This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Nyström Method for Scattering by a Two-layered Medium with a Rough Boundary

Haiyang Liu  Long Li  Jiansheng Yang  Bo Zhang  Haiwen Zhang LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China (haiyang.l@pku.edu.cn)Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China (longli@amss.ac.cn)LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China (jsyang@pku.edu.cn)LSEC and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (b.zhang@amt.ac.cn)Corresponding author. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China (zhanghaiwen@amss.ac.cn)
Abstract

This paper considers the problems of scattering of time-harmonic acoustic waves by a two-layered medium with a non-locally perturbed boundary (called a rough boundary in this paper) in two dimensions, where a Dirichlet or impedance boundary condition is imposed on the boundary. The two-layered medium is composed of two unbounded media with different physical properties and the interface between the two media is considered to be a planar surface. We formulate the considered scattering problems as the boundary value problems and prove that each boundary value problem has a unique solution by utilizing the integral equation method associated with the two-layered Green function. Moreover, we develop the Nyström method for numerically solving the considered boundary value problems, based on the proposed integral equation formulations. We establish the convergence results of the Nyström method with the convergence rates depending on the smoothness of the rough boundary. It is worth noting that in establishing the well-posedness of the boundary value problems as well as the convergence results of the Nyström method, an essential role is played by the investigation of the asymptotic properties of the two-layered Green function for small and large arguments. Finally, numerical experiments are carried out to show the effectiveness of the Nyström method.

Keywords: two-layered Green function, two-layered medium, integral equation method, Nyström method

1 Introduction

This paper is concerned with the well-posedness and the numerical method for the problems of scattering of time-harmonic acoustic waves in a two-layered medium in two dimensions. The two-layered medium is composed of two unbounded media with different physical properties and the interface between the two media is considered to be a planar surface. The boundary of the two-layered medium is assumed to be a rough surface, which is a non-local perturbation with a finite height from a planar surface. Such scattering problems occur in various scientific and engineering applications, such as ground-penetrating radar, seismic exploration, ocean exploration, photonic crystal, and diffraction by gratings. For an introduction and historical remarks, we refer to [14, 34, 16, 32, 35, 33].

There are many works concerning the well-posedness of the rough surface scattering problems for acoustic waves. The rough surface scattering problems with Dirichlet or impedance boundary conditions have been studied in [10, 37, 6, 7] by using the integral equation methods. In each of these works, the layer potential technique was applied to transform the scattering problem into an equivalent boundary integral equation. [36, 9, 11] considered the rough surface scattering problems by penetrable interfaces and inhomogeneous layers, using the integral equation methods. In [4, 3], the authors studied the rough surface scattering problem with a sound-soft boundary by employing the variational approach in the classical Sobolev space or the weighted Sobolev space. Moreover, the method in [4] was extended in [24] to study the scattering problem by an inhomogeneous layer of a finite height, where the Neumann or generalized impedance boundary condition was imposed on the lower boundary of the inhomogeneous layer. For more works on the well-posedness of the rough surface scattering problems for electromagnetic or elastic waves, we refer to [17, 18, 21, 28, 23].

Some numerical methods have also been developed for the rough surface scattering problems. In [29], the authors introduced the Nyström method for the second-kind integral equation defined on the real line. Based on this, numerical algorithms were proposed for the rough surface scattering problems; see [29] for the sound-soft case and [26] for the penetrable case. An adaptive finite element method with a perfectly matched layer (PML) was proposed in [13] for the wave scattering by periodic structures. In [39], the authors proposed the Nyström method for the scattering problem by penetrable diffraction gratings. In this method, a fast FFT-based algorithm developed in [38] was utilized for efficient computation of the quasi-periodic Green’s functions. In [5], the authors investigated the use of the PML to truncate the rough surface scattering problem and proved the linear rate of convergence for the proposed PML-based method.

In this paper, we consider the scattering problems in a two-layered medium, where the Dirichlet or impedance boundary condition is imposed on the rough boundary. First, we formulate the considered scattering problems as the boundary value problems and prove that each boundary value problem has a unique solution by utilizing the integral equation method associated with the two-layered Green function. Our proofs follow the ideas in [7, 10, 37], which are based on an integral equation theory on unbounded domains given in [8]. We note that different from [7, 10, 37], in this paper we use the two-layered Green function rather than the free-space fundamental solution to the Helmholtz equation in the proposed integral equation formulations, which is due to the presence of the two-layered medium with the planar interface. It is also worth noting that in the proofs of the uniqueness and existence results of this paper, an essential role is played by the investigation of the asymptotic properties of the two-layered Green function for small and large arguments. Second, based on the proposed integral equation formulations, we develop the Nyström method for numerically solving the considered boundary value problems, where the relevant integral equations are discretized by using the method given in [29]. With the aid of the convergence theory of the Nyström method given in [29], we establish the convergence results of our method with the convergence rates depending on the smoothness of the rough boundary. It should be noted that the asymptotic properties of the two-layered Green function obtained in this paper provide a theoretical foundation for our convergence results. Finally, numerical experiments are carried out to show the effectiveness of our Nyström method.

The rest of the paper is organized as follows. In Section 2, we introduce the considered scattering problems and formulate them as the boundary value problems. In Section 3, we study the properties of the two-layered Green function. Based on these properties, we establish the well-posedness of the considered boundary value problems in Section 4. Section 5 is devoted to the Nyström method for the considered boundary value problems. The convergence results and the numerical experiments of the Nyström method are also given in Section 5. Some concluding remarks are given in Section 6. In Appendixes A and B, we present the potential theory and the solvability of integral operators on the real line, respectively, associated with the two-layered Green function.

2 Mathematical Models of the Scattering Problems

In this section, we introduce the mathematical models of the scattering problems. To this end, we give some notations, which will be used throughout the paper. Let VmV\subset\mathbb{R}^{m} (m=1,2m=1,2). We denote by BC(V)BC(V) the set of functions bounded and continuous on VV, a Banach space under the norm ϕ,V:=supxV|ϕ(x)|\|\phi\|_{\infty,V}:=\sup_{x\in V}|\phi(x)|, and by BUC(V)BUC(V) the closed subspace of BC(V)BC(V) containing functions that are bounded and uniformly continuous on VV. We abbreviate ,\|\cdot\|_{\infty,\mathbb{R}} by \|\cdot\|_{\infty}. For 0<α10<\alpha\leq 1, we denote by C0,α(V)C^{0,\alpha}(V) the Banach space of functions ϕBC(V)\phi\in BC(V), which are uniformly Hölder continuous with exponent α\alpha and with norm C0,α(V)\|\cdot\|_{C^{0,\alpha}(V)} defined by ϕC0,α(V):=ϕ,V+supx,yV,xy[|ϕ(x)ϕ(y)|/|xy|α]\|\phi\|_{C^{0,\alpha}(V)}:=\|\phi\|_{\infty,V}+\sup_{x,y\in V,x\neq y}[|\phi(x)-\phi(y)|/|x-y|^{\alpha}]. We let C1,α():={ϕBC()C1():ϕC0,α()}C^{1,\alpha}(\mathbb{R}):=\{\phi\in BC(\mathbb{R})\cap C^{1}(\mathbb{R}):\phi^{\prime}\in C^{0,\alpha}(\mathbb{R})\} be a Banach space under the norm ϕC1,α():=ϕ+ϕC0,α()\|\phi\|_{C^{1,\alpha}(\mathbb{R})}:=\|\phi\|_{\infty}+\|\phi^{\prime}\|_{C^{0,\alpha}(\mathbb{R})}. For any aa\in\mathbb{R}, define Γa:={(x1,a):x1}\Gamma_{a}:=\{(x_{1},a)\,:\,x_{1}\in\mathbb{R}\} and Ua:={(x1,x2):x1,x2>a}U_{a}:=\left\{(x_{1},x_{2})\,:\,x_{1}\in\mathbb{R},x_{2}>a\right\}. In particular, the notation Γ0\Gamma_{0} denotes the plane x2=0x_{2}=0. Let ±2:={(x1,x2)2:x20}\mathbb{R}_{\pm}^{2}:=\{(x_{1},x_{2})\in\mathbb{R}^{2}\,:\,x_{2}\gtrless 0\} be the upper and lower half-spaces, respectively. For any x,y2x,y\in\mathbb{R}^{2}, let x=(x1,x2)x=(x_{1},x_{2}) and y=(y1,y2)y=(y_{1},y_{2}). For any x2x\in\mathbb{R}^{2} with x0x\neq 0, let x^:=x/|x|\hat{x}:=x/|x| denote the direction of xx. Define 𝕊±1:={x=(x1,x2)2:|x|=1,x20}\mathbb{S}^{1}_{\pm}:=\{x=(x_{1},x_{2})\in\mathbb{R}^{2}:|x|=1,x_{2}\gtrless 0\}. Let C(Ω)C(\Omega) represent the space of continuous functions on Ω\Omega and let Ci(Ω)C^{i}(\Omega) represent the space of CiC^{i}-continuous functions on Ω\Omega for i=1,2i=1,2.

The geometry of the scattering problems we consider is shown in Figure 2.1. Let +2\mathbb{R}_{+}^{2} and 2\mathbb{R}_{-}^{2} denote the homogeneous media above and below Γ0\Gamma_{0}, respectively. The wave numbers of the media in the upper and lower half-spaces are k+k_{+} and kk_{-}, respectively, with k+,k>0k_{+},k_{-}>0 and k+kk_{+}\neq k_{-}. Define n:=k/k+n:=k_{-}/k_{+}. Assume that a rough surface Γ:={(x1,x2):x2=f(x1),x1}\Gamma:=\left\{(x_{1},x_{2})\,:\,x_{2}=f(x_{1}),x_{1}\in\mathbb{R}\right\} is fully embeded in the lower half-space 2\mathbb{R}^{2}_{-}, where fC1,1()f\in C^{1,1}(\mathbb{R}) with f+:=supxf(x)<0f_{+}:=\sup_{x\in\mathbb{R}}f(x)<0. Let f:=infxf(x)f_{-}:=\inf_{x\in\mathbb{R}}f(x) and the Lipschitz constant L:=fL:=\|f^{\prime}\|_{\infty}. Define the domain D:={(x1,x2):x2>f(x1)}D:=\{(x_{1},x_{2})\,:\,x_{2}>f(x_{1})\}.

Refer to caption
Figure 2.1: Geometry of the scattering problems

Consider the scattering problems with time-harmonic incident waves in the domain DD. In this paper, we assume that the incident wave uiu^{i} is either a plane wave or a point-source wave. The reference wave u0u^{0} is generated by the incident wave uiu^{i} and the two-layered medium. The explicit expressions of the incident wave and its corresponding reference wave will be described later. Then the total field utot=u0+usu^{tot}=u^{0}+u^{s} is the sum of the reference wave u0u^{0} and the scattered wave usu^{s}, where usu^{s} satisfies the following Helmholtz equations

{Δus+k+2us=0 in +2,Δus+k2us=0 in 2D.\displaystyle\left\{\begin{aligned} &\Delta u^{s}+k_{+}^{2}u^{s}=0&&\text{ in }\mathbb{R}^{2}_{+},\\ &\Delta u^{s}+k_{-}^{2}u^{s}=0&&\text{ in }\mathbb{R}^{2}_{-}\cap D.\end{aligned}\right. (2.1)

Moreover, we assume the total field utotu^{tot} satisfies the following boundary conditions on the interface Γ0\Gamma_{0}, i.e.,

utot|+=utot|,utotx2|+=utotx2| on Γ0,u^{tot}\big{|}_{+}=u^{tot}\big{|}_{-},\quad\left.\frac{\partial u^{tot}}{\partial x_{2}}\right|_{+}=\left.\frac{\partial u^{tot}}{\partial x_{2}}\right|_{-}\text{ on }\Gamma_{0}, (2.2)

where ’+/-’ denote the limits from +2\mathbb{R}^{2}_{+} and 2\mathbb{R}^{2}_{-}, respectively. Furthermore, the boundary condition imposed on Γ\Gamma is given by (utot)=0\mathscr{B}(u^{tot})=0 on Γ\Gamma. Here, \mathscr{B} denotes one of the following two boundary conditions:

{(utot):=utot on Γ, if Γ is a sound-soft boundary,(utot):=utot/νikβutot on Γ, if Γ is an impedance boundary,\begin{cases}\mathscr{B}(u^{tot}):=u^{tot}\quad&\text{ on }\Gamma,\quad\text{ if }\Gamma\text{ is a sound-soft boundary,}\\ \mathscr{B}(u^{tot}):=\partial u^{tot}/\partial\nu-ik_{-}\beta u^{tot}\quad&\text{ on }\Gamma,\quad\text{ if }\Gamma\text{ is an impedance boundary,}\end{cases}

where βBC(Γ)\beta\in BC(\Gamma), ν(x)\nu(x) denotes the unit normal at xΓx\in\Gamma pointing out of DD and utot/ν\partial u^{tot}/\partial\nu denotes the normal derivative of utotu^{tot} with respect to ν\nu.

To guarantee the uniqueness of the considered scattering problems, the scattered wave usu^{s} is required to satisfy a radiation condition. In contrast to the bounded obstacle scattering problems, which utilize the Sommerfeld radiation condition, usu^{s} needs to satisfy the so-called upward propagating radiation condition in U0U_{0} with respect to k+k_{+}, that is,

us(x)=2ΓhΦk+(x,y)y2ϕ(y)𝑑s(y),xUh,u^{s}(x)=2\int_{\Gamma_{h}}\frac{\partial\Phi_{k_{+}}(x,y)}{\partial y_{2}}\phi(y)ds(y),\quad x\in U_{h}, (2.3)

for some h>0h>0 and ϕL(Γh)\phi\in L^{\infty}(\Gamma_{h}), where Φk+(x,y):=i4H0(1)(k+|xy|)\Phi_{k_{+}}(x,y):=\frac{i}{4}H_{0}^{(1)}(k_{+}|x-y|) with x,y2x,y\in\mathbb{R}^{2} and xyx\neq y is the free-space Green function for the Helmholtz equation Δw+k+2w=0\Delta w+k^{2}_{+}w=0 with the wave number k+k_{+} and H0(1)(t)H_{0}^{(1)}(t) with tt\in\mathbb{R} denotes the Hankel function of the first kind of order zero. We also need usu^{s} to satisfy the following boundedness condition

supxD|(x2+|f|+1)αus(x)|<\sup_{x\in D}\big{|}(x_{2}+|f_{-}|+1)^{\alpha}u^{s}(x)\big{|}<\infty (2.4)

for some α\alpha\in\mathbb{R}.

Furthermore, if Γ\Gamma is an impedance boundary, the scattered wave usu^{s} needs to satisfy that for some θ(0,1)\theta\in(0,1) and some constant Cθ>0C_{\theta}>0,

|us(x)|Cθ[x2f(x1)]θ1\left|\nabla u^{s}(x)\right|\leq C_{\theta}[x_{2}-f(x_{1})]^{\theta-1} (2.5)

for xD\Ub¯x\in D\backslash\overline{U_{b}}, where b=f+/2b=f_{+}/2.

Now we describe the reference wave u0u^{0} more specifically. The reference wave is the total field of the scattering problem in the two-layered medium without the rough surface Γ\Gamma and is generated by the incident wave uiu^{i}. In this paper, we consider two types of incident waves, that is, the plane wave and the point-source wave.

First, we describe the reference wave in the case when the incident wave uiu^{i} is the plane wave upli(x):=eik+xdu_{pl}^{i}(x):=e^{ik_{+}x\cdot d}, where d:=(cos(θd),sin(θd))d:=(\cos(\theta_{d}),\sin(\theta_{d})), θd(π,2π)\theta_{d}\in(\pi,2\pi). In this case, the reference wave u0=upl0u^{0}=u^{0}_{pl} is given by (see, e.g., (2.13a) and (2.13b) in [31] or Section 4 in [27])

upl0(x)={upli(x)+uplr(x) in +2,uplt(x) in 2,u^{0}_{pl}(x)=\left\{\begin{array}[]{ll}u^{i}_{pl}(x)+u^{r}_{pl}(x)&\text{ in }\mathbb{R}^{2}_{+},\\ u^{t}_{pl}(x)&\text{ in }\mathbb{R}^{2}_{-},\end{array}\right. (2.6)

with

uplr(x):=(π+θd)eik+xdr,uplt(x):=𝒯(π+θd)eikxdt,u^{r}_{pl}(x):=\mathcal{R}(\pi+\theta_{d})e^{ik_{+}x\cdot d^{r}},\quad u^{t}_{pl}(x):=\mathcal{T}(\pi+\theta_{d})e^{ik_{-}x\cdot d^{t}},

where dr=(cos(θd),sin(θd))d^{r}=(\cos(\theta_{d}),-\sin(\theta_{d})) is the reflected direction, dt=n1(cos(θd),i𝒮(cosθd,n))d^{t}=n^{-1}(\cos(\theta_{d}),-i\mathcal{S}(\cos\theta_{d},n)) and where (π+θd)\mathcal{R}\left(\pi+\theta_{d}\right) and 𝒯(π+θd)\mathcal{T}\left(\pi+\theta_{d}\right) are called the reflection and transmission coefficients, respectively, with \mathcal{R} and 𝒯\mathcal{T} defined by

(θ):=isinθ+𝒮(cosθ,n)isinθ𝒮(cosθ,n),𝒯(θ):=(θ)+1 for θ.\mathcal{R}(\theta):=\frac{i\sin\theta+\mathcal{S}(\cos\theta,n)}{i\sin\theta-\mathcal{S}(\cos\theta,n)},\quad\mathcal{T}(\theta):=\mathcal{R}(\theta)+1\quad\text{ for }\theta\in\mathbb{R}.

Here, S(z,a)S(z,a) with zz\in\mathbb{R} and a>0a>0 is defined by

𝒮(z,a):={ia2z2 if a1|z|1,z2a2 if a1|z|>1.\mathcal{S}(z,a):=\left\{\begin{array}[]{ll}-i\sqrt{a^{2}-z^{2}}&\text{ if }a^{-1}|z|\leq 1,\\ \sqrt{z^{2}-a^{2}}&\text{ if }a^{-1}|z|>1.\end{array}\right.

The definition of 𝒮\mathcal{S} gives that

dt={(n1cosθd,1(n1cosθd)2) if n1|cosθd|1,(n1cosθd,i(n1cosθd)21) if n1|cosθd|>1.d^{t}=\begin{cases}\left(n^{-1}\cos\theta_{d},-\sqrt{1-\left(n^{-1}\cos\theta_{d}\right)^{2}}\right)&\text{ if }n^{-1}\left|\cos\theta_{d}\right|\leq 1,\\ \left(n^{-1}\cos\theta_{d},-i\sqrt{\left(n^{-1}\cos\theta_{d}\right)^{2}-1}\right)&\text{ if }n^{-1}\left|\cos\theta_{d}\right|>1.\end{cases}

In particular, if |n1cos(θd)|1|n^{-1}\cos(\theta_{d})|\leq 1, then dt=(cos(θdt),sin(θdt))d^{t}=(\cos(\theta_{d}^{t}),\sin(\theta_{d}^{t})) is the transmitted direction with θdt[π,2π]\theta_{d}^{t}\in[\pi,2\pi] satisfying cos(θdt)=n1cos(θd)\cos(\theta_{d}^{t})=n^{-1}\cos(\theta_{d}). It is easy to see that such reference wave u0u^{0} satisfies the following conditions

{Δu0+k+2u0=0 in +2,Δu0+k2u0=0 in 2,u+0=u0,u0x2|+=u0x2| on Γ0.\displaystyle\left\{\begin{aligned} &\Delta u^{0}+k_{+}^{2}u^{0}=0&&\text{ in }\mathbb{R}^{2}_{+},\\ &\Delta u^{0}+k_{-}^{2}u^{0}=0&&\text{ in }\mathbb{R}^{2}_{-},\\ &u^{0}_{+}=u^{0}_{-},\quad\left.\frac{\partial u^{0}}{\partial x_{2}}\right|_{+}=\left.\frac{\partial u^{0}}{\partial x_{2}}\right|_{-}&&\text{ on }\Gamma_{0}.\end{aligned}\right. (2.7)

Second, we describe the reference wave in the case when the incident wave uiu^{i} is the point source wave upsi(x)u_{ps}^{i}(x), where upsi(x)=i4H0(1)(k+|xy|)u_{ps}^{i}(x)=\frac{i}{4}H_{0}^{(1)}(k_{+}|x-y|) if the source point y+2y\in\mathbb{R}^{2}_{+} and upsi(x)=i4H0(1)(k|xy|)u_{ps}^{i}(x)=\frac{i}{4}H_{0}^{(1)}(k_{-}|x-y|) if the source point yD2y\in D\cap\mathbb{R}^{2}_{-}. In this case, the reference wave u0(x)=G(x,y)u^{0}(x)=G(x,y), where G(x,y)G(x,y) denotes the so-called two-layered Green function. Precisely, for any y+22y\in\mathbb{R}^{2}_{+}\cup\mathbb{R}^{2}_{-}, the two-layered Green function G(x,y)G(x,y) is the solution of the following scattering problem (see page 17 in [31])

ΔxG(x,y)+k2G(x,y)=δ(xy)\displaystyle\Delta_{x}G(x,y)+k^{2}G(x,y)=-\delta(x-y) in 2,\displaystyle\text{in }\mathbb{R}^{2}, (2.8)
[G(x,y)]=0,[G(x,y)/ν(x)]=0\displaystyle[G(x,y)]=0,\;[\partial G(x,y)/\partial\nu(x)]=0 on Γ0,\displaystyle\text{on }\Gamma_{0}, (2.9)
lim|x||x|(G(x,y)|x|ik(x)G(x,y))=0\displaystyle\lim\limits_{|x|\to\infty}\sqrt{|x|}\left(\frac{\partial G(x,y)}{\partial|x|}-ik(x)G(x,y)\right)=0 uniformly for all x^𝕊+1𝕊1,\displaystyle\text{uniformly for all }\hat{x}\in\mathbb{S}^{1}_{+}\cup\mathbb{S}^{1}_{-}, (2.10)

where k(x)=k±k(x)=k_{\pm} for x±2x\in\mathbb{R}^{2}_{\pm}, δ\delta denotes the Dirac delta distribution, ν\nu denotes the unit normal on Γ0\Gamma_{0} pointing into +2\mathbb{R}^{2}_{+} and [][\cdot] denotes the jump across the interface Γ0\Gamma_{0}. Here, (2.10) is called the Sommerfeld radiation condition. The explicit expression of G(x,y)G(x,y) is given by (see, e.g., [31, formula (2.27)])

G(x,y)={i4H0(1)(k+|xy|)+G(x,y),x,y+2,G𝒬(x,y),x+2,y2 or x2,y+2,i4H0(1)(k|xy|)+G(x,y),x,y2,G(x,y)=\begin{cases}\frac{i}{4}H_{0}^{(1)}(k_{+}|x-y|)+G_{\mathcal{R}}(x,y),\quad x,y\in\mathbb{R}^{2}_{+},\\ G_{\mathcal{Q}}(x,y),\quad x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-}\text{ or }x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+},\\ \frac{i}{4}H_{0}^{(1)}(k_{-}|x-y|)+G_{\mathcal{R}}(x,y),\quad x,y\in\mathbb{R}^{2}_{-},\end{cases} (2.11)

where G(x,y)G_{\mathcal{R}}(x,y) and G𝒬(x,y)G_{\mathcal{Q}}(x,y) are given by

G(x,y)={14π𝒮(ξ,k+)𝒮(ξ,k)𝒮(ξ,k+)+𝒮(ξ,k)e𝒮(ξ,k+)|x2+y2|𝒮(ξ,k+)eiξ(x1y1)𝑑ξ,x,y+2,14π𝒮(ξ,k)𝒮(ξ,k+)𝒮(ξ,k+)+𝒮(ξ,k)e𝒮(ξ,k)|x2+y2|𝒮(ξ,k)eiξ(x1y1)𝑑ξ,x,y2,G_{\mathcal{R}}(x,y)=\begin{cases}\frac{1}{4\pi}\int_{-\infty}^{\infty}\frac{\mathcal{S}\left(\xi,k_{+}\right)-\mathcal{S}\left(\xi,k_{-}\right)}{\mathcal{S}\left(\xi,k_{+}\right)+\mathcal{S}\left(\xi,k_{-}\right)}\frac{e^{-\mathcal{S}\left(\xi,k_{+}\right)\left|x_{2}+y_{2}\right|}}{\mathcal{S}\left(\xi,k_{+}\right)}e^{i\xi\left(x_{1}-y_{1}\right)}d\xi,\quad x,y\in\mathbb{R}^{2}_{+},\\ \frac{1}{4\pi}\int_{-\infty}^{\infty}\frac{\mathcal{S}\left(\xi,k_{-}\right)-\mathcal{S}\left(\xi,k_{+}\right)}{\mathcal{S}\left(\xi,k_{+}\right)+\mathcal{S}\left(\xi,k_{-}\right)}\frac{e^{-\mathcal{S}(\xi,k_{-})\left|x_{2}+y_{2}\right|}}{\mathcal{S}\left(\xi,k_{-}\right)}e^{i\xi\left(x_{1}-y_{1}\right)}d\xi,\quad x,y\in\mathbb{R}^{2}_{-},\end{cases} (2.12)
G𝒬(x,y)=12πe𝒮(ξ,k)|y2|𝒮(ξ,k+)|x2|𝒮(ξ,k+)+𝒮(ξ,k)eiξ(x1y1)𝑑ξ,x+2,y2 or x2,y+2.G_{\mathcal{Q}}(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{-\mathcal{S}\left(\xi,k_{-}\right)|y_{2}|-\mathcal{S}\left(\xi,k_{+}\right)|x_{2}|}}{\mathcal{S}\left(\xi,k_{+}\right)+\mathcal{S}\left(\xi,k_{-}\right)}e^{i\xi\left(x_{1}-y_{1}\right)}d\xi,\quad x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-}\text{ or }x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+}. (2.13)

Now the above scattering problems can be formulated as the following two boundary value problems (DBVP) and (IBVP) for the scattered wave usu^{s}.

Definition 2.1 (d(D)\mathscr{R}_{d}(D)).

Let d(D)\mathscr{R}_{d}(D) denote the set of functions vC2(D\Γ0)C(D¯)v\in C^{2}(D\backslash\Gamma_{0})\cap C(\overline{D}) such that v|U¯0C1(U¯0)v|_{\overline{U}_{0}}\in C^{1}(\overline{U}_{0}) and v|D\U0C1(D\U0)v|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}).

Dirichlet Boundary Value Problem (DBVP). Given gBC(Γ)g\in BC(\Gamma), determine usd(D)u^{s}\in\mathscr{R}_{d}(D) such that:

(i) usu^{s} is a solution of the Helmholtz equations in (2.1);

(ii) us|+=us|,us/x2|=+us/x2|u^{s}|_{+}=u^{s}|_{-},\partial u^{s}/\partial x_{2}\left|{}_{+}=\partial u^{s}/\partial x_{2}\right|_{-} on Γ0\Gamma_{0};

(iii) us=gu^{s}=g on Γ\Gamma;

(iv) usu^{s} satisfies (2.4) for some α\alpha\in\mathbb{R};

(v) usu^{s} satisfies the upward propagating radiation condition (2.3) in U0U_{0} with the wave number k+k_{+}.

Definition 2.2 (i(D)\mathscr{R}_{i}(D)).

Let i(D)\mathscr{R}_{i}(D) denote the set of functions vC2(D\Γ0)C(D¯)v\in C^{2}(D\backslash\Gamma_{0})\cap C(\overline{D}) satisfying v|U¯0C1(U¯0)v|_{\overline{U}_{0}}\in C^{1}(\overline{U}_{0}), v|D\U0C1(D\U0)v|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}) and satisfying that the normal derivative of vv defined by v/ν(x):=limh0+ν(x)(xhν(x))\partial v/\partial\nu(x):=\lim_{h\to 0+}\nu(x)\cdot\nabla(x-h\nu(x)) exists uniformly for xx on any compact subset of Γ\Gamma.

Impedance Boundary Value Problem (IBVP). Given gBC(Γ),βBC(Γ)g\in BC(\Gamma),\beta\in BC(\Gamma), determine usi(D)u^{s}\in\mathscr{R}_{i}(D) such that:

(i) usu^{s} is a solution of the Helmholtz equations in (2.1);

(ii) us|+=us|,us/x2|=+us/x2|u^{s}|_{+}=u^{s}|_{-},\partial u^{s}/\partial x_{2}\left|{}_{+}=\partial u^{s}/\partial x_{2}\right|_{-} on Γ0\Gamma_{0};

(iii) us/νikβus=g\partial u^{s}/\partial\nu-ik_{-}\beta u^{s}=g on Γ\Gamma;

(iv) usu^{s} satisfies (2.4) for some α\alpha\in\mathbb{R};

(v) For some θ(0,1)\theta\in(0,1) and some constant Cθ>0C_{\theta}>0, usu^{s} satisfies (2.5) for xD\Ub¯x\in D\backslash\overline{U_{b}}, where b=f+/2b=f_{+}/2;

(vi) usu^{s} satisfies the upward propagating radiation condition (2.3) in U0U_{0} with the wave number k+k_{+}.

Remark 2.3.

We note that if usu^{s} is the scattered wave of the scattering problem (2.1)–(2.4) associated with the sound-soft boundary Γ\Gamma (resp. the scattering problem (2.1)–(2.5) associated with the impedance boundary Γ\Gamma), then usu^{s} satisfies the problem (DBVP) with g=u0|ΓBC(Γ)g=-u^{0}|_{\Gamma}\in BC(\Gamma) (resp. the problem (IBVP) with g=u0/ν|Γ+ikβu0|ΓBC(Γ)g=-\partial u^{0}/\partial\nu|_{\Gamma}+ik_{-}\beta u^{0}|_{\Gamma}\in BC(\Gamma)), where u0u^{0} is given as above.

3 Properties of the Two-layered Green Function

In this section, we derive some properties of the two-layered Green function G(x,y)G(x,y), which are useful for the investigation of the well-posedness of the considered boundary value problems and the convergence of the Nyström method in the following two sections. To this end, we give some notations. Define the angle θc:=arccos(n)\theta_{c}:=\mathrm{arccos}(n) if 0<n<10<n<1, where n=k/k+n=k_{-}/k_{+} is given as in Section 2. For any R0>0R_{0}>0, define BR0:={y2:|y|<R0}B_{R_{0}}:=\{y\in\mathbb{R}^{2}\,:\,|y|<R_{0}\} and BR0±:={y±2:|y|<R0}B_{R_{0}}^{\pm}:=\{y\in\mathbb{R}_{\pm}^{2}:|y|<R_{0}\}. Throughout the paper, the constants may be different at different places.

Let the two-layered Green function G(x,y)G(x,y) with y+22y\in\mathbb{R}^{2}_{+}\cup\mathbb{R}^{2}_{-} be given as in Section 2. For any source point yy lying on the interface Γ0\Gamma_{0}, due to the well-posedness of the scattering problem in a two-layered medium (see [2]), we can define the two-layered Green function G(x,y)G(x,y) as the unique solution that satisfies G(,y)G0(,y)Hloc1(2)G(\cdot,y)-G_{0}(\cdot,y)\in H^{1}_{loc}(\mathbb{R}^{2}), ΔxG(x,y)+k2(x)G(x,y)=δ(x,y)\Delta_{x}G(x,y)+k^{2}(x)G(x,y)=-\delta(x,y) in 2\mathbb{R}^{2} (in the distributional sense) and the Sommerfeld radiation condition (2.10), where G0(,y):=1/(2π)ln|y|G_{0}(\cdot,y):=-1/(2\pi)\ln|\cdot-y| denotes the fundamental solution of the Laplace equation Δw=0\Delta w=0 in 2\mathbb{R}^{2}. Here, Hloc1(2)H^{1}_{loc}(\mathbb{R}^{2}) denotes the space of all functions ϕ:2\phi:\mathbb{R}^{2}\to\mathbb{C} such that ϕH1(B)\phi\in H^{1}(B) for all open balls B2B\subset\mathbb{R}^{2}. Moreover, by the expression of the Hankel function H01(t)H^{1}_{0}(t) given in [15, Section 3.5] and the expression of G(x,y)G(x,y) given in (2.11), it is clear that for any y+22y\in\mathbb{R}^{2}_{+}\cup\mathbb{R}^{2}_{-}, G(x,y)G(x,y) also satisfies G(,y)G0(,y)Hloc1(2)G(\cdot,y)-G_{0}(\cdot,y)\in H^{1}_{loc}(\mathbb{R}^{2}).

Let x,y2x,y\in\mathbb{R}^{2} with x=(x1,x2),y=(y1,y2)x=(x_{1},x_{2}),y=(y_{1},y_{2}). For any y=(y1,y2)y=(y_{1},y_{2}), let y:=(y1,y2)y^{\prime}:=(y_{1},-y_{2}). Using the following integral representation of Hankel function (see [14, formula (2.2.11)])

i4H0(1)(κ|xy|)=14π+e𝒮(ξ,κ)|x2y2|𝒮(ξ,κ)eiξ(x1y1)𝑑ξ\frac{i}{4}H_{0}^{(1)}(\kappa|x-y|)=\frac{1}{4\pi}\int_{-\infty}^{+\infty}\frac{e^{-\mathcal{S}(\xi,\kappa)|x_{2}-y_{2}|}}{\mathcal{S}(\xi,\kappa)}e^{i\xi(x_{1}-y_{1})}d\xi (3.1)

for κ>0\kappa>0, x,y2x,y\in\mathbb{R}^{2} with xyx\neq y, the formula (2.11) for G(x,y)G(x,y) can be written as

G(x,y)={G𝒟,k+(x,y)+G𝒫(x,y),x,y+2,G𝒬(x,y),x+2,y2 or x2,y+2,G𝒟,k(x,y)+G𝒫(x,y),x,y2,G(x,y)=\begin{cases}G_{\mathcal{D},k_{+}}(x,y)+G_{\mathcal{P}}(x,y),\quad x,y\in\mathbb{R}_{+}^{2},\\ G_{\mathcal{Q}}(x,y),\quad x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-}\text{ or }x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+},\\ G_{\mathcal{D},k_{-}}(x,y)+G_{\mathcal{P}}(x,y),\quad x,y\in\mathbb{R}_{-}^{2},\end{cases} (3.2)

where G𝒟,κ(x,y)G_{\mathcal{D},\kappa}(x,y) is the half-space Dirichlet Green function for κ>0\kappa>0 (see [6]) and is defined as

G𝒟,κ(x,y):=i4H0(1)(κ|xy|)i4H0(1)(κ|xy|)G_{\mathcal{D},\kappa}(x,y):=\frac{i}{4}H_{0}^{(1)}(\kappa|x-y|)-\frac{i}{4}H_{0}^{(1)}(\kappa|x-y^{\prime}|)

for x,y2x,y\in\mathbb{R}^{2} with xyx\neq y and where G𝒫G_{\mathcal{P}} is given by

G𝒫(x,y):={12π+1𝒮(ξ,k+)+𝒮(ξ,k)e𝒮(ξ,k+)|x2+y2|eiξ(x1y1)𝑑ξ,x,y+2,12π+1𝒮(ξ,k+)+𝒮(ξ,k)e𝒮(ξ,k)|x2+y2|eiξ(x1y1)𝑑ξ,x,y2.G_{\mathcal{P}}(x,y):=\begin{cases}\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{\mathcal{S}(\xi,k_{+})+\mathcal{S}(\xi,k_{-})}e^{-\mathcal{S}(\xi,k_{+})|x_{2}+y_{2}|}e^{i\xi(x_{1}-y_{1})}d\xi,\quad x,y\in\mathbb{R}^{2}_{+},\\ \frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{\mathcal{S}(\xi,k_{+})+\mathcal{S}(\xi,k_{-})}e^{-\mathcal{S}(\xi,k_{-})|x_{2}+y_{2}|}e^{i\xi(x_{1}-y_{1})}d\xi,\quad x,y\in\mathbb{R}^{2}_{-}.\end{cases} (3.3)

Further, with the help of (3.1), we write G𝒬(x,y)G_{\mathcal{Q}}(x,y) as

G𝒬(x,y)=i4H0(1)(k+|xy|)+G𝒮(x,y)for x2,y+2 or x+2,y2,G_{\mathcal{Q}}(x,y)=\frac{i}{4}H_{0}^{(1)}(k_{+}|x-y|)+G_{\mathcal{S}}(x,y)\quad\text{for }x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+}\text{ or }x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-},

where G𝒮(x,y)G_{\mathcal{S}}(x,y) is defined by

G𝒮(x,y):=14π+(2e𝒮(ξ,k)|y2|𝒮(ξ,k+)|x2|𝒮(ξ,k+)+𝒮(ξ,k)eiξ(x1y1)e𝒮(ξ,k+)|x2y2|𝒮(ξ,k+)eiξ(x1y1))𝑑ξG_{\mathcal{S}}(x,y):=\frac{1}{4\pi}\int_{-\infty}^{+\infty}\bigg{(}\frac{2e^{-\mathcal{S}\left(\xi,k_{-}\right)|y_{2}|-\mathcal{S}\left(\xi,k_{+}\right)|x_{2}|}}{\mathcal{S}\left(\xi,k_{+}\right)+\mathcal{S}\left(\xi,k_{-}\right)}e^{i\xi\left(x_{1}-y_{1}\right)}-\frac{e^{-\mathcal{S}(\xi,k_{+})|x_{2}-y_{2}|}}{\mathcal{S}(\xi,k_{+})}e^{i\xi(x_{1}-y_{1})}\bigg{)}d\xi (3.4)

for x2,y+2 or x+2,y2.x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+}\text{ or }x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-}.

The following lemma presents the continuity properties of G(x,y)G(x,y).

Lemma 3.1.

For any k+,k>0k_{+},k_{-}>0 with k+kk_{+}\neq k_{-}, we have R(x,y):=G(x,y)G0(x,y)C1(2×2)R(x,y):=G(x,y)-G_{0}(x,y)\in C^{1}(\mathbb{R}^{2}\times\mathbb{R}^{2}).

Proof.

Let x0,y02x_{0},y_{0}\in\mathbb{R}^{2} be arbitrarily fixed. Our proof is divided into three parts.

Part 1: we prove that R(x,y)R(x,y) is continuous at (x0,y0)(x_{0},y_{0}). Denote the ball centered at z2z\in\mathbb{R}^{2} with radius rr by Br(z)B_{r}(z). Choose the cutoff function χCc(2)\chi\in C_{c}^{\infty}(\mathbb{R}^{2}) such that

χ(x)={1,xB2ϵ(y0),0,x2\B4ϵ(y0)¯,\chi(x)=\begin{cases}1,\quad x\in B_{2\epsilon}(y_{0}),\\ 0,\quad x\in\mathbb{R}^{2}\backslash\overline{B_{4\epsilon}(y_{0})},\end{cases}

with ϵ>0\epsilon>0 being a fixed number. Let P(x,y):=G(x,y)χ(x)G0(x,y)P(x,y):=G(x,y)-\chi(x)G_{0}(x,y). Then we have

ΔxP(x,y)+k2(x)P(x,y)=k2(x)χ(x)G0(x,y)Δx((χ(x)1)G0(x,y))=:f0(x,y).\Delta_{x}P(x,y)+k^{2}(x)P(x,y)=-k^{2}(x)\chi(x)G_{0}(x,y)-\Delta_{x}((\chi(x)-1)G_{0}(x,y))=:f_{0}(x,y).

For any yBϵ(y0)y\in B_{\epsilon}(y_{0}) and p(1,+)p\in(1,+\infty), we can easily verify that f0(,y)Lp(2)Cp,ϵ\|f_{0}(\cdot,y)\|_{L^{p}(\mathbb{R}^{2})}\leq C_{p,\epsilon} for some constant Cp,ϵ>0C_{p,\epsilon}>0. Furthermore, for any y1,y2Bϵ(y0)y_{1},y_{2}\in B_{\epsilon}(y_{0}) and p(1,+)p\in(1,+\infty), we can easily prove that

f0(,y1)f0(,y2)Lp(2)0 as y1y2.\|f_{0}(\cdot,y_{1})-f_{0}(\cdot,y_{2})\|_{L^{p}(\mathbb{R}^{2})}\to 0\text{ as }y_{1}\to y_{2}. (3.5)

Let K2K\subset\mathbb{R}^{2} be a bounded domain with CC^{\infty}-boundary K\partial K. By the well-posedness of the scattering problem in a two-layered medium (see [2]) and the interior regularity of the elliptic equation (see [19, Sections 6.2 and 6.3]), it follows that for yBϵ(y0)y\in B_{\epsilon}(y_{0}),

P(,y)H2(K)Cf0(,y)L2(2)C2,ϵ,K\|P(\cdot,y)\|_{H^{2}(K)}\leq C\|f_{0}(\cdot,y)\|_{L^{2}(\mathbb{R}^{2})}\leq C_{2,\epsilon,K} (3.6)

for some constants C,C2,ϵ,K>0C,C_{2,\epsilon,K}>0, which implies that

P(,y)C(K¯),P(,y)C(K¯)C2,ϵ,K.P(\cdot,y)\in C(\overline{K}),\quad\|P(\cdot,y)\|_{C(\overline{K})}\leq C_{2,\epsilon,K}. (3.7)

Similarly to the above derivations, we can also obtain that for y1,y2Bϵ(y0)y_{1},y_{2}\in B_{\epsilon}(y_{0}),

P(,y1)P(,y2)C(K¯)CP(,y1)P(,y2)H2(K)Cf0(,y1)f0(,y2)L2(K).\|P(\cdot,y_{1})-P(\cdot,y_{2})\|_{C(\overline{K})}\leq C\|P(\cdot,y_{1})-P(\cdot,y_{2})\|_{H^{2}(K)}\leq C\|f_{0}(\cdot,y_{1})-f_{0}(\cdot,y_{2})\|_{L^{2}(K)}. (3.8)

Thus by using (3.7), (3.8) and (3.5), we can deduce that P(x,y)P(x,y) is continuous at (x0,y0)(x_{0},y_{0}). Hence R(x,y)R(x,y) is continuous at (x0,y0)(x_{0},y_{0}) due to the fact that R(x,y)=(χ(x)1)G0(x,y)+P(x,y)R(x,y)=(\chi(x)-1)G_{0}(x,y)+P(x,y).

Part 2: we prove that xR(x,y)\nabla_{x}R(x,y) is continuous at (x0,y0)(x_{0},y_{0}). To do this, we utilize the LpL^{p} estimates of the elliptic equation. Choose the cutoff function ηCc(2)\eta\in C_{c}^{\infty}(\mathbb{R}^{2}) such that

η(x):={1,xB2ϵ(x0),0,x2\B4ϵ(x0)¯,\eta(x):=\begin{cases}1,\quad x\in B_{2\epsilon}(x_{0}),\\ 0,\quad x\in\mathbb{R}^{2}\backslash\overline{B_{4\epsilon}(x_{0})},\end{cases}

with a fixed number ϵ>0\epsilon>0. Let Pη(x,y):=η(x)P(x,y)P_{\eta}(x,y):=\eta(x)P(x,y), where P(x,y)P(x,y) is given as in Part 1. Then we have

ΔxPη(x,y)\displaystyle\Delta_{x}P_{\eta}(x,y) =Δxη(x)P(x,y)+2xη(x)xP(x,y)+η(x)ΔxP(x,y)\displaystyle=\Delta_{x}\eta(x)P(x,y)+2\nabla_{x}\eta(x)\cdot\nabla_{x}P(x,y)+\eta(x)\Delta_{x}P(x,y)
=[(Δxη(x)k2η(x)P(x,y)+2xη(x)xP(x,y)]+η(x)f0(x,y)\displaystyle=[(\Delta_{x}\eta(x)-k^{2}\eta(x)P(x,y)+2\nabla_{x}\eta(x)\cdot\nabla_{x}P(x,y)]+\eta(x)f_{0}(x,y)
=:f1(x,y)+η(x)f0(x,y)\displaystyle=:f_{1}(x,y)+\eta(x)f_{0}(x,y)
=:f2(x,y).\displaystyle=:f_{2}(x,y).

By the Gagliardo-Nirenberg-Sobolev inequality (see [19, Theorem 1 in Section 5.6.1]), it follows that for any p>2p>2 and any yBϵ(y0)y\in B_{\epsilon}(y_{0}),

f1(,y)Lp(2)\displaystyle\|f_{1}(\cdot,y)\|_{L^{p}(\mathbb{R}^{2})} Cxf(,y)Lp(2)\displaystyle\leq C\|\nabla_{x}f(\cdot,y)\|_{L^{p^{*}}(\mathbb{R}^{2})}
Cxf(,y)Lp(B4ϵ(x0))\displaystyle\leq C\|\nabla_{x}f(\cdot,y)\|_{L^{p^{*}}(B_{4\epsilon}(x_{0}))}
Cf1(,y)H1(B4ϵ(x0))\displaystyle\leq C\|f_{1}(\cdot,y)\|_{H^{1}(B_{4\epsilon}(x_{0}))}
CP(,y)H2(B4ϵ(x0))\displaystyle\leq C\|P(\cdot,y)\|_{H^{2}(B_{4\epsilon}(x_{0}))}

for some constant C>0C>0, where pp^{*} satisfies 1/p=1/p1/21/p=1/p^{*}-1/2 (it is clear that p(1,2)p^{*}\in(1,2)). This, together with (3.6), implies that for any p>2p>2 and any yBϵ(y0)y\in B_{\epsilon}(y_{0}),

f1(,y)Lp(2)CP(,y)H2(B4ϵ(x0))Cf0(,y)L2(2).\|f_{1}(\cdot,y)\|_{L^{p}(\mathbb{R}^{2})}\leq C\|P(\cdot,y)\|_{H^{2}(B_{4\epsilon}(x_{0}))}\leq C\|f_{0}(\cdot,y)\|_{L^{2}(\mathbb{R}^{2})}. (3.9)

Similarly, it follows that for any p>2p>2 and y1,y2Bϵ(y0)y_{1},y_{2}\in B_{\epsilon}(y_{0}),

f1(,y1)f1(,y2)Lp(2)Cf0(,y1)f0(,y2)L2(2).\|f_{1}(\cdot,y_{1})-f_{1}(\cdot,y_{2})\|_{L^{p}(\mathbb{R}^{2})}\leq C\|f_{0}(\cdot,y_{1})-f_{0}(\cdot,y_{2})\|_{L^{2}(\mathbb{R}^{2})}. (3.10)

It is easy to see that Pη(,y)H2(B4ϵ(x0))P_{\eta}(\cdot,y)\in H^{2}(B_{4\epsilon}(x_{0})) with yBϵ(y0)y\in B_{\epsilon}(y_{0}) is the solution of the following problem

{Δw(x)=f2(x,y)inB4ϵ(y0),w(x)=0onB4ϵ(x0).\begin{cases}\Delta w(x)=f_{2}(x,y)\quad\textrm{in}~{}B_{4\epsilon}(y_{0}),\\ w(x)=0\quad\textrm{on}~{}\partial B_{4\epsilon}(x_{0}).\end{cases}

Then it can be deduced from [20, Theorem 9.15] that

Pη(,y)W2,p(B4ϵ(x0))P_{\eta}(\cdot,y)\in W^{2,p}(B_{4\epsilon}(x_{0}))

for any p(2,)p\in(2,\infty) and yBϵ(y0)y\in B_{\epsilon}(y_{0}). Furthermore, applying the Sobolev inequality given in [19, Theorem 6 in Section 5.6.3], Lemma 9.17 in [20] and the inequality (3.9), we obtain that for any p>2p>2 and yBϵ(y0)y\in B_{\epsilon}(y_{0}), Pη(,y)C1(B4ϵ(x0)¯)P_{\eta}(\cdot,y)\in C^{1}\big{(}\overline{B_{4\epsilon}(x_{0})}\big{)} with

Pη(,y)C1(B4ϵ(x0)¯)\displaystyle\|P_{\eta}(\cdot,y)\|_{C^{1}\big{(}\overline{B_{4\epsilon}(x_{0})}\big{)}} CPη(,y)W2,p(B4ϵ(x0))\displaystyle\leq C\|P_{\eta}(\cdot,y)\|_{W^{2,p}(B_{4\epsilon}(x_{0}))}
Cf0(,y)L2(2)+Cf0(,y)Lp(2)\displaystyle\leq C\|f_{0}(\cdot,y)\|_{L^{2}(\mathbb{R}^{2})}+C\|f_{0}(\cdot,y)\|_{L^{p}(\mathbb{R}^{2})}
Cf0(,y)Lp(B4ϵ(y0))Cp,ϵ\displaystyle\leq C\|f_{0}(\cdot,y)\|_{L^{p}(B_{4\epsilon(y_{0})})}\leq C_{p,\epsilon}

for some constants C,Cp,ϵC,C_{p,\epsilon}. Similarly, we can apply [20, Lemma 9.17] and the inequality (3.10) to obtain that for any p>2p>2 and y1,y2Bϵ(y0)y_{1},y_{2}\in B_{\epsilon}(y_{0}),

Pη(,y1)Pη(,y2)C1(B4ϵ(x0)¯)\displaystyle\|P_{\eta}(\cdot,y_{1})-P_{\eta}(\cdot,y_{2})\|_{C^{1}(\overline{B_{4\epsilon}(x_{0})})} CPη(,y1)Pη(,y2)W2,p(B4ϵ(x0))\displaystyle\leq C\|P_{\eta}(\cdot,y_{1})-P_{\eta}(\cdot,y_{2})\|_{W^{2,p}(B_{4\epsilon}(x_{0}))}
Cf0(,y1)f0(,y2)Lp(B4ϵ(x0))\displaystyle\leq C\|f_{0}(\cdot,y_{1})-f_{0}(\cdot,y_{2})\|_{L^{p}(B_{4\epsilon}(x_{0}))} (3.11)

for some constant C>0C>0. Hence, by using the formulas (3.11) and (3.5) and the fact that Pη(,y)C1(B4ϵ(x0)¯)P_{\eta}(\cdot,y)\in C^{1}\big{(}\overline{B_{4\epsilon}(x_{0})}\big{)}, we have that xPη(x,y)\nabla_{x}P_{\eta}(x,y) is continuous at (x0,y0)(x_{0},y_{0}). This, together with the definitions of PP and RR, implies that xR(x,y)\nabla_{x}R(x,y) is continuous at (x0,y0)(x_{0},y_{0}).

Part 3: we prove that yR(x,y)\nabla_{y}R(x,y) is continuous at (x0,y0)(x_{0},y_{0}). It is known from [31, (2.28)] that G(x,y)=G(y,x)G(x,y)=G(y,x) for x,y2\Γ0x,y\in\mathbb{R}^{2}\backslash\Gamma_{0} with xyx\neq y. It was also proved in [27, Remark 3.5] that G(,y)C1(2\{y})G(\cdot,y)\in C^{1}(\mathbb{R}^{2}\backslash\{y\}) for any y2y\in\mathbb{R}^{2} and G(x,)C1(2\{x})G(x,\cdot)\in C^{1}(\mathbb{R}^{2}\backslash\{x\}) for any x2x\in\mathbb{R}^{2}. Thus it follows that G(x,y)=G(y,x)G(x,y)=G(y,x) for any x,y2x,y\in\mathbb{R}^{2} with xyx\neq y. This, together with the facts that G0(x,y)=G0(y,x)G_{0}(x,y)=G_{0}(y,x) for any x,y2x,y\in\mathbb{R}^{2} with xyx\neq y and R(x,y)C(2×2)R(x,y)\in C(\mathbb{R}^{2}\times\mathbb{R}^{2}) (see the result in Part 1), implies that R(x,y)=R(y,x)R(x,y)=R(y,x) for any x,y2x,y\in\mathbb{R}^{2}. Hence, we can apply the result in Part 2 to obtain that yR(x,y)\nabla_{y}R(x,y) is continuous at (x0,y0)(x_{0},y_{0}).

Therefore, the proof is complete due to the arbitrariness of x0,y0x_{0},y_{0}. ∎

Remark 3.2.

By Lemma 3.1, G(x,y)G_{\mathcal{R}}(x,y) can be extended as a function in C1(+2¯×+2¯)C1(2¯×2¯)C^{1}(\overline{\mathbb{R}^{2}_{+}}\times\overline{\mathbb{R}^{2}_{+}})\cup C^{1}(\overline{\mathbb{R}^{2}_{-}}\times\overline{\mathbb{R}^{2}_{-}}) and G𝒮(x,y)G_{\mathcal{S}}(x,y) can be extended as a function in C1(+2¯×2¯)C1(2¯×+2¯)C^{1}(\overline{\mathbb{R}^{2}_{+}}\times\overline{\mathbb{R}^{2}_{-}})\cup C^{1}(\overline{\mathbb{R}^{2}_{-}}\times\overline{\mathbb{R}^{2}_{+}}).

The following lemma gives the asymptotic properties of G𝒟,κG_{\mathcal{D},\kappa}.

Lemma 3.3.

Assume κ>0\kappa>0 and let R0>0R_{0}>0 be an arbitrary fixed number. Suppose that y=(y1,y2)y=(y_{1},y_{2}) and y=(y1,y2)y^{\prime}=(y_{1},-y_{2}) for y2y\in\mathbb{R}^{2} and suppose that x=x^|x|=|x|(cosθx^,sinθx^)x=\hat{x}|x|=|x|(\cos\theta_{\hat{x}},\sin\theta_{\hat{x}}) with θx^[0,2π)\theta_{\hat{x}}\in[0,2\pi) for x2x\in\mathbb{R}^{2} with |x|0|x|\neq 0. Then we have the asymptotic behaviors

G𝒟,κ(x,y)=eiκ|x||x|eiπ48πκ(eiκx^yeiκx^y)+G𝒟,κ,Res,1(x,y),\displaystyle G_{\mathcal{D},\kappa}(x,y)=\frac{e^{i\kappa|x|}}{\sqrt{|x|}}\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi\kappa}}\Big{(}e^{-i\kappa\hat{x}\cdot y}-e^{-i\kappa\hat{x}\cdot y^{\prime}}\Big{)}+G_{\mathcal{D},\kappa,Res,1}(x,y),
yG𝒟,κ(x,y)=eiκ|x||x|eiπ4κ8π(eiκx^y(cosθx^sinθx^)eiκx^y(cosθx^sinθx^))+G𝒟,κ,Res,2(x,y),\displaystyle\nabla_{y}G_{\mathcal{D},\kappa}(x,y)=\frac{e^{i\kappa|x|}}{\sqrt{|x|}}e^{-i\frac{\pi}{4}}\sqrt{\frac{\kappa}{8\pi}}\bigg{(}e^{-i\kappa\hat{x}\cdot y}\bigg{(}\genfrac{}{}{0.0pt}{0}{\cos\theta_{\hat{x}}}{\sin\theta_{\hat{x}}}\bigg{)}-e^{-i\kappa\hat{x}y^{\prime}}\bigg{(}\genfrac{}{}{0.0pt}{0}{\cos\theta_{\hat{x}}}{-\sin\theta_{\hat{x}}}\bigg{)}\bigg{)}+G_{\mathcal{D},\kappa,Res,2}(x,y),

where G𝒟,κ,Res,1G_{\mathcal{D},\kappa,Res,1}, G𝒟,κ,Res,2G_{\mathcal{D},\kappa,Res,2} satisfy

|G𝒟,κ,Res,1(x,y)|,|G𝒟,κ,Res,2(x,y)|CR0|x|32,|x|,|G_{\mathcal{D},\kappa,Res,1}(x,y)|,~{}|G_{\mathcal{D},\kappa,Res,2}(x,y)|\leq C_{R_{0}}|x|^{-\frac{3}{2}},\quad|x|\to\infty,

uniformly for all θx^[0,2π)\theta_{\hat{x}}\in[0,2\pi) and yBR0y\in B_{R_{0}}. Here, the constant CR0C_{R_{0}} is independent of xx and yy but dependent of R0R_{0}.

Proof.

The statement of this lemma is a direct consequence of the following asymptotic behaviors of the Hankel function H0(1)H_{0}^{(1)} (see (3.105) in [15])

H0(1)(t)=2πtei(tπ4){1+𝒪(1t)},t,\displaystyle H_{0}^{(1)}(t)=\sqrt{\frac{2}{\pi t}}e^{i(t-\frac{\pi}{4})}\bigg{\{}1+\mathcal{O}(\frac{1}{t})\bigg{\}},\quad t\to\infty,
ddtH0(1)(t)=2πtei(t+π4){1+𝒪(1t)},t.\displaystyle\frac{d}{dt}H_{0}^{(1)}(t)=\sqrt{\frac{2}{\pi t}}e^{i(t+\frac{\pi}{4})}\bigg{\{}1+\mathcal{O}(\frac{1}{t})\bigg{\}},\quad t\to\infty.

The following lemma provides the uniform far-field asymptotics of some functions relevant to the two-layered Green function GG, which are mainly based on the work [27].

Lemma 3.4.

Assume k+>k>0k_{+}>k_{-}>0 and let R0>0R_{0}>0 be an arbitrary fixed number. Suppose that y=(y1,y2)y=(y_{1},y_{2}) and y=(y1,y2)y^{\prime}=(y_{1},-y_{2}) for y2y\in\mathbb{R}^{2} and suppose that x=(x1,x2)=x^|x|=|x|(cosθx^,sinθx^)x=(x_{1},x_{2})=\hat{x}|x|=|x|(\cos\theta_{\hat{x}},\sin\theta_{\hat{x}}) with θx^(0,π)(π,2π)\theta_{\hat{x}}\in(0,\pi)\cup(\pi,2\pi) for x+22x\in\mathbb{R}^{2}_{+}\cup\mathbb{R}^{2}_{-}. Define

H(x,y):={G(x,y)G𝒟,k+(x,y),x+2,y+2¯,G(x,y),x+2,y2,H(x,y):=\begin{cases}G(x,y)-G_{\mathcal{D},k_{+}}(x,y),&x\in\mathbb{R}^{2}_{+},y\in\overline{\mathbb{R}^{2}_{+}},\\ G(x,y),&x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-},\end{cases}

and

I(x,y):={G(x,y)G𝒟,k(x,y),x2,y2¯,G(x,y),x2,y+2.I(x,y):=\begin{cases}G(x,y)-G_{\mathcal{D},k_{-}}(x,y),&x\in\mathbb{R}^{2}_{-},y\in\overline{\mathbb{R}_{-}^{2}},\\ G(x,y),&x\in\mathbb{R}_{-}^{2},y\in\mathbb{R}_{+}^{2}.\end{cases}

Then we have the following statements.

(i) For θx^(0,π)\theta_{\hat{x}}\in(0,\pi), we have the asymptotic behaviors

H(x,y)=eik+|x||x|H1(x^,y)+H1,Res(x,y),\displaystyle H(x,y)=\frac{e^{ik_{+}|x|}}{\sqrt{|x|}}H_{1}^{\infty}(\hat{x},y)+H_{1,Res}(x,y),
yH(x,y)=eik+|x||x|H2(x^,y)+H2,Res(x,y),\displaystyle\nabla_{y}H(x,y)=\frac{e^{ik_{+}|x|}}{\sqrt{|x|}}H_{2}^{\infty}(\hat{x},y)+H_{2,Res}(x,y),

where H1H_{1}^{\infty} and H2H_{2}^{\infty} are given by

H1(x^,y):=eiπ48πk+{𝒯(θx^)eik+x^y,x^𝕊+1,y+2¯,𝒯(θx^)eik+(y1cosθx^+iy2𝒮(cosθx^,n)),x^𝕊+1,y2,H_{1}^{\infty}(\hat{x},y):=\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi k_{+}}}\begin{cases}\mathcal{T}(\theta_{\hat{x}})e^{-ik_{+}\hat{x}\cdot y^{\prime}},&\hat{x}\in\mathbb{S}^{1}_{+},y\in\overline{\mathbb{R}_{+}^{2}},\\ \mathcal{T}(\theta_{\hat{x}})e^{-ik_{+}(y_{1}\cos\theta_{\hat{x}}+iy_{2}\mathcal{S}(\cos\theta_{\hat{x}},n))},&\hat{x}\in\mathbb{S}^{1}_{+},y\in\mathbb{R}_{-}^{2},\end{cases}
H2(x^,y):=eiπ4k+8π{𝒯(θx^)eik+x^y(cosθx^sinθx^)T,x^𝕊+1,y+2¯,𝒯(θx^)eik+(y1cosθx^+iy2𝒮(cosθx^,n))(cosθx^,i𝒮(cosθx^,n))T,x^𝕊+1,y2,H_{2}^{\infty}(\hat{x},y):=e^{-i\frac{\pi}{4}}\sqrt{\frac{k_{+}}{8\pi}}\begin{cases}\mathcal{T}(\theta_{\hat{x}})e^{-ik_{+}\hat{x}\cdot y^{\prime}}\begin{pmatrix}\cos\theta_{\hat{x}}\\ -\sin\theta_{\hat{x}}\end{pmatrix}^{T},&\hat{x}\in\mathbb{S}^{1}_{+},y\in\overline{\mathbb{R}_{+}^{2}},\\ \mathcal{T}(\theta_{\hat{x}})e^{-ik_{+}(y_{1}\cos\theta_{\hat{x}}+iy_{2}\mathcal{S}(\cos\theta_{\hat{x}},n))}\begin{pmatrix}\cos\theta_{\hat{x}},\\ i\mathcal{S}(\cos\theta_{\hat{x}},n)\end{pmatrix}^{T},&\hat{x}\in\mathbb{S}^{1}_{+},y\in\mathbb{R}_{-}^{2},\end{cases}

and where H1,ResH_{1,Res} and H2,ResH_{2,Res} satisfy the estimates

|H1,Res(x,y)|,|H2,Res(x,y)|CR0|x|3/4,|x|,|H_{1,Res}(x,y)|,~{}|H_{2,Res}(x,y)|\leq C_{R_{0}}|x|^{-3/4},\quad|x|\to\infty,

uniformly for all θx^(0,π)\theta_{\hat{x}}\in(0,\pi) and yBR0y\in B_{R_{0}},

|H1,Res(x,y)|,|H2,Res(x,y)|CR0|θcθx^|32|x|32,|x|,|H_{1,Res}(x,y)|,~{}|H_{2,Res}(x,y)|\leq C_{R_{0}}|\theta_{c}-\theta_{\hat{x}}|^{-\frac{3}{2}}|x|^{-\frac{3}{2}},\quad|x|\to\infty,

uniformly for all θx^(0,θc)(θc,π/2)\theta_{\hat{x}}\in(0,\theta_{c})\cup(\theta_{c},\pi/2) and yBR0y\in B_{R_{0}}, and

|H1,Res(x,y)|,|H2,Res(x,y)|CR0|πθcθx^|32|x|32,|x|,|H_{1,Res}(x,y)|,~{}|H_{2,Res}(x,y)|\leq C_{R_{0}}|\pi-\theta_{c}-\theta_{\hat{x}}|^{-\frac{3}{2}}|x|^{-\frac{3}{2}},\quad|x|\to\infty,

uniformly for all θx^[π/2,πθc)(πθc,π)\theta_{\hat{x}}\in[\pi/2,\pi-\theta_{c})\cup(\pi-\theta_{c},\pi) and yBR0y\in B_{R_{0}}. Here, the constant CR0C_{R_{0}} is independent of xx and yy but dependent of R0R_{0}.

(ii) For θx^(π,2π)\theta_{\hat{x}}\in(\pi,2\pi), we have the asymptotic behaviors

I(x,y)=eik|x||x|I1(x^,y)+I1,Res(x,y),\displaystyle I(x,y)=\frac{e^{ik_{-}|x|}}{\sqrt{|x|}}I_{1}^{\infty}(\hat{x},y)+I_{1,Res}(x,y),
yI(x,y)=eik|x||x|I2(x^,y)+I2,Res(x,y),\displaystyle\nabla_{y}I(x,y)=\frac{e^{ik_{-}|x|}}{\sqrt{|x|}}I_{2}^{\infty}(\hat{x},y)+I_{2,Res}(x,y),

where I1I_{1}^{\infty} and I2I_{2}^{\infty} are given by

I1(x^,y):=eiπ48πk{2isinθx^isinθx^+𝒮(cosθx^,1/n)eik(y1cosθx^iy2𝒮(cosθx^,1/n)),x^𝕊1,y+2,2isinθx^isinθx^+𝒮(cosθx^,1/n)eikx^y,x^𝕊1,y2¯,I_{1}^{\infty}(\hat{x},y):=\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi k_{-}}}\begin{cases}\frac{2i\sin\theta_{\hat{x}}}{i\sin\theta_{\hat{x}}+\mathcal{S}(\cos\theta_{\hat{x}},1/n)}e^{-ik_{-}(y_{1}\cos\theta_{\hat{x}}-iy_{2}\mathcal{S}(\cos\theta_{\hat{x}},1/n))},&\hat{x}\in\mathbb{S}^{1}_{-},y\in\mathbb{R}_{+}^{2},\\ \frac{2i\sin\theta_{\hat{x}}}{i\sin\theta_{\hat{x}}+\mathcal{S}(\cos\theta_{\hat{x}},1/n)}e^{-ik_{-}\hat{x}\cdot y^{\prime}},&\hat{x}\in\mathbb{S}^{1}_{-},y\in\overline{\mathbb{R}_{-}^{2}},\end{cases}
I2(x^,y):=eiπ4k8π{2isinθx^isinθx^+𝒮(cosθx^,1/n)eik(y1cosθx^iy2𝒮(cosθx^,1/n))(cosθx^i𝒮(cosθx^,1/n)),x^𝕊1,y+2,2isinθx^isinθx^+𝒮(cosθx^,1/n)eikx^y(cosθx^sinθx^)T,x^𝕊1,y2¯,I^{\infty}_{2}(\hat{x},y):=e^{-i\frac{\pi}{4}}\sqrt{\frac{k_{-}}{8\pi}}\left\{\begin{array}[]{ll}\frac{2i\sin\theta_{\hat{x}}}{i\sin\theta_{\hat{x}}+\mathcal{S}(\cos\theta_{\hat{x}},1/n)}e^{-ik_{-}(y_{1}\cos\theta_{\hat{x}}-iy_{2}\mathcal{S}(\cos\theta_{\hat{x}},1/n))}&\begin{pmatrix}\cos\theta_{\hat{x}}\\ -i\mathcal{S}(\cos\theta_{\hat{x}},1/n)\end{pmatrix},\\ &\hat{x}\in\mathbb{S}^{1}_{-},y\in\mathbb{R}_{+}^{2},\\ \frac{2i\sin\theta_{\hat{x}}}{i\sin\theta_{\hat{x}}+\mathcal{S}(\cos\theta_{\hat{x}},1/n)}e^{-ik_{-}\hat{x}\cdot y^{\prime}}\begin{pmatrix}\cos\theta_{\hat{x}}\\ -\sin\theta_{\hat{x}}\end{pmatrix}^{T},&\hat{x}\in\mathbb{S}^{1}_{-},y\in\overline{\mathbb{R}_{-}^{2}},\end{array}\right.

and where I1,ResI_{1,Res} and I2,ResI_{2,Res} satisfy the estimates

|I1,Res(x,y)|,|I2,Res(x,y)|CR0|x|32,|x|+,|I_{1,Res}(x,y)|,~{}|I_{2,Res}(x,y)|\leq C_{R_{0}}|x|^{-\frac{3}{2}},\quad|x|\to+\infty,

uniformly for all θx^(π,2π)\theta_{\hat{x}}\in(\pi,2\pi) and yBR0y\in B_{R_{0}}. Here, the constant CR0C_{R_{0}} is independent of xx and yy but dependent of R0R_{0}.

Proof.

The statement of this lemma is a direct consequence of Lemma 3.3 and [27, Theorems 2.14 and 3.2 and Remark 3.5]. ∎

Remark 3.5.

By (2.11), (3.1) and Lemma 3.1, HH and II can be rewritten as follows:

H(x,y)={12π+eik+(zy1i𝒮(z,1)y2)𝒮(z,1)+𝒮(z,n)eik+(zx1+i𝒮(z,1)x2)𝑑z,x+2,y+2¯,12πeik+(zy1+i𝒮(z,n)y2)𝒮(z,1)+𝒮(z,n)eik+(zx1+i𝒮(z,1)x2)𝑑z,x+2,y2,H(x,y)=\begin{cases}\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{e^{-ik_{+}(zy_{1}-i\mathcal{S}(z,1)y_{2})}}{\mathcal{S}(z,1)+\mathcal{S}(z,n)}e^{ik_{+}(zx_{1}+i\mathcal{S}(z,1)x_{2})}dz,&x\in\mathbb{R}^{2}_{+},y\in\overline{\mathbb{R}^{2}_{+}},\\ \frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{-ik_{+}(zy_{1}+i\mathcal{S}(z,n)y_{2})}}{\mathcal{S}\left(z,1\right)+\mathcal{S}\left(z,n\right)}e^{ik_{+}(zx_{1}+i\mathcal{S}(z,1)x_{2})}dz,&x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-},\end{cases}

and

I(x,y)={12πeik+(zy1i𝒮(z,n)y2)𝒮(z,1)+𝒮(z,n)eik+(zx1i𝒮(z,1)x2)𝑑z,x2,y+2,12π+eik+(zy1+i𝒮(z,n)y2)𝒮(z,1)+𝒮(z,n)eik+(zx1i𝒮(z,n)x2)𝑑z,x2,y2¯.I(x,y)=\begin{cases}\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{-ik_{+}(zy_{1}-i\mathcal{S}(z,n)y_{2})}}{\mathcal{S}\left(z,1\right)+\mathcal{S}\left(z,n\right)}e^{ik_{+}(zx_{1}-i\mathcal{S}(z,1)x_{2})}dz,&x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+},\\ \frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{e^{-ik_{+}(zy_{1}+i\mathcal{S}(z,n)y_{2})}}{\mathcal{S}(z,1)+\mathcal{S}(z,n)}e^{ik_{+}(zx_{1}-i\mathcal{S}(z,n)x_{2})}dz,&x\in\mathbb{R}_{-}^{2},y\in\overline{\mathbb{R}^{2}_{-}}.\end{cases}

With the aid of the above lemmas and remarks, we have the following theorem on the asymptotic properties of G𝒫(x,y)G_{\mathcal{P}}(x,y) and G𝒬(x,y)G_{\mathcal{Q}}(x,y).

Theorem 3.6.

Assume that k+,k>0k_{+},k_{-}>0 with k+kk_{+}\neq k_{-}. Let x=(x1,x2)2x=(x_{1},x_{2})\in\mathbb{R}^{2} and y=(y1,y2)2y=(y_{1},y_{2})\in\mathbb{R}^{2}. Define y:=(y1,y2)y^{\prime}:=(y_{1},-y_{2}) and xy~:=(x1y1,x2)\widetilde{x-y}:=(x_{1}-y_{1},x_{2}). Then we have the following statements.

(i) If x,yx,y satisfy x2y2>0x_{2}\cdot y_{2}>0, then G𝒫(x,y)G_{\mathcal{P}}(x,y) satisfies the inequalities

|G𝒫(x,y)|,|yG𝒫(x,y)|C(1+|x2|+|y2|)|xy|32,\left|G_{\mathcal{P}}(x,y)\right|,~{}\left|\nabla_{y}G_{\mathcal{P}}(x,y)\right|\leq C(1+|x_{2}|+|y_{2}|)|x-y^{\prime}|^{-\frac{3}{2}},

where the constant CC depends only on k±k_{\pm}.

(ii) If x,yx,y satisfy x2y2<0x_{2}\cdot y_{2}<0 and |y2|h|y_{2}|\leq h for some h>0h>0, then G𝒬(x,y)G_{\mathcal{Q}}(x,y) satisfies the inequalities

|G𝒬(x,y)|,|yG𝒬(x,y)|C(1+|x2|)|xy~|32,\left|G_{\mathcal{Q}}(x,y)\right|,~{}\left|\nabla_{y}G_{\mathcal{Q}}(x,y)\right|\leq C(1+|x_{2}|)\big{|}\widetilde{x-y}\big{|}^{-\frac{3}{2}},

where the constant CC depends only on k±k_{\pm} and hh.

Proof.

We only give the derivations on the estimates of G𝒫(x,y)G_{\mathcal{P}}(x,y) and G𝒬(x,y)G_{\mathcal{Q}}(x,y) by using the asymptotic behaviors of H(x,y)H(x,y) and I(x,y)I(x,y) given in Lemma 3.4 and the continuity of R(x,y)R(x,y) given in Lemma 3.1. We omit the proof on the estimates of yG𝒫(x,y)\nabla_{y}G_{\mathcal{P}}(x,y) and yG𝒬(x,y)\nabla_{y}G_{\mathcal{Q}}(x,y), since these estimates can be similarly deduced by using the asymptotic behaviors of yH(x,y)\nabla_{y}H(x,y) and yI(x,y)\nabla_{y}I(x,y) given in Lemma 3.4 as well as the continuity of yR(x,y)\nabla_{y}R(x,y) given in Lemma 3.1. Our proof is divided into the following three parts.

Part 1: we establish the estimates for G𝒫G_{\mathcal{P}} when k+>kk_{+}>k_{-}. In this part, we consider three steps.

Step 1.1: we prove that there exists some δ>0\delta>0 such that

|G𝒫(x,y)|C(1+|x2|+|y2|)|xy|32|G_{\mathcal{P}}(x,y)|\leq C(1+|x_{2}|+|y_{2}|)|x-y^{\prime}|^{-\frac{3}{2}} (3.12)

for all x,y+2x,y\in\mathbb{R}_{+}^{2} with |xy|δ|x-y^{\prime}|\geq\delta, where CC is a constant depending only on k±k_{\pm}.

By taking the substitution ξ=k+z\xi=k_{+}z in (3.3), G𝒫G_{\mathcal{P}} can be rewritten as

G𝒫(x,y)=12π+1𝒮(z,1)+𝒮(z,n)eik+(z(x1y1)+i𝒮(z,1)(x2+y2))𝑑zG_{\mathcal{P}}(x,y)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{\mathcal{S}(z,1)+\mathcal{S}(z,n)}e^{ik_{+}\left(z(x_{1}-y_{1})+i\mathcal{S}(z,1)(x_{2}+y_{2})\right)}dz

for x,y+2x,y\in\mathbb{R}^{2}_{+}. This, together with Remark 3.5, implies that for x,y+2x,y\in\mathbb{R}_{+}^{2},

G𝒫(x,y)=H(xy,(0,0)),G_{\mathcal{P}}(x,y)=H(x-y^{\prime},(0,0)),

where xy=(x1y1,x2+y2)=|xy|(cos(θxy^),sin(θxy^))x-y^{\prime}=(x_{1}-y_{1},x_{2}+y_{2})=|x-y^{\prime}|(\cos(\theta_{\widehat{x-y^{\prime}}}),\sin(\theta_{\widehat{x-y^{\prime}}})) with θxy^(0,π)\theta_{\widehat{x-y^{\prime}}}\in(0,\pi). Then it follows from Lemma 3.4 that

G𝒫(x,y)=eik+|xy||xy|eiπ48πk+2isinθxy^isinθxy^𝒮(cosθxy^,n)+GRes,a(x,y)G_{\mathcal{P}}(x,y)=\frac{e^{ik_{+}|x-y^{\prime}|}}{\sqrt{|x-y^{\prime}|}}\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi k_{+}}}\frac{2i\sin\theta_{\widehat{x-y^{\prime}}}}{i\sin\theta_{\widehat{x-y^{\prime}}}-\mathcal{S}(\cos\theta_{\widehat{x-y^{\prime}}},n)}+G_{Res,a}(x,y) (3.13)

for x,y+2x,y\in\mathbb{R}_{+}^{2}, where GRes,aG_{Res,a} satisfies

|GRes,a(x,y)|C|xy|34,|xy|,|G_{Res,a}(x,y)|\leq C|x-y^{\prime}|^{-\frac{3}{4}},\quad|x-y^{\prime}|\to\infty, (3.14)

uniformly for all θxy^(0,π)\theta_{\widehat{x-y^{\prime}}}\in(0,\pi),

|GRes,a(x,y)|C|θcθxy^|32|xy|32,|xy|,|G_{Res,a}(x,y)|\leq C|\theta_{c}-\theta_{\widehat{x-y^{\prime}}}|^{-\frac{3}{2}}|x-y^{\prime}|^{-\frac{3}{2}},\quad|x-y^{\prime}|\to\infty, (3.15)

uniformly for all θxy^(0,θc)(θc,π/2)\theta_{\widehat{x-y^{\prime}}}\in(0,\theta_{c})\cup(\theta_{c},\pi/2), and

|GRes,a(x,y)|C|πθcθxy^|32|xy|32,|xy|,|G_{Res,a}(x,y)|\leq C|\pi-\theta_{c}-\theta_{\widehat{x-y^{\prime}}}|^{-\frac{3}{2}}|x-y^{\prime}|^{-\frac{3}{2}},\quad|x-y^{\prime}|\to\infty, (3.16)

uniformly for all θxy^[π/2,πθc)(πθc,π)\theta_{\widehat{x-y^{\prime}}}\in[\pi/2,\pi-\theta_{c})\cup(\pi-\theta_{c},\pi), where CC is a constant depending only on k±k_{\pm}. If θxy^(0,θc/2)(πθc/2,π)\theta_{\widehat{x-y^{\prime}}}\in(0,\theta_{c}/2)\cup(\pi-\theta_{c}/2,\pi), then we can apply (3.15) and (3.16) to obtain that there exists δ1>0\delta_{1}>0 such that

|GRes,a(x,y)|C|θc2|32|xy|32for |xy|δ1.|G_{Res,a}(x,y)|\leq C\Big{|}\frac{\theta_{c}}{2}\Big{|}^{-\frac{3}{2}}|x-y^{\prime}|^{-\frac{3}{2}}\quad\text{for }|x-y^{\prime}|\geq\delta_{1}. (3.17)

Moreover, if θxy^[θc/2,πθc/2]\theta_{\widehat{x-y^{\prime}}}\in[\theta_{c}/2,\pi-\theta_{c}/2], then we can apply (3.14) and the fact that |x1y1|tan(θc/2)|x2+y2||x_{1}-y_{1}|\tan(\theta_{c}/2)\leq|x_{2}+y_{2}| to deduce that there exists δ2>0\delta_{2}>0 such that

|GRes,a(x,y)|C|xy|34Cx2+y2|xy|32for |xy|δ2.|G_{Res,a}(x,y)|\leq C|x-y^{\prime}|^{-\frac{3}{4}}\leq C^{\prime}\frac{x_{2}+y_{2}}{|x-y^{\prime}|^{\frac{3}{2}}}\quad\text{for }|x-y^{\prime}|\geq\delta_{2}. (3.18)

Here, the constants CC, CC^{\prime} in (3.17) and (3.18) depend only on k±k_{\pm}. Hence, combining the estimates (3.17) and (3.18), we have that there exists δ:=max(δ1,δ2)\delta:=\max(\delta_{1},\delta_{2}) such that

|GRes,a(x,y)|C(1+x2+y2)|xy|32|G_{Res,a}(x,y)|\leq C(1+x_{2}+y_{2})|x-y^{\prime}|^{-\frac{3}{2}} (3.19)

for all x,y+2x,y\in\mathbb{R}^{2}_{+} with |xy|δ|x-y^{\prime}|\geq\delta, where the constant CC depends only on k±k_{\pm}.

On the other hand, since sinθxy^=(x2+y2)/|xy|\sin\theta_{\widehat{x-y^{\prime}}}=(x_{2}+y_{2})/|x-y^{\prime}|, it follows from (3.13) that

|G𝒫(x,y)GRes,a(x,y)|C(x2+y2)|xy|32|G_{\mathcal{P}}(x,y)-G_{Res,a}(x,y)|\leq C(x_{2}+y_{2})|x-y^{\prime}|^{-\frac{3}{2}} (3.20)

for all x,y+2x,y\in\mathbb{R}_{+}^{2}, where CC is a constant depending only on k±k_{\pm}.

Utilizing (3.19) and (3.20), we have that (3.12) holds for all x,y+2x,y\in\mathbb{R}_{+}^{2} with |xy|δ|x-y^{\prime}|\geq\delta, where δ\delta is given as above.

Step 1.2: we prove that there exists some δ>0\delta>0 such that G𝒫G_{\mathcal{P}} satisfies (3.12) for all x,y2x,y\in\mathbb{R}^{2}_{-} with |xy|δ|x-y^{\prime}|\geq\delta, where the constant CC depends only on k±k_{\pm}.

For x,y2x,y\in\mathbb{R}_{-}^{2}, we can write G𝒫(x,y)G_{\mathcal{P}}(x,y) as

G𝒫(x,y)=12π+eik+(z(x1y1)i𝒮(z,n)(x2+y2))𝒮(z,1)+𝒮(z,n)𝑑z.G_{\mathcal{P}}(x,y)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{e^{ik_{+}(z(x_{1}-y_{1})-i\mathcal{S}(z,n)(x_{2}+y_{2}))}}{\mathcal{S}(z,1)+\mathcal{S}(z,n)}dz.

Then we obtain from Remark 3.5 that

G𝒫(x,y)=I(xy,(0,0)).G_{\mathcal{P}}(x,y)=I(x-y^{\prime},(0,0)).

Hence it follows from Lemma 3.4 that

G𝒫(x,y)=eik|xy||xy|eiπ48πk2isinθxy^isinθxy^+𝒮(cosθxy^,1/n)+GRes,b(x,y)G_{\mathcal{P}}(x,y)=\frac{e^{ik_{-}|x-y^{\prime}|}}{\sqrt{|x-y^{\prime}|}}\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi k_{-}}}\frac{2i\sin\theta_{\widehat{x-y^{\prime}}}}{i\sin\theta_{\widehat{x-y^{\prime}}}+\mathcal{S}(\cos\theta_{\widehat{x-y^{\prime}}},1/n)}+G_{Res,b}(x,y) (3.21)

for x,y2x,y\in\mathbb{R}_{-}^{2}, where GRes,bG_{Res,b} satisfies

|GRes,b(x,y)|C|xy|32,|xy|,|G_{Res,b}(x,y)|\leq C|x-y^{\prime}|^{-\frac{3}{2}},\quad|x-y^{\prime}|\to\infty,

uniformly for θxy^(π,2π)\theta_{\widehat{x-y^{\prime}}}\in(\pi,2\pi), where CC is a constant depending only on k±k_{\pm}. This implies that there exists δ>0\delta>0 such that

|GRes,b(x,y)|C|xy|32|G_{Res,b}(x,y)|\leq C|x-y^{\prime}|^{-\frac{3}{2}} (3.22)

for all x,y2x,y\in\mathbb{R}_{-}^{2} with |xy|δ|x-y^{\prime}|\geq\delta, where the constant CC depends only on k±k_{\pm}.

On the other hand, similarly to Step 1.1, it follows from (3.21) that

|G𝒫(x,y)GRes,b(x,y)|C(|x2|+|y2|)|xy|32|G_{\mathcal{P}}(x,y)-G_{Res,b}(x,y)|\leq C(|x_{2}|+|y_{2}|)|x-y^{\prime}|^{-\frac{3}{2}} (3.23)

for all x,y2x,y\in\mathbb{R}^{2}_{-}, where CC is a constant depending only on k±k_{\pm}.

By (3.22) and (3.23), we have that G𝒫G_{\mathcal{P}} satisfies (3.12) for all x,y2x,y\in\mathbb{R}^{2}_{-} with |xy|δ|x-y^{\prime}|\geq\delta, where δ\delta is given as above.

Step 1.3: we prove that for any δ0>0\delta_{0}>0, there exists a constant C>0C>0 depending on δ0\delta_{0} such that (3.12) holds for all x,yx,y satisfying x2y2>0x_{2}\cdot y_{2}>0 and |xy|δ0|x-y^{\prime}|\leq\delta_{0}.

Recall that G(x,y)=(i/4)H0(1)(k+|xy|)+G𝒫(x,y)G_{\mathcal{R}}(x,y)=-(i/4)H_{0}^{(1)}(k_{+}|x-y^{\prime}|)+G_{\mathcal{P}}(x,y) for x,y+2x,y\in\mathbb{R}^{2}_{+} and G(x,y)=(i/4)H0(1)(k|xy|)+G𝒫(x,y)G_{\mathcal{R}}(x,y)=-(i/4)H_{0}^{(1)}(k_{-}|x-y^{\prime}|)+G_{\mathcal{P}}(x,y) for x,y2x,y\in\mathbb{R}^{2}_{-}. Then from the equation (2.12) and Remark 3.2, it follows that for some function PP defined in +22\mathbb{R}^{2}_{+}\cup\mathbb{R}^{2}_{-}, we can write GG_{\mathcal{R}} as G(x,y)=P(xy)G_{\mathcal{R}}(x,y)=P(x-y^{\prime}) for x,y+2x,y\in\mathbb{R}^{2}_{+} and for x,y2x,y\in\mathbb{R}^{2}_{-}. Using the continuity property of GG_{\mathcal{R}} given in Remark 3.2, it is clear that P(z)P(z) can be extended as a function in C(+2¯)C(2¯)C(\overline{\mathbb{R}^{2}_{+}})\cup C(\overline{\mathbb{R}^{2}_{-}}). Thus we have that for any δ0>0\delta_{0}>0, there exists a constant CC depending only on δ0\delta_{0} and k±k_{\pm} such that |G(x,y)|C|G_{\mathcal{R}}(x,y)|\leq C for all x,yx,y satisfying x2y2>0x_{2}\cdot y_{2}>0 and |xy|δ0|x-y^{\prime}|\leq\delta_{0}. This, together with the asymptotic properties of the Hankel function H0(1)H^{(1)}_{0} for small arguments (see [15] for the expression of H0(1)H^{(1)}_{0}), implies that there exists a constant C>0C>0 such that (3.12) holds for x,yx,y satisfying x2y2>0x_{2}\cdot y_{2}>0 and |xy|δ0|x-y^{\prime}|\leq\delta_{0}.

From the discussions in Steps 1.1, 1.2 and 1.3, we obtain that G𝒫(x,y)G_{\mathcal{P}}(x,y) satisfies (3.12) for all x,yx,y satisfying x2y2>0x_{2}\cdot y_{2}>0, where the constant CC depends only on k±k_{\pm}.

Part II: we establish the estimates for G𝒬G_{\mathcal{Q}} when k+>kk_{+}>k_{-}. In this part, we consider three steps.

Step 2.1: we prove that there exists some δ>0\delta>0 such that

|G𝒬(x,y)|C1+x2|xy~|32|G_{\mathcal{Q}}(x,y)|\leq C\frac{1+x_{2}}{|\widetilde{x-y}|^{\frac{3}{2}}} (3.24)

for all x,yx,y satisfying x2>0x_{2}>0, hy2<0-h\leq y_{2}<0 and |xy~|δ|\widetilde{x-y}|\geq\delta, where CC is a constant depending only on k±k_{\pm} and hh.

Suppose that x,yx,y satisfy x2>0x_{2}>0 and hy2<0-h\leq y_{2}<0. Let xy~=(x1y1,x2)=|xy~|(cosθxy~,sinθxy~)\widetilde{x-y}=(x_{1}-y_{1},x_{2})=|\widetilde{x-y}|(\cos\theta_{\widetilde{x-y}},\sin\theta_{\widetilde{x-y}}) with θxy~(0,π)\theta_{\widetilde{x-y}}\in(0,\pi) and y~:=(0,y2)\tilde{y}:=(0,y_{2}). By the change of variable ξ=k+z\xi=k_{+}z, G𝒬G_{\mathcal{Q}} can be written as

G𝒬(x,y)=12π+eik+i𝒮(z,n)y2𝒮(z,1)+𝒮(z,n)eik+(z(x1y1)+i𝒮(z,1)x2)𝑑z.G_{\mathcal{Q}}(x,y)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{e^{-ik_{+}i\mathcal{S}(z,n)y_{2}}}{\mathcal{S}(z,1)+\mathcal{S}(z,n)}e^{ik_{+}(z(x_{1}-y_{1})+i\mathcal{S}(z,1)x_{2})}dz.

Then it follows from Remark 3.5 that

G𝒬(x,y)=H(xy~,y~).G_{\mathcal{Q}}(x,y)=H(\widetilde{x-y},\tilde{y}).

Hence using Lemma 3.4, we obtain that

G𝒬(x,y)=eik+|xy~||xy~|eiπ48πk+2isinθxy~isinθxy~𝒮(cosθxy~,n)eik+iy2𝒮(cosθxy~,n)+GRes,c(x,y)G_{\mathcal{Q}}(x,y)=\frac{e^{ik_{+}|\widetilde{x-y}|}}{\sqrt{|\widetilde{x-y}|}}\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi k_{+}}}\frac{2i\sin\theta_{\widetilde{x-y}}}{i\sin\theta_{\widetilde{x-y}}-\mathcal{S}(\cos\theta_{\widetilde{x-y}},n)}e^{-ik_{+}iy_{2}\mathcal{S}(\cos\theta_{\widetilde{x-y}},n)}+G_{Res,c}(x,y) (3.25)

for x+2x\in\mathbb{R}_{+}^{2}, y2y\in\mathbb{R}_{-}^{2}, where GRes,cG_{Res,c} satisfies

|GRes,c(x,y)|C|xy~|34,|xy~|+,|G_{Res,c}(x,y)|\leq C|\widetilde{x-y}|^{-\frac{3}{4}},\quad|\widetilde{x-y}|\to+\infty, (3.26)

uniformly for all θxy~(0,π)\theta_{\widetilde{x-y}}\in(0,\pi) and hy20-h\leq y_{2}\leq 0,

|GRes,c(x,y)|C|θcθxy~|32|xy~|32,|xy~|+,|G_{Res,c}(x,y)|\leq C|\theta_{c}-\theta_{\widetilde{x-y}}|^{-\frac{3}{2}}|\widetilde{x-y}|^{-\frac{3}{2}},\quad|\widetilde{x-y}|\to+\infty, (3.27)

uniformly for all θxy^(0,θc)(θc,π/2)\theta_{\widehat{x-y}}\in(0,\theta_{c})\cup(\theta_{c},\pi/2) and hy20-h\leq y_{2}\leq 0, and

|GRes,c(x,y)|C|πθcθxy~|32|xy~|32,|xy~|+,|G_{Res,c}(x,y)|\leq C|\pi-\theta_{c}-\theta_{\widetilde{x-y}}|^{-\frac{3}{2}}|\widetilde{x-y}|^{-\frac{3}{2}},\quad|\widetilde{x-y}|\to+\infty, (3.28)

uniformly for all θxy~[π/2,πθc)(πθc,π)\theta_{\widetilde{x-y}}\in[\pi/2,\pi-\theta_{c})\cup(\pi-\theta_{c},\pi) and hy20-h\leq y_{2}\leq 0, where CC is a constant depending only on k±k_{\pm} and hh.

If θxy~(θc/2,πθc/2)\theta_{\widetilde{x-y}}\in(\theta_{c}/2,\pi-\theta_{c}/2), then we can apply (3.26) and the fact that |x1y1|tan(θc/2)|x2||x_{1}-y_{1}|\tan(\theta_{c}/2)\leq|x_{2}| to obtain that there exists δ1>0\delta_{1}>0 such that

|GRes,c(x,y)|C|xy~|3/4Cx2|xy~|32|G_{Res,c}(x,y)|\leq C|\widetilde{x-y}|^{-3/4}\leq C^{\prime}\frac{x_{2}}{|\widetilde{x-y}|^{\frac{3}{2}}} (3.29)

for |xy~|δ1|\widetilde{x-y}|\geq\delta_{1}. Moreover, if θxy~(0,θc/2][πθc/2,π)\theta_{\widetilde{x-y}}\in(0,\theta_{c}/2]\cup[\pi-\theta_{c}/2,\pi), then we can apply (3.27) and (3.28) to deduce that there exists δ2>0\delta_{2}>0 such that

|GRes,c(x,y)|C|θc2|32|xy~|32C′′|xy|32for |xy~|δ2.|G_{Res,c}(x,y)|\leq C\Big{|}\frac{\theta_{c}}{2}\Big{|}^{-\frac{3}{2}}|\widetilde{x-y}|^{-\frac{3}{2}}\leq C^{\prime\prime}|x-y|^{-\frac{3}{2}}\quad\text{for }|\widetilde{x-y}|\geq\delta_{2}. (3.30)

Here, the constants CC, CC^{\prime}, C′′C^{\prime\prime} in (3.29) and (3.30) depend only on k±k_{\pm} and hh. Combining (3.29) and (3.30), we have that there exists δ:=max(δ1,δ2)\delta:=\max(\delta_{1},\delta_{2}) such that

|GRes,c(x,y)|C1+x2|xy|32|G_{Res,c}(x,y)|\leq C\frac{1+x_{2}}{|x-y|^{\frac{3}{2}}} (3.31)

for all x,yx,y satisfying x2>0x_{2}>0, hy2<0-h\leq y_{2}<0 and |xy~|δ|\widetilde{x-y}|\geq\delta, where CC is a constant depending only on k±k_{\pm} and hh.

On the other hand, since sinθxy~=x2/|xy~|\sin\theta_{\widetilde{x-y}}=x_{2}/|\widetilde{x-y}| and hy2<0-h\leq y_{2}<0, we obtain from (3.25) that

|G𝒬(x,y)GRes,c(x,y)|Cx2|xy~|32|G_{\mathcal{Q}}(x,y)-G_{Res,c}(x,y)|\leq C\frac{x_{2}}{|\widetilde{x-y}|^{\frac{3}{2}}} (3.32)

for all x,yx,y satisfying x2>0x_{2}>0 and hy2<0-h\leq y_{2}<0, where CC is a constant depending only on k±k_{\pm} and hh.

Hence, (3.31) and (3.32) give that (3.24) holds for all x,yx,y satisfying x2>0x_{2}>0, hy2<0-h\leq y_{2}<0 and |xy~|δ|\widetilde{x-y}|\geq\delta, where CC is a constant depending only on k±k_{\pm} and hh.

Step 2.2: we prove that there exists some δ>0\delta>0 such that (3.24) holds for all x,yx,y satisfying x2<0x_{2}<0, 0<y2h0<y_{2}\leq h and |xy~|δ|\widetilde{x-y}|\geq\delta, where CC is a constant depending only on k±k_{\pm} and hh.

Suppose x,yx,y satisfy x2<0x_{2}<0 and 0<y2h0<y_{2}\leq h. By (2.13) we can write G𝒬G_{\mathcal{Q}} as

G𝒬(x,y)=12π+eik+y2i𝒮(z,n)𝒮(z,1)+𝒮(z,n)eik+(z(x1y1)i𝒮(z,n)x2)𝑑z.G_{\mathcal{Q}}(x,y)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{e^{ik_{+}y_{2}i\mathcal{S}(z,n)}}{\mathcal{S}(z,1)+\mathcal{S}(z,n)}e^{ik_{+}(z(x_{1}-y_{1})-i\mathcal{S}(z,n)x_{2})}dz.

This, together with Remark 3.5, implies that

G𝒬(x,y)=I(xy~,y~),G_{\mathcal{Q}}(x,y)=I(\widetilde{x-y},\tilde{y}),

where y~=(0,y2)\tilde{y}=(0,y_{2}) and xy~=(x1y1,x2)\widetilde{x-y}=(x_{1}-y_{1},x_{2}). Then it follows from Lemma 3.4 that for x2x\in\mathbb{R}^{2}_{-} and y+2y\in\mathbb{R}^{2}_{+},

G𝒬(x,y)=eik+|xy~||xy~|eiπ48πk2isinθxy~isinθxy~+𝒮(cosθxy~,1/n)eky2𝒮(cosθx^,1/n)+GRes,d(x,y),G_{\mathcal{Q}}(x,y)=\frac{e^{ik_{+}|\widetilde{x-y}|}}{\sqrt{|\widetilde{x-y}|}}\frac{e^{i\frac{\pi}{4}}}{\sqrt{8\pi k_{-}}}\frac{2i\sin\theta_{\widetilde{x-y}}}{i\sin\theta_{\widetilde{x-y}}+\mathcal{S}(\cos\theta_{\widetilde{x-y}},1/n)}e^{-k_{-}y_{2}\mathcal{S}(\cos\theta_{\hat{x}},1/n)}+G_{Res,d}(x,y), (3.33)

where GRes,dG_{Res,d} satisfies

|GRes,d(x,y)|C|xy~|32,|xy~|+,|G_{Res,d}(x,y)|\leq C|\widetilde{x-y}|^{-\frac{3}{2}},\quad|\widetilde{x-y}|\to+\infty,

uniformly for all θxy~(π,2π)\theta_{\widetilde{x-y}}\in(\pi,2\pi) and y~\tilde{y} with 0<y2h0<y_{2}\leq h and where CC is a constant depending only on k±k_{\pm} and hh. Thus there exists δ>0\delta>0 such that

|GRes,d(x,y)|C|xy~|32|G_{Res,d}(x,y)|\leq C|\widetilde{x-y}|^{-\frac{3}{2}} (3.34)

for |xy~|δ|\widetilde{x-y}|\geq\delta, where CC is a constant depending only on k±k_{\pm} and hh.

On the other hand, similarly to Step 2.1, by (3.33) we have

|G𝒬(x,y)GRes,d(x,y)|C|x2||xy~|32|G_{\mathcal{Q}}(x,y)-G_{Res,d}(x,y)|\leq C\frac{|x_{2}|}{|\widetilde{x-y}|^{\frac{3}{2}}} (3.35)

for x,yx,y satisfying x2<0x_{2}<0 and 0<y2h0<y_{2}\leq h, where CC is a constant depending only on k±k_{\pm} and hh.

Hence, it follows from (3.34) and (3.35) that G𝒬(x,y)G_{\mathcal{Q}}(x,y) satisfies (3.24) for all x,yx,y satisfying x2<0x_{2}<0, 0<y2h0<y_{2}\leq h and |xy|~δ|\widetilde{x-y|}\geq\delta, where the constant CC depends only on k±k_{\pm} and hh.

Step 2.3: we show that for any δ0,h>0\delta_{0},h>0, there exists a constant C>0C>0 depending on δ0\delta_{0} and hh such that (3.24) holds for x,yx,y satisfying x2y2<0x_{2}\cdot y_{2}<0, |y2|h|y_{2}|\leq h and |xy~|δ0|\widetilde{x-y}|\leq\delta_{0}.

Recall that G𝒬(x,y)=(i/4)H0(1)(k+|xy|)+G𝒮(x,y)G_{\mathcal{Q}}(x,y)=(i/4)H_{0}^{(1)}(k_{+}|x-y|)+G_{\mathcal{S}}(x,y) for x2,y+2x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+} and for x+2,y2x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-}. By (3.4), we can write G𝒮G_{\mathcal{S}} as G𝒮(x,y)=Q(xy~,y2)G_{\mathcal{S}}(x,y)=Q(\widetilde{x-y},y_{2}), where Q(,)Q(\cdot,\cdot) is a function defined on +2×{\mathbb{R}^{2}_{+}}\times{\mathbb{R}_{-}} and 2×+{\mathbb{R}^{2}_{-}}\times{\mathbb{R}_{+}} with ±:={x:x0}\mathbb{R}_{\pm}:=\{x\in\mathbb{R}\,:\,x\gtrless 0\}. Using the continuity property of G𝒮G_{\mathcal{S}} given in Remark 3.2, we obtain that Q(,)Q(\cdot,\cdot) can be extended as a function in C(+2¯×¯)C(2¯×+¯)C(\overline{\mathbb{R}^{2}_{+}}\times\overline{\mathbb{R}_{-}})\cup C(\overline{\mathbb{R}^{2}_{-}}\times\overline{\mathbb{R}_{+}}). Thus we have that for any δ0>0\delta_{0}>0, there exists a constant CC depending only on δ0,h,k±\delta_{0},h,k_{\pm} such that |G𝒮(x,y)|C|G_{\mathcal{S}}(x,y)|\leq C for x,yx,y satisfying x2y2<0x_{2}\cdot y_{2}<0, |y2|h|y_{2}|\leq h and |xy~|δ0|\widetilde{x-y}|\leq\delta_{0}. This, together with the asymptotic properties of the Hankel function H0(1)H^{(1)}_{0} for small arguments, implies that there exists a constant C>0C>0 such that (3.24) holds for x,yx,y satisfying x2y2<0x_{2}\cdot y_{2}<0, |y2|h|y_{2}|\leq h and |xy~|δ0|\widetilde{x-y}|\leq\delta_{0}.

Based on the analysis in Steps 2.1, 2.2 and 2.3, we obtain that G𝒬(x,y)G_{\mathcal{Q}}(x,y) satisfies (3.24) for all x,yx,y satisfying x2y2<0x_{2}\cdot y_{2}<0 and |y2|h|y_{2}|\leq h, where the constant CC depends only on k±k_{\pm} and hh.

Part III: we establish the estimates for G𝒫G_{\mathcal{P}} and G𝒬G_{\mathcal{Q}} when k+<kk_{+}<k_{-}.

Define

G(x,y):={G𝒟,k(x,y)+G𝒫(x,y),x,y+2,G𝒬(x,y),x2,y+2 or x+2,y2,G𝒟,k+(x,y)+G𝒫(x,y),x,y2,G^{*}(x,y):=\begin{cases}G_{\mathcal{D},k_{-}}(x,y)+G^{*}_{\mathcal{P}}(x,y),\quad x,y\in\mathbb{R}_{+}^{2},\\ G^{*}_{\mathcal{Q}}(x,y),\quad x\in\mathbb{R}^{2}_{-},y\in\mathbb{R}^{2}_{+}\text{ or }x\in\mathbb{R}^{2}_{+},y\in\mathbb{R}^{2}_{-},\\ G_{\mathcal{D},k_{+}}(x,y)+G^{*}_{\mathcal{P}}(x,y),\quad x,y\in\mathbb{R}_{-}^{2},\end{cases}

where G𝒫(x,y):=G𝒫(x,y)G_{\mathcal{P}}^{*}(x,y):=G_{\mathcal{P}}(x^{\prime},y^{\prime}) and G𝒬(x,y):=G𝒬(x,y)G_{\mathcal{Q}}^{*}(x,y):=G_{\mathcal{Q}}(x^{\prime},y^{\prime}). Then by (3.2), it can be seen that for any y+22y\in\mathbb{R}^{2}_{+}\cup\mathbb{R}^{2}_{-}, G(x,y)G^{*}(x,y) is the two-layered Green function satisfying the scattering problem (2.8)–(2.10) with k=kk=k_{-} for x+2x\in\mathbb{R}^{2}_{+} and k=k+k=k_{+} for x2x\in\mathbb{R}^{2}_{-}. Thus, by using the same analysis as in Parts I and II, we can directly obtain that

|G𝒫(x,y)|=|G𝒫(x,y)|C(1+|x2|+|y2|)|xy|32|G_{\mathcal{P}}(x^{\prime},y^{\prime})|=|G_{\mathcal{P}}^{*}(x,y)|\leq C(1+|x_{2}|+|y_{2}|)|x-y^{\prime}|^{-\frac{3}{2}} (3.36)

for all x,yx,y satisfying x2y2>0x_{2}\cdot y_{2}>0 and that

|G𝒬(x,y)|=|G𝒬(x,y)|C(1+|x2|)|xy~|32|G_{\mathcal{Q}}(x^{\prime},y^{\prime})|=|G_{\mathcal{Q}}^{*}(x,y)|\leq C(1+|x_{2}|)|\widetilde{x-y}|^{-\frac{3}{2}} (3.37)

for all x,yx,y satisfying x2y2<0x_{2}\cdot y_{2}<0 and |y2|h|y_{2}|\leq h. Hence it follows from (3.36) that G𝒫(x,y)G_{\mathcal{P}}(x,y) satisfies (3.12) for all x,yx,y satisfying x2y2>0x_{2}\cdot y_{2}>0, where the constant CC depends only on k±k_{\pm}. Moreover, it can be seen from (3.37) that G𝒬(x,y)G_{\mathcal{Q}}(x,y) satisfies (3.24) for all x,yx,y satisfying x2y2<0x_{2}\cdot y_{2}<0 and |y2|h|y_{2}|\leq h, where the constant CC depends only on k±,hk_{\pm},h.

Therefore, the proof is complete. ∎

Similar properties as in Theorem 3.6 have been established for the half-space Dirichlet Green function and the half-space impedance Green function (see [37, inequalites (8) and (24)]). Especially, we mention that G𝒟,κG_{\mathcal{D},\kappa} satisfies the estimates (see [37, Formula (8)(8)])

|yG𝒟,κ(x,y)|,|G𝒟,κ(x,y)|C(1+|x2|)(1+|y2|){|xy|3/2+|xy|3/2}|\nabla_{y}G_{\mathcal{D},\kappa}(x,y)|,~{}|G_{\mathcal{D},\kappa}(x,y)|\leq C\left(1+\left|x_{2}\right|\right)\left(1+\left|y_{2}\right|\right)\left\{|x-y|^{-3/2}+\left|x-y^{\prime}\right|^{-3/2}\right\} (3.38)

for x,y2x,y\in\mathbb{R}^{2} with x{y,y}x\notin\{y,y^{\prime}\}, where the constant CC depends only on κ>0\kappa>0.

Finally, as a direct consequence of (3.2), (3.38), Lemma 3.1 and Theorem 3.6, we can obtain the following theorem on the estimates of G(x,y)G(x,y), which is crucial for this paper.

Theorem 3.7.

Assume that k+,k>0k_{+},k_{-}>0 with k+kk_{+}\neq k_{-}. Let x=(x1,x2)2x=(x_{1},x_{2})\in\mathbb{R}^{2} and y=(y1,y2)2y=(y_{1},y_{2})\in\mathbb{R}^{2}. Define y:=(y1,y2)y^{\prime}:=(y_{1},-y_{2}) and xy~:=(x1y1,x2)\widetilde{x-y}:=(x_{1}-y_{1},x_{2}). Then we have the following statements.

(i) If x,yx,y satisfy x2y20x_{2}\cdot y_{2}\geq 0, then G(x,y)G(x,y) satisfies the inequalities

|G(x,y)|,|yG(x,y)|C(1+|x2|)(1+|y2|){|xy|32+|xy|32} for xy,y,\left|G(x,y)\right|,~{}\left|\nabla_{y}G(x,y)\right|\leq C(1+|x_{2}|)(1+|y_{2}|)\left\{|x-y|^{-\frac{3}{2}}+|x-y^{\prime}|^{-\frac{3}{2}}\right\}\quad\text{ for }x\neq y,y^{\prime}, (3.39)

where the constant CC depends only on k±k_{\pm}.

(ii) If x,yx,y satisfy x2y2<0x_{2}\cdot y_{2}<0 and |y2|h|y_{2}|\leq h for some h>0h>0, then G(x,y)G(x,y) satisfies the inequalities

|G(x,y)|,|yG(x,y)|C(1+|x2|)|xy~|32,\left|G(x,y)\right|,~{}\left|\nabla_{y}G(x,y)\right|\leq C(1+|x_{2}|)\big{|}\widetilde{x-y}\big{|}^{-\frac{3}{2}}, (3.40)

where the constant CC depends only on k±k_{\pm} and hh.

4 The Well-posedness of the Problems (DBVP) and (IBVP)

In this section, we consider the well-posedness of the problems (DBVP) and (IBVP). In Section 4.1, we provide some a priori estimates of the first derivatives of relevant solutions. Then following the ideas in [7, 10, 37], we prove the uniqueness results for the problems (DBVP) and (IBVP) in Sections 4.2 and 4.3, respectively. Furthermore, the existence results for the problems (DBVP) and (IBVP) are given in Sections 4.4 and 4.5, respectively.

4.1 The Derivative Estimates

If usd(D)u^{s}\in\mathscr{R}_{d}(D) satisfies the conditions (i)–(iv) of the problem (DBVP) with g=0g=0, we can apply the standard elliptic regularity estimate [20, Theorem 8.34] to deduce that usC1(D¯)u^{s}\in C^{1}(\overline{D}). Let L(G)L^{\infty}(G) denote the space of essentially bounded functions defined on GG. Then the following lemma presents the local regularity estimate of solutions to the Laplace equation.

Lemma 4.1 (Lemma 2.7 in [9]).

If G2G\subset\mathbb{R}^{2} is open and bounded, vL(G)v\in L^{\infty}(G), and Δv=fL(G)\Delta v=f\in L^{\infty}(G) (in a distributional sense), then vC1(G)v\in C^{1}(G) and

|v(x)|C(d(x))1(v,G+d2f,G),xG,|\nabla v(x)|\leq C(d(x))^{-1}\left(\|v\|_{\infty,G}+\left\|d^{2}f\right\|_{\infty,G}\right),\quad x\in G,

where CC is an absolute constant and d(x)=dist(x,G)d(x)=\operatorname{dist}(x,\partial G).

Using the formula (2.4) and Lemma 4.1 with GG to be a sufficiently small ball centered at xx, we can obtain the following Theorem. See [10, formula (3.1)] for a similar result.

Theorem 4.2.

If usd(D)u^{s}\in\mathscr{R}_{d}(D) satisfies the conditions (i)–(iv) of the problem (DBVP) or usi(D)u^{s}\in\mathscr{R}_{i}(D) satisfies the conditions (i)–(iv) of the problem (IBVP), then there exists some α\alpha\in\mathbb{R} such that

supx1,x2>f(x1)+ϵ|(x2+|f|+1)αus(x)|<\sup_{x_{1}\in\mathbb{R},x_{2}>f(x_{1})+\epsilon}\big{|}(x_{2}+|f_{-}|+1)^{\alpha}\nabla u^{s}(x)\big{|}<\infty

for all ϵ>0\epsilon>0.

Moreover, by similar arguments as in the proof of [10, Theorem 3.1], we have the following estimates on the solution satisfying the conditions (i)–(iii) of the problem (DBVP) with g=0g=0.

Theorem 4.3.

If usd(D)u^{s}\in\mathscr{R}_{d}(D) satisfies the conditions (i)–(iii) of the problem (DBVP) with g=0g=0, then we have that for some positive constant C,

|us(x)|C[x2f(x1)]α,\displaystyle|u^{s}(x)|\leq C[x_{2}-f(x_{1})]^{\alpha},
|us(x)|C[x2f(x1)]α1\displaystyle|\nabla u^{s}(x)|\leq C[x_{2}-f(x_{1})]^{\alpha-1}

for x{x=(x1,x2)2:x1,f(x1)<x2<f(x1)+ϵ}x\in\{x=(x_{1},x_{2})\in\mathbb{R}^{2}\,:\,x_{1}\in\mathbb{R},f(x_{1})<x_{2}<f(x_{1})+\epsilon\}, where ϵ:=|f+|/2\epsilon:=|f_{+}|/2 and 1/2<α<π/(2πθ)<11/2<\alpha<\pi/(2\pi-\theta)<1 with θ:=π2arctan(L)\theta:=\pi-2\arctan(L).

Proof.

The statement of this theorem can be deduced by using the proof of [10, Theorem 3.1] with a minor modification, since the main difference between the proof of this theorem and that of [10, Theorem 3.1] lies in the presence of the interface Γ0\Gamma_{0}. To be more specific, the minor modification is that we only need to replace EE and η(x)\eta(x) used in the proof of [10, Theorem 3.1] by E:=2|f+|/3E:=2|f_{+}|/3 and η(x):=min(|f+|/6,d(x)/2)\eta(x):=\min(|f_{+}|/6,d(x)/2), respectively, where d(x)d(x) is given as in the proof of [10, Theorem 3.1]. Here, we note that by choosing such replacement, the ball of radius η(x)\eta(x) with center at xx is contained in D\Uf+/3D\backslash U_{f_{+}/3} for any xD\U¯f+/2x\in D\backslash\overline{U}_{f_{+}/2}. ∎

4.2 The Uniqueness Result of the Problem (DBVP)

In this subsection, we prove the uniqueness of the problem (DBVP) with the help of the a priori estimates given in Section 4.1. We introduce some notations, which will be used in the rest of this paper. For aa\in\mathbb{R} and B,AB,A\in\mathbb{R} with B<AB<A, define Γa(B,A):={x=(x1,a)2:B<x1<A}\Gamma_{a}(B,A):=\{x=(x_{1},a)\in\mathbb{R}^{2}\,:\,B<x_{1}<A\} and Γ(B,A):={x=(x1,x2)2:B<x1<A,x2=f(x1)}\Gamma(B,A):=\{x=(x_{1},x_{2})\in\mathbb{R}^{2}\,:\,B<x_{1}<A,x_{2}=f(x_{1})\}. For t,at,a\in\mathbb{R}, define γa(t):={x=(x1,x2)2:x1=t,f(x1)<x2<a}\gamma_{a}(t):=\left\{x=(x_{1},x_{2})\in\mathbb{R}^{2}\,:\,x_{1}=t,f(x_{1})<x_{2}<a\right\}. Given an open set V2V\subset\mathbb{R}^{2} and vL(V)v\in L^{\infty}(V), let jv\partial_{j}v (j=1,2j=1,2) denote the (distributional) derivative v(x)/xj\partial v(x)/\partial x_{j} and we abbreviate v/ν\partial v/\partial\nu (that is, the normal derivative of vv) as νv\partial_{\nu}v.

The following theorem presents an inequality for the solution of the problem (DBVP) with g=0g=0, which plays a crucial role in the proof of the uniqueness result.

Theorem 4.4.

Assume k+>kk_{+}>k_{-}. Let usd(D)u^{s}\in\mathscr{R}_{d}(D) be the solution of the problem (DBVP) with g=0g=0. Let a>0a>0 and B,AB,A\in\mathbb{R} with B<AB<A. Then we have

Γ(B,A)|νus|2𝑑sC[I1(B,A)+R1(B,A)],\int_{\Gamma(B,A)}\left|\partial_{\nu}u^{s}\right|^{2}ds\leq C\left[I_{1}(B,A)+R_{1}(B,A)\right], (4.1)

where ν\nu denotes the unit normal on Γ\Gamma pointing out of DD and where I1(B,A)I_{1}(B,A) and R1(B,A)R_{1}(B,A) are given by

I1(B,A):=\displaystyle I_{1}(B,A):= Γa(B,A)[|2us|2|1us|2+k+2|us|2]𝑑s,\displaystyle\int_{\Gamma_{a}(B,A)}\left[|\partial_{2}u^{s}|^{2}-|\partial_{1}u^{s}|^{2}+k_{+}^{2}|u^{s}|^{2}\right]ds,
R1(B,A):=\displaystyle R_{1}(B,A):=  2Re[γa(A)γa(B)]2us¯1usds.\displaystyle\,2\mathrm{Re}\left[\int_{\gamma_{a}(A)}-\int_{\gamma_{a}(B)}\right]\overline{\partial_{2}u^{s}}\partial_{1}u^{s}ds.

Here, CC is a constant depending only on Γ\Gamma.

Proof.

Define T(B,A):={xD\U¯0:B<x1<A}T(B,A):=\left\{x\in D\backslash\overline{U}_{0}\,:\,B<x_{1}<A\right\} for B<AB<A and let T(B,A)\partial T(B,A) be the boundary of T(B,A)T(B,A). Let ν=(ν1,ν2)\nu=(\nu_{1},\nu_{2}) denote the outward unit normal to T(B,A)\partial T(B,A). Noting that Rellich’s type identity 2Re[2us¯(Δus+k2us)]=2Re[(2us¯us)]2(|us|2)+k22(|us|2)2\mathrm{Re}[\overline{\partial_{2}u^{s}}(\Delta u^{s}+k_{-}^{2}u^{s})]=2\mathrm{Re}[\nabla\cdot(\overline{\partial_{2}u^{s}}\nabla u^{s})]-\partial_{2}(|\nabla u^{s}|^{2})+k_{-}^{2}\partial_{2}(|u^{s}|^{2}), we find, by applying the divergence theorem in T(B,A)T(B,A), that

0=T(B,A)[2Re(2us¯us)ν|us|2ν2+k2|us|2ν2]𝑑s=L1+L2+L3,0=\int_{\partial T(B,A)}\left[2\mathrm{Re}(\overline{\partial_{2}u^{s}}\nabla u^{s})\cdot\nu-|\nabla u^{s}|^{2}\nu_{2}+k_{-}^{2}|u^{s}|^{2}\nu_{2}\right]ds=L_{1}+L_{2}+L_{3}, (4.2)

where L1L_{1}, L2L_{2} and L3L_{3} are given by

L1:\displaystyle L_{1}: =Γ0(B,A)[|2us|2|1us|2+k2|us|2]𝑑s,\displaystyle=\int_{\Gamma_{0}(B,A)}\left[|\partial_{2}u^{s}|^{2}-|\partial_{1}u^{s}|^{2}+k_{-}^{2}|u^{s}|^{2}\right]ds,
L2:\displaystyle L_{2}: =2Re[γ0(A)γ0(B)]2us¯1usds,\displaystyle=2\mathrm{Re}\left[\int_{\gamma_{0}(A)}-\int_{\gamma_{0}(B)}\right]\overline{\partial_{2}u^{s}}\partial_{1}u^{s}ds,
L3:\displaystyle L_{3}: =Γ(B,A)[2Re(2us¯us)ν|us|2ν2+k2|us|2ν2]𝑑s,\displaystyle=\int_{\Gamma(B,A)}\left[2\mathrm{Re}(\overline{\partial_{2}u^{s}}\nabla u^{s})\cdot\nu-|\nabla u^{s}|^{2}\nu_{2}+k_{-}^{2}|u^{s}|^{2}\nu_{2}\right]ds,

Furthermore, by using the identity 2Re[2us¯(Δus+k+2us)]=2Re[(2us¯us)]2(|us|2)+k+22(|us|2)2\mathrm{Re}[\overline{\partial_{2}u^{s}}(\Delta u^{s}+k_{+}^{2}u^{s})]=2\mathrm{Re}[\nabla\cdot(\overline{\partial_{2}u^{s}}\nabla u^{s})]-\partial_{2}(|\nabla u^{s}|^{2})+k_{+}^{2}\partial_{2}(|u^{s}|^{2}) in the domain (B,A)×(0,a)(B,A)\times(0,a) and the fact that k+>kk_{+}>k_{-}, we obtain that

L1Γ0(B,A)[|2us|2|1us|2+k+2|us|2]𝑑s=L4+I1(B,A),L_{1}\leq\int_{\Gamma_{0}(B,A)}\left[|\partial_{2}u^{s}|^{2}-|\partial_{1}u^{s}|^{2}+k_{+}^{2}|u^{s}|^{2}\right]ds=L_{4}+I_{1}(B,A), (4.3)

where

L4:=2Re[γa(A)\γ0(A)γa(B)\γ0(B)]2us¯1usds.L_{4}:=2\mathrm{Re}\left[\int_{\gamma_{a}(A)\backslash\gamma_{0}(A)}-\int_{\gamma_{a}(B)\backslash\gamma_{0}(B)}\right]\overline{\partial_{2}u^{s}}\partial_{1}u^{s}ds.

Thus, combining (4.2) and (4.3), we have that 0I1(B,A)+R1(B,A)+L30\leq I_{1}(B,A)+R_{1}(B,A)+L_{3}.

It follows from Theorems 4.2 and 4.3 that the integral R1(B,A)R_{1}(B,A) is well-defined and thus we have

supt|2Reγa(t)2us¯1usds|<.\sup_{t\in\mathbb{R}}\left|2\mathrm{Re}\int_{\gamma_{a}(t)}\partial_{2}\overline{u^{s}}\partial_{1}u^{s}ds\right|<\infty. (4.4)

By the boundary condition of usu^{s}, we have us(x)=νusν(x)\nabla u^{s}(x)=\partial_{\nu}u^{s}\cdot\nu(x) on Γ\Gamma. Thus we can deduce that |us|2=|νus|2|\nabla u^{s}|^{2}=|\partial_{\nu}u^{s}|^{2} and 2us(x)=νusν2\partial_{2}u^{s}(x)=\partial_{\nu}u^{s}\nu_{2} on Γ\Gamma. This, together with the fact that ν2=1/1+|f|21/1+L2\nu_{2}=-1/\sqrt{1+|f^{\prime}|^{2}}\leq-1/\sqrt{1+L^{2}} on Γ\Gamma, implies that

L3=Γ(B,A)|νus|2ν2𝑑s1/1+L2Γ(B,A)|νus|2𝑑s.L_{3}=\int_{\Gamma(B,A)}|\partial_{\nu}u^{s}|^{2}\nu_{2}ds\leq-1/\sqrt{1+L^{2}}\int_{\Gamma(B,A)}|\partial_{\nu}u^{s}|^{2}ds.

Therefore, from the above discussions, it follows that (4.1) holds. This completes the proof. ∎

Remark 4.5.

Taking A=jA=j and B=j1B=j-1 with jj\in\mathbb{Z} in (4.1), we can apply Theorem 4.2 as well as the formulas (2.4) and (4.4) to obtain that νus\partial_{\nu}u^{s} in Lloc2(Γ)L_{loc}^{2}(\Gamma), where Lloc2(Γ)L_{loc}^{2}(\Gamma) denotes the space of all functions g:Γg:\Gamma\rightarrow\mathbb{C} such that gΓ(B,A)g\in\Gamma(B,A) for all B,AB,A\in\mathbb{R} with B<AB<A. Moreover, we have

supjΓ(j1,j)|νus|2𝑑s<.\sup_{j\in\mathbb{Z}}\int_{\Gamma(j-1,j)}|\partial_{\nu}u^{s}|^{2}ds<\infty. (4.5)

Next, we show that the solution of the problem (DBVP) with g=0g=0 can be written as an integral relevant to its normal derivative on Γ\Gamma. For this purpose, we define Γ(A):=Γ(A,A)={x=(x1,x2):xΓ,|x1|<A}\Gamma(A):=\Gamma(-A,A)=\left\{x=(x_{1},x_{2}):x\in\Gamma,|x_{1}|<A\right\} for A>0A>0 and introduce the following definition.

Definition 4.6.

Given a domain G2G\subset\mathbb{R}^{2} and κ>0\kappa>0, call vC2(G)L(G)v\in C^{2}(G)\cap L^{\infty}(G) a radiating solution of the Helmholtz equation in GG if Δv+κ2v=0\Delta v+\kappa^{2}v=0 in GG and

v(x)=O(r1/2)\displaystyle v(x)=O\left(r^{-1/2}\right) ,
v(x)riκv(x)=o(r1/2)\displaystyle\frac{\partial v(x)}{\partial r}-i\kappa v(x)=o\left(r^{-1/2}\right)

as r=|x|r=|x|\rightarrow\infty, uniformly in x/|x|x/|x|.

Theorem 4.7.

Let usd(D)u^{s}\in\mathscr{R}_{d}(D) be the solution of the problem (DBVP) with g=0g=0. Then

us(x)=Γνus(y)G(x,y)ds(y),xD,u^{s}(x)=\int_{\Gamma}\partial_{\nu}u^{s}(y)G(x,y)\,ds(y),\quad x\in D, (4.6)

where ν\nu denotes the unit normal on Γ\Gamma pointing out of DD.

Proof.

First, we consider the case when x=(x1,x2)D\U¯0x=(x_{1},x_{2})\in D\backslash\overline{U}_{0}. Let A>0A>0 and define the domain

TAϵ:={x:|x1|<A,xD\U¯0}\Bϵ(x)¯,T_{A}^{\epsilon}:=\left\{x\,:\,|x_{1}|<A,x\in D\backslash\overline{U}_{0}\right\}\backslash\overline{B_{\epsilon}(x)}, (4.7)

where Bϵ(x)B_{\epsilon}(x) denotes the ball centered at xx with radius ϵ\epsilon small enough such that Bϵ(x)¯D\U0¯\overline{B_{\epsilon}(x)}\subset D\backslash\overline{U_{0}}. Since usC1(D¯\U|f+|/2)u^{s}\in C^{1}(\overline{D}\backslash U_{|f_{+}|/2}), it follows from Green’s theorem that

0\displaystyle 0 =TAϵ[us(y)G(x,y)ν(y)usν(y)G(x,y)]𝑑s(y)\displaystyle=\int_{\partial T_{A}^{\epsilon}}\left[u^{s}(y)\frac{\partial G(x,y)}{\partial\nu(y)}-\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)\right]ds(y)
=[Sϵ(x)+γ0(A)+γ0(A)+Γ0(A)+Γ(A)][us(y)G(x,y)ν(y)usν(y)G(x,y)]ds(y)\displaystyle=\left[\int_{S_{\epsilon}(x)}+\int_{\gamma_{0}(-A)}+\int_{\gamma_{0}(A)}+\int_{\Gamma_{0}(A)}+\int_{\Gamma(A)}\right]\left[u^{s}(y)\frac{\partial G(x,y)}{\partial\nu(y)}-\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)\right]ds(y)
=:L1+L2+L3+L4+L5,\displaystyle=:L_{1}+L_{2}+L_{3}+L_{4}+L_{5},

where ν\nu denotes the outward unit normal on TAϵ\partial T_{A}^{\epsilon}. By the mean value theorem and the formula (2.11), we obtain that

limϵ0+L1=limϵ0+Bϵ(x)[us(y)G(x,y)ν(y)usν(y)G(x,y)]𝑑s(y)=us(x).\lim_{\epsilon\to 0+}L_{1}=\lim_{\epsilon\to 0+}\int_{\partial B_{\epsilon}(x)}\left[u^{s}(y)\frac{\partial G(x,y)}{\partial\nu(y)}-\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)\right]ds(y)=u^{s}(x).

By the estimates in (3.39) as well as Theorems 4.2 and 4.3, it follows that

limA+(L2+L3)=limA[γ0(A)+γ0(A)][us(y)G(x,y)ν(y)usν(y)G(x,y)]ds(y)=0.\lim_{A\to+\infty}(L_{2}+L_{3})=\lim_{A\to\infty}\left[\int_{\gamma_{0}(-A)}+\int_{\gamma_{0}(A)}\right]\left[u^{s}(y)\frac{\partial G(x,y)}{\partial\nu(y)}-\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)\right]ds(y)=0. (4.8)

Using the transmission boundary conditions of us(x)u^{s}(x) and G(x,y)G(x,y) on the interface Γ0(A)\Gamma_{0}(A), we obtain

L4\displaystyle L_{4} =Γ0(A)[us|G(x,)y2usy2|G(x,)]𝑑s\displaystyle=\int_{\Gamma_{0}(A)}\left[u^{s}|_{-}\frac{\partial G(x,\cdot)}{\partial y_{2}}-\frac{\partial u^{s}}{\partial y_{2}}\big{|}_{-}G(x,\cdot)\right]ds
=Γ0(A)[us|+G(x,)y2usy2|+G(x,)]𝑑s,\displaystyle=\int_{\Gamma_{0}(A)}\left[u^{s}|_{+}\frac{\partial G(x,\cdot)}{\partial y_{2}}-\frac{\partial u^{s}}{\partial y_{2}}\big{|}_{+}G(x,\cdot)\right]ds,

where ’+/-’ are the limits given as in (2.2). With the help of Theorems 3.7 and 4.2, we can apply Green’s theorem in the domain {x:|x1|<A,0<x2<d}\left\{x\,:\,|x_{1}|<A,0<x_{2}<d\right\} with d>0d>0 to obtain that

limA+Γ0(A)[us|+G(x,)y2usy2|+G(x,)]𝑑s\displaystyle\lim_{A\to+\infty}\int_{\Gamma_{0}(A)}\left[u^{s}|_{+}\frac{\partial G(x,\cdot)}{\partial y_{2}}-\frac{\partial u^{s}}{\partial y_{2}}\big{|}_{+}G(x,\cdot)\right]ds
=Γd[usG(x,)y2usy2G(x,)]𝑑s.\displaystyle=\int_{\Gamma_{d}}\left[u^{s}\frac{\partial G(x,\cdot)}{\partial y_{2}}-\frac{\partial u^{s}}{\partial y_{2}}G(x,\cdot)\right]ds.

From the definition of the two-layered Green function given in (2.8)–(2.10) and the estimates in (3.40), together with the symmetry property G(x0,y0)=G(y0,x0)G(x_{0},y_{0})=G(y_{0},x_{0}) for x0,y02\Γ0x_{0},y_{0}\in\mathbb{R}^{2}\backslash\Gamma_{0} with x0y0x_{0}\neq y_{0} (see [31, (2.28)]), we have that G(x,)G(x,\cdot) is a radiating solution of ΔG(x,)+k+2G(x,)=0\Delta G(x,\cdot)+k_{+}^{2}G(x,\cdot)=0 in U0U_{0} and that G(x,)|ΓdG(x,\cdot)|_{\Gamma_{d}} and y2G(x,)|Γd\partial_{y_{2}}G(x,\cdot)|_{\Gamma_{d}} belong to L1(Γd)L^{1}(\Gamma_{d}). Note that usu^{s} satisfies the upward propagating radiation condition (2.3) in U0U_{0}. Hence we can employ [10, Lemma 2.1] to obtain

limAL4=Γd[us(y)G(x,y)ν(y)usν(y)G(x,y)]𝑑s(y)=0.\lim_{A\to\infty}L_{4}=\int_{\Gamma_{d}}\left[u^{s}(y)\frac{\partial G(x,y)}{\partial\nu(y)}-\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)\right]ds(y)=0. (4.9)

From the facts that us=0u^{s}=0 on Γ\Gamma and usC1(D¯\U|f+|/2)u^{s}\in C^{1}(\overline{D}\backslash U_{|f_{+}|/2}), together with (4.5) and the estimates in (3.39), we can deduce that

limAL5=limAΓ(A)usν(y)G(x,y)𝑑s(y)=Γusν(y)G(x,y)𝑑s(y).\lim_{A\to\infty}L_{5}=-\lim_{A\to\infty}\int_{\Gamma(A)}\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)ds(y)=-\int_{\Gamma}\frac{\partial u^{s}}{\partial\nu}(y)G(x,y)ds(y).

By using the above discussions, we obtain that the formula (4.6) holds for xD\U¯0x\in D\backslash\overline{U}_{0}.

Second, by the dominated convergence theorem and the above discussions, it easily follows that the formula (4.6) holds for xΓ0x\in\Gamma_{0}. Moreover, using similar arguments as above, we can deduce that (4.6) also holds for xU0x\in U_{0}. ∎

To proceed further, we need the following three lemmas. Lemma 4.8 can be found in [10].

Lemma 4.8 (Lemma A in [10]).

Suppose that FLloc 2()F\in L^{2}_{\text{loc }}(\mathbb{R}) and that, for some nonnegative constants MM, CC, ϵ\epsilon, and A0A_{0},

j1j|F(t)|2𝑑tM2,j,\int_{j-1}^{j}\left|F(t)\right|^{2}dt\leq M^{2},\quad j\in\mathbb{Z},

and

AA|F(t)|2𝑑tC\[A,A]GA2(t)𝑑t+CAA[G(t)GA(t)]G(t)𝑑t+ϵ,A>A0,\int_{-A}^{A}|F(t)|^{2}dt\leq C\int_{\mathbb{R}\backslash[-A,A]}G_{A}^{2}(t)dt+C\int_{-A}^{A}\left[G_{\infty}(t)-G_{A}(t)\right]G_{\infty}(t)dt+\epsilon,\quad A>A_{0},

where, for 0<A+0<A\leq+\infty,

GA(s):=AA(1+|st|)3/2|F(t)|𝑑t,s.G_{A}(s):=\int_{-A}^{A}(1+|s-t|)^{-3/2}|F(t)|dt,\quad s\in\mathbb{R}.

Then FL2()F\in L^{2}(\mathbb{R}) and

+|F(t)|2𝑑tϵ.\int_{-\infty}^{+\infty}|F(t)|^{2}dt\leq\epsilon.

The following lemma gives some properties of the two-layered Green function, which will be used in this subsection, in Section 4.3 and in Appendix A.

Lemma 4.9.

Assume k+,k>0k_{+},k_{-}>0 with k+kk_{+}\neq k_{-}. Define x=(x1,x2)2x=(x_{1},x_{2})\in\mathbb{R}^{2} and y=(y1,y2)2y=(y_{1},y_{2})\in\mathbb{R}^{2}. Then we have the following statements.

(i) For y2y\in\mathbb{R}^{2}_{-}, there hold G(,y)|U0¯C1(U0¯)G(\cdot,y)|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}), yG(,y)|U0¯C1(U0¯)\nabla_{y}G(\cdot,y)|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}), G(,y)|2\(U0{y})C1(2\(U0{y}))G(\cdot,y)|_{\mathbb{R}^{2}\backslash(U_{0}\cup\{y\})}\in C^{1}(\mathbb{R}^{2}\backslash(U_{0}\cup\{y\})) and yG(,y)|2\(U0{y})C1(2\(U0{y}))\nabla_{y}G(\cdot,y)|_{\mathbb{R}^{2}\backslash(U_{0}\cup\{y\})}\in C^{1}(\mathbb{R}^{2}\backslash(U_{0}\cup\{y\})).

(ii) Let h0,h1,δ>0h_{0},h_{1},\delta>0. There hold

|xG(x,y)|,|xyG(x,y)|C|x1y1|32|\nabla_{x}G(x,y)|,~{}|\nabla_{x}\nabla_{y}G(x,y)|\leq C|x_{1}-y_{1}|^{-\frac{3}{2}} (4.10)

for all x,y2x,y\in\mathbb{R}^{2} satisfying |x2|h0|x_{2}|\leq h_{0}, 0<|y2|<h10<|y_{2}|<h_{1} and |x1y1|>δ|x_{1}-y_{1}|>\delta, where the constant CC depends only on h0,h1,k±,δh_{0},h_{1},k_{\pm},\delta.

(iii) Let KK be a bounded domain such that K¯2\overline{K}\subset\mathbb{R}^{2}_{-}. Then we have that G(x,y)G(x,y) and yiG(x,y)\partial_{y_{i}}G(x,y) (i=1,2i=1,2) satisfy the Sommerfeld radiation condition (2.10) uniformly for all x^𝕊+1\hat{x}\in\mathbb{S}^{1}_{+} and yKy\in K.

Proof.

The statement (i) can be directly deduced by the expression (2.11) of G(x,y) and Lebesgue’s dominated convergence theorem.

For the statement (ii), we only derive the estimate for xyG(x,y)\nabla_{x}\nabla_{y}G(x,y), since the estimate for xG(x,y)\nabla_{x}G(x,y) can be deduced in a similar manner. We choose x0=(x0(1),x0(2))x_{0}=(x_{0}^{(1)},x_{0}^{(2)}) and y0=(y0(1),y0(2))y_{0}=(y_{0}^{(1)},y_{0}^{(2)}) in 2\mathbb{R}^{2} such that |x0(2)|h0|x_{0}^{(2)}|\leq h_{0}, 0<|y0(2)|<h10<|y_{0}^{(2)}|<h_{1} and |x0(1)y0(1)|>δ|x_{0}^{(1)}-y_{0}^{(1)}|>\delta. Then by the expression (2.11) of G(x,y)G(x,y), together with the integral representation of Hankel function given in (3.1), it can be verified that yiG(x,y0)\partial_{y_{i}}G(x,y_{0}), i=1,2i=1,2, satisfies the Helmholtz equations in ±2\mathbb{R}^{2}_{\pm} with the wave numbers k±k_{\pm}, respectively, and satisfies the transmission boundary condition on Γ0\Gamma_{0}, i.e.,

yiG(x,y0)|x20+=yiG(x,y0)|x20,\displaystyle\partial_{y_{i}}G(x,y_{0})|_{x_{2}\to 0+}=\partial_{y_{i}}G(x,y_{0})|_{x_{2}\to 0-},
x2yiG(x,y0)|x20+=x2yiG(x,y0)|x20\displaystyle\partial_{x_{2}}\partial_{y_{i}}G(x,y_{0})|_{x_{2}\to 0+}=\partial_{x_{2}}\partial_{y_{i}}G(x,y_{0})|_{x_{2}\to 0-}

for i=1,2i=1,2. Thus, taking ϵ\epsilon such that 0<ϵ<δ/20<\epsilon<\delta/2, we obtain that yiG(x,y0),i=1,2\partial_{y_{i}}G(x,y_{0}),i=1,2, satisfies Δv(x)=f(x)\Delta v(x)=f(x) in Bϵ(x0)B_{\epsilon}(x_{0}) in the distributional sense with v(x):=yiG(x,y0)v(x):=\partial_{y_{i}}G(x,y_{0}) and f(x):=k2(x)yiG(x,y)f(x):=-k^{2}(x)\partial_{y_{i}}G(x,y), where Bϵ(x0)B_{\epsilon}(x_{0}) is a ball with center x0x_{0} and radius ϵ\epsilon. Hence, using Lemma 4.1 for yiG(x,y)\partial_{y_{i}}G(x,y) (i=1,2)(i=1,2) in Bϵ(x0)B_{\epsilon}(x_{0}) and applying the statements (i) and (ii) in Theorem 3.7, we obtain

|xyG(x0,y0)|ϵ1supxBϵ(x0)(1+max(k+,k)ϵ2)|yG(x,y)|\displaystyle|\nabla_{x}\nabla_{y}G(x_{0},y_{0})|\leq\epsilon^{-1}\sup_{x\in B_{\epsilon}(x_{0})}(1+\max(k_{+},k_{-})\epsilon^{2})|\nabla_{y}G(x,y)|
ϵ1(1+max(k+,k)ϵ2)supxBϵ(x0)C(1+|x2|)(1+|y2|)(|xy0|3/2+|xy0|3/2)\displaystyle\leq\epsilon^{-1}(1+\max(k_{+},k_{-})\epsilon^{2})\sup_{x\in B_{\epsilon}(x_{0})}C(1+|x_{2}|)(1+|y_{2}|)(|x-y_{0}|^{-3/2}+|x-y_{0}^{\prime}|^{-3/2})
C~|x0(1)y0(1)|3/2,\displaystyle\leq\tilde{C}|x_{0}^{(1)}-y_{0}^{(1)}|^{-3/2},

where y0=(y0(1),y0(2))y_{0}^{\prime}=(y_{0}^{(1)},-y_{0}^{(2)}) and the constant C~\tilde{C} depends only on h0,h1,k±,δh_{0},h_{1},k_{\pm},\delta. This completes the proof.

Finally, by employing similar arguments as in the proofs of Theorems 2.1 and 2.14 in [27], we can use patient calculations to obtain that the statement (iii) holds true. ∎

The following lemma has been proved in [9].

Lemma 4.10 (Lemma 6.1 in [9]).

Let h>0h>0. If ϕL2(Γh)L(Γh)\phi\in L^{2}(\Gamma_{h})\cap L^{\infty}(\Gamma_{h}) and vv is defined by (2.3), then v|Γav|_{\Gamma_{a}}, 1v|Γa\partial_{1}v|_{\Gamma_{a}} and 2v|Γa\partial_{2}v|_{\Gamma_{a}} are in L2(Γa)BC(Γa)L^{2}(\Gamma_{a})\cap BC(\Gamma_{a}) for all a>ha>h and

Γa[|2v|2|1v|2+k+2|v|2]𝑑s2k+ImΓav¯2vds,\displaystyle\int_{\Gamma_{a}}[|\partial_{2}v|^{2}-|\partial_{1}v|^{2}+k_{+}^{2}|v|^{2}]ds\leq 2k_{+}\mathrm{Im}\int_{\Gamma_{a}}\overline{v}\partial_{2}vds, (4.11)
ImΓav¯2vds0.\displaystyle\mathrm{Im}\int_{\Gamma_{a}}\overline{v}\partial_{2}vds\geq 0. (4.12)

Now, we assume that k+k_{+} > kk_{-} and that usd(D)u^{s}\in\mathscr{R}_{d}(D) is the solution of the problem (DBVP) with g=0g=0. We proceed to show that νus\partial_{\nu}u^{s} vanishes on Γ\Gamma. Let A>0A>0 and a>0a>0. Then we can set B=AB=-A in the formula (4.1) to obtain that

K(A):=Γ(A)|νus|2𝑑sC[I1(A)+R1(A)],K(A):=\int_{\Gamma(A)}|\partial_{\nu}u^{s}|^{2}ds\leq C\left[I_{1}(A)+R_{1}(A)\right],

where I1(A):=I1(A,A)I_{1}(A):=I_{1}(-A,A) and R1(A):=R1(A,A)R_{1}(A):=R_{1}(-A,A). Let vdirv_{dir} be defined by

vdir(x):=Γ(A)νus(y)G(x,y)ds(y),xD.v_{dir}(x):=\int_{\Gamma(A)}\partial_{\nu}u^{s}(y)G(x,y)ds(y),\quad x\in D. (4.13)

By employing Lemma 3.1, (3.40) and the property of νus\partial_{\nu}u^{s} given in Remark 4.5, it can be derived that vdir|ΓbBC(Γb)L2(Γb)v_{dir}|_{\Gamma_{b}}\in BC(\Gamma_{b})\cap L^{2}(\Gamma_{b}) for all b>0b>0. On the other hand, it is easy to see from (2.8), (3.40) and the statement (iii) of Lemma 4.9 that vdirv_{dir} is a radiating solution of Δvdir+k+2vdir=0\Delta v_{dir}+k_{+}^{2}v_{dir}=0 in UbU_{b} for all b>0b>0. Thus, in view of the equivalence of the statements (ii) and (iv) in [9, Theorem 2.9], vdirv_{dir} satisfies (2.3) with h=bh=b and ϕ=vdir|Γb\phi=v_{dir}|_{\Gamma_{b}} for every b>0b>0. Hence, by employing (4.11), we have I1′′(A)2k+J′′(A)I_{1}^{\prime\prime}(A)\leq 2k_{+}J^{\prime\prime}(A), where

I1′′(A):=Γa[|2vdir|2|1vdir|2+k+2|vdir|2]𝑑s,J′′(A):=ImΓavdir¯2vdirds.I_{1}^{\prime\prime}(A):=\int_{\Gamma_{a}}\left[|\partial_{2}v_{dir}|^{2}-|\partial_{1}v_{dir}|^{2}+k_{+}^{2}|v_{dir}|^{2}\right]ds,\quad J^{\prime\prime}(A):=\mathrm{Im}\int_{\Gamma_{a}}\overline{v_{dir}}\partial_{2}v_{dir}ds.

By applying Green’s theorem in the domain {x=(x1,x2):xD\U¯0,|x1|<A}\left\{x=(x_{1},x_{2})\,:\,x\in D\backslash\overline{U}_{0},|x_{1}|<A\right\} and in the domain {x=(x1,x2):|x1|<A,0<x2<a}\{x=(x_{1},x_{2})\,:\,|x_{1}|<A,0<x_{2}<a\}, we can use the conditions (ii) and (iii) in the problem (DBVP) to find that J(A)=R2(A)J(A)=R_{2}(A), where

J(A):=ImΓaus¯2usds,R2(A):=Im[γa(A)γa(A)]us¯1usds.J(A):=\mathrm{Im}\int_{\Gamma_{a}}\overline{u^{s}}\partial_{2}u^{s}ds,\quad R_{2}(A):=\mathrm{Im}\left[\int_{\gamma_{a}(-A)}-\int_{\gamma_{a}(A)}\right]\overline{u^{s}}\partial_{1}u^{s}ds.

Thus, from the above discussions, we can derive

K(A)C{I1(A)I1′′(A)+2k+[J′′(A)J(A)]+R1(A)+2k+R2(A)}.\displaystyle K(A)\leq C\left\{I_{1}(A)-I_{1}^{\prime\prime}(A)+2k_{+}\left[J^{\prime\prime}(A)-J(A)\right]+R_{1}(A)+2k_{+}R_{2}(A)\right\}.

Set

I1(A):=Γa(A)[|2vdir|2|1vdir|2+k+2|vdir|2]𝑑s,J(A):=ImΓa(A)vdir¯2vdirds\displaystyle I_{1}^{\prime}(A):=\int_{\Gamma_{a}(A)}\left[|\partial_{2}v_{dir}|^{2}-|\partial_{1}v_{dir}|^{2}+k_{+}^{2}|v_{dir}|^{2}\right]ds,\quad J^{\prime}(A):=\mathrm{Im}\int_{\Gamma_{a}(A)}\overline{v_{dir}}\partial_{2}v_{dir}ds

and w(x1):=νus(x1,f(x1)),x1w\left(x_{1}\right):=\partial_{\nu}u^{s}\left(x_{1},f\left(x_{1}\right)\right),x_{1}\in\mathbb{R}. Then for all A>0A>0,

AA|w(x1)|2𝑑x1Γ(A)|νus|2𝑑s(1+L2)1/2AA|w(x1)|2𝑑x1.\int_{-A}^{A}\left|w\left(x_{1}\right)\right|^{2}dx_{1}\leq\int_{\Gamma(A)}|\partial_{\nu}u^{s}|^{2}ds\leq\left(1+L^{2}\right)^{1/2}\int_{-A}^{A}\left|w\left(x_{1}\right)\right|^{2}dx_{1}.

By the formulas (4.6) and (4.13) and the estimates (3.40) and (4.10), we obtain that

|vdir(x)|,|vdir(x)|\displaystyle|v_{dir}(x)|,~{}|\nabla v_{dir}(x)| Ca(1+L2)1/2WA(x1),xΓa,\displaystyle\leq C_{a}\left(1+L^{2}\right)^{1/2}W_{A}\left(x_{1}\right),\quad x\in\Gamma_{a},
|us(x)vdir(x)|,|us(x)vdir(x)|\displaystyle|u^{s}(x)-v_{dir}(x)|,~{}|\nabla u^{s}(x)-\nabla v_{dir}(x)| Ca(1+L2)1/2(W(x1)WA(x1)),xΓa,\displaystyle\leq C_{a}\left(1+L^{2}\right)^{1/2}\left(W_{\infty}\left(x_{1}\right)-W_{A}\left(x_{1}\right)\right),\quad x\in\Gamma_{a},

where the constant CaC_{a} is independent of x1x_{1} but dependent on aa and where WA(x1)W_{A}(x_{1}) and W(x1)W_{\infty}(x_{1}) are defined by

WA(x1):=AA(1+|x1y1|)3/2|w(y1)|𝑑y1,x1,\displaystyle W_{A}\left(x_{1}\right):=\int_{-A}^{A}\left(1+\left|x_{1}-y_{1}\right|\right)^{-3/2}\left|w\left(y_{1}\right)\right|dy_{1},\quad x_{1}\in\mathbb{R},
W(x1):=+(1+|x1y1|)3/2|w(y1)|𝑑y1,x1.\displaystyle W_{\infty}\left(x_{1}\right):=\int_{-\infty}^{+\infty}\left(1+\left|x_{1}-y_{1}\right|\right)^{-3/2}\left|w\left(y_{1}\right)\right|dy_{1},\quad x_{1}\in\mathbb{R}.

These lead to

|I1(A)I1′′(A)|,|J(A)J′′(A)|C\[A,A](WA(x1))2𝑑x1,\displaystyle\left|I_{1}^{\prime}(A)-I_{1}^{\prime\prime}(A)\right|,~{}\left|J^{\prime}(A)-J^{\prime\prime}(A)\right|\leq C\int_{\mathbb{R}\backslash[-A,A]}\left(W_{A}\left(x_{1}\right)\right)^{2}dx_{1},
|I1(A)I1(A)|,|J(A)J(A)|2CAA(W(x1)WA(x1))W(x1)𝑑x1,\displaystyle\left|I_{1}(A)-I_{1}^{\prime}(A)\right|,~{}\left|J(A)-J^{\prime}(A)\right|\leq 2C\int_{-A}^{A}\left(W_{\infty}\left(x_{1}\right)-W_{A}\left(x_{1}\right)\right)W_{\infty}\left(x_{1}\right)dx_{1},

where C=Ca2(1+L2)(2+k2)C=C_{a}^{2}\left(1+L^{2}\right)\left(2+k_{-}^{2}\right). Hence, there exists a constant C>0C>0 such that for all A>0A>0,

AA|w(x1)|2𝑑x1\displaystyle\int_{-A}^{A}\left|w\left(x_{1}\right)\right|^{2}dx_{1} C{\[A,A](WA(x1))2dx1\displaystyle\leq C\left\{\int_{\mathbb{R}\backslash[-A,A]}\left(W_{A}\left(x_{1}\right)\right)^{2}dx_{1}\right.
+AA(W(x1)WA(x1))W(x1)dx1+|R1(A)|+2k+|R2(A)|}.\displaystyle\quad\left.+\int_{-A}^{A}\left(W_{\infty}\left(x_{1}\right)-W_{A}\left(x_{1}\right)\right)W_{\infty}\left(x_{1}\right)dx_{1}+|R_{1}(A)|+2k_{+}|R_{2}(A)|\right\}.

Combining this with (4.5) and the fact that νusLloc2(Γ)\partial_{\nu}u^{s}\in L_{loc}^{2}(\Gamma) (see Remark 4.5), we can apply Lemma 4.8 to conclude that wL2()w\in L^{2}(\mathbb{R}), which is equivalent to νusL2(Γ)\partial_{\nu}u^{s}\in L^{2}(\Gamma), and that for all A0>0A_{0}>0,

(1+L2)1/2Γ|νus|2𝑑s|w(x1)|2𝑑x1CsupA>A0(|R1(A)|+2k+|R2(A)|).\left(1+L^{2}\right)^{-1/2}\int_{\Gamma}\left|\partial_{\nu}u^{s}\right|^{2}ds\leq\int_{-\infty}^{\infty}\left|w\left(x_{1}\right)\right|^{2}dx_{1}\leq C\sup_{A>A_{0}}\big{(}\left|R_{1}(A)\right|+2k_{+}|R_{2}(A)|\big{)}. (4.14)

For xD\U¯ax\in D\backslash\overline{U}_{a} with |x1|1|x_{1}|\geq 1, we deduce by (4.6) and (3.40) that

|us(x)|2\displaystyle\left|u^{s}(x)\right|^{2} 2[Γ\Γ(|x1|/2)|νus(y)G(x,y)|𝑑s(y)]2+2[Γ(|x1|/2)|νus(y)G(x,y)|𝑑s(y)]2\displaystyle\leq 2\left[\int_{\Gamma\backslash\Gamma\left(\left|x_{1}\right|/2\right)}\left|\partial_{\nu}u^{s}(y)G(x,y)\right|ds(y)\right]^{2}+2\left[\int_{\Gamma\left(\left|x_{1}\right|/2\right)}\left|\partial_{\nu}u^{s}(y)G(x,y)\right|ds(y)\right]^{2}
C1Γ\Γ(|x1|/2)|νus|2𝑑s+C2(|x1|2)3Γ|νus|2𝑑s,\displaystyle\leq C_{1}\int_{\Gamma\backslash\Gamma\left(\left|x_{1}\right|/2\right)}\left|\partial_{\nu}u^{s}\right|^{2}ds+C_{2}\left(\frac{\left|x_{1}\right|}{2}\right)^{-3}\int_{\Gamma}\left|\partial_{\nu}u^{s}\right|^{2}ds,

where

C1=2supxD\U¯aΓ|G(x,y)|2𝑑s(y)<.C_{1}=2\sup_{x\in D\backslash\overline{U}_{a}}\int_{\Gamma}\left|G(x,y)\right|^{2}ds(y)<\infty.

Thus, us(x)0u^{s}(x)\to 0 as x1x_{1}\to\infty with xD\U¯ax\in D\backslash\overline{U}_{a}, uniformly in x2x_{2}. Hence by Theorems 4.2 and 4.3 as well as Lemma 4.1, we have Rj(A)0R_{j}(A)\to 0 as AA\to\infty, j=1,2j=1,2. Therefore, it follows from (4.14) that νus=0\partial_{\nu}u^{s}=0 on Γ\Gamma.

In conclusion, based on the above discussions and Theorem 4.7, we establish the following theorem on the uniqueness of the problem (DBVP).

Theorem 4.11.

For every gBC(Γ)g\in BC(\Gamma), there exists at most one solution usd(D)u^{s}\in\mathscr{R}_{d}(D) that satisfies the boundary value problem (DBVP) under the assumption k+>k>0k_{+}>k_{-}>0.

Remark 4.12.

In the case k+<kk_{+}<k_{-}, it can be seen from [25, Example 2.3] that when the rough boundary Γ\Gamma is a planar surface, there exist some wave numbers k+k_{+} and kk_{-} such that the problem (DBVP) with g=0g=0 has a nontrivial solution.

4.3 The Uniqueness Result of the Problem (IBVP)

Theorem 4.13.

Let usi(D)u^{s}\in\mathscr{R}_{i}(D) be the solution of the problem (IBVP). Then

us(x)=Γ[G(x,y)ν(y)ikβ(x)G(x,y)]us(y)𝑑s(y)+ΓG(x,y)g(y)𝑑s(y),xD,u^{s}(x)=-\int_{\Gamma}\left[\frac{G(x,y)}{\partial\nu(y)}-ik_{-}\beta(x)G(x,y)\right]u^{s}(y)ds(y)+\int_{\Gamma}G(x,y)g(y)ds(y),\,\,x\in D, (4.15)

where ν\nu denotes the unit normal on Γ\Gamma pointing out of DD.

Proof.

First, we consider the case when x=(x1,x2)D\U¯0x=(x_{1},x_{2})\in D\backslash\overline{U}_{0}. Let A>0A>0 and let the domain TAϵT_{A}^{\epsilon} be given as in (4.7), where Bϵ(x)B_{\epsilon}(x) denotes a ball centered at xx with radius ϵ\epsilon small enough such that Bϵ(x)¯{x:|x1|<A,xD\U¯0}\overline{B_{\epsilon}(x)}\subset\left\{x\,:\,|x_{1}|<A,x\in D\backslash\overline{U}_{0}\right\}. By applying Green’s theorem in the domain TAϵT_{A}^{\epsilon} and letting ϵ0\epsilon\to 0, it follows that

us(x)\displaystyle u^{s}(x) =Γ(A){G(x,y)ν(y)ikβ(x)G(x,y)}us(y)𝑑s(y)+Γ(A)G(x,y)g(y)𝑑s(y)\displaystyle=-\int_{\Gamma(A)}\left\{\frac{\partial G(x,y)}{\partial\nu(y)}-ik_{-}\beta(x)G(x,y)\right\}u^{s}(y)ds(y)+\int_{\Gamma(A)}G(x,y)g(y)ds(y)
+Γ0(A){G(x,)usy2|us|G(x,)y2}𝑑s\displaystyle+\int_{\Gamma_{0}(A)}\left\{G(x,\cdot)\frac{\partial u^{s}}{\partial y_{2}}\big{|}_{-}-u^{s}|_{-}\frac{\partial G(x,\cdot)}{\partial y_{2}}\right\}ds
+[γ0(A)γ0(A)]{us(y)G(x,y)y1G(x,y)us(y)y1}ds(y),\displaystyle+\left[\int_{\gamma_{0}(-A)}-\int_{\gamma_{0}(A)}\right]\left\{u^{s}(y)\frac{\partial G(x,y)}{\partial y_{1}}-G(x,y)\frac{\partial u^{s}(y)}{\partial y_{1}}\right\}ds(y), (4.16)

where ’-’ in the third integral of the above formula is the limit given as in (2.2). With the help of Theorems 3.7 and 4.2, we can apply the same arguments as in the derivations of (4.8)–(4.9) to obtain that

limA[γ0(A)γ0(A)]{us(y)G(x,y)y1G(x,y)us(y)y1}ds(y)=0\lim_{A\to\infty}\left[\int_{\gamma_{0}(-A)}-\int_{\gamma_{0}(A)}\right]\left\{u^{s}(y)\frac{\partial G(x,y)}{\partial y_{1}}-G(x,y)\frac{\partial u^{s}(y)}{\partial y_{1}}\right\}ds(y)=0

and that for a>0a>0,

limAΓ0(A){G(x,)usy2|us|G(x,)y2}𝑑s\displaystyle\lim_{A\to\infty}\int_{\Gamma_{0}(A)}\left\{G(x,\cdot)\frac{\partial u^{s}}{\partial y_{2}}\big{|}_{-}-u^{s}|_{-}\frac{\partial G(x,\cdot)}{\partial y_{2}}\right\}ds
=Γa{G(x,y)us(y)y2us(y)G(x,y)y2}𝑑s(y)=0.\displaystyle=\int_{\Gamma_{a}}\left\{G(x,y)\frac{\partial u^{s}(y)}{\partial y_{2}}-u^{s}(y)\frac{\partial G(x,y)}{\partial y_{2}}\right\}ds(y)=0.

Thus we can obtain the formula (4.15) by letting A+A\to+\infty in the formula (4.16).

Second, by the dominated convergence theorem and the above discussions, the formula (4.15) holds for xΓ0x\in\Gamma_{0}. Moreover, by using similar arguments as above, we have that (4.15) also holds for xU0x\in U_{0}. ∎

In the rest of this subsection, with a slight abuse of notations, we will redefine J(A)J(A), J(A)J^{\prime}(A), J′′(A)J^{\prime\prime}(A), R1(A)R_{1}(A), K(A)K(A), ω()\omega(\cdot), WA()W_{A}(\cdot) and W()W_{\infty}(\cdot). Applying Green’s theorem in the domains {x=(x1,x2):xD\U¯0,|x1|<A}\{x=(x_{1},x_{2})\,:\,x\in D\backslash\overline{U}_{0},|x_{1}|<A\} and {x=(x1,x2):|x1|<A,0<x2<a}\{x=(x_{1},x_{2})\,:\,|x_{1}|<A,0<x_{2}<a\} with A,a>0A,a>0 and using the conditions (ii) and (iii) in the problem (IBVP), we can immediately obtain the following lemma.

Lemma 4.14.

Set A,a>0A,a>0. Let usi(D)u^{s}\in\mathscr{R}_{i}(D) satisfy the problem (IBVP) with g=0g=0. Then

kΓ(A)Re(β)|us|2𝑑s+J(A)=R1(A),k_{-}\int_{\Gamma(A)}\mathrm{Re}(\beta)|u^{s}|^{2}ds+J(A)=R_{1}(A),

where

J(A):=ImΓa(A)us¯2usds,R1(A):=Im[γa(A)γa(A)]us¯1usds.J(A):=\mathrm{Im}\int_{\Gamma_{a}(A)}\overline{u^{s}}\partial_{2}u^{s}ds,\quad R_{1}(A):=\mathrm{Im}\left[\int_{\gamma_{a}(-A)}-\int_{\gamma_{a}(A)}\right]\overline{u^{s}}\partial_{1}u^{s}ds. (4.17)

Now we give the uniqueness of the problem (IBVP).

Theorem 4.15.

Suppose that k±>0k_{\pm}>0 and d>0d>0. If βBC(Γ)\beta\in BC(\Gamma) with Re(β(x))d\mathrm{Re}(\beta(x))\geq d on xΓx\in\Gamma, then the problem (IBVP) has at most one solution for every gBC(Γ)g\in BC(\Gamma).

Proof.

Let usi(D)u^{s}\in\mathscr{R}_{i}(D) satisfy the problem (IBVP) with g=0g=0. We need to show that us0u^{s}\equiv 0 in DD. Let A>0A>0 and define vimpv_{imp} by

vimp(x):=Γ(A)[G(x,y)ν(y)ikβ(x)G(x,y)]us(y)𝑑s(y),xD.v_{imp}(x):=-\int_{\Gamma(A)}\left[\frac{\partial G(x,y)}{\partial\nu(y)}-ik_{-}\beta(x)G(x,y)\right]u^{s}(y)ds(y),\quad x\in D. (4.18)

By utilizing the estimates of GG in (3.40) and the fact that usi(D)u^{s}\in\mathscr{R}_{i}(D), it can be derived that vimp|ΓbBC(Γb)L2(Γb)v_{imp}|_{\Gamma_{b}}\in BC(\Gamma_{b})\cap L^{2}(\Gamma_{b}) for all b>0b>0. On the other hand, it follows from (2.8), (3.40) and the statement (iii) of Lemma 4.9 that vimpv_{imp} is a radiating solution of Δvimp+k+2vimp=0\Delta v_{imp}+k_{+}^{2}v_{imp}=0 in UbU_{b} for all b>0b>0. Thus, in view of the equivalence of the statements (ii) and (iv) in Theorem 2.9 in [9], vimpv_{imp} satisfies (2.3) with h=bh=b and ϕ=vimp|Γb\phi=v_{imp}|_{\Gamma_{b}} for every b>0b>0.

Let a>0a>0 and set

J(A):=ImΓa(A)vimp¯2vimpds,J′′(A):=Γavimp¯2vimpds.J^{\prime}(A):=\mathrm{Im}\int_{\Gamma_{a}(A)}\overline{v_{imp}}\partial_{2}v_{imp}ds,\quad J^{\prime\prime}(A):=\int_{\Gamma_{a}}\overline{v_{imp}}\partial_{2}v_{imp}ds.

Then by (4.12) in Lemma 4.10, J′′(A)0J^{\prime\prime}(A)\geq 0, so that, by (4.17) and the fact that Re(β(x))d>0\mathrm{Re}(\beta(x))\geq d>0 for xΓx\in\Gamma, we have

K(A):=Γ(A)|us|2𝑑s(kd)1[J(A)+R1(A)](kd)1[J′′(A)J(A)+R1(A)].K(A):=\int_{\Gamma(A)}|u^{s}|^{2}ds\leq(k_{-}d)^{-1}\left[-J(A)+R_{1}(A)\right]\leq(k_{-}d)^{-1}\left[J^{\prime\prime}(A)-J(A)+R_{1}(A)\right].

Let w(x1)=us(x1,f(x1))w(x_{1})=u^{s}(x_{1},f(x_{1})). Then

AA|w(x1)|2𝑑x1K(A)1+L2AA|w(x1)|2𝑑x1.\int_{-A}^{A}|w(x_{1})|^{2}dx_{1}\leq K(A)\leq\sqrt{1+L^{2}}\int_{-A}^{A}|w(x_{1})|^{2}dx_{1}.

Set

WA(x1):=AA(1+|x1y1|)32|w(y1)|𝑑y1,x1,\displaystyle W_{A}(x_{1}):=\int_{-A}^{A}(1+|x_{1}-y_{1}|)^{-\frac{3}{2}}|w(y_{1})|dy_{1},\quad x_{1}\in\mathbb{R},
W(x1):=+(1+|x1y1|)32|w(y1)|𝑑y1,x1.\displaystyle W_{\infty}(x_{1}):=\int_{-\infty}^{+\infty}(1+|x_{1}-y_{1}|)^{-\frac{3}{2}}|w(y_{1})|dy_{1},\quad x_{1}\in\mathbb{R}.

It follows from the formulas (4.15) and (4.18) and the estimates (3.40) and (4.10) that

|vimp(x)|,|vimp(x)|CWA(x1),xΓa,\displaystyle|v_{imp}(x)|,~{}|\nabla v_{imp}(x)|\leq CW_{A}(x_{1}),\quad x\in\Gamma_{a},
|us(x)vimp(x)|,|us(x)vimp(x)|C(W(x1)WA(x1)),xΓa.\displaystyle|u^{s}(x)-v_{imp}(x)|,~{}|\nabla u^{s}(x)-\nabla v_{imp}(x)|\leq C(W_{\infty}(x_{1})-W_{A}(x_{1})),\quad x\in\Gamma_{a}.

This leads to

|J(A)J′′(A)|C\[A,A](WA(x1))2𝑑x1,\displaystyle|J^{\prime}(A)-J^{\prime\prime}(A)|\leq C\int_{\mathbb{R}\backslash[-A,A]}(W_{A}(x_{1}))^{2}dx_{1},
|J(A)J(A)|2CAA(W(x1)WA(x1))W(x1)𝑑x1.\displaystyle|J(A)-J^{\prime}(A)|\leq 2C\int_{-A}^{A}(W_{\infty}(x_{1})-W_{A}(x_{1}))W_{\infty}(x_{1})dx_{1}.

Hence, the above analysis gives that

AA|w(x1)|2𝑑x1C{\[A,A](WA(x1))2𝑑x1+AA(W(x1)WA(x1))W(x1)𝑑x1+|R1(A)|}.\int_{-A}^{A}|w(x_{1})|^{2}dx_{1}\leq C\left\{\int_{\mathbb{R}\backslash[-A,A]}(W_{A}(x_{1}))^{2}dx_{1}+\int_{-A}^{A}(W_{\infty}(x_{1})-W_{A}(x_{1}))W_{\infty}(x_{1})dx_{1}+|R_{1}(A)|\right\}.

By employing Lemma 4.8, we obtain that for all A0>0A_{0}>0,

(1+L2)1/2Γ|us|2𝑑s(WA(x1))2𝑑x1CsupA>A0|R1(A)|.\left(1+L^{2}\right)^{-1/2}\int_{\Gamma}|u^{s}|^{2}ds\leq\int_{-\infty}^{\infty}(W_{A}(x_{1}))^{2}dx_{1}\leq C\sup_{A>A_{0}}|R_{1}(A)|. (4.19)

From (2.4) and the fact that usC(D¯)u^{s}\in C(\overline{D}), we obtain that usBC(Γ)u^{s}\in BC(\Gamma). This, together with Theorems 4.13 and A.3, implies that usC0,λ(Γ)u^{s}\in C^{0,\lambda}(\Gamma) for every λ(0,1)\lambda\in(0,1). Thus usBUC(Γ)L2(Γ)u^{s}\in BUC(\Gamma)\cap L^{2}(\Gamma), which yields that us(x)0u^{s}(x)\to 0 as |x||x|\to\infty for xΓx\in\Gamma. Choose a cutoff function ψABC(Γ)\psi_{A}\in BC(\Gamma) such that ψA,Γ=1\|\psi_{A}\|_{\infty,\Gamma}=1 with ψA(x)=1\psi_{A}(x)=1 for |x1|A/3|x_{1}|\leq A/3 and ψA(x)=0\psi_{A}(x)=0 for |x1|2A/3|x_{1}|\geq 2A/3. Let u1s(x)u^{s}_{1}(x) and u2s(x)u^{s}_{2}(x) be given by (4.15) with g=0g=0, where the density usu^{s} is replaced by us(1ψA)u^{s}(1-\psi_{A}) and usψAu^{s}\psi_{A}, respectively. Thus us(x)=u1s(x)+u2s(x)u^{s}(x)=u^{s}_{1}(x)+u^{s}_{2}(x) for xDx\in D. From Theorems A.1 (iii) and A.2 (iii), we have that there exists some constant C>0C>0 such that for all xγa(A)γa(A)x\in\gamma_{a}(-A)\cup\gamma_{a}(A), |u1s(x)|Cus(1ψA),Γ0|u^{s}_{1}(x)|\leq C\|u^{s}(1-\psi_{A})\|_{\infty,\Gamma}\to 0 as AA\to\infty. Moreover, it follows from the definition of u2s(x)u_{2}^{s}(x) and Theorem 3.7 that there exists some constant C>0C>0 such that

supxγa(A)γa(A)|u2s(x)|Cus,ΓA35A3t32𝑑t0 as A.\sup_{x\in\gamma_{a}(-A)\cup\gamma_{a}(A)}|u^{s}_{2}(x)|\leq C\|u^{s}\|_{\infty,\Gamma}\int_{\frac{A}{3}}^{\frac{5A}{3}}t^{-\frac{3}{2}}dt\to 0\quad\text{ as }A\to\infty.

Hence, by (2.5) we obtain that R1(A)0R_{1}(A)\to 0 as AA\to\infty. Consequently, from (4.19) we have us=0u^{s}=0 on Γ\Gamma. This, together with (4.15), implies that us=0u^{s}=0 in DD. Therefore, the proof is complete. ∎

4.4 The Existence Result of the Problem (DBVP)

For ψBC(Γ)\psi\in BC(\Gamma), the integrals

W(x)\displaystyle W(x) :=ΓG(x,y)ν(y)ψ(y)𝑑s(y),x2\Γ,\displaystyle:=\int_{\Gamma}\frac{\partial G(x,y)}{\partial\nu(y)}\psi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\Gamma, (4.20)
V(x)\displaystyle V(x) :=ΓG(x,y)ψ(y)𝑑s(y),x2\Γ,\displaystyle:=\int_{\Gamma}G(x,y)\psi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\Gamma, (4.21)

are called the double- and single-layer potentials, respectively. Here, ν\nu denotes the unit normal on Γ\Gamma pointing out of DD. The properties of the double-layer potential (4.20) and the single-layer potential (4.21) are summarized in Appendix A.

We introduce a function in the form of a combined double- and single-layer potential, i.e.,

us(x):=Γ[Gν(y)(x,y)+iηG(x,y)]ψ(y)𝑑s(y),x2\Γ,u^{s}(x):=\int_{\Gamma}\left[\frac{\partial G}{\partial\nu(y)}(x,y)+i\eta G(x,y)\right]\psi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\Gamma, (4.22)

where ψBC(Γ)\psi\in BC(\Gamma), η0\eta\neq 0 is a constant. From the statements (i), (iii) and (v) in Theorem A.1 and the statements (i), (iii) and (iv) in Theorem A.2, the potential usu^{s} satiefies the conditions (i), (ii), (iv) and (v) of the problem (DBVP) with α=1/2\alpha=-1/2. Furthermore, by the statement (ii) in Theorem A.1 and the statement (ii) in Theorem A.2, usu^{s} satisfies the condition (iii) of the problem (DBVP) only if ψBC(Γ)\psi\in BC(\Gamma) is the solution of the following boundary integral equation

ψ(x)=2Γ[Gν(y)(x,y)+iηG(x,y)]ψ(y)𝑑s(y)2g(x) on Γ.\psi(x)=2\int_{\Gamma}\left[\frac{\partial G}{\partial\nu(y)}(x,y)+i\eta G(x,y)\right]\psi(y)ds(y)-2g(x)\text{ on }\Gamma. (4.23)

Thus we get the following result.

Theorem 4.16.

The combined double- and single-layer potential (4.22) satisfies the problem (DBVP) with α=1/2\alpha=-1/2, provided ψBC(Γ)\psi\in BC(\Gamma) satisfies the boundary integral equation (4.23).

Define ψ~,g~BC()\tilde{\psi},\tilde{g}\in BC(\mathbb{R}) by

ψ~(s)=ψ(s,f(s)),g~(s)=g(s,f(s)),s.\tilde{\psi}(s)=\psi(s,f(s)),\quad\tilde{g}(s)=g(s,f(s)),\quad s\in\mathbb{R}. (4.24)

By parameterizing the equation (4.23), we obtain the following integral equation problem: find ψ~BC()\tilde{\psi}\in BC(\mathbb{R}) such that

ψ~(s)2[G(x,y)ν(y)+iηG(x,y)]1+|f(t)|2ψ~(t)𝑑t=2g~(s),s,\tilde{\psi}(s)-2\int_{\mathbb{R}}\left[\frac{\partial G(x,y)}{\partial\nu(y)}+i\eta G(x,y)\right]\sqrt{1+|f^{\prime}(t)|^{2}}\tilde{\psi}(t)dt=-2\tilde{g}(s),\quad s\in\mathbb{R}, (4.25)

where x=(s,f(s)),y=(t,f(t))x=(s,f(s)),y=(t,f(t)). Define the kernel κf\kappa_{f} by

κf(s,t)=2[Gν(y)(x,y)+iηG(x,y)]1+|f(t)|2,s,t,st,\kappa_{f}(s,t)=2\left[\frac{\partial G}{\partial\nu(y)}(x,y)+i\eta G(x,y)\right]\sqrt{1+|f^{\prime}(t)|^{2}},\quad s,t\in\mathbb{R},\quad s\neq t, (4.26)

with x=(s,f(s)),y=(t,f(t))x=(s,f(s)),y=(t,f(t)). Using this kernel, define the integral operator KfK_{f} by

(Kfϕ)(s):=κf(s,t)ϕ(t)𝑑t,s,(K_{f}\phi)(s):=\int_{\mathbb{R}}\kappa_{f}(s,t)\phi(t)dt,\quad s\in\mathbb{R},

for ϕBC()\phi\in BC(\mathbb{R}). Then the equation (4.23) can be written as

(IKf)ψ~=2g~,(I-K_{f})\tilde{\psi}=-2\tilde{g},

where II denotes the identity operator on BC()BC(\mathbb{R}). Here, we use the subscript to indicate the dependence of the kernel κf\kappa_{f} and the operator KfK_{f} on the function ff.

Since Kfψ~K_{f}\tilde{\psi} with ψ~BC()\tilde{\psi}\in BC(\mathbb{R}) is an integral over the unbounded interval \mathbb{R}, KfK_{f} is not a compact operator on BC()BC(\mathbb{R}). Thus it is impossible to use the Riesz-Fredholm theorem to establish the solvability of the integral equation (4.25). To overcome this difficulty, we follow the approach in [37]. The following theorem presents the uniqueness of the integral equation (4.23).

Theorem 4.17.

If η>0\eta>0 and k+>k>0k_{+}>k_{-}>0, then the integral equation (4.23) has at most one solution in BC()BC(\mathbb{R}).

Proof.

Suppose that ψ~BC()\tilde{\psi}\in BC(\mathbb{R}) satisfies

(IKf)ψ~=0.(I-K_{f})\tilde{\psi}=0. (4.27)

It suffices to prove that ψ~=0\tilde{\psi}=0. Define ψBC(Γ)\psi\in BC(\Gamma) by ψ(t,f(t)):=ψ~(t)\psi(t,f(t)):=\tilde{\psi}(t) with tt\in\mathbb{R}. Let vs(x)v^{s}(x) with x2\Γx\in\mathbb{R}^{2}\backslash\Gamma be the combined double- and single-layer potential with the density function ψ\psi, that is,

vs(x):=Γ[G(x,y)ν(y)+iηG(x,y)]ψ(y)𝑑s(y),x2\Γ.v^{s}(x):=\int_{\Gamma}\left[\frac{\partial G(x,y)}{\partial\nu(y)}+i\eta G(x,y)\right]\psi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\Gamma.

Then vsv^{s} satisfies (4.23) with g=0g=0. Hence, it follows from Theorem 4.16 that vsv^{s} satisfies the problem (DBVP) with g=0g=0, so that, by Theorem 4.11, vs0v^{s}\equiv 0 in DD. Furthermore, let v±s/ν\partial v^{s}_{\pm}/\partial\nu and v±sv^{s}_{\pm} be defined as in the equations (A.6) and (A.2), respectively. Then it follows that v+s=v+s/ν=0v^{s}_{+}=\partial v^{s}_{+}/\partial\nu=0 on Γ\Gamma. By the statements (ii) and (iv) in Theorem A.1 and the statement (ii) in Theorem A.2, we have the following jump relations

vsv+s=ψ,vs/νv+s/ν=iηψonΓ,v^{s}_{-}-v^{s}_{+}=\psi,\quad\partial v^{s}_{-}/\partial\nu-\partial v^{s}_{+}/\partial\nu=-i\eta\psi\quad\textrm{on}~{}\Gamma, (4.28)

which implies that ψ=vs\psi=v^{s}_{-} and vs/ν=iηψ\partial v^{s}_{-}/\partial\nu=-i\eta\psi. Hence

vs/ν+iηvs=0onΓ.\partial v_{-}^{s}/\partial\nu+i\eta v_{-}^{s}=0\quad\textrm{on}~{}\Gamma. (4.29)

For x=(x1,x2)2x=(x_{1},x_{2})\in\mathbb{R}^{2}, we define x~:=(x1,x2)\tilde{x}:=(x_{1},-x_{2}). Define

Γ~:={x=(s,f(s)):s},\displaystyle\tilde{\Gamma}:=\{x=(s,-f(s))\,:\,s\in\mathbb{R}\}, (4.30)
D~:={x=(x1,x2):x1,x2>f(x1)}.\displaystyle\tilde{D}:=\{x=(x_{1},x_{2})\,:\,x_{1}\in\mathbb{R},x_{2}>-f(x_{1})\}. (4.31)

It can be observed that x~Γ~\tilde{x}\in\tilde{\Gamma} (resp. x~D~\tilde{x}\in\tilde{D}) if and only if xΓx\in\Gamma (resp. x2\D¯x\in\mathbb{R}^{2}\backslash\overline{D}).

Let v~s\tilde{v}^{s} be defined as

v~s(x):=vs(x~)\tilde{v}^{s}(x):=v^{s}(\tilde{x}) (4.32)

for xD~x\in\tilde{D}. Let ν\nu be the unit normal to Γ\Gamma pointing out of DD and let ν~\tilde{\nu} be the unit normal to Γ~\tilde{\Gamma} pointing out of D~\tilde{D}. Define

v~sν~(x):=limh0+v~s(xhν~(x))ν~(x),v~s(x):=limh0+v~s(xhν~(x)),xΓ~.\frac{\partial\tilde{v}^{s}}{\partial\tilde{\nu}}(x):=\lim_{h\to 0+}\nabla\tilde{v}^{s}(x-h\tilde{\nu}(x))\cdot\tilde{\nu}(x),\quad\tilde{v}^{s}(x):=\lim_{h\to 0+}\tilde{v}^{s}(x-h\tilde{\nu}(x)),\quad x\in\tilde{\Gamma}.

It is clear that v~s/ν~(x)=vs/ν(x~)\partial\tilde{v}^{s}/\partial\tilde{\nu}(x)=-\partial v^{s}_{-}/\partial\nu(\tilde{x}) and v~s(x)=vs(x~)\tilde{v}^{s}(x)=v_{-}^{s}(\tilde{x}) for xΓ~x\in\tilde{\Gamma}. This, together with (4.29), (4.27), the boundary condition v~s/ν~iηv~s=0\partial\tilde{v}^{s}/\partial\tilde{\nu}-i\eta\tilde{v}^{s}=0 on Γ\Gamma as well as Theorem A.3, implies that ψC0,λ(Γ)\psi\in C^{0,\lambda}(\Gamma). Thus, by Theorems A.4 and A.5, v~s\tilde{v}^{s} satisfies the condition (iv) of the impedance problem (IP) in [37, Section 2]. Then by combining the statements (i), (iii) and (v) in Theorem A.1 and the statements (i), (iii) and (iv) in Theorem A.2, v~s\tilde{v}^{s} satisfies the conditions (i), (iii) and (v) of the impedance problem (IP) in [37]. Hence, based on the above discussions, v~s\tilde{v}^{s} satisfies the impedance problem (IP) in [37] with D=D~D=\tilde{D}, Γ=Γ~\Gamma=\tilde{\Gamma}, β=η/k\beta=\eta/k_{-} and with the wave number k=kk=k_{-} and the boundary data g=0g=0. Choose η>0\eta>0 so that Reβ>ϵ>0{\rm Re}\beta>\epsilon>0 for some ϵ\epsilon. Then by [37, Theorem 4.7], v~s0\tilde{v}^{s}\equiv 0 in D~\tilde{D}, which implies that vs0v^{s}\equiv 0 in 2\D¯\mathbb{R}^{2}\backslash\overline{D}. Then the jump relations in (4.28) give that ψ=0\psi=0. Therefore, the proof is complete. ∎

In the rest of this subsection, we assume that η>0\eta>0 and k+>k>0k_{+}>k_{-}>0. Now we utilize Theorem B.1 to prove the existence of the integral equation (4.25). We use the notations defined in Appendix B. For some c1<0c_{1}<0 and c2>0c_{2}>0, we define B(c1,c2)B(c_{1},c_{2}) by

B(c1,c2):={fC1,1():f(s)c1,s and fC1,1()c2}.B\left(c_{1},c_{2}\right):=\left\{f\in C^{1,1}(\mathbb{R})\,:\,f(s)\leq c_{1},s\in\mathbb{R}\text{ and }\|f\|_{C^{1,1}(\mathbb{R})}\leq c_{2}\right\}.

Let Wdir:={kf:fB(c1,c2)}W_{dir}:=\{k_{f}\,:\,f\in B(c_{1},c_{2})\}. By Theorem 4.17, I𝒦f:BC()BC()I-\mathscr{K}_{f}:BC(\mathbb{R})\to BC(\mathbb{R}) is injective for all fWdirf\in W_{dir}, where 𝒦l\mathscr{K}_{l} is defined by (B.1) and II is the identity operator on BC()BC(\mathbb{R}). Then Ta(Wdir)=WdirT_{a}(W_{dir})=W_{dir} for all aa\in\mathbb{R}, where Tal(s,t)=l(sa,ta)T_{a}l(s,t)=l(s-a,t-a). By Lemma B.2 (i), WdirBC(,L1())𝐊W_{dir}\subset BC(\mathbb{R},L^{1}(\mathbb{R}))\subset\mathbf{K}, and for all ss\in\mathbb{R} satisfies

supkfW|kf(s,t)kf(s,t)|dt0, as ss.\sup_{k_{f}\in W}\int_{\mathbb{R}}\left|k_{f}(s,t)-k_{f}\left(s^{\prime},t\right)\right|\mathrm{d}t\rightarrow 0,\quad\text{ as }s^{\prime}\rightarrow s.

By the statements (i) and (ii) in Lemma B.3, WdirW_{dir} is σ\sigma-sequentially compact in 𝐊\mathbf{K}. Let lWdirl\in W_{dir} and fB(c1,c2)f\in B(c_{1},c_{2}) such that l=kfl=k_{f}. Choose a periodic function fnB(c1,c2)f_{n}\in B(c_{1},c_{2}) satisfying fn(x1)=f(x1)f_{n}(x_{1})=f(x_{1}) for x1[n,n]x_{1}\in[-n,n] and let ln:=kfnWdirl_{n}:=k_{f_{n}}\in W_{dir}. Then it yields that

fnsf,fnsf.f_{n}\stackrel{{\scriptstyle s}}{{\longrightarrow}}f,\quad f_{n}^{\prime}\stackrel{{\scriptstyle s}}{{\longrightarrow}}f^{\prime}.

This, together with Lemma B.3 (ii), implies that lnσll_{n}\stackrel{{\scriptstyle\sigma}}{{\longrightarrow}}l. Since Tanln=lnT_{a_{n}}l_{n}=l_{n}, where an>0a_{n}>0 is the period of fnf_{n}, and lnBC(,L1())l_{n}\in BC\left(\mathbb{R},L^{1}(\mathbb{R})\right), it follows from Theorem 2.10 in [8] that (B.4) holds. By the above discussions, WdirW_{dir} satisfies all the conditions of Theorem B.1 and thus we obtain the following results.

Theorem 4.18.

Let η>0\eta>0 and k+>k>0k_{+}>k_{-}>0. Then, for all fB(c1,c2)f\in B(c_{1},c_{2}) the integral operator IKf:BC()BC()I-K_{f}:BC(\mathbb{R})\to BC(\mathbb{R}) is bijective (and so boundedly invertible) with

supfB(c1,c2)(IKf)1<.\sup_{f\in B(c_{1},c_{2})}\|(I-K_{f})^{-1}\|<\infty.

Thus the integral equations (4.23) and (4.25) have exactly one solution for every fB(c1,c2)f\in B(c_{1},c_{2}) and gBC(Γ)g\in BC(\Gamma), with

ψ,Γ=ψ~Cg~=g,Γ,\|\psi\|_{\infty,\Gamma}=\|\tilde{\psi}\|_{\infty}\leq C\|\tilde{g}\|_{\infty}=\|g\|_{\infty,\Gamma},

where CC is a positive constant depending only on k±k_{\pm} and B(c1,c2)B(c_{1},c_{2}).

By combining Theorems 4.11, 4.16, 4.17, 4.18, A.1 (iii) and A.2 (iii), we arrive at the following theorem on the well-posedness of the problem (DBVP).

Theorem 4.19.

Assume fB(c1,c2)f\in B(c_{1},c_{2}) and k+>k>0k_{+}>k_{-}>0. Then for every η>0\eta>0 and gBC(Γ)g\in BC(\Gamma), the problem (DBVP) has exactly one solution in the form

us(x)=Γ(G(x,y)ν(y)+iηG(x,y))ψ(y)𝑑s(y),xD.u^{s}(x)=\int_{\Gamma}\bigg{(}\frac{\partial G(x,y)}{\partial\nu(y)}+i\eta G(x,y)\bigg{)}\psi(y)ds(y),\quad x\in D.

Here, the density function ψBC(Γ)\psi\in BC(\Gamma) is the unique solution of the integral equation

Adψ(x):=12ψ(x)+Γ(G(x,y)ν(y)+iηG(x,y))ψ(y)𝑑s(y)=g(x),xΓ,A_{d}\psi(x):=-\frac{1}{2}\psi(x)+\int_{\Gamma}\bigg{(}\frac{\partial G(x,y)}{\partial\nu(y)}+i\eta G(x,y)\bigg{)}\psi(y)ds(y)=g(x),\quad x\in\Gamma,

where AdA_{d} is bijective (and thus boundedly invertible) in BC(Γ)BC(\Gamma). Moreover, for some constant C>0C>0 depending only on B(c1,c2)B(c_{1},c_{2}) and k±k_{\pm},

|us(x)|C|x2+|f|+1|1/2g,Γ,xD,|u^{s}(x)|\leq C\big{|}x_{2}+|f_{-}|+1\big{|}^{1/2}\|g\|_{\infty,\Gamma},\quad x\in D,

for all fB(c1,c2)f\in B(c_{1},c_{2}) and gBC(Γ)g\in BC(\Gamma).

4.5 The Existence Result of the Problem (IBVP)

In this subsection, we seek a solution in the form of the single-layer potential

us(x)=ΓG(x,y)ψ(y)𝑑s(y),xD,u^{s}(x)=\int_{\Gamma}G(x,y)\psi(y)ds(y),\quad x\in D, (4.33)

for some ψBC(Γ)\psi\in BC(\Gamma). Using the statements (i) and (iii) in Theorem A.2, we obtain usu^{s} satisfies the conditions (i), (ii) and (iv) of the problem (IBVP) with α=1/2\alpha=-1/2. With the aid of Theorem A.5, we have that usu^{s} satisfies the condition (v) of the problem (IBVP) for any θ(0,1)\theta\in(0,1). Thus, by Theorem A.2 (ii), the single-layer potential (4.33) is a solution of the problem (IBVP) provided ψ\psi satisfies the following integral equation

ψ(x)+2Γ[G(x,y)ν(x)ikβ(x)G(x,y)]ψ(y)𝑑s(y)=2g(x),xΓ.\psi(x)+2\int_{\Gamma}\left[\frac{\partial G(x,y)}{\partial\nu(x)}-ik_{-}\beta(x)G(x,y)\right]\psi(y)ds(y)=2g(x),\quad x\in\Gamma. (4.34)

Hence, we obtain the following theorem.

Theorem 4.20.

The single-layer potential (4.33) satisfies the problem (IBVP) for α=1/2\alpha=-1/2 and for any θ(0,1)\theta\in(0,1), provided ψBC(Γ)\psi\in BC(\Gamma) satisfies the boundary integral equation (4.34).

Let ψ~\tilde{\psi} and g~\tilde{g} be given as in (4.24) and let β~BC()\tilde{\beta}\in BC(\mathbb{R}) be given by

β~(s):=β(s,f(s)),s.\tilde{\beta}(s):=\beta(s,f(s)),\quad s\in\mathbb{R}. (4.35)

By parameterizing the integral in (4.34), we have the following integral equation problem: find ψ~BC()\tilde{\psi}\in BC(\mathbb{R}) such that

ψ~(s)+2[G(x,y)ν(x)ikβ~(s)G(x,y)]1+|f(t)|2ψ~(t)𝑑t=2g~(s),s,\tilde{\psi}(s)+2\int_{\mathbb{R}}\left[\frac{\partial G(x,y)}{\partial\nu(x)}-ik_{-}\tilde{\beta}(s)G(x,y)\right]\sqrt{1+|f^{\prime}(t)|^{2}}\tilde{\psi}(t)dt=2\tilde{g}(s),\quad s\in\mathbb{R}, (4.36)

where x=(s,f(s))x=(s,f(s)) and y=(t,f(t))y=(t,f(t)). Define the kernel κβ~,f\kappa_{\tilde{\beta},f} by

κβ~,f(s,t):=2[G(x,y)ν(x)ikβ~(s)G(x,y)]1+|f(t)|2,s,t,st,\kappa_{\tilde{\beta},f}(s,t):=-2\left[\frac{\partial G(x,y)}{\partial\nu(x)}-ik_{-}\tilde{\beta}(s)G(x,y)\right]\sqrt{1+|f^{\prime}(t)|^{2}},\quad s,t\in\mathbb{R},\quad s\neq t, (4.37)

where x=(s,f(s))x=(s,f(s)) and y=(t,f(t))y=(t,f(t)). Using this kernel, define the integral operator Kβ~,fK_{\tilde{\beta},f} by

(Kβ~,fϕ)(s):=κβ~,f(s,t)ϕ(t)𝑑t,s,(K_{\tilde{\beta},f}\phi)(s):=\int_{\mathbb{R}}\kappa_{\tilde{\beta},f}(s,t)\phi(t)dt,\quad s\in\mathbb{R},

for ϕBC()\phi\in BC(\mathbb{R}). Then the equation (4.34) can be written as

(IKβ~,f)ψ~=2g~,(I-K_{\tilde{\beta},f})\tilde{\psi}=2\tilde{g},

where II denotes the identity operator on BC()BC(\mathbb{R}). Here, we use the subscript to indicate the dependence of the kernel κβ~,f\kappa_{\tilde{\beta},f} and the operator Kβ~,fK_{\tilde{\beta},f} on the functions β~\tilde{\beta} and ff.

Using Theorem 4.15 for the uniqueness of the impedance problem (IBVP), we can establish the following uniqueness result for the integral equation (4.34).

Theorem 4.21.

Suppose that k±>0k_{\pm}>0 and d>0d>0. If βBC(Γ)\beta\in BC(\Gamma) with Re(β(x))d\mathrm{Re}(\beta(x))\geq d on xΓx\in\Gamma, then the boundary integral equation (4.34) has at most one solution in BC(Γ)BC(\Gamma).

Proof.

Suppose ψ~BC()\tilde{\psi}\in BC(\mathbb{R}) satisfies

(IKβ~,f)ψ~=0.(I-K_{\tilde{\beta},f})\tilde{\psi}=0.

We only need to prove that ψ~=0\tilde{\psi}=0.

Define ψBC(Γ)\psi\in BC(\Gamma) by ψ(t,f(t)):=ψ~(t),t\psi(t,f(t)):=\tilde{\psi}(t),t\in\mathbb{R}, and let vsv^{s} in 2\Γ\mathbb{R}^{2}\backslash\Gamma be the single-layer potential with the density ψ\psi, that is,

vs(x):=ΓG(x,y)ψ(y)𝑑s,x2\Γ.v^{s}(x):=\int_{\Gamma}G(x,y)\psi(y)ds,\quad x\in\mathbb{R}^{2}\backslash\Gamma.

Then ψ\psi satisfies (4.34) with g=0g=0, so that, by Theorem 4.15, vs0v^{s}\equiv 0 in DD. Furthermore, by Theorem A.2 (ii),

vs(x)=v+s(x),νvs(x)νv+s(x)=ψ(x),xΓ,v^{s}_{-}(x)=v^{s}_{+}(x),\quad\partial_{\nu}v^{s}_{-}(x)-\partial_{\nu}v^{s}_{+}(x)=-\psi(x),\quad x\in\Gamma, (4.38)

where v±sv^{s}_{\pm} and νv±s\partial_{\nu}v^{s}_{\pm} are defined as in the equations (A.2) and (A.6), respectively. Thus, vs=0v^{s}_{-}=0 on Γ\Gamma. This implies that v~s=vs=0\tilde{v}^{s}=v^{s}_{-}=0 on Γ~\tilde{\Gamma}, where Γ~\tilde{\Gamma} is given as in (4.30) and v~s\tilde{v}^{s} is defined in the same way as in (4.32). Moreover, let D~\tilde{D} be given as in (4.31). By the statements (i)–(iv) of Theorem A.2, v~s\tilde{v}^{s} satisfies the problem (P) in [10, Section 2] with D=D~D=\tilde{D} and Γ=Γ~\Gamma=\tilde{\Gamma} and with the boundary data g=0g=0 on Γ~\tilde{\Gamma}. Hence, by Theorem 3.4 in [10], it follows that v~s0\tilde{v}^{s}\equiv 0 in D~\tilde{D}, which implies that vs0v^{s}\equiv 0 in 2\D¯\mathbb{R}^{2}\backslash\overline{D}. Therefore, by (4.38) we obtain ψ=0\psi=0. The proof is now completed. ∎

Now we are going to prove the existence of the integral equation (4.34). We will use Theorem B.1 and use the notations in Appendix B. For some d10d_{1}\geq 0, d2>0d_{2}>0 and some function ω:[0,)[0,)\omega:[0,\infty)\to[0,\infty) such that ω(s)0\omega(s)\to 0 as s0s\to 0, let E(d1,d2,ω)E(d_{1},d_{2},\omega) be defined by

E(d1,d2,ω):=\displaystyle E(d_{1},d_{2},\omega):= {β~(s)BC():Re(β~(s))d1,s,β~d2, and\displaystyle\Big{\{}\tilde{\beta}(s)\in BC(\mathbb{R})\,:\,\mathrm{Re}(\tilde{\beta}(s))\geq d_{1},s\in\mathbb{R},\|\tilde{\beta}\|_{\infty}\leq d_{2},\text{ and }
|β~(s)β~(t)|ω(|st|),s,t}.\displaystyle\big{|}\tilde{\beta}(s)-\tilde{\beta}(t)\big{|}\leq\omega(|s-t|),s,t\in\mathbb{R}\Big{\}}.

Note that E(d1,d2,ω)BUC()E(d_{1},d_{2},\omega)\subset BUC(\mathbb{R}). Conversely, given β~BUC()\tilde{\beta}\in BUC(\mathbb{R}), it holds that β~E(d1,d2,ω)\tilde{\beta}\in E(d_{1},d_{2},\omega) provided d1infsRe(β~(s)),d2β~d_{1}\leq\inf_{s\in\mathbb{R}}\mathrm{Re}(\tilde{\beta}(s)),d_{2}\geq\|\tilde{\beta}\|_{\infty} and ω(h)sups,|t|h|β~(s+t)β~(s)|\omega(h)\geq\sup_{s\in\mathbb{R},|t|\leq h}|\tilde{\beta}(s+t)-\tilde{\beta}(s)| for all h0h\geq 0. We have the following existence result for the integral equation (4.34).

Theorem 4.22.

Suppose that, for some d>0d>0, Reβ(x)d\mathrm{Re}\beta(x)\geq d for all xΓx\in\Gamma. Then the integral equations (4.34) and (4.36) have exactly one solution for every fB(c1,c2)f\in B(c_{1},c_{2}), gBC(Γ)g\in BC(\Gamma) and βBUC(Γ)\beta\in BUC(\Gamma). Moreover, if d1>0d_{1}>0, then there exists some constant C>0C>0 depending only on B(c1,c2)B(c_{1},c_{2}), E(d1,d2,ω)E(d_{1},d_{2},\omega) and k±k_{\pm} such that

ψ,Γ=ψ~Cg~=g,Γ\displaystyle\|\psi\|_{\infty,\Gamma}=\|\tilde{\psi}\|_{\infty}\leq C\|\tilde{g}\|_{\infty}=\|g\|_{\infty,\Gamma}

for all fB(c1,c2)f\in B(c_{1},c_{2}), gBC(Γ)g\in BC(\Gamma) and β~E(d1,d2,ω)\tilde{\beta}\in E(d_{1},d_{2},\omega) with β\beta defined in terms of β~\tilde{\beta} by (4.35).

Proof.

Let Wimp:={κβ~,f:fB(c1,c2),β~E(d1,d2,ω)}W_{imp}:=\{\kappa_{\tilde{\beta},f}\,:\,f\in B(c_{1},c_{2}),\tilde{\beta}\in E(d_{1},d_{2},\omega)\}. It follows from Theorem 4.21 that I𝒦l:BC()BC()I-\mathscr{K}_{l}:BC(\mathbb{R})\to BC(\mathbb{R}) is injective for all lWimpl\in W_{imp}, where 𝒦l\mathscr{K}_{l} is defined by (B.1) and II is the identity operator. Moreover, Ta(Wimp)=WimpT_{a}(W_{imp})=W_{imp} for all aa\in\mathbb{R}. By Lemma B.2 (ii), WimpBC(,L1())𝐊W_{imp}\subset BC(\mathbb{R},L^{1}(\mathbb{R}))\subset\mathbf{K} and WimpW_{imp} satisfies (B.3). From the statement (i) in Lemma B.3 and the statements (i) and (ii) in Lemma B.4, WW is σ\sigma-sequentially compact in 𝐊\mathbf{K}. Let lWimpl\in W_{imp}, fB(c1,c2)f\in B(c_{1},c_{2}) and β~E(d1,d2,ω)\tilde{\beta}\in E(d_{1},d_{2},\omega) such that l=κβ~,fl=\kappa_{\tilde{\beta},f}. For each nn\in\mathbb{N}, choose fnB(c1,c2)f_{n}\in B(c_{1},c_{2}) and β~nE(d1,d2,ω)\tilde{\beta}_{n}\in E(d_{1},d_{2},\omega) so that fnf_{n} and β~n\tilde{\beta}_{n} are periodic with the same period and fn(x1)=f(x1)f_{n}(x_{1})=f(x_{1}), β~n(x1)=β~(x1)\tilde{\beta}_{n}(x_{1})=\tilde{\beta}(x_{1}) for x1[n,n]x_{1}\in[-n,n]. Then ln:=κβ~n,fnWimpl_{n}:=\kappa_{\tilde{\beta}_{n},f_{n}}\in W_{imp} and fn𝑠ff_{n}\xrightarrow{s}f, fn𝑠ff_{n}^{\prime}\xrightarrow{s}f^{\prime}, β~n𝑠β~\tilde{\beta}_{n}\xrightarrow{s}\tilde{\beta}, so that, by Lemma B.4 (ii), ln𝜎ll_{n}\xrightarrow{\sigma}l. Since Tanln=lnT_{a_{n}}l_{n}=l_{n}, where an>0a_{n}>0 is the period of fnf_{n} and β~n\tilde{\beta}_{n} and where lnBC(,L1())l_{n}\in BC(\mathbb{R},L^{1}(\mathbb{R})), it follows from [8, Theorem 2.10] that the condition (B.4) holds. Thus WimpW_{imp} satisfies all the conditions in Theorem B.1. Therefore, the statement of this theorem follows from Theorem B.1. ∎

By combining Theorems 4.15, 4.20, 4.21, 4.22, A.1 (iii) and A.2 (iii), we obtain the following result on the well-posedness of the problem (IBVP).

Theorem 4.23.

Assume fB(c1,c2)f\in B(c_{1},c_{2}) and k+,k>0k_{+},k_{-}>0 with k+kk_{+}\neq k_{-}. Suppose that for some d>0d>0, Re(β(x))d\mathrm{Re}(\beta(x))\geq d for all xΓx\in\Gamma. Then for every gBC(Γ)g\in BC(\Gamma) and βBUC(Γ)\beta\in BUC(\Gamma) with β\beta uniformly continuous on Γ\Gamma, the problem (IBVP) has exactly one solution in the form

us(x)=ΓG(x,y)ψ(y)𝑑s(y),xD.u^{s}(x)=\int_{\Gamma}G(x,y)\psi(y)ds(y),\quad x\in D.\quad

Here, the density function ψBC(Γ)\psi\in BC(\Gamma) is the unique solution of the integral equation

Aiψ(x):=12ψ(x)+Γ(G(x,y)ν(x)ikβ(x)G(x,y))ψ(y)𝑑s(x)=g(x),xΓ,A_{i}\psi(x):=\frac{1}{2}\psi(x)+\int_{\Gamma}\bigg{(}\frac{\partial G(x,y)}{\partial\nu(x)}-ik_{-}\beta(x)G(x,y)\bigg{)}\psi(y)ds(x)=g(x),\quad x\in\Gamma,

where AiA_{i} is bijective (and thus boundedly invertible) in BC(Γ)BC(\Gamma). Moreover, if d1>0d_{1}>0, then for some constant C>0C>0 depending only on B(c1,c2)B(c_{1},c_{2}), E(d1,d2,ω)E(d_{1},d_{2},\omega) and k±k_{\pm},

|us(x)|C|x2+|f|+1|1/2g,Γ,xD,|u^{s}(x)|\leq C\big{|}x_{2}+|f_{-}|+1\big{|}^{1/2}\|g\|_{\infty,\Gamma},\quad x\in D,

for all fB(c1,c2)f\in B(c_{1},c_{2}), gBC(Γ)g\in BC(\Gamma) and β~E(d1,d2,ω)\tilde{\beta}\in E(d_{1},d_{2},\omega) with β\beta defined in terms of β~\tilde{\beta} by (4.35).

5 The Nyström Method for the Problems (DBVP) and (IBVP)

In this section, motivated by [29], we present the Nyström method for numerically solving the problems (DBVP) and (IBVP), based on the integral equations (4.23) and (4.34). Nyström methods have been extensively studied for computing solutions of integral equations on bounded curves (see, e.g., [15]). Moreover, this kind of methods was extended in [29] to solve integral equations on unbounded domains.

For ψBC()\psi\in BC(\mathbb{R}), define the boundary integral operators

(Sψ)(x):=ΓG(x,y)ψ(y)𝑑s(y),xΓ,\displaystyle(S\psi)(x):=\int_{\Gamma}G(x,y)\psi(y)ds(y),\quad x\in\Gamma,
(Kψ)(x):=ΓGν(y)(x,y)ψ(y)𝑑s(y),xΓ,\displaystyle(K\psi)(x):=\int_{\Gamma}\frac{\partial G}{\partial\nu(y)}(x,y)\psi(y)ds(y),\quad x\in\Gamma,
(Kψ)(x):=ΓG(x,y)ν(x)ψ(y)𝑑s(y),xΓ.\displaystyle(K^{\prime}\psi)(x):=\int_{\Gamma}\frac{\partial G(x,y)}{\partial\nu(x)}\psi(y)ds(y),\quad x\in\Gamma.

For x,yΓx,y\in\Gamma, we write x=(s,f(s))x=(s,f(s)) and y=(t,f(t))y=(t,f(t)) for s,ts,t\in\mathbb{R}. For the functions ψ(x),g(x),β(x)BC(Γ)\psi(x),g(x),\beta(x)\in BC(\Gamma), we define the parameterized functions ψ~,g~,β~BC()\tilde{\psi},\tilde{g},\tilde{\beta}\in BC(\mathbb{R}) in terms of (4.24) and (4.35). Then the above three integral operators can be parameterized as

(S~ψ~)(s):=κ1(s,t)ψ~(t)𝑑t,\displaystyle(\tilde{S}\tilde{\psi})(s):=\int_{\mathbb{R}}\kappa_{1}(s,t)\tilde{\psi}(t)dt,
(K~ψ~)(s):=κ2(s,t)ψ~(t)𝑑t,\displaystyle(\tilde{K}\tilde{\psi})(s):=\int_{\mathbb{R}}\kappa_{2}(s,t)\tilde{\psi}(t)dt,
(K~ψ~)(s):=κ3(s,t)ψ~(t)𝑑t\displaystyle(\tilde{K}^{\prime}\tilde{\psi})(s):=\int_{\mathbb{R}}\kappa_{3}(s,t)\tilde{\psi}(t)dt

for ss\in\mathbb{R}, respectively, where the kernels κ1\kappa_{1}, κ2\kappa_{2} and κ3\kappa_{3} are given by

κ1(s,t):=G(x,y)1+|f(t)|2,\displaystyle\kappa_{1}(s,t):=G(x,y)\sqrt{1+|f^{\prime}(t)|^{2}},
κ2(s,t):=G(x,y)ν(y)1+|f(t)|2,\displaystyle\kappa_{2}(s,t):=\frac{\partial G(x,y)}{\partial\nu(y)}\sqrt{1+|f^{\prime}(t)|^{2}},
κ3(s,t):=G(x,y)ν(x)1+|f(t)|2.\displaystyle\kappa_{3}(s,t):=\frac{\partial G(x,y)}{\partial\nu(x)}\sqrt{1+|f^{\prime}(t)|^{2}}.

Next, we rewrite the operators S~\tilde{S}, K~\tilde{K} and K~\tilde{K}^{\prime}. Let Hj(1)(t)H^{(1)}_{j}(t) denote the Hankel function of the first kind of order jj and let Jj(t)J_{j}(t) and Yj(t)Y_{j}(t) denote the Bessel function and the Neumann function, respectively, of order jj (see [15]). According to (2.11), the expansion (3.98) in [15] for the Neumann functions, and the properties of Hankel functions (H0(1)(t))=H1(1)(t)({H}_{0}^{(1)}(t))^{\prime}=-{H}_{1}^{(1)}(t) and Hj(1)(t)=Jj(t)+iYj(t)H_{j}^{(1)}(t)=J_{j}(t)+iY_{j}(t) for j=1,2j=1,2, the kernels κ1,κ2\kappa_{1},\kappa_{2} and κ3\kappa_{3} have the representations

κ1(s,t)=a1(s,t)ln|st|+b1(s,t),\displaystyle\kappa_{1}(s,t)=a_{1}(s,t)\ln|s-t|+b_{1}(s,t), (5.1)
κ2(s,t)=a2(s,t)ln|st|+b2(s,t),\displaystyle\kappa_{2}(s,t)=a_{2}(s,t)\ln|s-t|+b_{2}(s,t), (5.2)
κ3(s,t)=a3(s,t)ln|st|+b3(s,t),\displaystyle\kappa_{3}(s,t)=a_{3}(s,t)\ln|s-t|+b_{3}(s,t), (5.3)

where aia_{i} and bib_{i} (i=1,2,3i=1,2,3) are given by

a1(s,t):=12πJ0(k|xy|)1+|f(t)|2,\displaystyle a_{1}(s,t):=-\frac{1}{2\pi}J_{0}(k_{-}|x-y|)\sqrt{1+|f^{\prime}(t)|^{2}}, (5.4)
b1(s,t):=i4H0(1)(k|xy|)1+|f(t)|2a1(s,t)ln|st|+G(x,y)1+|f(t)|2,\displaystyle b_{1}(s,t):=\frac{i}{4}H_{0}^{(1)}(k_{-}|x-y|)\sqrt{1+|f^{\prime}(t)|^{2}}-a_{1}(s,t)\ln|s-t|+G_{\mathcal{R}}(x,y)\sqrt{1+|f^{\prime}(t)|^{2}}, (5.5)
a2(s,t):=k2π(yx)ν(y)J1(k|xy|)|xy|1+|f(t)|2,\displaystyle a_{2}(s,t):=\frac{k_{-}}{2\pi}(y-x)\cdot\nu(y)\frac{J_{1}(k_{-}|x-y|)}{|x-y|}\sqrt{1+|f^{\prime}(t)|^{2}}, (5.6)
b2(s,t):=ik4H1(1)(k|xy|)xy|xy|ν(y)1+|f(t)|2a2(s,t)ln|st|+c(s,t)1+|f(t)|2,\displaystyle b_{2}(s,t):=\frac{ik_{-}}{4}H_{1}^{(1)}(k_{-}|x-y|)\frac{x-y}{|x-y|}\cdot{\nu}(y)\sqrt{1+|f^{\prime}(t)|^{2}}-a_{2}(s,t)\ln|s-t|+c(s,t)\sqrt{1+|f^{\prime}(t)|^{2}}, (5.7)
a3(s,t):=k2π(xy)ν(x)J1(k|xy|)|xy|1+|f(t)|2,\displaystyle a_{3}(s,t):=\frac{k_{-}}{2\pi}(x-y)\cdot\nu(x)\frac{J_{1}(k_{-}|x-y|)}{|x-y|}\sqrt{1+|f^{\prime}(t)|^{2}}, (5.8)
b3(s,t):=ik4H1(1)(k|xy|)yx|xy|ν(x)1+|f(t)|2a3(s,t)ln|st|+d(s,t)1+|f(t)|2,\displaystyle b_{3}(s,t):=\frac{ik_{-}}{4}H_{1}^{(1)}(k_{-}|x-y|)\frac{y-x}{|x-y|}\cdot{\nu}(x)\sqrt{1+|f^{\prime}(t)|^{2}}-a_{3}(s,t)\ln|s-t|+d(s,t)\sqrt{1+|f^{\prime}(t)|^{2}}, (5.9)

where ν(x)=(f(s),1)\nu(x)=(f^{\prime}(s),-1), ν(y)=(f(t),1)\nu(y)=(f^{\prime}(t),-1), c(s,t)=G(x,y)/ν(y)c(s,t)={\partial G_{\mathcal{R}}(x,y)}/{\partial\nu(y)} and d(s,t)=G(x,y)/ν(x)d(s,t)={\partial G_{\mathcal{R}}(x,y)}/{\partial\nu(x)}. We note from (2.12) that c(s,s)=d(s,s)c(s,s)=d(s,s) for ss\in\mathbb{R}. Then using the formulas (3.97) and (3.98) in [15], we can deduce that the diagonal terms a1(s,s)=a2(s,s)=a3(s,s)=0a_{1}(s,s)=a_{2}(s,s)=a_{3}(s,s)=0 for ss\in\mathbb{R}, and

b1(s,s)=(i4γ2π12πln(k21+|f(s)|2))1+|f(s)|2+G(x,x)1+|f(s)|2,\displaystyle b_{1}(s,s)=\left(\frac{i}{4}-\frac{\gamma}{2\pi}-\frac{1}{2\pi}\ln\left(\frac{k_{-}}{2}\sqrt{1+|f^{\prime}(s)|^{2}}\right)\right)\sqrt{1+|f^{\prime}(s)|^{2}}+G_{\mathcal{R}}(x,x)\sqrt{1+|f^{\prime}(s)|^{2}},
b2(s,s)=b3(s,s)=14π11+|f(s)|2f′′(s)+c(s,s)1+|f(s)|2\displaystyle b_{2}(s,s)=b_{3}(s,s)=-\frac{1}{4\pi}\frac{1}{1+|f^{\prime}(s)|^{2}}f^{\prime\prime}(s)+c(s,s)\sqrt{1+|f^{\prime}(s)|^{2}}

for ss\in\mathbb{R}, where γ\gamma denotes the Euler constant.

Let χC0()\chi\in C_{0}^{\infty}(\mathbb{R}) denote the cut-off function satisfying 0χ(s)10\leq\chi(s)\leq 1 for ss\in\mathbb{R} and satisfying that χ(s)=0\chi(s)=0 for |s|π|s|\geq\pi, χ(s)=1\chi(s)=1 for |s|1|s|\leq 1 and χ(s)=χ(s)\chi(-s)=\chi(s) for ss\in\mathbb{R}. Then κ1\kappa_{1}, κ2\kappa_{2} and κ3\kappa_{3} can be written as

κi(s,t)=12πAi(s,t)ln(4sin2(st2))+Bi(s,t),s,t,st,i=1,2,3,\kappa_{i}(s,t)=\frac{1}{2\pi}A_{i}(s,t)\ln\left(4\sin^{2}\left(\frac{s-t}{2}\right)\right)+B_{i}(s,t),\quad s,t\in\mathbb{R},\,s\neq t,\,i=1,2,3,

where AiA_{i} and BiB_{i} are given by

Ai(s,t):=πai(s,t)χ(st),\displaystyle A_{i}(s,t):=\pi a_{i}(s,t)\chi(s-t),
Bi(s,t):=ai(s,t)[ln|st|(1χ(st))χ(st)ln(sin((st)/2)(st)/2)]+bi(s,t)\displaystyle B_{i}(s,t):=a_{i}(s,t)\left[\ln|s-t|(1-\chi(s-t))-\chi(s-t)\ln\left(\frac{\sin((s-t)/2)}{(s-t)/2}\right)\right]+b_{i}(s,t)

for i=1,2,3i=1,2,3. In particular, we set Bi(s,s):=bi(s,s)B_{i}(s,s):=b_{i}(s,s) for all ss\in\mathbb{R} and i=1,2,3.i=1,2,3.

In the following two subsections, we will give the convergence analysis and the numerical implementation of our Nyström method.

5.1 Convergence Analysis

Set the step length h:=π/Nh:=\pi/N for NN\in\mathbb{N} and set tj=jht_{j}=jh for jj\in\mathbb{Z}. It follows from [29] that we can approximate the integral operators S~,K~\tilde{S},\tilde{K} and K~\tilde{K}^{\prime} by S~N,K~N\tilde{S}_{N},\tilde{K}_{N} and K~N\tilde{K}_{N}^{\prime}, respectively, which are given by

(Wψ)(s):=jαjN,i(s)ψ(tj),s,(W\psi)(s):=\sum_{j\in\mathbb{Z}}\alpha^{N,i}_{j}(s)\psi(t_{j}),\quad s\in\mathbb{R}, (5.10)

for (W,i)=(S~N,1),(K~N,2),(K~N,3)(W,i)=(\tilde{S}_{N},1),(\tilde{K}_{N},2),(\tilde{K}_{N}^{\prime},3). Here, αjN,i\alpha^{N,i}_{j} is given by

αjN,i(s):=RjN(s)Ai(s,tj)+πNBi(s,tj),s,\displaystyle\alpha^{N,i}_{j}(s):=R_{j}^{N}(s)A_{i}(s,t_{j})+\frac{\pi}{N}B_{i}(s,t_{j}),\quad s\in\mathbb{R},

with

RjN(s):=1N{m=1N11mcos(m(stj))+12Ncos(N(stj))},s,\displaystyle R_{j}^{N}(s):=-\frac{1}{N}\Bigg{\{}\sum_{m=1}^{N-1}\frac{1}{m}\cos(m(s-t_{j}))+\frac{1}{2N}\cos(N(s-t_{j}))\Bigg{\}},\quad s\in\mathbb{R},

for N,jN\in\mathbb{N},j\in\mathbb{Z} and i=1,2,3.i=1,2,3.

Using the discretization operators S~N,K~N\tilde{S}_{N},\tilde{K}_{N} and K~N\tilde{K}_{N}^{\prime}, we approximate the integral equations (4.25) and (4.36) by

ψ~ND(s)2[(K~N+iηS~N)ψ~ND](s)=2g~(s),s,\tilde{\psi}^{D}_{N}(s)-2[(\tilde{K}_{N}+i\eta\tilde{S}_{N})\tilde{\psi}^{D}_{N}](s)=-2\tilde{g}(s),\quad s\in\mathbb{R}, (5.11)

and

ψ~NI(s)+2[(K~Nikβ~S~N)ψ~NI](s)=2g~(s),s,\tilde{\psi}_{N}^{I}(s)+2[(\tilde{K}_{N}^{\prime}-ik_{-}\tilde{\beta}\tilde{S}_{N})\tilde{\psi}_{N}^{I}](s)=2\tilde{g}(s),\quad s\in\mathbb{R}, (5.12)

respectively. Here, the functions ψ~ND,ψ~NIBC()\tilde{\psi}_{N}^{D},\tilde{\psi}_{N}^{I}\in BC(\mathbb{R}) denote the solutions of the approximate systems (5.11) and (5.12), respectively.

Let ψ~D\tilde{\psi}^{D} and ψ~I\tilde{\psi}^{I} be the solutions of the equations (4.25) and (4.36), respectively. In the rest of this subsection, we estimate the error terms ψ~NDψ~D\|\tilde{\psi}^{D}_{N}-\tilde{\psi}^{D}\|_{\infty} and ψ~NIψ~I\|\tilde{\psi}^{I}_{N}-\tilde{\psi}^{I}\|_{\infty} by applying Theorem 3.13 in [29]. To this end, we define the condition 𝐂𝐧\mathbf{C_{n}} for any kernel function κ(s,t)\kappa(s,t) with s,ts,t\in\mathbb{R} and sts\neq t.

𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧\mathbf{Condition} 𝐂𝐧.\mathbf{C_{n}}. For n0:={0}n\in\mathbb{N}_{0}:=\mathbb{N}\cup\{0\}, we say that κ\kappa satisfies 𝐂𝐧\mathbf{C_{n}} if

κ(s,t)=a(s,t)ln|st|+b(s,t),s,t,st,\kappa(s,t)=a^{*}(s,t)\ln|s-t|+b^{*}(s,t),\quad s,t\in\mathbb{R},~{}s\neq t,

where aa^{*}, bb^{*} Cn(2)\in C^{n}(\mathbb{R}^{2}), and there exist constants C>0C>0 and p>1p>1 such that for all j,l0j,l\in\mathbb{N}_{0} with j+lnj+l\leq n, we have

|j+la(s,t)sjtl|C,|j+lb(s,t)sjtl|C,s,t,|st|π,\left|\frac{\partial^{j+l}a^{*}(s,t)}{\partial s^{j}\partial t^{l}}\right|\leq C,\quad\left|\frac{\partial^{j+l}b^{*}(s,t)}{\partial s^{j}\partial t^{l}}\right|\leq C,\quad s,t\in\mathbb{R},~{}|s-t|\leq\pi, (5.13)

and

|j+lκ(s,t)sjtl|C(1+|st|)p,s,t,|st|π.\left|\frac{\partial^{j+l}\kappa(s,t)}{\partial s^{j}\partial t^{l}}\right|\leq C(1+|s-t|)^{-p},\quad s,t\in\mathbb{R},~{}|s-t|\geq\pi. (5.14)

For m,nm,n\in\mathbb{N}, we denote by BCn(m)BC^{n}\left(\mathbb{R}^{m}\right) the Banach space of all functions whose derivatives up to order nn are bounded and continuous on m\mathbb{R}^{m} with the norm defined by

ψBCn(m):=maxl=0,1,,nmax0αili=1mαi=l1α12α2mαmψ,m,\|\psi\|_{BC^{n}(\mathbb{R}^{m})}:=\max_{l=0,1,\cdots,n}\max\limits_{\begin{subarray}{c}0\leqslant\alpha_{i}\leqslant l\\ \sum_{i=1}^{m}\alpha_{i}=l\end{subarray}}\|\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}\cdots\partial_{m}^{\alpha_{m}}\psi\|_{\infty,\mathbb{R}^{m}},

where iαiψ(x)=αiψ(x)/xiαi\partial_{i}^{\alpha_{i}}\psi({x})={\partial^{\alpha_{i}}}\psi({x})/{\partial x_{i}^{\alpha_{i}}}.

To give the convergence of Nyström method, we should introduce some function spaces for the functions ff and β~\tilde{\beta}. For c1<0c_{1}<0, c2>0c_{2}>0 and n0n\in\mathbb{N}_{0}, we define the function space

Bn(c1,c2):={fBCn+2():supxf(x)c1,fBCn+2()c2}.B_{n}(c_{1},c_{2}):=\left\{f\in BC^{n+2}(\mathbb{R})\,:\,\sup\nolimits_{x\in\mathbb{R}}f(x)\leq c_{1},\|f\|_{BC^{n+2}(\mathbb{R})}\leq c_{2}\right\}.

For d10d_{1}\geq 0, d2>0d_{2}>0 and n0n\in\mathbb{N}_{0}, let

En(d1,d2):={β~BCn():Re(β~(s))d1fors,β~BCn()d2,β~BUC()}.E_{n}(d_{1},d_{2}):=\{\tilde{\beta}\in BC^{n}(\mathbb{R})\,:\,\mathrm{Re}(\tilde{\beta}(s))\geq d_{1}~{}\textrm{for}~{}s\in\mathbb{R},\|\tilde{\beta}\|_{BC^{n}(\mathbb{R})}\leq d_{2},\tilde{\beta}\in BUC(\mathbb{R})\}.

Note that Bn(c1,c2)B_{n}(c_{1},c_{2}) and En(d1,d2)E_{n}(d_{1},d_{2}) are different from B(c1,c2)B(c_{1},c_{2}) and E(d1,d2,ω)E(d_{1},d_{2},\omega). It can be seen that Bn(c1,c2)B(c1,c2)B_{n}(c_{1},c_{2})\subset B(c_{1},c_{2}) and En(d1,d2)E(d1,d2,ω)E_{n}(d_{1},d_{2})\subset E(d_{1},d_{2},\omega) for n0n\in\mathbb{N}_{0} if w(h)=sups,|t|h|β~(s+t)β~(s)|w(h)=\sup_{s\in\mathbb{R},|t|\leq h}|\tilde{\beta}(s+t)-\tilde{\beta}(s)|, h0h\geq 0, for some β~BC()\tilde{\beta}\in BC(\mathbb{R}).

The following theorem presents the properties of κf\kappa_{f} and κβ~,f\kappa_{\tilde{\beta},f} given in (4.26) and (4.37).

Theorem 5.1.

Suppose that k±>0k_{\pm}>0, k+kk_{+}\neq k_{-}, c1<0c_{1}<0, c2>0c_{2}>0, d10d_{1}\geq 0, d2>0d_{2}>0, η>0\eta>0 and n0n\in\mathbb{N}_{0}, then κf\kappa_{f} and κβ~,f\kappa_{\tilde{\beta},f} given in (4.26) and (4.37) satisfy the condition 𝐂𝐧\mathbf{C_{n}} with the same constant for all fBn(c1,c2)f\in B_{n}(c_{1},c_{2}) and β~En(d1,d2)\tilde{\beta}\in E_{n}(d_{1},d_{2}).

Proof.

Let fBn(c1,c2)f\in B_{n}(c_{1},c_{2}) and β~En(d1,d2)\tilde{\beta}\in E_{n}(d_{1},d_{2}). The proof is divided into two parts.

Part 1: we consider the kernel κf\kappa_{f}. In view of the formulas (5.1)–(5.3), let

a(s,t):=2a2(s,t)+2iηa1(s,t)a^{*}(s,t):=2a_{2}(s,t)+2i\eta a_{1}(s,t)

and

b(s,t):=2b2(s,t)+2iηb1(s,t)=kf(s,t)a(s,t)ln(|st|)b^{*}(s,t):=2b_{2}(s,t)+2i\eta b_{1}(s,t)=k_{f}(s,t)-a^{*}(s,t)\ln(|s-t|)

for s,ts,t\in\mathbb{R}, sts\neq t.

First, we establish the estimates of aa^{*} in (5.13). Let x(s)=(s,f(s)),y(t)=(t,f(t))x(s)=(s,f(s)),y(t)=(t,f(t)). Then it can be seen that 1+|f(t)|2BCn+1()\sqrt{1+|f^{\prime}(t)|^{2}}\in BC^{n+1}(\mathbb{R}). By utilizing the power series expansions of Bessel functions of the first kind (see [30, equation (10.2.2)]), we have Ji(k|x(s)y(t)|)BCn(2)J_{i}(k_{-}|x(s)-y(t)|)\in BC^{n}(\mathbb{R}^{2}) for i=0,1i=0,1. Note that h0(s,t):=ν(y(t))(x(s)y(t))/|x(s)y(t)|2Cn(2)h_{0}(s,t):=\nu(y(t))\cdot(x(s)-y(t))/|x(s)-y(t)|^{2}\in C^{n}(\mathbb{R}^{2}) (see [1, statement (7.1.36) in Section 7.1.3]) and h0(,)BCn(2)\|h_{0}(\cdot,\cdot)\|_{BC^{n}(\mathbb{R}^{2})} is uniformly bounded for all ff with fBCn+2()c2\|f\|_{BC^{n+2}(\mathbb{R})}\leq c_{2} (see [1, formulas (7.1.32) and (7.1.33) in Section 7.1.3]). Consequently, from the definition of aa^{*} and the formulas (5.4) and (5.6), it follows that a(s,t)Cn(2)a^{*}(s,t)\in C^{n}(\mathbb{R}^{2}) with

|j+la(s,t)sjtl|C,s,t,|st|π,\left|\frac{\partial^{j+l}a^{*}(s,t)}{\partial s^{j}\partial t^{l}}\right|\leq C,\quad s,t\in\mathbb{R},~{}|s-t|\leq\pi, (5.15)

for all j,l0j,l\in\mathbb{N}_{0} with j+lnj+l\leq n, where the constant C>0C>0 depends only on c1,c2,k±,η,nc_{1},c_{2},k_{\pm},\eta,n.

Second, we establish the estimates of bb^{*} in (5.13). From (5.5) and (5.7), we write b1b_{1}, b2b_{2} as

b1(s,t)\displaystyle b_{1}(s,t) =(i4H0(1)(k|x(s)y(t)|)+12πJ0(k|x(s)y(t)|)ln|st|)1+|f(t)|2\displaystyle=\left(\frac{i}{4}H_{0}^{(1)}(k_{-}|x(s)-y(t)|)+\frac{1}{2\pi}J_{0}(k_{-}|x(s)-y(t)|)\ln|s-t|\right)\sqrt{1+|f^{\prime}(t)|^{2}}
+G(x(s),y(t))1+|f(t)|2\displaystyle\quad+G_{\mathcal{R}}(x(s),y(t))\sqrt{1+|f^{\prime}(t)|^{2}}
:=b1,p(s,t)1+|f(t)|2+G(x(s),y(t))1+|f(t)|2\displaystyle:=b_{1,p}(s,t)\sqrt{1+|f^{\prime}(t)|^{2}}+G_{\mathcal{R}}(x(s),y(t))\sqrt{1+|f^{\prime}(t)|^{2}}

and

b2(s,t)\displaystyle b_{2}(s,t) =(ik4H1(1)(k|x(s)y(t)|)+k2πJ1(k|x(s)y(t)|)ln|st|)|x(s)y(t)|\displaystyle=\left(\frac{ik_{-}}{4}H_{1}^{(1)}(k_{-}|x(s)-y(t)|)+\frac{k_{-}}{2\pi}J_{1}(k_{-}|x(s)-y(t)|)\ln|s-t|\right)|x(s)-y(t)|
x(s)y(t)|x(s)y(t)|2ν(y(t))1+|f(t)|2+G(x(s),y(t))ν(y)1+|f(t)|2\displaystyle\quad\cdot\frac{x(s)-y(t)}{|x(s)-y(t)|^{2}}\cdot{\nu}(y(t))\sqrt{1+|f^{\prime}(t)|^{2}}+\frac{\partial G_{\mathcal{R}}(x(s),y(t))}{\partial\nu(y)}\sqrt{1+|f^{\prime}(t)|^{2}}
:=b2,p(s,t)x(s)y(t)|x(s)y(t)|2ν(y(t))1+|f(t)|2+G(x(s),y(t))ν(y(t))1+|f(t)|2.\displaystyle:=b_{2,p}(s,t)\frac{x(s)-y(t)}{|x(s)-y(t)|^{2}}\cdot{\nu}(y(t))\sqrt{1+|f^{\prime}(t)|^{2}}+\frac{\partial G_{\mathcal{R}}(x(s),y(t))}{\partial\nu(y(t))}\sqrt{1+|f^{\prime}(t)|^{2}}.

By using Hn(1)=Jn+iYnH_{n}^{(1)}=J_{n}+iY_{n} as well as the power series expansions of Bessel functions [30, equations (10.8.1) and (10.8.2)], b1,pb_{1,p} and b2,pb_{2,p} can be rewritten as

b1,p(s,t)=J0(k|x(s)y(t)|)(i412πln(k1+|f(s)f(t)st|2)12π(ln(2)+γ))\displaystyle b_{1,p}(s,t)=J_{0}(k_{-}|x(s)-y(t)|)\left(\frac{i}{4}-\frac{1}{2\pi}\ln\left(k_{-}\sqrt{1+\left|\frac{f(s)-f(t)}{s-t}\right|^{2}}\right)-\frac{1}{2\pi}(-\ln(2)+\gamma)\right)
12πr=1+(1)r1(j=1r1j)(14k2|x(s)y(t)|2)rr!,\displaystyle\quad-\frac{1}{2\pi}\sum_{r=1}^{+\infty}(-1)^{r-1}\bigg{(}\sum_{j=1}^{r}\frac{1}{j}\bigg{)}\frac{(\frac{1}{4}k_{-}^{2}|x(s)-y(t)|^{2})^{r}}{r!},
b2,p(s,t)=J1(k|x(s)y(t)|)|x(s)y(t)|(ik4k2πln(k1+|f(s)f(t)st|2)+k2πln(2))\displaystyle b_{2,p}(s,t)=J_{1}(k_{-}|x(s)-y(t)|)|x(s)-y(t)|\left(\frac{ik_{-}}{4}-\frac{k_{-}}{2\pi}\ln\left(k_{-}\sqrt{1+\left|\frac{f(s)-f(t)}{s-t}\right|^{2}}\right)+\frac{k_{-}}{2\pi}\ln(2)\right)
+12πr=0n1(nr1)!r!(12k2|x(s)y(t)|2)r\displaystyle\quad+\frac{1}{2\pi}\sum_{r=0}^{n-1}\frac{(n-r-1)!}{r!}(\frac{1}{2}k_{-}^{2}|x(s)-y(t)|^{2})^{r}
+k4π(12k|x(s)y(t)|)nr=0+(q(r+1)q(n+r+1))(12k2|x(s)y(t)|2)rr!(n+r)!|x(s)y(t)|,\displaystyle\quad+\frac{k_{-}}{4\pi}(\frac{1}{2}k_{-}|x(s)-y(t)|)^{n}\sum_{r=0}^{+\infty}(q(r+1)-q(n+r+1))\frac{(-\frac{1}{2}k_{-}^{2}|x(s)-y(t)|^{2})^{r}}{r!(n+r)!}|x(s)-y(t)|,

where q(x):=Γ(x)/Γ(x)q(x):=\Gamma^{\prime}(x)/\Gamma(x). Here, γ\gamma is the Euler constant and Γ(x)\Gamma(x) denotes the Gamma function (see [30, (5.2.1)]). Consequently, from the fact that (f(s)f(t))2/(st)2BCn(2)(f(s)-f(t))^{2}/(s-t)^{2}\in BC^{n}(\mathbb{R}^{2}) and the analyticity of the power series involved in the above two formulas for b1,p,b2,pb_{1,p},b_{2,p}, we obtain that bi,p(s,t)BCn(2)b_{i,p}(s,t)\in BC^{n}(\mathbb{R}^{2}) for i=1,2i=1,2. By utilizing the expression (2.12) of GG_{\mathcal{R}}, it follows that G(x,y)C(2×2)G_{\mathcal{R}}(x,y)\in C^{\infty}(\mathbb{R}^{2}_{-}\times\mathbb{R}^{2}_{-}) and G(x,y)G_{\mathcal{R}}(x,y) has the form G(x,y)=R0(x1y1,x2+y2)G_{\mathcal{R}}(x,y)=R_{0}(x_{1}-y_{1},x_{2}+y_{2}) for some function R0(z1,z2)C(×)R_{0}(z_{1},z_{2})\in C^{\infty}(\mathbb{R}\times\mathbb{R}_{-}) with :=(,0)\mathbb{R}_{-}:=(-\infty,0). Thus for any m0m\in\mathbb{N}_{0} and α1,α2N0\alpha_{1},\alpha_{2}\in N_{0} with α1+α2=m\alpha_{1}+\alpha_{2}=m, z1α1z2α2R0(z1,z2)\partial_{z_{1}}^{\alpha_{1}}\partial_{z_{2}}^{\alpha_{2}}R_{0}(z_{1},z_{2}) is bounded in {(z1,z2):|z1|h0,h2z2h1}\{(z_{1},z_{2}):|z_{1}|\leq h_{0},-h_{2}\leq z_{2}\leq-h_{1}\} for h0,h1,h2>0h_{0},h_{1},h_{2}>0 with h1<h2h_{1}<h_{2}. By choosing h0=π,h1=2|f+|,h2=2|f|h_{0}=\pi,h_{1}=2|f_{+}|,h_{2}=2|f_{-}|, we obtain that for any α1,,α40\alpha_{1},\ldots,\alpha_{4}\in\mathbb{N}_{0} with α1+α2+α3+α4=n\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=n,

|x1α1x2α2y1α3y2α4G(x,y)|=|x1α1x2α2y1α3y2α4R0(x1y1,x2+y2)|C|\partial_{x_{1}}^{\alpha_{1}}\partial_{x_{2}}^{\alpha_{2}}\partial_{y_{1}}^{\alpha_{3}}\partial_{y_{2}}^{\alpha_{4}}G_{\mathcal{R}}(x,y)|=|\partial_{x_{1}}^{\alpha_{1}}\partial_{x_{2}}^{\alpha_{2}}\partial_{y_{1}}^{\alpha_{3}}\partial_{y_{2}}^{\alpha_{4}}R_{0}(x_{1}-y_{1},x_{2}+y_{2})|\leq C

for any x,y2x,y\in\mathbb{R}^{2}_{-} satisfying |x1y1|π|x_{1}-y_{1}|\leq\pi and 2|f+||x2+y2|2|f|2|f_{+}|\leq|x_{2}+y_{2}|\leq 2|f_{-}|, where CC is a constant depending only on c1,c2,k±,nc_{1},c_{2},k_{\pm},n. Hence, combining the above analysis and the definition of bb^{*}, we deduce that bCn(2)b^{*}\in C^{n}(\mathbb{R}^{2}) and

|j+lb(s,t)sjtl|C,s,t,|st|π,\left|\frac{\partial^{j+l}b^{*}(s,t)}{\partial s^{j}\partial t^{l}}\right|\leq C,\quad s,t\in\mathbb{R},~{}|s-t|\leq\pi, (5.16)

for all j,l0j,l\in\mathbb{N}_{0} with j+lnj+l\leq n, where the constant C>0C>0 depends only on c1,c2,k±,η,nc_{1},c_{2},k_{\pm},\eta,n.

Third, we show that κf\kappa_{f} satisfies (5.14). In fact, it is clear from Theorem 3.7 (i) that for x,y2¯x,y\in\overline{\mathbb{R}_{-}^{2}},

|G(x,y)|C(1+|x2|)(1+|y2|){|xy|32+|xy|32} for xyandxy.\left|G(x,y)\right|\leq C(1+|x_{2}|)(1+|y_{2}|)\left\{|x-y|^{-\frac{3}{2}}+|x-y^{\prime}|^{-\frac{3}{2}}\right\}\quad\text{ for }x\neq y~{}\textrm{and}~{}x\neq y^{\prime}.

This, together with the regularity estimates for solutions to elliptic partial differential equations (see [20, Theorem 3.9]) and the symmetry property G(x,y)=G(y,x)G(x,y)=G(y,x) for x,y2\Γ0x,y\in\mathbb{R}^{2}\backslash\Gamma_{0} with xyx\neq y (see [31, (2.28)]), implies that for any δ>0\delta>0, mm\in\mathbb{N} and α1,α2,α3,α4{0}\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\in\mathbb{N}\cup\{0\} with α1+α2+α3+α4=m\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=m,

|x1α1x2α2y1α3y2α4G(x,y)|C(1+|x2|)(1+|y2|){|xy|32+|xy|32}|\partial_{x_{1}}^{\alpha_{1}}\partial_{x_{2}}^{\alpha_{2}}\partial_{y_{1}}^{\alpha_{3}}\partial_{y_{2}}^{\alpha_{4}}G(x,y)|\leq C(1+|x_{2}|)(1+|y_{2}|)\left\{|x-y|^{-\frac{3}{2}}+|x-y^{\prime}|^{-\frac{3}{2}}\right\}

for all x,yΓx,y\in\Gamma satisfying |xy|>δ|x-y|>\delta and |xy|>δ|x-y^{\prime}|>\delta, where the constant CC depends only on δ,m,c1\delta,m,c_{1}. Furthermore, since fBCn+2()f\in BC^{n+2}(\mathbb{R}), we have that 1+f(s)\sqrt{1+f^{\prime}(s)} and ν((s,f(s)))\nu((s,f(s))) belong to BCn()BC^{n}(\mathbb{R}). Thus it follows from the definition of the kernel κf\kappa_{f} in (4.26) that

|j+lκf(s,t)sjtl|C(1+|st|)32,s,t,|st|π,\left|\frac{\partial^{j+l}\kappa_{f}(s,t)}{\partial s^{j}\partial t^{l}}\right|\leq C(1+|s-t|)^{-\frac{3}{2}},\quad s,t\in\mathbb{R},~{}|s-t|\geq\pi, (5.17)

for any j,l0j,l\in\mathbb{N}_{0} satisfying j+lnj+l\leq n, where the constant C>0C>0 depends only on c1,c2,k±,η,nc_{1},c_{2},k_{\pm},\eta,n.

Part 2: we consider the kernel κβ~,f\kappa_{\tilde{\beta},f}. With a slight abuse of notations, define

a(s,t):=2a3(s,t)+2ikβ~a1(s,t)a^{*}(s,t):=-2a_{3}(s,t)+2ik_{-}\tilde{\beta}a_{1}(s,t)

and

b(s,t):=2b3(s,t)+2ikβ~b1(s,t)=κβ~,f(s,t)a(s,t)ln(|st|)b^{*}(s,t):=-2b_{3}(s,t)+2ik_{-}\tilde{\beta}b_{1}(s,t)=\kappa_{\tilde{\beta},f}(s,t)-a^{*}(s,t)\ln(|s-t|)

for s,t,sts,t\in\mathbb{R},s\neq t. For aa^{*} and bb^{*} given in this part, since β~BCn()\tilde{\beta}\in BC^{n}(\mathbb{R}), we can use similar arguments as in Part 1 to obtain that a,bCn(2)a^{*},b^{*}\in C^{n}(\mathbb{R}^{2}) and that the estimates (5.15) and (5.16) also hold for aa^{*} and bb^{*}, where the constant CC depends on c1,c2,d1,d2,k±,nc_{1},c_{2},d_{1},d_{2},k_{\pm},n. Moreover, by the definition of kβ~,fk_{\tilde{\beta},f} in (4.37), the estimates in (5.17) also hold for kβ~,fk_{\tilde{\beta},f}, where the constant CC depends only on c1,c2,d1,d2,k±,nc_{1},c_{2},d_{1},d_{2},k_{\pm},n. Therefore, the proof is complete. ∎

As a direct consequence of Theorems 4.19, 4.23 and 5.1, we can apply [29, Theorems 2.1 and 3.13] to obtain the following two theorems on the convergence of our Nyström method.

Theorem 5.2.

Suppose nn\in\mathbb{N}, k+>k>0k_{+}>k_{-}>0 and c1<0,c2>0c_{1}<0,c_{2}>0. Let η>0\eta>0. Then there exist N~\tilde{N}\in\mathbb{N} and a constant C>0C>0 such that for any integer NN~N\geq\tilde{N} and fBn(c1,c2)f\in B_{n}(c_{1},c_{2}), the equation (5.11) has a unique solution ψ~ND\tilde{\psi}^{D}_{N} and we have

ψ~Dψ~NDCNng~BCn(),\big{\|}\tilde{\psi}^{D}-\tilde{\psi}^{D}_{N}\big{\|}_{\infty}\leq CN^{-n}\big{\|}\tilde{g}\big{\|}_{BC^{n}(\mathbb{R})},

where ψ~D\tilde{\psi}^{D} is the unique solution of the equation (4.25).

Theorem 5.3.

Suppose nn\in\mathbb{N}, k±>0k_{\pm}>0 and c1<0,c2>0,d1>0,d2>0c_{1}<0,c_{2}>0,d_{1}>0,d_{2}>0. Then there exist N~\tilde{N}\in\mathbb{N} and a constant C>0C>0 such that for any integer NN~N\geq\tilde{N}, fBn(c1,c2)f\in B_{n}(c_{1},c_{2}) and β~En(d1,d2)\tilde{\beta}\in E_{n}(d_{1},d_{2}), the equation (5.12) has a unique solution ψ~NI\tilde{\psi}^{I}_{N} and we have

ψ~Iψ~NICNng~BCn(),\big{\|}\tilde{\psi}^{I}-\tilde{\psi}^{I}_{N}\big{\|}_{\infty}\leq CN^{-n}\big{\|}\tilde{g}\big{\|}_{BC^{n}(\mathbb{R})},

where ψ~I\tilde{\psi}^{I} is the unique solution of the equation (4.36).

5.2 Numerical implementation

Now we describe the numerical implementation of our Nyström method. With the benefit of the convergence results given in Theorems 5.2 and 5.3, the main part of our method is to numerically solve the discretized equations (5.11) and (5.12) instead of solving the equations (4.25) and (4.36). For the integrals arising in (5.11) and (5.12), we truncate the infinite interval (,+)(-\infty,+\infty) into a finite interval [T,T][-T,T] with TT satisfying T/hT/h\in\mathbb{N}, where hh is given as in Section 5.1. That is, the integral operators S~N\tilde{S}_{N}, K~N\tilde{K}_{N} and K~N\tilde{K}_{N}^{\prime} defined in (5.10) are approximated by

(Wψ)(s)j=T/hj=T/hαjN,i(s)ψ(tj),s,(W\psi)(s)\approx\sum_{j=-T/h}^{j=T/h}\alpha^{N,i}_{j}(s)\psi(t_{j}),\quad s\in\mathbb{R},

for (W,i)=(S~N,1)(W,i)=(\tilde{S}_{N},1), (K~N,2)(\tilde{K}_{N},2) and (K~N,3)(\tilde{K}_{N}^{\prime},3), respectively. Then by using these approximations and choosing s=tjs=t_{j} for j=T/h,T/h+1,,j=T/hj=-T/h,-T/h+1,\ldots,j=T/h in (5.11) and (5.12), the equations (5.11) and (5.12) are reduced to two finite linear systems which can be solved to obtain the approximate values of the density functions ψ~D\tilde{\psi}^{D} and ψ~I\tilde{\psi}^{I} at the points s=tjs=t_{j} (j=T/h,T/h+1,,T/hj=-T/h,-T/h+1,\ldots,T/h). Finally, by using the relations (4.24) and (4.35) and the formulas (4.22) and (4.33), we can apply the trapezoidal rule to calculate the approximate values of the scattered wave usu^{s} at any points in the domain DD. It is worth mentioning that in our method, we use the approach given in [31, Section 2.3.5] to compute the two-layered Green function G(x,y)G(x,y) with high accuracy. Moreover, to accelerate our algorithm, we divide the matrices involved in the above linear systems into several matrices with smaller sizes and compute these small matrices in parallel.

In the rest of this subsection, numerical experiments will be carried out to demonstrate the feasibility of our Nyström method for the problems (DBVP) and (IBVP). In all of the following examples, we set T=40πT=40\pi. For the problem (DBVP), the parameter η\eta involved in relevant integral equations is set to be η=k+k\eta=\sqrt{k_{+}k_{-}}.

To investigate the performance of our method, we will choose a sampling set SS in DD with finite points and define the following relative error: for any wave field ww,

Erel(w):=wnumw,Sw,S,E_{rel}(w):=\frac{\|w^{num}-w\|_{\infty,S}}{\|w\|_{\infty,S}},

where wnumw^{num} is a vector consisting of the approximate values of ww at the points in SS by using our Nyström method and ,S\|\cdot\|_{\infty,S} denotes the infinity norm for any function defined in SS.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5.1: (a)–(d) show the geometries of Examples 1–4, respectively.

Example 1. Consider the rough surface Γ\Gamma with (see Figure 5.1 (a))

f(t)=1+0.3sin(0.7πt)e0.4t2.f(t)=-1+0.3\sin(0.7\pi t)e^{-0.4t^{2}}.

We choose the wave numbers k+=3.5k_{+}=3.5, k=2.7k_{-}=2.7 and choose SS to be the set of 100100 points uniformly distributed on the line segment {(x1,0.56):|x1|30}\{(x_{1},0.56):|x_{1}|\leq 30\}. In the first case, we consider the problem (DBVP). Let udirsu^{s}_{dir} be the solution of the problem (DBVP) with the boundary data g=v|Γg=v|_{\Gamma}, where v(x):=G(x,y0)v(x):=G(x,y_{0}) denotes the two-layered Green function at the source point y0=(1,1.3)2\D¯y_{0}=(1,-1.3)\in\mathbb{R}^{2}\backslash\overline{D}. It is easily verified that udirs=vu^{s}_{dir}=v in DD and thus the exact values of udirsu^{s}_{dir} can be obtained by using the approach given in [31, Section 2.3.5]. The second column of Table 5.1 presents the relative errors Erel(udirs)E_{rel}(u^{s}_{dir}) of our method with N=8,16,32,64N=8,16,32,64. In the second case, we consider the problem (IBVP). We choose β1\beta\equiv 1. Let uimpsu^{s}_{imp} be the solution of the problem (IBVP) with the boundary data g=(v/νikβv)|Γg=(\partial v/\partial\nu-ik_{-}\beta v)|_{\Gamma}, where vv is given as above. It is also easily verified that uimps=vu^{s}_{imp}=v in DD and thus the exact values of uimpsu^{s}_{imp} can also be obtained as in the first case. The third column of Table 5.1 presents the relative errors Erel(uimps)E_{rel}(u^{s}_{imp}) of our method with N=8,16,32,64N=8,16,32,64.

(DBVP) (IBVP)
N Erel(udirs)E_{rel}(u^{s}_{dir}) Erel(uimps)E_{rel}(u^{s}_{imp})
k+=3.5k_{+}=3.5 8 0.0015 0.0043
k=2.7k_{-}=2.7 16 3.3423e-06 8.6324e-06
32 8.8875e-07 5.2844e-07
64 9.8288e-08 1.8623e-07
Table 5.1: Relative errors against NN for Example 1.

Example 2. Consider the rough surface Γ\Gamma as the flat plane x2=1x_{2}=-1 (see Figure 5.1 (b)). We choose the wave numbers k+=3.5k_{+}=3.5, k=2.7k_{-}=2.7 and choose SS to be the set of 100 points uniformly distributed on the line segment {(x1,0.2):|x1|30}\{(x_{1},-0.2):|x_{1}|\leq 30\}. We set θd=43π\theta_{d}=\frac{4}{3}\pi. For such θd\theta_{d}, let dd, drd_{r}, dtd_{t}, the plane wave upli(x)u_{pl}^{i}(x) and the reference wave upl0(x)u^{0}_{pl}(x) be given as in Section 2. Here, note that since |(k/k+)1cos(θd)|<1|(k_{-}/k_{+})^{-1}\cos(\theta_{d})|<1, then dt=(cos(θdt),sin(θdt))d^{t}=(\cos(\theta^{t}_{d}),\sin(\theta^{t}_{d})) with θdt[π,2π]\theta^{t}_{d}\in[\pi,2\pi] satisfying cos(θdt)=(k/k+)1cos(θd)\cos(\theta^{t}_{d})=(k_{-}/k_{+})^{-1}\cos(\theta_{d}). Further, let dn=(cos(θdt),sin(θdt))d_{n}=(\cos(\theta^{t}_{d}),-\sin(\theta^{t}_{d})) be the reflection of dtd_{t} about the x1x_{1}-axis. In the first case, we consider the problem (DBVP). Let udirsu^{s}_{dir} be the solution of the problem (DBVP) with the boundary data g=upl0|Γg=-u^{0}_{pl}|_{\Gamma}. Then it can be seen from Section 2 that udirtot(x):=upl0(x)+udirs(x)u^{tot}_{dir}(x):=u^{0}_{pl}(x)+u^{s}_{dir}(x) is the total field of the scattering problem (2.1)–(2.4) with the sound-soft boundary Γ\Gamma and with the incident wave ui(x)u^{i}(x) given by upli(x)u_{pl}^{i}(x). Moreover, since the rough surface Γ\Gamma is a plane, the total field udirtotu^{tot}_{dir} has the analytical expression (see [14, Section 2.1.3])

udirtot(x)={eik+xd+λdreik+xdr,x2>0,λdteikxdt+λdneikxdn,1x20,u^{tot}_{dir}(x)=\begin{cases}e^{ik_{+}x\cdot d}+\lambda_{d_{r}}e^{ik_{+}x\cdot d_{r}},\quad x_{2}>0,\\ \lambda_{d_{t}}e^{ik_{-}x\cdot d_{t}}+\lambda_{d_{n}}e^{ik_{-}x\cdot d_{n}},\quad-1\leq x_{2}\leq 0,\end{cases} (5.18)

with λdr,λdt,λdn\lambda_{d_{r}},\lambda_{d_{t}},\lambda_{d_{n}}\in\mathbb{C} satisfying the system of linear equations

[111k+sin(θd)ksin(θdt)ksin(θdt)0exp(iksin(θdt))exp(iksin(θdt))][λdrλdtλdn]=[1ksin(θd)0],\begin{bmatrix}-1&1&1\\ k_{+}\sin(\theta_{d})&k_{-}\sin(\theta_{d}^{t})&-k_{-}\sin(\theta_{d}^{t})\\ 0&\exp(-ik_{-}\sin(\theta_{d}^{t}))&\exp(ik_{-}\sin(\theta_{d}^{t}))\end{bmatrix}\begin{bmatrix}\lambda_{d_{r}}\\ \lambda_{d_{t}}\\ \lambda_{d_{n}}\end{bmatrix}=\begin{bmatrix}1\\ k_{-}\sin(\theta_{d})\\ 0\end{bmatrix},

which is due to the transimssion conditon (2.2) of udirtotu^{tot}_{dir} on Γ0\Gamma_{0} and the Dirichlet boundary condition udirtot=0u^{tot}_{dir}=0 on Γ\Gamma. Thus we can obtain the exact values of udirtot(x)u^{tot}_{dir}(x) by the above formulas. The second column of Table 5.2 presents the relative errors Erel(udirtot)E_{rel}(u^{tot}_{dir}) with N=8,16,32,64N=8,16,32,64, where the approximate values of udirtot(x)u^{tot}_{dir}(x) are obtained by applying our method to the numerical computations of udirs(x)u^{s}_{dir}(x). In the second case, we consider the problem (IBVP). We choose β1\beta\equiv 1 on Γ\Gamma. Let uimpsu^{s}_{imp} be the solution to the problem (IBVP) with g=upl0/ν|Γ+ikβupl0|Γg=-\partial u^{0}_{pl}/\partial\nu|_{\Gamma}+ik_{-}\beta u^{0}_{pl}|_{\Gamma}. Then it can be seen from Section 2 that uimptot(x):=upl0(x)+uimps(x)u^{tot}_{imp}(x):=u^{0}_{pl}(x)+u^{s}_{imp}(x) is the total field of the scattering problem (2.1)–(2.5) with the impedance boundary Γ\Gamma and with the incident wave ui(x)u^{i}(x) given by upli(x)u_{pl}^{i}(x). Similarly to the first case, uimptotu^{tot}_{imp} has the analytical expression (5.18) with λdr,λdt,λdn\lambda_{d_{r}},\lambda_{d_{t}},\lambda_{d_{n}}\in\mathbb{C} satisfying the system of linear equations

[111k+sin(θd)ksin(θdt)ksin(θdt)0sin(θdt)β(sin(θdt)β)exp(2iksin(θdt))][λdrλdtλdn]=[1ksin(θd)0],\begin{bmatrix}-1&1&1\\ k_{+}\sin(\theta_{d})&k_{-}\sin(\theta_{d}^{t})&-k_{-}\sin(\theta_{d}^{t})\\ 0&-\sin(\theta_{d}^{t})-\beta&(\sin(\theta_{d}^{t})-\beta)\exp(2ik_{-}\sin(\theta_{d}^{t}))\end{bmatrix}\begin{bmatrix}\lambda_{d_{r}}\\ \lambda_{d_{t}}\\ \lambda_{d_{n}}\end{bmatrix}=\begin{bmatrix}1\\ k_{-}\sin(\theta_{d})\\ 0\end{bmatrix},

which is due to the tramsimsion condition (2.2) of uimptotu^{tot}_{imp} on Γ0\Gamma_{0} and the impedance boundary condition uimptot/νikβuimptot=0\partial u^{tot}_{imp}/\partial\nu-ik_{-}\beta u^{tot}_{imp}=0 on Γ\Gamma. Thus we can also obtain the exact values of udirtot(x)u^{tot}_{dir}(x). The third column of Table 5.2 shows the relative errors Erel(uimptot)E_{rel}(u^{tot}_{imp}) with N=8,16,32,64N=8,16,32,64, where the approximate values of uimptot(x)u^{tot}_{imp}(x) are obtained by applying our method to the numerical computations of uimps(x)u^{s}_{imp}(x).

(DBVP) (IBVP)
N Erel(udirtot)E_{rel}(u^{tot}_{dir}) Erel(uimptot)E_{rel}(u^{tot}_{imp})
k+=3.5k_{+}=3.5 8 2.0781e-04 4.4780e-05
k=2.7k_{-}=2.7 16 1.0260e-04 2.4418e-05
32 6.0844e-05 1.4069e-05
64 3.7765e-05 8.4220e-06
Table 5.2: Relative errors against NN for Example 2.

Example 3. Consider the rough surface Γ\Gamma to be a periodic curve with (see Figure 5.1 (c))

f(t)=1+0.16sin(0.3πt).f(t)=-1+0.16\sin(0.3\pi t).

We choose the wave numbers k+=4,k=3k_{+}=4,k_{-}=3 and choose SS to be the set of 100100 points uniformly distributed on the line segment {(x1,0.3):|x1|30}\{(x_{1},0.3):|x_{1}|\leq 30\}. Let the plane wave upli(x)u_{pl}^{i}(x) and the reference wave upl0(x)u^{0}_{pl}(x) be given as in Section 2, where θd\theta_{d} is chosen to be 17/12π17/12\pi. Let udirsu_{dir}^{s} be the solution of the problem (DBVP) with the boundary data g=upl0|Γg=-u^{0}_{pl}|_{\Gamma} and let uimpsu_{imp}^{s} be the solution of the problem (IBVP) with g=upl0/ν|Γ+ikβupl0|Γg=-\partial u^{0}_{pl}/\partial\nu|_{\Gamma}+ik_{-}\beta u^{0}_{pl}|_{\Gamma}, where we choose β1\beta\equiv 1 on Γ\Gamma. Then similarly to Example 2, udirtot(x):=upl0(x)+udirs(x)u_{dir}^{tot}(x):=u^{0}_{pl}(x)+u_{dir}^{s}(x) (resp. uimptot(x):=upl0(x)+uimps(x)u^{tot}_{imp}(x):=u^{0}_{pl}(x)+u^{s}_{imp}(x)) is the total field of the scattering problem (2.1)–(2.4) with the sound-soft boundary Γ\Gamma (resp. the scattering problem (2.1)–(2.5) with the impedance boundary Γ\Gamma), where the incident wave ui(x)u^{i}(x) is given by upli(x)u^{i}_{pl}(x). In this example, we compute the approximate values of udirtot(x)u_{dir}^{tot}(x) and uimptot(x)u^{tot}_{imp}(x) by our method, which are obtained in a same way as in Example 2.

Note that the rough surface Γ\Gamma and upli(x)eik+cos(θd)x1u^{i}_{pl}(x)e^{-ik_{+}\cos(\theta_{d})x_{1}} for xΓx\in\Gamma have the same period Lp=2/0.3L_{p}=2/0.3 in x1x_{1}-direction. Thus, to test the performance of our method, we model the considered scattering problems as the quasi-periodic scattering problems (see, e.g., [13]) and then use the finite element method with the technique of perfectly matched layer (PML) to compute the PML solutions udir,PMLtotu^{tot}_{dir,PML} and uimp,PMLtotu^{tot}_{imp,PML}, which are the approximations of udirtotu_{dir}^{tot} and uimptotu^{tot}_{imp}, respectively. To be more specific, we use the PML technique given in [13] with the following settings. The problem is solved in the domain ΩPML:={(x1,x2):x1(0,Lp),f(x1)<x2<3}\Omega_{PML}:=\{(x_{1},x_{2})\,:\,x_{1}\in(0,L_{p}),f(x_{1})<x_{2}<3\}. The PML layer is chosen to be {(x1,x2):x1(0,Lp),3<x2<3+δ}\{(x_{1},x_{2}):x_{1}\in(0,L_{p}),3<x_{2}<3+\delta\} with the thickness of the PML layer δ=2.243995\delta=2.243995 as suggested in [13, Section 6]. The number of nodal points is chosen to be 335497335497 with using uniform mesh refinement. The finite element method with the PML technique is implemented by the open-source software freeFEM++ (see [22]). By the above approach, we can compute the approximate values of udir,PMLtotu^{tot}_{dir,PML} and uimp,PMLtotu^{tot}_{imp,PML} in the domain ΩPML\Omega_{PML}. Moreover, the approximate values of udir,PMLtotu^{tot}_{dir,PML} and uimp,PMLtotu^{tot}_{imp,PML} in the domain ΩL:={(x1,x2):x1(,+),f(x1)<x2<3}\Omega_{L}:=\{(x_{1},x_{2})\,:\,x_{1}\in(-\infty,+\infty),f(x_{1})<x_{2}<3\} can be obtained by using the quasi-periodic properties of udir,PMLtotu^{tot}_{dir,PML} and uimp,PMLtotu^{tot}_{imp,PML} (see [13]), i.e.,

udir,PMLtot(x)eik+cos(θd)x1=udir,PMLtot(x+(Lp,0))eik+cos(θd)(x1+Lp),\displaystyle u^{tot}_{dir,PML}(x)e^{-ik_{+}\cos(\theta_{d})x_{1}}=u^{tot}_{dir,PML}(x+(L_{p},0))e^{-ik_{+}\cos(\theta_{d})(x_{1}+L_{p})},
uimp,PMLtot(x)eik+cos(θd)x1=uimp,PMLtot(x+(Lp,0))eik+cos(θd)(x1+Lp)\displaystyle u^{tot}_{imp,PML}(x)e^{-ik_{+}\cos(\theta_{d})x_{1}}=u^{tot}_{imp,PML}(x+(L_{p},0))e^{-ik_{+}\cos(\theta_{d})(x_{1}+L_{p})}

for any x=(x1,x2)x=(x_{1},x_{2}) in ΩL\Omega_{L}.

Table 5.3 shows the approximate values of udirtot(x)u^{tot}_{dir}(x) and uimptot(x)u^{tot}_{imp}(x) with N=8,16,32,64N=8,16,32,64 by using our Nyström method as well as the approximate values of udir,PMLtot(x)u^{tot}_{dir,PML}(x) and uimp,PMLtot(x)u^{tot}_{imp,PML}(x) by using the finite element method with the PML technique, where xx is chosen to be the point (10,0.3)(10,0.3). Figure 5.2 presents the real parts of the approximate values of udirtot(x)u^{tot}_{dir}(x) and uimptot(x)u^{tot}_{imp}(x) by using our Nyström method with N=64N=64 (blue circles) as well as the real parts of the approximate values of udir,PMLtot(x)u^{tot}_{dir,PML}(x) and uimp,PMLtot(x)u^{tot}_{imp,PML}(x) by using the finite element method with the PML technique (orange dots), where we choose xx to be some discrete points on the segment line {(x1,0.3):0x110}\{(x_{1},0.3):0\leq x_{1}\leq 10\}.

(DBVP) (IBVP)
N Re(udirtot)\textrm{Re}(u^{tot}_{dir}) Im(udirtot)\textrm{Im}(u^{tot}_{dir}) Re(uimptot)\textrm{Re}(u^{tot}_{imp}) Im(uimptot)\textrm{Im}(u^{tot}_{imp})
k+=4k_{+}=4 8 1.62243876 0.57170715 0.35175005 0.84347716
k=3k_{-}=3 16 1.62236304 0.57170811 0.35174104 0.84346688
32 1.62228626 0.57168368 0.35173401 0.84346096
64 1.62224382 0.57167564 0.35172998 0.84345808
Re(udir,PMLtot)\textrm{Re}(u^{tot}_{dir,PML}) Im(udir,PMLtot)\textrm{Im}(u^{tot}_{dir,PML}) Re(uimp,PMLtot)\textrm{Re}(u^{tot}_{imp,PML}) Im(uimp,PMLtot)\textrm{Im}(u^{tot}_{imp,PML})
PML solution 1.62194914 0.56924364 0.35164894 0.84255734
Table 5.3: The approximate values of udirtot(x)u^{tot}_{dir}(x) and uimptot(x)u^{tot}_{imp}(x) in Example 3 by using our Nyström method as well as the approximate values of udir,PMLtot(x)u^{tot}_{dir,PML}(x) and uimp,PMLtot(x)u^{tot}_{imp,PML}(x) in Example 3 by using the finite element method with the PML technique, where xx is chosen to be the point (10,0.3)(10,0.3).
Refer to caption
(a) Re(udirtot)\mathrm{Re}(u^{tot}_{dir}) and Re(udir,PMLtot\mathrm{Re}(u^{tot}_{dir,PML})
Refer to caption
(b) Re(uimptot)\mathrm{Re}(u^{tot}_{imp}) and Re(uimp,PMLtot\mathrm{Re}(u^{tot}_{imp,PML})
Figure 5.2: The real parts of the approximate values of udirtot(x)u^{tot}_{dir}(x) and uimptot(x)u^{tot}_{imp}(x) in Example 3 by using our Nyström method with N=64N=64 as well as the real parts of the approximate values of udir,PMLtot(x)u^{tot}_{dir,PML}(x) and uimp,PMLtot(x)u^{tot}_{imp,PML}(x) in Example 3 by using the finite element method with the PML technique, where we choose xx to be some discrete points on the segment line {(x1,0.3):0x110}\{(x_{1},0.3):0\leq x_{1}\leq 10\}. Here, the wave numbers k+=4k_{+}=4 and k=3k_{-}=3.

Example 4. Consider the rough surface Γ\Gamma (see Figure 5.1 (d)) with

f(t)=1+0.5sin(0.35πt)exp(0.005t2).f(t)=-1+0.5\sin(0.35\pi t)\exp(-0.005t^{2}).

We choose the wave numbers k+=3.5k_{+}=3.5, k=2.7k_{-}=2.7 and choose SS to be the set of 100100 points uniformly distributed on the line segment {(x1,0.5):|x1|30}\{(x_{1},0.5)\,:\,|x_{1}|\leq 30\}. Let d:=(cos(θd),sin(θd))d:=(\cos(\theta_{d}),\sin(\theta_{d})) with θd=5π/12\theta_{d}=5\pi/12 be the incident direction. Similarly to the reference wave defined in Section 2, we introduce the reference wave vlv_{l} that is generated by the incident plane wave eikxde^{ik_{-}x\cdot d} propagating in the lower half space 2\mathbb{R}^{2}_{-} and that satisfies the Helmholtz equations as well as the transmission boundary condition in (2.7). Similarly to the Fresnel formulas given in (2.6), vlv_{l} is given by

vl(x):={𝒯~(πθd)eik+xdt,x+2,eikxd+~(πθd)eikxdr,x2,v_{l}(x):=\begin{cases}\tilde{\mathcal{T}}(\pi-\theta_{d})e^{ik_{+}x\cdot d^{t}},\quad x\in\mathbb{R}^{2}_{+},\\ e^{ik_{-}x\cdot d}+\tilde{\mathcal{R}}(\pi-\theta_{d})e^{ik_{-}x\cdot d^{r}},\quad x\in\mathbb{R}^{2}_{-},\end{cases} (5.19)

where dr:=(cos(θd),sin(θd))d^{r}:=(\cos(\theta_{d}),-\sin(\theta_{d})) and dt:=(cos(θdt),sin(θdt))d^{t}:=(\cos(\theta_{d}^{t}),\sin(\theta_{d}^{t})) with θdt(0,π)\theta_{d}^{t}\in(0,\pi) satisfying cos(θdt)=ncos(θd)\cos(\theta_{d}^{t})=n\cos(\theta_{d}) and where the coefficient functions 𝒯~\tilde{\mathcal{T}} and ~\tilde{\mathcal{R}} are defined by

~(θ):=isinθ+𝒮(cosθ,1/n)isinθ𝒮(cosθ,1/n),𝒯~(θ):=~(θ)+1for θ.\tilde{\mathcal{R}}(\theta):=\frac{i\sin\theta+\mathcal{S}(\cos\theta,1/n)}{i\sin\theta-\mathcal{S}(\cos\theta,1/n)},\quad\tilde{\mathcal{T}}(\theta):=\tilde{\mathcal{R}}(\theta)+1\quad\text{for }\theta\in\mathbb{R}.

In the first case, we consider the problem (DBVP). Let udirsu^{s}_{dir} be the solution of the problem (DBVP) with the boundary data g=vl|Γg=v_{l}|_{\Gamma}. Then it is easily verified that udirs=vlu^{s}_{dir}=v_{l} in DD and thus the exact values of udirsu^{s}_{dir} can be computed by (5.19). The second column of Table 5.4 presents the relative errors Erel(udirs)E_{rel}(u^{s}_{dir}) of our method with N=8,16,32,64N=8,16,32,64. In the second case, we consider the problem (IBVP). Let uimpsu^{s}_{imp} be the solution of the problem (IBVP) with the boundary data g=(vl/νikβvl)|Γg=(\partial v_{l}/\partial\nu-ik_{-}\beta v_{l})|_{\Gamma}, where we choose β0.50.5i\beta\equiv 0.5-0.5i on Γ\Gamma. Then it is also easily verified that uimps=vlu^{s}_{imp}=v_{l} in DD and thus the exact values of uimpsu^{s}_{imp} can be obtained as in the first case. The third column of Table 5.4 presents the relative errors Erel(uimps)E_{rel}(u^{s}_{imp}) of our method with N=8,16,32,64N=8,16,32,64.

(DBVP) (IBVP)
N Erel(udirs)E_{rel}(u^{s}_{dir}) Erel(uimps)E_{rel}(u^{s}_{imp})
k+=3.5k_{+}=3.5 8 4.4373e-04 9.0459e-04
k=2.7k_{-}=2.7 16 2.2806e-04 5.4954e-04
32 1.5310e-04 3.7795e-04
64 1.1097e-04 2.9280e-04
Table 5.4: Relative errors against NN for Example 4.

6 Conclusions

In this paper, we investigated the problems of scattering of time-harmonic acoustic waves by a two-layered medium with a rough boundary. We have formulated the considered scattering problems as the boundary value problems and proved that each boundary value problem has a unique solution by utilizing the integral equation method associated with the two-layered Green function. Moreover, we have developed the Nyström method for numerically solving the considered boundary value problems and established the convergence results of our Nyström method. It is worth noting that in establishing the well-posedness of the considered boundary value problems as well as the convergence results of our Nyström method, an essential role has been played by the investigation of the asymptotic properties of the two-layered Green function for small and large arguments. Furthermore, it is interesting to study uniqueness and numerical algorithms of the inverse problems for the considered scattering models, which will be our future work.

Acknowledgments

The work of Haiyang Liu and Jiansheng Yang is partially supported by National Key R&D Program of China (2022YFA1005102) and the National Science Foundation of China (11961141007). The work of Haiwen Zhang is partially supported by Beijing Natural Science Foundation Z210001, the NNSF of China grant 12271515, and the Youth Innovation Promotion Association CAS.

Appendix A Potential Theory

In this section, we give the properties of the single- and double-layer potentials associated with the two-layered Green function. Similar properties for the layer potentials associated with the half-space Dirichlet Green function G𝒟,κG_{\mathcal{D},\kappa} with κ>0\kappa>0 have been established in [37, Appendix A]. See also [7, Appendix A] and [6, Lemmas 4.1–4.3] for the properties of the layer potentials associated with the half-space impedance Green function. We note that Theorems A.1A.5 below can be deduced in a very similar way as in [37, Appendix A], due to the definition of the two-layered Green function (see (2.8)–(2.10)), the facts that G(x,y)G𝒟,k(x,y)C(2×2)G(x,y)-G_{\mathcal{D},k_{-}}(x,y)\in C^{\infty}(\mathbb{R}^{2}_{-}\times\mathbb{R}^{2}_{-}) (see (3.2) and (3.3)) and G(x,y)C(+2×2)G(x,y)\in C^{\infty}(\mathbb{R}^{2}_{+}\times\mathbb{R}^{2}_{-}) (see (2.11) and (2.13)) as well as Lemma 3.1 and Theorem 3.7. Thus, in what follows, we only present Theorems A.1 and A.2 with some necessary explanations in the proofs and only present Theorems A.3A.5 without proofs. Throughout this section, we assume that ff belongs to B(c1,c2)B(c_{1},c_{2}) with c1<0c_{1}<0 and c2>0c_{2}>0 and let ν\nu denote the unit normal on Γ\Gamma pointing to the exterior of DD.

Theorem A.1.

Let WW be the double-layer potential with the density ψBC(Γ)\psi\in BC(\Gamma), that is,

W(x):=ΓGν(x,y)ψ(y)𝑑s(y),x2\Γ.W(x):=\int_{\Gamma}\frac{\partial G}{\partial\nu}(x,y)\psi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\Gamma. (A.1)

Then the following results hold.

(i) WW satisfies WC2(2\(Γ0Γ))W\in C^{2}(\mathbb{R}^{2}\backslash(\Gamma_{0}\cup\Gamma)), W|U0¯C1(U0¯)W|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}), W|D\U0C1(D\U0)W|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}), and satisfies the Helmholtz equations together with the transmission boundary condition on Γ0\Gamma_{0}, i.e.,

{ΔW+k+2W=0 in U0,ΔW+k2W=0 in 2\(U¯0Γ),W|+=W|,2W|=+2W| on Γ0.\begin{cases}\Delta W+k_{+}^{2}W=0\textrm{ in }U_{0},\\ \Delta W+k_{-}^{2}W=0\textrm{ in }\mathbb{R}^{2}\backslash(\overline{U}_{0}\cap\Gamma),\\ W|_{+}=W|_{-},\partial_{2}W\left|{}_{+}=\partial_{2}W\right|_{-}\textrm{ on }\Gamma_{0}.\end{cases}

(ii) WW can be continuously extended from DD to D¯\overline{D} and from 2\D¯\mathbb{R}^{2}\backslash\overline{D} to 2\D\mathbb{R}^{2}\backslash D with the limiting values

W±(x)=ΓGν(y)(x,y)ψ(y)𝑑s(y)12ψ(x),xΓ,W_{\pm}(x)=\int_{\Gamma}\frac{\partial G}{\partial\nu(y)}(x,y)\psi(y)ds(y)\mp\frac{1}{2}\psi(x),\quad x\in\Gamma,

where

W±(x):=limh0+W(xhν(x)),xΓ.W_{\pm}(x):=\lim_{h\to 0+}W(x\mp h\nu(x)),\quad x\in\Gamma. (A.2)

The integral exists in the sense of improper integral.

(iii) There exists some constant C>0C>0 such that for all fB(c1,c2)f\in B(c_{1},c_{2}) and ψBC(Γ)\psi\in BC(\Gamma),

supx2\Γ|(|x2|+1)12W(x)|Cψ,Γ.\sup_{x\in\mathbb{R}^{2}\backslash\Gamma}\left|(|x_{2}|+1)^{-\frac{1}{2}}W(x)\right|\leq C\|\psi\|_{\infty,\Gamma}.

(iv) There holds

(W(x+hν(x))W(xhν(x)))ν(x)0(\nabla W(x+h\nu(x))-\nabla W(x-h\nu(x)))\cdot\nu(x)\to 0

as h0h\to 0, uniformly for xx in compact subsets of Γ\Gamma.

(v) WW satisfies the upward propagating radiation condition (2.3) with the wave number k+k_{+} in U0U_{0} and the downward propagating radiation condition with the wave number kk_{-} in 2\U¯f\mathbb{R}^{2}\backslash\overline{U}_{f_{-}}, that is, there exists some h<fh<f_{-} and ϕL(Γh)\phi\in L^{\infty}(\Gamma_{h}) such that

W(x)=2ΓhΦk(x,y)y2ϕ(y)𝑑s(y),x2\U¯h.W(x)=-2\int_{\Gamma_{h}}\frac{\partial\Phi_{k_{-}}(x,y)}{\partial y_{2}}\phi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\overline{U}_{h}.
Proof.

We only prove W|U0¯C1(U0¯)W|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}) and W|D\U0C1(D\U0)W|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}), since the other results in this theorem can be deduced in a very similar way as in [37, Appendix A]. In fact, for any x0Dx_{0}\in D, it can be deduced from (4.10) that

W(x0)=ΓxGν(x0,y)ψ(y)𝑑s(y).\nabla W(x_{0})=\int_{\Gamma}\nabla_{x}\frac{\partial G}{\partial\nu}(x_{0},y)\psi(y)ds(y).

Using (4.10), the Lebesgue’s dominated convergence theorem as well as the continuity properties of GG in Lemma 4.9 (i), we have that for x0U0¯x_{0}\in\overline{U_{0}},

limxx0xU0¯W(x)\displaystyle\lim_{\begin{subarray}{c}x\to x_{0}\\ x\in\overline{U_{0}}\end{subarray}}\nabla W(x) =limxx0xU0¯ΓxGν(x,y)ψ(y)𝑑s(y)\displaystyle=\lim_{\begin{subarray}{c}x\to x_{0}\\ x\in\overline{U_{0}}\end{subarray}}\int_{\Gamma}\nabla_{x}\frac{\partial G}{\partial\nu}(x,y)\psi(y)ds(y)
=Γlimxx0xU0¯xGν(x,y)ψ(y)ds(y)\displaystyle=\int_{\Gamma}\lim_{\begin{subarray}{c}x\to x_{0}\\ x\in\overline{U_{0}}\end{subarray}}\nabla_{x}\frac{\partial G}{\partial\nu}(x,y)\psi(y)ds(y)
=ΓxGν(x0,y)ψ(y)𝑑s(y)\displaystyle=\int_{\Gamma}\nabla_{x}\frac{\partial G}{\partial\nu}(x_{0},y)\psi(y)ds(y)
=W(x0).\displaystyle=\nabla W(x_{0}).

This means that W|U0¯C(U0¯)\nabla W|_{\overline{U_{0}}}\in C(\overline{U_{0}}). Similarly, we have that W|D\U0C(D\U0)\nabla W|_{D\backslash U_{0}}\in C(D\backslash U_{0}). By similar arguments, we can use Lemma 4.9 (i) and Theorem 3.7 to obtain that W|U0¯C(U0¯)W|_{\overline{U_{0}}}\in C(\overline{U_{0}}) and W|D\U0C(D\U0)W|_{D\backslash U_{0}}\in C(D\backslash U_{0}). Thus we obtain that W|U0¯C1(U0¯)W|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}) and W|D\U0C1(D\U0)W|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}). ∎

Theorem A.2.

Let VV be the single-layer potential with the density ψBC(Γ)\psi\in BC(\Gamma), that is,

V(x):=ΓG(x,y)ψ(y)𝑑s(y).V(x):=\int_{\Gamma}G(x,y)\psi(y)ds(y). (A.3)

Then the following results hold.

(i) VV satisfies VC2(2\(Γ0Γ))V\in C^{2}(\mathbb{R}^{2}\backslash(\Gamma_{0}\cup\Gamma)), W|U0¯C1(U0¯)W|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}), W|D\U0C1(D\U0)W|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}) and satisfies the Helmholtz equations together with the transmission boundary conditions on Γ0\Gamma_{0}, i.e.,

{ΔV+k+2V=0 in U0,ΔV+k2V=0 in \(U¯0Γ),V|+=V|,2V|=+2V| on Γ0.\begin{cases}\Delta V+k_{+}^{2}V=0\textrm{ in }U_{0},\\ \Delta V+k_{-}^{2}V=0\textrm{ in }\mathbb{R}\backslash(\overline{U}_{0}\cup\Gamma),\\ V|_{+}=V|_{-},\partial_{2}V\left|{}_{+}=\partial_{2}V\right|_{-}\textrm{ on }\Gamma_{0}.\end{cases}

(ii) VV is continuous in 2\mathbb{R}^{2} and

V(x)\displaystyle V(x) =ΓG(x,y)ψ(y)𝑑s(y),xΓ,\displaystyle=\int_{\Gamma}G(x,y)\psi(y)ds(y),\quad x\in\Gamma, (A.4)
V±ν(x)\displaystyle\frac{\partial V_{\pm}}{\partial\nu}(x) =ΓGν(x)(x,y)ψ(y)𝑑s(y)±12ψ(y),xΓ,\displaystyle=\int_{\Gamma}\frac{\partial G}{\partial\nu(x)}(x,y)\psi(y)ds(y)\pm\frac{1}{2}\psi(y),\quad x\in\Gamma, (A.5)

where

V±ν(x):=limh0+ν(x)V(xhν(x))\frac{\partial V_{\pm}}{\partial\nu}(x):=\lim_{h\to 0+}\nu(x)\cdot\nabla V(x\mp h\nu(x)) (A.6)

and the convergence in (A.6) is uniform on compact subsets of Γ\Gamma. The integrals in (A.4) and (A.5) exist as improper integrals.

(iii) There exists some constant C>0C>0 such that for all fB(c1,c2)f\in B(c_{1},c_{2}) and ψBC(Γ)\psi\in BC(\Gamma),

supx2\Γ|(|x2|+1)12V(x)|<Cψ,Γ.\sup_{x\in\mathbb{R}^{2}\backslash\Gamma}\left|(|x_{2}|+1)^{-\frac{1}{2}}V(x)\right|<C\|\psi\|_{\infty,\Gamma}.

(iv) VV satisfies the upward propagating radiation condition (2.3) with the wave number k+k_{+} in U0U_{0} and the downward propagating radiation condition with the wave number kk_{-} in 2\U¯f\mathbb{R}^{2}\backslash\overline{U}_{f_{-}}, that is, there exists some h<fh<f_{-} and ϕL(Γh)\phi\in L^{\infty}(\Gamma_{h}) such that

V(x)=2ΓhΦk(x,y)y2ϕ(y)𝑑s(y),x2\U¯h.V(x)=-2\int_{\Gamma_{h}}\frac{\partial\Phi_{k_{-}}(x,y)}{\partial y_{2}}\phi(y)ds(y),\quad x\in\mathbb{R}^{2}\backslash\overline{U}_{h}.
Proof.

Similarly to the proof of Theorem A.1, we can use Lemma 4.9 to deduce that W|U0¯C1(U0¯)W|_{\overline{U_{0}}}\in C^{1}(\overline{U_{0}}) and W|D\U0C1(D\U0)W|_{D\backslash U_{0}}\in C^{1}(D\backslash U_{0}). The other results in this theorem can be deduced in a very similar way as in [37, Appendix A]. ∎

Theorem A.3.

Let ψBC(Γ)\psi\in BC(\Gamma). The direct value of the double-layer potential is defined by

W(x):=ΓGν(y)(x,y)ψ(y)𝑑s(y),xΓ,W(x):=\int_{\Gamma}\frac{\partial G}{\partial\nu(y)}(x,y)\psi(y)ds(y),\quad x\in\Gamma,

and the direct value of the single-layer potential is defined by

V(x):=ΓG(x,y)ψ(y)𝑑s(y),xΓ.V(x):=\int_{\Gamma}G(x,y)\psi(y)ds(y),\quad x\in\Gamma.

Then, for any λ(0,1)\lambda\in(0,1), both W(x)W(x) and V(x)V(x) represent uniformly Hölder functions on Γ\Gamma with the norms

WC0,λ(Γ),VC0,λ(Γ)Cψ,Γ\|W\|_{C^{0,\lambda}(\Gamma)},~{}\|V\|_{C^{0,\lambda}(\Gamma)}\leq C\|\psi\|_{\infty,\Gamma}

for some constant C>0C>0 depending only on B(c1,c2)B(c_{1},c_{2}) and k±k_{\pm}.

Theorem A.4.

Let ψC0,λ(Γ)\psi\in C^{0,\lambda}(\Gamma) with 0<λ<10<\lambda<1 and let W(x)W(x) be given as in (A.1). Then

|W(x)|C|f(x1)x2|λ1,xUb1\(U¯b2Γ),|\nabla W(x)|\leq C|f(x_{1})-x_{2}|^{\lambda-1},\quad x\in U_{b_{1}}\backslash(\overline{U}_{b_{2}}\cup\Gamma),

where CC is a positive constant and b1=f1b_{1}=f_{-}-1, b2=0b_{2}=0.

Theorem A.5.

Let ψBC(Γ)\psi\in BC(\Gamma) and let V(x)V(x) be given as in (A.3). Then, for 0<λ<10<\lambda<1,

|V(x)|C|f(x1)x2|λ1,xUb1\(U¯b2Γ),|\nabla V(x)|\leq C|f(x_{1})-x_{2}|^{\lambda-1},\quad x\in U_{b_{1}}\backslash(\overline{U}_{b_{2}}\cup\Gamma),

where CC is a positive constant and b1=f1b_{1}=f_{-}-1, b2=0b_{2}=0.

Appendix B Integral Operators on the Real Line

In this section, we introduce an integral equation theory on the real line, associated with the two-layered Green function. We note that the results in this section are mainly based on the results in [37, Appendix B]. Define the integral equation operator 𝒦l\mathscr{K}_{l} with the kernel l:2l:\mathbb{R}^{2}\to\mathbb{C} given by

𝒦lψ(s):=l(s,t)ψ(t)𝑑t,s.\mathscr{K}_{l}\psi(s):=\int_{\mathbb{R}}l(s,t)\psi(t)dt,\quad s\in\mathbb{R}. (B.1)

It can be seen that the integral (B.1) exists in a Lebesgue sense for every ψX:=L()\psi\in X:=L^{\infty}(\mathbb{R}) and ss\in\mathbb{R} iff l(s,)L1(),sl(s,\cdot)\in L^{1}(\mathbb{R}),s\in\mathbb{R}, and that 𝒦l:XY:=BC()\mathscr{K}_{l}:X\to Y:=BC(\mathbb{R}) and is bounded iff l(s,)L1(),sl(s,\cdot)\in L^{1}(\mathbb{R}),s\in\mathbb{R},

|l|:=esssupsl(s,)1<|\|l\||:=\mathrm{ess}\sup_{s\in\mathbb{R}}\|l(s,\cdot)\|_{1}<\infty (B.2)

and 𝒦lψC()\mathscr{K}_{l}\psi\in C(\mathbb{R}) for every ψX\psi\in X. Here, 1\|\cdot\|_{1} denotes the L1L^{1} norm.

In the case that (B.2) holds, it is convenient to identify l:2l:\mathbb{R}^{2}\to\mathbb{C} with the mapping sl(s,)s\to l(s,\cdot) in 𝐙:=L(,L1())\mathbf{Z}:=L^{\infty}(\mathbb{R},L^{1}(\mathbb{R})), which mapping is essentially bounded with norm |l||\|l\||. Let 𝐊\mathbf{K} denote the set of those functions l𝐙l\in\mathbf{Z} having the property that 𝒦lψC()\mathscr{K}_{l}\psi\in C(\mathbb{R}) for every ψX\psi\in X, where 𝒦l\mathscr{K}_{l} is the integral operator (B.1). Then, 𝐙\mathbf{Z} is a Banach space with the norm |||\|\cdot\|| and 𝐊\mathbf{K} is a closed subspace of 𝐙\mathbf{Z}. Further, in terms of the above discussions, 𝒦l:XY\mathscr{K}_{l}:X\to Y and is bounded iff l𝐊l\in\mathbf{K}. Let BC(,L1())BC(\mathbb{R},L^{1}(\mathbb{R})) denote the set of those functions l𝐙l\in\mathbf{Z} having the property that for all ss\in\mathbb{R},

l(s,)l(s,)10 as ss.\|l(s,\cdot)-l(s^{\prime},\cdot)\|_{1}\to 0\text{ as }s^{\prime}\to s.

It is easy to see that BC(,L1())𝐊BC(\mathbb{R},L^{1}(\mathbb{R}))\subset\mathbf{K}.

For (ϕn)Y(\phi_{n})\subset Y and ϕY\phi\in Y, we say that (ϕn)(\phi_{n}) converges strictly to ϕ\phi and write ϕnsϕ\phi_{n}\stackrel{{\scriptstyle s}}{{\rightarrow}}\phi if supn\sup_{n\in\mathbb{N}} ϕn<\left\|\phi_{n}\right\|_{\infty}<\infty and ϕn(t)ϕ(t)\phi_{n}(t)\rightarrow\phi(t) uniformly on every compact subset of \mathbb{R}. For (ln)𝐊(l_{n})\subset\mathbf{K} and l𝐊l\in\mathbf{K}, we say that (ln)(l_{n}) is σ\sigma-convergence to ll and write lnσll_{n}\stackrel{{\scriptstyle\sigma}}{{\to}}l if supn|ln|<\sup_{n\in\mathbb{N}}|\|l_{n}\||<\infty and, for all ψX\psi\in X,

ln(s,t)ψ(t)𝑑tl(s,t)ψ(t)𝑑t\int_{\mathbb{R}}l_{n}(s,t)\psi(t)dt\to\int_{\mathbb{R}}l(s,t)\psi(t)dt

as nn\to\infty, uniformly on every compact subset of \mathbb{R}.

For aa\in\mathbb{R}, define the translation operator Ta:ZZT_{a}:\textbf{Z}\to\textbf{Z} by

Tal(s,t)=l(sa,ta),s,t.T_{a}l(s,t)=l(s-a,t-a),\quad s,t\in\mathbb{R}.

We say that a subset W𝐊W\subset\mathbf{K} is σ\sigma-sequentially compact in 𝐊\mathbf{K} if each sequence in WW has a σ\sigma-convergent subsequence with its limit in WW. Let B(Y)B(Y) denote the Banach space of bounded linear operators on YY and let II denote the identity operator on YY.

The following result on the invertibility of I𝒦lI-\mathscr{K}_{l} has been proved in [12].

Lemma B.1.

Suppose that W𝐊W\subset\mathbf{K} is σ\sigma-sequentially compact and satisfies that, for all ss\in\mathbb{R},

suplW|l(s,t)l(s,t)|dt0 as ss,\sup_{l\in W}\int_{\mathbb{R}}\left|l(s,t)-l\left(s^{\prime},t\right)\right|\mathrm{d}t\rightarrow 0\quad\text{ as }s^{\prime}\rightarrow s, (B.3)

that Ta(W)=WT_{a}(W)=W for some aa\in\mathbb{R}, and that I𝒦lI-\mathscr{K}_{l} is injective for all lWl\in W. Then (I𝒦l)1\left(I-\mathscr{K}_{l}\right)^{-1} exists as an operator on the range space (I𝒦l)(Y)\left(I-\mathscr{K}_{l}\right)(Y) for all lWl\in W and

suplW(I𝒦l)1<.\sup_{l\in W}\left\|\left(I-\mathscr{K}_{l}\right)^{-1}\right\|<\infty.

If also, for every lWl\in W, there exists a sequence (ln)W\left(l_{n}\right)\subset W such that lnσll_{n}\stackrel{{\scriptstyle\sigma}}{{\rightarrow}}l and, for each nn, it holds that

I𝒦ln injective I𝒦ln surjective, I-\mathscr{K}_{l_{n}}\text{ injective }\Rightarrow I-\mathscr{K}_{l_{n}}\text{ surjective, } (B.4)

then also I𝒦lI-\mathscr{K}_{l} is surjective for each lWl\in W so that (I𝒦l)1B(Y)\left(I-\mathscr{K}_{l}\right)^{-1}\in B(Y).

The following three lemmas give the properties of kfk_{f} and kβ~,fk_{\tilde{\beta},f}, which are defined in (4.26) and (4.37), respectively. Due to the properties of the two-layered Green function given in Section 3, we can deduce Lemmas B.2, B.3 and B.4 in a very similar manner as in [37, Appendix B]. Thus we only present these lemmas without proofs.

Lemma B.2.

Assume c1<0c_{1}<0, c2>0c_{2}>0, d10d_{1}\geq 0, d2>0d_{2}>0, and ω:[0,)[0,)\omega:[0,\infty)\to[0,\infty) is a function such that ω(s)0\omega(s)\to 0 as s0s\to 0. Let κL1()\kappa\in L^{1}(\mathbb{R}) be defined by

κ(s):={1log|s|,0<|s|1,|s|3/2,|s|>1.\kappa(s):=\begin{cases}1-{\rm log}|s|,\quad 0<|s|\leq 1,\\ |s|^{-3/2},\quad|s|>1.\end{cases}

(i) For all fB(c1,c2)f\in B(c_{1},c_{2}),

|κf(s,t)|C|κ(st)|,s,t,st,\left|\kappa_{f}(s,t)\right|\leq C\left|\kappa(s-t)\right|,\quad s,t\in\mathbb{R},\;s\neq t,

for some constant C>0C>0 depending only on c1c_{1}, c2c_{2}, η\eta, and k±k_{\pm}, and

sup|s1s2|h,fB(c1,c2)|κf(s1,t)κf(s2,t)|𝑑t0\sup_{|s_{1}-s_{2}|\leq h,f\in B(c_{1},c_{2})}\int_{\mathbb{R}}\left|\kappa_{f}(s_{1},t)-\kappa_{f}(s_{2},t)\right|dt\to 0

as h0h\to 0.

(ii) For all fB(c1,c2),β~E(d1,d2,ω)f\in B(c_{1},c_{2}),\tilde{\beta}\in E(d_{1},d_{2},\omega),

|κβ~,f(s,t)|C|κ(st)|,s,t,st,\left|\kappa_{\tilde{\beta},f}(s,t)\right|\leq C\left|\kappa(s-t)\right|,\quad s,t\in\mathbb{R},\quad s\neq t,

for some constant C>0C>0 depending only on c1,c2,d1,d2c_{1},c_{2},d_{1},d_{2}, and k±k_{\pm}, and

sup|s1s2|h,fB(c1,c2),β~E(d1,d2,ω)|κβ~,f(s1,t)κβ~,f(s2,t)|dt0\sup\limits_{\begin{subarray}{c}\left|s_{1}-s_{2}\right|\leq h,f\in B(c_{1},c_{2}),\\ \tilde{\beta}\in E(d_{1},d_{2},\omega)\end{subarray}}\int_{\mathbb{R}}\left|\kappa_{\tilde{\beta},f}\left(s_{1},t\right)-\kappa_{\tilde{\beta},f}\left(s_{2},t\right)\right|\mathrm{d}t\rightarrow 0

as h0h\rightarrow 0.

Lemma B.3.

Assume c1<0c_{1}<0, c2>0c_{2}>0. Then we have the following statements.

(i) Every sequence (fn)B(c1,c2)\left(f_{n}\right)\subset B(c_{1},c_{2}) has a subsequence (fnm)\left(f_{n_{m}}\right) such that fnmsff_{n_{m}}\stackrel{{\scriptstyle s}}{{\rightarrow}}f, fnmsff_{n_{m}}^{\prime}\stackrel{{\scriptstyle s}}{{\rightarrow}}f^{\prime}, with fB(c1,c2)f\in B(c_{1},c_{2}).

(ii) Suppose that (fn)B(c1,c2)\left(f_{n}\right)\subset B(c_{1},c_{2}) and that fnsff_{n}\stackrel{{\scriptstyle s}}{{\rightarrow}}f, fnsff_{n}^{\prime}\stackrel{{\scriptstyle s}}{{\rightarrow}}f^{\prime}, with fB(c1,c2)f\in B(c_{1},c_{2}). Then κfnσκf\kappa_{f_{n}}\stackrel{{\scriptstyle\sigma}}{{\rightarrow}}\kappa_{f}.

Lemma B.4.

Assume c1<0c_{1}<0, c2>0c_{2}>0, d10d_{1}\geq 0, d2>0d_{2}>0, and ω:[0,)[0,)\omega:[0,\infty)\to[0,\infty) is a function such that ω(s)0\omega(s)\to 0 as s0s\to 0. Then we have the following statements.

(i) Every sequence (β~n)E(d1,d2,ω)\big{(}\tilde{\beta}_{n}\big{)}\subset E(d_{1},d_{2},\omega) has a subsequence (β~nm)\big{(}\tilde{\beta}_{n_{m}}\big{)} such that β~nmsβ~\tilde{\beta}_{n_{m}}\stackrel{{\scriptstyle s}}{{\rightarrow}}\tilde{\beta} with β~E(d1,d2,ω)\tilde{\beta}\in E(d_{1},d_{2},\omega).

(ii) If (fn)B(c1,c2)\big{(}f_{n}\big{)}\subset B(c_{1},c_{2}), (β~n)E(d1,d2,ω)\big{(}\tilde{\beta}_{n}\big{)}\subset E(d_{1},d_{2},\omega) and fnsff_{n}\stackrel{{\scriptstyle s}}{{\rightarrow}}f, fnsff_{n}^{\prime}\stackrel{{\scriptstyle s}}{{\rightarrow}}f^{\prime}, β~nsβ~\tilde{\beta}_{n}\stackrel{{\scriptstyle s}}{{\rightarrow}}\tilde{\beta}, with fB(c1,c2)f\in B(c_{1},c_{2}) and β~E(d1,d2,ω)\tilde{\beta}\in E(d_{1},d_{2},\omega), then κβ~n,fnσκβ~,f\kappa_{\tilde{\beta}_{n},f_{n}}\stackrel{{\scriptstyle\sigma}}{{\rightarrow}}\kappa_{\tilde{\beta},f}.

References

  • [1] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
  • [2] G. Bao, G. Hu and T. Yin, Time-harmonic Acoustic Scattering from Locally Perturbed Half-planes, SIAM J. Appl. Math. 78 (2018), 2672–2691.
  • [3] S. N. Chandler-Wilde and J. Elschner, Variational Approach in Weighted Sobolev Spaces to Scattering by Unbounded Rough Surfaces, SIAM J. Math. Anal. 42 (2010), 2554–2580.
  • [4] S. N. Chandler-Wilde and P. Monk, Existence, Uniqueness, and Variational Methods for Scattering by Unbounded Rough Surfaces, SIAM J. Math. Anal. 37 (2005), 598–618.
  • [5] S. N. Chandler-Wilde and P. Monk, The PML for Rough Surface Scattering, Appl. Numer. Math. 59 (2009), 2131–2154.
  • [6] S. N. Chandler-Wilde and C. R. Ross, Scattering by Rough Surfaces: the Dirichlet Problem for the Helmholtz Equation in a Non-locally Perturbed Half-plane, Math. Methods Appl. Sci. 19 (1996), 959–976.
  • [7] S. N. Chandler-Wilde, C. R. Ross and B. Zhang, Scattering by Infinite One-dimensional Rough Surfaces, Proc. R. Soc. Lond. A 455 (1999), 3767–3787.
  • [8] S. N. Chandler-Wilde and B. Zhang, On the Solvability of a Class of Second Kind Integral Equations on Unbounded Domains, J. Math. Anal. Appl. 214 (1997), 482–502.
  • [9] S. N. Chandler-Wilde and B. Zhang, Electromagnetic Scattering by an Inhomogeneous Conducting or Dielectric Layer on a Perfectly Conducting Plate, Proc. R. Soc. Lond. A 454 (1998), 519–542.
  • [10] S. N. Chandler-Wilde and B. Zhang, A Uniqueness Result for Scattering by Infinite Rough Surfaces, SIAM J. Appl. Math. 58 (1998), 1774–1790.
  • [11] S. N. Chandler-Wilde and B. Zhang, Scattering of Electromagnetic Waves by Rough Interfaces and Inhomogeneous Layers, SIAM J. Math. Anal. 30 (1999), 559–583.
  • [12] S. N. Chandler-Wilde, B. Zhang and C. R. Ross, On the Solvability of Second Kind Integral Equations on the Real Line, J. Math. Anal. Appl. 245 (2000), 28–51.
  • [13] Z. Chen and H. Wu, An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures, SIAM J. Numer. Anal. 41 (2003), 799–826.
  • [14] W. C. Chew, Waves and Fields in Inhomogenous Media, vol. 16, John Wiley & Sons, 1999.
  • [15] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 4th ed., Springer, New York, 2019.
  • [16] J. A. DeSanto, Scattering by Rough Surfaces, in Scattering: Scattering and Inverse Scattering in Pure and Applied Science, R. Pike and P. Sabatier, eds., Academic Press, New York, 2002, 15–36.
  • [17] J. Elschner and G. Hu, Elastic Scattering by Unbounded Rough Surfaces, SIAM J. Math. Anal. 44 (2012), 4101–4127.
  • [18] J. Elschner and G. Hu, Elastic Scattering by Unbounded Rough Surfaces: Solvability in Weighted Sobolev Spaces, Appl. Anal. 94 (2015), 251–278.
  • [19] L. C. Evans, Partial Differential Equations, 2nd ed., AMS, Providence, RI, 2010.
  • [20] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 ed., Springer, Berlin, 2001.
  • [21] H. Haddar and A. Lechleiter, Electromagnetic Wave Scattering from Rough Penetrable Layers, SIAM J. Math. Anal. 43 (2011), 2418–2443.
  • [22] F. Hecht, New Development in FreeFem++, J. Numer. Math. 20 (2012), 251–265, URL https://freefem.org/.
  • [23] G. Hu, P. Li and Y. Zhao, Elastic Scattering from Rough Surfaces in Three Dimensions, J. Differential Equations 269 (2020), 4045–4078.
  • [24] G. Hu, X. Liu, F. Qu and B. Zhang, Variational Approach to Scattering by Unbounded Rough Surfaces with Neumann and Generalized Impedance Boundary Conditions, Commun. Math. Sci. 13 (2015), 511–537.
  • [25] A. Kirsch and A. Lechleiter, The Limiting Absorption Principle and a Radiation Condition for the Scattering by a Periodic Layer, SIAM J. Math. Anal. 50 (2018), 2536–2565.
  • [26] J. Li, G. Sun and R. Zhang, The Numerical Solution of Scattering by Infinite Rough Interfaces Based on the Integral Equation Method, Comput. Math. Appl. 71 (2016), 1491–1502.
  • [27] L. Li, J. Yang, B. Zhang and H. Zhang, Uniform Far-Field Asymptotics of the Two-Layered Green Function in Two Dimensions and Application to Wave Scattering in a Two-Layered Medium, SIAM J. Math. Anal. 56 (2024), 4143-4184.
  • [28] P. Li, H. Wu and W. Zheng, Electromagnetic Scattering by Unbounded Rough Surfaces, SIAM J. Math. Anal. 43 (2011), 1205–1231.
  • [29] A. Meier, T. Arens, S. N. Chandler-Wilde and A. Kirsch, A Nyström Method for a Class of Integral Equations on the Real Line with Applications to Scattering by Diffraction Gratings and Rough Surfaces, J. Integral Equations Appl. 12 (2000), 281–321.
  • [30] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, 2010.
  • [31] C. Pérez-Arancibia, Windowed Integral Equation Methods for Problems of Scattering by Defects and Obstacles in Layered Media, PhD thesis, California Institute of Technology, USA, 2017.
  • [32] R. Petit (ed.), Electromagnetic Theory of Grating, Springer, 1980.
  • [33] M. Saillard and A. Sentenac, Rigorous Solutions for Electromagnetic Scattering from Rough Surfaces, Waves in random media 11 (2001), 103–137.
  • [34] A. G. Voronovich, Wave Scattering from Rough Surfaces, Springer, New York, 1999.
  • [35] K. F. Warnick and W. C. Chew, Numerical Simulation Methods for Rough Surface Scattering, Waves in Random Media 11 (2001), R1–R30.
  • [36] B. Zhang and S. N. Chandler-Wilde, Acoustic Scattering by an Inhomogeneous Layer on a Rigid Plate, SIAM J. Appl. Math. 58 (1998), 1931–1950.
  • [37] B. Zhang and S. N. Chandler-Wilde, Integral Equation Methods for Scattering by Infinite Rough Surfaces, Math. Methods Appl. Sci. 26 (2003), 463–488.
  • [38] B. Zhang and R. Zhang, An FFT-based Algorithm for Efficient Computation of Green’s Functions for the Helmholtz and Maxwell’s Equations in Periodic Domains, SIAM J. Sci. Comput. 40 (2018), B915–B941.
  • [39] R. Zhang and B. Zhang, A New Integral Equation Formulation for Scattering by Penetrable Diffraction Gratings, J. Comput. Math. 36 (2018), 110–127.