsize\begin{smallmatrix}u_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{smallmatrix}\right]\in RL^{m_{0},m_{1}},

(𝒫[E0E1E2]𝒫[B00()()B10()()B20()()]u0)xy=E0xyB00u0\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{00}&()&()\\ B_{10}&()&()\\ B_{20}&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{xy}=E_{0}\rrbracket^{xy}\thinspace B_{00}u_{0}
+η=01(i=02[𝚽iηxE1iηxyB10ηu0])\displaystyle\qquad+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace B_{10}\rrbracket^{\eta}\thinspace u_{0}\Bigr{]}\Biggr{)}
+μ=01(i=02[𝚽iμyE2iμxyB20μu0])\displaystyle\qquad+\int_{\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace E_{2}^{i}\rrbracket^{xy}_{\mu}\thinspace B_{20}\rrbracket^{\mu}u_{0}\Bigr{]}\Biggr{)}
=(T0xyu0)=(𝒫[T0()()]u0)xy.\displaystyle\hskip 78.24507pt=\Bigl{(}T_{0}\rrbracket^{xy}\thinspace u_{0}\Bigr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}T_{0}\\ ()\\ ()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{xy}.

Furthermore, using Corollary 18 and Proposition 19, we find that

(𝒫[E0E1E2]𝒫[0B0100B1100B210]𝐮1)xy=θ=01(E0xyB01θ𝐮1θ)\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&B_{01}&0\\ 0&B_{11}&0\\ 0&B_{21}&0\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{xy}=\int_{\theta=0}^{1}\Bigl{(}E_{0}\rrbracket^{xy}\thinspace B_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}
+η=01(i=02[𝚽iηxE1iηxyθ=01(j=02[𝚽jθηB11jθη𝐮1θ])])\displaystyle+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\biggl{[}\mathbf{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\int_{\theta=0}^{1}\biggl{(}\sum_{j=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace B_{11}^{j}\rrbracket^{\eta}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{]}\biggl{)}\biggr{]}\Biggr{)}
+μ=01(i=02[𝚽iμyE2iμxyθ=01(B21θμ𝐮1θ)])\displaystyle+\int_{\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\biggl{[}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace E_{2}^{i}\rrbracket^{xy}_{\mu}\int_{\theta=0}^{1}\Bigl{(}B_{21}\rrbracket^{\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}\biggr{]}\Biggl{)}
=θ=01(k=12𝚽kθx[E0xyB01θ]𝐮1θ)\displaystyle=\int_{\theta=0}^{1}\biggl{(}\sum_{k=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\Bigl{[}E_{0}\rrbracket^{xy}\thinspace B_{01}\rrbracket_{\theta}\Bigr{]}\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}
+θ=01(k=02𝚽kθxη=01[i,j=02𝚿kijηθxE1iηxyB11jθη]𝐮1θ)\displaystyle+\int_{\theta=0}^{1}\Biggl{(}\sum_{k=0}^{2}\mathbf{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\eta=0}^{1}\Biggl{[}\sum_{i,j=0}^{2}\mathbf{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}B_{11}^{j}\rrbracket^{\eta}_{\theta}\Biggr{]}\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
+θ=01(k=12𝚽kθxμ=01[i=02𝚽iμyE2μxyB21iθμ]𝐮1θ)\displaystyle+\int_{\theta=0}^{1}\Biggl{(}\sum_{k=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\mu=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace E_{2}\rrbracket^{xy}_{\mu}\thinspace B_{21}^{i}\rrbracket^{\mu}_{\theta}\Biggl{]}\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
=(𝒫[0(E0,B01)]𝐮1)xy+(𝒫[1(E1,B11)]𝐮1)xy\displaystyle=\bigl{(}\mathcal{P}[\mathcal{L}_{0}(E_{0},B_{01})]\mathbf{u}_{1}\bigr{)}\rrbracket^{xy}+\bigl{(}\mathcal{P}[\mathcal{L}_{1}(E_{1},B_{11})]\mathbf{u}_{1}\bigr{)}\rrbracket^{xy}
+(𝒫[2(E2,B21)]𝐮1)xy=(𝒫[()T1()]𝐮1)xy.\displaystyle\hskip 49.79231pt+\bigl{(}\mathcal{P}[\mathcal{L}_{2}(E_{2},B_{21})]\mathbf{u}_{1}\bigr{)}\rrbracket^{xy}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ T_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{xy}.

Finally, performing the same steps

(𝒫[E0E1E2]𝒫[00B0200B1200B22]𝐮2)xy=ν=01(E0xyB02ν𝐮2ν)\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&B_{02}\\ 0&0&B_{12}\\ 0&0&B_{22}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{xy}=\int_{\nu=0}^{1}\Bigl{(}E_{0}\rrbracket^{xy}\thinspace B_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}
+η=01(i=02[𝚽iηxE1iηxyν=01(B12νη𝐮2ν)])\displaystyle+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\biggl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\int_{\nu=0}^{1}\Bigl{(}B_{12}\rrbracket^{\eta}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\biggr{]}\Biggl{)}
+μ=01(i=02[𝚽iμyE2iμxyν=01(j=02[𝚽jνμB22jνμ𝐮2ν])])\displaystyle+\int_{\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\biggl{[}\mathbf{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace E_{2}^{i}\rrbracket^{xy}_{\mu}\int_{\nu=0}^{1}\biggl{(}\sum_{j=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{j}\rrbracket^{\mu}_{\nu}\thinspace B_{22}^{j}\rrbracket^{\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{]}\biggl{)}\biggr{]}\Biggr{)}
=ν=01(k=12𝚽kνy[E0xyB02ν]𝐮2ν)\displaystyle=\int_{\nu=0}^{1}\biggl{(}\sum_{k=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{y}_{\nu}\Bigl{[}E_{0}\rrbracket^{xy}\thinspace B_{02}\rrbracket_{\nu}\Bigr{]}\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}
+ν=01(k=12𝚽kνyη=01[i=02𝚽iηxE1ηxyB12iνη]𝐮2ν)\displaystyle+\int_{\nu=0}^{1}\Biggl{(}\sum_{k=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{y}_{\nu}\int_{\eta=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace E_{1}\rrbracket^{xy}_{\eta}\thinspace B_{12}^{i}\rrbracket^{\eta}_{\nu}\Biggl{]}\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
+ν=01(k=02𝚽kνyμ=01[i,j=02𝚿kijμνyE2iμxyB22jνμ]𝐮2ν)\displaystyle+\int_{\nu=0}^{1}\Biggl{(}\sum_{k=0}^{2}\mathbf{\Phi}_{k}\rrbracket^{y}_{\nu}\int_{\mu=0}^{1}\Biggl{[}\sum_{i,j=0}^{2}\mathbf{\Psi}_{kij}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{i}\rrbracket^{xy}_{\mu}B_{22}^{j}\rrbracket^{\mu}_{\nu}\Biggr{]}\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
=(𝒫[0(E0,B02)]𝐮2)xy+(𝒫[2(E1,B12)]𝐮2)xy\displaystyle=\bigl{(}\mathcal{P}[\mathcal{L}_{0}(E_{0},B_{02})]\mathbf{u}_{2}\bigr{)}\rrbracket^{xy}+\bigl{(}\mathcal{P}[\mathcal{L}_{2}(E_{1},B_{12})]\mathbf{u}_{2}\bigr{)}\rrbracket^{xy}
+(𝒫[1(E2,B22)]𝐮2)xy=(𝒫[()()T2]𝐮2)xy.\displaystyle\hskip 49.79231pt+\bigl{(}\mathcal{P}[\mathcal{L}_{1}(E_{2},B_{22})]\mathbf{u}_{2}\bigr{)}\rrbracket^{xy}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ T_{2}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{xy}.

Combining the results, we conclude that 𝒫[E]𝒫[B]=𝒫[T]\mathcal{P}[E]\circ\mathcal{P}[B]=\mathcal{P}[T].

Lemma 26.

For any N=[N00N01N02N10N11N12N20N21N22]𝒩2Dn2×p2N=\left[\scriptsize\begin{smallmatrix}N_{00}&N_{01}&N_{02}\\ N_{10}&N_{11}&N_{12}\\ N_{20}&N_{21}&N_{22}\end{smallmatrix}\right]\in\mathcal{N}_{2D}^{n_{2}\times p_{2}} and E=[E0E1E2]𝒩0112D[m0m1p2]E=\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ p_{2}\end{smallmatrix}\right], where

E1={E10,E11,E12}𝒩1D2Dp2×m1,\displaystyle E_{1}=\{E_{1}^{0},E_{1}^{1},E_{1}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{p_{2}\times m_{1}},
E2={E20,E21,E22}𝒩1D2Dp2×m1,\displaystyle E_{2}=\{E_{2}^{0},E_{2}^{1},E_{2}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{p_{2}\times m_{1}},

there exists a unique T𝒩0112D[n0n1m2]T\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right] such that 𝒫[N]𝒫[E]=𝒫[T]\mathcal{P}[N]\circ\mathcal{P}[E]=\mathcal{P}[T]. Specifically, we may choose T=0112D2(N,E)𝒩0112D[m0m1n2]T=\mathcal{L}_{011\rightarrow 2D}^{2}(N,E)\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right], where the linear parameter map 0112D2:𝒩2D×𝒩0112D𝒩0112D\mathcal{L}_{011\rightarrow 2D}^{2}:\mathcal{N}_{2D}\times\mathcal{N}_{011\rightarrow 2D}\rightarrow\mathcal{N}_{011\rightarrow 2D} is defined such that

0112D2(N,E)=[T0T1T2]𝒩0112D[m0m1n2],\displaystyle\mathcal{L}_{011\rightarrow 2D}^{2}(N,E)=\begin{bmatrix}T_{0}\\ T_{1}\\ T_{2}\end{bmatrix}\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right], (49)

where

T0xy=η,μ=01(i,p=02𝚽iηx𝚽pμyNipημxyE0ημ)\displaystyle T_{0}\rrbracket^{xy}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,p=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\Biggr{)}

and

T1={T10,T11,T12},\displaystyle T_{1}=\{T_{1}^{0},T_{1}^{1},T_{1}^{2}\}, T2={T20,T21,T22},\displaystyle T_{2}=\{T_{2}^{0},T_{2}^{1},T_{2}^{2}\},

with

T1kθxy=η,μ=01(i,j,p=02𝚿kijηθx𝚽pμyNipημxyE1jθημ)\displaystyle T_{1}^{k}\rrbracket^{xy}_{\theta}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j,p=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\Biggr{)}
T2rνxy=η,μ=01(i,p,q=02𝚽iηx𝚿rpqμνyNipημxyE2qνημ),\displaystyle T_{2}^{r}\rrbracket^{xy}_{\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,p,q=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{2}^{q}\rrbracket^{\eta\mu}_{\nu}\thinspace\Biggr{)},

for k,r{0,1,2}k,r\in\{0,1,2\}.

Proof 11.8.

Applying Proposition 19, and the definitions of the operators 𝒫[E]\mathcal{P}[E] and 𝒫[N]\mathcal{P}[N], it follows that, for arbitrary 𝐮=[u0𝐮1𝐮2]RLm0,m1\mathbf{u}=\left[\scriptsize\begin{smallmatrix}u_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{smallmatrix}\right]\in RL^{m_{0},m_{1}},

(𝒫[N]𝒫[E]𝐮)xy\displaystyle\left(\mathcal{P}[N]\mathcal{P}[E]\mathbf{u}\right)\rrbracket^{xy}
=η,μ=01(i,p=02𝚽iηx𝚽pμyNipημxyE0ημu0)\displaystyle=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,p=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace u_{0}\Biggr{)}
+η,μ=01(i,p=02𝚽iηx𝚽pμyNipxyημ\displaystyle+\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,p=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}
θ=01[j=02𝚽jθηE1jθημ𝐮1θ])\displaystyle\hskip 85.35826pt\int_{\theta=0}^{1}\Biggl{[}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{]}\Biggr{)}
+η,μ=01(i,p=02𝚽iηx𝚽pμyNipxyημ\displaystyle+\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,p=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}
ν=01[q=02𝚽qνμE2qνημ𝐮2ν])\displaystyle\hskip 85.35826pt\int_{\nu=0}^{1}\Biggl{[}\sum_{q=0}^{2}\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace E_{2}^{q}\rrbracket^{\eta\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{]}\Biggr{)}
=η,μ=01(i,p=02𝚽iηx𝚽pμyNipημxyE0ημ)u0\displaystyle=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,p=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\Biggr{)}u_{0}
+θ=01(k=02𝚽kθx\displaystyle+\int_{\theta=0}^{1}\Biggl{(}\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}
η,μ=01[i,j,p=02𝚿kijηθx𝚽pμyNipημxyE1jθημ]𝐮1θ)\displaystyle\qquad\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i,j,p=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\Biggr{]}\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
+ν=01(r=02𝚽rνy\displaystyle+\int_{\nu=0}^{1}\Biggl{(}\sum_{r=0}^{2}\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}
η,μ=01[i,p,q=02𝚽iηx𝚿rpqμνyNipημxyE2qνημ]𝐮2ν)\displaystyle\qquad\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i,p,q=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace N_{ip}\rrbracket^{xy}_{\eta\mu}\thinspace E_{2}^{q}\rrbracket^{\eta\mu}_{\nu}\thinspace\Biggr{]}\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
=T0xyu0+θ=01(k=02𝚽kθxT1kθxy𝐮1θ)\displaystyle=T_{0}\rrbracket^{xy}\thinspace u_{0}+\int_{\theta=0}^{1}\Biggl{(}\sum_{k=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace T_{1}^{k}\rrbracket^{xy}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
+ν=01(r=02𝚽rνyT2rνxy𝐮2ν)\displaystyle\hskip 28.45274pt+\int_{\nu=0}^{1}\Biggl{(}\sum_{r=0}^{2}\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\thinspace T_{2}^{r}\rrbracket^{xy}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
=(𝒫[T0()()]u0)xy+(𝒫[()T1()]𝐮1)xy+(𝒫[()()T2]𝐮2)xy\displaystyle=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}T_{0}\\ ()\\ ()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{xy}+\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ T_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{xy}+\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ T_{2}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{xy}
=(𝒫[T]𝐮)xy,\displaystyle=\bigl{(}\mathcal{P}[T]\mathbf{u}\bigr{)}\rrbracket^{xy},

as desired.

In addition to these compositions with 011- and 2D-PI operators, the compositions of 011\rightarrow2D-PI and 2D\rightarrow011-PI can also be expressed as PI operators, as described in the following lemmas.

Lemma 27.

For any D=[D0D1D2]𝒩2D011[n0n1p2]D=\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ p_{2}\end{smallmatrix}\right] and E=[E0E1E2]𝒩0112D[m0m1p2]E=\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ p_{2}\end{smallmatrix}\right], where

D1={D10,D11,D12}𝒩2D1Dn1×p2,\displaystyle D_{1}=\{D_{1}^{0},D_{1}^{1},D_{1}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D}^{n_{1}\times p_{2}},
D2={D20,D21,D22}𝒩2D1Dn1×p2,\displaystyle D_{2}=\{D_{2}^{0},D_{2}^{1},D_{2}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D}^{n_{1}\times p_{2}},
E1={E10,E11,E12}𝒩1D2Dp2×m1,\displaystyle E_{1}=\{E_{1}^{0},E_{1}^{1},E_{1}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{p_{2}\times m_{1}},
E2={E20,E21,E22}𝒩1D2Dp2×m1,\displaystyle E_{2}=\{E_{2}^{0},E_{2}^{1},E_{2}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{p_{2}\times m_{1}},

there exists a unique R𝒩011[n0m0n1m1]R\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right] such that 𝒫[D]𝒫[E]=𝒫[R]\mathcal{P}[D]\circ\mathcal{P}[E]=\mathcal{P}[R]. Specifically, we may choose R=011011(D,E)𝒩011[n0m0n1m1]R=\mathcal{L}_{011\rightarrow 011}(D,E)\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right], where the linear parameter map 011011:𝒩2D011×𝒩0112D𝒩011\mathcal{L}_{011\rightarrow 011}:\mathcal{N}_{2D\rightarrow 011}\times\mathcal{N}_{011\rightarrow 2D}\rightarrow\mathcal{N}_{011} is defined such that

011011(D,E)=[R00R01R02R10R11R12R20R21R22]𝒩011[n0m0n1m1],\displaystyle\mathcal{L}_{011\rightarrow 011}(D,E)=\begin{bmatrix}R_{00}&R_{01}&R_{02}\\ R_{10}&R_{11}&R_{12}\\ R_{20}&R_{21}&R_{22}\end{bmatrix}\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right], (50)

where

R00=η,ν=01(D0ημE0ημ)\displaystyle R_{00}=\int_{\eta,\nu=0}^{1}\Bigl{(}D_{0}\rrbracket_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\Bigr{)}
R10x=η,μ=01(i=0k𝚽iηxD1iημxE0ημ)\displaystyle R_{10}\rrbracket^{x}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i=0}^{k}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\Biggr{)}
R20y=η,μ=01(i=0k𝚽iμyD2iημyE0ημ)\displaystyle R_{20}\rrbracket^{y}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i=0}^{k}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\Biggr{)}
R01θ=η,μ=01(i=02𝚽iθηD0ημE1iθημ)\displaystyle R_{01}\rrbracket_{\theta}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{0}\rrbracket_{\eta\mu}\thinspace E_{1}^{i}\rrbracket^{\eta\mu}_{\theta}\Biggr{)}
R21θy=η,μ=01(i,j=02𝚽iμy𝚽jθηD2iημyE1jθημ)\displaystyle R_{21}\rrbracket^{y}_{\theta}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\Biggr{)}
R02ν=η,μ=01(i=02𝚽iνμD0ημE2iνημ)\displaystyle R_{02}\rrbracket_{\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{0}\rrbracket_{\eta\mu}\thinspace E_{2}^{i}\rrbracket^{\eta\mu}_{\nu}\Biggr{)}
R12νx=η,μ=01(i,j=02𝚽iηx𝚽jνμD1iημxE2jνημ)\displaystyle R_{12}\rrbracket^{x}_{\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\mu}_{\nu}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace E_{2}^{j}\rrbracket^{\eta\mu}_{\nu}\thinspace\Biggr{)}

and where

R11\displaystyle R_{11} ={R110,R111,R112},\displaystyle=\{R_{11}^{0},R_{11}^{1},R_{11}^{2}\}, R22\displaystyle R_{22} ={R220,R221,R222},\displaystyle=\{R_{22}^{0},R_{22}^{1},R_{22}^{2}\},

with

R11kθx=η,μ=01(i,j=02𝚿kijηθxD1iημxE1jθημ)\displaystyle R_{11}^{k}\rrbracket^{x}_{\theta}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\Biggr{)}
R22kνy=η,μ=01(i,j=02𝚿kijμνyD2iημyE2jνημ),\displaystyle R_{22}^{k}\rrbracket^{y}_{\nu}=\int_{\eta,\mu=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{y}_{\mu\nu}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\thinspace E_{2}^{j}\rrbracket^{\eta\mu}_{\nu}\Biggr{)},

for k{0,1,2}k\in\{0,1,2\}.

Proof 11.9.

To prove this result, we exploit the linear structure of the PI operators, allowing us to decompose

𝒫[D0D1D2]𝒫[E0E1E2]\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right] =𝒫[D000]𝒫[E000]+𝒫[0D10]𝒫[E000]\displaystyle=\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ 0\\ 0\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ 0\\ 0\end{smallmatrix}\right]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ D_{1}\\ 0\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ 0\\ 0\end{smallmatrix}\right]
++𝒫[0D10]𝒫[00E2]+𝒫[00D2]𝒫[00E2]\displaystyle+\ldots+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ D_{1}\\ 0\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ 0\\ E_{2}\end{smallmatrix}\right]+\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ 0\\ D_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}0\\ 0\\ E_{2}\end{smallmatrix}\right]

Focusing first on the terms involving E0E_{0}, we find that, for arbitrary u0m0u_{0}\in\mathbb{R}^{m_{0}},

𝒫[D0()()]𝒫[E0()()]u0\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ ()\\ ()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ ()\\ ()\end{smallmatrix}\right]u_{0} =η,μ=01(D0ημE0ημu0)\displaystyle=\int_{\eta,\mu=0}^{1}\biggl{(}D_{0}\rrbracket_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace u_{0}\biggr{)}
=R00u0=𝒫[R00()()()()()()()()]u0,\displaystyle=R_{00}u_{0}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}R_{00}&()&()\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]u_{0},

and

(𝒫[()D1()]𝒫[E0()()]u0)x\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ D_{1}\\ ()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ ()\\ ()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{x}\! =η,μ=01(i=0k𝚽iηxD1iημxE0ημu0)\displaystyle=\!\int_{\eta,\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{k}\!\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\!u_{0}\Biggr{)}
=R10xu0=(𝒫[()()()R10()()()()()]u0)x,\displaystyle=R_{10}\rrbracket^{x}\thinspace u_{0}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ R_{10}&()&()\\ ()&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{x},

and finally,

(𝒫[()()D2]𝒫[E0()()]u0)y\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ D_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}E_{0}\\ ()\\ ()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{y}\! =η,μ=01(i=0k𝚽iμyD2iημyE0ημu0)\displaystyle=\!\int_{\eta,\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{k}\!\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\thinspace E_{0}\rrbracket^{\eta\mu}\thinspace\!u_{0}\Biggr{)}
=R20yu0=(𝒫[()()()()()()R20()()]u0)y.\displaystyle=R_{20}\rrbracket^{y}\thinspace u_{0}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ R_{20}&()&()\end{smallmatrix}\right]u_{0}\right)\rrbracket^{y}.

Similarly, for the terms involving E1E_{1}, we find that, for arbitrary 𝐮1L2m1[x]\mathbf{u}_{1}\in L_{2}^{m_{1}}[x],

𝒫[D0()()]𝒫[()E1()]𝐮1\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ ()\\ ()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ E_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}_{1}
=η,μ=01(D0ημθ=01[i=02𝚽iθηE1iθημ𝐮1θ])\displaystyle\quad=\int_{\eta,\mu=0}^{1}\Biggl{(}D_{0}\rrbracket_{\eta\mu}\int_{\theta=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace E_{1}^{i}\rrbracket^{\eta\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{]}\Biggr{)}
=θ=01(η,μ=01[i=02𝚽iθηD0ημE1iθημ]𝐮1θ)\displaystyle\qquad=\int_{\theta=0}^{1}\Biggl{(}\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\eta}_{\theta}\thinspace D_{0}\rrbracket_{\eta\mu}\thinspace E_{1}^{i}\rrbracket^{\eta\mu}_{\theta}\Biggr{]}\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
=θ=01(R01θ𝐮1θ)=𝒫[()R01()()()()()()()]𝐮1,\displaystyle\qquad\quad=\int_{\theta=0}^{1}\Bigl{(}R_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&R_{01}&()\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{1},

and

(𝒫[()()D2]𝒫[()E1()]𝐮1)y\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ D_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ E_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{y}
=η,μ=01(i=02𝚽iμyD2iημyθ=01[j=02𝚽jθηE1jθημ𝐮1θ])\displaystyle=\int_{\eta,\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\int_{\theta=0}^{1}\!\Biggl{[}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{]}\Biggr{)}
=θ=01(η,μ=01[i,j=02𝚽iμy𝚽jθηD2iημyE1jθημ]𝐮1θ)\displaystyle=\int_{\theta=0}^{1}\Biggl{(}\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\Biggr{]}\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
=θ=01(R21θy𝐮1θ)=(𝒫[()()()()()()()R21()]𝐮1)y,\displaystyle=\int_{\theta=0}^{1}\Bigl{(}R_{21}\rrbracket^{y}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ ()&R_{21}&()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{y},

and finally, using Proposition 19,

(𝒫[()D1()]𝒫[()E1()]𝐮1)x\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ D_{1}\\ ()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ E_{1}\\ ()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{x}
=η,μ=01(i=02𝚽ixηD1ixημθ=01[j=02𝚽jηθE1jημθ𝐮1θ])\displaystyle=\int_{\eta,\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\int_{\theta=0}^{1}\!\Biggl{[}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{]}\Biggr{)}
=θ=01(k=02𝚽kxθη,μ=01[i,j=02𝚿kijxηθD1ixημE1jημθ]𝐮1θ)\displaystyle=\int_{\theta=0}^{1}\!\Biggl{(}\sum_{k=0}^{2}\!\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\int_{\eta,\mu=0}^{1}\!\Biggl{[}\sum_{i,j=0}^{2}\!\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace E_{1}^{j}\rrbracket^{\eta\mu}_{\theta}\Biggr{]}\mathbf{u}_{1}\rrbracket^{\theta}\Biggr{)}
=(𝒫[()()()()R11()()()()]𝐮1)x.\displaystyle=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&R_{11}&()\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{1}\right)\rrbracket^{x}.

Finally, for the terms involving E2E_{2}, for arbitrary 𝐮2L2m1[y]\mathbf{u}_{2}\in L_{2}^{m_{1}}[y],

𝒫[D0()()]𝒫[()()E2]𝐮2\displaystyle\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{0}\\ ()\\ ()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ E_{2}\end{smallmatrix}\right]\mathbf{u}_{2}
=η,μ=01(D0ημν=01[i=02𝚽iμνE2iημν𝐮2ν])\displaystyle\quad=\int_{\eta,\mu=0}^{1}\Biggl{(}D_{0}\rrbracket_{\eta\mu}\int_{\nu=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace E_{2}^{i}\rrbracket^{\eta\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{]}\Biggr{)}
=ν=01(η,μ=01[i=02𝚽iμνD0ημE2iημν]𝐮2ν)\displaystyle\qquad=\int_{\nu=0}^{1}\Biggl{(}\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{\mu}_{\nu}\thinspace D_{0}\rrbracket_{\eta\mu}\thinspace E_{2}^{i}\rrbracket^{\eta\mu}_{\nu}\Biggr{]}\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
=ν=01(R02ν𝐮2ν)=𝒫[()()R02()()()()()()]𝐮2,\displaystyle\qquad\quad=\int_{\nu=0}^{1}\Bigl{(}R_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}=\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&R_{02}\\ ()&()&()\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{2},

and

(𝒫[()D1()]𝒫[()()E2]𝐮2)x\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ D_{1}\\ ()\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ E_{2}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{x}
=η,μ=01(i=02𝚽ixηD1ixημν=01[j=02𝚽jμνE2jημν𝐮2ν])\displaystyle=\int_{\eta,\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\int_{\nu=0}^{1}\!\Biggl{[}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\mu}_{\nu}\thinspace E_{2}^{j}\rrbracket^{\eta\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{]}\Biggr{)}
=ν=01(η,μ=01[i,j=02𝚽ixη𝚽jμνD1ixημE2jημν]𝐮2ν)\displaystyle=\int_{\nu=0}^{1}\Biggl{(}\int_{\eta,\mu=0}^{1}\Biggl{[}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace\boldsymbol{\Phi}_{j}\rrbracket^{\mu}_{\nu}\thinspace D_{1}^{i}\rrbracket^{x}_{\eta\mu}\thinspace E_{2}^{j}\rrbracket^{\eta\mu}_{\nu}\thinspace\Biggr{]}\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
=ν=01(R12xν𝐮2ν)=(𝒫[()()()()()R12()()()]𝐮2)x,\displaystyle=\int_{\nu=0}^{1}\Bigl{(}R_{12}\rrbracket^{x}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&R_{12}\\ ()&()&()\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{x},

and, once more using Proposition 19,

(𝒫[()()D2]𝒫[()()E2]𝐮2)y\displaystyle\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ D_{2}\end{smallmatrix}\right]\mathcal{P}\left[\scriptsize\begin{smallmatrix}()\\ ()\\ E_{2}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{y}
=η,μ=01(i=02𝚽iyμD2iyημν=01[j=02𝚽jμνE2jημν𝐮2ν])\displaystyle=\int_{\eta,\mu=0}^{1}\!\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{y}_{\mu}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\int_{\nu=0}^{1}\!\Biggl{[}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\mu}_{\nu}\thinspace E_{2}^{j}\rrbracket^{\eta\mu}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{]}\Biggr{)}
=ν=01(k=02𝚽kyνη,μ=01[i,j=02𝚿kijyμνD2iyημE2jημν]𝐮2ν)\displaystyle=\int_{\nu=0}^{1}\!\Biggl{(}\sum_{k=0}^{2}\!\boldsymbol{\Phi}_{k}\rrbracket^{y}_{\nu}\int_{\eta,\mu=0}^{1}\!\Biggl{[}\sum_{i,j=0}^{2}\!\boldsymbol{\Psi}_{kij}\rrbracket^{y}_{\mu\nu}\thinspace D_{2}^{i}\rrbracket^{y}_{\eta\mu}\thinspace E_{2}^{j}\rrbracket^{\eta\mu}_{\nu}\Biggr{]}\mathbf{u}_{2}\rrbracket^{\nu}\Biggr{)}
=(𝒫[()()()()()()()()R22]𝐮2)y.\displaystyle=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}()&()&()\\ ()&()&()\\ ()&()&R_{22}\end{smallmatrix}\right]\mathbf{u}_{2}\right)\rrbracket^{y}.

Combining the results, we conclude that 𝒫[D]𝒫[E]=𝒫[R]\mathcal{P}[D]\circ\mathcal{P}[E]=\mathcal{P}[R].

Parameter space Explicit notation Associated PI operation
𝒩1Dn×m\mathcal{N}_{1D}^{n\times m} L2n×m[x,θ]×L2n×m[x]×L2n×m[x,θ]L_{2}^{n\times m}[x,\theta]\times L_{2}^{n\times m}[x]\times L_{2}^{n\times m}[x,\theta] (𝒫[N]𝐮)x=θ=01(i=02[𝚽ixθNixθ]𝐮θ)\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{x}=\int_{\theta=0}^{1}\biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace N_{i}\rrbracket^{x}_{\theta}\Bigl{]}\mathbf{u}\rrbracket^{\theta}\biggr{)}
𝒩011[n0m0n1m1]\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right] [n0×m0L2n0×m1[θ]L2n0×m1[ν]L2n1×m0[x]𝒩1Dn1×m1L2n1×m1[x,ν]L2n1×m0[y]L2n1×m1[y,θ]𝒩1Dn1×m1]\!\!\begin{bmatrix}\mathbb{R}^{n_{0}\times m_{0}}&L_{2}^{n_{0}\times m_{1}}[\theta]&L_{2}^{n_{0}\times m_{1}}[\nu]\\ L_{2}^{n_{1}\times m_{0}}[x]&\mathcal{N}_{1D}^{n_{1}\times m_{1}}&L_{2}^{n_{1}\times m_{1}}[x,\nu]\\ L_{2}^{n_{1}\times m_{0}}[y]&L_{2}^{n_{1}\times m_{1}}[y,\theta]&\mathcal{N}_{1D}^{n_{1}\times m_{1}}\end{bmatrix} (𝒫[N]𝐮)xy=[N00u0θ=01(N01θ𝐮1θ)ν=01(N02ν𝐮2ν)N10xu0(𝒫[N11]𝐮1)xν=01(N12xν𝐮2ν)N20yu0θ=01(N21yθ𝐮1θ)(𝒫[N22]𝐮2)y]\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy}=\!\begin{bmatrix}N_{00}u_{0}&\!\!\int_{\theta=0}^{1}\Bigl{(}N_{01}\rrbracket_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}&\!\!\int_{\nu=0}^{1}\Bigl{(}N_{02}\rrbracket_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\\ N_{10}\rrbracket^{x}\thinspace u_{0}&\!\!\bigl{(}\mathcal{P}[N_{11}]\mathbf{u}_{1}\bigr{)}\rrbracket^{x}&\!\!\int_{\nu=0}^{1}\Bigl{(}N_{12}\rrbracket^{x}_{\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\nu}\Bigr{)}\\ N_{20}\rrbracket^{y}\thinspace u_{0}&\!\!\int_{\theta=0}^{1}\Bigl{(}N_{21}\rrbracket^{y}_{\theta}\thinspace\mathbf{u}_{1}\rrbracket^{\theta}\Bigr{)}&\!\!\bigl{(}\mathcal{P}[N_{22}]\mathbf{u}_{2}\bigr{)}\rrbracket^{y}\end{bmatrix}
𝒩2Dn×m\mathcal{N}_{2D}^{n\times m} [L2n×m[x,y]L2n×m[x,y,ν]L2n×m[x,y,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]L2n×m[x,y,θ]L2n×m[x,y,θ,ν]L2n×m[x,y,θ,ν]]\!\!\begin{bmatrix}L_{2}^{n\times m}[x,y]&\!L_{2}^{n\times m}[x,y,\nu]&\!L_{2}^{n\times m}[x,y,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&\!L_{2}^{n\times m}[x,y,\theta,\nu]&\!L_{2}^{n\times m}[x,y,\theta,\nu]\\ L_{2}^{n\times m}[x,y,\theta]&\!L_{2}^{n\times m}[x,y,\theta,\nu]&\!L_{2}^{n\times m}[x,y,\theta,\nu]\end{bmatrix} (𝒫[N]𝐮)xy=θ,ν=01(i,p=02[𝚽ixθ𝚽pyνNipxyθν]𝐮θν)\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy}=\int_{\theta,\nu=0}^{1}\biggl{(}\sum_{i,p=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\nu}\thinspace N_{ip}\rrbracket^{xy}_{\theta\nu}\Bigl{]}\mathbf{u}\rrbracket^{\theta\nu}\biggr{)}
𝒩2D1Dn×m\mathcal{N}_{2D\rightarrow 1D}^{n\times m} L2n×m[θ,ν]×L2n×m[x,θ,ν]×L2n×m[x,θ,ν]L_{2}^{n\times m}[\theta,\nu]\times L_{2}^{n\times m}[x,\theta,\nu]\times L_{2}^{n\times m}[x,\theta,\nu] (𝒫[N]𝐮)x=θ,ν=01(i=02[𝚽ixθNixθν]𝐮θν)\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{x}=\int_{\theta,\nu=0}^{1}\biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace N_{i}\rrbracket^{x}_{\theta\nu}\Bigl{]}\mathbf{u}\rrbracket^{\theta\nu}\biggr{)}
𝒩2D011[n0n1m2]\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right] [L2n0×m2[θ,ν]𝒩n1×m22D1D𝒩n1×m22D1D]\!\!\begin{bmatrix}L_{2}^{n_{0}\times m_{2}}[\theta,\nu]\\ \mathcal{N}^{n_{1}\times m_{2}}_{2D\rightarrow 1D}\\ \mathcal{N}^{n_{1}\times m_{2}}_{2D\rightarrow 1D}\end{bmatrix} (𝒫[N]𝐮)xy=[θ,ν=01(N0θν𝐮θν)(𝒫[N1]𝐮)x(𝒫[N2]𝐮)y]\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy}=\begin{bmatrix}\int_{\theta,\nu=0}^{1}\Bigl{(}N_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}\\ \bigl{(}\mathcal{P}[N_{1}]\mathbf{u}\bigr{)}\rrbracket^{x}\\ \bigl{(}\mathcal{P}[N_{2}]\mathbf{u}\bigr{)}\rrbracket^{y}\end{bmatrix}
𝒩1D2Dn×m\mathcal{N}_{1D\rightarrow 2D}^{n\times m} L2n×m[x,y]×L2n×m[x,y,θ]×L2n×m[x,y,θ]L_{2}^{n\times m}[x,y]\times L_{2}^{n\times m}[x,y,\theta]\times L_{2}^{n\times m}[x,y,\theta] (𝒫[N]𝐮)xy=θ=01(i=02[𝚽ixθNixyθ]𝐮θ)\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy}=\int_{\theta=0}^{1}\biggl{(}\sum_{i=0}^{2}\Bigl{[}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\theta}\thinspace N_{i}\rrbracket^{xy}_{\theta}\Bigl{]}\mathbf{u}\rrbracket^{\theta}\biggr{)}
𝒩0112D[m0m1n2]\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right] [L2n2×m0[x,y]𝒩n2×m11D2D𝒩n2×m11D2D]\!\!\begin{bmatrix}L_{2}^{n_{2}\times m_{0}}[x,y]\\ \mathcal{N}^{n_{2}\times m_{1}}_{1D\rightarrow 2D}\\ \mathcal{N}^{n_{2}\times m_{1}}_{1D\rightarrow 2D}\end{bmatrix} (𝒫[N]𝐮)xy=N0xyu0+(𝒫[N1]𝐮1)xy+(𝒫[N2]𝐮2)xy\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy}=N_{0}\rrbracket^{xy}u_{0}+\bigl{(}\mathcal{P}[N_{1}]\mathbf{u}_{1}\bigr{)}\rrbracket^{xy}+\bigl{(}\mathcal{P}[N_{2}]\mathbf{u}_{2}\bigr{)}\rrbracket^{xy}
𝒩0112[n0m0n1m1n2m2]\mathcal{N}_{0112}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right]} [𝒩011[n0m0n1m1]𝒩2D011[n0n1m2]𝒩0112D[m0m1n2]𝒩2Dn2×m2]\!\!\begin{bmatrix}\mathcal{N}_{011}{\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]}&\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right]\\ \mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right]&\mathcal{N}_{2D}^{n_{2}\times m_{2}}\end{bmatrix} (𝒫[N]𝐮)xy=[(𝒫[N11]𝐮1)xy(𝒫[N12]𝐮2)xy(𝒫[N21]𝐮1)xy(𝒫[N22]𝐮2)xy]\!\!\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}\rrbracket^{xy}=\begin{bmatrix}\bigl{(}\mathcal{P}[N_{11}]\mathbf{u}_{1}\bigr{)}\rrbracket^{xy}&\bigl{(}\mathcal{P}[N_{12}]\mathbf{u}_{2}\bigr{)}\rrbracket^{xy}\\ \bigl{(}\mathcal{P}[N_{21}]\mathbf{u}_{1}\bigr{)}\rrbracket^{xy}&\bigl{(}\mathcal{P}[N_{22}]\mathbf{u}_{2}\bigr{)}\rrbracket^{xy}\end{bmatrix}
Table 2: Parameter spaces for different PI operators, as presented in Appendix 11
Lemma 28.

For any E=[E0E1E2]𝒩0112D[p0p1n2]E=\left[\scriptsize\begin{smallmatrix}E_{0}\\ E_{1}\\ E_{2}\end{smallmatrix}\right]\in\mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}p_{0}\\ p_{1}\\ n_{2}\end{smallmatrix}\right] and D=[D0D1D2]𝒩2D011[p0p1m2]D=\left[\scriptsize\begin{smallmatrix}D_{0}\\ D_{1}\\ D_{2}\end{smallmatrix}\right]\in\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}p_{0}\\ p_{1}\\ m_{2}\end{smallmatrix}\right], where

E1={E10,E11,E12}𝒩1D2Dn2×p1,\displaystyle E_{1}=\{E_{1}^{0},E_{1}^{1},E_{1}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{n_{2}\times p_{1}},
E2={E20,E21,E22}𝒩1D2Dn2×p1,\displaystyle E_{2}=\{E_{2}^{0},E_{2}^{1},E_{2}^{2}\}\in\mathcal{N}_{1D\rightarrow 2D}^{n_{2}\times p_{1}},
D1={D10,D11,D12}𝒩2D1Dp1×m2,\displaystyle D_{1}=\{D_{1}^{0},D_{1}^{1},D_{1}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D}^{p_{1}\times m_{2}},
D2={D20,D21,D22}𝒩2D1Dp1×m2,\displaystyle D_{2}=\{D_{2}^{0},D_{2}^{1},D_{2}^{2}\}\in\mathcal{N}_{2D\rightarrow 1D}^{p_{1}\times m_{2}},

there exists a unique Q𝒩2Dn2×m2Q\in\mathcal{N}_{2D}^{n_{2}\times m_{2}} such that 𝒫[D]𝒫[E]=𝒫[Q]\mathcal{P}[D]\circ\mathcal{P}[E]=\mathcal{P}[Q]. Specifically, we may choose Q=2D2D(E,D)𝒩2Dn2×m2Q=\mathcal{L}_{2D\rightarrow 2D}(E,D)\in\mathcal{N}_{2D}^{n_{2}\times m_{2}}, where the linear parameter map 2D2D:𝒩0112D×𝒩2D011𝒩2D\mathcal{L}_{2D\rightarrow 2D}:\mathcal{N}_{011\rightarrow 2D}\times\mathcal{N}_{2D\rightarrow 011}\rightarrow\mathcal{N}_{2D} is defined such that

2D2D(E,D)=[Q00Q01Q02Q10Q11Q12Q20Q21Q22]𝒩2Dn2×m2,\displaystyle\mathcal{L}_{2D\rightarrow 2D}(E,D)=\begin{bmatrix}Q_{00}&Q_{01}&Q_{02}\\ Q_{10}&Q_{11}&Q_{12}\\ Q_{20}&Q_{21}&Q_{22}\end{bmatrix}\in\mathcal{N}_{2D}^{n_{2}\times m_{2}}, (51)

where Q00xyθν=0Q_{00}\rrbracket^{xy}_{\theta\nu}=0, and

Q10xyθν\displaystyle Q_{10}\rrbracket^{xy}_{\theta\nu} =μ=01(p,q=02𝚿0pqyμνE2pxyμD2qμθν)\displaystyle=\int_{\mu=0}^{1}\Biggl{(}\sum_{p,q=0}^{2}\boldsymbol{\Psi}_{0pq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{)}
Q20xyθν\displaystyle Q_{20}\rrbracket^{xy}_{\theta\nu} =μ=01(p,q=02𝚿0pqyμνE2pxyμD2qμθν)\displaystyle=\int_{\mu=0}^{1}\Biggl{(}\sum_{p,q=0}^{2}\boldsymbol{\Psi}_{0pq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{)}
Q01xyθν\displaystyle Q_{01}\rrbracket^{xy}_{\theta\nu} =η=01(i,j=02𝚿0ijxηθE1ixyηD1jηθν)\displaystyle=\int_{\eta=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{0ij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{)}
Q02xyθν\displaystyle Q_{02}\rrbracket^{xy}_{\theta\nu} =η=01(i,j=02𝚿0ijxηθE1ixyηD1jηθν)\displaystyle=\int_{\eta=0}^{1}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{0ij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{)}
Q11xyθν\displaystyle Q_{11}\rrbracket^{xy}_{\theta\nu} =E0xyD0θν+η=01(i,j=02𝚿1ijxηθE1ixyηD1jηθν)\displaystyle=E_{0}\rrbracket^{xy}\thinspace D_{0}\rrbracket_{\theta\nu}\thinspace\!+\!\int_{\eta=0}^{1}\!\Biggl{(}\sum_{i,j=0}^{2}\!\boldsymbol{\Psi}_{1ij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{)}
+μ=01(p,q=02𝚿1pqyμνE2pxyμD2qμθν)\displaystyle\qquad+\int_{\mu=0}^{1}\!\Biggl{(}\sum_{p,q=0}^{2}\!\boldsymbol{\Psi}_{1pq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{)}
Q21xyθν\displaystyle Q_{21}\rrbracket^{xy}_{\theta\nu} =E0xyD0θν+η=01(i,j=02𝚿2ijxηθE1ixyηD1jηθν)\displaystyle=E_{0}\rrbracket^{xy}\thinspace D_{0}\rrbracket_{\theta\nu}\thinspace\!+\!\int_{\eta=0}^{1}\!\Biggl{(}\sum_{i,j=0}^{2}\!\boldsymbol{\Psi}_{2ij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{)}
+μ=01(p,q=02𝚿1pqyμνE2pxyμD2qμθν)\displaystyle\qquad+\int_{\mu=0}^{1}\!\Biggl{(}\sum_{p,q=0}^{2}\!\boldsymbol{\Psi}_{1pq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{)}
Q12xyθν\displaystyle Q_{12}\rrbracket^{xy}_{\theta\nu} =E0xyD0θν+η=01(i,j=02𝚿1ijxηθE1ixyηD1jηθν)\displaystyle=E_{0}\rrbracket^{xy}\thinspace D_{0}\rrbracket_{\theta\nu}\thinspace\!+\!\int_{\eta=0}^{1}\!\Biggl{(}\sum_{i,j=0}^{2}\!\boldsymbol{\Psi}_{1ij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{)}
+μ=01(p,q=02𝚿2pqyμνE2pxyμD2qμθν)\displaystyle\qquad+\int_{\mu=0}^{1}\!\Biggl{(}\sum_{p,q=0}^{2}\!\boldsymbol{\Psi}_{2pq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{)}
Q22xyθν\displaystyle Q_{22}\rrbracket^{xy}_{\theta\nu} =E0xyD0θν+η=01(i,j=02𝚿2ijxηθE1ixyηD1jηθν)\displaystyle=E_{0}\rrbracket^{xy}\thinspace D_{0}\rrbracket_{\theta\nu}\thinspace\!+\!\int_{\eta=0}^{1}\!\Biggl{(}\sum_{i,j=0}^{2}\!\boldsymbol{\Psi}_{2ij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{)}
+μ=01(p,q=02𝚿2pqyμνE2pxyμD2qμθν)\displaystyle\qquad+\int_{\mu=0}^{1}\!\Biggl{(}\sum_{p,q=0}^{2}\!\boldsymbol{\Psi}_{2pq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{)}
Proof 11.10.

Applying Corollary 18 and Proposition 19, and invoking the definitions of the operators 𝒫[E]\mathcal{P}[E] and 𝒫[D]\mathcal{P}[D], for arbitrary 𝐮L2[x,y]\mathbf{u}\in L_{2}[x,y],

(𝒫[E]𝒫[D]𝐮)xy=E0xyθ,ν=01(D0θν𝐮θν)\displaystyle\left(\mathcal{P}[E]\mathcal{P}[D]\mathbf{u}\right)\rrbracket^{xy}=E_{0}\rrbracket^{xy}\int_{\theta,\nu=0}^{1}\Bigl{(}D_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Bigr{)}
+η=01(i=02𝚽ixηE1ixyηθ,ν=01[j=02𝚽jηθD1jηθν𝐮θν])\displaystyle+\int_{\eta=0}^{1}\Biggl{(}\sum_{i=0}^{2}\boldsymbol{\Phi}_{i}\rrbracket^{x}_{\eta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\int_{\theta,\nu=0}^{1}\Biggl{[}\sum_{j=0}^{2}\boldsymbol{\Phi}_{j}\rrbracket^{\eta}_{\theta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}\Biggr{)}
+μ=01(p=02𝚽pyμE2pxyμθ,ν=01[q=02𝚽qμνD2qμθν𝐮θν])\displaystyle+\int_{\mu=0}^{1}\Biggl{(}\sum_{p=0}^{2}\boldsymbol{\Phi}_{p}\rrbracket^{y}_{\mu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\int_{\theta,\nu=0}^{1}\Biggl{[}\sum_{q=0}^{2}\boldsymbol{\Phi}_{q}\rrbracket^{\mu}_{\nu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{]}\Biggr{)}
=θ,ν=01(k,r=12𝚽kxθ𝚽ryνE0xyD0θν𝐮θν)\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k,r=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\thinspace E_{0}\rrbracket^{xy}\thinspace D_{0}\rrbracket_{\theta\nu}\thinspace\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
+θ,ν=01(k=02r=12𝚽kxθ𝚽ryν\displaystyle+\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k=0}^{2}\sum_{r=1}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\thinspace
η=01[i,j=02𝚿kijxηθE1ixyηD1jηθν]𝐮θν)\displaystyle\hskip 71.13188pt\int_{\eta=0}^{1}\Biggl{[}\sum_{i,j=0}^{2}\boldsymbol{\Psi}_{kij}\rrbracket^{x}_{\eta\theta}\thinspace E_{1}^{i}\rrbracket^{xy}_{\eta}\thinspace D_{1}^{j}\rrbracket^{\eta}_{\theta\nu}\thinspace\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
+θ,ν=01(k=12r=02𝚽kxθ𝚽ryν\displaystyle+\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k=1}^{2}\sum_{r=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\thinspace
μ=01[p,q=02𝚿rpqyμνE2pxyμD2qμθν]𝐮θν)\displaystyle\hskip 71.13188pt\int_{\mu=0}^{1}\Biggl{[}\sum_{p,q=0}^{2}\boldsymbol{\Psi}_{rpq}\rrbracket^{y}_{\mu\nu}\thinspace E_{2}^{p}\rrbracket^{xy}_{\mu}\thinspace D_{2}^{q}\rrbracket^{\mu}_{\theta\nu}\thinspace\Biggr{]}\mathbf{u}\rrbracket^{\theta\nu}\Biggr{)}
=θ,ν=01(k,r=02𝚽kxθ𝚽ryνQkrxyθν𝐮2θν)=(𝒫[Q]𝐮)xy,\displaystyle=\int_{\theta,\nu=0}^{1}\Biggl{(}\sum_{k,r=0}^{2}\boldsymbol{\Phi}_{k}\rrbracket^{x}_{\theta}\thinspace\boldsymbol{\Phi}_{r}\rrbracket^{y}_{\nu}\thinspace Q_{kr}\rrbracket^{xy}_{\theta\nu}\thinspace\mathbf{u}_{2}\rrbracket^{\theta\nu}\Biggr{)}=\bigl{(}\mathcal{P}[Q]\mathbf{u}\bigr{)}\rrbracket^{xy}_{,}

as desired.

Linear Parameter Map Associated Parameter Spaces Defined in
011\mathcal{L}_{011} 𝒩011×𝒩011𝒩011\mathcal{N}_{011}\times\mathcal{N}_{011}\rightarrow\mathcal{N}_{011} Equation (41), Appendix 11.3
2D\mathcal{L}_{2D} 𝒩2D×𝒩2D𝒩2D\mathcal{N}_{2D}\times\mathcal{N}_{2D}\rightarrow\mathcal{N}_{2D} Equation (43), Appendix 11.4
2D0111\mathcal{L}_{2D\rightarrow 011}^{1} 𝒩011×𝒩2D011𝒩2D011\mathcal{N}_{011}\times\mathcal{N}_{2D\rightarrow 011}\rightarrow\mathcal{N}_{2D\rightarrow 011} Equation (45), Appendix 11.5
2D0112\mathcal{L}_{2D\rightarrow 011}^{2} 𝒩2D011×𝒩2D𝒩2D011\mathcal{N}_{2D\rightarrow 011}\times\mathcal{N}_{2D}\rightarrow\mathcal{N}_{2D\rightarrow 011} Equation (46), Appendix 11.5
0112D1\mathcal{L}_{011\rightarrow 2D}^{1} 𝒩0112D×𝒩011𝒩0112D\mathcal{N}_{011\rightarrow 2D}\times\mathcal{N}_{011}\rightarrow\mathcal{N}_{011\rightarrow 2D} Equation (48), Appendix 11.6
0112D2\mathcal{L}_{011\rightarrow 2D}^{2} 𝒩2D×𝒩0112D𝒩0112D\mathcal{N}_{2D}\times\mathcal{N}_{011\rightarrow 2D}\rightarrow\mathcal{N}_{011\rightarrow 2D} Equation (49), Appendix 11.6
011011\mathcal{L}_{011\rightarrow 011} 𝒩2D011×𝒩0112D𝒩011\mathcal{N}_{2D\rightarrow 011}\times\mathcal{N}_{011\rightarrow 2D}\rightarrow\mathcal{N}_{011} Equation (50), Appendix 11.6
2D2D\mathcal{L}_{2D\rightarrow 2D} 𝒩0112D×𝒩2D011𝒩2D\mathcal{N}_{011\rightarrow 2D}\times\mathcal{N}_{2D\rightarrow 011}\rightarrow\mathcal{N}_{2D} Equation (51), Appendix 11.6
Table 3: Linear parameter maps for compositions of PI operators, as presented in Appendix 11

11.7 An Algebra of 0112-PI Operators

Having described PI operators mapping functions in RLn0,n1[x,y]:=×L2[x]×L2[y]RL^{n_{0},n_{1}}[x,y]:=\mathbb{R}\times L_{2}[x]\times L_{2}[y] and L2n2[x,y]L_{2}^{n_{2}}[x,y] and the corresponding composition rules, we can now combine our results to describe a 0112-PI operator, mapping functions in RLLn0,n1,n2[x,y]:=RLn0,n1[x,y]×L2n2[x,y]RLL^{n_{0},n_{1},n_{2}}[x,y]:=RL^{n_{0},n_{1}}[x,y]\times L_{2}^{n_{2}}[x,y]. Letting

𝒩0112[n0m0n1m1n2m2]:=[𝒩011[n0m0n1m1]𝒩2D011[n0n1m2]𝒩0112D[m0m1n2]𝒩2Dn2×m2],\displaystyle\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right]:=\begin{bmatrix}\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\end{smallmatrix}\right]&\mathcal{N}_{2D\rightarrow 011}\left[\scriptsize\begin{smallmatrix}n_{0}\\ n_{1}\\ m_{2}\end{smallmatrix}\right]\\ \mathcal{N}_{011\rightarrow 2D}\left[\scriptsize\begin{smallmatrix}m_{0}\\ m_{1}\\ n_{2}\end{smallmatrix}\right]&\mathcal{N}_{2D}^{n_{2}\times m_{2}}\end{bmatrix}, (52)

for arbitrary

N=[N11N12N21N22]𝒩[n0m0n1m1n2m2],\displaystyle N=\begin{bmatrix}N_{11}&N_{12}\\ N_{21}&N_{22}\end{bmatrix}\in\mathcal{N}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right],

we define an associated PI operator 𝒫[N]:RLLm0,m1,m2[x,y]RLLn0,n1,n2[x,y]\mathcal{P}[N]:RLL^{m_{0},m_{1},m_{2}}[x,y]\rightarrow RLL^{n_{0},n_{1},n_{2}}[x,y] as

𝒫[N]=[𝒫[N11]𝒫[N12]𝒫[N21]𝒫[N22]],\displaystyle\mathcal{P}[N]=\begin{bmatrix}\mathcal{P}[N_{11}]&\mathcal{P}[N_{12}]\\ \mathcal{P}[N_{21}]&\mathcal{P}[N_{22}]\end{bmatrix},

where the different operators 𝒫[N11]\mathcal{P}[N_{1}1],…,𝒫[N22]\mathcal{P}[N_{22}] are as defined in the previous sections. Using the results from these sections, it is also easy to see that the set of operators parameterized in this manner also forms an algebra.

Theorem 29.

For any B=[B11B12B21B22]𝒩0112[n0p0n1p1n2p2]B=\left[\scriptsize\begin{smallmatrix}B_{11}&B_{12}\\ B_{21}&B_{22}\end{smallmatrix}\right]\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&p_{0}\\ n_{1}&p_{1}\\ n_{2}&p_{2}\end{smallmatrix}\right] and D=[D11D12D21D22]𝒩0112[p0m0p1m1p2m2]D=\left[\scriptsize\begin{smallmatrix}D_{11}&D_{12}\\ D_{21}&D_{22}\end{smallmatrix}\right]\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}p_{0}&m_{0}\\ p_{1}&m_{1}\\ p_{2}&m_{2}\end{smallmatrix}\right], there exists a unique R𝒩0112[n0m0n1m1n2m2]R\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right] such that 𝒫[B]𝒫[D]=𝒫[R]\mathcal{P}[B]\circ\mathcal{P}[D]=\mathcal{P}[R]. Specifically, we may choose R=0112(B,D)𝒩0112[n0m0n1m1n2m2]R=\mathcal{L}_{0112}(B,D)\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right], where the linear parameter map 0112:𝒩0112×𝒩0112𝒩0112\mathcal{L}_{0112}:\mathcal{N}_{0112}\times\mathcal{N}_{0112}\rightarrow\mathcal{N}_{0112} defined such that

0112(B,D)=[R11R12R21R22]𝒩0112[n0m0n1m1n2m2],\displaystyle\mathcal{L}_{0112}(B,D)=\begin{bmatrix}R_{11}&R_{12}\\ R_{21}&R_{22}\end{bmatrix}\in\mathcal{N}_{0112}\left[\scriptsize\begin{smallmatrix}n_{0}&m_{0}\\ n_{1}&m_{1}\\ n_{2}&m_{2}\end{smallmatrix}\right], (53)

where

R11\displaystyle R_{11} =011(B11,D11)+011011(B12,D21),\displaystyle=\mathcal{L}_{011}(B_{11},D_{11})+\mathcal{L}_{011\rightarrow 011}(B_{12},D_{21}),
R21\displaystyle R_{21} =0112D1(B21,D11)+0112D2(B22,D21),\displaystyle=\mathcal{L}_{011\rightarrow 2D}^{1}(B_{21},D_{11})+\mathcal{L}_{011\rightarrow 2D}^{2}(B_{22},D_{21}),
R12\displaystyle R_{12} =2D0111(B11,D12)+2D0112(B12,D22),\displaystyle=\mathcal{L}_{2D\rightarrow 011}^{1}(B_{11},D_{12})+\mathcal{L}_{2D\rightarrow 011}^{2}(B_{12},D_{22}),
R22\displaystyle R_{22} =2D2D(B21,D12)+2D(B22,D22),\displaystyle=\mathcal{L}_{2D\rightarrow 2D}(B_{21},D_{12})+\mathcal{L}_{2D}(B_{22},D_{22}),

where the different parameter maps \mathcal{L} are listed in Table 3.

Proof 11.11.

Exploiting the linear structure of the 0112-PI operator, and applying the results from the previous sections, it follows that

𝒫[B]𝒫[D]=𝒫[B11B12B21B22]𝒫[D11D12D21D22]\displaystyle\mathcal{P}[B]\circ\mathcal{P}[D]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}B_{11}&B_{12}\\ B_{21}&B_{22}\end{smallmatrix}\right]\circ\mathcal{P}\left[\scriptsize\begin{smallmatrix}D_{11}&D_{12}\\ D_{21}&D_{22}\end{smallmatrix}\right]
=[𝒫[B11]𝒫[B12]𝒫[B21]𝒫[B22]][𝒫[D11]𝒫[D12]𝒫[D21]𝒫[D22]]\displaystyle\qquad=\begin{bmatrix}\mathcal{P}[B_{11}]&\mathcal{P}[B_{12}]\\ \mathcal{P}[B_{21}]&\mathcal{P}[B_{22}]\end{bmatrix}\begin{bmatrix}\mathcal{P}[D_{11}]&\mathcal{P}[D_{12}]\\ \mathcal{P}[D_{21}]&\mathcal{P}[D_{22}]\end{bmatrix}
=[𝒫[B11]𝒫[D11]𝒫[B11]𝒫[D12]𝒫[B21]𝒫[D11]𝒫[B21]𝒫[D12]]\displaystyle\qquad=\begin{bmatrix}\mathcal{P}[B_{11}]\circ\mathcal{P}[D_{11}]&\mathcal{P}[B_{11}]\circ\mathcal{P}[D_{12}]\\ \mathcal{P}[B_{21}]\circ\mathcal{P}[D_{11}]&\mathcal{P}[B_{21}]\circ\mathcal{P}[D_{12}]\end{bmatrix}
+[𝒫[B12]𝒫[D21]𝒫[B12]𝒫[D22]𝒫[B22]𝒫[D21]𝒫[B22]𝒫[D22]]\displaystyle\qquad\qquad+\begin{bmatrix}\mathcal{P}[B_{12}]\circ\mathcal{P}[D_{21}]&\mathcal{P}[B_{12}]\circ\mathcal{P}[D_{22}]\\ \mathcal{P}[B_{22}]\circ\mathcal{P}[D_{21}]&\mathcal{P}[B_{22}]\circ\mathcal{P}[D_{22}]\end{bmatrix}
=[𝒫[R11]𝒫[R12]𝒫[R21]𝒫[R22]]=𝒫[R]\displaystyle\qquad=\begin{bmatrix}\mathcal{P}[R_{11}]&\mathcal{P}[R_{12}]\\ \mathcal{P}[R_{21}]&\mathcal{P}[R_{22}]\end{bmatrix}=\mathcal{P}[R]

12 Additional Proofs

12.1 Inverse of 011-PI Operators

Lemma 30.

Suppose

Q=[Q00Q0xQ0yQx0QxxQxyQy0QyxQyy]N011[n0n0n1n1]Q=\begin{bmatrix}Q_{00}&Q_{0x}&Q_{0y}\\ Q_{x0}&Q_{xx}&Q_{xy}\\ Q_{y0}&Q_{yx}&Q_{yy}\end{bmatrix}\in{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right]

where Qxx={Qxx0,Q1xx,Q1xx}𝒩1Dn1×n1Q_{xx}=\{Q_{xx}^{0},Q^{1}_{xx},Q^{1}_{xx}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}} (separable) and Qyy={Q0yy,Q1yy,Q1yy}𝒩1Dn1×n1Q_{yy}=\{Q^{0}_{yy},Q^{1}_{yy},Q^{1}_{yy}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}} (separable). Suppose the matrix-valued functions can be decomposed as

[Q0x(x)Q0y(y)Qx0(x)Qxx1(x,θ)Qxy(x,y)Qy0(y)Qyx(x,y)Qyy1(y,ν)]=\displaystyle\begin{bmatrix}&Q_{0x}(x)&Q_{0y}(y)\\ Q_{x0}(x)&Q_{xx}^{1}(x,\theta)&Q_{xy}(x,y)\\ Q_{y0}(y)&Q_{yx}(x,y)&Q_{yy}^{1}(y,\nu)\end{bmatrix}=
[H0xZ(x)H0yZ(y)ZT(x)Hx0ZT(x)ΓxxZ(θ)ZT(x)ΓxyZ(y)ZT(y)Hy0ZT(y)ΓyxZ(x)ZT(y)ΓyyZ(ν)]\displaystyle\qquad\begin{bmatrix}&H_{0x}Z(x)&H_{0y}Z(y)\\ Z^{T}(x)H_{x0}&Z^{T}(x)\Gamma_{xx}Z(\theta)&Z^{T}(x)\Gamma_{xy}Z(y)\\ Z^{T}(y)H_{y0}&Z^{T}(y)\Gamma_{yx}Z(x)&Z^{T}(y)\Gamma_{yy}Z(\nu)\end{bmatrix}

for some qq\in\mathbb{N} and ZL2q×n1Z\in L_{2}^{q\times n_{1}} and

[H0xH0yHx0ΓxxΓxyHy0ΓyxΓyy][n0×qn0×qq×n0q×qq×qq×n0q×qq×q]\begin{bmatrix}&H_{0x}&H_{0y}\\ H_{x0}&\Gamma_{xx}&\Gamma_{xy}\\ H_{y0}&\Gamma_{yx}&\Gamma_{yy}\end{bmatrix}\in\begin{bmatrix}&\mathbb{R}^{n_{0}\times q}&\mathbb{R}^{n_{0}\times q}\\ \mathbb{R}^{q\times n_{0}}&\mathbb{R}^{q\times q}&\mathbb{R}^{q\times q}\\ \mathbb{R}^{q\times n_{0}}&\mathbb{R}^{q\times q}&\mathbb{R}^{q\times q}\end{bmatrix}

Finally, define the linear parameter map inv:𝒩011[n0n0n1n1]𝒩011[n0n0n1n1]\mathcal{L}_{\text{inv}}:\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right]\rightarrow\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right] as in Equation. (54) in Figure 3. Then, there exists a set of parameters Q^=inv(Q)𝒩011[n0n0n1n1]\hat{Q}=\mathcal{L}_{\text{inv}}(Q)\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right] such that

(𝒫[Q^]𝒫[Q])𝐮=(𝒫[Q]𝒫[Q^])𝐮=𝐮,\displaystyle(\mathcal{P}[\hat{Q}]\circ\mathcal{P}[Q])\mathbf{u}=(\mathcal{P}[Q]\circ\mathcal{P}[\hat{Q}])\mathbf{u}=\mathbf{u},

for any 𝐮n0×L2n1[x]×L2n1[y]\mathbf{u}\in\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y].

inv(Q)=[Q^00Q^0xQ^0yQ^x0Q^xxQ^xyQ^y0Q^yxQ^yy]𝒩011[n0n0n1n1],\displaystyle\qquad\mathcal{L}_{\text{inv}}(Q)=\begin{bmatrix}\hat{Q}_{00}&\hat{Q}_{0x}&\hat{Q}_{0y}\\ \hat{Q}_{x0}&\hat{Q}_{xx}&\hat{Q}_{xy}\\ \hat{Q}_{y0}&\hat{Q}_{yx}&\hat{Q}_{yy}\end{bmatrix}\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right], with Q^xx={Q^xx0,Q^xx1,Q^xx1}𝒩1Dn1×n1,Q^yy={Q^yy0,Q^yy1,Q^yy1}𝒩1Dn1×n1,\displaystyle\begin{matrix}\hat{Q}_{xx}=\{\hat{Q}_{xx}^{0},\hat{Q}_{xx}^{1},\hat{Q}_{xx}^{1}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}},\\ \hat{Q}_{yy}=\{\hat{Q}_{yy}^{0},\hat{Q}_{yy}^{1},\hat{Q}_{yy}^{1}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}}\end{matrix}, (54)

and with

Q^00=(In0H^0xKxxHx0H^0yKyyHy0)Q001,\displaystyle\hskip 5.69046pt\hat{Q}_{00}=\Bigl{(}I_{n_{0}}-\hat{H}_{0x}K_{xx}H_{x0}-\hat{H}_{0y}K_{yy}H_{y0}\Bigr{)}Q_{00}^{-1},
Q^xx0(x)=[Qxx0(x)]1,Q^yy0(y)=[Qyy0(y)]1,\displaystyle\begin{array}[]{l}\hat{Q}_{xx}^{0}(x)=[Q_{xx}^{0}(x)]^{-1},\\ \\ \hat{Q}_{yy}^{0}(y)=[Q_{yy}^{0}(y)]^{-1},\end{array} [Q^0x(x)Q^0y(y)Q^x0(x)Q^xx1(x,θ)Q^xy(x,y)Q^y0(y)Q^yx(x,y)Q^yy1(y,ν)]=[H^0xZ^0x(x)H^0yZ^0y(y)Z^x0T(x)H^x0Z^x0T(x)Γ^xxZ^0x(θ)Z^x0T(x)Γ^xyZ^0y(y)Z^y0T(y)H^y0Z^y0T(y)Γ^yxZ^0x(x)Z^y0T(y)Γ^yyZ^0y(ν)],\displaystyle\begin{bmatrix}&\hat{Q}_{0x}(x)&\hat{Q}_{0y}(y)\\ \hat{Q}_{x0}(x)&\hat{Q}_{xx}^{1}(x,\theta)&\hat{Q}_{xy}(x,y)\\ \hat{Q}_{y0}(y)&\hat{Q}_{yx}(x,y)&\hat{Q}_{yy}^{1}(y,\nu)\end{bmatrix}=\begin{bmatrix}&\hat{H}_{0x}\hat{Z}_{0x}(x)&\hat{H}_{0y}\hat{Z}_{0y}(y)\\ \hat{Z}_{x0}^{T}(x)\hat{H}_{x0}&\hat{Z}_{x0}^{T}(x)\hat{\Gamma}_{xx}\hat{Z}_{0x}(\theta)&\hat{Z}_{x0}^{T}(x)\hat{\Gamma}_{xy}\hat{Z}_{0y}(y)\\ \hat{Z}_{y0}^{T}(y)\hat{H}_{y0}&\hat{Z}_{y0}^{T}(y)\hat{\Gamma}_{yx}\hat{Z}_{0x}(x)&\hat{Z}_{y0}^{T}(y)\hat{\Gamma}_{yy}\hat{Z}_{0y}(\nu)\end{bmatrix},

where

Z^x0(x)=Z(x)[Q^xx0(x)]T,\displaystyle\quad\hat{Z}_{x0}(x)=Z(x)[\hat{Q}_{xx}^{0}(x)]^{T}, Z^0x(x)=Z(x)Q^xx0(x),\displaystyle\hat{Z}_{0x}(x)=Z(x)\hat{Q}_{xx}^{0}(x), Z^y0(y)=Z(y)[Q^yy0(y)]T,\displaystyle\hat{Z}_{y0}(y)=Z(y)[\hat{Q}_{yy}^{0}(y)]^{T}, Z^0y(y)=Z(y)Q^yy0(y),\displaystyle\hat{Z}_{0y}(y)=Z(y)\hat{Q}_{yy}^{0}(y),

and where

Γ^yx\displaystyle\hat{\Gamma}_{yx} =(ΠyxΠyyEyx)(ΣxKxxΠxyEyx)1,\displaystyle=-\bigl{(}\Pi_{yx}-\Pi_{yy}\text{E}_{yx}\bigr{)}\bigl{(}\Sigma_{x}-K_{xx}\Pi_{xy}\text{E}_{yx}\bigr{)}^{-1}, Γ^xy\displaystyle\hat{\Gamma}_{xy} =(ΠxyΠxxExy)(ΣyKyyΠyxExy)1,\displaystyle=-\bigl{(}\Pi_{xy}-\Pi_{xx}\text{E}_{xy}\bigr{)}\bigl{(}\Sigma_{y}-K_{yy}\Pi_{yx}\text{E}_{xy}\bigr{)}^{-1},
Γ^yy\displaystyle\hat{\Gamma}_{yy} =(Πyy+Γ^yxKxxΠxy)Σy1,\displaystyle=-\Bigl{(}\Pi_{yy}+\hat{\Gamma}_{yx}K_{xx}\Pi_{xy}\Bigr{)}\Sigma_{y}^{-1}, Γ^xx\displaystyle\hat{\Gamma}_{xx} =(Πxx+Γ^xyKyyΠyx)Σx1,\displaystyle=-\Bigl{(}\Pi_{xx}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yx}\Bigr{)}\Sigma_{x}^{-1},
H^y0\displaystyle\hat{H}_{y0} =(Hy0+Γ^yyKyyHy0+Γ^yxKxxHx0)Q001,\displaystyle=-\Bigl{(}H_{y0}+\hat{\Gamma}_{yy}K_{yy}H_{y0}+\hat{\Gamma}_{yx}K_{xx}H_{x0}\Bigr{)}Q_{00}^{-1}, H^x0\displaystyle\hat{H}_{x0} =(Hx0+Γ^xxKxxHx0+Γ^xyKyyHy0)Q001,\displaystyle=-\Bigl{(}H_{x0}+\hat{\Gamma}_{xx}K_{xx}H_{x0}+\hat{\Gamma}_{xy}K_{yy}H_{y0}\Bigr{)}Q_{00}^{-1},
H^0y\displaystyle\hat{H}_{0y} =(Q001H0yQ001H0xExy)(ΣyKyyΠyxExy)1,\displaystyle=-\bigl{(}Q_{00}^{-1}H_{0y}-Q_{00}^{-1}H_{0x}\text{E}_{xy}\bigr{)}\bigl{(}\Sigma_{y}-K_{yy}\Pi_{yx}\text{E}_{xy}\bigr{)}^{-1}, H^0x\displaystyle\hat{H}_{0x} =(Q001H0x+H^0yKyyΠyx)Σx1,\displaystyle=-\Bigl{(}Q_{00}^{-1}H_{0x}+\hat{H}_{0y}K_{yy}\Pi_{yx}\Bigr{)}\Sigma_{x}^{-1},

with

Πxx=ΓxxHx0Q001H0x,Πxy=ΓxyHx0Q001H0y,Πyx=ΓyxHy0Q001H0x,Πyy=ΓyyHy0Q001H0y,\displaystyle\begin{array}[]{l}\Pi_{xx}=\Gamma_{xx}-H_{x0}Q_{00}^{-1}H_{0x},\\ \Pi_{xy}=\Gamma_{xy}-H_{x0}Q_{00}^{-1}H_{0y},\\ \Pi_{yx}=\Gamma_{yx}-H_{y0}Q_{00}^{-1}H_{0x},\\ \Pi_{yy}=\Gamma_{yy}-H_{y0}Q_{00}^{-1}H_{0y},\end{array} Σx=Iq+KxxΠxx,Σy=Iq+KyyΠyy,Exy=Σx1KxxΠxy,Eyx=Σy1KyyΠyx,\displaystyle\begin{array}[]{l}\Sigma_{x}=I_{q}+K_{xx}\Pi_{xx},\\ \Sigma_{y}=I_{q}+K_{yy}\Pi_{yy},\\ \text{E}_{xy}=\Sigma_{x}^{-1}K_{xx}\Pi_{xy},\\ \text{E}_{yx}=\Sigma_{y}^{-1}K_{yy}\Pi_{yx},\end{array} Kxx=abZ(x)Q^xx0(x)ZT(x)dx,Kyy=cdZ(y)Q^yy0(y)ZT(y)dy.\displaystyle\begin{array}[]{l}K_{xx}=\int_{a}^{b}Z(x)\hat{Q}_{xx}^{0}(x)Z^{T}(x)dx,\\ \\ K_{yy}=\int_{c}^{d}Z(y)\hat{Q}_{yy}^{0}(y)Z^{T}(y)dy.\end{array}
Figure 3: Parameters Q^\hat{Q} describing the inverse PI operator 𝒫[Q^]=𝒫[Q]1\mathcal{P}[\hat{Q}]=\mathcal{P}[Q]^{-1} in Lemma 30
Proof 12.1.

Let Q,Q^𝒩[n0n0n1n1]Q,\hat{Q}\in\mathcal{N}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right] be as defined. Then, by the composition rules of PI operators, we have 𝒫[R]=𝒫[Q^]𝒫[Q]\mathcal{P}[R]=\mathcal{P}[\hat{Q}]\circ\mathcal{P}[Q], where

R=[R00R0xR0yRx0RxxRxyRy0RyxRyy]=011(Q^,Q)𝒩[n0n0n1n1],\displaystyle R=\begin{bmatrix}R_{00}&R_{0x}&R_{0y}\\ R_{x0}&R_{xx}&R_{xy}\\ R_{y0}&R_{yx}&R_{yy}\end{bmatrix}=\mathcal{L}_{011}(\hat{Q},Q)\in\mathcal{N}\left[\scriptsize\begin{smallmatrix}n_{0}&n_{0}\\ n_{1}&n_{1}\end{smallmatrix}\right],

with Rxx={Rxx0,Rxx1,Rxx1}𝒩1Dn1×n1R_{xx}=\{R_{xx}^{0},R_{xx}^{1},R_{xx}^{1}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}} and Ryy={Ryy0,Ryy1,Ryy1}𝒩1Dn1×n1R_{yy}=\{R_{yy}^{0},R_{yy}^{1},R_{yy}^{1}\}\in\mathcal{N}_{1D}^{n_{1}\times n_{1}}, and where

R00=Q^00Q00+abQ^0x(x)Qx0(x)dx+cdQ^0y(y)Qy0(y)dy\displaystyle R_{00}\!=\!\hat{Q}_{00}Q_{00}\!+\!\int_{a}^{b}\!\hat{Q}_{0x}(x)Q_{x0}(x)dx\!+\!\int_{c}^{d}\!\hat{Q}_{0y}(y)Q_{y0}(y)dy
Rxx0(x)=Q^xx0(x)Qxx0(x)\displaystyle R_{xx}^{0}(x)=\hat{Q}_{xx}^{0}(x)Q_{xx}^{0}(x)
Ryy0(y)=Q^yy0(y)Qyy0(y)\displaystyle R_{yy}^{0}(y)=\hat{Q}_{yy}^{0}(y)Q_{yy}^{0}(y)

and

R0x(x)=Q^00Q0x(x)+Q^0x(x)Qxx0(x)\displaystyle R_{0x}(x)=\hat{Q}_{00}Q_{0x}(x)+\hat{Q}_{0x}(x)Q_{xx}^{0}(x)
+abQ^0x(θ)Qxx1(θ,x)dθ+cdQ^0y(y)Qyx(x,y)dy\displaystyle\quad+\int_{a}^{b}\hat{Q}_{0x}(\theta)Q_{xx}^{1}(\theta,x)d\theta+\int_{c}^{d}\hat{Q}_{0y}(y)Q_{yx}(x,y)dy
R0y(y)=Q^00Q0y(y)+Q^0y(y)Qyy0(y)\displaystyle R_{0y}(y)=\hat{Q}_{00}Q_{0y}(y)+\hat{Q}_{0y}(y)Q_{yy}^{0}(y)
+cdQ^0y(ν)Qyy1(ν,y)dν+abQ^0x(x)Qxy(x,y)dx,\displaystyle\quad+\int_{c}^{d}\hat{Q}_{0y}(\nu)Q_{yy}^{1}(\nu,y)d\nu+\int_{a}^{b}\hat{Q}_{0x}(x)Q_{xy}(x,y)dx,
Rx0(x)=Q^x0(x)Q00+Q^xx0(x)Qx0(x)\displaystyle R_{x0}(x)=\hat{Q}_{x0}(x)Q_{00}+\hat{Q}_{xx}^{0}(x)Q_{x0}(x)
+abQ^xx1(x,θ)Qx0(θ)dθ+cdQ^xy(x,y)Qy0(y)dy\displaystyle\quad+\int_{a}^{b}\hat{Q}_{xx}^{1}(x,\theta)Q_{x0}(\theta)d\theta+\int_{c}^{d}\hat{Q}_{xy}(x,y)Q_{y0}(y)dy
Rxx1(x,θ)=Q^x0(x)Q0x(θ)+Q^xx0(x)Qxx1(x,θ)\displaystyle R_{xx}^{1}(x,\theta)=\hat{Q}_{x0}(x)Q_{0x}(\theta)+\hat{Q}_{xx}^{0}(x)Q_{xx}^{1}(x,\theta)
+Q^xx1(x,θ)Qxx0(θ)+abQ^xx1(x,η)Qxx1(η,θ)dη\displaystyle\quad+\hat{Q}_{xx}^{1}(x,\theta)Q_{xx}^{0}(\theta)+\int_{a}^{b}\hat{Q}_{xx}^{1}(x,\eta)Q_{xx}^{1}(\eta,\theta)d\eta
+cdQ^xy(x,y)Qyx(θ,y)dy,\displaystyle\qquad+\int_{c}^{d}\hat{Q}_{xy}(x,y)Q_{yx}(\theta,y)dy,
Rxy(x,y)=Q^x0(x)Q0y(y)+Q^xx0(x)Qxy(x,y)\displaystyle R_{xy}(x,y)=\hat{Q}_{x0}(x)Q_{0y}(y)+\hat{Q}_{xx}^{0}(x)Q_{xy}(x,y)
+abQ^xx1(x,θ)Qxy(θ,y)dθ\displaystyle\quad+\int_{a}^{b}\hat{Q}_{xx}^{1}(x,\theta)Q_{xy}(\theta,y)d\theta
+Q^xy(x,y)Qyy0(y)+cdQ^xy(x,ν)Qyy1(ν,y)dν\displaystyle\qquad+\hat{Q}_{xy}(x,y)Q_{yy}^{0}(y)+\int_{c}^{d}\hat{Q}_{xy}(x,\nu)Q_{yy}^{1}(\nu,y)d\nu
Ry0(y)=Q^y0(y)Q00+Q^yy0(y)Qy0(y)\displaystyle R_{y0}(y)=\hat{Q}_{y0}(y)Q_{00}+\hat{Q}_{yy}^{0}(y)Q_{y0}(y)
+cdQ^yy1(y,ν)Qy0(ν)dν+abQ^yx(x,y)Qx0(x)dx\displaystyle\quad+\int_{c}^{d}\hat{Q}_{yy}^{1}(y,\nu)Q_{y0}(\nu)d\nu+\int_{a}^{b}\hat{Q}_{yx}(x,y)Q_{x0}(x)dx
Ryx(y,x)=Q^y0(y)Q0x(x)+Q^yy0(y)Qyx(x,y)\displaystyle R_{yx}(y,x)=\hat{Q}_{y0}(y)Q_{0x}(x)+\hat{Q}_{yy}^{0}(y)Q_{yx}(x,y)
+cdQ^yy1(y,ν)Qyx(x,ν)\displaystyle\quad+\int_{c}^{d}\hat{Q}_{yy}^{1}(y,\nu)Q_{yx}(x,\nu)
+Q^yx(x,y)Qxx0(x)+abQ^yx(θ,y)Qxx1(θ,x)dθ\displaystyle\qquad+\hat{Q}_{yx}(x,y)Q_{xx}^{0}(x)+\int_{a}^{b}\hat{Q}_{yx}(\theta,y)Q_{xx}^{1}(\theta,x)d\theta
Ryy1(y,ν)=Q^y0(y)Q0y(ν)+Q^yy0(y)Qyy1(y,ν)\displaystyle R_{yy}^{1}(y,\nu)=\hat{Q}_{y0}(y)Q_{0y}(\nu)+\hat{Q}_{yy}^{0}(y)Q_{yy}^{1}(y,\nu)
+Q^yy1(y,ν)Qyy0(ν)+cdQ^yy1(y,μ)Qyy1(μ,ν)dμ\displaystyle\quad+\hat{Q}_{yy}^{1}(y,\nu)Q_{yy}^{0}(\nu)+\int_{c}^{d}\hat{Q}_{yy}^{1}(y,\mu)Q_{yy}^{1}(\mu,\nu)d\mu
+abQ^yx(x,y)Qxy(x,ν)dx.\displaystyle\qquad+\int_{a}^{b}\hat{Q}_{yx}(x,y)Q_{xy}(x,\nu)dx.

To demonstrate that the operator 𝒫[Q^]\mathcal{P}[\hat{Q}] defines an inverse of the operator 𝒫[Q]\mathcal{P}[Q], we show that 𝒫[R]\mathcal{P}[R] describes an identity operation on n0×L2n1[x]×L2n1[y]\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y]. In particular, we show that each of the functions RijR_{ij} is constantly equal to zero, except for R00R_{00}, Rxx0R_{xx}^{0} and Ryy0R_{yy}^{0}, which are identity matrices of appropriate sizes. To this end, we first note that Q^xx0=[Qxx0]1\hat{Q}_{xx}^{0}=[Q_{xx}^{0}]^{-1} and Q^yy0=[Qyy0]1\hat{Q}_{yy}^{0}=[Q_{yy}^{0}]^{-1}, from which it immediately follows that Rxx0=In1R_{xx}^{0}=I_{n_{1}} and Ryy0=In1R_{yy}^{0}=I_{n_{1}}. To see that also R00=In0R_{00}=I_{n_{0}}, we expand each of the terms in its definition, obtaining

Q^00Q00=(In0\displaystyle\hat{Q}_{00}Q_{00}=\Bigl{(}I_{n_{0}} H^0xKxxHx0H^0yKyyHy0),\displaystyle-\hat{H}_{0x}K_{xx}H_{x0}-\hat{H}_{0y}K_{yy}H_{y0}\Bigr{)},
abQ^0x(x)Qx0(x)dx\displaystyle\int_{a}^{b}\hat{Q}_{0x}(x)Q_{x0}(x)dx =abH^0xZ(x)Q^xx0ZT(x)Hx0dx\displaystyle=\int_{a}^{b}\hat{H}_{0x}Z(x)\hat{Q}_{xx}^{0}Z^{T}(x)H_{x0}dx
=H^0xKxxHx0,\displaystyle=\hat{H}_{0x}K_{xx}H_{x0},
cdQ^0y(y)Qy0(y)dy\displaystyle\int_{c}^{d}\hat{Q}_{0y}(y)Q_{y0}(y)dy =cdH^0yZ(y)Q^yy0ZT(y)Hy0dy\displaystyle=\int_{c}^{d}\hat{H}_{0y}Z(y)\hat{Q}_{yy}^{0}Z^{T}(y)H_{y0}dy
=H^0yKyyHy0.\displaystyle=\hat{H}_{0y}K_{yy}H_{y0}.

Adding these terms, we immediately find R00=In0R_{00}=I_{n_{0}}.

For the remaining functions, we also expand the different terms in their definitions. Starting with R0x(x)R_{0x}(x), we find

Q^00Q0x=(In0H^0xKxxHx0H^0yKyyHy0)Q001H0xZ(x)\displaystyle\hat{Q}_{00}Q_{0x}=\Bigl{(}I_{n_{0}}\!-\!\hat{H}_{0x}K_{xx}H_{x0}\!-\!\hat{H}_{0y}K_{yy}H_{y0}\Bigr{)}Q_{00}^{-1}H_{0x}Z(x)
=Q001H0xZ(x)H^0xKxx(ΓxxΠxx)Z(x)\displaystyle\hskip 34.14322pt=Q_{00}^{-1}H_{0x}Z(x)-\hat{H}_{0x}K_{xx}\left(\Gamma_{xx}-\Pi_{xx}\right)Z(x)
H^0yKyy(ΓyxΠyx)Z(x),\displaystyle\hskip 34.14322pt\qquad-\hat{H}_{0y}K_{yy}\left(\Gamma_{yx}-\Pi_{yx}\right)Z(x),
Q^0x(x)Qxx0(x)=H^0xZ(x)Q^xx0(x)Qxx0(x)=H^0xZ(x),\displaystyle\hat{Q}_{0x}(x)Q_{xx}^{0}(x)=\hat{H}_{0x}Z(x)\hat{Q}_{xx}^{0}(x)Q_{xx}^{0}(x)=\hat{H}_{0x}Z(x),
abQ^0x(θ)Qxx1(θ,x)dθ=\displaystyle\int_{a}^{b}\hat{Q}_{0x}(\theta)Q_{xx}^{1}(\theta,x)d\theta=
abH^0xZ(θ)Q^xx0(θ)ZT(θ)ΓxxZ(x)dθ\displaystyle\hskip 42.67912pt\int_{a}^{b}\hat{H}_{0x}Z(\theta)\hat{Q}_{xx}^{0}(\theta)Z^{T}(\theta)\Gamma_{xx}Z(x)d\theta
=H^0xKxxΓxxZ(x),\displaystyle\hskip 142.26378pt=\hat{H}_{0x}K_{xx}\Gamma_{xx}Z(x),
cdQ^0y(y)Qyx(x,y)dy=\displaystyle\int_{c}^{d}\hat{Q}_{0y}(y)Q_{yx}(x,y)dy=
cdH^0yZ(y)Q^yy0(y)ZT(y)ΓyxZ(x)dy\displaystyle\hskip 42.67912pt\int_{c}^{d}\hat{H}_{0y}Z(y)\hat{Q}_{yy}^{0}(y)Z^{T}(y)\Gamma_{yx}Z(x)dy
=H^0yKyyΓyxZ(x),\displaystyle\hskip 142.26378pt=\hat{H}_{0y}K_{yy}\Gamma_{yx}Z(x),

from which it follows that

R0x(x)\displaystyle R_{0x}(x) =Q001H0xZ(x)+H^0xZ(x)\displaystyle=Q_{00}^{-1}H_{0x}Z(x)+\hat{H}_{0x}Z(x)
+H^0xKxxΠxxZ(x)+H^0yKyyΠyxZ(x)\displaystyle\qquad+\hat{H}_{0x}K_{xx}\Pi_{xx}Z(x)+\hat{H}_{0y}K_{yy}\Pi_{yx}Z(x)
=Q001H0xZ(x)+H^0xZ(x)\displaystyle=Q_{00}^{-1}H_{0x}Z(x)+\hat{H}_{0x}Z(x)
+H^0x(ΣxIq)Z(x)+H^0yKyyΠyxZ(x)\displaystyle\qquad+\hat{H}_{0x}\left(\Sigma_{x}-I_{q}\right)Z(x)+\hat{H}_{0y}K_{yy}\Pi_{yx}Z(x)
=Q001H0xZ(x)(Q001H0x+H^0yKyyΠyx)Z(x)\displaystyle=Q_{00}^{-1}H_{0x}Z(x)-\left(Q_{00}^{-1}H_{0x}+\hat{H}_{0y}K_{yy}\Pi_{yx}\right)Z(x)
+H^0yKyyΠyxZ(x)=0.\displaystyle\qquad+\hat{H}_{0y}K_{yy}\Pi_{yx}Z(x)=0.

Expanding the terms in the expression of R0yR_{0y} in the same way, we obtain

Q^00Q0y=Q001H0yZ(y)H^0xKxx(ΓxyΠxy)Z(y)\displaystyle\hat{Q}_{00}Q_{0y}=Q_{00}^{-1}H_{0y}Z(y)-\hat{H}_{0x}K_{xx}\left(\Gamma_{xy}-\Pi_{xy}\right)Z(y)
H^0yKyy(ΓyyΠyy)Z(y),\displaystyle\hskip 34.14322pt\qquad-\hat{H}_{0y}K_{yy}\left(\Gamma_{yy}-\Pi_{yy}\right)Z(y),
Q^0y(x)Qyy0(y)=H^0yZ(y),\displaystyle\hat{Q}_{0y}(x)Q_{yy}^{0}(y)=\hat{H}_{0y}Z(y),
cdQ^0y(ν)Qyy1(ν,y)dν=H^0yKyyΓyyZ(y),\displaystyle\int_{c}^{d}\hat{Q}_{0y}(\nu)Q_{yy}^{1}(\nu,y)d\nu=\hat{H}_{0y}K_{yy}\Gamma_{yy}Z(y),
abQ^0x(x)Qxy(x,y)dx=H^0xKxxΓxyZ(y),\displaystyle\int_{a}^{b}\hat{Q}_{0x}(x)Q_{xy}(x,y)dx=\hat{H}_{0x}K_{xx}\Gamma_{xy}Z(y),

suggesting also

R0y(y)\displaystyle R_{0y}(y) =Q001H0yZ(y)+H^0yZ(y)\displaystyle=Q_{00}^{-1}H_{0y}Z(y)+\hat{H}_{0y}Z(y)
+H^0xKxxΠxyZ(y)+H^0yKyyΠyyZ(y)\displaystyle\qquad+\hat{H}_{0x}K_{xx}\Pi_{xy}Z(y)+\hat{H}_{0y}K_{yy}\Pi_{yy}Z(y)
=Q001H0yZ(y)+H^0yZ(y)\displaystyle=Q_{00}^{-1}H_{0y}Z(y)+\hat{H}_{0y}Z(y)
+H^0xΣxExyZ(y)+H^0y(ΣyIq)Z(y)\displaystyle\qquad+\hat{H}_{0x}\Sigma_{x}\text{E}_{xy}Z(y)+\hat{H}_{0y}\left(\Sigma_{y}-I_{q}\right)Z(y)
=Q001H0yZ(y)(Q001H0x+H^0yKyyΠyx)ExyZ(y)\displaystyle=Q_{00}^{-1}H_{0y}Z(y)-\left(Q_{00}^{-1}H_{0x}+\hat{H}_{0y}K_{yy}\Pi_{yx}\right)\text{E}_{xy}Z(y)
+H^0yΣyZ(y)\displaystyle\qquad+\hat{H}_{0y}\Sigma_{y}Z(y)
=(Q001H0yQ001H0xExy)Z(y)\displaystyle=\left(Q_{00}^{-1}H_{0y}-Q_{00}^{-1}H_{0x}\text{E}_{xy}\right)Z(y)
+H^0y(ΣyKyyΠyxExy)Z(y)\displaystyle\qquad+\hat{H}_{0y}\left(\Sigma_{y}-K_{yy}\Pi_{yx}\text{E}_{xy}\right)Z(y)
=(Q001H0yQ001H0xExy)Z(y)\displaystyle=\left(Q_{00}^{-1}H_{0y}-Q_{00}^{-1}H_{0x}\text{E}_{xy}\right)Z(y)
(Q001H0yQ001H0xExy)Z(y)=0.\displaystyle\qquad-\left(Q_{00}^{-1}H_{0y}-Q_{00}^{-1}H_{0x}\text{E}_{xy}\right)Z(y)=0.

Next, we consider the expression for Rx0(x)R_{x0}(x), for which

Q^x0(x)Q00=Q^xx0(x)ZT(x)H^x0Q00\displaystyle\hat{Q}_{x0}(x)Q_{00}=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{H}_{x0}Q_{00}
=Q^xx0ZT(x)(Hx0+Γ^xxKxxHx0+Γ^xyKyyHy0),\displaystyle\quad=-\hat{Q}_{xx}^{0}Z^{T}(x)\Bigl{(}H_{x0}+\hat{\Gamma}_{xx}K_{xx}H_{x0}+\hat{\Gamma}_{xy}K_{yy}H_{y0}\Bigr{)},
Q^xx0(x)Qx0(x)=Q^xx0(x)ZT(x)Hx0,\displaystyle\hat{Q}_{xx}^{0}(x)Q_{x0}(x)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)H_{x0},
abQ^xx1(x,θ)Qx0(θ)dθ=\displaystyle\int_{a}^{b}\hat{Q}_{xx}^{1}(x,\theta)Q_{x0}(\theta)d\theta=
abQ^xx0(x)ZT(x)Γ^xxZ(θ)Q^xx0(θ)ZT(θ)Hx0dθ\displaystyle\hskip 28.45274pt\int_{a}^{b}\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}Z(\theta)\hat{Q}_{xx}^{0}(\theta)Z^{T}(\theta)H_{x0}d\theta
=Q^xx0(x)ZT(x)Γ^xxKxxHx0,\displaystyle\hskip 113.81102pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}K_{xx}H_{x0},
cdQ^xy(x,y)Qy0(y)dy=\displaystyle\int_{c}^{d}\hat{Q}_{xy}(x,y)Q_{y0}(y)dy=
cdQ^xx0(x)ZT(x)Γ^xyZ(y)Q^yy0(y)ZT(y)Hy0dy\displaystyle\hskip 28.45274pt\int_{c}^{d}\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}Z(y)\hat{Q}_{yy}^{0}(y)Z^{T}(y)H_{y0}dy
=Q^xx0(x)ZT(x)Γ^xyKyyHy0.\displaystyle\hskip 113.81102pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}K_{yy}H_{y0}.

Adding these terms, it is clear that also Rx0(x)=0R_{x0}(x)=0.
Similarly, for Rxx1R_{xx}^{1},

Q^x0(x)Q0x(θ)=Q^xx0(x)ZT(x)H^x0H0xZ(θ),\displaystyle\hat{Q}_{x0}(x)Q_{0x}(\theta)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{H}_{x0}H_{0x}Z(\theta),
Q^xx0(x)Qxx1(x,θ)=Q^xx0(x)ZT(x)ΓxxZ(θ),\displaystyle\hat{Q}_{xx}^{0}(x)Q_{xx}^{1}(x,\theta)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\Gamma_{xx}Z(\theta),
Q^xx1(x,θ)Qxx0(θ)=Q^xx0(x)ZT(x)Γ^xxZ(θ),\displaystyle\hat{Q}_{xx}^{1}(x,\theta)Q_{xx}^{0}(\theta)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}Z(\theta),
abQ^xx1(x,η)Qxx1(η,θ)dη=\displaystyle\int_{a}^{b}\hat{Q}_{xx}^{1}(x,\eta)Q_{xx}^{1}(\eta,\theta)d\eta=
abQ^xx0(x)ZT(x)Γ^xxZ(η)Q^xx0(η)ZT(η)ΓxxZ(θ)dη\displaystyle\quad\int_{a}^{b}\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}Z(\eta)\hat{Q}_{xx}^{0}(\eta)Z^{T}(\eta)\Gamma_{xx}Z(\theta)d\eta
=Q^xx0(x)ZT(x)Γ^xxKxxΓxxZ(θ),\displaystyle\hskip 108.12054pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}K_{xx}\Gamma_{xx}Z(\theta),
cdQ^xy(x,y)Qyx(θ,y)dy=\displaystyle\int_{c}^{d}\hat{Q}_{xy}(x,y)Q_{yx}(\theta,y)dy=
cdQ^xx0(x)ZT(x)Γ^xyZ(y)Q^yy0(y)ZT(y)ΓyxZ(θ)dy\displaystyle\quad\int_{c}^{d}\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}Z(y)\hat{Q}_{yy}^{0}(y)Z^{T}(y)\Gamma_{yx}Z(\theta)dy
=Q^xx0(x)ZT(x)Γ^xyKyyΓyxZ(θ).\displaystyle\hskip 108.12054pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}K_{yy}\Gamma_{yx}Z(\theta).

We note that each of these terms may be described as a constant matrix, premultiplied by the function Q^xx0(x)ZT(x)\hat{Q}_{xx}^{0}(x)Z^{T}(x), and postmultiplied by the function Z(θ)Z(\theta). Hence, we may also express Rxx1(x,θ)=Q^xx0(x)ZT(x)AxxZ(θ)R_{xx}^{1}(x,\theta)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)A_{xx}Z(\theta) for some matrix AxxA_{xx}. In particular, adding the different terms, we find this matrix to be given by

Axx\displaystyle A_{xx} =H^x0H0x+Γxx+Γ^xx+Γ^xxKxxΓxx+Γ^xyKyyΓyx\displaystyle=\hat{H}_{x0}H_{0x}+\Gamma_{xx}+\hat{\Gamma}_{xx}+\hat{\Gamma}_{xx}K_{xx}\Gamma_{xx}+\hat{\Gamma}_{xy}K_{yy}\Gamma_{yx}
=[Hx0+Γ^xxKxxHx0+Γ^xyKyyHy0]Q001H0x\displaystyle=-\Bigl{[}H_{x0}+\hat{\Gamma}_{xx}K_{xx}H_{x0}+\hat{\Gamma}_{xy}K_{yy}H_{y0}\Bigr{]}Q_{00}^{-1}H_{0x}
+Γxx+Γ^xx+Γ^xxKxxΓxx+Γ^xyKyyΓyx\displaystyle\qquad+\Gamma_{xx}+\hat{\Gamma}_{xx}+\hat{\Gamma}_{xx}K_{xx}\Gamma_{xx}+\hat{\Gamma}_{xy}K_{yy}\Gamma_{yx}
=[ΓxxΠxx]Γ^xxKxx[ΓxxΠxx]\displaystyle=-\Bigl{[}\Gamma_{xx}-\Pi_{xx}\Bigr{]}-\hat{\Gamma}_{xx}K_{xx}\Bigl{[}\Gamma_{xx}-\Pi_{xx}\Bigr{]}
Γ^xyKyy[ΓyxΠyx]+Γxx+Γ^xx\displaystyle\qquad-\hat{\Gamma}_{xy}K_{yy}\Bigl{[}\Gamma_{yx}-\Pi_{yx}\Bigr{]}+\Gamma_{xx}+\hat{\Gamma}_{xx}
+Γ^xxKxxΓxx+Γ^xyKyyΓyx\displaystyle\qquad\quad+\hat{\Gamma}_{xx}K_{xx}\Gamma_{xx}+\hat{\Gamma}_{xy}K_{yy}\Gamma_{yx}
=Πxx+Γ^xxKxxΠxx+Γ^xyKyyΠyx+Γ^xx\displaystyle=\Pi_{xx}+\hat{\Gamma}_{xx}K_{xx}\Pi_{xx}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yx}+\hat{\Gamma}_{xx}
=Πxx+Γ^xx[ΣxIq]+Γ^xyKyyΠyx+Γ^xx\displaystyle=\Pi_{xx}+\hat{\Gamma}_{xx}\Bigl{[}\Sigma_{x}-I_{q}\Bigr{]}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yx}+\hat{\Gamma}_{xx}
=Πxx[Πxx+Γ^xyKyyΠyx]+Γ^xyKyyΠyx=0,\displaystyle=\Pi_{xx}-\Bigl{[}\Pi_{xx}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yx}\Bigr{]}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yx}=0,

proving that also Rxx1=0R_{xx}^{1}=0. Finally, for RxyR_{xy}, we find

Q^x0(x)Q0y(y)=Q^xx0(x)ZT(x)H^x0H0yZ(y),\displaystyle\hat{Q}_{x0}(x)Q_{0y}(y)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{H}_{x0}H_{0y}Z(y),
Q^xx0(x)Qxy1(x,y)=Q^xx0(x)ZT(x)ΓxyZ(y),\displaystyle\hat{Q}_{xx}^{0}(x)Q_{xy}^{1}(x,y)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\Gamma_{xy}Z(y),
abQ^xx1(x,θ)Qxy(θ,y)dθ=\displaystyle\int_{a}^{b}\hat{Q}_{xx}^{1}(x,\theta)Q_{xy}(\theta,y)d\theta=
abQ^xx0(x)ZT(x)Γ^xxZ(θ)Q^xx0(θ)ZT(θ)ΓxyZ(y)dθ\displaystyle\quad\int_{a}^{b}\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}Z(\theta)\hat{Q}_{xx}^{0}(\theta)Z^{T}(\theta)\Gamma_{xy}Z(y)d\theta
=Q^xx0(x)ZT(x)Γ^xxKxxΓxyZ(y),\displaystyle\hskip 108.12054pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xx}K_{xx}\Gamma_{xy}Z(y),
Q^xy(x,y)Qyy0(y)=Q^xx0(x)ZT(x)Γ^xyZ(y)Q^yy0(y)Qyy0(y)\displaystyle\hat{Q}_{xy}(x,y)Q_{yy}^{0}(y)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}Z(y)\hat{Q}_{yy}^{0}(y)Q_{yy}^{0}(y)
=Q^xx0(x)ZT(x)Γ^xyZ(y),\displaystyle\hskip 71.13188pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}Z(y),
cdQ^xy(x,ν)Qyy1(ν,y)dν=\displaystyle\int_{c}^{d}\hat{Q}_{xy}(x,\nu)Q_{yy}^{1}(\nu,y)d\nu=
cdQ^xx0(x)ZT(x)Γ^xyZ(ν)Q^yy0(ν)ZT(ν)ΓyyZ(y)dν\displaystyle\quad\int_{c}^{d}\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}Z(\nu)\hat{Q}_{yy}^{0}(\nu)Z^{T}(\nu)\Gamma_{yy}Z(y)d\nu
=Q^xx0(x)ZT(x)Γ^xyKyyΓyyZ(y).\displaystyle\hskip 108.12054pt=\hat{Q}_{xx}^{0}(x)Z^{T}(x)\hat{\Gamma}_{xy}K_{yy}\Gamma_{yy}Z(y).

Studying these terms, it is clear that (similar to Rxx1R_{xx}^{1}) we may express Rxy(x,y)=Q^xx0(x)ZT(x)AxyZ(y)R_{xy}(x,y)=\hat{Q}_{xx}^{0}(x)Z^{T}(x)A_{xy}Z(y), where

Axy\displaystyle A_{xy} =+Γxy+Γ^xy+Γ^xxKxxΓxy+Γ^xyKyyΓyy\displaystyle=+\Gamma_{xy}+\hat{\Gamma}_{xy}+\hat{\Gamma}_{xx}K_{xx}\Gamma_{xy}+\hat{\Gamma}_{xy}K_{yy}\Gamma_{yy}
=[Hx0+Γ^xxKxxHx0+Γ^xyKyyHy0]Q001H0y\displaystyle=-\Bigl{[}H_{x0}+\hat{\Gamma}_{xx}K_{xx}H_{x0}+\hat{\Gamma}_{xy}K_{yy}H_{y0}\Bigr{]}Q_{00}^{-1}H_{0y}
+Γxy+Γ^xy+Γ^xxKxxΓxy+Γ^xyKyyΓyy\displaystyle\qquad+\Gamma_{xy}+\hat{\Gamma}_{xy}+\hat{\Gamma}_{xx}K_{xx}\Gamma_{xy}+\hat{\Gamma}_{xy}K_{yy}\Gamma_{yy}
=[ΓxyΠxy]Γ^xxKxx[ΓxyΠxy]\displaystyle=-\Bigl{[}\Gamma_{xy}-\Pi_{xy}\Bigr{]}-\hat{\Gamma}_{xx}K_{xx}\Bigl{[}\Gamma_{xy}-\Pi_{xy}\Bigr{]}
Γ^xyKyy[ΓyyΠyy]+Γxy+Γ^xy\displaystyle\qquad-\hat{\Gamma}_{xy}K_{yy}\Bigl{[}\Gamma_{yy}-\Pi_{yy}\Bigr{]}+\Gamma_{xy}+\hat{\Gamma}_{xy}
+Γ^xxKxxΓxy+Γ^xyKyyΓyy\displaystyle\qquad\quad+\hat{\Gamma}_{xx}K_{xx}\Gamma_{xy}+\hat{\Gamma}_{xy}K_{yy}\Gamma_{yy}
=Πxy+Γ^xxKxxΠxy+Γ^xyKyyΠyy+Γ^xy\displaystyle=\Pi_{xy}+\hat{\Gamma}_{xx}K_{xx}\Pi_{xy}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yy}+\hat{\Gamma}_{xy}
=Πxy+Γ^xxΣxExy+Γ^xy[ΣyIq]+Γ^xy\displaystyle=\Pi_{xy}+\hat{\Gamma}_{xx}\Sigma_{x}\text{E}_{xy}+\hat{\Gamma}_{xy}\Bigl{[}\Sigma_{y}-I_{q}\Bigr{]}+\hat{\Gamma}_{xy}
=Πxy[Πxx+Γ^xyKyyΠyx]Exy+Γ^xyΣy\displaystyle=\Pi_{xy}-\Bigl{[}\Pi_{xx}+\hat{\Gamma}_{xy}K_{yy}\Pi_{yx}\Bigr{]}\text{E}_{xy}+\hat{\Gamma}_{xy}\Sigma_{y}
=ΠxyΠxxExy+Γ^xy[ΣyKyyΠyxExy]\displaystyle=\Pi_{xy}-\Pi_{xx}\text{E}_{xy}+\hat{\Gamma}_{xy}\Bigl{[}\Sigma_{y}-K_{yy}\Pi_{yx}\text{E}_{xy}\Bigr{]}
=[ΠxyΠxxExy][ΠxyΠxxExy]=0,\displaystyle=\Bigl{[}\Pi_{xy}-\Pi_{xx}\text{E}_{xy}\Bigr{]}-\Bigl{[}\Pi_{xy}-\Pi_{xx}\text{E}_{xy}\Bigr{]}=0,

from which it follows that also Rxy=0R_{xy}=0.
Performing the same steps as for Rx0R_{x0}, Rxx1R_{xx}^{1} and RxyR_{xy}, we can also show that Ry0R_{y0}, Ryy1R_{yy}^{1} and RyxR_{yx} are constantly equal to zero. This leaves only R00=In0R_{00}=I_{n_{0}}, Rxx0=In1R_{xx}^{0}=I_{n_{1}} and Ryy0=In1R_{yy}^{0}=I_{n_{1}} as nonzero functions defining 𝒫[R]=𝒫[Q^]𝒫[Q]\mathcal{P}[R]=\mathcal{P}[\hat{Q}]\circ\mathcal{P}[Q]. By definition of the 011-PI operator, it immediately follows that 𝒫[R]𝐮=𝐮\mathcal{P}[R]\mathbf{u}=\mathbf{u} for any 𝐮n0×L2n1[x]×L2n1[y]\mathbf{u}\in\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[x]\times L_{2}^{n_{1}}[y], proving the desired result.

12.2 Adjoint of 2D-PI operator

Lemma 31.

Suppose N𝒩2Dn×mN\in\mathcal{N}_{2D}^{n\times m} and define N^𝒩2Dm×n\hat{N}\in\mathcal{N}_{2D}^{m\times n} such that

N^(x,y,θ,ν)\displaystyle\hat{N}(x,y,\theta,\nu)
=[N^00(x,y)N^01(x,y,ν)N^02(x,y,ν)N^10(x,y,θ)N^11(x,y,θ,ν)N^12(x,y,θ,ν)N^20(x,y,θ)N^21(x,y,θ,ν)N^22(x,y,θ,ν)]\displaystyle=\begin{bmatrix}\hat{N}_{00}(x,y)&\hat{N}_{01}(x,y,\nu)&\hat{N}_{02}(x,y,\nu)\\ \hat{N}_{10}(x,y,\theta)&\hat{N}_{11}(x,y,\theta,\nu)&\hat{N}_{12}(x,y,\theta,\nu)\\ \hat{N}_{20}(x,y,\theta)&\hat{N}_{21}(x,y,\theta,\nu)&\hat{N}_{22}(x,y,\theta,\nu)\end{bmatrix}
=[N00T(x,y)NT02(x,ν,y)NT01(x,ν,y)NT20(θ,y,x)NT22(θ,ν,x,y)NT21(θ,ν,x,y)NT10(θ,y,x)NT12(θ,ν,x,y)NT11(θ,ν,x,y)].\displaystyle=\begin{bmatrix}N_{00}^{T}(x,y)&N^{T}_{02}(x,\nu,y)&N^{T}_{01}(x,\nu,y)\\ N^{T}_{20}(\theta,y,x)&N^{T}_{22}(\theta,\nu,x,y)&N^{T}_{21}(\theta,\nu,x,y)\\ N^{T}_{10}(\theta,y,x)&N^{T}_{12}(\theta,\nu,x,y)&N^{T}_{11}(\theta,\nu,x,y)\end{bmatrix}. (55)

Then for any 𝐮L2m[x,y]\mathbf{u}\in L_{2}^{m}[x,y] and 𝐯L2n[x,y]\mathbf{v}\in L_{2}^{n}[x,y],

𝐯,𝒫[N]𝐮L2=𝒫[N^]𝐯,𝐮L2.\left\langle\mathbf{v},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}}=\left\langle\mathcal{P}[\hat{N}]\mathbf{v},\mathbf{u}\right\rangle_{L_{2}}.
Proof 12.2.

Let N𝒩2Dn×mN\in\mathcal{N}_{2D}^{n\times m} and N^𝒩2Dm×n\hat{N}\in\mathcal{N}_{2D}^{m\times n} be as defined. Recall the definition of the indicator function

𝐈(x,θ)={1if x>θ,0otherwise,\displaystyle\mathbf{I}(x,\theta)=\begin{cases}1&\text{if }x>\theta,\\ 0&\text{otherwise},\end{cases}

and let the Dirac delta function 𝛅(x,θ)=𝛅(θ,x)\boldsymbol{\delta}(x,\theta)=\boldsymbol{\delta}(\theta,x) be defined such that, for any BL2[x,θ]B\in L_{2}[x,\theta],

ab𝜹(x,θ)B(x,θ)dθ=B(x,x).\displaystyle\int_{a}^{b}\boldsymbol{\delta}(x,\theta)B(x,\theta)d\theta=B(x,x).

Then, as described in Appendix 11.4, defining

𝚽0(x,θ)\displaystyle\boldsymbol{\Phi}_{0}(x,\theta) =𝜹(x,θ)\displaystyle=\boldsymbol{\delta}(x,\theta)
𝚽1(x,θ)\displaystyle\boldsymbol{\Phi}_{1}(x,\theta) =𝐈(xθ)\displaystyle=\mathbf{I}(x-\theta) 𝚽2(x,θ)\displaystyle\boldsymbol{\Phi}_{2}(x,\theta) =𝐈(θx)\displaystyle=\mathbf{I}(\theta-x)

we may describe the 2D-PI operation 𝒫[N]𝐮\mathcal{P}[N]\mathbf{u} as

(𝒫[N]𝐮)(x,y)=\displaystyle\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}(x,y)=
abcd(i,j=02𝚽i(x,θ)𝚽j(y,ν)N(x,y,θ,ν)𝐮(θ,ν))dνdθ\displaystyle~{}\int_{a}^{b}\int_{c}^{d}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}(x,\theta)\boldsymbol{\Phi}_{j}(y,\nu)N(x,y,\theta,\nu)\mathbf{u}(\theta,\nu)\Biggr{)}d\nu d\theta

Noting that 𝚽0(x,θ)=𝚽0(θ,x)\boldsymbol{\Phi}_{0}(x,\theta)=\boldsymbol{\Phi}_{0}(\theta,x), and 𝚽1(x,θ)=𝚽2(θ,x)\boldsymbol{\Phi}_{1}(x,\theta)=\boldsymbol{\Phi}_{2}(\theta,x), it immediately follows that

𝐯,𝒫[N]𝐮L2=abcd[𝐯T(x,y)(𝒫[N]𝐮)(x,y)]dydx\displaystyle\left\langle\mathbf{v},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}}=\int_{a}^{b}\int_{c}^{d}\biggl{[}\mathbf{v}^{T}(x,y)\Bigl{(}\mathcal{P}[N]\mathbf{u}\Bigr{)}(x,y)\biggr{]}dydx
=abcd[abcd(i,j=02𝚽i(x,θ)𝚽j(y,ν)\displaystyle=\int_{a}^{b}\int_{c}^{d}\Biggl{[}\int_{a}^{b}\int_{c}^{d}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}(x,\theta)\boldsymbol{\Phi}_{j}(y,\nu)
𝐯T(x,y)N(x,y,θ,ν)𝐮(θ,ν))dνdθ]dydx\displaystyle\hskip 71.13188pt\mathbf{v}^{T}(x,y)N(x,y,\theta,\nu)\mathbf{u}(\theta,\nu)\Biggr{)}d\nu d\theta\Biggr{]}dydx
=abcd[abcd(i,j=02𝚽i(θ,x)𝚽j(ν,y)\displaystyle=\int_{a}^{b}\int_{c}^{d}\Biggl{[}\int_{a}^{b}\int_{c}^{d}\Biggl{(}\sum_{i,j=0}^{2}\boldsymbol{\Phi}_{i}(\theta,x)\boldsymbol{\Phi}_{j}(\nu,y)
[NT(θ,ν,x,y)𝐯(θ,ν)]T𝐮(x,y))dνdθ]dydx\displaystyle\hskip 64.01869pt\Bigl{[}N^{T}(\theta,\nu,x,y)\mathbf{v}(\theta,\nu)\Bigr{]}^{T}\mathbf{u}(x,y)\Biggr{)}d\nu d\theta\Biggr{]}dydx
=abcd[(𝒫[N^]𝐯)T(x,y)𝐮(x,y)]dydx=𝒫[N^]𝐯,𝐮L2,\displaystyle=\int_{a}^{b}\int_{c}^{d}\biggl{[}\Bigl{(}\mathcal{P}[\hat{N}]\mathbf{v}\Bigr{)}^{T}(x,y)\mathbf{u}(x,y)\biggr{]}dydx=\left\langle\mathcal{P}[\hat{N}]\mathbf{v},\mathbf{u}\right\rangle_{L_{2}},

as desired.

12.3 Map From Fundamental to PDE State

For the following theorem, recall the definition

X():=\displaystyle X(\mathcal{B}):= {[𝐮0𝐮1𝐮2][L2n0H1n1H2n2]Λbf𝐮=0},\displaystyle\left\{\begin{bmatrix}\mathbf{u}_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}\in\begin{bmatrix}L_{2}^{n_{0}}\\ H_{1}^{n_{1}}\\ H_{2}^{n_{2}}\end{bmatrix}\mid\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0\right\}, (56)

for the space XX of solutions to a standardized PDE. In particular, recall that any such solution must satisfy the boundary conditions Λbf𝐮=0\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0, where Λbf𝐮\Lambda_{\text{bf}}\mathbf{u} describes the solution along the boundary, and =𝒫[B]\mathcal{B}=\mathcal{P}[B] for some B𝒩011B\in\mathcal{N}_{011}.

T11(x,y,θ,ν)\displaystyle T_{11}(x,y,\theta,\nu) =K3311(x,y,θ,ν)+T21(x,y,θ,ν)+T12(x,y,θ,ν)T22(x,y,θ,ν),\displaystyle=K_{33}^{11}(x,y,\theta,\nu)+T_{21}(x,y,\theta,\nu)+T_{12}(x,y,\theta,\nu)-T_{22}(x,y,\theta,\nu),
T21(x,y,θ,ν)\displaystyle T_{21}(x,y,\theta,\nu) =K321(x,y,ν)G230(θ,ν)+T22(x,y,θ,ν),\displaystyle=-K_{32}^{1}(x,y,\nu)G_{23}^{0}(\theta,\nu)+T_{22}(x,y,\theta,\nu),
T12(x,y,θ,ν)\displaystyle T_{12}(x,y,\theta,\nu) =K311(x,y,θ)G130(θ,ν)+T22(x,y,θ,ν),\displaystyle=-K_{31}^{1}(x,y,\theta)G_{13}^{0}(\theta,\nu)+T_{22}(x,y,\theta,\nu),
T22(x,y,θ,ν)\displaystyle T_{22}(x,y,\theta,\nu) =K30(x,y)G03(θ,ν)axK311(x,y,η)G131(η,ν,θ)dηcyK321(x,y,μ)G231(θ,μ,ν)dμ,\displaystyle=-K_{30}(x,y)G_{03}(\theta,\nu)-\int_{a}^{x}K_{31}^{1}(x,y,\eta)G_{13}^{1}(\eta,\nu,\theta)d\eta-\int_{c}^{y}K_{32}^{1}(x,y,\mu)G_{23}^{1}(\theta,\mu,\nu)d\mu,\hskip 99.58464pt (57)

where

K3311(x,y,θ,ν)=[0000In1000(xθ)(yν)],\displaystyle K_{33}^{11}(x,y,\theta,\nu)=\begin{bmatrix}0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&(x-\theta)(y-\nu)\end{bmatrix}, K321(x,y,ν)=[000In1000(yν)(xa)(yν)],\displaystyle K_{32}^{1}(x,y,\nu)=\begin{bmatrix}0&0&0\\ I_{n_{1}}&0&0\\ 0&(y-\nu)&(x-a)(y-\nu)\end{bmatrix},
K30(x,y)=[00000In100000In2(xa)(yc)(yc)(xa)],\displaystyle K_{30}(x,y)=\begin{bmatrix}0&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ 0&I_{n_{2}}&(x-a)&(y-c)&(y-c)(x-a)\end{bmatrix}, K311(x,y,θ)=[000In1000(xθ)(yc)(xθ)],\displaystyle K_{31}^{1}(x,y,\theta)=\begin{bmatrix}0&0&0\\ I_{n_{1}}&0&0\\ 0&(x-\theta)&(y-c)(x-\theta)\end{bmatrix},\hskip 56.9055pt (58)

and

G0(x,y)=E^00F0(x,y)+E^01(x)F10(x,y)+abE^01(θ)F11(θ,y,x)dθ+E^02(y)F20(x,y)+cdE^02(ν)F21(x,ν,y),\displaystyle\enspace G_{0}(x,y)=\hat{E}_{00}F_{0}(x,y)+\hat{E}_{01}(x)F_{1}^{0}(x,y)+\int_{a}^{b}\hat{E}_{01}(\theta)F_{1}^{1}(\theta,y,x)d\theta+\hat{E}_{02}(y)F_{2}^{0}(x,y)+\int_{c}^{d}\hat{E}_{02}(\nu)F_{2}^{1}(x,\nu,y),
G10(x,y)=E^110(x)F10(x,y),G11(x,y,θ)=E^10(x)F0(θ,y)+E^110(x)F11(x,y,θ)+E^111(x,θ)F10(θ,y)+abE^111(x,η)F11(η,y,θ)dη+E^12(x,y)F20(θ,y)+cdE^12(x,ν)F21(θ,ν,y)dν,G20(x,y)=E^220(y)F20(x,y),G21(x,y,ν)=E^20(y)F0(x,ν)+E^220(y)F21(x,y,ν)+E^221(y,ν)F20(x,ν)+cdE^221(y,μ)F21(x,μ,ν)dμ+E^21(x,y)F10(x,ν)+abE^21(θ,y)F11(θ,ν,x)dθ,\displaystyle\begin{array}[]{l}G_{1}^{0}(x,y)=\hat{E}_{11}^{0}(x)F_{1}^{0}(x,y),\\ G_{1}^{1}(x,y,\theta)=\hat{E}_{10}(x)F_{0}(\theta,y)+\hat{E}_{11}^{0}(x)F_{1}^{1}(x,y,\theta)\\ \hskip 42.67912pt+\hat{E}_{11}^{1}(x,\theta)F_{1}^{0}(\theta,y)+\int_{a}^{b}\hat{E}_{11}^{1}(x,\eta)F_{1}^{1}(\eta,y,\theta)d\eta\\ \hskip 56.9055pt+\hat{E}_{12}(x,y)F_{2}^{0}(\theta,y)+\int_{c}^{d}\hat{E}_{12}(x,\nu)F_{2}^{1}(\theta,\nu,y)d\nu,\end{array}\hskip 21.33955pt\begin{array}[]{l}G_{2}^{0}(x,y)=\hat{E}_{22}^{0}(y)F_{2}^{0}(x,y),\\ G_{2}^{1}(x,y,\nu)=\hat{E}_{20}(y)F_{0}(x,\nu)+\hat{E}_{22}^{0}(y)F_{2}^{1}(x,y,\nu)\\ \hskip 42.67912pt+\hat{E}_{22}^{1}(y,\nu)F_{2}^{0}(x,\nu)+\int_{c}^{d}\hat{E}_{22}^{1}(y,\mu)F_{2}^{1}(x,\mu,\nu)d\mu\\ \hskip 56.9055pt+\hat{E}_{21}(x,y)F_{1}^{0}(x,\nu)+\int_{a}^{b}\hat{E}_{21}(\theta,y)F_{1}^{1}(\theta,\nu,x)d\theta,\end{array}\hskip 31.2982pt (67)

with

F0(x,y)=B00H03(x,y)+B01(x)H130(x,y)+B02(y)H230(x,y),\displaystyle F_{0}(x,y)=B_{00}H_{03}(x,y)+B_{01}(x)H_{13}^{0}(x,y)+B_{02}(y)H_{23}^{0}(x,y),
F11(x,y,θ)=B10(x)H03(θ,y)+B111(x,θ)H130(θ,y)+B12(x,y)H230(θ,y),\displaystyle F_{1}^{1}(x,y,\theta)=B_{10}(x)H_{03}(\theta,y)+B_{11}^{1}(x,\theta)H_{13}^{0}(\theta,y)+B_{12}(x,y)H_{23}^{0}(\theta,y), F10(x,y)=B110(x)H130(x,y),\displaystyle F_{1}^{0}(x,y)=B_{11}^{0}(x)H_{13}^{0}(x,y),
F21(x,y,ν)=B20(y)H03(x,ν)+B221(y,ν)H230(x,ν)+B21(x,y)H130(x,ν),\displaystyle F_{2}^{1}(x,y,\nu)=B_{20}(y)H_{03}(x,\nu)+B_{22}^{1}(y,\nu)H_{23}^{0}(x,\nu)+B_{21}(x,y)H_{13}^{0}(x,\nu), F20(x,y)=B220(y)H230(x,y),\displaystyle F_{2}^{0}(x,y)=B_{22}^{0}(y)H_{23}^{0}(x,y),\hskip 85.35826pt (68)

and [E^00E^01E^02E^10E^11E^12E^20E^21E^22]=inv([E00E01E02E10E11E12E20E21E22])𝒩011\left[\scriptsize\begin{smallmatrix}\hat{E}_{00}&\hat{E}_{01}&\hat{E}_{02}\\ \hat{E}_{10}&\hat{E}_{11}&\hat{E}_{12}\\ \hat{E}_{20}&\hat{E}_{21}&\hat{E}_{22}\end{smallmatrix}\right]=\mathcal{L}_{\text{inv}}\left(\left[\scriptsize\begin{smallmatrix}E_{00}&E_{01}&E_{02}\\ E_{10}&E_{11}&E_{12}\\ E_{20}&E_{21}&E_{22}\end{smallmatrix}\right]\right)\in\mathcal{N}_{011}, where inv:𝒩011𝒩011\mathcal{L}_{\text{inv}}:\mathcal{N}_{011}\rightarrow\mathcal{N}_{011} is defined as in Equation (54), and E11={E110,E111,E111}𝒩1DE_{11}=\{E_{11}^{0},E_{11}^{1},E_{11}^{1}\}\in\mathcal{N}_{1D} and E22={E220,E221,E221}𝒩1DE_{22}=\{E_{22}^{0},E_{22}^{1},E_{22}^{1}\}\in\mathcal{N}_{1D}, with

E00=B00H00+abB01(x)H10(x)dx+cdB02(y)H20(y)dy,\displaystyle E_{00}=B_{00}H_{00}+\int_{a}^{b}B_{01}(x)H_{10}(x)dx+\int_{c}^{d}B_{02}(y)H_{20}(y)dy,
E01(x)=B00H01(x)+B01(x)H110(x),\displaystyle E_{01}(x)=B_{00}H_{01}(x)+B_{01}(x)H_{11}^{0}(x), E02(y)=B00H02(y)+B02(y)H220(y),\displaystyle E_{02}(y)=B_{00}H_{02}(y)+B_{02}(y)H_{22}^{0}(y),
E10(x)=B10(x)H00,\displaystyle E_{10}(x)=B_{10}(x)H_{00}, E20(y)=B20(y)H00,\displaystyle E_{20}(y)=B_{20}(y)H_{00},
E110(x)=B110H110,\displaystyle E_{11}^{0}(x)=B_{11}^{0}H_{11}^{0}, E220(y)=B220H220,\displaystyle E_{22}^{0}(y)=B_{22}^{0}H_{22}^{0},
E111(x,θ)=B10(x)H01(θ)+B111(x,θ)H110,\displaystyle E_{11}^{1}(x,\theta)=B_{10}(x)H_{01}(\theta)+B_{11}^{1}(x,\theta)H_{11}^{0}, E221(y,ν)=B20(y)H02(ν)+B221(y,ν)H220,\displaystyle E_{22}^{1}(y,\nu)=B_{20}(y)H_{02}(\nu)+B_{22}^{1}(y,\nu)H_{22}^{0},
E12(x,y)=B10(x)H02(y)+B12(x,y)H220(y),\displaystyle E_{12}(x,y)=B_{10}(x)H_{02}(y)+B_{12}(x,y)H_{22}^{0}(y), E21(x,y)=B20(y)H01(x)+B21(x,y)H110(x),\displaystyle E_{21}(x,y)=B_{20}(y)H_{01}(x)+B_{21}(x,y)H_{11}^{0}(x),\hskip 65.44142pt (69)

where,

H00=[In10000In10000In10000In100000In20000In2(ba)000In20(dc)00In2(ba)(dc)(dc)(ba)00In20000In20000In20(dc)00In20(dc)000In20000In2(ba)000In20000In2(ba)0000In20000In20000In20000In2],\displaystyle H_{00}=\begin{bmatrix}I_{n_{1}}&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ I_{n_{1}}&0&0&0&0\\ 0&I_{n_{2}}&0&0&0\\ 0&I_{n_{2}}&(b-a)&0&0\\ 0&I_{n_{2}}&0&(d-c)&0\\ 0&I_{n_{2}}&(b-a)&(d-c)&(d-c)(b-a)\\ 0&0&I_{n_{2}}&0&0\\ 0&0&I_{n_{2}}&0&0\\ 0&0&I_{n_{2}}&0&(d-c)\\ 0&0&I_{n_{2}}&0&(d-c)\\ 0&0&0&I_{n_{2}}&0\\ 0&0&0&I_{n_{2}}&(b-a)\\ 0&0&0&I_{n_{2}}&0\\ 0&0&0&I_{n_{2}}&(b-a)\\ 0&0&0&0&I_{n_{2}}\\ 0&0&0&0&I_{n_{2}}\\ 0&0&0&0&I_{n_{2}}\\ 0&0&0&0&I_{n_{2}}\end{bmatrix}, H01(x)=[000In100000In1000000(bx)00000(bx)(dc)(bx)0000In200000In2(dc)00000(bx)00000(bx)00000In200000In2],\displaystyle H_{01}(x)=\begin{bmatrix}0&0&0\\ I_{n_{1}}&0&0\\ 0&0&0\\ I_{n_{1}}&0&0\\ 0&0&0\\ 0&(b-x)&0\\ 0&0&0\\ 0&(b-x)&(d-c)(b-x)\\ 0&0&0\\ 0&I_{n_{2}}&0\\ 0&0&0\\ 0&I_{n_{2}}&(d-c)\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&I_{n_{2}}\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix}, H02(y)=[000000In100In1000000000(dy)00(dy)(ba)(dy)00000000(dy)00(dy)0000000In200In2(ba)00000000In200In2],\displaystyle H_{02}(y)=\begin{bmatrix}0&0&0\\ 0&0&0\\ I_{n_{1}}&0&0\\ I_{n_{1}}&0&0\\ 0&0&0\\ 0&0&0\\ 0&(d-y)&0\\ 0&(d-y)&(b-a)(d-y)\\ 0&0&0\\ 0&0&0\\ 0&0&(d-y)\\ 0&0&(d-y)\\ 0&0&0\\ 0&0&0\\ 0&I_{n_{2}}&0\\ 0&I_{n_{2}}&(b-a)\\ 0&0&0\\ 0&0&0\\ 0&0&I_{n_{2}}\\ 0&0&I_{n_{2}}\end{bmatrix},
H110=[In100In1000In200In2(dc)00In200In2],H220=[In100In1000In200In2(ba)00In200In2]\displaystyle\begin{array}[]{l}H_{11}^{0}=\begin{bmatrix}I_{n_{1}}&0&0\\ I_{n_{1}}&0&0\\ 0&I_{n_{2}}&0\\ 0&I_{n_{2}}&(d-c)\\ 0&0&I_{n_{2}}\\ 0&0&I_{n_{2}}\end{bmatrix},\\ \\ H_{22}^{0}=\begin{bmatrix}I_{n_{1}}&0&0\\ I_{n_{1}}&0&0\\ 0&I_{n_{2}}&0\\ 0&I_{n_{2}}&(b-a)\\ 0&0&I_{n_{2}}\\ 0&0&I_{n_{2}}\end{bmatrix}\end{array} H130(y)=[0000In1000000(dy)00000In2],H230(x)=[0000In1000000(bx)00000In2],\displaystyle\begin{array}[]{l}H_{13}^{0}(y)=\begin{bmatrix}0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&0\\ 0&0&(d-y)\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix},\\ \\ H_{23}^{0}(x)=\begin{bmatrix}0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix},\end{array} H03(x,y)=[0000000000In1000000000000(dy)(bx)00000000000(dy)00000000000(bx)00000000000In2].\displaystyle H_{03}(x,y)=\begin{bmatrix}0&0&0\\ 0&0&0\\ 0&0&0\\ 0&I_{n_{1}}&0\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&(d-y)(b-x)\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&(d-y)\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&(b-x)\\ 0&0&0\\ 0&0&0\\ 0&0&0\\ 0&0&I_{n_{2}}\end{bmatrix}. (76)
Figure 4: Parameters TT describing PI operator 𝒯=𝒫[T]\mathcal{T}=\mathcal{P}[T] mapping the fundamental state back to the PDE state in Theorem 32
Theorem 32.

Let

B=[B00B01B02B10B11B12B20B21B22]𝒩011[n1+4n24n1+16n2n1+2n22n1+4n2]B=\begin{bmatrix}B_{00}&B_{01}&B_{02}\\ B_{10}&B_{11}&B_{12}\\ B_{20}&B_{21}&B_{22}\end{bmatrix}\in\mathcal{N}_{011}\left[\scriptsize\begin{smallmatrix}n_{1}+4n_{2}&4n_{1}+16n_{2}\\ n_{1}+2n_{2}&2n_{1}+4n_{2}\end{smallmatrix}\right]

with B11={B110,B111,B111}𝒩1DB_{11}=\{B_{11}^{0},B_{11}^{1},B_{11}^{1}\}\in\mathcal{N}_{1D} and B22={B220,B221,B221}𝒩1DB_{22}=\{B_{22}^{0},B_{22}^{1},B_{22}^{1}\}\in\mathcal{N}_{1D} be given, and such that B110,B220n1+2n2×2n1+4n2B_{11}^{0},B_{22}^{0}\in\mathbb{R}^{n_{1}+2n_{2}\times 2n_{1}+4n_{2}}. Let

T=[T00000T11T120T21T22]𝒩2DT=\begin{bmatrix}T_{00}&0&0\\ 0&T_{11}&T_{12}\\ 0&T_{21}&T_{22}\end{bmatrix}\in\mathcal{N}_{2D}

where

T00=[In00000n10000n2]T_{00}=\begin{bmatrix}I_{n_{0}}&0&0\\ 0&0_{n_{1}}&0\\ 0&0&0_{n_{2}}\end{bmatrix}

and T11,T12,T21,T22T_{11},T_{12},T_{21},T_{22} are as defined in Equations (4) in Figure 4. Then, if 𝒯=𝒫[T]\mathcal{T}=\mathcal{P}[T], for any 𝐮X()\mathbf{u}\in X(\mathcal{B}) and 𝐮^L2n0+n1+n2[x,y]\hat{\mathbf{u}}\in L_{2}^{n_{0}+n_{1}+n_{2}}[x,y], we have

𝐮=𝒯𝒟𝐮and𝐮^=𝒟𝒯𝐮^,\displaystyle\mathbf{u}=\mathcal{T}\mathcal{D}\mathbf{u}\qquad\text{and}\qquad\hat{\mathbf{u}}=\mathcal{D}\mathcal{T}\hat{\mathbf{u}},

where 𝒟=[In0xyx2y2]\mathcal{D}=\begin{bmatrix}I_{n_{0}}&&\\ &\partial_{x}\partial_{y}&\\ &&\partial_{x}^{2}\partial_{y}^{2}\end{bmatrix}.

Proof 12.3.

We will first proof the first identity, 𝐮=𝒯𝒟𝐮\mathbf{u}=\mathcal{T}\mathcal{D}\mathbf{u}. To this end, suppose 𝐮X()\mathbf{u}\in X(\mathcal{B}), and define 𝐮^=𝒟𝐮L2n0+n1+n2[x,y]\hat{\mathbf{u}}=\mathcal{D}\mathbf{u}\in L_{2}^{n_{0}+n_{1}+n_{2}}[x,y]. Furthermore, let KijK_{ij} and HijH_{ij} (for appropriate i,j{0,1,2,3}i,j\in\{0,1,2,3\}) be as defined in Equations (4) and (4), and let

H1\displaystyle H_{1} =[H00H01H020H1100 0H22]𝒩011\displaystyle=\begin{bmatrix}H_{00}~{}H_{01}~{}H_{02}\\ 0\ ~{}~{}H_{11}\ ~{}~{}0\\ ~{}~{}0\ ~{}~{}\ 0~{}~{}~{}~{}H_{22}\end{bmatrix}\in\mathcal{N}_{011} H2=[H03H13H23]𝒩2D011\displaystyle H_{2}=\begin{bmatrix}H_{03}\\ H_{13}\\ H_{23}\end{bmatrix}\in\mathcal{N}_{2D\rightarrow 011}
K1\displaystyle K_{1} =[K30K31K32]𝒩0112D\displaystyle=\begin{bmatrix}K_{30}\\ K_{31}\\ K_{32}\end{bmatrix}\in\mathcal{N}_{011\rightarrow 2D} K2=[T00000K22110000]𝒩2D,\displaystyle K_{2}=\begin{bmatrix}T_{00}~{}~{}0~{}~{}~{}0\\ ~{}0\ ~{}K_{22}^{11}~{}0\\ ~{}0\ ~{}~{}~{}0~{}~{}~{}0\end{bmatrix}\in\mathcal{N}_{2D},

where

H11={H110,0,0}𝒩1D\displaystyle H_{11}\!=\!\{H_{11}^{0},0,0\}\!\in\mathcal{N}_{1D} H22={H220,0,0}𝒩1D\displaystyle\!\!H_{22}\!=\!\{H_{22}^{0},0,0\}\!\!\in\mathcal{N}_{1D}
H13={H130,0,0}𝒩2D1D\displaystyle H_{13}\!=\!\{H_{13}^{0},0,0\}\!\in\mathcal{N}_{2D\rightarrow 1D} H23={H230,0,0}𝒩2D1D\displaystyle\!\!H_{23}\!=\!\{H_{23}^{0},0,0\}\!\in\mathcal{N}_{2D\rightarrow 1D}
K31={0,K311,0}𝒩1D2D\displaystyle K_{31}\!=\!\{0,K_{31}^{1},0\}\!\in\mathcal{N}_{1D\rightarrow 2D} K32={0,K321,0}𝒩1D2D.\displaystyle\!\!K_{32}\!=\!\{0,K_{32}^{1},0\}\!\in\mathcal{N}_{1D\rightarrow 2D}.

Then, by Lemma 10 and Corollary 11,

Λbf𝐮\displaystyle\Lambda_{\text{bf}}\mathbf{u} =1Λbc𝐮+2𝐮^\displaystyle=\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{H}_{2}\hat{\mathbf{u}}
𝐮\displaystyle\mathbf{u} =𝒦1Λbc𝐮+𝒦2𝐮^,\displaystyle=\mathcal{K}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{K}_{2}\hat{\mathbf{u}}, (77)

where 1=𝒫[H1]\mathcal{H}_{1}=\mathcal{P}[H_{1}], 2=𝒫[H2]\mathcal{H}_{2}=\mathcal{P}[H_{2}], 𝒦1=𝒫[K1]\mathcal{K}_{1}=\mathcal{P}[K_{1}], and 𝒦2=𝒫[K2]\mathcal{K}_{2}=\mathcal{P}[K_{2}]. Enforcing the boundary conditions Λbf𝐮=0\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=0, we may use the composition rules of PI operators to express

0=Λbf𝐮=1Λbc𝐮+2𝐮^=Λbc𝐮+𝐮^,\displaystyle 0=\mathcal{B}\Lambda_{\text{bf}}\mathbf{u}=\mathcal{B}\mathcal{H}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{B}\mathcal{H}_{2}\hat{\mathbf{u}}=\mathcal{E}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{F}\hat{\mathbf{u}},

where =𝒫[E]\mathcal{E}=\mathcal{P}[E] and =𝒫[F]\mathcal{F}=\mathcal{P}[F] with

E\displaystyle E =[E00E01E02E10E11E12E20E21E22]𝒩011,\displaystyle=\begin{bmatrix}E_{00}&E_{01}&E_{02}\\ E_{10}&E_{11}&E_{12}\\ E_{20}&E_{21}&E_{22}\end{bmatrix}\in\mathcal{N}_{011}, F\displaystyle F =[F0F1F2]𝒩2D011,\displaystyle=\begin{bmatrix}F_{0}\\ F_{1}\\ F_{2}\end{bmatrix}\in\mathcal{N}_{2D\rightarrow 011},

and

E11\displaystyle E_{11} ={E110,E111,E111}𝒩1D\displaystyle=\{E_{11}^{0},E_{11}^{1},E_{11}^{1}\}\in\mathcal{N}_{1D}
E22\displaystyle E_{22} ={E220,E221,E221}𝒩1D\displaystyle=\{E_{22}^{0},E_{22}^{1},E_{22}^{1}\}\in\mathcal{N}_{1D}
F1\displaystyle F_{1} ={F10,F11,F11}𝒩2D1D\displaystyle=\{F_{1}^{0},F_{1}^{1},F_{1}^{1}\}\in\mathcal{N}_{2D\rightarrow 1D}
F2\displaystyle F_{2} ={F20,F21,F21}𝒩2D1D\displaystyle=\{F_{2}^{0},F_{2}^{1},F_{2}^{1}\}\in\mathcal{N}_{2D\rightarrow 1D}

defined as in Equations (4) and (4). Assuming \mathcal{B} is of sufficient rank, we can then invert the 011-PI operator \mathcal{E}, allowing us to write

Λbc𝐮=1𝐮^=𝒢𝐮^,\displaystyle\Lambda_{\text{bc}}\mathbf{u}=-\mathcal{E}^{-1}\mathcal{F}\hat{\mathbf{u}}=-\mathcal{G}\hat{\mathbf{u}},

where 𝒢=𝒫[G]\mathcal{G}=\mathcal{P}[G] with

G\displaystyle G =[G0{G10,G11,G11}{G20,G21,G21}]𝒩2D011\displaystyle=\begin{bmatrix}G_{0}\\ \{G_{1}^{0},G_{1}^{1},G_{1}^{1}\}\\ \{G_{2}^{0},G_{2}^{1},G_{2}^{1}\}\end{bmatrix}\in\mathcal{N}_{2D\rightarrow 011}

defined as in Equations (4). Finally, substituting this expression into Equation (12.3), and once more using the composition rules of PI operators, we obtain

𝐮=𝒦1Λbc𝐮+𝒦2𝐮^\displaystyle\mathbf{u}=\mathcal{K}_{1}\Lambda_{\text{bc}}\mathbf{u}+\mathcal{K}_{2}\hat{\mathbf{u}} =𝒦1𝒢𝐮^+𝒦2𝐮^\displaystyle=-\mathcal{K}_{1}\mathcal{G}\hat{\mathbf{u}}+\mathcal{K}_{2}\hat{\mathbf{u}}
=(𝒦2𝒦1𝒢)𝐮^=𝒯𝐮^=𝒯𝒟𝐮,\displaystyle=(\mathcal{K}_{2}-\mathcal{K}_{1}\mathcal{G})\hat{\mathbf{u}}=\mathcal{T}\hat{\mathbf{u}}=\mathcal{T}\mathcal{D}\mathbf{u},

as desired.

Suppose now 𝐮^L2n0+n1+n2[x,y]\hat{\mathbf{u}}\in L_{2}^{n_{0}+n_{1}+n_{2}}[x,y] and 𝐮=[𝐮0𝐮1𝐮2]=𝒯𝐮^\mathbf{u}=\begin{bmatrix}\mathbf{u}_{0}\\ \mathbf{u}_{1}\\ \mathbf{u}_{2}\end{bmatrix}=\mathcal{T}\hat{\mathbf{u}}. To prove the second identity, 𝐮^=𝒟𝒯𝐮^\hat{\mathbf{u}}=\mathcal{D}\mathcal{T}\hat{\mathbf{u}}, we split 𝐮\mathbf{u} into its different components 𝐮0\mathbf{u}_{0}, 𝐮1\mathbf{u}_{1} and 𝐮2\mathbf{u}_{2}, using the matrices

J0\displaystyle J_{0} =[In000],\displaystyle=\begin{bmatrix}I_{n_{0}}&0&0\end{bmatrix}, J1\displaystyle J_{1} =[In10],\displaystyle=\begin{bmatrix}I_{n_{1}}&0\end{bmatrix}, J2\displaystyle J_{2} =[0In2],\displaystyle=\begin{bmatrix}0&I_{n_{2}}\end{bmatrix},

and

N=[0In1000In2]n1+n2×n0+n1+n2,\displaystyle N=\begin{bmatrix}0&I_{n_{1}}&0\\ 0&0&I_{n_{2}}\end{bmatrix}\in\mathbb{R}^{n_{1}+n_{2}\times n_{0}+n_{1}+n_{2}},

so that

𝐮0\displaystyle\mathbf{u}_{0} =J0𝐮,\displaystyle=J_{0}\mathbf{u}, 𝐮1\displaystyle\mathbf{u}_{1} =J1N𝐮,\displaystyle=J_{1}N\mathbf{u}, 𝐮2\displaystyle\mathbf{u}_{2} =J2N𝐮.\displaystyle=J_{2}N\mathbf{u}.

By definition of the operator 𝒟\mathcal{D}, we then have to prove that

𝐮^0\displaystyle\hat{\mathbf{u}}_{0} =J0𝒯𝐮^=𝒫[J0T]𝐮^,\displaystyle=J_{0}\mathcal{T}\hat{\mathbf{u}}=\mathcal{P}[J_{0}T]\hat{\mathbf{u}}, (78)
𝐮^1\displaystyle\hat{\mathbf{u}}_{1} =J1Nxy(𝒯𝐮^)=J1xy(𝒫[NT]𝐮^),\displaystyle=J_{1}N\ \partial_{x}\partial_{y}\Bigl{(}\mathcal{T}\hat{\mathbf{u}}\Bigr{)}=J_{1}\ \partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)}, (79)
𝐮^2\displaystyle\hat{\mathbf{u}}_{2} =J2Nx2y2(𝒯𝐮^)=xy[J2xy(𝒫[NT]𝐮^)].\displaystyle=J_{2}N\ \partial_{x}^{2}\partial_{y}^{2}\Bigl{(}\mathcal{T}\hat{\mathbf{u}}\Bigr{)}=\partial_{x}\partial_{y}\Bigl{[}J_{2}\ \partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)}\Bigr{]}. (80)

To prove Relation (78), we use the definition of the parameters TT (Equations (4)), suggesting J0T00=J0J_{0}T_{00}=J_{0}, whilst J0Tij=0J_{0}T_{ij}=0 for i,j{1,2}i,j\in\{1,2\}. It immediately follows that

J0𝒯𝐮^=𝒫[J0T]𝐮^=J0𝐮^=𝐮^0.\displaystyle J_{0}\mathcal{T}\hat{\mathbf{u}}=\mathcal{P}[J_{0}T]\hat{\mathbf{u}}=J_{0}\hat{\mathbf{u}}=\hat{\mathbf{u}}_{0}.

For the remaining relations, we first note that NT00=0NT_{00}=0, so that

N𝒯=𝒫[NT]=𝒫[NT00000NT11NT120NT21NT22]=𝒫[0000T¯11T¯120T¯21T¯22],\displaystyle N\mathcal{T}=\mathcal{P}[NT]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}NT_{00}&0&0\\ 0&NT_{11}&NT_{12}\\ 0&NT_{21}&NT_{22}\end{smallmatrix}\right]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&\overline{T}_{11}&\overline{T}_{12}\\ 0&\overline{T}_{21}&\overline{T}_{22}\end{smallmatrix}\right],

where we define T¯ij=NTij\overline{T}_{ij}=NT_{ij} for i,j{1,2}i,j\in\{1,2\}. Since the multiplier terms (T0jT_{0j} and Ti0T_{i0}) of this PI operator are all zero, by Lemmas 6 and 7, we may write the composition of the differential operator xy\partial_{x}\partial_{y} with this PI operator as a PI operator,

xy(𝒫[NT]𝐮^)\displaystyle\partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)} =xy(𝒫[0000T¯11T¯120T¯21T¯22]𝐮^)\displaystyle=\partial_{x}\partial_{y}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&\overline{T}_{11}&\overline{T}_{12}\\ 0&\overline{T}_{21}&\overline{T}_{22}\end{smallmatrix}\right]\hat{\mathbf{u}}\right)
=(𝒫[M00M01M02M10M11M12M20M21M22]𝐮^),\displaystyle=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}M_{00}&M_{01}&M_{02}\\ M_{10}&M_{11}&M_{12}\\ M_{20}&M_{21}&M_{22}\end{smallmatrix}\right]\hat{\mathbf{u}}\right),

where,

M00(x,y)=T¯11(x,y,x,y)T¯21(x,y,x,y)\displaystyle M_{00}(x,y)=\overline{T}_{11}(x,y,x,y)-\overline{T}_{21}(x,y,x,y)
T¯12(x,y,x,y)+T¯22(x,y,x,y)=K¯3311(x,y,x,y)\displaystyle\hskip 34.14322pt-\overline{T}_{12}(x,y,x,y)+\overline{T}_{22}(x,y,x,y)=\overline{K}_{33}^{11}(x,y,x,y)
M10(x,y,θ)=x(T¯11(x,y,θ,y)T¯12(x,y,θ,y))\displaystyle M_{10}(x,y,\theta)=\partial_{x}\Bigl{(}\overline{T}_{11}(x,y,\theta,y)-\overline{T}_{12}(x,y,\theta,y)\Bigr{)}
=x(K¯3311(x,y,θ,y)K¯321(x,y,y)G230(θ,y))\displaystyle\hskip 49.79231pt=\partial_{x}\Bigl{(}\overline{K}_{33}^{11}(x,y,\theta,y)-\overline{K}_{32}^{1}(x,y,y){G}_{23}^{0}(\theta,y)\Bigr{)}
M20(x,y,θ)=x(T¯21(x,y,θ,y)T¯22(x,y,θ,y))\displaystyle M_{20}(x,y,\theta)=\partial_{x}\Bigl{(}\overline{T}_{21}(x,y,\theta,y)-\overline{T}_{22}(x,y,\theta,y)\Bigr{)}
=x(K¯321(x,y,y)G230(θ,y))\displaystyle\hskip 49.79231pt=-\partial_{x}\Bigl{(}\overline{K}_{32}^{1}(x,y,y){G}_{23}^{0}(\theta,y)\Bigr{)}
M01(x,y,ν)=y(T¯11(x,y,x,ν)T¯21(x,y,x,ν))\displaystyle M_{01}(x,y,\nu)=\partial_{y}\Bigl{(}\overline{T}_{11}(x,y,x,\nu)-\overline{T}_{21}(x,y,x,\nu)\Bigr{)}
=y(K¯3311(x,y,x,ν)K¯311(x,y,x)G130(x,ν))\displaystyle\hskip 49.79231pt=\partial_{y}\Bigl{(}\overline{K}_{33}^{11}(x,y,x,\nu)-\overline{K}_{31}^{1}(x,y,x){G}_{13}^{0}(x,\nu)\Bigr{)}
M02(x,y,ν)=y(T¯12(x,y,x,ν)T¯22(x,y,x,ν))\displaystyle M_{02}(x,y,\nu)=\partial_{y}\Bigl{(}\overline{T}_{12}(x,y,x,\nu)-\overline{T}_{22}(x,y,x,\nu)\Bigr{)}
=y(K¯311(x,y,x)G130(x,ν))\displaystyle\hskip 49.79231pt=-\partial_{y}\Bigl{(}\overline{K}_{31}^{1}(x,y,x){G}_{13}^{0}(x,\nu)\Bigr{)}
M11(x,y,θ,ν)=xyT¯11(x,y,θ,ν)\displaystyle M_{11}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{T}_{11}(x,y,\theta,\nu)
M21(x,y,θ,ν)=xyT¯21(x,y,θ,ν)\displaystyle M_{21}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{T}_{21}(x,y,\theta,\nu)
M12(x,y,θ,ν)=xyT¯12(x,y,θ,ν)\displaystyle M_{12}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{T}_{12}(x,y,\theta,\nu)
M22(x,y,θ,ν)=xyT¯22(x,y,θ,ν)\displaystyle M_{22}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{T}_{22}(x,y,\theta,\nu)

with K¯311=NK311\overline{K}_{31}^{1}=NK_{31}^{1}, K¯321=NK321\overline{K}_{32}^{1}=NK_{32}^{1}, and K¯3311=NK3311\overline{K}_{33}^{11}=NK_{33}^{11}.
Studying Equations (4) defining K311K_{31}^{1}, K321K_{32}^{1} and K3311K_{33}^{11}, it is easy to see that yK311(x,y,x)=xK321(x,y,y)=yK3311(x,y,x,ν)=xK3311(x,y,θ,y)=0\partial_{y}K_{31}^{1}(x,y,x)=\partial_{x}K_{32}^{1}(x,y,y)=\partial_{y}K_{33}^{11}(x,y,x,\nu)=\partial_{x}K_{33}^{11}(x,y,\theta,y)=0, and therefore also

M10(x,y,θ)\displaystyle M_{10}(x,y,\theta) =0,\displaystyle=0, M20(x,y,θ)\displaystyle M_{20}(x,y,\theta) =0,\displaystyle=0,
M01(x,y,ν)\displaystyle M_{01}(x,y,\nu) =0,\displaystyle=0, M02(x,y,ν)\displaystyle M_{02}(x,y,\nu) =0,\displaystyle=0,

so that

xy(𝒫[NT]𝐮^)=(𝒫[M00000M11M120M21M22]𝐮^).\displaystyle\partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)}=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}M_{00}&0&0\\ 0&M_{11}&M_{12}\\ 0&M_{21}&M_{22}\end{smallmatrix}\right]\hat{\mathbf{u}}\right).

For the remaining parameters MijM_{ij}, we consider the products J1MijJ_{1}M_{ij}. Once more studying Equations (4), we note that J1NK30J_{1}NK_{30}, J1NK311J_{1}NK_{31}^{1}, J1NK321J_{1}NK_{32}^{1} and J1NK33J_{1}NK_{33} are all constant matrices. By the definitions (Equations (4)) of functions TijT_{ij}, for each i,j{1,2}i,j\in\{1,2\}, this implies also

J1Mij(x,y,θ,ν)\displaystyle J_{1}M_{ij}(x,y,\theta,\nu) =J1xyT¯11(x,y,θ,ν)\displaystyle=J_{1}\ \partial_{x}\partial_{y}\overline{T}_{11}(x,y,\theta,\nu)
=xy(J1NTij(x,y,θ,ν))=0,\displaystyle=\partial_{x}\partial_{y}(J_{1}NT_{ij}(x,y,\theta,\nu))=0,

Finally, for M00M_{00}, it is easy to see that

J1M00(x,y,x,y)\displaystyle J_{1}M_{00}(x,y,x,y) =J1NK3311(x,y,x,y)\displaystyle=J_{1}NK_{33}^{11}(x,y,x,y)
=[0In10]=J1N.\displaystyle\qquad\quad=\begin{bmatrix}0&I_{n_{1}}&0\end{bmatrix}=J_{1}N.

Combining the results, we obtain

J1Nxy(𝒯𝐮^)\displaystyle J_{1}N\partial_{x}\partial_{y}\Bigl{(}\mathcal{T}\hat{\mathbf{u}}\Bigr{)}\! =J1xy(𝒫[NT]𝐮^)\displaystyle=\!J_{1}\partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)}
=J1𝒫[M00000M11M120M21M22]𝐮^=𝒫[J1N00000000]𝐮^=𝐮^1,\displaystyle=\!J_{1}\mathcal{P}\!\left[\scriptsize\begin{smallmatrix}M_{00}&0&0\\ 0&M_{11}&M_{12}\\ 0&M_{21}&M_{22}\end{smallmatrix}\right]\!\hat{\mathbf{u}}\!=\!\mathcal{P}\left[\scriptsize\begin{smallmatrix}J_{1}N&0&0\\ 0&0&0\\ 0&0&0\end{smallmatrix}\right]\hat{\mathbf{u}}\!=\!\hat{\mathbf{u}}_{1},

proving Relation (79). To prove the final Relation (80), we note that J2M00(x,y,x,y)=0J_{2}M_{00}(x,y,x,y)=0, and therefore

J2xy𝒫[NT]=𝒫[0000J2M11J2M120J2M21J2M22]=𝒫[0000M¯11M¯120M¯21M¯22],\displaystyle J_{2}\ \partial_{x}\partial_{y}\mathcal{P}[NT]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&J_{2}M_{11}&J_{2}M_{12}\\ 0&J_{2}M_{21}&J_{2}M_{22}\end{smallmatrix}\right]=\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&\overline{M}_{11}&\overline{M}_{12}\\ 0&\overline{M}_{21}&\overline{M}_{22}\end{smallmatrix}\right],

where we define M¯ij:=J2Mij\overline{M}_{ij}:=J_{2}M_{ij} for i,j{1,2}i,j\in\{1,2\}. The resulting operator contains no multiplier terms, allowing once more the composition with the differential operator xy\partial_{x}\partial_{y} to be taken, yielding (by Lemmas 6 and 7)

xy[J2xy(𝒫[NT]𝐮^)]\displaystyle\partial_{x}\partial_{y}\Bigl{[}J_{2}\ \partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)}\Bigr{]} =xy(𝒫[0000M¯11M¯120M¯21M¯22]𝐮^)\displaystyle=\partial_{x}\partial_{y}\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}0&0&0\\ 0&\overline{M}_{11}&\overline{M}_{12}\\ 0&\overline{M}_{21}&\overline{M}_{22}\end{smallmatrix}\right]\hat{\mathbf{u}}\right)
=(𝒫[W00W01W02W10W11W12W20W21W22]𝐮^),\displaystyle\quad=\left(\mathcal{P}\left[\scriptsize\begin{smallmatrix}W_{00}&W_{01}&W_{02}\\ W_{10}&W_{11}&W_{12}\\ W_{20}&W_{21}&W_{22}\end{smallmatrix}\right]\hat{\mathbf{u}}\right),

where

W00(x,y)=M¯11(x,y,x,y)M¯21(x,y,x,y)\displaystyle W_{00}(x,y)=\overline{M}_{11}(x,y,x,y)-\overline{M}_{21}(x,y,x,y)
M¯12(x,y,x,y)+M¯22(x,y,x,y)\displaystyle\hskip 56.9055pt-\overline{M}_{12}(x,y,x,y)+\overline{M}_{22}(x,y,x,y)
=[xyK^3311(x,y,θ,ν)]|θ=x,ν=y\displaystyle\hskip 42.67912pt=[\partial_{x}\partial_{y}\hat{K}_{33}^{11}(x,y,\theta,\nu)]\Bigr{|}_{\theta=x,\nu=y}
W10(x,y,θ)=x(M¯11(x,y,θ,y)M¯12(x,y,θ,y))\displaystyle W_{10}(x,y,\theta)=\partial_{x}\Bigl{(}\overline{M}_{11}(x,y,\theta,y)-\overline{M}_{12}(x,y,\theta,y)\Bigr{)}
=x2y(K^3311(x,y,θ,ν)K^321(x,y,ν)G230(θ,ν))|ν=y\displaystyle\qquad=\partial_{x}^{2}\partial_{y}\Bigl{(}\hat{K}_{33}^{11}(x,y,\theta,\nu)-\hat{K}_{32}^{1}(x,y,\nu)G_{23}^{0}(\theta,\nu)\Bigr{)}\Bigr{|}_{\nu=y}
W20(x,y,θ)=x(M¯21(x,y,θ,y)M¯22(x,y,θ,y))\displaystyle W_{20}(x,y,\theta)=\partial_{x}\Bigl{(}\overline{M}_{21}(x,y,\theta,y)-\overline{M}_{22}(x,y,\theta,y)\Bigr{)}
=x2y(K^321(x,y,ν)G230(θ,ν))|ν=y\displaystyle\qquad=-\partial_{x}^{2}\partial_{y}\Bigl{(}\hat{K}_{32}^{1}(x,y,\nu)G_{23}^{0}(\theta,\nu)\Bigr{)}\Bigr{|}_{\nu=y}
W01(x,y,ν)=y(M¯11(x,y,x,ν)M¯21(x,y,x,ν))\displaystyle W_{01}(x,y,\nu)=\partial_{y}\Bigl{(}\overline{M}_{11}(x,y,x,\nu)-\overline{M}_{21}(x,y,x,\nu)\Bigr{)}
=xy2(K^3311(x,y,θ,ν)K^311(x,y,θ)G130(θ,ν))|θ=x\displaystyle\qquad=\partial_{x}\partial_{y}^{2}\Bigl{(}\hat{K}_{33}^{11}(x,y,\theta,\nu)-\hat{K}_{31}^{1}(x,y,\theta)G_{13}^{0}(\theta,\nu)\Bigr{)}\Bigr{|}_{\theta=x}
W02(x,y,ν)=y(M¯12(x,y,x,ν)M¯22(x,y,x,ν))\displaystyle W_{02}(x,y,\nu)=\partial_{y}\Bigl{(}\overline{M}_{12}(x,y,x,\nu)-\overline{M}_{22}(x,y,x,\nu)\Bigr{)}
=xy2(K^311(x,y,θ)G130(θ,ν))|θ=x\displaystyle\qquad=-\partial_{x}\partial_{y}^{2}\Bigl{(}\hat{K}_{31}^{1}(x,y,\theta)G_{13}^{0}(\theta,\nu)\Bigr{)}\Bigr{|}_{\theta=x}
W11(x,y,θ,ν)=xyM¯11(x,y,θ,ν)\displaystyle W_{11}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{M}_{11}(x,y,\theta,\nu)
W21(x,y,θ,ν)=xyM¯21(x,y,θ,ν)\displaystyle W_{21}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{M}_{21}(x,y,\theta,\nu)
W12(x,y,θ,ν)=xyM¯12(x,y,θ,ν)\displaystyle W_{12}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{M}_{12}(x,y,\theta,\nu)
W22(x,y,θ,ν)=xyM¯22(x,y,θ,ν)\displaystyle W_{22}(x,y,\theta,\nu)=\partial_{x}\partial_{y}\overline{M}_{22}(x,y,\theta,\nu)

with K^311:=J2K¯311\hat{K}_{31}^{1}:=J_{2}\overline{K}_{31}^{1}, K^321:=J2K¯321\hat{K}_{32}^{1}:=J_{2}\overline{K}_{32}^{1}, and K^3311:=J2K¯3311\hat{K}_{33}^{11}:=J_{2}\overline{K}_{33}^{11}. Once again, it is clear from the definitions of functions K311K_{31}^{1}, K321K_{32}^{1} and K3311K_{33}^{11} that the derivatives xy2K311\partial_{x}\partial_{y}^{2}K_{31}^{1}, xy2K3311\partial_{x}\partial_{y}^{2}K_{33}^{11} and x2yK321\partial_{x}^{2}\partial_{y}K_{32}^{1}, x2yK3311\partial_{x}^{2}\partial_{y}K_{33}^{11}, evaluated at ν=y\nu=y and θ=x\theta=x respectively, will all be equal to zero, suggesting

W10(x,y,θ)\displaystyle W_{10}(x,y,\theta) =0,\displaystyle=0, W20(x,y,θ)\displaystyle W_{20}(x,y,\theta) =0,\displaystyle=0,
W01(x,y,ν)\displaystyle W_{01}(x,y,\nu) =0,\displaystyle=0, W02(x,y,ν)\displaystyle W_{02}(x,y,\nu) =0.\displaystyle=0.

In addition, studying the definitions of the functions K30K_{30}, K311K_{31}^{1}, K321K_{32}^{1}, and K3311K_{33}^{11}, we find that their derivatives xyK30\partial_{x}\partial_{y}K_{30}, xyK311\partial_{x}\partial_{y}K_{31}^{1}, xyK321\partial_{x}\partial_{y}K_{32}^{1}, and xyK3311\partial_{x}\partial_{y}K_{33}^{11} are all constant matrices. By definition of the functions T11,T21,T12T_{11},T_{21},T_{12} and T22T_{22}, it follows that x2y2Tij=0\partial_{x}^{2}\partial_{y}^{2}T_{ij}=0 for each i,j{1,2}i,j\in\{1,2\}, and thus

Wij(x,y,θ,ν)\displaystyle W_{ij}(x,y,\theta,\nu) =xyM¯ij(x,y,θ,ν)\displaystyle=\partial_{x}\partial_{y}\overline{M}_{ij}(x,y,\theta,\nu)
=x2y2[J2NTij(x,y,θ,ν)]=0.\displaystyle=\partial_{x}^{2}\partial_{y}^{2}[J_{2}NT_{ij}(x,y,\theta,\nu)]=0.

Finally, from the definition of K^3311\hat{K}_{33}^{11}, it follows that

W00(x,y)\displaystyle W_{00}(x,y) =[xyK^3311(x,y,θ,ν)]|θ=xν=y=[00In2]=J2N.\displaystyle\!=\!\left[\partial_{x}\partial_{y}\hat{K}_{33}^{11}(x,y,\theta,\nu)\right]\biggr{|}_{\tiny\begin{matrix}\theta=x\\ \nu=y\end{matrix}}\!\!\!=\!\begin{bmatrix}0&\!\!0&\!\!I_{n_{2}}\end{bmatrix}\!=\!J_{2}N.

Combining these results, we obtain Relation (80)

J2Nx2y2(𝒯𝐮^)\displaystyle J_{2}N\partial_{x}^{2}\partial_{y}^{2}\Bigl{(}\!\mathcal{T}\hat{\mathbf{u}}\!\Bigr{)}\! =xy[J2xy(𝒫[NT]𝐮^)]\displaystyle=\!\partial_{x}\partial_{y}\Bigl{[}J_{2}\ \partial_{x}\partial_{y}\Bigl{(}\mathcal{P}[NT]\hat{\mathbf{u}}\Bigr{)}\Bigr{]}\!
=(𝒫[W00W01W02W10W11W12W20W21W22]𝐮^)=(𝒫[J2N00000000]𝐮^)=𝐮^2.\displaystyle=\!\left(\!\mathcal{P}\!\left[\scriptsize\begin{smallmatrix}W_{00}&W_{01}&W_{02}\\ W_{10}&W_{11}&W_{12}\\ W_{20}&W_{21}&W_{22}\end{smallmatrix}\right]\hat{\mathbf{u}}\!\right)\!=\!\left(\!\mathcal{P}\!\left[\scriptsize\begin{smallmatrix}J_{2}N&0&0\\ 0&0&0\\ 0&0&0\end{smallmatrix}\right]\hat{\mathbf{u}}\!\right)\!=\!\hat{\mathbf{u}}_{2}.

12.4 A Parameterization of Positive PI Operators

Proposition 33.

For any Z1,,Z9L2q×n[x,y,θ,ν]Z_{1},\ldots,Z_{9}\in L_{2}^{q\times n}[x,y,\theta,\nu] and a scalar function gL2[x,y]g\in L_{2}[x,y] with g(x,y)0g(x,y)\geq 0 for all x,y[a,b]×[c,d]x,y\in[a,b]\times[c,d] let PI:9q×9q𝒩2Dn×n\mathcal{L}_{\text{PI}}:\mathbb{R}^{9q\times 9q}\rightarrow\mathcal{N}_{2D}^{n\times n} be defined as

PI([P11P19P91P99])=N:=[N00N01N02N10N11N12N20N21N22]𝒩2Dn×n,\displaystyle\mathcal{L}_{\text{PI}}\left(\left[\scriptsize\begin{smallmatrix}P_{11}&\ldots&P_{19}\\ \vdots&\ddots&\vdots\\ P_{91}&\ldots&P_{99}\end{smallmatrix}\right]\right)=N:=\begin{bmatrix}N_{00}&N_{01}&N_{02}\\ N_{10}&N_{11}&N_{12}\\ N_{20}&N_{21}&N_{22}\end{bmatrix}\in\mathcal{N}_{2D}^{n\times n}, (81)

where the functions NijN_{ij} are as defined in Equations (5) in Figure 5. Then for any P0P\geq 0, if N=PI(P)N=\mathcal{L}_{\text{PI}}(P), we have that 𝒫[N]=𝒫[N]\mathcal{P}^{*}[N]=\mathcal{P}[N], and 𝐮,𝒫[N]𝐮L20\left\langle\mathbf{u},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}}\geq 0 for any 𝐮L2n[x,y]\mathbf{u}\in L_{2}^{n}[x,y].

Proof 12.4.

Let P0P\geq 0 be an arbitrary matrix of appropriate size, and N=PI(P)𝒩2Dn×nN=\mathcal{L}_{\text{PI}}(P)\in\mathcal{N}_{2D}^{n\times n}. It is easy to see that, by definition of the functions NijL2N_{ij}\in L_{2}, the PI operator 𝒫[N]\mathcal{P}[N] defined by NN is self-adjoint. Furthermore, if we define a 2D-PI operator 𝒵:L2n[x,y]L29q[x,y]\mathcal{Z}:L_{2}^{n}[x,y]\rightarrow L_{2}^{9q}[x,y] as

(𝒵𝐮)(x,y)=[g(x,y)Z1(x,y)𝐮(x,y)axg(x,y)Z2(x,y,θ)𝐮(θ,y)dθxbg(x,y)Z3(x,y,θ)𝐮(θ,y)dθcyg(x,y)Z4(x,y,ν)𝐮(x,ν)dνydg(x,y)Z5(x,y,ν)𝐮(x,ν)dνaxcyg(x,y)Z6(x,y,θ,ν)𝐮(θ,ν)dνdθxbcyg(x,y)Z7(x,y,θ,ν)𝐮(θ,ν)dνdθaxydg(x,y)Z8(x,y,θ,ν)𝐮(θ,ν)dνdθxbydg(x,y)Z9(x,y,θ,ν)𝐮(θ,ν)dνdθ],\displaystyle(\mathcal{Z}\mathbf{u})(x,y)\!=\!\left[\!\!\begin{array}[]{rcccl}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{1}(x,y)\!\!\!&\!\!\!\mathbf{u}(x,y)\!\!\!&\!\!\!\\ \int_{a}^{x}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{2}(x,y,\theta)\!\!\!&\!\!\!\mathbf{u}(\theta,y)\!\!\!&\!\!\!d\theta\\ \int_{x}^{b}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{3}(x,y,\theta)\!\!\!&\!\!\!\mathbf{u}(\theta,y)\!\!\!&\!\!\!d\theta\\ \int_{c}^{y}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{4}(x,y,\nu)\!\!\!&\!\!\!\mathbf{u}(x,\nu)\!\!\!&\!\!\!d\nu\\ \int_{y}^{d}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{5}(x,y,\nu)\!\!\!&\!\!\!\mathbf{u}(x,\nu)\!\!\!&\!\!\!d\nu\\ \int_{a}^{x}\int_{c}^{y}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{6}(x,y,\theta,\nu)\!\!\!&\!\!\!\mathbf{u}(\theta,\nu)\!\!\!&\!\!\!d\nu d\theta\\ \int_{x}^{b}\int_{c}^{y}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{7}(x,y,\theta,\nu)\!\!\!&\!\!\!\mathbf{u}(\theta,\nu)\!\!\!&\!\!\!d\nu d\theta\\ \int_{a}^{x}\int_{y}^{d}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{8}(x,y,\theta,\nu)\!\!\!&\!\!\!\mathbf{u}(\theta,\nu)\!\!\!&\!\!\!d\nu d\theta\\ \int_{x}^{b}\int_{y}^{d}\!\!\!&\!\!\!\sqrt{g}(x,y)\!\!\!&\!\!\!Z_{9}(x,y,\theta,\nu)\!\!\!&\!\!\!\mathbf{u}(\theta,\nu)\!\!\!&\!\!\!d\nu d\theta\end{array}\!\!\right], (91)

by the composition rules of 2D-PI operators (as discussed in Appx. 11.4), it follows that 𝒫[N]=𝒵P𝒵\mathcal{P}[N]=\mathcal{Z}^{*}P\mathcal{Z}. Since P0P\geq 0, we may split P=[P12]TP12P=\left[P^{\frac{1}{2}}\right]^{T}P^{\frac{1}{2}} for some P129q×9qP^{\frac{1}{2}}\in\mathbb{R}^{9q\times 9q}, and thus

𝐮,𝒫[N]𝐮L2\displaystyle\left\langle\mathbf{u},\mathcal{P}[N]\mathbf{u}\right\rangle_{L_{2}} =𝒵𝐮,P𝒵𝐮L2\displaystyle=\left\langle\mathcal{Z}\mathbf{u},P\mathcal{Z}\mathbf{u}\right\rangle_{L_{2}}
=P12𝒵𝐮,P12𝒵𝐮L20\displaystyle=\left\langle P^{\frac{1}{2}}\mathcal{Z}\mathbf{u},P^{\frac{1}{2}}\mathcal{Z}\mathbf{u}\right\rangle_{L_{2}}\geq 0

for any 𝐮L2n[x,y]\mathbf{u}\in L_{2}^{n}[x,y], concluding the proof.

N00(x,y)=g(x,y)[Z1(x,y)]TP11Z1(x,y)\displaystyle N_{00}(x,y)=g(x,y)[Z_{1}(x,y)]^{T}P_{11}Z_{1}(x,y)
N10(x,y,θ)=g(x,y)[Z1(x,y)]TP12Z2(x,y,θ)+g(θ,y)[Z3(θ,y,x)]TP31Z1(θ,y)\displaystyle N_{10}(x,y,\theta)=g(x,y)[Z_{1}(x,y)]^{T}P_{12}Z_{2}(x,y,\theta)+g(\theta,y)[Z_{3}(\theta,y,x)]^{T}P_{31}Z_{1}(\theta,y)
+xbg(η,y)[Z2(η,y,x)]TP22Z2(η,y,θ)dη+θxg(η,y)[Z3(η,y,x)]TP32Z2(η,y,θ)dη+aθg(η,y)[Z3(η,y,x)]TP33Z3(η,y,θ)dη\displaystyle\qquad+\int_{x}^{b}g(\eta,y)[Z_{2}(\eta,y,x)]^{T}P_{22}Z_{2}(\eta,y,\theta)d\eta+\int_{\theta}^{x}g(\eta,y)[Z_{3}(\eta,y,x)]^{T}P_{32}Z_{2}(\eta,y,\theta)d\eta+\int_{a}^{\theta}g(\eta,y)[Z_{3}(\eta,y,x)]^{T}P_{33}Z_{3}(\eta,y,\theta)d\eta
N20(x,y,θ)=[N10(θ,y,x)]T\displaystyle N_{20}(x,y,\theta)=[N_{10}(\theta,y,x)]^{T}
N01(x,y,ν)=g(x,y)[Z1(x,y)]TP14Z4(x,y,ν)+g(x,ν)[Z5(x,ν,y)]TP51Z1(x,ν)\displaystyle N_{01}(x,y,\nu)=g(x,y)[Z_{1}(x,y)]^{T}P_{14}Z_{4}(x,y,\nu)+g(x,\nu)[Z_{5}(x,\nu,y)]^{T}P_{51}Z_{1}(x,\nu)
+ydg(x,μ)[Z4(x,μ,y)]TP44Z4(x,μ,ν)dμ+νyg(x,μ)[Z5(x,μ,y)]TP54Z4(x,μ,ν)dμ+cνg(x,μ)[Z5(x,μ,y)]TP55Z5(x,μ,ν)dμ\displaystyle\qquad+\int_{y}^{d}g(x,\mu)[Z_{4}(x,\mu,y)]^{T}P_{44}Z_{4}(x,\mu,\nu)d\mu+\int_{\nu}^{y}g(x,\mu)[Z_{5}(x,\mu,y)]^{T}P_{54}Z_{4}(x,\mu,\nu)d\mu+\int_{c}^{\nu}g(x,\mu)[Z_{5}(x,\mu,y)]^{T}P_{55}Z_{5}(x,\mu,\nu)d\mu
N02(x,y,ν)=[N01(x,ν,y)]T\displaystyle N_{02}(x,y,\nu)=[N_{01}(x,\nu,y)]^{T}
N11(x,y,θ,ν)=g(x,y)[Z1(x,y)]TP16Z6(x,y,θ,ν)+g(θ,ν)[Z9(θ,x,ν,y)]TP91Z1(θ,ν)\displaystyle N_{11}(x,y,\theta,\nu)=g(x,y)[Z_{1}(x,y)]^{T}P_{16}Z_{6}(x,y,\theta,\nu)+g(\theta,\nu)[Z_{9}(\theta,x,\nu,y)]^{T}P_{91}Z_{1}(\theta,\nu)
+g(x,ν)[Z502(x,ν,y)]TP52Z2(x,θ,ν)+g(θ,y)[Z320(θ,y,x)]TP34Z4(θ,y,ν)\displaystyle\qquad+g(x,\nu)[Z_{5}^{02}(x,\nu,y)]^{T}P_{52}Z_{2}(x,\theta,\nu)+g(\theta,y)[Z_{3}^{20}(\theta,y,x)]^{T}P_{34}Z_{4}(\theta,y,\nu)
+xbg(η,y)[Z2(η,y,x)]TP26Z6(η,y,θ,ν)]dη+θxg(η,y)[Z3(η,y,x)]TP36Z6(η,y,θ,ν)dη+aθg(η,y)[Z3(η,y,x)]TP37Z7(η,y,θ,ν)dη\displaystyle\qquad+\int_{x}^{b}g(\eta,y)[Z_{2}(\eta,y,x)]^{T}P_{26}Z_{6}(\eta,y,\theta,\nu)]d\eta+\int_{\theta}^{x}g(\eta,y)[Z_{3}(\eta,y,x)]^{T}P_{36}Z_{6}(\eta,y,\theta,\nu)d\eta+\int_{a}^{\theta}g(\eta,y)[Z_{3}(\eta,y,x)]^{T}P_{37}Z_{7}(\eta,y,\theta,\nu)d\eta
+xbg(η,ν)[Z7(η,ν,x,y)]TP72Z2(η,θ,ν)]dη+θxg(η,ν)[Z9(η,ν,x,y)]TP92Z2(η,θ,ν)dη+aθg(η,ν)[Z9(η,ν,x,y)]TP93Z3(η,θ,ν)dη\displaystyle\qquad+\int_{x}^{b}g(\eta,\nu)[Z_{7}(\eta,\nu,x,y)]^{T}P_{72}Z_{2}(\eta,\theta,\nu)]d\eta+\int_{\theta}^{x}g(\eta,\nu)[Z_{9}(\eta,\nu,x,y)]^{T}P_{92}Z_{2}(\eta,\theta,\nu)d\eta+\int_{a}^{\theta}g(\eta,\nu)[Z_{9}(\eta,\nu,x,y)]^{T}P_{93}Z_{3}(\eta,\theta,\nu)d\eta
+ydg(x,μ)[Z4(x,μ,y)]TP46Z6(x,μ,θ,ν)dμ+νyg(x,μ)[Z5(x,μ,y)]TP56Z6(x,μ,θ,ν)dμ+cνg(x,μ)[Z5(x,μ,y)]TP58Z8(x,μ,θ,ν)dμ\displaystyle\qquad+\int_{y}^{d}g(x,\mu)[Z_{4}(x,\mu,y)]^{T}P_{46}Z_{6}(x,\mu,\theta,\nu)d\mu+\int_{\nu}^{y}g(x,\mu)[Z_{5}(x,\mu,y)]^{T}P_{56}Z_{6}(x,\mu,\theta,\nu)d\mu+\int_{c}^{\nu}g(x,\mu)[Z_{5}(x,\mu,y)]^{T}P_{58}Z_{8}(x,\mu,\theta,\nu)d\mu
+ydg(θ,μ)[Z7(θ,μ,x,y)]TP74Z4(θ,μ,ν)dμ+νyg(θ,μ)[Z9(θ,μ,x,y)]TP94Z4(θ,μ,ν)dμ+cνg(θ,μ)[Z9(ν,x,μ,y)]TP95Z5(θ,μ,ν)dμ\displaystyle\qquad+\int_{y}^{d}g(\theta,\mu)[Z_{7}(\theta,\mu,x,y)]^{T}P_{74}Z_{4}(\theta,\mu,\nu)d\mu+\int_{\nu}^{y}g(\theta,\mu)[Z_{9}(\theta,\mu,x,y)]^{T}P_{94}Z_{4}(\theta,\mu,\nu)d\mu+\int_{c}^{\nu}g(\theta,\mu)[Z_{9}(\nu,x,\mu,y)]^{T}P_{95}Z_{5}(\theta,\mu,\nu)d\mu
+xbydg(η,μ)[Z6(η,μ,x,y)]TP66Z6(η,μ,θ,ν)]dμdη+θxydg(η,μ)[Z7(η,μ,x,y)]TP76Z6(η,μ,θ,ν)]dμdη\displaystyle\qquad+\int_{x}^{b}\int_{y}^{d}g(\eta,\mu)[Z_{6}(\eta,\mu,x,y)]^{T}P_{66}Z_{6}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{\theta}^{x}\int_{y}^{d}g(\eta,\mu)[Z_{7}(\eta,\mu,x,y)]^{T}P_{76}Z_{6}(\eta,\mu,\theta,\nu)]d\mu d\eta
+aθydg(η,μ)[Z7(η,μ,x,y)]TP77Z7(η,μ,θ,ν)]dμdη+xbνyg(η,μ)[Z8(η,μ,x,y)]TP86Z6(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad+\int_{a}^{\theta}\int_{y}^{d}g(\eta,\mu)[Z_{7}(\eta,\mu,x,y)]^{T}P_{77}Z_{7}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{x}^{b}\int_{\nu}^{y}g(\eta,\mu)[Z_{8}(\eta,\mu,x,y)]^{T}P_{86}Z_{6}(\eta,\mu,\theta,\nu)]d\mu d\eta
+θxνyg(η,μ)[Z9(η,μ,x,y)]TP96Z6(η,μ,θ,ν)]dμdη+aθνyg(η,μ)[Z9(η,μ,x,y)]TP97Z7(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad\qquad+\int_{\theta}^{x}\int_{\nu}^{y}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{96}Z_{6}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{a}^{\theta}\int_{\nu}^{y}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{97}Z_{7}(\eta,\mu,\theta,\nu)]d\mu d\eta
+xbcνg(η,μ)[Z8(η,μ,x,y)]TP88Z8(η,μ,θ,ν)]dμdη+θxcνg(η,μ)[Z9(η,μ,x,y)]TP98Z8(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad\qquad\qquad+\int_{x}^{b}\int_{c}^{\nu}g(\eta,\mu)[Z_{8}(\eta,\mu,x,y)]^{T}P_{88}Z_{8}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{\theta}^{x}\int_{c}^{\nu}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{98}Z_{8}(\eta,\mu,\theta,\nu)]d\mu d\eta
+aθcνg(η,μ)[Z9(η,μ,x,y)]TP99Z9(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad\qquad\qquad\qquad+\int_{a}^{\theta}\int_{c}^{\nu}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{99}Z_{9}(\eta,\mu,\theta,\nu)]d\mu d\eta
N22(x,y,θ,ν)=[N11(θ,x,ν,y)]T\displaystyle N_{22}(x,y,\theta,\nu)=[N_{11}(\theta,x,\nu,y)]^{T}
N21(x,y,θ,ν)=g(x,y)[Z1(x,y)]TP17Z7(x,y,θ,ν)+g(θ,ν)[Z8(θ,x,ν,y)]TP81Z1(θ,ν)\displaystyle N_{21}(x,y,\theta,\nu)=g(x,y)[Z_{1}(x,y)]^{T}P_{17}Z_{7}(x,y,\theta,\nu)+g(\theta,\nu)[Z_{8}(\theta,x,\nu,y)]^{T}P_{81}Z_{1}(\theta,\nu)
+g(x,ν)[Z5(x,ν,y)]TP53Z3(x,θ,ν)+g(θ,y)[Z2(θ,y,x)]TP24Z4(θ,y,ν)\displaystyle\qquad+g(x,\nu)[Z_{5}(x,\nu,y)]^{T}P_{53}Z_{3}(x,\theta,\nu)+g(\theta,y)[Z_{2}(\theta,y,x)]^{T}P_{24}Z_{4}(\theta,y,\nu)
+θbg(η,y)[Z2(η,y,x)]TP26Z6(η,y,θ,ν)]dη+xθg(η,y)[Z2(η,y,x)]TP28Z8(η,y,θ,ν)dη+axg(η,y)[Z3(η,y,x)]TP37Z7(η,y,θ,ν)dη\displaystyle\qquad+\int_{\theta}^{b}g(\eta,y)[Z_{2}(\eta,y,x)]^{T}P_{26}Z_{6}(\eta,y,\theta,\nu)]d\eta+\int_{x}^{\theta}g(\eta,y)[Z_{2}(\eta,y,x)]^{T}P_{28}Z_{8}(\eta,y,\theta,\nu)d\eta+\int_{a}^{x}g(\eta,y)[Z_{3}(\eta,y,x)]^{T}P_{37}Z_{7}(\eta,y,\theta,\nu)d\eta
+θbg(η,ν)[Z8(η,ν,x,y)]TP82Z2(η,θ,ν)]dη+xθg(η,ν)[Z8(η,ν,x,y)]TP83Z3(η,θ,ν)dη+axg(η,ν)[Z9(η,ν,x,y)]TP93Z3(η,θ,ν)dη\displaystyle\qquad+\int_{\theta}^{b}g(\eta,\nu)[Z_{8}(\eta,\nu,x,y)]^{T}P_{82}Z_{2}(\eta,\theta,\nu)]d\eta+\int_{x}^{\theta}g(\eta,\nu)[Z_{8}(\eta,\nu,x,y)]^{T}P_{83}Z_{3}(\eta,\theta,\nu)d\eta+\int_{a}^{x}g(\eta,\nu)[Z_{9}(\eta,\nu,x,y)]^{T}P_{93}Z_{3}(\eta,\theta,\nu)d\eta
+ydg(θ,μ)[Z6(θ,μ,x,y)]TP64Z4(θ,μ,ν)dμ+νyg(θ,μ)[Z8(θ,μ,x,y)]TP84Z4(θ,μ,ν)dμ+cνg(θ,μ)[Z8(θ,μ,x,y)]TP85Z5(θ,μ,ν)dμ\displaystyle\qquad+\int_{y}^{d}g(\theta,\mu)[Z_{6}(\theta,\mu,x,y)]^{T}P_{64}Z_{4}(\theta,\mu,\nu)d\mu+\int_{\nu}^{y}g(\theta,\mu)[Z_{8}(\theta,\mu,x,y)]^{T}P_{84}Z_{4}(\theta,\mu,\nu)d\mu+\int_{c}^{\nu}g(\theta,\mu)[Z_{8}(\theta,\mu,x,y)]^{T}P_{85}Z_{5}(\theta,\mu,\nu)d\mu
+ydg(x,μ)[Z4(x,μ,y)]TP47Z7(x,μ,θ,ν)dμ+νyg(x,μ)[Z5(x,μ,y)]TP57Z7(x,μ,θ,ν)dμ+cνg(x,μ)[Z5(x,μ,y)]TP59Z9(x,μ,θ,ν)dμ\displaystyle\qquad+\int_{y}^{d}g(x,\mu)[Z_{4}(x,\mu,y)]^{T}P_{47}Z_{7}(x,\mu,\theta,\nu)d\mu+\int_{\nu}^{y}g(x,\mu)[Z_{5}(x,\mu,y)]^{T}P_{57}Z_{7}(x,\mu,\theta,\nu)d\mu+\int_{c}^{\nu}g(x,\mu)[Z_{5}(x,\mu,y)]^{T}P_{59}Z_{9}(x,\mu,\theta,\nu)d\mu
+θbydg(η,μ)[Z6(η,μ,x,y)]TP66Z6(η,μ,θ,ν)]dμdη+xθydg(η,μ)[Z6(η,μ,x,y)]TP67Z7(η,μ,θ,ν)]dμdη\displaystyle\qquad+\int_{\theta}^{b}\int_{y}^{d}g(\eta,\mu)[Z_{6}(\eta,\mu,x,y)]^{T}P_{66}Z_{6}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{x}^{\theta}\int_{y}^{d}g(\eta,\mu)[Z_{6}(\eta,\mu,x,y)]^{T}P_{67}Z_{7}(\eta,\mu,\theta,\nu)]d\mu d\eta
+axydg(η,μ)[Z7(η,μ,x,y)]TP77Z7(η,μ,θ,ν)]dμdη+θbνyg(η,μ)[Z8(η,μ,x,y)]TP86Z6(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad+\int_{a}^{x}\int_{y}^{d}g(\eta,\mu)[Z_{7}(\eta,\mu,x,y)]^{T}P_{77}Z_{7}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{\theta}^{b}\int_{\nu}^{y}g(\eta,\mu)[Z_{8}(\eta,\mu,x,y)]^{T}P_{86}Z_{6}(\eta,\mu,\theta,\nu)]d\mu d\eta
+xθνyg(η,μ)[Z8(η,μ,x,y)]TP87Z7(η,μ,θ,ν)]dμdη+axνyg(η,μ)[Z9(η,μ,x,y)]TP97Z7(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad\qquad+\int_{x}^{\theta}\int_{\nu}^{y}g(\eta,\mu)[Z_{8}(\eta,\mu,x,y)]^{T}P_{87}Z_{7}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{a}^{x}\int_{\nu}^{y}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{97}Z_{7}(\eta,\mu,\theta,\nu)]d\mu d\eta
+θbcνg(η,μ)[Z8(η,μ,x,y)]TP88Z8(η,μ,θ,ν)]dμdη+xθcνg(η,μ)[Z9(η,μ,x,y)]TP98Z8(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad\qquad\qquad+\int_{\theta}^{b}\int_{c}^{\nu}g(\eta,\mu)[Z_{8}(\eta,\mu,x,y)]^{T}P_{88}Z_{8}(\eta,\mu,\theta,\nu)]d\mu d\eta+\int_{x}^{\theta}\int_{c}^{\nu}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{98}Z_{8}(\eta,\mu,\theta,\nu)]d\mu d\eta
+axcνg(η,μ)[Z9(η,μ,x,y)]TP99Z9(η,μ,θ,ν)]dμdη\displaystyle\qquad\qquad\qquad\qquad\qquad+\int_{a}^{x}\int_{c}^{\nu}g(\eta,\mu)[Z_{9}(\eta,\mu,x,y)]^{T}P_{99}Z_{9}(\eta,\mu,\theta,\nu)]d\mu d\eta
N12(x,y,θ,ν)=[N21(θ,x,ν,y)]T\displaystyle N_{12}(x,y,\theta,\nu)=[N_{21}(\theta,x,\nu,y)]^{T} (92)

Figure 5: Parameters NN describing the positive PI operator 𝒫[N]=𝒵P𝒵\mathcal{P}[N]=\mathcal{Z}^{*}P\mathcal{Z} in Proposition 33