Abstract.
The pair correlations of Farey fractions with denominators q q satisfying ( q , m ) = 1 (q,m)=1 , respectively q ≡ b ( mod m ) q\equiv b\pmod{m} with ( b , m ) = 1 (b,m)=1 ,
are shown to exist and are explicitly computed.
1. Introduction
The Farey fractions sequence 𝔉 Q := { a q : 0 < a ≤ q ≤ Q , ( a , q ) = 1 } \mathfrak{F}_{Q}:=\{\frac{a}{q}:0<a\leq q\leq Q,(a,q)=1\} arises in several problems in mathematics.
The elements of 𝔉 Q \mathfrak{F}_{Q} are well known to be uniformly distributed in [ 0 , 1 ] [0,1] as Q → ∞ Q\rightarrow\infty [19 ] , with
discrepancy exactly 1 Q \frac{1}{Q} [11 ] .
The distribution of Farey fractions is of major interest, due in part to the connection with the distribution of zeros
of the Riemann zeta function [13 , 17 ] or of Dirichlet L L -functions [16 ] .
Although the major problems in the area remain widely open, the spacing statistics of Farey fractions are more accessible.
The gap distribution of h h -tuples of consecutive gaps between elements of 𝔉 Q \mathfrak{F}_{Q} was computed in [14 ] for h = 1 h=1 and in [3 ]
for h ≥ 2 h\geq 2 . More recently, the correlations of 𝔉 Q \mathfrak{F}_{Q} , shown to exist and explicitly computed by Zaharescu and the
first author [9 ] , turned out to play a key role in the study of the moments of eigenvalues of large sieve matrices [8 ] .
Motivated by Huxley’s work [16 ] , a number of papers investigated various features (such as discrepancy or gap distribution)
of the distribution of Farey fractions with denominators subjected to various constraints [1 , 2 , 4 , 7 , 15 , 18 ] .
For every finite set F ⊆ ℝ F\subseteq\mathbb{R} of cardinality N ( F ) N(F) and every interval I I , define
𝒢 F ( I ) := 1 N ( F ) # { ( x , y ) ∈ F 2 : y ≠ x , y − x ∈ 1 N ( F ) I + ℤ } . {\mathcal{G}}_{F}(I):=\frac{1}{N(F)}\,\#\bigg{\{}(x,y)\in F^{2}:y\neq x,\,y-x\in\frac{1}{N(F)}\,I+\mathbb{Z}\bigg{\}}.
(1.1)
The pair correlation measure of an increasing sequence ( F n ) (F_{n}) of finite subsets of ℝ \mathbb{R} is defined (when it exists) by
𝒢 ( I ) := lim n 𝒢 F n ( I ) ( I interval ) . {\mathcal{G}}(I):=\lim\limits_{n}{\mathcal{G}}_{F_{n}}(I)\qquad(\text{$I$ interval}).
If, in addition,
G ( λ ) := 𝒢 ( [ 0 , λ ] ) = ∫ 0 λ g ( x ) 𝑑 x , G(\lambda):={\mathcal{G}}([0,\lambda])=\int_{0}^{\lambda}g(x)\,dx,
then g g is called the pair correlation function of ( F n ) (F_{n}) .
The pair correlation function of 𝔉 Q \mathfrak{F}_{Q} was shown in [9 ] to be given by
g ( λ ) = 1 ζ ( 2 ) λ 2 ∑ 1 ≤ Δ ≤ 2 ζ ( 2 ) λ φ ( Δ ) log 2 ζ ( 2 ) λ Δ , ∀ λ > 0 . g(\lambda)=\frac{1}{\zeta(2)\lambda^{2}}\sum\limits_{1\leq\Delta\leq 2\zeta(2)\lambda}\varphi(\Delta)\log\frac{2\zeta(2)\lambda}{\Delta},\qquad\forall\lambda>0.
(1.2)
This formula was useful in [8 ] to recognize the connection between the pair correlation of 𝔉 Q \mathfrak{F}_{Q} and the
expression of the main term of the second moment of the large sieve matrix, provided in [20 ] .
The proof of formula (1.2 ) given in [9 ] relies essentially on the Poisson summation formula.
The original motivation of this note was to re-prove (1.2 ) using some different counting arguments
that also provide effective estimates.
Our direct approach turns out to also work well in the case of two important subsets of 𝔉 Q \mathfrak{F}_{Q} , obtained by imposing
congruence conditions on the denominators:
𝔉 Q ( m ) \displaystyle\mathfrak{F}_{Q}^{(m)}
:= { γ = a q ∈ 𝔉 Q : ( q , m ) = 1 } , \displaystyle:=\bigg{\{}\gamma=\frac{a}{q}\in\mathfrak{F}_{Q}:(q,m)=1\bigg{\}},
𝔉 Q ( m , b ) \displaystyle\mathfrak{F}_{Q}^{(m,b)}
:= { a q ∈ 𝔉 Q : q ≡ b ( mod m ) } , \displaystyle:=\bigg{\{}\frac{a}{q}\in\mathfrak{F}_{Q}:q\equiv b\pmod{m}\bigg{\}},
where m ∈ ℕ m\in\mathbb{N} , b ∈ ℤ b\in\mathbb{Z} and ( b , m ) = 1 (b,m)=1 .
Set
N Q , m ; α , β := # ( 𝔉 Q ( m ) ∩ ( α , β ] ) , and N Q , m := N Q , m ; 0 , 1 . N_{Q,m;\alpha,\beta}:=\#(\mathfrak{F}_{Q}^{(m)}\cap(\alpha,\beta]),\quad\text{and }\quad N_{Q,m}:=N_{Q,m;0,1}.
The following constant will appear several times in this paper:
C m := φ ( m ) ζ ( 2 ) m ∏ p | m p prime ( 1 − 1 p 2 ) − 1 = φ ( m ) m ∏ p ∤ m p prime ( 1 − 1 p 2 ) . C_{m}:=\frac{\varphi(m)}{\zeta(2)m}\prod_{\begin{subarray}{c}p|m\\
p\text{ prime}\end{subarray}}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}=\frac{\varphi(m)}{m}\prod_{\begin{subarray}{c}p\nmid m\\
p\text{ prime}\end{subarray}}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}.
As noticed at the beginning of Section 2, for every 0 ≤ α < β ≤ 1 0\leq\alpha<\beta\leq 1 we have
N Q , m ; α , β \displaystyle N_{Q,m;\alpha,\beta}
= ( β − α ) N Q , m + O δ ( Q 1 + δ ) \displaystyle=(\beta-\alpha)N_{Q,m}+O_{\delta}(Q^{1+\delta})
= ( β − α ) C m 2 Q 2 + O δ ( Q 1 + δ ) , ∀ δ > 0 , \displaystyle=\frac{(\beta-\alpha)C_{m}}{2}\,Q^{2}+O_{\delta}(Q^{1+\delta}),\quad\forall\delta>0,
which gives an effective estimate for the uniform distribution of 𝔉 Q ( m ) \mathfrak{F}_{Q}^{(m)} .
In the first part of Section 2 we prove
Theorem 1 .
The pair correlation function g ( m ) g_{(m)} of 𝔉 Q ( m ) \mathfrak{F}_{Q}^{(m)} exists and
g ( m ) ( λ ) = φ ( m ) m ⋅ C m λ 2 ∑ 1 ≤ Δ ≤ 2 λ C m φ ( Δ ) ( Δ , m ) φ ( ( Δ , m ) ) log 2 λ C m Δ . g_{(m)}(\lambda)=\frac{\varphi(m)}{m}\cdot\frac{C_{m}}{\lambda^{2}}\sum\limits_{1\leq\Delta\leq\frac{2\lambda}{C_{m}}}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\,\log\frac{2\lambda}{C_{m}\Delta}.
In particular, the support of the function g ( m ) g_{(m)} is the interval [ 1 2 C m , ∞ ) [\frac{1}{2}C_{m},\infty) .
Next, we extend the equality
lim λ → ∞ g ( 1 ) ( λ ) = 1 , \lim\limits_{\lambda\rightarrow\infty}g_{(1)}(\lambda)=1,
due to R. R. Hall and presented in [9 ] , by proving that
lim λ → ∞ g ( m ) ( λ ) = 1 , ∀ m ∈ ℕ . \lim\limits_{\lambda\rightarrow\infty}g_{(m)}(\lambda)=1,\quad\forall m\in\mathbb{N}.
(1.3)
In Section 3 we investigate the pair correlation of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)} under the assumption
( b , m ) = 1 (b,m)=1 . The cardinality
of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)} is given by
N Q , ( m , b ) = C m 2 φ ( m ) Q 2 + O m ( Q log Q ) . N_{Q,(m,b)}=\frac{C_{m}}{2\varphi(m)}\,Q^{2}+O_{m}(Q\log Q).
(1.4)
Furthermore, we have
# ( 𝔉 Q ( m , b ) ∩ ( α , β ] ) = ( β − α ) N Q , ( m , b ) + O δ ( Q 1 + δ ) , ∀ δ > 0 , \#(\mathfrak{F}_{Q}^{(m,b)}\cap(\alpha,\beta])=(\beta-\alpha)N_{Q,(m,b)}+O_{\delta}(Q^{1+\delta}),\quad\forall\delta>0,
showing effectively that the elements of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)} are uniformly distributed.
Theorem 2 .
The pair correlation function of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)} exists, is independent of b b , and is given by
g ~ ( m ) ( λ ) = g ( m ) ( φ ( m ) λ ) . \widetilde{g}_{(m)}(\lambda)=g_{(m)}(\varphi(m)\lambda).
Our approach also allows us to prove that the pair correlation function of 𝔉 Q ( m ) ∩ I \mathfrak{F}_{Q}^{(m)}\cap I , respectively
𝔉 Q ( m , b ) ∩ I \mathfrak{F}_{Q}^{(m,b)}\cap I , coincides with g ( m ) g_{(m)} , respectively g ~ ( m ) \widetilde{g}_{(m)} , for every interval I ⊆ [ 0 , 1 ] I\subseteq[0,1] .
It also gives effective asymptotic formulas in Q Q for the quantities 𝒢 𝔉 Q ( [ 0 , λ ] ) {\mathcal{G}}_{\mathfrak{F}_{Q}}([0,\lambda]) ,
𝒢 𝔉 Q ( m ) ( [ 0 , λ ] ) {\mathcal{G}}_{\mathfrak{F}_{Q}^{(m)}}([0,\lambda]) and 𝒢 𝔉 Q ( m , b ) ( [ 0 , λ ] ) {\mathcal{G}}_{\mathfrak{F}_{Q}^{(m,b)}}([0,\lambda]) .
A related result is contained in [21 , case n = 1 n=1 of Theorem 3.2] . However, our result involves the extra coprimality
condition ( a , q ) = 1 (a,q)=1 in the definition of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)} , which is not included in formulas (3.3.1) and (3.3.2) of [21 ] .
Figure 1. The pair correlation functions g ( 1 ) g_{(1)} , g ( 2 ) g_{(2)} and g ( 3 ) g_{(3)}
2. The pair correlation of 𝔉 Q ( m ) \mathfrak{F}_{Q}^{(m)}
Lemma 2.1 of [6 ] gives
N Q , m = 1 + ∑ k = 1 ( k , m ) = 1 Q φ ( k ) = C m Q 2 2 + O ( Q log Q ) . N_{Q,m}=1+\sum\limits_{\begin{subarray}{c}k=1\\
(k,m)=1\end{subarray}}^{Q}\varphi(k)=C_{m}\frac{Q^{2}}{2}\ +\ O(Q\log Q).
When restricting to [ 0 , β ] [0,\beta] , the number of new fractions in the k k th step is not φ ( k ) \varphi(k) anymore, but rather
∑ n = 1 ( n , k ) = 1 ⌊ k β ⌋ 1 = φ ( k ) k ⌊ k β ⌋ + O δ ( k δ ) , \sum\limits_{\begin{subarray}{c}n=1\\
(n,k)=1\end{subarray}}^{\lfloor k\beta\rfloor}1=\frac{\varphi(k)}{k}\lfloor k\beta\rfloor+O_{\delta}(k^{\delta}),
where one can use, for example, [10 , Lemma A.1] . Thus
N Q , m ; 0 , β \displaystyle N_{Q,m;0,\beta}
= β N Q , m + O δ ( Q 1 + δ ) , \displaystyle=\beta N_{Q,m}+O_{\delta}(Q^{1+\delta}),
N Q , m ; α , β \displaystyle N_{Q,m;\alpha,\beta}
= N Q , m ; 0 , β − N Q , m ; 0 , α = ( β − α ) N Q , m + O δ ( Q 1 + δ ) . \displaystyle=N_{Q,m;0,\beta}-N_{Q,m;0,\alpha}=(\beta-\alpha)N_{Q,m}+O_{\delta}(Q^{1+\delta}).
Set
H Q , m ; β ( λ ) \displaystyle H_{Q,m;\beta}(\lambda)
:= # { ( γ , γ ′ ) : γ , γ ′ ∈ 𝔉 Q ( m ) , 0 < γ ′ − γ ≤ λ Q 2 , γ ′ ≤ β } , \displaystyle:=\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}},\ \gamma^{\prime}\leq\beta\bigg{\}},
H ¯ Q , m ; α ( λ ) \displaystyle\overline{H}_{Q,m;\alpha}(\lambda)
:= # { ( γ , γ ′ ) : γ , γ ′ ∈ 𝔉 Q ( m ) , 0 < γ ′ − γ ≤ λ Q 2 , γ ≤ α } . \displaystyle:=\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}},\ \gamma\leq\alpha\bigg{\}}.
If the limit exists, set
G ( m ; α , β ) ( λ ) := lim Q → ∞ 1 N Q , m ; α , β ( Q ) # { ( γ , γ ′ ) : γ , γ ′ ∈ 𝔉 Q ( m ) 0 < γ ′ − γ ≤ λ N Q , m ; α , β } . G_{(m;\alpha,\beta)}(\lambda):=\lim_{Q\rightarrow\infty}\frac{1}{N_{Q,m;\alpha,\beta}(Q)}\,\#\left\{(\gamma,\gamma^{\prime}):\begin{matrix}\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m)}\\
0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{N_{Q,m;\alpha,\beta}}\end{matrix}\right\}.
Then
H Q , m ; β ( λ ) \displaystyle H_{Q,m;\beta}(\lambda)
= ∑ 1 ≤ Δ ≤ λ # S Q , m ; β ( Δ , λ ) = ∑ 1 ≤ Δ ≤ λ # S ~ Q , m ; β ( Δ , λ ) , \displaystyle=\sum\limits_{1\leq\Delta\leq\lambda}\#S_{Q,m;\beta}(\Delta,\lambda)=\sum\limits_{1\leq\Delta\leq\lambda}\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda),
H ¯ Q , m ; α ( λ ) \displaystyle\overline{H}_{Q,m;\alpha}(\lambda)
= ∑ 1 ≤ Δ ≤ λ # S ¯ Q , m ; α ( Δ , λ ) , \displaystyle=\sum\limits_{1\leq\Delta\leq\lambda}\#\overline{S}_{Q,m;\alpha}(\Delta,\lambda),
where we used the variables x = a ′ , v = q ′ , u = q , y = a x=a^{\prime},v=q^{\prime},u=q,y=a to get
S Q , m ; β ( Δ , λ ) = { ( u , v , x , y ) ∈ ℕ 4 : x u − y v = Δ , x ≤ β v , v ≤ Q y ≤ u ≤ Q , ( x , v ) = 1 ( y , u ) = 1 Δ u v ≤ λ Q 2 , ( u , m ) = 1 ( v , m ) = 1 } , \displaystyle S_{Q,m;\beta}(\Delta,\lambda)=\left\{(u,v,x,y)\in\mathbb{N}^{4}:\begin{matrix}xu-yv=\Delta,\ \begin{subarray}{c}x\leq\beta v,\ v\leq Q\\
y\leq u\leq Q\end{subarray},\ \begin{subarray}{c}(x,v)=1\\
(y,u)=1\end{subarray}\\
\frac{\Delta}{uv}\leq\frac{\lambda}{Q^{2}},\ \begin{subarray}{c}(u,m)=1\\
(v,m)=1\end{subarray}\end{matrix}\right\},
S ~ Q , m ; β ( Δ , λ ) = { ( u , v , x ) ∈ ℕ 3 : Δ Q λ ≤ v ≤ Q , Δ Q 2 λ v ≤ u ≤ Q , x ≤ β v ( x , v ) = 1 x u ≡ Δ mod v , ( x u − Δ v , u ) = 1 , ( u , m ) = 1 ( v , m ) = 1 } , \displaystyle\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\left\{(u,v,x)\in\mathbb{N}^{3}:\begin{array}[]{c}\frac{\Delta Q}{\lambda}\leq v\leq Q,\ \frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q,\ \begin{subarray}{c}x\leq\beta v\\
(x,v)=1\end{subarray}\\
xu\equiv\Delta\mod v,\ (\frac{xu-\Delta}{v},u)=1,\ \begin{subarray}{c}(u,m)=1\\
(v,m)=1\end{subarray}\end{array}\right\},
S ¯ Q , m ; α ( Δ , λ ) = { ( u , v , x , y ) ∈ ℕ 4 : x u − y v = Δ , x ≤ v ≤ Q y ≤ α u , u ≤ Q , ( x , v ) = 1 ( y , u ) = 1 Δ u v ≤ λ Q 2 , ( u , m ) = 1 ( v , m ) = 1 } . \displaystyle\overline{S}_{Q,m;\alpha}(\Delta,\lambda)=\left\{(u,v,x,y)\in\mathbb{N}^{4}:\begin{matrix}xu-yv=\Delta,\ \begin{subarray}{c}x\leq v\leq Q\\
y\leq\alpha u,\ u\leq Q\end{subarray},\ \begin{subarray}{c}(x,v)=1\\
(y,u)=1\end{subarray}\\
\frac{\Delta}{uv}\leq\frac{\lambda}{Q^{2}},\ \begin{subarray}{c}(u,m)=1\\
(v,m)=1\end{subarray}\end{matrix}\right\}.
Observe that x u − y v = Δ ⇔ x v = y u + Δ u v xu-yv=\Delta\Leftrightarrow\frac{x}{v}=\frac{y}{u}+\frac{\Delta}{uv} implies
# S Q , m ; β ( Δ , λ ) ≤ # S ¯ Q , m ; β ( Δ , λ ) ≤ # S Q , m ; β + λ Q 2 ( Δ , λ ) , \#S_{Q,m;\beta}(\Delta,\lambda)\leq\#\overline{S}_{Q,m;\beta}(\Delta,\lambda)\leq\#S_{Q,m;\beta+\frac{\lambda}{Q^{2}}}(\Delta,\lambda),
so that H ¯ Q , m ; β ( λ ) \overline{H}_{Q,m;\beta}(\lambda)
is asymptotically the same as H Q , m ; β ( λ ) H_{Q,m;\beta}(\lambda)
as Q → ∞ Q\rightarrow\infty . Thus it suffices to estimate # S ~ Q , m ; β ( Δ , λ ) \#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda) as follows:
# S ~ Q , m ; β ( Δ , λ ) \displaystyle\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)
= ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 ∑ Δ Q 2 λ v ≤ u ≤ Q , ( u , m ) = 1 x ≤ β v , ( x , v ) = 1 x u ≡ Δ mod v ( x u − Δ v , u ) = 1 1 \displaystyle=\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q,\ (u,m)=1\\
x\leq\beta v,\ (x,v)=1\\
xu\equiv\Delta\mod v\\
(\frac{xu-\Delta}{v},u)=1\end{subarray}}1
= ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 ∑ Δ Q 2 λ v ≤ u ≤ Q , ( u , m ) = 1 x ≤ β v , ( x , v ) = 1 x u ≡ Δ mod v ∑ d ∣ x u − Δ v d ∣ u μ ( d ) \displaystyle=\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q,\ (u,m)=1\\
x\leq\beta v,\ (x,v)=1\\
xu\equiv\Delta\mod v\end{subarray}}\sum\limits_{\begin{subarray}{c}d\mid\frac{xu-\Delta}{v}\\
d\mid u\end{subarray}}\mu(d)
= u = d w ∑ d ∣ Δ ( d , m ) = 1 μ ( d ) ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 ∑ Δ Q 2 λ d v ≤ w ≤ Q d , ( w , m ) = 1 x ≤ β v , ( x , v ) = 1 x w ≡ Δ d mod v 1 . \displaystyle\stackrel{{\scriptstyle u=dw}}{{=}}\sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\ \ \sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda dv}\leq w\leq\frac{Q}{d},\ (w,m)=1\\
x\leq\beta v,\ (x,v)=1\\
xw\equiv\frac{\Delta}{d}\mod v\end{subarray}}1.
(2.1)
To estimate the innermost sum on the right hand side in (2 ),
we need to check that [10 , Proposition A.3] carries over with the additional condition ( q , m ) = 1 (q,m)=1 . Set
𝒩 q , h , m ( I 1 , I 2 ) = { ( x , y ) ∈ I 1 × I 2 : ( x , q ) = 1 , ( y , m ) = 1 , x y ≡ h mod q } . \mathcal{N}_{q,h,m}(I_{1},I_{2})=\{(x,y)\in I_{1}\times I_{2}:(x,q)=1,\ (y,m)=1,\ xy\equiv h\mod q\}.
Proposition 3 .
Assuming ( q , m ) = 1 (q,m)=1 , for any intervals I 1 , I 2 I_{1},I_{2} and any integer h h we have
# 𝒩 q , h , m ( I 1 , I 2 ) = φ ( q ) q 2 ⋅ φ ( m ) m | I 1 | | I 2 | + O δ , m ( q 1 / 2 + δ ( h , q ) 1 / 2 ( 1 + | I 1 | q ) ( 1 + | I 2 | q ) ) . \#\mathcal{N}_{q,h,m}(I_{1},I_{2})=\frac{\varphi(q)}{q^{2}}\cdot\frac{\varphi(m)}{m}\,|I_{1}||I_{2}|+\ O_{\delta,m}\bigg{(}q^{1/2+\delta}(h,q)^{1/2}\Big{(}1+\frac{\lvert I_{1}\rvert}{q}\Big{)}\Big{(}1+\frac{\lvert I_{2}\rvert}{q}\Big{)}\bigg{)}.
Proof.
For x x such that ( x , q ) = 1 (x,q)=1 , let x ¯ \overline{x} denote the unique inverse of x mod q x\mod q . We have that
# 𝒩 q , h , m ( I 1 , I 2 ) \displaystyle\#\mathcal{N}_{q,h,m}(I_{1},I_{2})
= ∑ ( x , y ) ∈ I 1 × I 2 ( x , q ) = ( y , m ) = 1 x y ≡ h mod q 1 = 1 q ∑ ( x , y ) ∈ I 1 × I 2 ( x , q ) = ( y , m ) = 1 ∑ k = 0 q − 1 e ( k ( y − x ¯ h ) q ) . \displaystyle=\sum\limits_{\begin{subarray}{c}(x,y)\in I_{1}\times I_{2}\\
(x,q)=(y,m)=1\\
xy\equiv h\mod q\end{subarray}}1=\frac{1}{q}\sum\limits_{\begin{subarray}{c}(x,y)\in I_{1}\times I_{2}\\
(x,q)=(y,m)=1\end{subarray}}\sum\limits_{k=0}^{q-1}e\bigg{(}\frac{k(y-\overline{x}h)}{q}\bigg{)}.
We distinguish the cases k = 0 k=0 and k > 0 k>0 :
M \displaystyle M
:= 1 q ∑ x ∈ I 1 ( x , q ) = 1 ∑ y ∈ I 2 ( y , m ) = 1 1 , \displaystyle:=\frac{1}{q}\sum\limits_{\begin{subarray}{c}x\in I_{1}\\
(x,q)=1\end{subarray}}\sum\limits_{\begin{subarray}{c}y\in I_{2}\\
(y,m)=1\end{subarray}}1,
E \displaystyle E
:= 1 q ∑ y ∈ I 2 ( y , m ) = 1 ∑ k = 1 q − 1 e ( k y q ) ∑ x ∈ I 1 ( x , q ) = 1 e ( − x ¯ h k q ) . \displaystyle:=\frac{1}{q}\sum\limits_{\begin{subarray}{c}y\in I_{2}\\
(y,m)=1\end{subarray}}\sum\limits_{k=1}^{q-1}e\bigg{(}\frac{ky}{q}\bigg{)}\sum\limits_{\begin{subarray}{c}x\in I_{1}\\
(x,q)=1\end{subarray}}e\bigg{(}-\frac{\overline{x}hk}{q}\bigg{)}.
For the term M M , two successive applications of [10 , Lemma A1] give
M = \displaystyle M=
1 q ∑ x ∈ I 1 ( x , q ) = 1 ( φ ( m ) m | I 2 | + O δ ( m δ ) ) \displaystyle\frac{1}{q}\sum\limits_{\begin{subarray}{c}x\in I_{1}\\
(x,q)=1\end{subarray}}\bigg{(}\frac{\varphi(m)}{m}\,|I_{2}|+O_{\delta}(m^{\delta})\bigg{)}
= \displaystyle=
1 q ⋅ φ ( m ) m | I 2 | ∑ x ∈ I 1 ( x , q ) = 1 1 + O δ ( m δ | I 1 | + 1 q ) \displaystyle\frac{1}{q}\cdot\frac{\varphi(m)}{m}\,|I_{2}|\sum\limits_{\begin{subarray}{c}x\in I_{1}\\
(x,q)=1\end{subarray}}1+O_{\delta}\bigg{(}m^{\delta}\frac{|I_{1}|+1}{q}\bigg{)}
= \displaystyle=
1 q ⋅ φ ( m ) m | I 2 | ( φ ( q ) q | I 1 | + O δ ( q δ ) ) + O δ ( m δ | I 1 | + 1 q ) \displaystyle\frac{1}{q}\cdot\frac{\varphi(m)}{m}\,|I_{2}|\bigg{(}\frac{\varphi(q)}{q}|I_{1}|+O_{\delta}(q^{\delta})\bigg{)}+O_{\delta}\bigg{(}m^{\delta}\frac{|I_{1}|+1}{q}\bigg{)}
= \displaystyle=
φ ( q ) q 2 ⋅ φ ( m ) m | I 1 | | I 2 | + O δ , m ( | I 1 | + | I 2 | + 1 q 1 − δ ) . \displaystyle\frac{\varphi(q)}{q^{2}}\cdot\frac{\varphi(m)}{m}\,|I_{1}||I_{2}|+O_{\delta,m}\bigg{(}\frac{|I_{1}|+|I_{2}|+1}{q^{1-\delta}}\bigg{)}.
Now, following the notation and approach from [10 ] , which makes essential use of the Weil-Salié type estimates derived in [12 , (5)] , we have
E \displaystyle E
= 1 q ∑ y ∈ I 2 ( y , m ) = 1 ∑ k = 1 q − 1 e ( k y q ) S I 1 ( 0 , − h k ; q ) \displaystyle=\frac{1}{q}\sum\limits_{\begin{subarray}{c}y\in I_{2}\\
(y,m)=1\end{subarray}}\sum\limits_{k=1}^{q-1}e\bigg{(}\frac{ky}{q}\bigg{)}S_{I_{1}}(0,-hk;q)
= 1 q ∑ d ∣ m μ ( d ) ∑ k = 1 q − 1 S I 1 ( 0 , − h k ; q ) ∑ y ∈ I 2 d ∣ y e ( k y q ) \displaystyle=\frac{1}{q}\sum\limits_{d\mid m}\mu(d)\sum\limits_{k=1}^{q-1}S_{I_{1}}(0,-hk;q)\sum\limits_{\begin{subarray}{c}y\in I_{2}\\
d\mid y\end{subarray}}e\bigg{(}\frac{ky}{q}\bigg{)}
= y = d ℓ 1 q ∑ d ∣ m μ ( d ) ∑ k = 1 q − 1 S I 1 ( 0 , − h k ; q ) ∑ ℓ ∈ 1 d I 2 e ( k d ℓ q ) . \displaystyle\stackrel{{\scriptstyle y=d\ell}}{{=}}\frac{1}{q}\sum\limits_{d\mid m}\mu(d)\sum\limits_{k=1}^{q-1}S_{I_{1}}(0,-hk;q)\sum\limits_{\ell\in\frac{1}{d}I_{2}}e\bigg{(}\frac{kd\ell}{q}\bigg{)}.
We distinguish the cases q ∣ k d q\mid kd and q ∤ k d q\nmid kd . The former cannot occur because
d ∣ m d\mid m , ( q , m ) = 1 (q,m)=1 and q > k q>k . For the latter, we use [10 , Lemma A2] to estimate S I 1 ( 0 , − h k ; q ) S_{I_{1}}(0,-hk;q) . Here, we do not necessarily have I 1 ⊆ [ 0 , q ) I_{1}\subseteq[0,q) ,
so we get the extra factor in the final formula:
S I 1 ( 0 , − h k ; q ) \displaystyle S_{I_{1}}(0,-hk;q)
≪ ( h k , q ) 1 / 2 q 1 / 2 + δ ( 1 + | I 1 | q ) \displaystyle\ll(hk,q)^{1/2}q^{1/2+\delta}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}
(2.2)
≤ ( h , q ) 1 / 2 ( k , q ) 1 / 2 q 1 / 2 + δ ( 1 + | I 1 | q ) . \displaystyle\leq(h,q)^{1/2}(k,q)^{1/2}q^{1/2+\delta}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}.
Since
S [ ℓ q , ( ℓ + 1 ) q ) ( 0 , − h k ; q ) S_{[\ell q,(\ell+1)q)}(0,-hk;q) coincides with the Ramanujan sum
c q ( − h k ) = ∑ d ∣ ( h k , q ) μ ( q d ) d ≪ δ ( h k , q ) 1 + δ c_{q}(-hk)=\sum\limits_{d\mid(hk,q)}\mu(\frac{q}{d})d\ll_{\delta}(hk,q)^{1+\delta} , the first estimate in
(2.2 ) can be improved to
S I 1 ( 0 , − h k ; q ) ≪ δ ( h k , q ) 1 / 2 q 1 / 2 + δ + ( h k , q ) 1 + δ | I 1 | q . S_{I_{1}}(0,-hk;q)\ll_{\delta}(hk,q)^{1/2}q^{1/2+\delta}+(hk,q)^{1+\delta}\frac{|I_{1}|}{q}.
Combine (2.2 ) with the geometric sum and the inequality | sin π x | ≥ 2 ‖ x ‖ |\sin\pi x|\geq 2\|x\| to get
E \displaystyle E
= 1 q ∑ d ∣ m μ ( d ) ∑ k = 1 q ∤ k d q − 1 S I 1 ( 0 , − h k ; q ) ∑ ℓ ∈ 1 d I 2 e ( k d ℓ q ) \displaystyle=\frac{1}{q}\sum\limits_{d\mid m}\mu(d)\sum\limits_{\begin{subarray}{c}k=1\\
q\nmid kd\end{subarray}}^{q-1}S_{I_{1}}(0,-hk;q)\sum\limits_{\ell\in\frac{1}{d}I_{2}}e\bigg{(}\frac{kd\ell}{q}\bigg{)}
≪ ( h , q ) 1 / 2 q 1 / 2 + δ q ( 1 + | I 1 | q ) ∑ d ∣ m ∑ k = 1 q ∤ k d q − 1 ( k , q ) 1 / 2 ‖ k d q ‖ \displaystyle\ll\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}\sum\limits_{\begin{subarray}{c}k=1\\
q\nmid kd\end{subarray}}^{q-1}\frac{(k,q)^{1/2}}{\big{\|}\frac{kd}{q}\big{\|}}
≤ ( h , q ) 1 / 2 q 1 / 2 + δ q ( 1 + | I 1 | q ) ∑ d ∣ m ∑ k = 1 q ∤ k d q − 1 ( k d , q ) 1 / 2 ‖ k d q ‖ . \displaystyle\leq\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}\sum\limits_{\begin{subarray}{c}k=1\\
q\nmid kd\end{subarray}}^{q-1}\frac{(kd,q)^{1/2}}{\big{\|}\frac{kd}{q}\big{\|}}.
Since
{ k d : 1 ≤ k < q , q ∤ k d } ⊆ { n = c q + r : 1 ≤ r < q , 0 ≤ c < d } , \{kd:1\leq k<q,q\nmid kd\}\subseteq\{n=cq+r:1\leq r<q,0\leq c<d\},
we further get
E \displaystyle E
≪ ( h , q ) 1 / 2 + δ q 1 / 2 q ( 1 + | I 1 | q ) ∑ d ∣ m ∑ c = 0 d − 1 ∑ r = 1 q − 1 ( c q + r , q ) 1 / 2 ‖ c + r q ‖ \displaystyle\ll\frac{(h,q)^{1/2+\delta}q^{1/2}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}\sum\limits_{c=0}^{d-1}\sum\limits_{r=1}^{q-1}\frac{(cq+r,q)^{1/2}}{\big{\|}c+\frac{r}{q}\big{\|}}
= ( h , q ) 1 / 2 q 1 / 2 + δ q ( 1 + | I 1 | q ) ∑ d ∣ m d ∑ r = 1 q − 1 ( r , q ) 1 / 2 ‖ r q ‖ \displaystyle=\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}d\sum\limits_{r=1}^{q-1}\frac{(r,q)^{1/2}}{\big{\|}\frac{r}{q}\big{\|}}
≤ ℓ = ( r , q ) r = ℓ s ( h , q ) 1 / 2 q 1 / 2 + δ q ( 1 + | I 1 | q ) ∑ d ∣ m d ∑ ℓ ∣ q ∑ s ≤ q 2 ℓ 2 ℓ 1 / 2 ℓ s q \displaystyle\stackrel{{\scriptstyle\begin{subarray}{c}\ell=(r,q)\\
r=\ell s\end{subarray}}}{{\leq}}\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}d\sum\limits_{\ell\mid q}\sum\limits_{s\leq\frac{q}{2\ell}}\frac{2\ell^{1/2}}{\frac{\ell s}{q}}
≪ m ( h , q ) 1 / 2 q 1 / 2 + 3 δ ( 1 + | I 1 | q ) . \displaystyle\ll_{m}(h,q)^{1/2}q^{1/2+3\delta}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}.
Thus,
under the correspondence v ↔ q , x ↔ x , w ↔ y , Δ d ↔ h v\leftrightarrow q,x\leftrightarrow x,w\leftrightarrow y,\frac{\Delta}{d}\leftrightarrow h , relation (2 ) becomes
# S ~ Q , m ; β ( Δ , λ ) = ∑ d ∣ Δ ( d , m ) = 1 μ ( d ) ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 ( 𝒩 v , Δ d , m ( [ 0 , β v ] , [ 0 , Q d ] ) − 𝒩 v , Δ d , m ( [ 0 , β v ] , [ 0 , Δ Q 2 λ d v ] ) ) \displaystyle\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\bigg{(}\mathcal{N}_{v,\frac{\Delta}{d},m}\Big{(}[0,\beta v],\big{[}0,\tfrac{Q}{d}\big{]}\Big{)}-\mathcal{N}_{v,\frac{\Delta}{d},m}\Big{(}[0,\beta v],\big{[}0,\tfrac{\Delta Q^{2}}{\lambda dv}\big{]}\Big{)}\bigg{)}
= ∑ d ∣ Δ ( d , m ) = 1 μ ( d ) ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 ( φ ( v ) v 2 ⋅ φ ( m ) m β v ( Q d − Δ Q 2 λ v d ) + O δ , m , Δ ( v 1 / 2 + δ ( Q v + Q 2 λ v 2 ) ) ) \displaystyle\qquad=\sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\Bigg{(}\frac{\varphi(v)}{v^{2}}\cdot\frac{\varphi(m)}{m}\,\beta v\bigg{(}\frac{Q}{d}-\frac{\Delta Q^{2}}{\lambda vd}\bigg{)}+O_{\delta,m,\Delta}\bigg{(}v^{1/2+\delta}\Big{(}\frac{Q}{v}+\frac{Q^{2}}{\lambda v^{2}}\Big{)}\bigg{)}\Bigg{)}
= β Q φ ( m ) m ∑ d ∣ Δ ( d , m ) = 1 μ ( d ) d ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 φ ( v ) v ( 1 − Δ Q λ v ) + O δ , m , Δ ( Q 3 / 2 + δ ) . \displaystyle\qquad=\beta Q\,\frac{\varphi(m)}{m}\sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\frac{\mu(d)}{d}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\frac{\varphi(v)}{v}\bigg{(}1-\frac{\Delta Q}{\lambda v}\bigg{)}\ +\ O_{\delta,m,\Delta}(Q^{3/2+\delta}).
Note that there is no dependence of λ \lambda in the error term because the inequality γ ′ − γ ≥ 1 Q 2 \gamma^{\prime}-\gamma\geq\frac{1}{Q^{2}} ,
∀ γ , γ ′ ∈ 𝔉 Q \forall\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q} , γ < γ ′ \gamma<\gamma^{\prime} allows for λ ≥ 1 \lambda\geq 1 .
A simple calculation shows that the function
K m ( n ) = ∑ d ∣ n ( d , m ) = 1 μ ( d ) d K_{m}(n)=\sum\limits_{\begin{subarray}{c}d\mid n\\
(d,m)=1\end{subarray}}\frac{\mu(d)}{d}
is multiplicative for every m m , and that at prime powers we have
K m ( p ℓ ) = ∑ d ∣ p ℓ ( d , m ) = 1 μ ( d ) d = { 1 , if p ∣ m 1 − 1 p = φ ( p ℓ ) p ℓ , if p ∤ m . K_{m}(p^{\ell})=\sum\limits_{\begin{subarray}{c}d\mid p^{\ell}\\
(d,m)=1\end{subarray}}\frac{\mu(d)}{d}=\begin{cases}1,&\text{ if }p\mid m\\
1-\frac{1}{p}=\frac{\varphi(p^{\ell})}{p^{\ell}},&\text{ if }p\nmid m\end{cases}.
Therefore
K m ( Δ ) = ∏ p ∣ Δ p ∤ m ( 1 − 1 p ) = ∏ p ∣ Δ ( 1 − 1 p ) ∏ p ∣ Δ p | m ( 1 − 1 p ) = ∏ p ∣ Δ ( 1 − 1 p ) ∏ p ∣ ( Δ , m ) ( 1 − 1 p ) = φ ( Δ ) Δ φ ( ( Δ , m ) ) ( Δ , m ) , K_{m}(\Delta)=\prod_{\begin{subarray}{c}p\mid\Delta\\
p\nmid m\end{subarray}}\bigg{(}1-\frac{1}{p}\bigg{)}=\frac{\prod\limits_{\begin{subarray}{c}p\mid\Delta\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}{\prod\limits_{\begin{subarray}{c}p\mid\Delta\\
p|m\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}=\frac{\prod\limits_{\begin{subarray}{c}p\mid\Delta\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}{\prod\limits_{\begin{subarray}{c}p\mid(\Delta,m)\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}=\frac{\frac{\varphi(\Delta)}{\Delta}}{\frac{\varphi\big{(}(\Delta,m)\big{)}}{(\Delta,m)}},
and consequently
# S ~ Q , m ; β ( Δ , λ ) = β Q φ ( m ) m ⋅ φ ( Δ ) Δ ⋅ ( Δ , m ) φ ( ( Δ , m ) ) ∑ Δ Q λ ≤ v ≤ Q ( v , m ) = 1 φ ( v ) v ( 1 − Δ Q λ v ) + O δ , m , Δ ( Q 3 / 2 + δ ) . \#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\beta Q\,\frac{\varphi(m)}{m}\cdot\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
(v,m)=1\end{subarray}}\frac{\varphi(v)}{v}\bigg{(}1-\frac{\Delta Q}{\lambda v}\bigg{)}+\ O_{\delta,m,\Delta}(Q^{3/2+\delta}).
Using [6 , Lemma 2.1] twice, we get
# S ~ Q , m ; β ( Δ , λ ) = β C m Q 2 φ ( m ) m ⋅ φ ( Δ ) Δ ⋅ ( Δ , m ) φ ( ( Δ , m ) ) ( 1 − Δ λ − Δ λ log λ Δ ) + O δ , m , Δ ( Q 3 / 2 + δ ) . \#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\beta C_{m}Q^{2}\,\frac{\varphi(m)}{m}\cdot\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}1-\frac{\Delta}{\lambda}-\frac{\Delta}{\lambda}\log\frac{\lambda}{\Delta}\bigg{)}+\ O_{\delta,m,\Delta}(Q^{3/2+\delta}).
Thus, for every K ≥ 1 K\geq 1 we have, uniformly in λ ∈ [ 1 , K ] \lambda\in[1,K] ,
H Q , m ; β ( λ ) = β C m Q 2 φ ( m ) m ∑ 1 ≤ Δ ≤ λ φ ( Δ ) Δ ⋅ ( Δ , m ) φ ( ( Δ , m ) ) ( 1 − Δ λ − Δ λ log λ Δ ) + O δ , m , K ( Q 3 / 2 + δ ) . H_{Q,m;\beta}(\lambda)=\beta C_{m}Q^{2}\ \frac{\varphi(m)}{m}\sum\limits_{1\leq\Delta\leq\lambda}\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}1-\frac{\Delta}{\lambda}-\frac{\Delta}{\lambda}\log\frac{\lambda}{\Delta}\bigg{)}+\ O_{\delta,m,K}(Q^{3/2+\delta}).
This leads in turn to
G ( m ; α , β ) ( λ ) = 2 φ ( m ) m ∑ 1 ≤ Δ ≤ 2 λ C m φ ( Δ ) Δ ( 1 − Δ C m 2 λ − Δ C m 2 λ log 2 λ Δ C m ) . G_{(m;\alpha,\beta)}(\lambda)=2\,\frac{\varphi(m)}{m}\sum\limits_{1\leq\Delta\leq\frac{2\lambda}{C_{m}}}\frac{\varphi(\Delta)}{\Delta}\bigg{(}1-\frac{\Delta C_{m}}{2\lambda}-\frac{\Delta C_{m}}{2\lambda}\log\frac{2\lambda}{\Delta C_{m}}\bigg{)}.
(2.3)
Finally, Theorem 1 follows by differentiating in (2.3 ).
For m = 1 m=1 , α = 0 \alpha=0 , β = 1 \beta=1 , we retrieve Theorem 1 in [9 ] .
For m = 2 m=2 we get
g ( 2 ) ( λ ) = 1 3 ζ ( 2 ) λ 2 ∑ 1 ≤ Δ ≤ 3 ζ ( 2 ) λ φ ( Δ ) ( Δ , 2 ) log 3 ζ ( 2 ) λ Δ . g_{(2)}(\lambda)=\frac{1}{3\zeta(2)\lambda^{2}}\sum\limits_{1\leq\Delta\leq 3\zeta(2)\lambda}\varphi(\Delta)(\Delta,2)\log\frac{3\zeta(2)\lambda}{\Delta}.
In the remaining part of this section we prove equality (1.3 ). Consider the Dirichlet series
D m ( s ) := ∑ Δ = 1 ∞ K m ( Δ ) Δ s − 1 = ∏ p ( 1 + K m ( p ) p s − 1 + K m ( p 2 ) p 2 s − 2 + ⋯ ) if Re s > 2 . D_{m}(s):=\sum\limits_{\Delta=1}^{\infty}\frac{K_{m}(\Delta)}{\Delta^{s-1}}=\prod\limits_{p}\bigg{(}1+\frac{K_{m}(p)}{p^{s-1}}+\frac{K_{m}(p^{2})}{p^{2s-2}}+\cdots\bigg{)}\quad\text{if }\operatorname{Re}s>2.
Take ζ m ( s ) := ∏ p ∤ m ( 1 − 1 p s ) − 1 \displaystyle\zeta_{m}(s):=\prod\limits_{p\nmid m}\bigg{(}1-\frac{1}{p^{s}}\bigg{)}^{-1} , Re s > 1 \operatorname{Re}s>1 . We have
ζ m ( s − 1 ) ζ m ( s ) = ∏ p ∤ m 1 − 1 p s 1 − 1 p s − 1 = ∏ p ∤ m p s − 1 p s − p \frac{\zeta_{m}(s-1)}{\zeta_{m}(s)}=\prod\limits_{p\nmid m}\frac{1-\frac{1}{p^{s}}}{1-\frac{1}{p^{s-1}}}=\prod\limits_{p\nmid m}\frac{p^{s}-1}{p^{s}-p}
and
∑ ℓ = 0 ∞ K m ( p ℓ ) p ℓ ( s − 1 ) = { 1 + ( 1 − 1 p ) 1 p s − 1 ⋅ 1 1 − 1 p s − 1 = 1 + p − 1 p s − p = p s − 1 p s − p if p ∤ m ( 1 − 1 p s − 1 ) − 1 if p ∣ m , \sum\limits_{\ell=0}^{\infty}\frac{K_{m}(p^{\ell})}{p^{\ell(s-1)}}=\begin{cases}1+\big{(}1-\frac{1}{p}\big{)}\frac{1}{p^{s-1}}\cdot\frac{1}{1-\frac{1}{p^{s-1}}}=1+\frac{p-1}{p^{s}-p}=\frac{p^{s}-1}{p^{s}-p}&\text{if }p\nmid m\\
\big{(}1-\frac{1}{p^{s-1}}\big{)}^{-1}&\text{if }p\mid m\end{cases},
leading to
D m ( s ) \displaystyle D_{m}(s)
= ζ m ( s − 1 ) ζ m ( s ) ∏ p ∣ m ( 1 − 1 p s − 1 ) − 1 = ζ ( s − 1 ) ζ ( s ) ∏ p ∤ m p s − p p s − 1 ∏ p ∣ m p s − 1 p s − 1 − 1 \displaystyle=\frac{\zeta_{m}(s-1)}{\zeta_{m}(s)}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{s-1}}\bigg{)}^{-1}=\frac{\zeta(s-1)}{\zeta(s)}\prod\limits_{p\nmid m}\frac{p^{s}-p}{p^{s}-1}\prod\limits_{p\mid m}\frac{p^{s-1}}{p^{s-1}-1}
= ζ ( s − 1 ) ζ ( s ) c m ( s ) , where c m ( s ) := ∏ p ∣ m 1 1 − 1 p s . \displaystyle=\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s),\quad\text{where }c_{m}(s):=\prod\limits_{p\mid m}\frac{1}{1-\frac{1}{p^{s}}}.
Next we follow closely the final part of [9 ] . By Perron’s formula [9 , (4.14)] we infer
∑ 1 ≤ Δ ≤ x Δ K m ( Δ ) log x Δ \displaystyle\sum\limits_{1\leq\Delta\leq x}\Delta K_{m}(\Delta)\log\frac{x}{\Delta}
= 1 2 π i ∫ σ 0 − i ∞ σ 0 + i ∞ D m ( s ) x s s 2 𝑑 s \displaystyle=\frac{1}{2\pi i}\int\limits_{\sigma_{0}-i\infty}^{\sigma_{0}+i\infty}D_{m}(s)\,\frac{x^{s}}{s^{2}}\,ds
= 1 2 π i ∫ σ 0 − i ∞ σ 0 + i ∞ ζ ( s − 1 ) ζ ( s ) c m ( s ) x s s 2 𝑑 s ( σ 0 > 2 ) . \displaystyle=\frac{1}{2\pi i}\int\limits_{\sigma_{0}-i\infty}^{\sigma_{0}+i\infty}\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{s^{2}}\,ds\qquad(\sigma_{0}>2).
Moving the contour at Re s = 1 \operatorname{Re}s=1 and employing the notation from [9 ] we get
ζ ( i t ) ζ ( 1 + i t ) ∏ p ∣ m ( 1 − 1 p i t ) \displaystyle\frac{\zeta(it)}{\zeta(1+it)}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{it}}\bigg{)}
= χ ( i t ) ζ ( 1 − i t ) ζ ( 1 + i t ) ∏ p ∣ m ( 1 − 1 p i t ) , \displaystyle=\chi(it)\,\frac{\zeta(1-it)}{\zeta(1+it)}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{it}}\bigg{)},
ζ ( 1 − i t ) \displaystyle\zeta(1-it)
= ζ ( 1 + i t ) ¯ , \displaystyle=\overline{\zeta(1+it)},
Res s = 2 ζ ( s − 1 ) ζ ( s ) c m ( s ) x s s 2 \displaystyle\underset{s=2}{\operatorname{Res}}\,\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{s^{2}}
= lim s → 2 ( s − 2 ) ζ ( s − 1 ) ζ ( s ) c m ( s ) x s 4 \displaystyle=\lim\limits_{s\rightarrow 2}\frac{(s-2)\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{4}
= c m ( 2 ) ζ ( 2 ) ⋅ x 2 4 ( s = 2 is a simple pole) . \displaystyle=\frac{c_{m}(2)}{\zeta(2)}\cdot\frac{x^{2}}{4}\quad\text{($s=2$ is a simple pole)}.
Estimating the error as in [9 ] we find
∑ 1 ≤ Δ ≤ x Δ K m ( Δ ) log x Δ \displaystyle\sum\limits_{1\leq\Delta\leq x}\Delta K_{m}(\Delta)\log\frac{x}{\Delta}
= Res s = 2 ζ ( s − 1 ) ζ ( s ) c m ( s ) x s s 2 + O m ( x ) \displaystyle=\underset{s=2}{\operatorname{Res}}\,\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{s^{2}}+O_{m}(x)
= c m ( 2 ) ζ ( 2 ) ⋅ x 2 4 + O m ( x ) . \displaystyle=\frac{c_{m}(2)}{\zeta(2)}\cdot\frac{x^{2}}{4}+O_{m}(x).
Setting μ := 2 λ C m \mu:=\frac{2\lambda}{C_{m}} we get λ = C m μ 2 \lambda=\frac{C_{m}\mu}{2} and (as λ → ∞ \lambda\rightarrow\infty )
g ( m ) ( λ ) \displaystyle g_{(m)}(\lambda)
= g ( m ) ( 1 2 C m μ ) = φ ( m ) m C m 4 C m 2 μ 2 ∑ 1 ≤ Δ ≤ μ Δ K m ( Δ ) log μ Δ \displaystyle=g_{(m)}(\tfrac{1}{2}C_{m}\mu)=\frac{\varphi(m)}{m}\,C_{m}\,\frac{4}{C_{m}^{2}\mu^{2}}\sum\limits_{1\leq\Delta\leq\mu}\Delta K_{m}(\Delta)\log\frac{\mu}{\Delta}
= 4 φ ( m ) m C m μ 2 ( ∏ p ∣ m ( 1 − 1 p 2 ) − 1 μ 2 4 ζ ( 2 ) + O m ( μ ) ) \displaystyle=\frac{4\varphi(m)}{mC_{m}\mu^{2}}\left(\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}\frac{\mu^{2}}{4\zeta(2)}+O_{m}(\mu)\right)
= 1 ζ ( 2 ) ∏ p ∤ m ( 1 − 1 p 2 ) − 1 ∏ p ∣ m ( 1 − 1 p 2 ) − 1 + O m ( μ − 1 ) \displaystyle=\frac{1}{\zeta(2)}\prod\limits_{p\nmid m}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}+O_{m}(\mu^{-1})
= 1 + O m ( λ − 1 ) . \displaystyle=1+O_{m}(\lambda^{-1}).
3. The pair correlation of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)}
We will employ the following estimate ([5 , Lemma 3.3] ):
Lemma 4 .
Assuming ( b , m ) = 1 (b,m)=1 and V ∈ C 1 [ 0 , Q ] V\in C^{1}[0,Q] , we have
∑ q = 1 q ≡ b ( mod m ) Q φ ( q ) q V ( q ) = C m φ ( m ) ∫ 0 Q V + O ( ( ‖ V ‖ ∞ + T 0 N V ) log Q ) . \sum\limits_{\begin{subarray}{c}q=1\\
q\equiv b\pmod{m}\end{subarray}}^{Q}\frac{\varphi(q)}{q}\,V(q)=\frac{C_{m}}{\varphi(m)}\int_{0}^{Q}V+O\Big{(}(\|V\|_{\infty}+T_{0}^{N}V)\log Q\Big{)}.
In particular this gives (1.4 ).
Given λ > 0 \lambda>0 , we are interested in estimating the following three quantities as Q → ∞ Q\rightarrow\infty :
S Q ; m , b , Δ ( λ ) \displaystyle S_{Q;m,b,\Delta}(\lambda)
:= # { ( γ , γ ′ ) : γ , γ ′ ∈ 𝔉 Q ( m , b ) , γ ′ − γ ≤ λ Q 2 γ = a q < γ ′ = a ′ q ′ , a ′ q − a q ′ = Δ } , \displaystyle:=\#\left\{(\gamma,\gamma^{\prime}):\begin{matrix}\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m,b)},\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}}\\
\gamma=\frac{a}{q}<\gamma^{\prime}=\frac{a^{\prime}}{q^{\prime}},\ a^{\prime}q-aq^{\prime}=\Delta\end{matrix}\right\},
H Q ; m , b ( λ ) \displaystyle H_{Q;m,b}(\lambda)
:= # { ( γ , γ ′ ) : γ , γ ′ ∈ 𝔉 Q ( m , b ) , 0 < γ ′ − γ ≤ λ Q 2 } = ∑ 1 ≤ Δ ≤ λ S Q ; m , b , Δ ( λ ) , \displaystyle:=\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m,b)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}}\bigg{\}}=\sum\limits_{1\leq\Delta\leq\lambda}S_{Q;m,b,\Delta}(\lambda),
G Q ; m , b ( λ ) \displaystyle G_{Q;m,b}(\lambda)
:= 1 N Q , ( m , b ) # { ( γ , γ ′ ) : γ , γ ′ ∈ 𝔉 Q ( m , b ) , 0 < γ ′ − γ ≤ λ N Q , ( m , b ) } . \displaystyle:=\frac{1}{N_{Q,(m,b)}}\,\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m,b)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{N_{Q,(m,b)}}\bigg{\}}.
As in the previous section we can write
S Q ; m , b , Δ ( λ ) = ∑ d ∣ Δ μ ( d ) ∑ Δ Q λ ≤ v ≤ Q v ≡ b ( mod m ) ∑ Δ Q 2 λ v ≤ u ≤ Q u ≡ b ( mod m ) , d ∣ u x ≤ v , ( x , v ) = 1 x u ≡ Δ ( mod v ) 1 . S_{Q;m,b,\Delta}(\lambda)=\sum\limits_{d\mid\Delta}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
v\equiv b\pmod{m}\end{subarray}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q\\
u\equiv b\pmod{m},\,d\mid u\\
x\leq v,\ (x,v)=1\\
xu\equiv\Delta\pmod{v}\end{subarray}}1.
(3.1)
We write u = d w u=dw and observe that the assumption ( b , m ) = 1 (b,m)=1 implies ( d , m ) = ( v , m ) = 1 (d,m)=(v,m)=1 .
Hence we get
S Q ; m , b , Δ ( λ ) = ∑ d ∣ Δ ( d , m ) = 1 μ ( d ) ∑ Δ Q λ ≤ v ≤ Q v ≡ b ( mod m ) T Q ; m , b , Δ ( v , λ ) , S_{Q;m,b,\Delta}(\lambda)=\sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
v\equiv b\pmod{m}\end{subarray}}T_{Q;m,b,\Delta}(v,\lambda),
(3.2)
where
T Q ; m , b , Δ ( v , λ ) := ∑ Δ Q 2 λ d v ≤ w ≤ Q d d w ≡ b ( mod m ) x ≤ v , ( x , v ) = 1 x w ≡ Δ d ( mod v ) 1 . T_{Q;m,b,\Delta}(v,\lambda):=\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda dv}\leq w\leq\frac{Q}{d}\\
dw\equiv b\pmod{m}\\
x\leq v,\ (x,v)=1\\
xw\equiv\frac{\Delta}{d}\pmod{v}\end{subarray}}1.
(3.3)
We write
T Q ; m , b , Δ ( v , λ ) \displaystyle T_{Q;m,b,\Delta}(v,\lambda)
= ∑ x ∈ [ 0 , v ] , ( x , v ) = 1 y ∈ [ Δ Q 2 λ d v , Q d ] , y ≡ d ¯ ¯ b ( mod m ) 1 v ∑ k ( mod v ) e ( k ( y − Δ d x ¯ ) v ) \displaystyle=\sum\limits_{\begin{subarray}{c}x\in[0,v],\ (x,v)=1\\
y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]},\ y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}\frac{1}{v}\sum\limits_{k\pmod{v}}e\bigg{(}\frac{k(y-\frac{\Delta}{d}\,\overline{x})}{v}\bigg{)}
(3.4)
= M Q ; m , b , Δ ( v , λ ) + E Q ; m , b , Δ ( v , λ ) , \displaystyle=M_{Q;m,b,\Delta}(v,\lambda)+E_{Q;m,b,\Delta}(v,\lambda),
where d ¯ ¯ \overline{\overline{d}} is the multiplicative inverse of d mod m d\mod{m} and x ¯ \overline{x} the multiplicative inverse of x mod v x\mod{v} ,
M Q ; m , b , Δ ( v , λ ) \displaystyle M_{Q;m,b,\Delta}(v,\lambda)
:= 1 v ∑ x ∈ [ 0 , v ] ( x , v ) = 1 1 ∑ y ∈ [ Δ Q 2 λ d v , Q d ] y ≡ d ¯ ¯ b ( mod m ) 1 \displaystyle:=\frac{1}{v}\sum\limits_{\begin{subarray}{c}x\in[0,v]\\
(x,v)=1\end{subarray}}1\sum\limits_{\begin{subarray}{c}y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]}\\
y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}1
(3.5)
= 1 v ( φ ( v ) v v + O δ ( v δ ) ) ( 1 m ( Q d − Δ Q 2 λ d v ) + O ( 1 ) ) , \displaystyle=\frac{1}{v}\bigg{(}\frac{\varphi(v)}{v}\,v+O_{\delta}(v^{\delta})\bigg{)}\bigg{(}\frac{1}{m}\Big{(}\frac{Q}{d}-\frac{\Delta Q^{2}}{\lambda dv}\Big{)}+O(1)\bigg{)},
E Q ; m , b , Δ ( v , λ ) := 1 v ∑ k = 1 v − 1 S [ 1 , v ] ( 0 , − Δ v k ; v ) ∑ y ∈ [ Δ Q 2 λ d v , Q d ] y ≡ d ¯ ¯ b ( mod m ) e ( k y v ) . E_{Q;m,b,\Delta}(v,\lambda):=\frac{1}{v}\sum\limits_{k=1}^{v-1}S_{[1,v]}\bigg{(}0,-\frac{\Delta}{v}\,k;v\bigg{)}\sum\limits_{\begin{subarray}{c}y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]}\\
y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}e\bigg{(}\frac{ky}{v}\bigg{)}.
(3.6)
We employ the bound
S [ 1 , v ] ( 0 , − Δ d k ; v ) ≪ δ ( Δ d k , v ) 1 / 2 v 1 / 2 + δ ≤ Δ d ( k , v ) 1 / 2 v 1 / 2 + δ , S_{[1,v]}\bigg{(}0,-\frac{\Delta}{d}\,k;v\bigg{)}\ll_{\delta}\bigg{(}\frac{\Delta}{d}\,k,v\bigg{)}^{1/2}v^{1/2+\delta}\leq\frac{\Delta}{d}\,(k,v)^{1/2}v^{1/2+\delta},
(3.7)
( v , m ) = 1 (v,m)=1 , and the geometric series with ratio e ( k m v ) e(\frac{km}{v}) to gather
E Q ; m , b , Δ ( v , λ ) ≪ δ , Δ v − 1 / 2 + δ ∑ k = 1 v − 1 ( k , v ) 1 / 2 | ∑ y ∈ [ Δ Q 2 λ d v , Q d ] y ≡ d ¯ ¯ b ( mod m ) e ( k y v ) | ≪ v − 1 / 2 + δ ∑ k = 1 v − 1 ( k , v ) 1 / 2 ‖ k m v ‖ . E_{Q;m,b,\Delta}(v,\lambda)\ll_{\delta,\Delta}v^{-1/2+\delta}\sum\limits_{k=1}^{v-1}(k,v)^{1/2}\Bigg{|}\sum\limits_{\begin{subarray}{c}y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]}\\
y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}e\bigg{(}\frac{ky}{v}\bigg{)}\Bigg{|}\ll v^{-1/2+\delta}\sum\limits_{k=1}^{v-1}\frac{(k,v)^{1/2}}{\big{\|}\frac{km}{v}\big{\|}}.
Using { k m : 1 ≤ k ≤ v − 1 } ⊆ { ℓ : 1 ≤ ℓ ≤ m v , v ∤ ℓ } \{km:1\leq k\leq v-1\}\subseteq\{\ell:1\leq\ell\leq mv,v\nmid\ell\} and
( k , v ) 1 / 2 ≤ ( k m , v ) 1 / 2 (k,v)^{1/2}\leq(km,v)^{1/2}
this yields
E Q ; m , b , Δ ( v , λ ) \displaystyle E_{Q;m,b,\Delta}(v,\lambda)
≪ δ , Δ v − 1 / 2 + δ ∑ ℓ = 1 v ∤ ℓ m v ( ℓ , v ) 1 / 2 ‖ ℓ v ‖ = m v − 1 / 2 + δ ∑ ℓ = 1 v − 1 ( ℓ , v ) 1 / 2 ‖ ℓ v ‖ \displaystyle\ll_{\delta,\Delta}v^{-1/2+\delta}\sum\limits_{\begin{subarray}{c}\ell=1\\
v\nmid\ell\end{subarray}}^{mv}\frac{(\ell,v)^{1/2}}{\big{\|}\frac{\ell}{v}\big{\|}}=mv^{-1/2+\delta}\sum\limits_{\ell=1}^{v-1}\frac{(\ell,v)^{1/2}}{\big{\|}\frac{\ell}{v}\big{\|}}
(3.8)
≤ 2 m v − 1 / 2 + δ ∑ 1 ≤ ℓ < v 2 ( ℓ , v ) 1 / 2 ℓ v ≪ δ , Δ , m v 1 / 2 + 3 δ . \displaystyle\leq 2mv^{-1/2+\delta}\sum\limits_{1\leq\ell<\frac{v}{2}}\frac{(\ell,v)^{1/2}}{\frac{\ell}{v}}\ll_{\delta,\Delta,m}v^{1/2+3\delta}.
From (3.4 ), (3.5 ) and (3.8 ) we now infer
S Q ; m , b , Δ ( λ ) = Q m ∑ d ∣ Δ ( d , m ) = 1 μ ( d ) d ( ∑ Δ Q λ ≤ v ≤ Q v ≡ b ( mod m ) φ ( v ) v − Δ Q λ ∑ Δ Q λ ≤ v ≤ Q v ≡ b ( mod m ) φ ( v ) v 2 ) + O δ , m , Δ ( Q 3 / 2 + δ ) . S_{Q;m,b,\Delta}(\lambda)=\frac{Q}{m}\sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\frac{\mu(d)}{d}\Bigg{(}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
v\equiv b\pmod{m}\end{subarray}}\frac{\varphi(v)}{v}-\frac{\Delta Q}{\lambda}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\
v\equiv b\pmod{m}\end{subarray}}\frac{\varphi(v)}{v^{2}}\Bigg{)}+O_{\delta,m,\Delta}(Q^{3/2+\delta}).
Next, an application of Lemma 4 and the equality
∑ d ∣ Δ ( d , m ) = 1 μ ( d ) d = φ ( Δ ) Δ ⋅ ( Δ , m ) φ ( ( Δ , m ) ) \sum\limits_{\begin{subarray}{c}d\mid\Delta\\
(d,m)=1\end{subarray}}\frac{\mu(d)}{d}=\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi((\Delta,m))}
lead to
S Q ; m , b , Δ ( λ ) = C m Q 2 m φ ( m ) ⋅ φ ( Δ ) Δ ⋅ ( Δ , m ) φ ( ( Δ , m ) ) ( 1 − Δ λ − Δ λ log λ Δ ) + O δ , m , Δ ( Q 3 / 2 + δ ) , S_{Q;m,b,\Delta}(\lambda)=\frac{C_{m}Q^{2}}{m\varphi(m)}\cdot\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}1-\frac{\Delta}{\lambda}-\frac{\Delta}{\lambda}\,\log\frac{\lambda}{\Delta}\bigg{)}+O_{\delta,m,\Delta}(Q^{3/2+\delta}),
(3.9)
and so we get, for every K ≥ 1 K\geq 1 and uniformly in λ ∈ [ 1 , K ] \lambda\in[1,K] ,
H Q ; m , b ( λ ) = C m Q 2 m φ ( m ) ∑ 1 ≤ Δ < λ φ ( Δ ) ( Δ , m ) φ ( ( Δ , m ) ) ( 1 Δ − 1 λ − 1 λ log λ Δ ) + O δ , m , K ( Q 3 / 2 + δ ) . H_{Q;m,b}(\lambda)=\frac{C_{m}Q^{2}}{m\varphi(m)}\sum\limits_{1\leq\Delta<\lambda}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}\frac{1}{\Delta}-\frac{1}{\lambda}-\frac{1}{\lambda}\,\log\frac{\lambda}{\Delta}\bigg{)}+O_{\delta,m,K}(Q^{3/2+\delta}).
(3.10)
Estimates (3.10 ), (1.4 ), and the definitions of G Q ; m , b G_{Q;m,b} and H Q ; m , b H_{Q;m,b} now yield
G Q ; m , b ( λ ) = 1 N Q , ( m , b ) H Q ; m , b ( Q 2 N Q ; ( m , b ) λ ) = G ( m ) ( λ ) + O δ , m ( Q − 1 / 2 + δ ) , G_{Q;m,b}(\lambda)=\frac{1}{N_{Q,(m,b)}}\,H_{Q;m,b}\bigg{(}\frac{Q^{2}}{N_{Q;(m,b)}}\,\lambda\bigg{)}=G_{(m)}(\lambda)+O_{\delta,m}(Q^{-1/2+\delta}),
(3.11)
where
G ( m ) ( λ ) = 2 m ∑ 1 ≤ Δ ≤ K m λ φ ( Δ ) ( Δ , m ) φ ( ( Δ , m ) ) ( 1 Δ − 1 K m λ − 1 K m λ log K m λ Δ ) , G_{(m)}(\lambda)=\frac{2}{m}\sum\limits_{1\leq\Delta\leq K_{m}\lambda}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}\frac{1}{\Delta}-\frac{1}{K_{m}\lambda}-\frac{1}{K_{m}\lambda}\,\log\frac{K_{m}\lambda}{\Delta}\bigg{)},
with K m := 2 φ ( m ) C m K_{m}:=\frac{2\varphi(m)}{C_{m}} .
This shows that the pair correlation function of 𝔉 Q ( m , b ) \mathfrak{F}_{Q}^{(m,b)} exists and is given by
g ~ ( m ) ( λ ) = G ( m ) ′ ( λ ) = C m m φ ( m ) ⋅ 1 λ 2 ∑ 1 ≤ Δ ≤ K m λ φ ( Δ ) ( Δ , m ) φ ( ( Δ , m ) ) log K m λ Δ . \widetilde{g}_{(m)}(\lambda)=G_{(m)}^{\prime}(\lambda)=\frac{C_{m}}{m\varphi(m)}\cdot\frac{1}{\lambda^{2}}\sum\limits_{1\leq\Delta\leq K_{m}\lambda}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\,\log\frac{K_{m}\lambda}{\Delta}.
(3.12)
Comparing (3.12 ) with the formula for g ( m ) g_{(m)} given in Theorem 1 we find that
g ~ ( m ) ( λ ) = g ( m ) ( φ ( m ) λ ) . \widetilde{g}_{(m)}(\lambda)=g_{(m)}(\varphi(m)\lambda).