This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A note on the differential spectrum of the Ness-Helleseth function

Ketong Ren1, Maosheng Xiong2 and Haode Yan 1


Corresponding author: Haode Yan
1School of Mathematics, Southwest Jiaotong University, Chengdu, China.
E-mail: rkt@my.swjtu.edu.cn, hdyan@swjtu.edu.cn
2Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: [email protected]
Abstract

Let n3n\geqslant 3 be an odd integer and uu an element in the finite field 𝔽3n{\mathbb{F}}_{3^{n}}. The Ness-Helleseth function is the binomial fu(x)=uxd1+xd2f_{u}(x)=ux^{d_{1}}+x^{d_{2}} over 𝔽3n{\mathbb{F}}_{3^{n}}, where d1=3n121d_{1}=\frac{3^{n}-1}{2}-1 and d2=3n2d_{2}=3^{n}-2. In 2007, Ness and Helleseth showed that fuf_{u} is an APN function when χ(u+1)=χ(u1)=χ(u)\chi(u+1)=\chi(u-1)=\chi(u), is differentially 33-uniform when χ(u+1)=χ(u1)χ(u)\chi(u+1)=\chi(u-1)\neq\chi(u), and has differential uniformity at most 4 if χ(u+1)χ(u1)\chi(u+1)\neq\chi(u-1) and u𝔽3u\notin{\mathbb{F}}_{3}. Here χ()\chi(\cdot) denotes the quadratic character on 𝔽3n{\mathbb{F}}_{3^{n}}. Recently, Xia et al. determined the differential uniformity of fuf_{u} for all uu and computed the differential spectrum of fuf_{u} for uu satisfying χ(u+1)=χ(u1)\chi(u+1)=\chi(u-1) or u𝔽3u\in{\mathbb{F}}_{3}. The remaining problem is the differential spectrum of fuf_{u} with χ(u+1)χ(u1)\chi(u+1)\neq\chi(u-1) and u𝔽3u\notin{\mathbb{F}}_{3}. In this paper, we fill in the gap. By studying differential equations arising from the Ness-Helleseth function fuf_{u} more carefully, we express the differential spectrum of fuf_{u} for such uu in terms of two quadratic character sums. This complements the previous work of Xia et al.

Keywords: cryptographic function; differential uniformity; differential spectrum; character sum

Mathematics Subject Classification: 11T06, 94A60.

I Introduction

Substitution boxes (S-boxes for short) are crucial in symmetric block ciphers. Cryptographic functions used in S-boxes can be considered as functions defined over finite fields. Let 𝔽q{\mathbb{F}}_{q} be the finite field with qq elements, where qq is a prime power (i.e. q=pnq=p^{n} and nn is a positive integer). We denote by 𝔽q:=𝔽q{0}{\mathbb{F}}_{q}^{*}:={\mathbb{F}}_{q}\setminus\{0\} the multiplicative cyclic subgroup of 𝔽q{\mathbb{F}}_{q}. Any function F:𝔽q𝔽qF:{\mathbb{F}}_{q}\rightarrow{\mathbb{F}}_{q} can be uniquely represented as a univariate polynomial of degree less than qq. For a cryptographic function FF, the main tools to study FF regarding the differential attack [2] are the difference distribution table (DDT for short) and the differential uniformity introduced by Nyberg [26] in 1994. The DDT entry at point (a,b)(a,b) for any a,b𝔽qa,b\in{\mathbb{F}}_{q}, denoted by δF(a,b)\delta_{F}(a,b), is defined as

δF(a,b)=|{x𝔽q|𝔻aF(x)=b}|,\delta_{F}(a,b)=\left|\{x\in{\mathbb{F}}_{q}|\mathbb{D}_{a}F(x)=b\}\right|,

where 𝔻aF(x)=F(x+a)F(x)\mathbb{D}_{a}F(x)=F(x+a)-F(x) is the derivative function of FF at the element aa. The differential uniformity of FF, denoted by ΔF\Delta_{F}, is defined as

ΔF=max{δF(a,b)|a𝔽q,b𝔽q}.\Delta_{F}=\mathrm{max}\left\{\delta_{F}(a,b)|a\in{\mathbb{F}}_{q}^{*},b\in{\mathbb{F}}_{q}\right\}.

Generally speaking, the smaller the value of ΔF\Delta_{F}, the stronger the resistance of FF used in S-boxes against the differential attack. A cryptographic function FF is called differentially kk-uniform if ΔF=k\Delta_{F}=k. Particularly when ΔF=1\Delta_{F}=1, FF is called a planar function [11] or a perfect nonlinear (abbreviated as PN) function [25]. When ΔF=2\Delta_{F}=2, FF is called an almost perfect nonlinear (abbreviated as APN) function [26], which is of the lowest possible differential uniformity over 𝔽2n{\mathbb{F}}_{2^{n}} as in such finite fields, no PN functions exist. It has been of great research interest to find new functions with low differential uniformity. Readers may refer to [7], [13], [14], [15], [24], [29], [39], [46], [47], [48] and references therein for some of the new development.

To investigate further differential properties of nonlinear functions, the concept of differential spectrum was devised as a refinement of differential uniformity [4].

Definition 1.

Let FF be a function from 𝔽pn{\mathbb{F}}_{p^{n}} to 𝔽pn{\mathbb{F}}_{p^{n}} with differential uniformity kk, and

ωi=|{(a,b)𝔽pn×𝔽pn|δF(a,b)=i}|,0ik.\omega_{i}=|\{(a,b)\in{\mathbb{F}}_{p^{n}}^{*}\times{\mathbb{F}}_{p^{n}}|\delta_{F}(a,b)=i\}|,0\leqslant i\leqslant k.

The differential spectrum of FF is defined as the ordered sequence

𝕊=[ω0,ω1,,ωk].\mathbb{S}=\left[\omega_{0},\omega_{1},...,\omega_{k}\right].

According to the Definition 1, we have the following two identities

i=0kωi=(pn1)pn,i=0kiωi=(pn1)pn.\sum\limits_{i=0}^{k}\omega_{i}=(p^{n}-1)p^{n},\sum\limits_{i=0}^{k}i\omega_{i}=(p^{n}-1)p^{n}. (1)

The differential spectrum of a cryptographic function, compared with the differential uniformity, provides much more detailed information. In particular, the value distribution of the DDT is given directly by the differential spectrum. Differential spectrum has many applications such as in sequences [3], [12], coding theory [8], [9], combinatorial design [31] etc. However, to determine the differential spectrum of a cryptographic function is usually a difficult problem. There are two variables aa and bb to consider in each ωi\omega_{i}. When FF is a power function, i.e., F(x)=xdF(x)=x^{d} for some positive integer dd, since δF(a,b)=δF(1,bad)\delta_{F}(a,b)=\delta_{F}(1,\frac{b}{a^{d}}), the problem of the value distribution of {δF(a,b)|b𝔽q}\{\delta_{F}(a,b)|b\in{\mathbb{F}}_{q}\} is the same as that of {δF(1,b)|b𝔽q}\{\delta_{F}(1,b)|b\in{\mathbb{F}}_{q}\}, so in this case two variables aa and bb degenerate into one variable bb and the problem becomes much easier. Power functions with known differential spectra are summarized in Table I.

TABLE I: Power Functions over 𝔽pn{\mathbb{F}}_{p^{n}} with Known Differential Spectra
pp dd Condition ΔF\Delta_{F} Ref
22 2t+12^{t}+1 gcd(t,n)=s(t,n)=s 2s2^{s} [4]
22 22t2t+12^{2t}-2^{t}+1 gcd(t,n)=s,nsodd(t,n)=s,\frac{n}{s}\,odd 2s2^{s} [4]
22 2n22^{n}-2 n2n\geqslant 2 2or 42\,or\,4 [4]
22 22k+2k+12^{2k}+2^{k}+1 n=4kn=4k 44 [4],[37]
22 2t12^{t}-1 t=3,n2t=3,n-2 66 or 88 [5]
22 2t12^{t}-1 t=n12t=\frac{n-1}{2}, n+32\frac{n+3}{2}, nn odd 66 or 88 [6]
22 2m+2(m+1)/2+12^{m}+2^{(m+1)/2}+1 n=2mn=2m, m5m\geqslant 5 odd 88 [38]
22 2m+1+32^{m+1}+3 n=2mn=2m, m5m\geqslant 5 odd 88 [38]
22 23k+22k+2k12^{3k}+2^{2k}+2^{k}-1 n=4kn=4k 22k2^{2k} [32]
22 2m12k+1+1\frac{2^{m}-1}{2^{k}+1}+1 n=2mn=2m, gcd(k,m)=1(k,m)=1 2m2^{m} [36]
33 23(n1)/2+12\cdot 3^{(n-1)/2}+1 nn odd 44 [12]
33 3n12+2\frac{3^{n}-1}{2}+2 nn odd 44 [18]
55 5n32\frac{5^{n}-3}{2} any nn 44 or 55 [40]
55 5n+32\frac{5^{n}+3}{2} any nn 33 [28]
pp odd p2kpk+1p^{2k}-p^{k}+1 gcd(n,k)=e(n,k)=e, neodd\frac{n}{e}odd pe+1p^{e}+1 [45], [19]
pp odd pk+12\frac{p^{k}+1}{2} gcd(n,k)=e(n,k)=e pe12\frac{p^{e}-1}{2} or pe+1p^{e}+1 [10]
pp odd pn+1pm+1+pn12\frac{p^{n}+1}{p^{m}+1}+\frac{p^{n}-1}{2} p3(mod 4)p\equiv 3\,(mod\;4), m|nm|n, nn odd pm+12\frac{p^{m}+1}{2} [10]
pp odd pn3p^{n}-3 any nn 5\leqslant 5 [34], [44]
pp odd pm+2p^{m}+2 n=2mn=2m 22 or 44 [14], [23]
pp odd 2pn212p^{\frac{n}{2}}-1 nn even pn2p^{\frac{n}{2}} [41]
pp odd pn32\frac{p^{n}-3}{2} pn3(mod 4)p^{n}\equiv 3\,(mod\;4), pn7p^{n}\geqslant 7 and pn27p^{n}\neq 27 22 or 33 [43]
pp odd pn+32\frac{p^{n}+3}{2} p5p\geqslant 5, pn1(mod 4)p^{n}\equiv 1\,(mod\;4) 33 [17]
pp odd pn+32\frac{p^{n}+3}{2} pn=11p^{n}=11 or pn3(mod 4)p^{n}\equiv 3\,(mod\;4), p3p\neq 3, pn11p^{n}\neq 11 22 or 44 [42]
pp odd pn+14\frac{p^{n}+1}{4} p3p\neq 3, pn>7p^{n}>7, pn7(mod 8)p^{n}\equiv 7\,(mod\;8) 22 [30], [14]
pp odd 3pn14\frac{3p^{n}-1}{4} p3p\neq 3, pn>7p^{n}>7, pn3(mod 8)p^{n}\equiv 3\,(mod\;8) 22 [30], [14]
pp odd pn+14\frac{p^{n}+1}{4}, 3pn14\frac{3p^{n}-1}{4} p=3p=3 or p>3p>3, pn3(mod 4)p^{n}\equiv 3\,(mod\;4) 44 [1]
any pp k(pm1)k(p^{m}-1) n=2mn=2m, gcd(k,pm+1)=1(k,p^{m}+1)=1 pm2p^{m}-2 [16]

For a polynomial that is not a power function, the investigation of its differential spectrum is much more difficult. There are very few such functions whose differential spectra were known [21], [27]. The main focus of this paper is the Ness-Helleseth function. Let nn be a positive odd integer, d1=3n121d_{1}=\frac{3^{n}-1}{2}-1, d2=3n2d_{2}=3^{n}-2 and u𝔽3nu\in{\mathbb{F}}_{3^{n}}. The Ness-Helleseth function, denoted as fu(x)f_{u}(x), is a binomial over 𝔽3n{\mathbb{F}}_{3^{n}} defined as

fu(x)=uxd1+xd2.f_{u}(x)=ux^{d_{1}}+x^{d_{2}}. (2)

To describe the differential properties of the Ness-Helleseth function fu(x)f_{u}(x) which obviously depend on uu, we define certain sets of uu as in [33]

{𝒰0={u𝔽3n|χ(u+1)χ(u1)},𝒰1={u𝔽3n|χ(u+1)=χ(u1)},𝒰10={u𝔽3n|χ(u+1)=χ(u1)χ(u)},𝒰11={u𝔽3n|χ(u+1)=χ(u1)=χ(u)}.\left\{\begin{array}[]{lcl}\mathcal{U}_{0}=\left\{u\in{\mathbb{F}}_{3^{n}}|\chi(u+1)\neq\chi(u-1)\right\},\\ \mathcal{U}_{1}=\left\{u\in{\mathbb{F}}_{3^{n}}|\chi(u+1)=\chi(u-1)\right\},\\ \mathcal{U}_{10}=\left\{u\in{\mathbb{F}}_{3^{n}}|\chi(u+1)=\chi(u-1)\neq\chi(u)\right\},\\ \mathcal{U}_{11}=\left\{u\in{\mathbb{F}}_{3^{n}}|\chi(u+1)=\chi(u-1)=\chi(u)\right\}.\end{array}\right.

Here χ\chi denotes the quadratic character on 𝔽3n{\mathbb{F}}_{3^{n}}^{*}. It is easy to see that 𝒰0𝒰1=\mathcal{U}_{0}\cap\mathcal{U}_{1}=\emptyset, 𝒰10𝒰11=\mathcal{U}_{10}\cap\mathcal{U}_{11}=\emptyset and 𝒰10𝒰11=𝒰1\mathcal{U}_{10}\cup\mathcal{U}_{11}=\mathcal{U}_{1}.

In 2007, Ness and Helleseth showed that (see [24])

  • 1).

    fuf_{u} is an APN function when u𝒰11u\in\mathcal{U}_{11};

  • 2).

    fuf_{u} is differentially 33-uniform when u𝒰10u\in\mathcal{U}_{10};

  • 3).

    fuf_{u} has differential uniformity at most 4 if u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}.

Moreover, Ness and Helleseth observed by numerical computation that in 1), the constraint imposed on uu, namely u𝒰11u\in\mathcal{U}_{11}, appears to be necessary for fuf_{u} to be an APN function.

In a recent paper [33], Xia et al. conducted a further investigation into the differential properties of the Ness-Helleseth function fuf_{u}. They determined the differential uniformity of fuf_{u} for all u𝔽3nu\in{\mathbb{F}}_{3^{n}} (see [33, Theorem 4]), hence confirming, in particular, that fuf_{u} is indeed APN if and only if u𝒰11u\in\mathcal{U}_{11}. Moreover, for the cases of 1) and 2), they also computed the differential spectrum of fuf_{u} explicitly in terms of a quadratic character sum T(u)T(u) (see [33, Propositions 5 and 6]). However, for u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}, while it was shown that fuf_{u} has differential uniformity 4, the differential spectrum of fuf_{u} remains open. The purpose of this paper is to fill in this gap, that is, in this paper, we will compute the differential spectrum of fuf_{u} explicitly for any u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3} and similar to [33, Propositions 5 and 6], the result will be expressed in terms of quadratic character sums depending on uu.

Let us make a comparison of the methods used in this paper and in [33]. We first remark that for u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}, to determine the differential uniformity of fuf_{u} is already a quite difficult problem, as was shown in [33], the final result involved 32 different quadratic character sums, about one-half of which can not be evaluated easily (see [33, Table V]). Instead, the authors applied Weil’s bound on many of these character sums over finite fields to conclude that the differential uniformity of fuf_{u} is 4. While our paper is based on [33] and can be considered as a refinement, since we are dealing with the differential spectrum which is a much more difficult problem, it is conceivable that the techniques involved in this paper would be even more complicated. This is indeed the case, as will be seen in the proofs later on. In particular, we have found many relations among these 32 character sums, some of which are quite technical and surprising, that help up in computing the differential spectrum.

This paper is organized as follows. Section II presents certain quadratic character sums that are essential for the computation of the differential spectrum. In Section III, the necessary and sufficient conditions of the differential equation to have i(i=0,1,2,3,4)i~{}(i=0,1,2,3,4) solutions are given. The differential spectrum of fuf_{u} is investigated in Section IV. Section V concludes this paper.

II On quadratic character sums

In this section, we will introduce some results on the quadratic character sum over finite fields. Let χ()\chi(\cdot) be the quadratic character of 𝔽pn{\mathbb{F}}_{p^{n}} (pp is an odd prime), which is defined as

χ(x)={1,if x is a square in 𝔽pn,1,if x is a nonsquare in 𝔽pn,0,if x=0.\chi(x)=\left\{\begin{array}[]{cl}1,&\mbox{if }x\mbox{ is a square in }{\mathbb{F}}_{p^{n}}^{*},\\ -1,&\mbox{if }x\mbox{ is a nonsquare in }{\mathbb{F}}_{p^{n}}^{*},\\ 0,&\mbox{if }x=0.\end{array}\right.

Let 𝔽pn[x]{\mathbb{F}}_{p^{n}}[x] be the polynomial ring over 𝔽pn{\mathbb{F}}_{p^{n}}. We consider the character sum of the form

a𝔽pnχ(f(a))\displaystyle\sum_{a\in{\mathbb{F}}_{p^{n}}}\chi(f(a)) (3)

with f𝔽pn[x]f\in{\mathbb{F}}_{p^{n}}[x]. The case of deg(f)=1\deg(f)=1 is trivial, and for deg(f)=2\deg(f)=2, the following explicit formula was established in [20].

Lemma 1.

[20, Theorem 5.48] Let f(x)=a2x2+a1x+a0𝔽q[x]f(x)=a_{2}x^{2}+a_{1}x+a_{0}\in{\mathbb{F}}_{q}[x] with qq odd and a20a_{2}\neq 0. Put d=a124a0a2d=a_{1}^{2}-4a_{0}a_{2} and let χ()\chi(\cdot) be the quadratic character of 𝔽q{\mathbb{F}}_{q}. Then

a𝔽qχ(f(a))={χ(a2),ifd0,(q1)χ(a2),ifd=0.\sum\limits_{a\in{\mathbb{F}}_{q}}\chi(f(a))=\left\{\begin{array}[]{lcl}-\chi(a_{2}),&if\;d\neq 0,\\ (q-1)\chi(a_{2}),&if\;d=0.\\ \end{array}\right.

The character sum plays an important role in determining the differential spectrum of the Ness-Helleseth function. Let p=3p=3 and nn be an odd integer. For any fixed u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}, define gi𝔽3n[x]g_{i}\in{\mathbb{F}}_{3^{n}}[x] (i{1,2,3,4,5}i\in\{1,2,3,4,5\}) as follows:

{g1(x)=(u+1)x,g2(x)=x(x1u),g3(x)=x(x1+u),g4(x)=x2x+u2=(x+1+1u2)(x+11u2),g5(x)=φ(u)(x+u2φ(u))=φ(u)(x+11u2),whereφ(u)=1+1u2.\left\{\begin{array}[]{ll}g_{1}(x)=-(u+1)x,\\ g_{2}(x)=x(x-1-u),\\ g_{3}(x)=x(x-1+u),\\ g_{4}(x)=x^{2}-x+u^{2}=(x+1+\sqrt{1-u^{2}})(x+1-\sqrt{1-u^{2}}),\\ g_{5}(x)=-\varphi(u)(x+\frac{u^{2}}{\varphi(u)})=-\varphi(u)(x+1-\sqrt{1-u^{2}}),\;where\;\varphi(u)=1+\sqrt{1-u^{2}}.\\ \end{array}\right.

Herein and hereafter, for a square x𝔽3nx\in{\mathbb{F}}_{3^{n}}^{*}, we denote by x\sqrt{x} the square root of xx in 𝔽3n{\mathbb{F}}_{3^{n}} such that χ(x)=1\chi(\sqrt{x})=1. Since nn is odd, χ(1)=1\chi(-1)=-1, this x\sqrt{x} is uniquely determined by xx. For u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}, the element 1u21-u^{2} is always a square in 𝔽3n{\mathbb{F}}_{3^{n}}, so 1u2\sqrt{1-u^{2}} is well defined, and we have χ((u+1)φ(u))=χ((u+1+1u2)2)=1\chi((u+1)\varphi(u))=\chi(-(u+1+\sqrt{1-u^{2}})^{2})=-1. Additionally, let A={0,1±u,1±1u2}A=\{0,1\pm u,-1\pm\sqrt{1-u^{2}}\}. It is easy to note that the set AA contains all the zeros of gi(x)g_{i}(x), i=1,2,3,4,5i=1,2,3,4,5. The values of χ(gi(x))\chi(g_{i}(x)) on AA are displayed in the Table II.

TABLE II: The values of χ(gi(x))\chi(g_{i}(x)) on set A
xx χ(g1(x))\chi(g_{1}(x)) χ(g2(x))\chi(g_{2}(x)) χ(g3(x))\chi(g_{3}(x)) χ(g4(x))\chi(g_{4}(x)) χ(g5(x))\chi(g_{5}(x))
0 0 0 0 1 1-1
1+u1+u 1-1 0 χ(u2+u)-\chi(u^{2}+u) χ(uu2)\chi(u-u^{2}) χ((u+1)(1u2)+(u1)2)-\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2})
1u1-u 1-1 χ(uu2)\chi(u-u^{2}) 0 χ(u2+u)-\chi(u^{2}+u) χ((1u)(1u2)+(u+1)2)-\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2})
1+1u2-1+\sqrt{1-u^{2}} 1-1 χ(u)χ(1+u+1u2)-\chi(u)\chi(-1+u+\sqrt{1-u^{2}}) χ(u)χ(1u+1u2)\chi(u)\chi(-1-u+\sqrt{1-u^{2}}) 0 0
11u2-1-\sqrt{1-u^{2}} 1-1 χ(u)χ(1u+1u2)\chi(u)\chi(1-u+\sqrt{1-u^{2}}) χ(u)χ(1+u+1u2)-\chi(u)\chi(1+u+\sqrt{1-u^{2}}) 0 χ(u211u2)\chi(u^{2}-1-\sqrt{1-u^{2}})

For any u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, the following character sums were meticulously computed in [33]:

Lemma 2.

[33] Let u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

  • z𝔽3nχ(g1(z)g2(z))=1,\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z))=-1,

  • z𝔽3nχ(g1(z)g3(z))=1,\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{3}(z))=-1,

  • z𝔽3nχ(g1(z)g5(z))=1,\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{5}(z))=1,

  • z𝔽3nχ(g2(z)g3(z))=2.\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z))=-2.

  • z𝔽3nχ(g1(z)g2(z)g5(z))=2,\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{5}(z))=2,

  • z𝔽3nχ(g1(z)g3(z)g5(z))=2.\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{3}(z)g_{5}(z))=2.

In what follows, we give a series of lemmas on quadratic character sums involving gi(x)g_{i}(x). The first three lemmas can be proved directly.

Lemma 3.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g4(z)g5(z))=χ(φ(u)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{4}(z)g_{5}(z))=-\chi(\varphi(u)).
Proof.

We have,

z𝔽3nχ(g4(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{4}(z)g_{5}(z)) =χ(φ(u))z𝔽3nχ((z+11u2)2(z+1+1u2))\displaystyle=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z+1-\sqrt{1-u^{2}})^{2}(z+1+\sqrt{1-u^{2}}))
=χ(φ(u))z𝔽3n,z1u21χ(z+1+1u2)\displaystyle=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq\sqrt{1-u^{2}}-1}\chi(z+1+\sqrt{1-u^{2}})
=χ(φ(u))χ(1u2)=χ(φ(u)).\displaystyle=-\chi(\varphi(u))\chi(\sqrt{1-u^{2}})=-\chi(\varphi(u)).

Lemma 4.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g1(z)g4(z)g5(z))=1+χ(φ(u)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z)g_{5}(z))=1+\chi(\varphi(u)).
Proof.

We have,

z𝔽3nχ(g1(z)g4(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z)g_{5}(z)) =χ(u+1)χ(φ(u))z𝔽3nχ(z(z+1+1u2)(z+11u2)2)\displaystyle=\chi(u+1)\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z+1+\sqrt{1-u^{2}})(z+1-\sqrt{1-u^{2}})^{2})
=z𝔽3n,z1u21χ(z(z+1+1u2))\displaystyle=-\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq\sqrt{1-u^{2}}-1}\chi(z(z+1+\sqrt{1-u^{2}}))
=(1χ((1u21)(1u2)))\displaystyle=-(-1-\chi((\sqrt{1-u^{2}}-1)(-\sqrt{1-u^{2}})))
=1χ(1u21)=1+χ(φ(u)).\displaystyle=1-\chi(\sqrt{1-u^{2}}-1)=1+\chi(\varphi(u)).

Lemma 5.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g1(z)g3(z)g4(z)g5(z))=2χ((1u2+1+u)),\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{3}(z)g_{4}(z)g_{5}(z))=2-\chi((\sqrt{1-u^{2}}+1+u)),

and

z𝔽3nχ(g1(z)g2(z)g4(z)g5(z))=2χ((1u2+1u)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{4}(z)g_{5}(z))=2-\chi((\sqrt{1-u^{2}}+1-u)).
Proof.

We only prove the first identity, as the proof of the second is very similar.

z𝔽3nχ(g1(z)g3(z)g4(z)g5(z))=\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{3}(z)g_{4}(z)g_{5}(z))= χ((u+1)φ(u))z𝔽3nχ((z1+u)(z+1+1u2)z2(z+11u2)2)\displaystyle\chi((u+1)\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1+u)(z+1+\sqrt{1-u^{2}})z^{2}(z+1-\sqrt{1-u^{2}})^{2})
=\displaystyle= z𝔽3n,z1u21χ((z1+u)(z+1+1u2))\displaystyle-\sum_{z\in{\mathbb{F}}_{3^{n}}^{*},z\neq\sqrt{1-u^{2}}-1}\chi((z-1+u)(z+1+\sqrt{1-u^{2}}))
=\displaystyle= z𝔽3nχ((z1+u)(z+1+1u2))\displaystyle-\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1+u)(z+1+\sqrt{1-u^{2}}))
+χ((u1)φ(u))+χ((1u2+1+u)(1u2))\displaystyle+\chi((u-1)\varphi(u))+\chi((\sqrt{1-u^{2}}+1+u)(-\sqrt{1-u^{2}}))
=\displaystyle= 1χ((u+1)φ(u))χ((1u2+1+u))\displaystyle 1-\chi((u+1)\varphi(u))-\chi((\sqrt{1-u^{2}}+1+u))
=\displaystyle= 2χ((1u2+1+u)).\displaystyle 2-\chi((\sqrt{1-u^{2}}+1+u)).

Lemma 6.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g2(z)g3(z)g4(z))=2.\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z))=-2.
Proof.

We have,

z𝔽3nχ(g2(z)g3(z)g4(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z)) =z𝔽3nχ(z2(z1+u)(z1u)(z2z+u2))\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{2}(z-1+u)(z-1-u)(z^{2}-z+u^{2}))
=z𝔽3nχ((z1+u)(z1u)(z2z+u2))\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi((z-1+u)(z-1-u)(z^{2}-z+u^{2}))
=z𝔽3n,z1±uχ(z2z+u2z2+z+1u2)\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}^{*},z\neq 1\pm u}\chi(\frac{z^{2}-z+u^{2}}{z^{2}+z+1-u^{2}})
=z𝔽3n,z1±uχ(z2z+u2z2+z+1u2)χ(u21u2).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq 1\pm u}\chi(\frac{z^{2}-z+u^{2}}{z^{2}+z+1-u^{2}})-\chi(\frac{u^{2}}{1-u^{2}}).

Let t=z2z+u2z2+z+1u2t=\frac{z^{2}-z+u^{2}}{z^{2}+z+1-u^{2}}. Then (t1)z2+(t+1)z+t(1u2)u2=0(t-1)z^{2}+(t+1)z+t(1-u^{2})-u^{2}=0. We know that t=1t=1 if and only if z=1+u2z=1+u^{2}. When t1t\neq 1, the discriminant of the quadratic equation on zz is Δt=(t+1)2(t1)(t(1u2)u2)=u2t2+1u2\Delta_{t}=(t+1)^{2}-(t-1)(t(1-u^{2})-u^{2})=u^{2}t^{2}+1-u^{2}. The number of zz with a fixed t1t\neq 1 is 1+χ(Δt)1+\chi(\Delta_{t}). Hence, we have

z𝔽3nχ(g2(z)g3(z)g4(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z)) =z𝔽3n,z1±uχ(z2z+u2z2+z+1u2)χ(u21u2)\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq 1\pm u}\chi(\frac{z^{2}-z+u^{2}}{z^{2}+z+1-u^{2}})-\chi(\frac{u^{2}}{1-u^{2}})
=t𝔽3n,t1χ(t)(1+χ(Δt))χ(u21u2)\displaystyle=\sum_{t\in{\mathbb{F}}_{3^{n}},t\neq 1}\chi(t)(1+\chi(\Delta_{t}))-\chi(\frac{u^{2}}{1-u^{2}})
=t𝔽3nχ(t)(1+χ(Δt))χ(1)χ(u21u2)\displaystyle=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t)(1+\chi(\Delta_{t}))-\chi(1)-\chi(\frac{u^{2}}{1-u^{2}})
=t𝔽3nχ(t)+t𝔽3nχ(t(u2t2+1u2))χ(1)χ(u21u2).\displaystyle=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t)+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(u^{2}t^{2}+1-u^{2}))-\chi(1)-\chi(\frac{u^{2}}{1-u^{2}}).

Note that t𝔽3nχ(t(u2t2+1u2))=t𝔽3nχ(t(u2t2+1u2))=t𝔽3nχ(t(u2t2+1u2))\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(u^{2}t^{2}+1-u^{2}))=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(-t(u^{2}t^{2}+1-u^{2}))=-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(u^{2}t^{2}+1-u^{2})), then t𝔽3nχ(t(u2t2+1u2))=0\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(u^{2}t^{2}+1-u^{2}))=0. This with χ(u21u2)=1\chi(\frac{u^{2}}{1-u^{2}})=1 leads to z𝔽3nχ(g2(z)g3(z)g4(z))=2\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z))=-2. ∎

Lemma 7.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g1(z)g4(z))+z𝔽3nχ(g1(z)g2(z)g3(z))=0.\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z))=0.
Proof.

First,

z𝔽3nχ(g1(z)g4(z))=χ(u+1)z𝔽3nχ(z(z2z+u2)),\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z))=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-z+u^{2})),

and

z𝔽3nχ(g1(z)g2(z)g3(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)) =χ(u+1)z𝔽3nχ(z3(z(u+1))(z+(u1)))\displaystyle=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{3}(z-(u+1))(z+(u-1)))
=χ(u+1)z𝔽3nχ(z(z2+z+1u2)).\displaystyle=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi(z(z^{2}+z+1-u^{2})).

Note that

z𝔽3nχ(z(z2+z+1u2))=z𝔽3nχ(z(z2z+1u2))=z𝔽3nχ(z2z+1u2z).\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi(z(z^{2}+z+1-u^{2}))=-\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi(z(z^{2}-z+1-u^{2}))=-\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi(\frac{z^{2}-z+1-u^{2}}{z}).

Let z2z+1u2z=t\frac{z^{2}-z+1-u^{2}}{z}=t. Then tt satisfies the quadratic equation

z2(t+1)z+1u2=0.z^{2}-(t+1)z+1-u^{2}=0.

Clearly, z=0z=0 is not the solution of this quadratic equation for any t𝔽3nt\in{\mathbb{F}}_{3^{n}} since u𝔽3u\notin{\mathbb{F}}_{3}. For each tt, the number of solutions of zz is 1+χ(Δt)1+\chi(\Delta_{t}), where Δt=(t+1)2(1u2)=t2t+u2\Delta_{t}=(t+1)^{2}-(1-u^{2})=t^{2}-t+u^{2}. Hence

z𝔽3nχ(z2z+1u2z)=t𝔽3nχ(t)(1+χ(Δt))=t𝔽3nχ(tΔt)=t𝔽3nχ(t(t2t+u2)).\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi(\frac{z^{2}-z+1-u^{2}}{z})=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t)(1+\chi(\Delta_{t}))=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t\Delta_{t})=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}-t+u^{2})).

The desired result follows. ∎

Lemma 8.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g2(z)g4(z))+z𝔽3nχ(g1(z)g2(z)g4(z))=2,\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{4}(z))=-2,

and

z𝔽3nχ(g3(z)g4(z))+z𝔽3nχ(g1(z)g3(z)g4(z))=2.\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{3}(z)g_{4}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{3}(z)g_{4}(z))=-2.
Proof.

We only prove the first identity. The proof of the second one is similar, so we omit it. Note that

z𝔽3nχ(g2(z)g4(z))=z𝔽3nχ(z(z1u)(z2z+u2)),\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z))=\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z^{2}-z+u^{2})),

and

z𝔽3nχ(g1(z)g2(z)g4(z))=χ(u+1)z𝔽3nχ(z2(z1u)(z2z+u2)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{4}(z))=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{2}(z-1-u)(z^{2}-z+u^{2})).

We have

z𝔽3nχ(g1(z)g2(z)g4(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{4}(z)) =χ(u+1)z𝔽3nχ((z1u)(z2z+u2))\displaystyle=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi((z-1-u)(z^{2}-z+u^{2}))
=χ(u+1)z𝔽3n,z1uχ(z((z+1+u)2(z+1+u)+u2))\displaystyle=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq-1-u}\chi(z((z+1+u)^{2}-(z+1+u)+u^{2}))
=χ(u+1)z𝔽3n,z1uχ(z(z2(u1)z(u2u)))\displaystyle=-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq-1-u}\chi(z(z^{2}-(u-1)z-(u^{2}-u)))
=χ(u+1)(z𝔽3nχ(z(z2(u1)z(u2u))χ((u+1)u2)))\displaystyle=-\chi(u+1)(\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-(u-1)z-(u^{2}-u))-\chi(-(u+1)u^{2})))
=1χ(u+1)z𝔽3nχ(z(z2(u1)z(u2u))),\displaystyle=-1-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-(u-1)z-(u^{2}-u))),

and

z𝔽3nχ(g2(z)g4(z))=z𝔽3nχ(z(z1u)(z2z+u2))=z𝔽3n,zu+1χ(z2z+u2z(z1u)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z))=\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z^{2}-z+u^{2}))=\sum_{z\in{\mathbb{F}}_{3^{n}}^{*},z\neq u+1}\chi(\frac{z^{2}-z+u^{2}}{z(z-1-u)}).

Let z2z+u2z(z1u)=t\frac{z^{2}-z+u^{2}}{z(z-1-u)}=t. Then tt satisfies

(t1)z2+(1(u+1)t)zu2=0.(t-1)z^{2}+(1-(u+1)t)z-u^{2}=0.

We know that t=1t=1 if and only if z=uz=-u. When t1t\neq 1, the discriminant of the quadratic equation on zz is Δt=(1(u+1)t)2+(t1)u2=(u+1)2t2+(u1)2t+1u2\Delta_{t}=(1-(u+1)t)^{2}+(t-1)u^{2}=(u+1)^{2}t^{2}+(u-1)^{2}t+1-u^{2}. The number of zz with a fixed t1t\neq 1 is 1+χ(Δt)1+\chi(\Delta_{t}). Hence, we have

z𝔽3nχ(g2(z)g4(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z)) =z𝔽3n,zu+1χ(z2z+u2z(z1u))\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}^{*},z\neq u+1}\chi(\frac{z^{2}-z+u^{2}}{z(z-1-u)})
=1+t𝔽3n,t1χ(t)(1+χ(Δt))\displaystyle=1+\sum_{t\in{\mathbb{F}}_{3^{n}},t\neq 1}\chi(t)(1+\chi(\Delta_{t}))
=1+t𝔽3nχ(t)(1+χ(Δt))(1+χ(u2))\displaystyle=1+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t)(1+\chi(\Delta_{t}))-(1+\chi(u^{2}))
=t𝔽3nχ(t)(1+χ(Δt))1.\displaystyle=\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t)(1+\chi(\Delta_{t}))-1.

Note that t𝔽3nχ(tΔt)=t𝔽3nχ(t((u+1)2t2+(u1)2t+1u2))=t𝔽3nχ((u+1)2t2+(u1)2t+1u2t)\sum\limits_{t\in{\mathbb{F}}_{3^{n}}}\chi(t\Delta_{t})=\sum\limits_{t\in{\mathbb{F}}_{3^{n}}}\chi(t((u+1)^{2}t^{2}+(u-1)^{2}t+1-u^{2}))=\sum\limits_{t\in{\mathbb{F}}_{3^{n}}^{*}}\chi(\frac{(u+1)^{2}t^{2}+(u-1)^{2}t+1-u^{2}}{t}). Let v=(u+1)2t2+(u1)2t+1u2tv=\frac{(u+1)^{2}t^{2}+(u-1)^{2}t+1-u^{2}}{t}. Then

(u+1)2t2+((u1)2v)t+(1u2)=0,(u+1)^{2}t^{2}+((u-1)^{2}-v)t+(1-u^{2})=0,

which is a quadratic equation on tt. Δv=((u1)2v)2(u+1)2(1u2)=v2+(u1)2v(u1)u3.\Delta_{v}=((u-1)^{2}-v)^{2}-(u+1)^{2}(1-u^{2})=v^{2}+(u-1)^{2}v-(u-1)u^{3}. Then

t𝔽3nχ(tΔt)\displaystyle\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t\Delta_{t}) =v𝔽3nχ(v(1+χ(Δv)))\displaystyle=\sum_{v\in{\mathbb{F}}_{3^{n}}}\chi(v(1+\chi(\Delta_{v})))
=v𝔽3nχ(v(v2+(u1)2v(u1)u3))\displaystyle=\sum_{v\in{\mathbb{F}}_{3^{n}}}\chi(v(v^{2}+(u-1)^{2}v-(u-1)u^{3}))
=w𝔽3nχ((u1)2w((u1)4w2+(u1)4w(u1)u3))\displaystyle=\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi((u-1)^{2}w((u-1)^{4}w^{2}+(u-1)^{4}w-(u-1)u^{3}))
=w𝔽3nχ(w(w2+wu3(u1)3))\displaystyle=\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(w(w^{2}+w-\frac{u^{3}}{(u-1)^{3}}))
=w𝔽3nχ(w1/3((w1/3)2+w1/3u3(u1)3))\displaystyle=\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(w^{1/3}((w^{1/3})^{2}+w^{1/3}-\frac{u^{3}}{(u-1)^{3}}))
=w𝔽3nχ(w(w2+wuu1))\displaystyle=\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(w(w^{2}+w-\frac{u}{u-1}))
=w𝔽3nχ(wu1((wu1)2+wu1uu1))\displaystyle=\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(\frac{w}{u-1}((\frac{w}{u-1})^{2}+\frac{w}{u-1}-\frac{u}{u-1}))
=χ(u1)w𝔽3nχ(w(w2+(u1)w(u2u)))\displaystyle=\chi(u-1)\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(w(w^{2}+(u-1)w-(u^{2}-u)))
=χ(u1)w𝔽3nχ(w(w2(u1)w(u2u))).\displaystyle=-\chi(u-1)\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(w(w^{2}-(u-1)w-(u^{2}-u))).

We conclude that

z𝔽3nχ(g1(z)g2(z)g4(z))=1χ(u+1)z𝔽3nχ(z(z2(u1)z(u2u))),\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{4}(z))=-1-\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-(u-1)z-(u^{2}-u))),

and

z𝔽3nχ(g2(z)g4(z))=1χ(u1)w𝔽3nχ(w(w2(u1)w(u2u))).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z))=-1-\chi(u-1)\sum_{w\in{\mathbb{F}}_{3^{n}}}\chi(w(w^{2}-(u-1)w-(u^{2}-u))).

Then we have

z𝔽3nχ(g2(z)g4(z))+z𝔽3nχ(g1(z)g2(z)g4(z))=2.\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{4}(z))=-2.

Lemma 9.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g2(z)g3(z)g5(z))+z𝔽3nχ(g1(z)g2(z)g3(z)g5(z))=2.\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{5}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{5}(z))=2.
Proof.

Note that

z𝔽3nχ(g2(z)g3(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{5}(z))
=χ(φ(u))z𝔽3nχ(z2(z1u)(z1+u)(z+11u2))\displaystyle=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{2}(z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}}))
=χ(φ(u))z𝔽3nχ((z1u)(z1+u)(z+11u2))\displaystyle=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi((z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}}))
=χ(φ(u))(χ((1u)(1+u)(11u2))+z𝔽3nχ((z1u)(z1+u)(z+11u2)))\displaystyle=-\chi(\varphi(u))(-\chi((-1-u)(-1+u)(1-\sqrt{1-u^{2}}))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}})))
=1χ(φ(u))z𝔽3nχ((z1u)(z1+u)(z+11u2)),\displaystyle=1-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}})),

and

z𝔽3nχ((z1u)(z1+u)(z+11u2))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}}))
=\displaystyle= z𝔽3nχ((z+1u2+1u)(z+1u2+1+u)z)\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z+\sqrt{1-u^{2}}+1-u)(z+\sqrt{1-u^{2}}+1+u)z)
=\displaystyle= z𝔽3nχ(z(z2(1u2+1)z+(u211u2)))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-(\sqrt{1-u^{2}}+1)z+(u^{2}-1-\sqrt{1-u^{2}})))
=\displaystyle= χ(1u2+1)z𝔽3nχ(z(z2z+u2+11u2u2)).\displaystyle\chi(\sqrt{1-u^{2}}+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-z+\frac{-u^{2}+1-\sqrt{1-u^{2}}}{u^{2}})).

Then

z𝔽3nχ(g2(z)g3(z)g5(z))=1z𝔽3nχ(z(z2z+u2+11u2u2)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{5}(z))=1-\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-z+\frac{-u^{2}+1-\sqrt{1-u^{2}}}{u^{2}})).

Moreover,

z𝔽3nχ(g1(z)g2(z)g3(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{5}(z))
=\displaystyle= χ(u+1)χ(φ(u))z𝔽3nχ(z3(z1u)(z1+u)(z+11u2))\displaystyle\chi(u+1)\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{3}(z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}}))
=\displaystyle= z𝔽3nχ(z(z1u)(z1+u)(z+11u2))\displaystyle-\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z-1+u)(z+1-\sqrt{1-u^{2}}))
=\displaystyle= t𝔽3nχ(1t(1t1u)(1t1+u)(1t+11u2))\displaystyle-\sum_{t\in{\mathbb{F}}_{3^{n}}^{*}}\chi(\frac{1}{t}(\frac{1}{t}-1-u)(\frac{1}{t}-1+u)(\frac{1}{t}+1-\sqrt{1-u^{2}}))
=\displaystyle= t𝔽3nχ((1(1+u)t)(1(1u)t)(1+(11u2)t))\displaystyle-\sum_{t\in{\mathbb{F}}_{3^{n}}^{*}}\chi((1-(1+u)t)(1-(1-u)t)(1+(1-\sqrt{1-u^{2}})t))
=\displaystyle= 1t𝔽3nχ((1(1+u)t)(1(1u)t)(1+(11u2)t))\displaystyle 1-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi((1-(1+u)t)(1-(1-u)t)(1+(1-\sqrt{1-u^{2}})t))
=\displaystyle= 1χ((1+u)(1u)(11u2))t𝔽3nχ((11+ut)(11ut)(111u2+t))\displaystyle 1-\chi((1+u)(1-u)(1-\sqrt{1-u^{2}}))\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi((\frac{1}{1+u}-t)(\frac{1}{1-u}-t)(\frac{1}{1-\sqrt{1-u^{2}}}+t))
=\displaystyle= 1χ(11u2)t𝔽3nχ((t11+u)(t11u)(t+111u2))\displaystyle 1-\chi(1-\sqrt{1-u^{2}})\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi((t-\frac{1}{1+u})(t-\frac{1}{1-u})(t+\frac{1}{1-\sqrt{1-u^{2}}}))
=\displaystyle= 1χ(11u2)t𝔽3nχ((t111u211+u)(t111u211u)t)\displaystyle 1-\chi(1-\sqrt{1-u^{2}})\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi((t-\frac{1}{1-\sqrt{1-u^{2}}}-\frac{1}{1+u})(t-\frac{1}{1-\sqrt{1-u^{2}}}-\frac{1}{1-u})t)
=\displaystyle= 1χ(11u2)t𝔽3nχ(t(t2+1+(1u2)1u2u2(1u2)tu4+u2+1+1u2u4(1u2)))\displaystyle 1-\chi(1-\sqrt{1-u^{2}})\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+\frac{1+(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})}t-\frac{u^{4}+u^{2}+1+\sqrt{1-u^{2}}}{u^{4}(1-u^{2})}))
=\displaystyle= 1χ(11u2)χ(1+(1u2)1u2u2(1u2))\displaystyle 1-\chi(1-\sqrt{1-u^{2}})\chi(\frac{1+(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})})
t𝔽3nχ(t(t2+tu4+u2+1+1u2u4(1u2)/(1+(1u2)1u2u2(1u2))2))\displaystyle\cdot\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t-\frac{u^{4}+u^{2}+1+\sqrt{1-u^{2}}}{u^{4}(1-u^{2})}/(\frac{1+(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})})^{2}))
=\displaystyle= 1t𝔽3nχ(t(t2+tu4+u2+1+1u2u4(1u2)/(1+(1u2)1u2u2(1u2))2))\displaystyle 1-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t-\frac{u^{4}+u^{2}+1+\sqrt{1-u^{2}}}{u^{4}(1-u^{2})}/(\frac{1+(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})})^{2}))
=\displaystyle= 1t𝔽3nχ(t(t2+t+(u21)3(1u2)3u6))\displaystyle 1-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+\frac{-(u^{2}-1)^{3}-(\sqrt{1-u^{2}})^{3}}{u^{6}}))
=\displaystyle= 1t𝔽3nχ(t(t2+t+u2+11u2u2))\displaystyle 1-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+\frac{-u^{2}+1-\sqrt{1-u^{2}}}{u^{2}}))
=\displaystyle= 1+t𝔽3nχ(t(t2t+u2+11u2u2)).\displaystyle 1+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}-t+\frac{-u^{2}+1-\sqrt{1-u^{2}}}{u^{2}})).

The desired result follows. ∎

Lemma 10.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g2(z)g3(z)g4(z)g5(z))+z𝔽3nχ(g1(z)g2(z)g3(z)g4(z)g5(z))=2.\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z)g_{5}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z)g_{5}(z))=2.
Proof.

We have

z𝔽3nχ(g2(z)g3(z)g4(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z)g_{5}(z))
=\displaystyle= χ(φ(u))z𝔽3nχ(z2(z1u)(z1+u)(z+1+1u2)(z+11u2)2)\displaystyle-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{2}(z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}})(z+1-\sqrt{1-u^{2}})^{2})
=\displaystyle= χ(φ(u))z𝔽3n,z0,z1u21χ((z1u)(z1+u)(z+1+1u2))\displaystyle-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq 0,z\neq\sqrt{1-u^{2}}-1}\chi((z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}}))
=\displaystyle= χ(φ(u))(χ((1u)(1+u)(1+1u2))χ((1u2+1u)(1u2+1+u)(1u2))\displaystyle-\chi(\varphi(u))(-\chi((-1-u)(-1+u)(1+\sqrt{1-u^{2}}))-\chi((\sqrt{1-u^{2}}+1-u)(\sqrt{1-u^{2}}+1+u)(-\sqrt{1-u^{2}}))
+z𝔽3nχ((z1u)(z1+u)(z+1+1u2)))\displaystyle+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}})))
=\displaystyle= 2χ(φ(u))z𝔽3nχ((z1u)(z1+u)(z+1+1u2)).\displaystyle 2-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}})).

Note that

z𝔽3nχ((z1u)(z1+u)(z+1+1u2))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi((z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}}))
=\displaystyle= z𝔽3nχ(z(z+11u2u)(z+11u2+u))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z+1-\sqrt{1-u^{2}}-u)(z+1-\sqrt{1-u^{2}}+u))
=\displaystyle= z𝔽3nχ(z(z2+(1u21)z+(u21+1u2)))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}+(\sqrt{1-u^{2}}-1)z+(u^{2}-1+\sqrt{1-u^{2}})))
=\displaystyle= χ(1u21)z𝔽3nχ(z(z2+z+1u2+1u2u2)).\displaystyle\chi(\sqrt{1-u^{2}}-1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}+z+\frac{1-u^{2}+\sqrt{1-u^{2}}}{u^{2}})).

Then

z𝔽3nχ(g2(z)g3(z)g4(z)g5(z))=2+z𝔽3nχ(z(z2+z+1u2+1u2u2)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{3}(z)g_{4}(z)g_{5}(z))=2+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}+z+\frac{1-u^{2}+\sqrt{1-u^{2}}}{u^{2}})).

Moreover,

z𝔽3nχ(g1(z)g2(z)g3(z)g4(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z)g_{5}(z))
=χ(φ(u))χ(u+1)z𝔽3nχ(z3(z1u)(z1+u)(z+1+1u2)(z+11u2)2)\displaystyle=\chi(\varphi(u))\chi(u+1)\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{3}(z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}})(z+1-\sqrt{1-u^{2}})^{2})
=z𝔽3n,z1u21χ(z(z1u)(z1+u)(z+1+1u2))\displaystyle=-\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq\sqrt{1-u^{2}}-1}\chi(z(z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}}))
=(χ((1u21)(1u2+1u)(1u2+1+u)(1u2))\displaystyle=-(-\chi((\sqrt{1-u^{2}}-1)(\sqrt{1-u^{2}}+1-u)(\sqrt{1-u^{2}}+1+u)(-\sqrt{1-u^{2}}))
+z𝔽3nχ(z(z1u)(z1+u)(z+1+1u2)))\displaystyle\quad+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}})))
=1z𝔽3nχ(z(z1u)(z1+u)(z+1+1u2)).\displaystyle=-1-\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}})).

Note that

z𝔽3nχ(z(z1u)(z1+u)(z+1+1u2))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z-1+u)(z+1+\sqrt{1-u^{2}}))
=\displaystyle= t𝔽3nχ(1t(1t1u)(1t1+u)(1t+1+1u2))\displaystyle\sum_{t\in{\mathbb{F}}_{3^{n}}^{*}}\chi(\frac{1}{t}(\frac{1}{t}-1-u)(\frac{1}{t}-1+u)(\frac{1}{t}+1+\sqrt{1-u^{2}}))
=\displaystyle= t𝔽3nχ((1(1+u)t)(1(1u)t)(1+(1+1u2)t))\displaystyle\sum_{t\in{\mathbb{F}}_{3^{n}}^{*}}\chi((1-(1+u)t)(1-(1-u)t)(1+(1+\sqrt{1-u^{2}})t))
=\displaystyle= 1+t𝔽3nχ((1(1+u)t)(1(1u)t)(1+(1+1u2)t))\displaystyle-1+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi((1-(1+u)t)(1-(1-u)t)(1+(1+\sqrt{1-u^{2}})t))
=\displaystyle= 1+χ(1+u)χ(1u)χ(1+1u2)t𝔽3nχ((t11+u)(t11u)(t+11+1u2))\displaystyle-1+\chi(1+u)\chi(1-u)\chi(1+\sqrt{1-u^{2}})\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi((t-\frac{1}{1+u})(t-\frac{1}{1-u})(t+\frac{1}{1+\sqrt{1-u^{2}}}))
=\displaystyle= 1+χ(1+1u2)t𝔽3nχ(t(t11+1u211+u)(t11+1u211u))\displaystyle-1+\chi(1+\sqrt{1-u^{2}})\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t-\frac{1}{1+\sqrt{1-u^{2}}}-\frac{1}{1+u})(t-\frac{1}{1+\sqrt{1-u^{2}}}-\frac{1}{1-u}))
=\displaystyle= 1+χ(1+1u2)t𝔽3nχ(t(t2+1(1u2)1u2u2(1u2)t+u4u21+1u2u4(1u2)))\displaystyle-1+\chi(1+\sqrt{1-u^{2}})\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+\frac{1-(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})}t+\frac{-u^{4}-u^{2}-1+\sqrt{1-u^{2}}}{u^{4}(1-u^{2})}))
=\displaystyle= 1+χ(1+1u2)χ(1(1u2)1u2u2(1u2))\displaystyle-1+\chi(1+\sqrt{1-u^{2}})\chi(\frac{1-(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})})
t𝔽3nχ(t(t2+t+u4u21+1u2u4(1u2)/(1(1u2)1u2u2(1u2))2))\displaystyle\cdot\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+\frac{-u^{4}-u^{2}-1+\sqrt{1-u^{2}}}{u^{4}(1-u^{2})}/(\frac{1-(1-u^{2})\sqrt{1-u^{2}}}{u^{2}(1-u^{2})})^{2}))
=\displaystyle= 1+t𝔽3nχ(t(t2+t+(1u211u2)3))\displaystyle-1+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+(\frac{\sqrt{1-u^{2}}}{1-\sqrt{1-u^{2}}})^{3}))
=\displaystyle= 1+t𝔽3nχ(t(t2+t+1u211u2))\displaystyle-1+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+\frac{\sqrt{1-u^{2}}}{1-\sqrt{1-u^{2}}}))
=\displaystyle= 1+t𝔽3nχ(t(t2+t+1u2+1u2u2)).\displaystyle-1+\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+\frac{1-u^{2}+\sqrt{1-u^{2}}}{u^{2}})).

Then

z𝔽3nχ(g1(z)g2(z)g3(z)g4(z)g5(z))=t𝔽3nχ(t(t2+t+1u2+1u2u2)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z)g_{5}(z))=-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+t+\frac{1-u^{2}+\sqrt{1-u^{2}}}{u^{2}})).

The desired result follows. ∎

Lemma 11.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, we have

z𝔽3nχ(g2(z)g5(z))+z𝔽3nχ(g3(z)g4(z)g5(z))=χ(1u2+1+u),\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{5}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{3}(z)g_{4}(z)g_{5}(z))=\chi(\sqrt{1-u^{2}}+1+u),

and

z𝔽3nχ(g3(z)g5(z))+z𝔽3nχ(g2(z)g4(z)g5(z))=χ(1u2+1u).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{3}(z)g_{5}(z))+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{4}(z)g_{5}(z))=\chi(\sqrt{1-u^{2}}+1-u).
Proof.

We only prove the first identity, as the proof of the second is very similar.

z𝔽3nχ(g2(z)g5(z))=χ(φ(u))z𝔽3nχ(z(z1u)(z+11u2)).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{5}(z))=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z+1-\sqrt{1-u^{2}})).

Note that

z𝔽3nχ(z(z1u)(z+11u2))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z+1-\sqrt{1-u^{2}}))
=\displaystyle= z𝔽3nχ(z(z2(u+1u2)z(u+1)(11u2)))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}-(u+\sqrt{1-u^{2}})z-(u+1)(1-\sqrt{1-u^{2}})))
=\displaystyle= z𝔽3nχ(z2(u+1u2)z(u+1)(11u2)z).\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}^{*}}\chi(\frac{z^{2}-(u+\sqrt{1-u^{2}})z-(u+1)(1-\sqrt{1-u^{2}})}{z}).

Let t=z2(u+1u2)z(u+1)(11u2)zt=\frac{z^{2}-(u+\sqrt{1-u^{2}})z-(u+1)(1-\sqrt{1-u^{2}})}{z}. Then

z2(t+u+1u2)z(u+1)(11u2)=0,z^{2}-(t+u+\sqrt{1-u^{2}})z-(u+1)(1-\sqrt{1-u^{2}})=0,

and Δt=(t+u+1u2)2+(u+1)(11u2)=t2(u+1u2)t+(u1)(1+1u2)\Delta_{t}=(t+u+\sqrt{1-u^{2}})^{2}+(u+1)(1-\sqrt{1-u^{2}})=t^{2}-(u+\sqrt{1-u^{2}})t+(u-1)(1+\sqrt{1-u^{2}}).
We have

z𝔽3nχ(z(z1u)(z+11u2))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1-u)(z+1-\sqrt{1-u^{2}}))
=\displaystyle= t𝔽3nχ(t)(1+χ(Δt))\displaystyle\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t)(1+\chi(\Delta_{t}))
=\displaystyle= t𝔽3nχ(t(t2(u+1u2)t+(u1)(1+1u2)))\displaystyle\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}-(u+\sqrt{1-u^{2}})t+(u-1)(1+\sqrt{1-u^{2}})))
=\displaystyle= t𝔽3nχ(t(t2+(u+1u2)t+(u1)(1+1u2))),\displaystyle-\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+(u+\sqrt{1-u^{2}})t+(u-1)(1+\sqrt{1-u^{2}}))),

then

z𝔽3nχ(g2(z)g5(z))=χ(φ(u))t𝔽3nχ(t(t2+(u+1u2)t+(u1)(1+1u2))).\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{2}(z)g_{5}(z))=\chi(\varphi(u))\sum_{t\in{\mathbb{F}}_{3^{n}}}\chi(t(t^{2}+(u+\sqrt{1-u^{2}})t+(u-1)(1+\sqrt{1-u^{2}}))).

On the other hand,

z𝔽3nχ(g3(z)g4(z)g5(z))\displaystyle\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{3}(z)g_{4}(z)g_{5}(z))
=χ(φ(u))z𝔽3nχ(z(z1+u)(z+1+1u2)(z+11u2)2)\displaystyle=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1+u)(z+1+\sqrt{1-u^{2}})(z+1-\sqrt{1-u^{2}})^{2})
=χ(φ(u))z𝔽3n,z1u21χ(z(z1+u)(z+1+1u2))\displaystyle=-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}},z\neq\sqrt{1-u^{2}}-1}\chi(z(z-1+u)(z+1+\sqrt{1-u^{2}}))
=χ(φ(u))(χ((1u21)(1u2+1+u)(1u2))\displaystyle=-\chi(\varphi(u))(-\chi((\sqrt{1-u^{2}}-1)(\sqrt{1-u^{2}}+1+u)(-\sqrt{1-u^{2}}))
+z𝔽3nχ(z(z1+u)(z+1+1u2)))\displaystyle\quad+\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z-1+u)(z+1+\sqrt{1-u^{2}})))
=χ(1u2+1+u)χ(φ(u))z𝔽3nχ(z(z2+(u+1u2)z+(u1)(1+1u2))).\displaystyle=\chi(\sqrt{1-u^{2}}+1+u)-\chi(\varphi(u))\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(z(z^{2}+(u+\sqrt{1-u^{2}})z+(u-1)(1+\sqrt{1-u^{2}}))).

Hence, the first identity ensues. ∎

III On the number of solutions of the differential equation of fuf_{u}

Let nn be a positive odd integer, u𝔽3nu\in{\mathbb{F}}_{3^{n}}. Recall that the Ness-Helleseth function is defined as

fu(x)=uxd1+xd2,f_{u}(x)=ux^{d_{1}}+x^{d_{2}},

where d1=3n121d_{1}=\frac{3^{n}-1}{2}-1 and d2=3n2d_{2}=3^{n}-2. To determine the differential spectrum of fu(x)f_{u}(x), attention should be given to the differential equation

𝔻afu(x)=u(x+a)3n121+(x+a)3n2ux3n121x3n2=b,\displaystyle\mathbb{D}_{a}f_{u}(x)=u(x+a)^{\frac{3^{n}-1}{2}-1}+(x+a)^{3^{n}-2}-ux^{\frac{3^{n}-1}{2}-1}-x^{3^{n}-2}=b, (4)

where (a,b)𝔽3n×𝔽3n(a,b)\in{\mathbb{F}}_{3^{n}}^{*}\times{\mathbb{F}}_{3^{n}}. This equation was studied in [33]. For the sake of completeness, we give some details here.

We denote by N(a,b)N(a,b), N1(a,b)N_{1}(a,b) and N2(a,b)N_{2}(a,b) the numbers of solutions of (4) in the sets 𝔽3n{\mathbb{F}}_{3^{n}}, {0,a}\{0,-a\} and 𝔽3n\{0,a}{\mathbb{F}}_{3^{n}}\backslash\{0,-a\} respectively. Then

N(a,b)=N1(a,b)+N2(a,b).N(a,b)=N_{1}(a,b)+N_{2}(a,b).

The following lemma is given in [33].

Lemma 12.

[33, Lemma 3] The value of N1(a,b)N_{1}(a,b) is determined as follows:

N1(a,b)={2,ifb=a1andu=0,1,ifb=a1(1±uχ(a))andu0,0,otherwise.N_{1}(a,b)=\left\{\begin{array}[]{ll}2,&if\;b=a^{-1}\;and\;u=0,\\ 1,&if\;b=a^{-1}(1\pm u\chi(a))\;and\;u\neq 0,\\ 0,&otherwise.\end{array}\right.

When b=0b=0, the value of N2(a,b)N_{2}(a,b) is given as

N2(a,0)={3n34,ifu{±1},0,ifu𝒰0\{±1}.N_{2}(a,0)=\left\{\begin{array}[]{ll}\frac{3^{n}-3}{4},&if\;u\in\{\pm 1\},\\ 0,&if\;u\in\mathcal{U}_{0}\backslash\{\pm 1\}.\\ \end{array}\right.

What needs to be calculated is N2(a,b)N_{2}(a,b) for b𝔽3nb\in{\mathbb{F}}_{3^{n}}^{*}. When x{0,a}x\notin\{0,-a\}, the differential equation is equivalent to

u(x+a)3n12x+xux3n12(x+a)(x+a)=bx(x+a),u(x+a)^{\frac{3^{n}-1}{2}}x+x-ux^{\frac{3^{n}-1}{2}}(x+a)-(x+a)=bx(x+a),

which can be simplified as

bx2+(bau(τaτ0))x+a(uτ0+1)=0,\displaystyle bx^{2}+(ba-u(\tau_{a}-\tau_{0}))x+a(u\tau_{0}+1)=0, (5)

where τa=χ(x+a)\tau_{a}=\chi(x+a) and τ0=χ(x)\tau_{0}=\chi(x). The discussion of the solutions of the quadratic equation above when b0b\neq 0 has been clarified by Helleseth in [24] and results are listed in Table III, in which x1x_{1} and x2x_{2} denote the two solutions of the quadratic equations in each case.

TABLE III: List of Equations and Solutions
Case I II III IV
(τa,τ0)(\tau_{a},\tau_{0}) (1,1)(1,1) (1,1)(1,-1) (1,1)(-1,1) (1,1)(-1,-1)
EquationEquation bx2+abx+a(u+1)=0bx^{2}+abx+a(u+1)=0 bx2+(u+ab)xa(u1)=0bx^{2}+(u+ab)x-a(u-1)=0 bx2(uab)x+a(u+1)=0bx^{2}-(u-ab)x+a(u+1)=0 bx2+abxa(u1)=0bx^{2}+abx-a(u-1)=0
xx a±a1u+1aba\pm a\sqrt{1-\frac{u+1}{ab}} 1b[uab±u2+a2b2ab]-\frac{1}{b}[-u-ab\pm\sqrt{u^{2}+a^{2}b^{2}-ab}] 1b[uabu2+a2b2ab]-\frac{1}{b}[u-ab\mp\sqrt{u^{2}+a^{2}b^{2}-ab}] a±a1+u1aba\pm a\sqrt{1+\frac{u-1}{ab}}
x+ax+a a±a1u+1ab-a\pm a\sqrt{1-\frac{u+1}{ab}} 1b[u+ab±u2+a2b2ab]-\frac{1}{b}[-u+ab\pm\sqrt{u^{2}+a^{2}b^{2}-ab}] 1b[u+abu2+a2b2ab]-\frac{1}{b}[u+ab\mp\sqrt{u^{2}+a^{2}b^{2}-ab}] a±a1+u1ab-a\pm a\sqrt{1+\frac{u-1}{ab}}
x1x2x_{1}x_{2} a(u+1)b\frac{a(u+1)}{b} a(u1)b-\frac{a(u-1)}{b} a(u+1)b\frac{a(u+1)}{b} a(u1)b-\frac{a(u-1)}{b}
x(x+a)x(x+a) a(u+1)b-\frac{a(u+1)}{b} u2ab±uu2+a2b2abb2\frac{-u^{2}-ab\pm u\sqrt{u^{2}+a^{2}b^{2}-ab}}{b^{2}} u2abuu2+a2b2abb2\frac{-u^{2}-ab\mp u\sqrt{u^{2}+a^{2}b^{2}-ab}}{b^{2}} a(u1)b\frac{a(u-1)}{b}

Drawing upon the information in Table III, the subsequent pivotal results have been unveiled. Note that the term a desired solution refers to a solution of a certain quadratic equation in any case in Table III that indeed satisfies the corresponding condition on (τa,τ0)(\tau_{a},\tau_{0}). In the rest of this paper, we always assume that u𝒰0\𝔽3={u𝔽3n𝔽3|χ(u+1)χ(u1)}u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}=\{u\in{\mathbb{F}}_{3^{n}}\setminus{\mathbb{F}}_{3}|\chi(u+1)\neq\chi(u-1)\}, then χ(1u2)=1\chi(1-u^{2})=1 and (a,b)𝔽3n×𝔽3n(a,b)\in{\mathbb{F}}_{3^{n}}^{*}\times{\mathbb{F}}_{3^{n}}^{*}. For the sake of brevity and clarity, for such fixed uu and (a,b)(a,b), we denote by NI\mathrm{N_{I}} (respectively NII\mathrm{N_{II}}, NIII\mathrm{N_{III}} and NIV\mathrm{N_{IV}}) the number of desired solutions in Case I (respectively, Case II, Case III and Case IV). Consequently, N2(a,b)=NI+NII+NIII+NIVN_{2}(a,b)=\mathrm{N_{I}}+\mathrm{N_{II}}+\mathrm{N_{III}}+\mathrm{N_{IV}}. We discuss the values of NI\mathrm{N_{I}}, NII\mathrm{N_{II}}, NIII\mathrm{N_{III}} and NIV\mathrm{N_{IV}} as follows. It was proved in [33] that NI1\mathrm{N_{I}}\leq 1 and NIV1\mathrm{N_{IV}}\leq 1. Moreover, the following proposition was proposed.

Proposition 1.

([33]) We have,

  1. 1.

    NI=1\mathrm{N_{I}}=1 if and only if

    χ(1u+1ab)=1andχ(u+1ab)=1.\chi(1-\frac{u+1}{ab})=1\ and\ \chi(\frac{u+1}{ab})=-1.
  2. 2.

    NIV=1\mathrm{N_{IV}}=1 if and only if

    χ(1+u1ab)=1andχ(u+1ab)=1.\chi(1+\frac{u-1}{ab})=1\ and\ \chi(\frac{u+1}{ab})=-1.

Since χ(u+1ab)0\chi(\frac{u+1}{ab})\neq 0, the following corollary can be deduced immediately.

Corollary 1.

We have,

  1. 1.

    NI=0\mathrm{N_{I}}=0 if one of the subsequent three disjoint conditions is met:

    1. (a)

      χ(1u+1ab)=0.\chi(1-\frac{u+1}{ab})=0.

    2. (b)

      χ(1u+1ab)=1.\chi(1-\frac{u+1}{ab})=-1.

    3. (c)

      χ(1u+1ab)=1\chi(1-\frac{u+1}{ab})=1 and χ(u+1ab)=1.\chi(\frac{u+1}{ab})=1.

  2. 2.

    NIV=0\mathrm{N_{IV}}=0 if one of the subsequent three disjoint conditions is met:

    1. (a)

      χ(1+u1ab)=0.\chi(1+\frac{u-1}{ab})=0.

    2. (b)

      χ(1+u1ab)=1.\chi(1+\frac{u-1}{ab})=-1.

    3. (c)

      χ(1+u1ab)=1\chi(1+\frac{u-1}{ab})=1 and χ(u+1ab)=1.\chi(\frac{u+1}{ab})=1.

As has been demonstrated in [33], if xx is a solution of the quadratic equation in Case II, then (x+a)-(x+a) is a solution of the quadratic equation in Case III, and vice versa. Besides, xx and (x+a)-(x+a) cannot be desired solutions simultaneously. Therefore, it can be concluded that NII+NIII2\mathrm{N_{II}}+\mathrm{N_{III}}\leq 2. More specifically, the following proposition showed the sufficient and necessary condition of NII+NIII=2\mathrm{N_{II}}+\mathrm{N_{III}}=2.

Proposition 2.

([33])We have, NII+NIII=2\mathrm{N_{II}}+\mathrm{N_{III}}=2 if and only if

{χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\left\{\begin{array}[]{ll}\chi(u^{2}+a^{2}b^{2}-ab)=1,\\ \chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.\\ \end{array}\right.

Next, we specifically consider the case when NII+NIII=1\mathrm{N_{II}}+\mathrm{N_{III}}=1. We have the following proposition.

Proposition 3.

We have, NII+NIII=1\mathrm{N_{II}}+\mathrm{N_{III}}=1 if and only if

{χ(u2+a2b2ab)=0,χ(a2b2u2)=1.\left\{\begin{array}[]{ll}\chi(u^{2}+a^{2}b^{2}-ab)=0,\\ \chi(a^{2}b^{2}-u^{2})=1.\\ \end{array}\right.
Proof.

The sufficiency is obvious. We only prove the necessity. When χ(u2+a2b2ab)=1\chi(u^{2}+a^{2}b^{2}-ab)=1, the quadratic equation in Case II has two solutions, namely x1x_{1} and x2x_{2}. Then the solutions of the quadratic equation in Case III are x1a-x_{1}-a and x2a-x_{2}-a. Note that x1x_{1} (x2x_{2}, respectively) is a desired solution if and only if x2a-x_{2}-a (x1a-x_{1}-a, respectively) is a desired solution. Then NII+NIII1\mathrm{N_{II}}+\mathrm{N_{III}}\neq 1 when χ(u2+a2b2ab)=1\chi(u^{2}+a^{2}b^{2}-ab)=1. Moreover, when χ(u2+a2b2ab)=1\chi(u^{2}+a^{2}b^{2}-ab)=-1, NII+NIII=0\mathrm{N_{II}}+\mathrm{N_{III}}=0. We conclude that if NII+NIII=1\mathrm{N_{II}}+\mathrm{N_{III}}=1, then χ(u2+a2b2ab)=0\chi(u^{2}+a^{2}b^{2}-ab)=0.

When χ(u2+a2b2ab)=0\chi(u^{2}+a^{2}b^{2}-ab)=0, let x0x_{0} be the unique solution of the quadratic equation in Case II, then x0=u+abbx_{0}=\frac{u+ab}{b}. Moreover, the unique solution of the quadratic equation in Case III is x0=uabbx^{\prime}_{0}=-\frac{u-ab}{b}. If x0x_{0} is a desired solution, then χ(x0)=χ(u+abb)=1\chi(x_{0})=\chi(\frac{u+ab}{b})=-1 and χ(x0+a)=χ(uabb)=1\chi(x_{0}+a)=\chi(\frac{u-ab}{b})=1. If x0x^{\prime}_{0} is a desired solution, then χ(x0)=χ(uabb)=1\chi(x^{\prime}_{0})=\chi(-\frac{u-ab}{b})=1 and χ(x0+a)=χ(u+abb)=1\chi(x^{\prime}_{0}+a)=\chi(-\frac{u+ab}{b})=-1. Obviously, x0x_{0} and x0x^{\prime}_{0} cannot be desired solutions simultaneously. If NII+NIII=1\mathrm{N_{II}}+\mathrm{N_{III}}=1, then χ(u+abb)χ(uabb)=1\chi(\frac{u+ab}{b})\chi(\frac{u-ab}{b})=-1, i.e., χ(u2a2b2)=1\chi(u^{2}-a^{2}b^{2})=-1. The proof is completed. ∎

Note that χ(u2abab1u2)=0\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=0 implies that χ(u2+a2b2ab)=0\chi(u^{2}+a^{2}b^{2}-ab)=0. Moreover, χ(u2+a2b2ab)=0\chi(u^{2}+a^{2}b^{2}-ab)=0 and χ(a2b2u2)=0\chi(a^{2}b^{2}-u^{2})=0 cannot hold simultaneously for u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}. Then we have the following corollary.

Corollary 2.

NII+NIII=0\mathrm{N_{II}}+\mathrm{N_{III}}=0 if one of the subsequent three disjoint conditions is met:

  1. 1.

    χ(u2+a2b2ab)=1.\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  2. 2.

    χ(u2+a2b2ab)=0,χ(a2b2u2)=1.\chi(u^{2}+a^{2}b^{2}-ab)=0,\chi(a^{2}b^{2}-u^{2})=-1.

  3. 3.

    χ(u2+a2b2ab)=1\chi(u^{2}+a^{2}b^{2}-ab)=1 and χ(u2abab1u2)=1.\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

When χ(u2+a2b2ab)=0\chi(u^{2}+a^{2}b^{2}-ab)=0, then ab=1±1u2ab=-1\pm\sqrt{1-u^{2}}, which implies that χ(u+1ab)=χ((u+1)φ(u))=1\chi(\frac{u+1}{ab})=-\chi((u+1)\varphi(u))=1. Then we conclude that NI=NIV=0\mathrm{N_{I}}=\mathrm{N_{IV}}=0 when NII+NIII=1\mathrm{N_{II}}+\mathrm{N_{III}}=1. Moreover, by propositions and corollaries demonstrated previously in this section, the discussion on the value of N2(a,b)=NI+NII+NIII+NIVN_{2}(a,b)=\mathrm{N_{I}}+\mathrm{N_{II}}+\mathrm{N_{III}}+\mathrm{N_{IV}} is finished. Recall that N(a,b)=N1(a,b)+N2(a,b)N(a,b)=N_{1}(a,b)+N_{2}(a,b). By Lemma 12, For u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, N1(a,b)=1N_{1}(a,b)=1 or 0. When N1(a,b)=1N_{1}(a,b)=1, then ab=1±uab=1\pm u, the conditions in Proposition 1 cannot hold, hence NI=NIV=0\mathrm{N_{I}}=\mathrm{N_{IV}}=0. Moreover, for u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, if ab=1±uab=1\pm u, then u2+a2b2ab0u^{2}+a^{2}b^{2}-ab\neq 0. We conclude that NII+NIII1\mathrm{N_{II}}+\mathrm{N_{III}}\neq 1 when N1(a,b)=1N_{1}(a,b)=1. We summarize the above discussion in the following Table IV.

TABLE IV: Values of N(a,b)N(a,b)
N(a,b)N(a,b) N1(a,b)N_{1}(a,b) N2(a,b)N_{2}(a,b)
NI\mathrm{N_{I}} NII+NIII\mathrm{N_{II}}+\mathrm{N_{III}} NIV\mathrm{N_{IV}}
0 0 0 0 0
11 11 0 0 0
0 11 0 0
0 0 11 0
0 0 0 11
22 0 0 22 0
0 11 0 11
33 11 0 22 0
0 11 22 0
0 0 22 11
44 0 11 22 11

By Table IV, we obtain the following sufficient and necessary conditions about the numbers of solutions of the differential equation (4). We mention that the sufficient and necessary condition for (4) to have 4 solutions was given in [33].

Proposition 4.

[33, Proposition 2] When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, the differential equation 𝔻afu(x)=b\mathbb{D}_{a}f_{u}(x)=b has four solutions if and only if (a,b)(a,b) satisfies the following conditions

{χ(u+1ab)=1,χ(1u+1ab)=1,χ(1u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\left\{\begin{array}[]{ll}\chi(\frac{u+1}{ab})=-1,\\ \chi(1-\frac{u+1}{ab})=1,\\ \chi(1-\frac{u-1}{ab})=1,\\ \chi(u^{2}+a^{2}b^{2}-ab)=1,\\ \chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.\\ \end{array}\right.
Proposition 5.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, the differential equation 𝔻afu(x)=b\mathbb{D}_{a}f_{u}(x)=b of the function fu(x)f_{u}(x) has three solutions if and only if (a,b)(a,b) satisfies one of the following conditions

  1. 1.

    ab=1±u,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.ab=1\pm u,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

  2. 2.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

  3. 3.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

Proposition 6.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, the differential equation 𝔻afu(x)=b\mathbb{D}_{a}f_{u}(x)=b of the function fu(x)f_{u}(x) has two solutions if and only if (a,b)(a,b) satisfies one of the following conditions

  1. 1.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  2. 2.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

  3. 3.

    χ(1u+1ab)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

  4. 4.

    χ(1u+1ab)=1,χ(1+u1ab)=1,χ(a(u+1)b)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

  5. 5.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

  6. 6.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=1.

Proposition 7.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, the differential equation 𝔻afu(x)=b\mathbb{D}_{a}f_{u}(x)=b of the function fu(x)f_{u}(x) has one solution if and only if (a,b)(a,b) satisfies one of the following conditions

  1. 1.

    ab=1±u,χ(u2+a2b2ab)=1.ab=1\pm u,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  2. 2.

    ab=1±u,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.ab=1\pm u,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

  3. 3.

    χ(u2+a2b2ab)=0,χ(a2b2u2)=1.\chi(u^{2}+a^{2}b^{2}-ab)=0,\chi(a^{2}b^{2}-u^{2})=1.

  4. 4.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  5. 5.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  6. 6.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

  7. 7.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(\frac{a(u+1)}{b})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

Proposition 8.

When u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, the differential equation 𝔻afu(x)=b\mathbb{D}_{a}f_{u}(x)=b of the function fu(x)f_{u}(x) has no solution if and only if (a,b)(a,b) satisfies one of the following conditions

  1. 1.

    b=0.b=0.

  2. 2.

    χ(u2+a2b2ab)=0,χ(a2b2u2)=1.\chi(u^{2}+a^{2}b^{2}-ab)=0,\chi(a^{2}b^{2}-u^{2})=-1.

  3. 3.

    χ(1u+1ab)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  4. 4.

    χ(1u+1ab)=1,χ(1+u1ab)=1,χ(a(u+1)b)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  5. 5.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  6. 6.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=-1.

  7. 7.

    χ(1u+1ab)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

  8. 8.

    χ(1u+1ab)=1,χ(1+u1ab)=1,χ(a(u+1)b)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=-1,\chi(1+\frac{u-1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

  9. 9.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(1+\frac{u-1}{ab})=-1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

  10. 10.

    χ(1u+1ab)=1,χ(a(u+1)b)=1,χ(1+u1ab)=1,χ(u2+a2b2ab)=1,χ(u2abab1u2)=1.\chi(1-\frac{u+1}{ab})=1,\chi(\frac{a(u+1)}{b})=1,\chi(1+\frac{u-1}{ab})=1,\chi(u^{2}+a^{2}b^{2}-ab)=1,\chi(-u^{2}-ab-ab\sqrt{1-u^{2}})=-1.

IV The Differential Spectrum of fuf_{u} when χ(u+1)χ(u1)\chi(u+1)\neq\chi(u-1)

Recall that ωi=|{(a,b)𝔽pn×𝔽pn|δF(a,b)=i}|,0iΔF\omega_{i}=|\{(a,b)\in{\mathbb{F}}_{p^{n}}^{*}\times{\mathbb{F}}_{p^{n}}|\delta_{F}(a,b)=i\}|,0\leqslant i\leqslant\Delta_{F}, where δF(a,b)\delta_{F}(a,b) denotes the number of solutions to the differential equation 𝔻aF=b\mathbb{D}_{a}F=b. We are ready to investigate the differential spectrum of fuf_{u}. As a prerequisite, we define two quadratic character sums, namely Γ3\Gamma_{3} and Γ4\Gamma_{4}, as enumerated below.

Γ3\displaystyle\Gamma_{3} =z𝔽3nχ(g1(z)g4(z))=χ(u+1)z𝔽3nχ(z3z2+u2z).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z))=-\chi(u+1)\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{3}-z^{2}+u^{2}z).
Γ4\displaystyle\Gamma_{4} =z𝔽3nχ(g1(z)g2(z)g3(z)g4(z))=χ(u+1)z𝔽3nχ(z5(u2+1)z2+(u2u4)z).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z))=-\chi(u+1)\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(z^{5}-(u^{2}+1)z^{2}+(u^{2}-u^{4})z).

These two character sums will be used in the differential spectrum of fuf_{u}. The main result of this paper is given as follows.

Theorem 1.

Let n3n\geq 3 be an odd integer and fu(x)=uxd1+xd2f_{u}(x)=ux^{d_{1}}+x^{d_{2}} be the Ness-Helleseth function over 𝔽3n{\mathbb{F}}_{3^{n}} with d1=3n121d_{1}=\frac{3^{n}-1}{2}-1 and d2=3n2d_{2}=3^{n}-2. Then, when u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}, the differential spectrum of fuf_{u} is given by

[ω0\displaystyle[\omega_{0} =(3n1)(1+ε+132(53n+117Γ4)),\displaystyle=(3^{n}-1)(-1+\varepsilon+\frac{1}{32}(5\cdot 3^{n+1}-17-\Gamma_{4})),
ω1\displaystyle\omega_{1} =(3n1)(3ε+116(3n+1+3+2Γ3+Γ4)),\displaystyle=(3^{n}-1)(3-\varepsilon+\frac{1}{16}(3^{n+1}+3+2\Gamma_{3}+\Gamma_{4})),
ω2\displaystyle\omega_{2} =(3n1)(ε+14(3n7Γ3)),\displaystyle=(3^{n}-1)(-\varepsilon+\frac{1}{4}(3^{n}-7-\Gamma_{3})),
ω3\displaystyle\omega_{3} =(3n1)(ε+116(3n+1+2Γ3Γ4)),\displaystyle=(3^{n}-1)(\varepsilon+\frac{1}{16}(3^{n}+1+2\Gamma_{3}-\Gamma_{4})),
ω4\displaystyle\omega_{4} =(3n1)32(3n+1+Γ4)],\displaystyle=\frac{(3^{n}-1)}{32}(3^{n}+1+\Gamma_{4})],

where

ε\displaystyle\varepsilon ={1,χ(u)=χ(u+1),χ((u+1)1u2+(u1)2)=1,or,χ(u)=χ(u1),χ((1u)1u2+(u+1)2)=1;0,otherwise.\displaystyle=\left\{\begin{array}[]{ll}1,&\chi(u)=\chi(u+1),\chi((u+1)\sqrt{1-u^{2}}+(u-1)^{2})=-1,or,\\ &\chi(u)=\chi(u-1),\chi((1-u)\sqrt{1-u^{2}}+(u+1)^{2})=-1;\\ 0,&otherwise.\\ \end{array}\right. (9)
Proof.

The proof of Theorem 1 will be divided into five parts, where in each part ωi\omega_{i} (for i{0,1,2,3,4}i\in\{0,1,2,3,4\}) will be calculated.

  1. 1.

    Proof of ω4\omega_{4}. The sufficient and necessary condition for (4) to have 4 solutions was shown in Proposition 4. Let ab=zab=z. For each z𝔽3nz\in{\mathbb{F}}_{3^{n}}^{*}, there are 3n13^{n}-1 pairs of (a,b)(a,b) such that ab=zab=z. Further we have,

    ω4=(3n1)n4,\omega_{4}=(3^{n}-1)n_{4},

    where n4n_{4} denotes the number of zz satisfying the following system.

    {χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.

    where gi(i=1,2,3,4,5)g_{i}(i=1,2,3,4,5) are defined previously. Then by character sum n4n_{4} can be expressed as

    n4=132z𝔽3n\A(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).n_{4}=\frac{1}{32}\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\;A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).

    By Table II,

    zA(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z)))=0.\sum_{z\in A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z)))=0.

    By the lemmas in Section II, it follows that

    n4\displaystyle n_{4} =132z𝔽3n(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z)))\displaystyle=\frac{1}{32}\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z)))
    =132(3n+1+z𝔽3n(g1(z)g2(z)g3(z)g4(z))χ(u+1)χ(φ(u)1)χ(φ(u))χ(φ(u)1))\displaystyle=\frac{1}{32}(3^{n}+1+\sum_{z\in{\mathbb{F}}_{3^{n}}}(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z))-\chi(u+1)\chi(\varphi(u)-1)-\chi(\varphi(u))\chi(\varphi(u)-1))
    =132(3n+1+Γ4).\displaystyle=\frac{1}{32}(3^{n}+1+\Gamma_{4}).

    The last identity holds since χ(u+1)χ(φ(u))=1\chi(u+1)\chi(\varphi(u))=-1 and χ(u+1)+χ(φ(u))=0\chi(u+1)+\chi(\varphi(u))=0. Then the value of ω4\omega_{4} follows.

  2. 2.

    Proof of ω3\omega_{3}. The sufficient and necessary condition for (4) to have 3 solutions was shown in Proposition 5. Let ab=zab=z. For each z𝔽3nz\in{\mathbb{F}}_{3^{n}}^{*}, there are 3n13^{n}-1 pairs of (a,b)(a,b) such that ab=zab=z. Further we have

    ω3=(3n1)(n3,1+n3,2+n3,3),\omega_{3}=(3^{n}-1)(n_{3,1}+n_{3,2}+n_{3,3}),

    where the definitions of n3,1n_{3,1} , n3,2n_{3,2} and n3,3n_{3,3} will be detailed below.
    Let n3,1n_{3,1} denote the number of zz satisfying

    {z=1±u,χ(g4(z))=1,χ(g5(z))=1.\left\{\begin{array}[]{ll}z=1\pm u,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1.\\ \end{array}\right.

    Then we get

    n3,1={1,χ(u)=χ(u+1),χ((u+1)1u2+(u1)2)=1,or,χ(u)=χ(u1),χ((1u)1u2+(u+1)2)=1;0,otherwise.n_{3,1}=\left\{\begin{array}[]{ll}1,&\chi(u)=\chi(u+1),\chi((u+1)\sqrt{1-u^{2}}+(u-1)^{2})=-1,or,\\ &\chi(u)=\chi(u-1),\chi((1-u)\sqrt{1-u^{2}}+(u+1)^{2})=-1;\\ 0,&otherwise.\\ \end{array}\right.

    Let n3,2n_{3,2}, n3,3n_{3,3} denote the number of zz satisfying the following two equation systems respectively:

    {χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.

    where gi(i=1,2,3,4,5)g_{i}(i=1,2,3,4,5) are defined previously. Then by character sum, n3,1n_{3,1} can be expressed as

    32n3,2=z𝔽3n\A(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).32n_{3,2}=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\;A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).

    By Table II,

    zA(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z)))=0.\sum_{z\in A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z)))=0.

    It follows that

    32n3,2=z𝔽3n(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).32n_{3,2}=\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).

    Similarly, it can be concluded that

    32n3,3=z𝔽3n(1+χ(g1(z)))(1χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).32n_{3,3}=\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1-\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).

    By utilizing the lemmas presented in Section II, the following sum can be derived

    n3,1+n3,2+n3,3\displaystyle n_{3,1}+n_{3,2}+n_{3,3}
    =\displaystyle= ε+116[3n+1+2z𝔽3nχ(g1(z)g4(z))z𝔽3nχ(g1(z)g2(z)g3(z)g4(z))\displaystyle\varepsilon+\frac{1}{16}[3^{n}+1+2\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z))-\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z))
    χ(φ(u))χ(φ(u)1)χ(u+1)χ(φ(u)1)]\displaystyle-\chi(\varphi(u))\chi(\varphi(u)-1)-\chi(u+1)\chi(\varphi(u)-1)]
    =\displaystyle= ε+116[3n+1+2Γ3Γ4χ(φ(u))χ(φ(u)1)χ(u+1)χ(φ(u)1)]\displaystyle\varepsilon+\frac{1}{16}[3^{n}+1+2\Gamma_{3}-\Gamma_{4}-\chi(\varphi(u))\chi(\varphi(u)-1)-\chi(u+1)\chi(\varphi(u)-1)]
    =\displaystyle= ε+116(3n+1+2Γ3Γ4),\displaystyle\varepsilon+\frac{1}{16}(3^{n}+1+2\Gamma_{3}-\Gamma_{4}),

    where ϵ\epsilon was defined in (9).

  3. 3.

    Proof of ω2\omega_{2}. The sufficient and necessary condition for (4) to have 2 solutions was shown in Proposition 6. Let ab=zab=z. For each z𝔽3nz\in{\mathbb{F}}_{3^{n}}^{*}, there are 3n13^{n}-1 pairs of (a,b)(a,b) such that ab=zab=z. Further we have

    ω2=(3n1)(n2,1+n2,2+n2,3+n2,4+n2,5+n2,6),\omega_{2}=(3^{n}-1)(n_{2,1}+n_{2,2}+n_{2,3}+n_{2,4}+n_{2,5}+n_{2,6}),

    where n2,1,n2,2,n2,3,n2,4,n2,5,n2,6n_{2,1},n_{2,2},n_{2,3},n_{2,4},n_{2,5},n_{2,6} denote the number of zz satisfying the following six equation systems respectively:

    {χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,{χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.
    {χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=1,\\ \end{array}\right.

    where gi(i=1,2,3,4,5)g_{i}(i=1,2,3,4,5) are defined previously. Then by character sum, n21n_{21} can be expressed as

    16n2,1=z𝔽3n\A(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1χ(g4(z))).16n_{2,1}=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\;A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1-\chi(g_{4}(z))).

    By Table II,

    zA(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1χ(g4(z)))=0.\sum_{z\in A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1-\chi(g_{4}(z)))=0.

    It follows that

    16n2,1=z𝔽3n(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1χ(g4(z))).16n_{2,1}=\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1-\chi(g_{4}(z))).

    Similarly, it can be concluded that

    16n2,2\displaystyle 16n_{2,2} =z𝔽3n\{1±u,1±1u2}(1χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,\{1\pm u,-1\pm\sqrt{1-u^{2}}\}}(1-\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).
    32n2,3\displaystyle 32n_{2,3} =z𝔽3n(1+χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z)))4.\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z)))-4.
    32n2,4\displaystyle 32n_{2,4} =z𝔽3n\A(1χ(g1(z)))(1χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1-\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).
    32n2,5\displaystyle 32n_{2,5} =z𝔽3n\A(1χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).
    32n2,6\displaystyle 32n_{2,6} =z𝔽3n\A(1χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1+χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1+\chi(g_{5}(z))).

    By utilizing the lemmas presented in Section II, the following sum can be derived

    n2,1+n2,2+n2,3+n2,4+n2,5+n2,6\displaystyle n_{2,1}+n_{2,2}+n_{2,3}+n_{2,4}+n_{2,5}+n_{2,6}
    =\displaystyle= 18[23n142z𝔽3nχ(g1(z)g4(z))χ(φ(u))χ(φ(u)1)+χ(u+1)χ(φ(u)1)\displaystyle\frac{1}{8}[2\cdot 3^{n}-14-2\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z))-\chi(\varphi(u))\chi(\varphi(u)-1)+\chi(u+1)\chi(\varphi(u)-1)
    2(1+χ(uu2))(1χ((u+1)(1u2)+(u1)2))2χ(u211u2)\displaystyle-2(1+\chi(u-u^{2}))(1-\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2}))-2\chi(u^{2}-1-\sqrt{1-u^{2}})
    2(1χ(u2+u))(1χ((1u)(1u2)+(u+1)2))]\displaystyle-2(1-\chi(u^{2}+u))(1-\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2}))]
    =\displaystyle= 18[23n142Γ3χ(φ(u))χ(φ(u)1)+χ(u+1)χ(φ(u)1)\displaystyle\frac{1}{8}[2\cdot 3^{n}-14-2\Gamma_{3}-\chi(\varphi(u))\chi(\varphi(u)-1)+\chi(u+1)\chi(\varphi(u)-1)
    2(1+χ(uu2))(1χ((u+1)(1u2)+(u1)2))2χ(u211u2)\displaystyle-2(1+\chi(u-u^{2}))(1-\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2}))-2\chi(u^{2}-1-\sqrt{1-u^{2}})
    2(1χ(u2+u))(1χ((1u)(1u2)+(u+1)2))]\displaystyle-2(1-\chi(u^{2}+u))(1-\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2}))]
    =\displaystyle= 14(3n7Γ3+χ(u+1)(1χ(u2+u))(1χ((1u)(1u2)+(u+1)2))\displaystyle\frac{1}{4}(3^{n}-7-\Gamma_{3}+\chi(u+1)-(1-\chi(u^{2}+u))(1-\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2}))
    (1+χ(uu2))(1χ((u+1)(1u2)+(u1)2))χ(u211u2))\displaystyle-(1+\chi(u-u^{2}))(1-\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2}))-\chi(u^{2}-1-\sqrt{1-u^{2}}))
    =\displaystyle= 14(3n74εΓ3+χ(u+1)χ(u211u2))\displaystyle\frac{1}{4}(3^{n}-7-4\varepsilon-\Gamma_{3}+\chi(u+1)-\chi(u^{2}-1-\sqrt{1-u^{2}}))
    =\displaystyle= ε+14(3n7Γ3),\displaystyle-\varepsilon+\frac{1}{4}(3^{n}-7-\Gamma_{3}),

    where ε\varepsilon has been defined in (9). The last identity holds since
    χ(u211u2)=χ(1u2(1u21))=χ(φ(u))\chi(u^{2}-1-\sqrt{1-u^{2}})=\chi(\sqrt{1-u^{2}}(-\sqrt{1-u^{2}}-1))=-\chi(\varphi(u)) and χ(u+1)χ(φ(u))=1\chi(u+1)\chi(\varphi(u))=-1.

  4. 4.

    Proof of ω1\omega_{1}. The sufficient and necessary condition for (4) to have 1 solution was shown in Proposition 7. Let ab=zab=z. For each z𝔽3nz\in{\mathbb{F}}_{3^{n}}^{*}, there are 3n13^{n}-1 pairs of (a,b)(a,b) such that ab=zab=z. Further we have

    ω1=(3n1)(n1,1+n1,2+n1,3+n1,4+n1,5+n1,6+n1,7),\omega_{1}=(3^{n}-1)(n_{1,1}+n_{1,2}+n_{1,3}+n_{1,4}+n_{1,5}+n_{1,6}+n_{1,7}),

    where the definitions of n1,1n_{1,1}, n1,2n_{1,2}, n1,3n_{1,3}, n1,4n_{1,4}, n1,5n_{1,5}, n1,6n_{1,6} and n1,7n_{1,7} will be detailed below.
    Let n1,1n_{1,1}, n1,2n_{1,2}, n1,3n_{1,3} denote the number of zz satisfying the following two equation systems respectively:

    {z=1±u,χ(g4(z))=1,{z=1±u,χ(g4(z))=1,χ(g5(z))=1,{χ(g4(z))=0,χ(g5(z))=1.\left\{\begin{array}[]{ll}z=1\pm u,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}z=1\pm u,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{4}(z))=0,\\ \chi(g_{5}(z))=1.\\ \end{array}\right.

    Then we get

    n1,1\displaystyle n_{1,1} ={1,χ(u)=χ(u1)orχ(u)=χ(u+1);0,otherwise.\displaystyle=\left\{\begin{array}[]{ll}1,&\chi(u)=\chi(u-1)~{}or~{}\chi(u)=\chi(u+1);\\ 0,&otherwise.\\ \end{array}\right.
    n1,2\displaystyle n_{1,2} ={1,χ(u)=χ(u+1),χ((u+1)1u2+(u1)2)=1,orχ(u)=χ(u1),χ((1u)1u2+(u+1)2)=1;0,otherwise.\displaystyle=\left\{\begin{array}[]{ll}1,&\chi(u)=\chi(u+1),\chi((u+1)\sqrt{1-u^{2}}+(u-1)^{2})=1,or\\ &\chi(u)=\chi(u-1),\chi((1-u)\sqrt{1-u^{2}}+(u+1)^{2})=1;\\ 0,&otherwise.\\ \end{array}\right.
    n1,3\displaystyle n_{1,3} ={1,χ(u21+1u2)=1orχ(u211u2)=1;0,otherwise.\displaystyle=\left\{\begin{array}[]{ll}1,&\chi(u^{2}-1+\sqrt{1-u^{2}})=1~{}or~{}\chi(u^{2}-1-\sqrt{1-u^{2}})=1;\\ 0,&otherwise.\\ \end{array}\right.

    Note that either of χ(u)=χ(u1)\chi(u)=\chi(u-1) or χ(u)=χ(u+1)\chi(u)=\chi(u+1) must hold since χ(u1)χ(u+1)\chi(u-1)\neq\chi(u+1). Similarly, χ(u21+1u2)χ(u211u2)\chi(u^{2}-1+\sqrt{1-u^{2}})\neq\chi(u^{2}-1-\sqrt{1-u^{2}}) since (u21+1u2)(u211u2)=u2(u21)(u^{2}-1+\sqrt{1-u^{2}})(u^{2}-1-\sqrt{1-u^{2}})=u^{2}(u^{2}-1), which is a nonsquare. It follows that either of χ(u21+1u2)=1\chi(u^{2}-1+\sqrt{1-u^{2}})=1 or χ(u211u2)=1\chi(u^{2}-1-\sqrt{1-u^{2}})=1 must hold since χ(u21+1u2)(u211u2)\chi(u^{2}-1+\sqrt{1-u^{2}})\neq(u^{2}-1-\sqrt{1-u^{2}}) and neither of them could be 0. Then we can conclude that n1,1=1n_{1,1}=1 and n1,3=1n_{1,3}=1.
    Let n1,4n_{1,4}, n1,5n_{1,5}, n1,6n_{1,6}, n1,7n_{1,7} denote the number of zz satisfying the following four equation systems respectively:

    {χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=1,\\ \chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.

    where gi(i=1,2,3,4,5)g_{i}(i=1,2,3,4,5) are defined previously. Then by character sum, n1,3n_{1,3} can be expressed as

    16n1,4=z𝔽3n\A(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1χ(g4(z))).16n_{1,4}=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\;A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1-\chi(g_{4}(z))).

    By Table II,

    zA(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1χ(g4(z)))=0.\sum_{z\in A}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1-\chi(g_{4}(z)))=0.

    It follows that

    16n1,4=z𝔽3n(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1χ(g4(z))).16n_{1,4}=\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1-\chi(g_{4}(z))).

    Similarly, it can be concluded that

    16n1,5\displaystyle 16n_{1,5} =z𝔽3n(1+χ(g1(z)))(1χ(g2(z)))(1+χ(g3(z)))(1χ(g4(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1-\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1-\chi(g_{4}(z))).
    32n1,6\displaystyle 32n_{1,6} =z𝔽3n(1+χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z)))4.\displaystyle=\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z)))-4.
    32n1,7\displaystyle 32n_{1,7} =z𝔽3n(1+χ(g1(z)))(1χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z)))4.\displaystyle=\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}(1+\chi(g_{1}(z)))(1-\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z)))-4.

    By utilizing the lemmas presented in Section II, the following sum can be derived

    n1,1+n1,2+n1,3+n1,4+n1,5+n1,6+n1,7\displaystyle n_{1,1}+n_{1,2}+n_{1,3}+n_{1,4}+n_{1,5}+n_{1,6}+n_{1,7}
    =\displaystyle= 2+(1ε)+116[33n+3+2z𝔽3nχ(g1(z)g4(z))+z𝔽3nχ(g1(z)g2(z)g3(z)g4(z))\displaystyle 2+(1-\varepsilon)+\frac{1}{16}[3\cdot 3^{n}+3+2\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{4}(z))+\sum\limits_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z))
    +χ(φ(u))χ(φ(u)1)+χ(u+1)χ(φ(u)1)]\displaystyle+\chi(\varphi(u))\chi(\varphi(u)-1)+\chi(u+1)\chi(\varphi(u)-1)]
    =\displaystyle= 3ε+116[33n+3+2Γ3+Γ4+χ(φ(u))χ(φ(u)1)+χ(u+1)χ(φ(u)1)]\displaystyle 3-\varepsilon+\frac{1}{16}[3\cdot 3^{n}+3+2\Gamma_{3}+\Gamma_{4}+\chi(\varphi(u))\chi(\varphi(u)-1)+\chi(u+1)\chi(\varphi(u)-1)]
    =\displaystyle= 3ε+116(3n+1+3+2Γ3+Γ4),\displaystyle 3-\varepsilon+\frac{1}{16}(3^{n+1}+3+2\Gamma_{3}+\Gamma_{4}),

    where ε\varepsilon has been defined in (9).

  5. 5.

    Proof of ω0\omega_{0}. The sufficient and necessary condition for (4) to have no solution was shown in Proposition 8. Let ab=zab=z. For each z𝔽3nz\in{\mathbb{F}}_{3^{n}}^{*}, there are 3n13^{n}-1 pairs of (a,b)(a,b) such that ab=zab=z. Further we have

    ω0=(3n1)(n0,1+n0,2+n0,3+n0,4+n0,5+n0,6+n0,7+n0,8+n0,9+n0,10),\omega_{0}=(3^{n}-1)(n_{0,1}+n_{0,2}+n_{0,3}+n_{0,4}+n_{0,5}+n_{0,6}+n_{0,7}+n_{0,8}+n_{0,9}+n_{0,10}),

    where n0,1=1n_{0,1}=1 for the condition z=0z=0 and the definitions of n0,2n_{0,2}, n0,3n_{0,3}, n0,4n_{0,4}, n0,5n_{0,5}, n0,6n_{0,6}, n0,7n_{0,7}, n0,8n_{0,8}, n0,9n_{0,9} and n0,10n_{0,10} will be detailed below.
    Let n0,2n_{0,2} denote the number of zz satisfying

    {χ(g4(z))=0,χ(z2u2)=1,\left\{\begin{array}[]{ll}\chi(g_{4}(z))=0,\\ \chi(z^{2}-u^{2})=-1,\\ \end{array}\right.

    then

    n0,2={1,χ(u21+1u2)=1orχ(u211u2)=1;0,otherwise.n_{0,2}=\left\{\begin{array}[]{ll}1,&\chi(u^{2}-1+\sqrt{1-u^{2}})=-1~{}or~{}\chi(u^{2}-1-\sqrt{1-u^{2}})=-1;\\ 0,&otherwise.\\ \end{array}\right.

    Note that χ(u21+1u2)χ(u211u2)\chi(u^{2}-1+\sqrt{1-u^{2}})\neq\chi(u^{2}-1-\sqrt{1-u^{2}}) since (u21+1u2)(u211u2)=u2(u21)(u^{2}-1+\sqrt{1-u^{2}})(u^{2}-1-\sqrt{1-u^{2}})=u^{2}(u^{2}-1), which is a nonsquare. It follows that either of χ(u21+1u2)=1\chi(u^{2}-1+\sqrt{1-u^{2}})=-1 or χ(u211u2)=1\chi(u^{2}-1-\sqrt{1-u^{2}})=-1 must hold. Then we can conclude that n0,2=1n_{0,2}=1.
    Let n0,3n_{0,3}, n0,4n_{0,4}, n0,5n_{0,5}, n0,6n_{0,6}, n0,7n_{0,7}, n0,8n_{0,8}, n0,9n_{0,9}, n0,10n_{0,10} denote the number of zz satisfying the following eight equation systems respectively:

    {χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,\left\{\begin{array}[]{ll}\chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=-1,\\ \end{array}\right.
    {χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,{χ(g1(z))=1,χ(g2(z))=1,χ(g3(z))=1,χ(g4(z))=1,χ(g5(z))=1,\left\{\begin{array}[]{ll}\chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=-1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=-1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.\qquad\left\{\begin{array}[]{ll}\chi(g_{1}(z))=-1,\\ \chi(g_{2}(z))=1,\\ \chi(g_{3}(z))=1,\\ \chi(g_{4}(z))=1,\\ \chi(g_{5}(z))=-1,\\ \end{array}\right.

    where gi(i=1,2,3,4,5)g_{i}(i=1,2,3,4,5) are defined previously. Then by character sum, n0,3n_{0,3} can be expressed as

    8n0,3=z𝔽3n\A(1χ(g2(z)))(1χ(g3))(1χ(g4(z))).8n_{0,3}=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\;A}(1-\chi(g_{2}(z)))(1-\chi(g_{3}))(1-\chi(g_{4}(z))).

    Similarly, it can be concluded that

    16n0,4\displaystyle 16n_{0,4} =z𝔽3n\A(1χ(g1(z)))(1χ(g2(z)))(1+χ(g3(z)))(1χ(g4(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1-\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1-\chi(g_{4}(z))).
    16n0,5\displaystyle 16n_{0,5} =z𝔽3n\A(1χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1χ(g4(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1-\chi(g_{4}(z))).
    16n0,6\displaystyle 16n_{0,6} =z𝔽3n\A(1χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1χ(g4(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1-\chi(g_{4}(z))).
    16n0,7\displaystyle 16n_{0,7} =z𝔽3n\A(1χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z))).
    32n0,8\displaystyle 32n_{0,8} =z𝔽3n\A(1χ(g1(z)))(1χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1-\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z))).
    32n0,9\displaystyle 32n_{0,9} =z𝔽3n\A(1χ(g1(z)))(1+χ(g2(z)))(1χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1-\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z))).
    32n0,10\displaystyle 32n_{0,10} =z𝔽3n\A(1χ(g1(z)))(1+χ(g2(z)))(1+χ(g3(z)))(1+χ(g4(z)))(1χ(g5(z))).\displaystyle=\sum_{z\in{\mathbb{F}}_{3^{n}}\backslash\,A}(1-\chi(g_{1}(z)))(1+\chi(g_{2}(z)))(1+\chi(g_{3}(z)))(1+\chi(g_{4}(z)))(1-\chi(g_{5}(z))).

    By utilizing Table II and the lemmas presented in Section II, the following sum can be derived

    n0,1+n0,2+n0,3+n0,4+n0,5+n0,6+n0,7+n0,8+n0,9+n0,10\displaystyle n_{0,1}+n_{0,2}+n_{0,3}+n_{0,4}+n_{0,5}+n_{0,6}+n_{0,7}+n_{0,8}+n_{0,9}+n_{0,10}
    =\displaystyle= 2+132[153n81z𝔽3nχ(g1(z)g2(z)g3(z)g4(z))+5χ(φ(u))χ(φ(u)1)3χ(u+1)χ(φ1)\displaystyle 2+\frac{1}{32}[15\cdot 3^{n}-81-\sum_{z\in{\mathbb{F}}_{3^{n}}}\chi(g_{1}(z)g_{2}(z)g_{3}(z)g_{4}(z))+5\chi(\varphi(u))\chi(\varphi(u)-1)-3\chi(u+1)\chi(\varphi-1)
    +8χ(u211u2)8(1+χ(uu2))(1+χ((u+1)(1u2)+(u1)2))\displaystyle+8\chi(u^{2}-1-\sqrt{1-u^{2}})-8(1+\chi(u-u^{2}))(1+\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2}))
    8(1χ(u2+u))(1+χ((1u)(1u2)+(u+1)2))]\displaystyle-8(1-\chi(u^{2}+u))(1+\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2}))]
    =\displaystyle= 2+132[153n81Γ4+5χ(φ(u))χ(φ(u)1)3χ(u+1)χ(φ1)\displaystyle 2+\frac{1}{32}[15\cdot 3^{n}-81-\Gamma_{4}+5\chi(\varphi(u))\chi(\varphi(u)-1)-3\chi(u+1)\chi(\varphi-1)
    +8χ(u211u2)8(1+χ(uu2))(1+χ((u+1)(1u2)+(u1)2))\displaystyle+8\chi(u^{2}-1-\sqrt{1-u^{2}})-8(1+\chi(u-u^{2}))(1+\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2}))
    8(1χ(u2+u))(1+χ((1u)(1u2)+(u+1)2))]\displaystyle-8(1-\chi(u^{2}+u))(1+\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2}))]
    =\displaystyle= (2+132(153n81Γ48χ(u+1)8(1χ(u2+u))(1+χ((1u)(1u2)+(u+1)2))\displaystyle(2+\frac{1}{32}(15\cdot 3^{n}-81-\Gamma_{4}-8\chi(u+1)-8(1-\chi(u^{2}+u))(1+\chi((1-u)(\sqrt{1-u^{2}})+(u+1)^{2}))
    +8χ(u211u2)8(1+χ(uu2))(1+χ((u+1)(1u2)+(u1)2))))\displaystyle+8\chi(u^{2}-1-\sqrt{1-u^{2}})-8(1+\chi(u-u^{2}))(1+\chi((u+1)(\sqrt{1-u^{2}})+(u-1)^{2}))))
    =\displaystyle= (2+132(53n+18132(1ε)Γ48χ(u+1)+8χ(u211u2)))\displaystyle(2+\frac{1}{32}(5\cdot 3^{n+1}-81-32(1-\varepsilon)-\Gamma_{4}-8\chi(u+1)+8\chi(u^{2}-1-\sqrt{1-u^{2}})))
    =\displaystyle= 1+ε+132(53n+117Γ4),\displaystyle-1+\varepsilon+\frac{1}{32}(5\cdot 3^{n+1}-17-\Gamma_{4}),

    where ε\varepsilon has beem defined in (9).

This completes the proof of Theorem 1. ∎

Remark 1.

Recall that the elements ωi(i=0,1,2,3,4)\omega_{i}(i=0,1,2,3,4) satisfy two identities in (1). Namely,

{ω0+ω1+ω2+ω3+ω4=(3n1)3n,ω1+2ω2+3ω3+4ω4=(3n1)3n.\displaystyle\left\{\begin{array}[]{ccc}\omega_{0}+\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}&=&(3^{n}-1)3^{n},\\ \omega_{1}+2\omega_{2}+3\omega_{3}+4\omega_{4}&=&(3^{n}-1)3^{n}.\end{array}\right.

After the values of ω4\omega_{4}, ω3\omega_{3} and ω2\omega_{2} are determined, ω1\omega_{1} and ω0\omega_{0} can be deduced by solving the above system.

Example 1.

Let p=3p=3, n=3n=3 and u=w4u=w^{4}, where ww is a primitive element in 𝔽3n{\mathbb{F}}_{3^{n}}^{*}. Then u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, ε=0\varepsilon=0, Γ3=4\Gamma_{3}=-4 and Γ4=4\Gamma_{4}=4. By Theorem 1, the differential spectrum of fuf_{u} is

𝕊=[ω0=286,ω1=208,ω2=156,ω3=26,ω4=26],\mathbb{S}=[\omega_{0}=286,\omega_{1}=208,\omega_{2}=156,\omega_{3}=26,\omega_{4}=26],

which coincides with the result calculated directly by MAGMA.

Example 2.

Let p=3p=3, n=5n=5 and u=w210u=w^{210}, where ww is a primitive element in 𝔽3n{\mathbb{F}}_{3^{n}}^{*}. Then u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, ε=1\varepsilon=1,Γ3=4\Gamma_{3}=-4 and Γ4=12\Gamma_{4}=12. By Theorem 1, the differential spectrum of fuf_{u} is

𝕊=[ω0=27346,ω1=11616,ω2=14278,ω3=3630,ω4=1936].\mathbb{S}=[\omega_{0}=27346,\omega_{1}=11616,\omega_{2}=14278,\omega_{3}=3630,\omega_{4}=1936].

which coincides with the result calculated directly by MAGMA.

Example 3.

Let p=3p=3, n=7n=7 and u=wu=w, where ww is a primitive element in 𝔽3n{\mathbb{F}}_{3^{n}}^{*}. Then u𝒰0\𝔽3u\in\mathcal{U}_{0}\backslash{\mathbb{F}}_{3}, ε=1\varepsilon=1,Γ3=28\Gamma_{3}=-28 and Γ4=12\Gamma_{4}=-12. By Theorem 1, the differential spectrum of fuf_{u} is

𝕊=[ω0=2240650,ω1=891888,ω2=1204486,ω3=295110,ω4=148648].\mathbb{S}=[\omega_{0}=2240650,\omega_{1}=891888,\omega_{2}=1204486,\omega_{3}=295110,\omega_{4}=148648].

which coincides with the result calculated directly by MAGMA.

V Concluding remarks

In this paper, we conducted an in-depth investigation of the differential properties of the Ness-Helleseth function. For u𝒰0𝔽3u\in\mathcal{U}_{0}\setminus{\mathbb{F}}_{3}, we expressed the differential spectrum in terms of quadratic character sums. This completed the work on the differential properties of the Ness-Helleseth function. Besides, we obtained a series of identities of character sums, which may be used in some other areas. It may be interesting to consider applications of the differential spectrum of the Ness-Helleseth function in other areas such as sequence design, coding theory and combinatorial design. Moreover, the study of the Ness-Helleseth function can be extended to p>3p>3 [22], [35], and the investigation of the differential spectrum of such function will be undertaken in our further work.

References

  • [1] F. Bao, Y. Xia, S. Chen, C. Li, and T. Helleseth, “The differential spectrum of a power permutation,” Adv. Math. Commun., 2023.
  • [2] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, pp. 3–72, 1991.
  • [3] A. Biryukov and C. D. Cannière, Encyclopedia of Cryptography and Security.   Springer, 2005.
  • [4] C. Blondeau, A. Canteaut, and P. Charpin, “Differential properties of power functions,” Int. J. Inf. Coding Theory, vol. 1, no. 2, pp. 149–170, 2010.
  • [5] ——, “Differential properties of xx2t1x\rightarrow x^{2^{t}-1},” IEEE Trans. Inform. Theory, vol. 57, no. 12, pp. 8127–8137, 2011.
  • [6] C. Blondeau and L. Perrin, “More differentially 6-uniform power functions,” Des. Codes Cryptogr., vol. 73, no. 2, pp. 487–505, 2014.
  • [7] L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, , and I. Villa, “Constructing APN functions through isotopic shifts,” IEEE Trans. Inform. Theory, vol. 66, no. 8, pp. 5299–5309, 2020.
  • [8] C. Carlet, P. Charpin, and V. A. Zinoviev, “Codes bent functions and permutations suitable for DES-like cryptosystems,” Des. Codes Cryptogr., vol. 15, no. 2, pp. 125–156, 1998.
  • [9] P. Charpin and J. Peng, “Differential uniformity and the associated codes of cryptographic functions,” Adv. Math. Commun., vol. 13, no. 4, pp. 579–600, 2019.
  • [10] S.-T. Choi, S. Hong, J.-S. No, and H. Chung, “Differential spectrum of some power functions in odd prime characteristic,” Finite Fields Appl., vol. 21, pp. 11–29, 2013.
  • [11] P. Dembowski and T. G. Ostrom, “Planes of order nn with collineation groups of order n2n^{2},” Math. Z., vol. 103, no. 2, pp. 239–258, 1968.
  • [12] H. Dobbertin, T. Helleseth, P. V. Kumar, and H. Martinsen, “Ternary m-sequences with three-valued cross-correlation function: new decimations of welch and niho type,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1473–1481, 2001.
  • [13] H. Dobbertin, D. Mills, E. N. Müller, A. Pott, and W. Willems, “APN functions in odd characteristic,” Discrete Math., vol. 267, no. 1-3, pp. 95–112, 2003.
  • [14] T. Helleseth, C. Rong, and D. Sandberg, “New families of almost perfect nonlinear power functions,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 475–485, 1999.
  • [15] T. Helleseth and D. Sandberg, “Some power functions with low differential uniformity,” Appl. Algebra Engrg. Comm. Comput., vol. 8, no. 5, pp. 363–370, 1997.
  • [16] Z. Hu, N. Li, L. Xu, X. Zeng, and X. Tang, “The differential spectrum and boomerang spectrum of a class of locally-APN functions,” Des. Codes Cryptogr., vol. 91, no. 5, pp. 1695–1711, 2023.
  • [17] S. Jiang, K. Li, Y. Li, and L. Qu, “Differential spectrum of a class of power functions,” J. Cryptology, vol. 9, no. 3, pp. 484–495, 2021.
  • [18] ——, “Differential and boomerang spectrums of some power permutations,” Cryptogr. Commun., vol. 14, pp. 371–393, 2022.
  • [19] L. Lei, W. Ren, and C. Fan, “The differential spectrum of a class of power functions over finite fields,” Adv. Math. Commun., vol. 15, no. 3, pp. 525–537, 2021.
  • [20] R. Lidl and H. Niederreiter, Finite Fields.   Cambridge University Press, 1997.
  • [21] G. Liu, S. Jiang, and K. Li, “On differential spectra of involutions with low differential uniformity over finite fields with even characteristic.” Appl. Algebra Engrg. Comm. Comput., 2024, doi: 10.1007/s00200-024-00646-6.
  • [22] C. Lyu, X. Wang, and D. Zheng, “A further study on the ness-helleseth function,” Finite Fields Appl., vol. 98, p. 102453, 2024.
  • [23] Y. Man, Y. Xia, C. Li, and T. Helleseth, “On the differential properties of the power function xpm+2x^{p^{m}+2},” Finite Fields Appl., vol. 84, no. 10, pp. 1–22, 2022.
  • [24] G. J. Ness and T. Helleseth, “A new family of ternary almost perfect nonlinear mappings,” IEEE Trans. Inform. Theory, vol. 53, no. 7, pp. 2581–2586, 2007.
  • [25] K. Nyberg, “Perfect nonlinear s-boxes,” Advances in Cryptology-EUROCRYPT 1991, vol. 547, pp. 378–386, 1991.
  • [26] ——, “Differentially uniform mappings for cryptography,” Advances in Cryptology-EUROCRYPT 1994, vol. 765, pp. 55–64, 1994.
  • [27] D. Panario, D. Santana, and Q. Wang, “Ambiguity, deficiency and differential spectrum of normalized permutation polynomials over finite fields,” Finite Fields Appl., vol. 47, pp. 330–350, 2017.
  • [28] T. Pang, N. Li, and X. Zeng, “On the differential spectrum of a differentially 3-uniform power function,” Finite Fields Appl., vol. 87, 2023.
  • [29] J. Peng, C. H. Tan, and Q. Wang, “A new family of differentially 4-uniform permutations over 𝔽22m{\mathbb{F}}_{2}^{2m} for odd kk,” Sci. China Math., vol. 59, no. 6, pp. 1221–1234, 2016.
  • [30] X. Tan and H. Yan, “Differential spectrum of a class of APN power functions,” Des. Codes Cryptogr., vol. 91, pp. 2755–2768, 2023.
  • [31] C. Tang, C. Ding, and M. Xiong, “Codes differentially δ\delta-uniform functions and tt-designs,” IEEE Trans. Inform. Theory, vol. 66, no. 6, pp. 3691–3703, 2020.
  • [32] Z. Tu, N. Li, Y. Wu, X. Zeng, X. Tang, and Y. Jiang, “On the differential spectrum and the apcn property of a class of power functions over finite fields,” IEEE Trans. Inform. Theory, vol. 69, no. 1, pp. 582–597, 2023.
  • [33] Y. Xia, F. Bao, S. Chen, C. Li, and T. Helleseth, “More differential properties of the Ness-Helleseth function,” IEEE Trans. Inform. Theory, vol. 70, no. 8, pp. 6076–6090, 2024.
  • [34] Y. Xia, X. Zhang, C. Li, and T. Helleseth, “The differential spectrum of a ternary power function,” Finite Fields Appl., vol. 64, pp. 1–16, 2020.
  • [35] Y. Xia, C. Li, F. Bao, S. Chen, and T. Helleseth, “Further investigation on differential properties of the generalized ness-helleseth function,” 2024, arXiv:2408.17272.
  • [36] X. Xie, S. Mesnager, N. Li, D. He, and X. Zeng, “On the niho type locally-APN power functions and their boomerang spectrum,” IEEE Trans. Inform. Theory, vol. 69, no. 6, pp. 4056–4064, 2023.
  • [37] M. Xiong and H. Yan, “A note on the differential spectrum of a differentially 4-uniform power function,” Finite Fields Appl., vol. 48, pp. 117–125, 2017.
  • [38] M. Xiong, H. Yan, and P. Yuan, “On a conjecture of differentially 8-uniform power functions,” Des. Codes Cryptogr., vol. 86, no. 8, pp. 1601–1621, 2018.
  • [39] G. Xu, X. Cao, and S. Xu, “Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method,” Cryptogr. Commun., vol. 8, no. 1, pp. 155–171, 2016.
  • [40] H. Yan and C. Li, “Differential spectra of a class of power permutations with characteristic 5,” Des. Codes Cryptogr., vol. 89, no. 6, pp. 1181–1191, 2021.
  • [41] H. Yan and Z. Li, “A note on the differential spectrum of a class of power mappings with niho exponent,” Cryptogr. Commun., vol. 14, no. 5, pp. 1081–1089, 2022.
  • [42] H. Yan, S. Mesnager, and X. Tan, “The complete differential spectrum of a class of power permutations over odd characteristic finite fields,” IEEE Trans. Inform. Theory, vol. 69, no. 11, pp. 7426–7438, 2023.
  • [43] ——, “On a class of APN power functions over odd characteristic finite fields: Their differential spectrum and c-differential properties,” Discrete Math., vol. 347, no. 4, 2024.
  • [44] H. Yan, Y. Xia, C. Li, T. Helleseth, M. Xiong, and J. Luo, “The differential spectrum of the power mapping xpn3x^{p^{n}-3},” IEEE Trans. Inform. Theory, vol. 68, no. 8, pp. 5535–5547, 2022.
  • [45] H. Yan, Z. Zhou, J. Weng, J. Wen, T. Helleseth, and Q. Wang, “Differential spectrum of kasami power permutations over odd characteristic finite fields,” IEEE Trans. Inform. Theory, vol. 65, no. 10, pp. 6819–6826, 2019.
  • [46] Z. Zha, L. Hu, , and S. Sun, “Constructing new differentially 4-uniform permutations from the inverse function,” Finite Fields Appl., vol. 25, pp. 64–78, 2014.
  • [47] Z. Zha, S. S. L. Hu, and Y. Sun, “New constructions of APN polynomial functions in odd characteristic,” Appl. Algebra Eng. Commun. Comput., vol. 25, no. 4, pp. 249–263, 2014.
  • [48] Z. Zha and X. Wang, “Almost perfect nonlinear power functions in odd characteristic,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 4826–4832, 2011.