This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A note on the pair correlation of Farey fractions

Florin P. Boca  and  Maria Siskaki Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 E-mail: [email protected][email protected]
Abstract.

The pair correlations of Farey fractions with denominators qq satisfying (q,m)=1(q,m)=1, respectively qb(modm)q\equiv b\pmod{m} with (b,m)=1(b,m)=1, are shown to exist and are explicitly computed.

1. Introduction

The Farey fractions sequence 𝔉Q:={aq:0<aqQ,(a,q)=1}\mathfrak{F}_{Q}:=\{\frac{a}{q}:0<a\leq q\leq Q,(a,q)=1\} arises in several problems in mathematics. The elements of 𝔉Q\mathfrak{F}_{Q} are well known to be uniformly distributed in [0,1][0,1] as QQ\rightarrow\infty [19], with discrepancy exactly 1Q\frac{1}{Q} [11]. The distribution of Farey fractions is of major interest, due in part to the connection with the distribution of zeros of the Riemann zeta function [13, 17] or of Dirichlet LL-functions [16].

Although the major problems in the area remain widely open, the spacing statistics of Farey fractions are more accessible. The gap distribution of hh-tuples of consecutive gaps between elements of 𝔉Q\mathfrak{F}_{Q} was computed in [14] for h=1h=1 and in [3] for h2h\geq 2. More recently, the correlations of 𝔉Q\mathfrak{F}_{Q}, shown to exist and explicitly computed by Zaharescu and the first author [9], turned out to play a key role in the study of the moments of eigenvalues of large sieve matrices [8].

Motivated by Huxley’s work [16], a number of papers investigated various features (such as discrepancy or gap distribution) of the distribution of Farey fractions with denominators subjected to various constraints [1, 2, 4, 7, 15, 18].

For every finite set FF\subseteq\mathbb{R} of cardinality N(F)N(F) and every interval II, define

𝒢F(I):=1N(F)#{(x,y)F2:yx,yx1N(F)I+}.{\mathcal{G}}_{F}(I):=\frac{1}{N(F)}\,\#\bigg{\{}(x,y)\in F^{2}:y\neq x,\,y-x\in\frac{1}{N(F)}\,I+\mathbb{Z}\bigg{\}}. (1.1)

The pair correlation measure of an increasing sequence (Fn)(F_{n}) of finite subsets of \mathbb{R} is defined (when it exists) by

𝒢(I):=limn𝒢Fn(I)(I interval).{\mathcal{G}}(I):=\lim\limits_{n}{\mathcal{G}}_{F_{n}}(I)\qquad(\text{$I$ interval}).

If, in addition,

G(λ):=𝒢([0,λ])=0λg(x)𝑑x,G(\lambda):={\mathcal{G}}([0,\lambda])=\int_{0}^{\lambda}g(x)\,dx,

then gg is called the pair correlation function of (Fn)(F_{n}).

The pair correlation function of 𝔉Q\mathfrak{F}_{Q} was shown in [9] to be given by

g(λ)=1ζ(2)λ21Δ2ζ(2)λφ(Δ)log2ζ(2)λΔ,λ>0.g(\lambda)=\frac{1}{\zeta(2)\lambda^{2}}\sum\limits_{1\leq\Delta\leq 2\zeta(2)\lambda}\varphi(\Delta)\log\frac{2\zeta(2)\lambda}{\Delta},\qquad\forall\lambda>0. (1.2)

This formula was useful in [8] to recognize the connection between the pair correlation of 𝔉Q\mathfrak{F}_{Q} and the expression of the main term of the second moment of the large sieve matrix, provided in [20].

The proof of formula (1.2) given in [9] relies essentially on the Poisson summation formula. The original motivation of this note was to re-prove (1.2) using some different counting arguments that also provide effective estimates. Our direct approach turns out to also work well in the case of two important subsets of 𝔉Q\mathfrak{F}_{Q}, obtained by imposing congruence conditions on the denominators:

𝔉Q(m)\displaystyle\mathfrak{F}_{Q}^{(m)} :={γ=aq𝔉Q:(q,m)=1},\displaystyle:=\bigg{\{}\gamma=\frac{a}{q}\in\mathfrak{F}_{Q}:(q,m)=1\bigg{\}},
𝔉Q(m,b)\displaystyle\mathfrak{F}_{Q}^{(m,b)} :={aq𝔉Q:qb(modm)},\displaystyle:=\bigg{\{}\frac{a}{q}\in\mathfrak{F}_{Q}:q\equiv b\pmod{m}\bigg{\}},

where mm\in\mathbb{N}, bb\in\mathbb{Z} and (b,m)=1(b,m)=1.

Set

NQ,m;α,β:=#(𝔉Q(m)(α,β]),and NQ,m:=NQ,m;0,1.N_{Q,m;\alpha,\beta}:=\#(\mathfrak{F}_{Q}^{(m)}\cap(\alpha,\beta]),\quad\text{and }\quad N_{Q,m}:=N_{Q,m;0,1}.

The following constant will appear several times in this paper:

Cm:=φ(m)ζ(2)mp|mp prime(11p2)1=φ(m)mpmp prime(11p2).C_{m}:=\frac{\varphi(m)}{\zeta(2)m}\prod_{\begin{subarray}{c}p|m\\ p\text{ prime}\end{subarray}}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}=\frac{\varphi(m)}{m}\prod_{\begin{subarray}{c}p\nmid m\\ p\text{ prime}\end{subarray}}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}.

As noticed at the beginning of Section 2, for every 0α<β10\leq\alpha<\beta\leq 1 we have

NQ,m;α,β\displaystyle N_{Q,m;\alpha,\beta} =(βα)NQ,m+Oδ(Q1+δ)\displaystyle=(\beta-\alpha)N_{Q,m}+O_{\delta}(Q^{1+\delta})
=(βα)Cm2Q2+Oδ(Q1+δ),δ>0,\displaystyle=\frac{(\beta-\alpha)C_{m}}{2}\,Q^{2}+O_{\delta}(Q^{1+\delta}),\quad\forall\delta>0,

which gives an effective estimate for the uniform distribution of 𝔉Q(m)\mathfrak{F}_{Q}^{(m)}.

In the first part of Section 2 we prove

Theorem 1.

The pair correlation function g(m)g_{(m)} of 𝔉Q(m)\mathfrak{F}_{Q}^{(m)} exists and

g(m)(λ)=φ(m)mCmλ21Δ2λCmφ(Δ)(Δ,m)φ((Δ,m))log2λCmΔ.g_{(m)}(\lambda)=\frac{\varphi(m)}{m}\cdot\frac{C_{m}}{\lambda^{2}}\sum\limits_{1\leq\Delta\leq\frac{2\lambda}{C_{m}}}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\,\log\frac{2\lambda}{C_{m}\Delta}.

In particular, the support of the function g(m)g_{(m)} is the interval [12Cm,)[\frac{1}{2}C_{m},\infty).

Next, we extend the equality limλg(1)(λ)=1,\lim\limits_{\lambda\rightarrow\infty}g_{(1)}(\lambda)=1, due to R. R. Hall and presented in [9], by proving that

limλg(m)(λ)=1,m.\lim\limits_{\lambda\rightarrow\infty}g_{(m)}(\lambda)=1,\quad\forall m\in\mathbb{N}. (1.3)

In Section 3 we investigate the pair correlation of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)} under the assumption (b,m)=1(b,m)=1. The cardinality of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)} is given by

NQ,(m,b)=Cm2φ(m)Q2+Om(QlogQ).N_{Q,(m,b)}=\frac{C_{m}}{2\varphi(m)}\,Q^{2}+O_{m}(Q\log Q). (1.4)

Furthermore, we have

#(𝔉Q(m,b)(α,β])=(βα)NQ,(m,b)+Oδ(Q1+δ),δ>0,\#(\mathfrak{F}_{Q}^{(m,b)}\cap(\alpha,\beta])=(\beta-\alpha)N_{Q,(m,b)}+O_{\delta}(Q^{1+\delta}),\quad\forall\delta>0,

showing effectively that the elements of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)} are uniformly distributed.

We prove

Theorem 2.

The pair correlation function of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)} exists, is independent of bb, and is given by

g~(m)(λ)=g(m)(φ(m)λ).\widetilde{g}_{(m)}(\lambda)=g_{(m)}(\varphi(m)\lambda).

Our approach also allows us to prove that the pair correlation function of 𝔉Q(m)I\mathfrak{F}_{Q}^{(m)}\cap I, respectively 𝔉Q(m,b)I\mathfrak{F}_{Q}^{(m,b)}\cap I, coincides with g(m)g_{(m)}, respectively g~(m)\widetilde{g}_{(m)}, for every interval I[0,1]I\subseteq[0,1]. It also gives effective asymptotic formulas in QQ for the quantities 𝒢𝔉Q([0,λ]){\mathcal{G}}_{\mathfrak{F}_{Q}}([0,\lambda]), 𝒢𝔉Q(m)([0,λ]){\mathcal{G}}_{\mathfrak{F}_{Q}^{(m)}}([0,\lambda]) and 𝒢𝔉Q(m,b)([0,λ]){\mathcal{G}}_{\mathfrak{F}_{Q}^{(m,b)}}([0,\lambda]).

A related result is contained in [21, case n=1n=1 of Theorem 3.2]. However, our result involves the extra coprimality condition (a,q)=1(a,q)=1 in the definition of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)}, which is not included in formulas (3.3.1) and (3.3.2) of [21].

Refer to caption
Refer to caption
Refer to caption
Figure 1. The pair correlation functions g(1)g_{(1)}, g(2)g_{(2)} and g(3)g_{(3)}

2. The pair correlation of 𝔉Q(m)\mathfrak{F}_{Q}^{(m)}

Lemma 2.1 of [6] gives

NQ,m=1+k=1(k,m)=1Qφ(k)=CmQ22+O(QlogQ).N_{Q,m}=1+\sum\limits_{\begin{subarray}{c}k=1\\ (k,m)=1\end{subarray}}^{Q}\varphi(k)=C_{m}\frac{Q^{2}}{2}\ +\ O(Q\log Q).

When restricting to [0,β][0,\beta], the number of new fractions in the kkth step is not φ(k)\varphi(k) anymore, but rather

n=1(n,k)=1kβ1=φ(k)kkβ+Oδ(kδ),\sum\limits_{\begin{subarray}{c}n=1\\ (n,k)=1\end{subarray}}^{\lfloor k\beta\rfloor}1=\frac{\varphi(k)}{k}\lfloor k\beta\rfloor+O_{\delta}(k^{\delta}),

where one can use, for example, [10, Lemma A.1]. Thus

NQ,m;0,β\displaystyle N_{Q,m;0,\beta} =βNQ,m+Oδ(Q1+δ),\displaystyle=\beta N_{Q,m}+O_{\delta}(Q^{1+\delta}),
NQ,m;α,β\displaystyle N_{Q,m;\alpha,\beta} =NQ,m;0,βNQ,m;0,α=(βα)NQ,m+Oδ(Q1+δ).\displaystyle=N_{Q,m;0,\beta}-N_{Q,m;0,\alpha}=(\beta-\alpha)N_{Q,m}+O_{\delta}(Q^{1+\delta}).

Set

HQ,m;β(λ)\displaystyle H_{Q,m;\beta}(\lambda) :=#{(γ,γ):γ,γ𝔉Q(m),0<γγλQ2,γβ},\displaystyle:=\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}},\ \gamma^{\prime}\leq\beta\bigg{\}},
H¯Q,m;α(λ)\displaystyle\overline{H}_{Q,m;\alpha}(\lambda) :=#{(γ,γ):γ,γ𝔉Q(m),0<γγλQ2,γα}.\displaystyle:=\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}},\ \gamma\leq\alpha\bigg{\}}.

If the limit exists, set

G(m;α,β)(λ):=limQ1NQ,m;α,β(Q)#{(γ,γ):γ,γ𝔉Q(m)0<γγλNQ,m;α,β}.G_{(m;\alpha,\beta)}(\lambda):=\lim_{Q\rightarrow\infty}\frac{1}{N_{Q,m;\alpha,\beta}(Q)}\,\#\left\{(\gamma,\gamma^{\prime}):\begin{matrix}\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m)}\\ 0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{N_{Q,m;\alpha,\beta}}\end{matrix}\right\}.

Then

HQ,m;β(λ)\displaystyle H_{Q,m;\beta}(\lambda) =1Δλ#SQ,m;β(Δ,λ)=1Δλ#S~Q,m;β(Δ,λ),\displaystyle=\sum\limits_{1\leq\Delta\leq\lambda}\#S_{Q,m;\beta}(\Delta,\lambda)=\sum\limits_{1\leq\Delta\leq\lambda}\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda),
H¯Q,m;α(λ)\displaystyle\overline{H}_{Q,m;\alpha}(\lambda) =1Δλ#S¯Q,m;α(Δ,λ),\displaystyle=\sum\limits_{1\leq\Delta\leq\lambda}\#\overline{S}_{Q,m;\alpha}(\Delta,\lambda),

where we used the variables x=a,v=q,u=q,y=ax=a^{\prime},v=q^{\prime},u=q,y=a to get

SQ,m;β(Δ,λ)={(u,v,x,y)4:xuyv=Δ,xβv,vQyuQ,(x,v)=1(y,u)=1ΔuvλQ2,(u,m)=1(v,m)=1},\displaystyle S_{Q,m;\beta}(\Delta,\lambda)=\left\{(u,v,x,y)\in\mathbb{N}^{4}:\begin{matrix}xu-yv=\Delta,\ \begin{subarray}{c}x\leq\beta v,\ v\leq Q\\ y\leq u\leq Q\end{subarray},\ \begin{subarray}{c}(x,v)=1\\ (y,u)=1\end{subarray}\\ \frac{\Delta}{uv}\leq\frac{\lambda}{Q^{2}},\ \begin{subarray}{c}(u,m)=1\\ (v,m)=1\end{subarray}\end{matrix}\right\},
S~Q,m;β(Δ,λ)={(u,v,x)3:ΔQλvQ,ΔQ2λvuQ,xβv(x,v)=1xuΔmodv,(xuΔv,u)=1,(u,m)=1(v,m)=1},\displaystyle\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\left\{(u,v,x)\in\mathbb{N}^{3}:\begin{array}[]{c}\frac{\Delta Q}{\lambda}\leq v\leq Q,\ \frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q,\ \begin{subarray}{c}x\leq\beta v\\ (x,v)=1\end{subarray}\\ xu\equiv\Delta\mod v,\ (\frac{xu-\Delta}{v},u)=1,\ \begin{subarray}{c}(u,m)=1\\ (v,m)=1\end{subarray}\end{array}\right\},
S¯Q,m;α(Δ,λ)={(u,v,x,y)4:xuyv=Δ,xvQyαu,uQ,(x,v)=1(y,u)=1ΔuvλQ2,(u,m)=1(v,m)=1}.\displaystyle\overline{S}_{Q,m;\alpha}(\Delta,\lambda)=\left\{(u,v,x,y)\in\mathbb{N}^{4}:\begin{matrix}xu-yv=\Delta,\ \begin{subarray}{c}x\leq v\leq Q\\ y\leq\alpha u,\ u\leq Q\end{subarray},\ \begin{subarray}{c}(x,v)=1\\ (y,u)=1\end{subarray}\\ \frac{\Delta}{uv}\leq\frac{\lambda}{Q^{2}},\ \begin{subarray}{c}(u,m)=1\\ (v,m)=1\end{subarray}\end{matrix}\right\}.

Observe that xuyv=Δxv=yu+Δuvxu-yv=\Delta\Leftrightarrow\frac{x}{v}=\frac{y}{u}+\frac{\Delta}{uv} implies

#SQ,m;β(Δ,λ)#S¯Q,m;β(Δ,λ)#SQ,m;β+λQ2(Δ,λ),\#S_{Q,m;\beta}(\Delta,\lambda)\leq\#\overline{S}_{Q,m;\beta}(\Delta,\lambda)\leq\#S_{Q,m;\beta+\frac{\lambda}{Q^{2}}}(\Delta,\lambda),

so that H¯Q,m;β(λ)\overline{H}_{Q,m;\beta}(\lambda) is asymptotically the same as HQ,m;β(λ)H_{Q,m;\beta}(\lambda) as QQ\rightarrow\infty. Thus it suffices to estimate #S~Q,m;β(Δ,λ)\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda) as follows:

#S~Q,m;β(Δ,λ)\displaystyle\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda) =ΔQλvQ(v,m)=1ΔQ2λvuQ,(u,m)=1xβv,(x,v)=1xuΔmodv(xuΔv,u)=11\displaystyle=\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q,\ (u,m)=1\\ x\leq\beta v,\ (x,v)=1\\ xu\equiv\Delta\mod v\\ (\frac{xu-\Delta}{v},u)=1\end{subarray}}1
=ΔQλvQ(v,m)=1ΔQ2λvuQ,(u,m)=1xβv,(x,v)=1xuΔmodvdxuΔvduμ(d)\displaystyle=\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q,\ (u,m)=1\\ x\leq\beta v,\ (x,v)=1\\ xu\equiv\Delta\mod v\end{subarray}}\sum\limits_{\begin{subarray}{c}d\mid\frac{xu-\Delta}{v}\\ d\mid u\end{subarray}}\mu(d)
=u=dwdΔ(d,m)=1μ(d)ΔQλvQ(v,m)=1ΔQ2λdvwQd,(w,m)=1xβv,(x,v)=1xwΔdmodv1.\displaystyle\stackrel{{\scriptstyle u=dw}}{{=}}\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\ \ \sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda dv}\leq w\leq\frac{Q}{d},\ (w,m)=1\\ x\leq\beta v,\ (x,v)=1\\ xw\equiv\frac{\Delta}{d}\mod v\end{subarray}}1. (2.1)

To estimate the innermost sum on the right hand side in (2), we need to check that [10, Proposition A.3] carries over with the additional condition (q,m)=1(q,m)=1. Set

𝒩q,h,m(I1,I2)={(x,y)I1×I2:(x,q)=1,(y,m)=1,xyhmodq}.\mathcal{N}_{q,h,m}(I_{1},I_{2})=\{(x,y)\in I_{1}\times I_{2}:(x,q)=1,\ (y,m)=1,\ xy\equiv h\mod q\}.
Proposition 3.

Assuming (q,m)=1(q,m)=1, for any intervals I1,I2I_{1},I_{2} and any integer hh we have

#𝒩q,h,m(I1,I2)=φ(q)q2φ(m)m|I1||I2|+Oδ,m(q1/2+δ(h,q)1/2(1+|I1|q)(1+|I2|q)).\#\mathcal{N}_{q,h,m}(I_{1},I_{2})=\frac{\varphi(q)}{q^{2}}\cdot\frac{\varphi(m)}{m}\,|I_{1}||I_{2}|+\ O_{\delta,m}\bigg{(}q^{1/2+\delta}(h,q)^{1/2}\Big{(}1+\frac{\lvert I_{1}\rvert}{q}\Big{)}\Big{(}1+\frac{\lvert I_{2}\rvert}{q}\Big{)}\bigg{)}.
Proof.

For xx such that (x,q)=1(x,q)=1, let x¯\overline{x} denote the unique inverse of xmodqx\mod q. We have that

#𝒩q,h,m(I1,I2)\displaystyle\#\mathcal{N}_{q,h,m}(I_{1},I_{2}) =(x,y)I1×I2(x,q)=(y,m)=1xyhmodq1=1q(x,y)I1×I2(x,q)=(y,m)=1k=0q1e(k(yx¯h)q).\displaystyle=\sum\limits_{\begin{subarray}{c}(x,y)\in I_{1}\times I_{2}\\ (x,q)=(y,m)=1\\ xy\equiv h\mod q\end{subarray}}1=\frac{1}{q}\sum\limits_{\begin{subarray}{c}(x,y)\in I_{1}\times I_{2}\\ (x,q)=(y,m)=1\end{subarray}}\sum\limits_{k=0}^{q-1}e\bigg{(}\frac{k(y-\overline{x}h)}{q}\bigg{)}.

We distinguish the cases k=0k=0 and k>0k>0:

M\displaystyle M :=1qxI1(x,q)=1yI2(y,m)=11,\displaystyle:=\frac{1}{q}\sum\limits_{\begin{subarray}{c}x\in I_{1}\\ (x,q)=1\end{subarray}}\sum\limits_{\begin{subarray}{c}y\in I_{2}\\ (y,m)=1\end{subarray}}1,
E\displaystyle E :=1qyI2(y,m)=1k=1q1e(kyq)xI1(x,q)=1e(x¯hkq).\displaystyle:=\frac{1}{q}\sum\limits_{\begin{subarray}{c}y\in I_{2}\\ (y,m)=1\end{subarray}}\sum\limits_{k=1}^{q-1}e\bigg{(}\frac{ky}{q}\bigg{)}\sum\limits_{\begin{subarray}{c}x\in I_{1}\\ (x,q)=1\end{subarray}}e\bigg{(}-\frac{\overline{x}hk}{q}\bigg{)}.

For the term MM, two successive applications of [10, Lemma A1] give

M=\displaystyle M= 1qxI1(x,q)=1(φ(m)m|I2|+Oδ(mδ))\displaystyle\frac{1}{q}\sum\limits_{\begin{subarray}{c}x\in I_{1}\\ (x,q)=1\end{subarray}}\bigg{(}\frac{\varphi(m)}{m}\,|I_{2}|+O_{\delta}(m^{\delta})\bigg{)}
=\displaystyle= 1qφ(m)m|I2|xI1(x,q)=11+Oδ(mδ|I1|+1q)\displaystyle\frac{1}{q}\cdot\frac{\varphi(m)}{m}\,|I_{2}|\sum\limits_{\begin{subarray}{c}x\in I_{1}\\ (x,q)=1\end{subarray}}1+O_{\delta}\bigg{(}m^{\delta}\frac{|I_{1}|+1}{q}\bigg{)}
=\displaystyle= 1qφ(m)m|I2|(φ(q)q|I1|+Oδ(qδ))+Oδ(mδ|I1|+1q)\displaystyle\frac{1}{q}\cdot\frac{\varphi(m)}{m}\,|I_{2}|\bigg{(}\frac{\varphi(q)}{q}|I_{1}|+O_{\delta}(q^{\delta})\bigg{)}+O_{\delta}\bigg{(}m^{\delta}\frac{|I_{1}|+1}{q}\bigg{)}
=\displaystyle= φ(q)q2φ(m)m|I1||I2|+Oδ,m(|I1|+|I2|+1q1δ).\displaystyle\frac{\varphi(q)}{q^{2}}\cdot\frac{\varphi(m)}{m}\,|I_{1}||I_{2}|+O_{\delta,m}\bigg{(}\frac{|I_{1}|+|I_{2}|+1}{q^{1-\delta}}\bigg{)}.

Now, following the notation and approach from [10], which makes essential use of the Weil-Salié type estimates derived in [12, (5)], we have

E\displaystyle E =1qyI2(y,m)=1k=1q1e(kyq)SI1(0,hk;q)\displaystyle=\frac{1}{q}\sum\limits_{\begin{subarray}{c}y\in I_{2}\\ (y,m)=1\end{subarray}}\sum\limits_{k=1}^{q-1}e\bigg{(}\frac{ky}{q}\bigg{)}S_{I_{1}}(0,-hk;q)
=1qdmμ(d)k=1q1SI1(0,hk;q)yI2dye(kyq)\displaystyle=\frac{1}{q}\sum\limits_{d\mid m}\mu(d)\sum\limits_{k=1}^{q-1}S_{I_{1}}(0,-hk;q)\sum\limits_{\begin{subarray}{c}y\in I_{2}\\ d\mid y\end{subarray}}e\bigg{(}\frac{ky}{q}\bigg{)}
=y=d1qdmμ(d)k=1q1SI1(0,hk;q)1dI2e(kdq).\displaystyle\stackrel{{\scriptstyle y=d\ell}}{{=}}\frac{1}{q}\sum\limits_{d\mid m}\mu(d)\sum\limits_{k=1}^{q-1}S_{I_{1}}(0,-hk;q)\sum\limits_{\ell\in\frac{1}{d}I_{2}}e\bigg{(}\frac{kd\ell}{q}\bigg{)}.

We distinguish the cases qkdq\mid kd and qkdq\nmid kd. The former cannot occur because dmd\mid m, (q,m)=1(q,m)=1 and q>kq>k. For the latter, we use [10, Lemma A2] to estimate SI1(0,hk;q)S_{I_{1}}(0,-hk;q). Here, we do not necessarily have I1[0,q)I_{1}\subseteq[0,q), so we get the extra factor in the final formula:

SI1(0,hk;q)\displaystyle S_{I_{1}}(0,-hk;q) (hk,q)1/2q1/2+δ(1+|I1|q)\displaystyle\ll(hk,q)^{1/2}q^{1/2+\delta}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)} (2.2)
(h,q)1/2(k,q)1/2q1/2+δ(1+|I1|q).\displaystyle\leq(h,q)^{1/2}(k,q)^{1/2}q^{1/2+\delta}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}.

Since S[q,(+1)q)(0,hk;q)S_{[\ell q,(\ell+1)q)}(0,-hk;q) coincides with the Ramanujan sum cq(hk)=d(hk,q)μ(qd)dδ(hk,q)1+δc_{q}(-hk)=\sum\limits_{d\mid(hk,q)}\mu(\frac{q}{d})d\ll_{\delta}(hk,q)^{1+\delta}, the first estimate in (2.2) can be improved to

SI1(0,hk;q)δ(hk,q)1/2q1/2+δ+(hk,q)1+δ|I1|q.S_{I_{1}}(0,-hk;q)\ll_{\delta}(hk,q)^{1/2}q^{1/2+\delta}+(hk,q)^{1+\delta}\frac{|I_{1}|}{q}.

Combine (2.2) with the geometric sum and the inequality |sinπx|2x|\sin\pi x|\geq 2\|x\| to get

E\displaystyle E =1qdmμ(d)k=1qkdq1SI1(0,hk;q)1dI2e(kdq)\displaystyle=\frac{1}{q}\sum\limits_{d\mid m}\mu(d)\sum\limits_{\begin{subarray}{c}k=1\\ q\nmid kd\end{subarray}}^{q-1}S_{I_{1}}(0,-hk;q)\sum\limits_{\ell\in\frac{1}{d}I_{2}}e\bigg{(}\frac{kd\ell}{q}\bigg{)}
(h,q)1/2q1/2+δq(1+|I1|q)dmk=1qkdq1(k,q)1/2kdq\displaystyle\ll\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}\sum\limits_{\begin{subarray}{c}k=1\\ q\nmid kd\end{subarray}}^{q-1}\frac{(k,q)^{1/2}}{\big{\|}\frac{kd}{q}\big{\|}}
(h,q)1/2q1/2+δq(1+|I1|q)dmk=1qkdq1(kd,q)1/2kdq.\displaystyle\leq\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}\sum\limits_{\begin{subarray}{c}k=1\\ q\nmid kd\end{subarray}}^{q-1}\frac{(kd,q)^{1/2}}{\big{\|}\frac{kd}{q}\big{\|}}.

Since

{kd:1k<q,qkd}{n=cq+r:1r<q,0c<d},\{kd:1\leq k<q,q\nmid kd\}\subseteq\{n=cq+r:1\leq r<q,0\leq c<d\},

we further get

E\displaystyle E (h,q)1/2+δq1/2q(1+|I1|q)dmc=0d1r=1q1(cq+r,q)1/2c+rq\displaystyle\ll\frac{(h,q)^{1/2+\delta}q^{1/2}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}\sum\limits_{c=0}^{d-1}\sum\limits_{r=1}^{q-1}\frac{(cq+r,q)^{1/2}}{\big{\|}c+\frac{r}{q}\big{\|}}
=(h,q)1/2q1/2+δq(1+|I1|q)dmdr=1q1(r,q)1/2rq\displaystyle=\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}d\sum\limits_{r=1}^{q-1}\frac{(r,q)^{1/2}}{\big{\|}\frac{r}{q}\big{\|}}
=(r,q)r=s(h,q)1/2q1/2+δq(1+|I1|q)dmdqsq221/2sq\displaystyle\stackrel{{\scriptstyle\begin{subarray}{c}\ell=(r,q)\\ r=\ell s\end{subarray}}}{{\leq}}\frac{(h,q)^{1/2}q^{1/2+\delta}}{q}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}\sum\limits_{d\mid m}d\sum\limits_{\ell\mid q}\sum\limits_{s\leq\frac{q}{2\ell}}\frac{2\ell^{1/2}}{\frac{\ell s}{q}}
m(h,q)1/2q1/2+3δ(1+|I1|q).\displaystyle\ll_{m}(h,q)^{1/2}q^{1/2+3\delta}\bigg{(}1+\frac{|I_{1}|}{q}\bigg{)}.

Thus, under the correspondence vq,xx,wy,Δdhv\leftrightarrow q,x\leftrightarrow x,w\leftrightarrow y,\frac{\Delta}{d}\leftrightarrow h, relation (2) becomes

#S~Q,m;β(Δ,λ)=dΔ(d,m)=1μ(d)ΔQλvQ(v,m)=1(𝒩v,Δd,m([0,βv],[0,Qd])𝒩v,Δd,m([0,βv],[0,ΔQ2λdv]))\displaystyle\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\bigg{(}\mathcal{N}_{v,\frac{\Delta}{d},m}\Big{(}[0,\beta v],\big{[}0,\tfrac{Q}{d}\big{]}\Big{)}-\mathcal{N}_{v,\frac{\Delta}{d},m}\Big{(}[0,\beta v],\big{[}0,\tfrac{\Delta Q^{2}}{\lambda dv}\big{]}\Big{)}\bigg{)}
=dΔ(d,m)=1μ(d)ΔQλvQ(v,m)=1(φ(v)v2φ(m)mβv(QdΔQ2λvd)+Oδ,m,Δ(v1/2+δ(Qv+Q2λv2)))\displaystyle\qquad=\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\Bigg{(}\frac{\varphi(v)}{v^{2}}\cdot\frac{\varphi(m)}{m}\,\beta v\bigg{(}\frac{Q}{d}-\frac{\Delta Q^{2}}{\lambda vd}\bigg{)}+O_{\delta,m,\Delta}\bigg{(}v^{1/2+\delta}\Big{(}\frac{Q}{v}+\frac{Q^{2}}{\lambda v^{2}}\Big{)}\bigg{)}\Bigg{)}
=βQφ(m)mdΔ(d,m)=1μ(d)dΔQλvQ(v,m)=1φ(v)v(1ΔQλv)+Oδ,m,Δ(Q3/2+δ).\displaystyle\qquad=\beta Q\,\frac{\varphi(m)}{m}\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\frac{\mu(d)}{d}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\frac{\varphi(v)}{v}\bigg{(}1-\frac{\Delta Q}{\lambda v}\bigg{)}\ +\ O_{\delta,m,\Delta}(Q^{3/2+\delta}).

Note that there is no dependence of λ\lambda in the error term because the inequality γγ1Q2\gamma^{\prime}-\gamma\geq\frac{1}{Q^{2}}, γ,γ𝔉Q\forall\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}, γ<γ\gamma<\gamma^{\prime} allows for λ1\lambda\geq 1.

A simple calculation shows that the function

Km(n)=dn(d,m)=1μ(d)dK_{m}(n)=\sum\limits_{\begin{subarray}{c}d\mid n\\ (d,m)=1\end{subarray}}\frac{\mu(d)}{d}

is multiplicative for every mm, and that at prime powers we have

Km(p)=dp(d,m)=1μ(d)d={1, if pm11p=φ(p)p, if pm.K_{m}(p^{\ell})=\sum\limits_{\begin{subarray}{c}d\mid p^{\ell}\\ (d,m)=1\end{subarray}}\frac{\mu(d)}{d}=\begin{cases}1,&\text{ if }p\mid m\\ 1-\frac{1}{p}=\frac{\varphi(p^{\ell})}{p^{\ell}},&\text{ if }p\nmid m\end{cases}.

Therefore

Km(Δ)=pΔpm(11p)=pΔ(11p)pΔp|m(11p)=pΔ(11p)p(Δ,m)(11p)=φ(Δ)Δφ((Δ,m))(Δ,m),K_{m}(\Delta)=\prod_{\begin{subarray}{c}p\mid\Delta\\ p\nmid m\end{subarray}}\bigg{(}1-\frac{1}{p}\bigg{)}=\frac{\prod\limits_{\begin{subarray}{c}p\mid\Delta\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}{\prod\limits_{\begin{subarray}{c}p\mid\Delta\\ p|m\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}=\frac{\prod\limits_{\begin{subarray}{c}p\mid\Delta\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}{\prod\limits_{\begin{subarray}{c}p\mid(\Delta,m)\end{subarray}}\big{(}1-\frac{1}{p}\big{)}}=\frac{\frac{\varphi(\Delta)}{\Delta}}{\frac{\varphi\big{(}(\Delta,m)\big{)}}{(\Delta,m)}},

and consequently

#S~Q,m;β(Δ,λ)=βQφ(m)mφ(Δ)Δ(Δ,m)φ((Δ,m))ΔQλvQ(v,m)=1φ(v)v(1ΔQλv)+Oδ,m,Δ(Q3/2+δ).\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\beta Q\,\frac{\varphi(m)}{m}\cdot\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ (v,m)=1\end{subarray}}\frac{\varphi(v)}{v}\bigg{(}1-\frac{\Delta Q}{\lambda v}\bigg{)}+\ O_{\delta,m,\Delta}(Q^{3/2+\delta}).

Using [6, Lemma 2.1] twice, we get

#S~Q,m;β(Δ,λ)=βCmQ2φ(m)mφ(Δ)Δ(Δ,m)φ((Δ,m))(1ΔλΔλlogλΔ)+Oδ,m,Δ(Q3/2+δ).\#\widetilde{S}_{Q,m;\beta}(\Delta,\lambda)=\beta C_{m}Q^{2}\,\frac{\varphi(m)}{m}\cdot\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}1-\frac{\Delta}{\lambda}-\frac{\Delta}{\lambda}\log\frac{\lambda}{\Delta}\bigg{)}+\ O_{\delta,m,\Delta}(Q^{3/2+\delta}).

Thus, for every K1K\geq 1 we have, uniformly in λ[1,K]\lambda\in[1,K],

HQ,m;β(λ)=βCmQ2φ(m)m1Δλφ(Δ)Δ(Δ,m)φ((Δ,m))(1ΔλΔλlogλΔ)+Oδ,m,K(Q3/2+δ).H_{Q,m;\beta}(\lambda)=\beta C_{m}Q^{2}\ \frac{\varphi(m)}{m}\sum\limits_{1\leq\Delta\leq\lambda}\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}1-\frac{\Delta}{\lambda}-\frac{\Delta}{\lambda}\log\frac{\lambda}{\Delta}\bigg{)}+\ O_{\delta,m,K}(Q^{3/2+\delta}).

This leads in turn to

G(m;α,β)(λ)=2φ(m)m1Δ2λCmφ(Δ)Δ(1ΔCm2λΔCm2λlog2λΔCm).G_{(m;\alpha,\beta)}(\lambda)=2\,\frac{\varphi(m)}{m}\sum\limits_{1\leq\Delta\leq\frac{2\lambda}{C_{m}}}\frac{\varphi(\Delta)}{\Delta}\bigg{(}1-\frac{\Delta C_{m}}{2\lambda}-\frac{\Delta C_{m}}{2\lambda}\log\frac{2\lambda}{\Delta C_{m}}\bigg{)}. (2.3)

Finally, Theorem 1 follows by differentiating in (2.3).

For m=1m=1, α=0\alpha=0, β=1\beta=1, we retrieve Theorem 1 in [9]. For m=2m=2 we get

g(2)(λ)=13ζ(2)λ21Δ3ζ(2)λφ(Δ)(Δ,2)log3ζ(2)λΔ.g_{(2)}(\lambda)=\frac{1}{3\zeta(2)\lambda^{2}}\sum\limits_{1\leq\Delta\leq 3\zeta(2)\lambda}\varphi(\Delta)(\Delta,2)\log\frac{3\zeta(2)\lambda}{\Delta}.

In the remaining part of this section we prove equality (1.3). Consider the Dirichlet series

Dm(s):=Δ=1Km(Δ)Δs1=p(1+Km(p)ps1+Km(p2)p2s2+)if Res>2.D_{m}(s):=\sum\limits_{\Delta=1}^{\infty}\frac{K_{m}(\Delta)}{\Delta^{s-1}}=\prod\limits_{p}\bigg{(}1+\frac{K_{m}(p)}{p^{s-1}}+\frac{K_{m}(p^{2})}{p^{2s-2}}+\cdots\bigg{)}\quad\text{if }\operatorname{Re}s>2.

Take ζm(s):=pm(11ps)1\displaystyle\zeta_{m}(s):=\prod\limits_{p\nmid m}\bigg{(}1-\frac{1}{p^{s}}\bigg{)}^{-1}, Res>1\operatorname{Re}s>1. We have

ζm(s1)ζm(s)=pm11ps11ps1=pmps1psp\frac{\zeta_{m}(s-1)}{\zeta_{m}(s)}=\prod\limits_{p\nmid m}\frac{1-\frac{1}{p^{s}}}{1-\frac{1}{p^{s-1}}}=\prod\limits_{p\nmid m}\frac{p^{s}-1}{p^{s}-p}

and

=0Km(p)p(s1)={1+(11p)1ps1111ps1=1+p1psp=ps1pspif pm(11ps1)1if pm,\sum\limits_{\ell=0}^{\infty}\frac{K_{m}(p^{\ell})}{p^{\ell(s-1)}}=\begin{cases}1+\big{(}1-\frac{1}{p}\big{)}\frac{1}{p^{s-1}}\cdot\frac{1}{1-\frac{1}{p^{s-1}}}=1+\frac{p-1}{p^{s}-p}=\frac{p^{s}-1}{p^{s}-p}&\text{if }p\nmid m\\ \big{(}1-\frac{1}{p^{s-1}}\big{)}^{-1}&\text{if }p\mid m\end{cases},

leading to

Dm(s)\displaystyle D_{m}(s) =ζm(s1)ζm(s)pm(11ps1)1=ζ(s1)ζ(s)pmpspps1pmps1ps11\displaystyle=\frac{\zeta_{m}(s-1)}{\zeta_{m}(s)}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{s-1}}\bigg{)}^{-1}=\frac{\zeta(s-1)}{\zeta(s)}\prod\limits_{p\nmid m}\frac{p^{s}-p}{p^{s}-1}\prod\limits_{p\mid m}\frac{p^{s-1}}{p^{s-1}-1}
=ζ(s1)ζ(s)cm(s),where cm(s):=pm111ps.\displaystyle=\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s),\quad\text{where }c_{m}(s):=\prod\limits_{p\mid m}\frac{1}{1-\frac{1}{p^{s}}}.

Next we follow closely the final part of [9]. By Perron’s formula [9, (4.14)] we infer

1ΔxΔKm(Δ)logxΔ\displaystyle\sum\limits_{1\leq\Delta\leq x}\Delta K_{m}(\Delta)\log\frac{x}{\Delta} =12πiσ0iσ0+iDm(s)xss2𝑑s\displaystyle=\frac{1}{2\pi i}\int\limits_{\sigma_{0}-i\infty}^{\sigma_{0}+i\infty}D_{m}(s)\,\frac{x^{s}}{s^{2}}\,ds
=12πiσ0iσ0+iζ(s1)ζ(s)cm(s)xss2𝑑s(σ0>2).\displaystyle=\frac{1}{2\pi i}\int\limits_{\sigma_{0}-i\infty}^{\sigma_{0}+i\infty}\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{s^{2}}\,ds\qquad(\sigma_{0}>2).

Moving the contour at Res=1\operatorname{Re}s=1 and employing the notation from [9] we get

ζ(it)ζ(1+it)pm(11pit)\displaystyle\frac{\zeta(it)}{\zeta(1+it)}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{it}}\bigg{)} =χ(it)ζ(1it)ζ(1+it)pm(11pit),\displaystyle=\chi(it)\,\frac{\zeta(1-it)}{\zeta(1+it)}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{it}}\bigg{)},
ζ(1it)\displaystyle\zeta(1-it) =ζ(1+it)¯,\displaystyle=\overline{\zeta(1+it)},
Ress=2ζ(s1)ζ(s)cm(s)xss2\displaystyle\underset{s=2}{\operatorname{Res}}\,\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{s^{2}} =lims2(s2)ζ(s1)ζ(s)cm(s)xs4\displaystyle=\lim\limits_{s\rightarrow 2}\frac{(s-2)\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{4}
=cm(2)ζ(2)x24(s=2 is a simple pole).\displaystyle=\frac{c_{m}(2)}{\zeta(2)}\cdot\frac{x^{2}}{4}\quad\text{($s=2$ is a simple pole)}.

Estimating the error as in [9] we find

1ΔxΔKm(Δ)logxΔ\displaystyle\sum\limits_{1\leq\Delta\leq x}\Delta K_{m}(\Delta)\log\frac{x}{\Delta} =Ress=2ζ(s1)ζ(s)cm(s)xss2+Om(x)\displaystyle=\underset{s=2}{\operatorname{Res}}\,\frac{\zeta(s-1)}{\zeta(s)}\,c_{m}(s)\,\frac{x^{s}}{s^{2}}+O_{m}(x)
=cm(2)ζ(2)x24+Om(x).\displaystyle=\frac{c_{m}(2)}{\zeta(2)}\cdot\frac{x^{2}}{4}+O_{m}(x).

Setting μ:=2λCm\mu:=\frac{2\lambda}{C_{m}} we get λ=Cmμ2\lambda=\frac{C_{m}\mu}{2} and (as λ\lambda\rightarrow\infty)

g(m)(λ)\displaystyle g_{(m)}(\lambda) =g(m)(12Cmμ)=φ(m)mCm4Cm2μ21ΔμΔKm(Δ)logμΔ\displaystyle=g_{(m)}(\tfrac{1}{2}C_{m}\mu)=\frac{\varphi(m)}{m}\,C_{m}\,\frac{4}{C_{m}^{2}\mu^{2}}\sum\limits_{1\leq\Delta\leq\mu}\Delta K_{m}(\Delta)\log\frac{\mu}{\Delta}
=4φ(m)mCmμ2(pm(11p2)1μ24ζ(2)+Om(μ))\displaystyle=\frac{4\varphi(m)}{mC_{m}\mu^{2}}\left(\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}\frac{\mu^{2}}{4\zeta(2)}+O_{m}(\mu)\right)
=1ζ(2)pm(11p2)1pm(11p2)1+Om(μ1)\displaystyle=\frac{1}{\zeta(2)}\prod\limits_{p\nmid m}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}\prod\limits_{p\mid m}\bigg{(}1-\frac{1}{p^{2}}\bigg{)}^{-1}+O_{m}(\mu^{-1})
=1+Om(λ1).\displaystyle=1+O_{m}(\lambda^{-1}).

3. The pair correlation of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)}

We will employ the following estimate ([5, Lemma 3.3]):

Lemma 4.

Assuming (b,m)=1(b,m)=1 and VC1[0,Q]V\in C^{1}[0,Q], we have

q=1qb(modm)Qφ(q)qV(q)=Cmφ(m)0QV+O((V+T0NV)logQ).\sum\limits_{\begin{subarray}{c}q=1\\ q\equiv b\pmod{m}\end{subarray}}^{Q}\frac{\varphi(q)}{q}\,V(q)=\frac{C_{m}}{\varphi(m)}\int_{0}^{Q}V+O\Big{(}(\|V\|_{\infty}+T_{0}^{N}V)\log Q\Big{)}.

In particular this gives (1.4).

Given λ>0\lambda>0, we are interested in estimating the following three quantities as QQ\rightarrow\infty:

SQ;m,b,Δ(λ)\displaystyle S_{Q;m,b,\Delta}(\lambda) :=#{(γ,γ):γ,γ𝔉Q(m,b),γγλQ2γ=aq<γ=aq,aqaq=Δ},\displaystyle:=\#\left\{(\gamma,\gamma^{\prime}):\begin{matrix}\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m,b)},\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}}\\ \gamma=\frac{a}{q}<\gamma^{\prime}=\frac{a^{\prime}}{q^{\prime}},\ a^{\prime}q-aq^{\prime}=\Delta\end{matrix}\right\},
HQ;m,b(λ)\displaystyle H_{Q;m,b}(\lambda) :=#{(γ,γ):γ,γ𝔉Q(m,b),0<γγλQ2}=1ΔλSQ;m,b,Δ(λ),\displaystyle:=\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m,b)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{Q^{2}}\bigg{\}}=\sum\limits_{1\leq\Delta\leq\lambda}S_{Q;m,b,\Delta}(\lambda),
GQ;m,b(λ)\displaystyle G_{Q;m,b}(\lambda) :=1NQ,(m,b)#{(γ,γ):γ,γ𝔉Q(m,b),0<γγλNQ,(m,b)}.\displaystyle:=\frac{1}{N_{Q,(m,b)}}\,\#\bigg{\{}(\gamma,\gamma^{\prime}):\gamma,\gamma^{\prime}\in\mathfrak{F}_{Q}^{(m,b)},0<\gamma^{\prime}-\gamma\leq\frac{\lambda}{N_{Q,(m,b)}}\bigg{\}}.

As in the previous section we can write

SQ;m,b,Δ(λ)=dΔμ(d)ΔQλvQvb(modm)ΔQ2λvuQub(modm),duxv,(x,v)=1xuΔ(modv)1.S_{Q;m,b,\Delta}(\lambda)=\sum\limits_{d\mid\Delta}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ v\equiv b\pmod{m}\end{subarray}}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda v}\leq u\leq Q\\ u\equiv b\pmod{m},\,d\mid u\\ x\leq v,\ (x,v)=1\\ xu\equiv\Delta\pmod{v}\end{subarray}}1. (3.1)

We write u=dwu=dw and observe that the assumption (b,m)=1(b,m)=1 implies (d,m)=(v,m)=1(d,m)=(v,m)=1. Hence we get

SQ;m,b,Δ(λ)=dΔ(d,m)=1μ(d)ΔQλvQvb(modm)TQ;m,b,Δ(v,λ),S_{Q;m,b,\Delta}(\lambda)=\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\mu(d)\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ v\equiv b\pmod{m}\end{subarray}}T_{Q;m,b,\Delta}(v,\lambda), (3.2)

where

TQ;m,b,Δ(v,λ):=ΔQ2λdvwQddwb(modm)xv,(x,v)=1xwΔd(modv)1.T_{Q;m,b,\Delta}(v,\lambda):=\sum\limits_{\begin{subarray}{c}\frac{\Delta Q^{2}}{\lambda dv}\leq w\leq\frac{Q}{d}\\ dw\equiv b\pmod{m}\\ x\leq v,\ (x,v)=1\\ xw\equiv\frac{\Delta}{d}\pmod{v}\end{subarray}}1. (3.3)

We write

TQ;m,b,Δ(v,λ)\displaystyle T_{Q;m,b,\Delta}(v,\lambda) =x[0,v],(x,v)=1y[ΔQ2λdv,Qd],yd¯¯b(modm)1vk(modv)e(k(yΔdx¯)v)\displaystyle=\sum\limits_{\begin{subarray}{c}x\in[0,v],\ (x,v)=1\\ y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]},\ y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}\frac{1}{v}\sum\limits_{k\pmod{v}}e\bigg{(}\frac{k(y-\frac{\Delta}{d}\,\overline{x})}{v}\bigg{)} (3.4)
=MQ;m,b,Δ(v,λ)+EQ;m,b,Δ(v,λ),\displaystyle=M_{Q;m,b,\Delta}(v,\lambda)+E_{Q;m,b,\Delta}(v,\lambda),

where d¯¯\overline{\overline{d}} is the multiplicative inverse of dmodmd\mod{m} and x¯\overline{x} the multiplicative inverse of xmodvx\mod{v},

MQ;m,b,Δ(v,λ)\displaystyle M_{Q;m,b,\Delta}(v,\lambda) :=1vx[0,v](x,v)=11y[ΔQ2λdv,Qd]yd¯¯b(modm)1\displaystyle:=\frac{1}{v}\sum\limits_{\begin{subarray}{c}x\in[0,v]\\ (x,v)=1\end{subarray}}1\sum\limits_{\begin{subarray}{c}y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]}\\ y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}1 (3.5)
=1v(φ(v)vv+Oδ(vδ))(1m(QdΔQ2λdv)+O(1)),\displaystyle=\frac{1}{v}\bigg{(}\frac{\varphi(v)}{v}\,v+O_{\delta}(v^{\delta})\bigg{)}\bigg{(}\frac{1}{m}\Big{(}\frac{Q}{d}-\frac{\Delta Q^{2}}{\lambda dv}\Big{)}+O(1)\bigg{)},
EQ;m,b,Δ(v,λ):=1vk=1v1S[1,v](0,Δvk;v)y[ΔQ2λdv,Qd]yd¯¯b(modm)e(kyv).E_{Q;m,b,\Delta}(v,\lambda):=\frac{1}{v}\sum\limits_{k=1}^{v-1}S_{[1,v]}\bigg{(}0,-\frac{\Delta}{v}\,k;v\bigg{)}\sum\limits_{\begin{subarray}{c}y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]}\\ y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}e\bigg{(}\frac{ky}{v}\bigg{)}. (3.6)

We employ the bound111Here S[1,v](0,;v)S_{[1,v]}(0,\ell;v) coincides with the Ramanujan sum cv()δ(,v)1+δc_{v}(\ell)\ll_{\delta}(\ell,v)^{1+\delta}. On replacing vv by βv\beta v with β(0,1)\beta\in(0,1) the inequality (3.7) follows from (2.2).

S[1,v](0,Δdk;v)δ(Δdk,v)1/2v1/2+δΔd(k,v)1/2v1/2+δ,S_{[1,v]}\bigg{(}0,-\frac{\Delta}{d}\,k;v\bigg{)}\ll_{\delta}\bigg{(}\frac{\Delta}{d}\,k,v\bigg{)}^{1/2}v^{1/2+\delta}\leq\frac{\Delta}{d}\,(k,v)^{1/2}v^{1/2+\delta}, (3.7)

(v,m)=1(v,m)=1, and the geometric series with ratio e(kmv)e(\frac{km}{v}) to gather

EQ;m,b,Δ(v,λ)δ,Δv1/2+δk=1v1(k,v)1/2|y[ΔQ2λdv,Qd]yd¯¯b(modm)e(kyv)|v1/2+δk=1v1(k,v)1/2kmv.E_{Q;m,b,\Delta}(v,\lambda)\ll_{\delta,\Delta}v^{-1/2+\delta}\sum\limits_{k=1}^{v-1}(k,v)^{1/2}\Bigg{|}\sum\limits_{\begin{subarray}{c}y\in\big{[}\frac{\Delta Q^{2}}{\lambda dv},\frac{Q}{d}\big{]}\\ y\equiv\overline{\overline{d}}b\pmod{m}\end{subarray}}e\bigg{(}\frac{ky}{v}\bigg{)}\Bigg{|}\ll v^{-1/2+\delta}\sum\limits_{k=1}^{v-1}\frac{(k,v)^{1/2}}{\big{\|}\frac{km}{v}\big{\|}}.

Using {km:1kv1}{:1mv,v}\{km:1\leq k\leq v-1\}\subseteq\{\ell:1\leq\ell\leq mv,v\nmid\ell\} and (k,v)1/2(km,v)1/2(k,v)^{1/2}\leq(km,v)^{1/2} this yields

EQ;m,b,Δ(v,λ)\displaystyle E_{Q;m,b,\Delta}(v,\lambda) δ,Δv1/2+δ=1vmv(,v)1/2v=mv1/2+δ=1v1(,v)1/2v\displaystyle\ll_{\delta,\Delta}v^{-1/2+\delta}\sum\limits_{\begin{subarray}{c}\ell=1\\ v\nmid\ell\end{subarray}}^{mv}\frac{(\ell,v)^{1/2}}{\big{\|}\frac{\ell}{v}\big{\|}}=mv^{-1/2+\delta}\sum\limits_{\ell=1}^{v-1}\frac{(\ell,v)^{1/2}}{\big{\|}\frac{\ell}{v}\big{\|}} (3.8)
2mv1/2+δ1<v2(,v)1/2vδ,Δ,mv1/2+3δ.\displaystyle\leq 2mv^{-1/2+\delta}\sum\limits_{1\leq\ell<\frac{v}{2}}\frac{(\ell,v)^{1/2}}{\frac{\ell}{v}}\ll_{\delta,\Delta,m}v^{1/2+3\delta}.

From (3.4), (3.5) and (3.8) we now infer

SQ;m,b,Δ(λ)=QmdΔ(d,m)=1μ(d)d(ΔQλvQvb(modm)φ(v)vΔQλΔQλvQvb(modm)φ(v)v2)+Oδ,m,Δ(Q3/2+δ).S_{Q;m,b,\Delta}(\lambda)=\frac{Q}{m}\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\frac{\mu(d)}{d}\Bigg{(}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ v\equiv b\pmod{m}\end{subarray}}\frac{\varphi(v)}{v}-\frac{\Delta Q}{\lambda}\sum\limits_{\begin{subarray}{c}\frac{\Delta Q}{\lambda}\leq v\leq Q\\ v\equiv b\pmod{m}\end{subarray}}\frac{\varphi(v)}{v^{2}}\Bigg{)}+O_{\delta,m,\Delta}(Q^{3/2+\delta}).

Next, an application of Lemma 4 and the equality

dΔ(d,m)=1μ(d)d=φ(Δ)Δ(Δ,m)φ((Δ,m))\sum\limits_{\begin{subarray}{c}d\mid\Delta\\ (d,m)=1\end{subarray}}\frac{\mu(d)}{d}=\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi((\Delta,m))}

lead to

SQ;m,b,Δ(λ)=CmQ2mφ(m)φ(Δ)Δ(Δ,m)φ((Δ,m))(1ΔλΔλlogλΔ)+Oδ,m,Δ(Q3/2+δ),S_{Q;m,b,\Delta}(\lambda)=\frac{C_{m}Q^{2}}{m\varphi(m)}\cdot\frac{\varphi(\Delta)}{\Delta}\cdot\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}1-\frac{\Delta}{\lambda}-\frac{\Delta}{\lambda}\,\log\frac{\lambda}{\Delta}\bigg{)}+O_{\delta,m,\Delta}(Q^{3/2+\delta}), (3.9)

and so we get, for every K1K\geq 1 and uniformly in λ[1,K]\lambda\in[1,K],

HQ;m,b(λ)=CmQ2mφ(m)1Δ<λφ(Δ)(Δ,m)φ((Δ,m))(1Δ1λ1λlogλΔ)+Oδ,m,K(Q3/2+δ).H_{Q;m,b}(\lambda)=\frac{C_{m}Q^{2}}{m\varphi(m)}\sum\limits_{1\leq\Delta<\lambda}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}\frac{1}{\Delta}-\frac{1}{\lambda}-\frac{1}{\lambda}\,\log\frac{\lambda}{\Delta}\bigg{)}+O_{\delta,m,K}(Q^{3/2+\delta}). (3.10)

Estimates (3.10), (1.4), and the definitions of GQ;m,bG_{Q;m,b} and HQ;m,bH_{Q;m,b} now yield

GQ;m,b(λ)=1NQ,(m,b)HQ;m,b(Q2NQ;(m,b)λ)=G(m)(λ)+Oδ,m(Q1/2+δ),G_{Q;m,b}(\lambda)=\frac{1}{N_{Q,(m,b)}}\,H_{Q;m,b}\bigg{(}\frac{Q^{2}}{N_{Q;(m,b)}}\,\lambda\bigg{)}=G_{(m)}(\lambda)+O_{\delta,m}(Q^{-1/2+\delta}), (3.11)

where

G(m)(λ)=2m1ΔKmλφ(Δ)(Δ,m)φ((Δ,m))(1Δ1Kmλ1KmλlogKmλΔ),G_{(m)}(\lambda)=\frac{2}{m}\sum\limits_{1\leq\Delta\leq K_{m}\lambda}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\bigg{(}\frac{1}{\Delta}-\frac{1}{K_{m}\lambda}-\frac{1}{K_{m}\lambda}\,\log\frac{K_{m}\lambda}{\Delta}\bigg{)},

with Km:=2φ(m)CmK_{m}:=\frac{2\varphi(m)}{C_{m}}.

This shows that the pair correlation function of 𝔉Q(m,b)\mathfrak{F}_{Q}^{(m,b)} exists and is given by

g~(m)(λ)=G(m)(λ)=Cmmφ(m)1λ21ΔKmλφ(Δ)(Δ,m)φ((Δ,m))logKmλΔ.\widetilde{g}_{(m)}(\lambda)=G_{(m)}^{\prime}(\lambda)=\frac{C_{m}}{m\varphi(m)}\cdot\frac{1}{\lambda^{2}}\sum\limits_{1\leq\Delta\leq K_{m}\lambda}\varphi(\Delta)\,\frac{(\Delta,m)}{\varphi\big{(}(\Delta,m)\big{)}}\,\log\frac{K_{m}\lambda}{\Delta}. (3.12)

Comparing (3.12) with the formula for g(m)g_{(m)} given in Theorem 1 we find that

g~(m)(λ)=g(m)(φ(m)λ).\widetilde{g}_{(m)}(\lambda)=g_{(m)}(\varphi(m)\lambda).

References

  • [1] E. Alkan, A. H. Ledoan, M. Vâjâitu, A. Zaharescu, Discrepancy of fractions with divisibility constraints, Monatsh. Math. 149 (2006), 179–192.
  • [2] E. Alkan, A. H. Ledoan, M. Vâjâitu, A. Zaharescu, Discrepancy of sets of fractions with congruence constraints, Rev. Roumaine Math. Pures Appl. 51 (2006), 265–276.
  • [3] V. Augustin, F. P. Boca, C. Cobeli, A. Zaharescu, The h-spacing distribution between Farey points, Math. Proc. Cambridge Philos. Soc. 131 (2001), 23–38.
  • [4] D. A. Badziahin, A. K. Haynes, A note on Farey fractions with denominators in arithmetic progressions, Acta Arith. 147 (2011), 205–215.
  • [5] F. P. Boca, Distribution of the linear flow length in a honeycomb in the small-scatterer limit, New York J. Math. 16 (2010), 651–735.
  • [6] F. P. Boca, R. N. Gologan, On the distribution of the free path length of the linear flow in a honeycomb, Ann. Inst. Fourier 59 (2009) 1043–1075.
  • [7] F. P. Boca, B. Heersink, P. Spiegelhalter, Gap distribution of Farey fractions under some divisibility constraints, Integers 13 (2013), Paper No. A44, 15 pp.
  • [8] F. P. Boca, M. Radziwiłł, Limiting distribution of eigenvalues in the large sieve matrix, J. Eur. Math. Soc. (JEMS) 22 (2020), 2287–2329.
  • [9] F. P. Boca, A. Zaharescu, The correlations of Farey fractions, J. London Math. Soc. 72 (2005), 25–39.
  • [10] F. P. Boca, A. Zaharescu, On the correlations of directions in the Euclidean plane, Trans. Amer. Math. Soc. 358 (2006), 1797–1825.
  • [11] F. Dress, Discrépance des suites de Farey, J. Théor. Nombres Bordeaux 11 (1999), 345–367.
  • [12] T. Estermann, On Kloosterman’s sum, Mathematika 8 (1961), 83–86.
  • [13] J. Franel, Les suites de Farey et le problème des nombres premiers, Gottinger Nachr. (1924), 198–201.
  • [14] R. R. Hall, A note on Farey series, J. London Math. Soc. 2 (1970) 139–-148.
  • [15] B. Heersink, Poincaré sections for the horocycle flow in covers of SL(2,)/SL(2,)\operatorname{SL}(2,\mathbb{R})/\operatorname{SL}(2,\mathbb{Z}) and applications to Farey fraction statistics, Monatsh. Math. 179 (2016), 389–420.
  • [16] M. N. Huxley, The distribution of Farey points, I, Acta Arithmetica 18 (1971), 281–287.
  • [17] E. Landau, Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel, Gottinger Nachr. (1924), 202–206.
  • [18] A. H. Ledoan, The discrepancy of Farey series, Acta Math. Hungar. 156 (2018), 465–480.
  • [19] M. Mikolás, Farey series and their connection with the prime numbers problem, Acta Sci. Math. (Szeged) 13 (1949), 93–117.
  • [20] O. Ramaré, Eigenvalues in the large sieve inequality, Funct. Approx. Comment. Math. 37 (2007), 399–427.
  • [21] J. Xiao, Distribution of some arithmetic sequences, PhD thesis, University of Illinois at Urbana-Champaign, 2013.