This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A note on the differential spectrum of a class of locally APN functions

Haode Yan1, Ketong Ren1

1School of Mathematics, Southwest Jiaotong University, Chengdu, China.
E-mail: hdyan@swjtu.edu.cn(corresponding author), rkt@my.swjtu.edu.cn,
Abstract

Let 𝔽pn{\mathbb{F}}_{p^{n}} denote the finite field containing pnp^{n} elements, where nn is a positive integer and pp is a prime. The function fu(x)=xpn+32+ux2f_{u}(x)=x^{\frac{p^{n}+3}{2}}+ux^{2} over 𝔽pn[x]{\mathbb{F}}_{p^{n}}[x] with u𝔽pn{0,±1}u\in{\mathbb{F}}_{p^{n}}\setminus\{0,\pm 1\} was recently studied by Budaghyan and Pal in [8], whose differential uniformity is at most 55 when pn3(mod4)p^{n}\equiv 3~{}(mod~{}4). In this paper, we study the differential uniformity and the differential spectrum of fuf_{u} for u=±1u=\pm 1. We first give some properties of the differential spectrum of any cryptographic function. Moreover, by solving some systems of equations over finite fields, we express the differential spectrum of f±1f_{\pm 1} in terms of the quadratic character sums.

Keywords: cryptographic function; differential uniformity; differential spectrum; character sum

Mathematics Subject Classification: 11T06, 94A60

I Introduction

Let 𝔽q{\mathbb{F}}_{q} be the finite field with qq elements, where qq is a prime power. We denote by 𝔽q:=𝔽q{0}{\mathbb{F}}_{q}^{*}:={\mathbb{F}}_{q}\setminus\{0\}. Any cryptographic function F:𝔽q𝔽qF:{\mathbb{F}}_{q}\rightarrow{\mathbb{F}}_{q} can be uniquely represented as a univariate polynomial of degree less than qq. For a function FF, the main tools to study FF regarding the differential attack [2] are the difference distribution table (DDT for short) and the differential uniformity introduced by Nyberg [26] in 1994. The DDT entry at point (a,b)(a,b) for any a,b𝔽qa,b\in{\mathbb{F}}_{q}, denoted by δF(a,b)\delta_{F}(a,b), is defined as

δF(a,b)=#{x𝔽q:𝔻aF(x)=b},\delta_{F}(a,b)=\#\{x\in{\mathbb{F}}_{q}:\mathbb{D}_{a}F(x)=b\},

where 𝔻aF(x)=F(x+a)F(x)\mathbb{D}_{a}F(x)=F(x+a)-F(x) is the derivative function of FF at the element aa. Note that when a=0a=0 and b=0b=0, the equation 𝔻aF(x)=b\mathbb{D}_{a}F(x)=b has qq solutions in 𝔽q{\mathbb{F}}_{q}, which means δF(0,0)=q\delta_{F}(0,0)=q. Besides, when a=0a=0 and b𝔽pnb\in{\mathbb{F}}_{p^{n}}^{*}, the equation 𝔻aF(x)=b\mathbb{D}_{a}F(x)=b has no solutions, which means δF(a,b)=0\delta_{F}(a,b)=0. Therefore, for any polynomial, the DDT entries in the line a=0a=0 are trivial. The differential uniformity of FF, denoted by ΔF\Delta_{F}, is defined as

ΔF=max{δF(a,b):a𝔽q,b𝔽q}.\Delta_{F}=\mathrm{max}\left\{\delta_{F}(a,b):a\in{\mathbb{F}}_{q}^{*},b\in{\mathbb{F}}_{q}\right\}.

Generally speaking, the smaller the value of ΔF\Delta_{F}, the stronger the resistance of FF used in S-boxes against the differential attack. A cryptographic function FF is called differentially kk-uniform if ΔF=k\Delta_{F}=k. Particularly when ΔF=1\Delta_{F}=1, FF is called a planar function [12] or a perfect nonlinear (abbreviated as PN) function [25]. When ΔF=2\Delta_{F}=2, FF is called an almost perfect nonlinear (abbreviated as APN) function [26], which is of the lowest possible differential uniformity over 𝔽2n{\mathbb{F}}_{2^{n}} as in such finite fields, no PN functions exist. Readers may refer to [4], [7], [14], [15], [16], [24], [29], [40], [47], [48] and references therein for some of the new developments on PN and APN functions. Apart from the concepts of PN and APN, a power function FF over 𝔽pn{\mathbb{F}}_{p^{n}} is said to be locally-APN if

max{δF(1,b)|b𝔽pn𝔽p}=2.\mathrm{max}\left\{\delta_{F}(1,b)|b\in{\mathbb{F}}_{p^{n}}\setminus{\mathbb{F}}_{p}\right\}=2.

This definition was first introduced in [17] for the case p=2p=2 and generalized in [37] for odd pp. For a general function FF, we can also give the concept of locally APN.

Definition 1.

Let FF be a function defined on 𝔽pn{\mathbb{F}}_{p^{n}}. Then FF is called locally-APN if

max{δF(a,b)|a𝔽pn,b𝔽pn𝔽p}=2.\mathrm{max}\left\{\delta_{F}(a,b)|a\in{\mathbb{F}}_{p^{n}}^{*},b\in{\mathbb{F}}_{p^{n}}\setminus{\mathbb{F}}_{p}\right\}=2.

In [4], the concept of the differential spectrum of a power function was introduced. The differential spectrum of a cryptographic function, compared with the differential uniformity, provides much more detailed information. In particular, the value distribution of the DDT is given directly by the differential spectrum. What’s more, the differential spectrum has many applications such as in sequences [3], [13], coding theory [9], [10], combinatorial design [32] etc. However, to determine the differential spectrum of a cryptographic function is usually a difficult problem. Power functions with known differential spectra are summarized in Table I.

For a polynomial function that is not a power function, the investigation of its differential spectrum is much more difficult. There are only a few cryptographic functions whose differential spectra were known [22], [27], [34], [36]. One of the focus of this paper is to explore a class of binomials studied in [8]. In [8], the differential uniformity of fu(x)=xpn+32+ux2f_{u}(x)=x^{\frac{p^{n}+3}{2}}+ux^{2} with u𝔽pn{0,±1}u\in{\mathbb{F}}_{p^{n}}\setminus\{0,\pm 1\} has been investigated. In this paper, we determine the differential spectrum of such fu(x)f_{u}(x) when u{±1}u\in\{\pm 1\}, that is, f±1(x)=xpn+32±x2f_{\pm 1}(x)=x^{\frac{p^{n}+3}{2}}\pm x^{2}.

This paper is organized as follows. Section II presents certain quadratic character sums that are essential for the computation of the aimed differential spectrum. In Section III, properties of the differential spectrum of any function are given. In Section IV, the number of solutions of several systems of equations over finite fields are investigated, which will be used in Section V, in which the differential spectrum of f±1f_{\pm 1} is determined. Section VI concludes this paper.

TABLE I: Power Functions over 𝔽pn{\mathbb{F}}_{p^{n}} with Known Differential Spectra
pp dd Condition ΔF\Delta_{F} Ref
22 2t+12^{t}+1 gcd(t,n)=s(t,n)=s 2s2^{s} [4]
22 22t2t+12^{2t}-2^{t}+1 gcd(t,n)=s,nsodd(t,n)=s,\frac{n}{s}\,odd 2s2^{s} [4]
22 2n22^{n}-2 n2n\geqslant 2 2or 42\,or\,4 [4]
22 22k+2k+12^{2k}+2^{k}+1 n=4kn=4k 44 [4],[38]
22 2t12^{t}-1 t=3,n2t=3,n-2 66 or 88 [5]
22 2t12^{t}-1 t=n12t=\frac{n-1}{2}, n+32\frac{n+3}{2}, nn odd 66 or 88 [6]
22 2m+2(m+1)/2+12^{m}+2^{(m+1)/2}+1 n=2mn=2m, m5m\geqslant 5 odd 88 [39]
22 2m+1+32^{m+1}+3 n=2mn=2m, m5m\geqslant 5 odd 88 [39]
22 23k+22k+2k12^{3k}+2^{2k}+2^{k}-1 n=4kn=4k 22k2^{2k} [33]
22 2m12k+1+1\frac{2^{m}-1}{2^{k}+1}+1 n=2mn=2m, gcd(k,m)=1(k,m)=1 2m2^{m} (locally APN) [37]
33 23(n1)/2+12\cdot 3^{(n-1)/2}+1 nn odd 44 [13]
33 3n12+2\frac{3^{n}-1}{2}+2 nn odd 44 [19]
55 5n32\frac{5^{n}-3}{2} any nn 44 or 55 [41]
55 5n+32\frac{5^{n}+3}{2} any nn 33 [28]
pp odd p2kpk+1p^{2k}-p^{k}+1 gcd(n,k)=e(n,k)=e, neodd\frac{n}{e}odd pe+1p^{e}+1 [46], [20]
pp odd pk+12\frac{p^{k}+1}{2} gcd(n,k)=e(n,k)=e pe12\frac{p^{e}-1}{2} or pe+1p^{e}+1 [11]
pp odd pn+1pm+1+pn12\frac{p^{n}+1}{p^{m}+1}+\frac{p^{n}-1}{2} p3(mod 4)p\equiv 3\,(mod\;4), m|nm|n, nn odd pm+12\frac{p^{m}+1}{2} [11]
pp odd pn3p^{n}-3 any nn 5\leqslant 5 [35], [45]
pp odd pm+2p^{m}+2 n=2mn=2m 22 or 44 [15], [23]
pp odd 2pn212p^{\frac{n}{2}}-1 nn even pn2p^{\frac{n}{2}} [42]
pp odd pn32\frac{p^{n}-3}{2} pn3(mod 4)p^{n}\equiv 3\,(mod\;4), pn7p^{n}\geqslant 7 and pn27p^{n}\neq 27 22 or 33 [44]
pp odd pn+32\frac{p^{n}+3}{2} p5p\geqslant 5, pn1(mod 4)p^{n}\equiv 1\,(mod\;4) 33 [18]
pp odd pn+32\frac{p^{n}+3}{2} pn=11p^{n}=11 or pn3(mod 4)p^{n}\equiv 3\,(mod\;4), p3p\neq 3, pn11p^{n}\neq 11 22 or 44 [43]
pp odd pn+14\frac{p^{n}+1}{4} p3p\neq 3, pn>7p^{n}>7, pn7(mod 8)p^{n}\equiv 7\,(mod\;8) 22 [31], [15]
pp odd 3pn14\frac{3p^{n}-1}{4} p3p\neq 3, pn>7p^{n}>7, pn3(mod 8)p^{n}\equiv 3\,(mod\;8) 22 [31], [15]
pp odd pn+14\frac{p^{n}+1}{4}, 3pn14\frac{3p^{n}-1}{4} p=3p=3 or p>3p>3, pn3(mod 4)p^{n}\equiv 3\,(mod\;4) 44 [1]
any pp k(pm1)k(p^{m}-1) n=2mn=2m, gcd(k,pm+1)=1(k,p^{m}+1)=1 pm2p^{m}-2 (locally APN) [17]

II On Quadratic Character Sums

In this section, we will introduce some results on the quadratic character sums over the finite field 𝔽q{\mathbb{F}}_{q}. Let χ()\chi(\cdot) be the quadratic multiplicative character of 𝔽q{\mathbb{F}}_{q}, which is defined as

χ(x)={1,if x is a square in 𝔽q,1,if x is a nonsquare in 𝔽q,0,if x=0.\chi(x)=\left\{\begin{array}[]{cl}1,&\mbox{if }x\mbox{ is a square in }{\mathbb{F}}_{q}^{*},\\ -1,&\mbox{if }x\mbox{ is a nonsquare in }{\mathbb{F}}_{q}^{*},\\ 0,&\mbox{if }x=0.\end{array}\right.

Let 𝔽q[x]{\mathbb{F}}_{q}[x] be the polynomial ring over 𝔽q{\mathbb{F}}_{q}. We consider the character sum of the form

x𝔽qχ(f(x))\displaystyle\sum_{x\in{\mathbb{F}}_{q}}\chi(f(x)) (1)

with f𝔽q[x]f\in{\mathbb{F}}_{q}[x]. The case of deg(f)=1\deg(f)=1 is trivial, and for deg(f)=2\deg(f)=2, the following explicit formula was established in [21].

Lemma 1.

[21, Theorem 5.48] Let f(x)=a2x2+a1x+a0𝔽q[x]f(x)=a_{2}x^{2}+a_{1}x+a_{0}\in{\mathbb{F}}_{q}[x] with pp odd and a20a_{2}\neq 0. Put d=a124a0a2d=a_{1}^{2}-4a_{0}a_{2} and let χ()\chi(\cdot) be the quadratic character of 𝔽q{\mathbb{F}}_{q}. Then

x𝔽qχ(f(x))={χ(a2),ifd0,(pn1)χ(a2),ifd=0.\sum\limits_{x\in{\mathbb{F}}_{q}}\chi(f(x))=\left\{\begin{array}[]{lcl}-\chi(a_{2}),&if\;d\neq 0,\\ (p^{n}-1)\chi(a_{2}),&if\;d=0.\\ \end{array}\right.

Nevertheless, for a polynomials ff with degree 33 or higher, computing x𝔽qχ(f(x))\sum\limits_{x\in{\mathbb{F}}_{q}}\chi(f(x)) or deriving a specific formula thereof is generally challenging. The subsequent lemma provides lower and upper bounds for any multiplicative character sum.

Lemma 2.

[30] Let 𝔽q{\mathbb{F}}_{q} be a finite field with qq odd. Let f(x)=ax3+bx2+cx+d𝔽q[x]f(x)=ax^{3}+bx^{2}+cx+d\in{\mathbb{F}}_{q}[x] be a cubic polynomial with distinct roots in 𝔽¯q\overline{{\mathbb{F}}}_{q} and χ\chi be a multiplicative character sum of 𝔽q{\mathbb{F}}_{q}. Then we have

|x𝔽qχ(f(x))2q|.\left|\sum_{x\in{\mathbb{F}}_{q}}\chi\left(f(x)\right)\leqslant 2\sqrt{q}\right|.

However, sometimes we need the exact value of the character sum x𝔽qχ(f(x))\sum\limits_{x\in{\mathbb{F}}_{q}}\chi(f(x)). For the case deg(f(x))=3deg(f(x))=3, such a sum can be calculated by considering 𝔽pn{\mathbb{F}}_{p^{n}}-rational points of elliptic curves over 𝔽p{\mathbb{F}}_{p}. More precisely, assume that ff is a cubic function over 𝔽pn{\mathbb{F}}_{p^{n}} and denote

Γp,n=x𝔽pnχ(f(x)).\Gamma_{p,n}=\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi(f(x)).

To evaluate Γp,n\Gamma_{p,n}, several primary concepts from the theory of elliptic curves shall be taken into consideration. More details on the terminologies and notation can be found in [30]. Let E/𝔽pE/{\mathbb{F}}_{p} be the elliptic curve E:y2=f(x)E:y^{2}=f(x) over 𝔽pn{\mathbb{F}}_{p^{n}}, and Np,nN_{p,n} denote the number of FpnF_{p^{n}}-rational points (with the extra point at infinity) on the curve E/𝔽pE/{\mathbb{F}}_{p}. From Subsection 1.3 and Theorem 2.3.1 in [30, Chapter V], Np,nN_{p,n} can be assessed by Γp,n\Gamma_{p,n}. To be more exact, for every n1n\geqslant 1,

Np,n=pn+1+Γp,n.N_{p,n}=p^{n}+1+\Gamma_{p,n}.

Furthermore,

Γp,n=αnβn,\Gamma_{p,n}=-\alpha^{n}-\beta^{n}, (2)

where α\alpha and β\beta are the complex solutions of the quadratic equation T2+Γp,1T+p=0T^{2}+\Gamma_{p,1}T+p=0. With an exploration, Γp,n\Gamma_{p,n} can be determined by Γp,1\Gamma_{p,1} directly and explicitly. We have

Γp,n=(1)n+12n1k=0n2(1)k(n2k)(Γp,1)n2k(4p(Γp,1)2)k.\Gamma_{p,n}=\frac{(-1)^{n+1}}{2^{n-1}}\sum_{k=0}^{\lfloor\frac{n}{2}\rfloor}(-1)^{k}\binom{n}{2k}(\Gamma_{p,1})^{n-2k}(4p-(\Gamma_{p,1})^{2})^{k}. (3)

Moreover, when Γp,1=0\Gamma_{p,1}=0, we have

Γp,n={(1)n2+12pn2,nis even;0,nis odd.\Gamma_{p,n}=\left\{\begin{array}[]{ll}(-1)^{\frac{n}{2}+1}\cdot 2\cdot p^{\frac{n}{2}},&n~{}\text{is even};\\ 0,&n~{}\text{is odd}.\\ \end{array}\right. (4)

We define a specific character sum

λp,n=x𝔽pnχ(x(x22x1)),\lambda_{p,n}=\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi(x(x^{2}-2x-1)),

which will be used in the sequel. In the following examples, we give the exact value of λp,n\lambda_{p,n} for a given pp.

Example 1.

Let p=7p=7. For n=1n=1, one has λ7,1=4\lambda_{7,1}=-4. By (3), we have

λ7,n=k=0n2(1)k+1(n2k)2n2k+13k.\lambda_{7,n}=\sum_{k=0}^{\lfloor\frac{n}{2}\rfloor}(-1)^{k+1}\binom{n}{2k}2^{n-2k+1}3^{k}.
Example 2.

Let p=31p=31. For n=1n=1, one has λ31,1=0\lambda_{31,1}=0. By (4), we have

λ31,n={(1)n2+1231n2,nis even;0,nis odd.\lambda_{31,n}=\left\{\begin{array}[]{ll}(-1)^{\frac{n}{2}+1}\cdot 2\cdot 31^{\frac{n}{2}},&n~{}\text{is even};\\ 0,&n~{}\text{is odd}.\\ \end{array}\right.

The key to determine λp,n\lambda_{p,n} is to calculate the value of λp,1\lambda_{p,1}. For the convenience, we list the values of λp,1\lambda_{p,1} for all primes 3p10393\leqslant p\leqslant 1039 with p3(mod4)p\equiv 3~{}(mod~{}4) in Table II, which are computed by MAGMA.

TABLE II: The values of λp,1\lambda_{p,1} for all primes 3p10393\leqslant p\leqslant 1039 with p3(mod4)p\equiv 3~{}(mod~{}4)
pp 33 77 1111 1919 2323 3131 4343 4747 5959 6767 7171 7979 8383 103103 107107
λp,1\lambda_{p,1} 22 4-4 2-2 22 44 0 66 8-8 1414 1010 1212 8-8 6-6 4-4 2-2
pp 127127 131131 139139 151151 163163 167167 179179 191191 199199 211211 223223 227227 239239 251251 263263
λp,1\lambda_{p,1} 1616 6-6 10-10 44 22 20-20 6-6 16-16 4-4 22-22 0 1818 24-24 18-18 1212
pp 271271 283283 307307 311311 331331 347347 359359 367367 379379 383383 419419 431431 439439 443443 463463
λp,1\lambda_{p,1} 88 66 1818 28-28 1414 18-18 4-4 8-8 2-2 0 2626 4040 3636 66 8-8
pp 467467 479479 487487 491491 499499 503503 523523 547547 563563 571571 587587 599599 607607 619619 631631
λp,1\lambda_{p,1} 14-14 0 20-20 10-10 22-22 2020 1414 38-38 1818 3838 34-34 12-12 16-16 4646 44-44
pp 643643 647647 659659 683683 691691 719719 727727 739739 743743 751751 787787 811811 823823 827827 839839
λp,1\lambda_{p,1} 4242 1212 6-6 42-42 6-6 2424 12-12 1818 4444 88 22-22 18-18 28-28 2222 36-36
pp 859859 863863 883883 887887 907907 911911 919919 947947 967967 971971 983983 991991 10191019 10311031 10391039
λp,1\lambda_{p,1} 50-50 32-32 3434 3636 3838 24-24 3636 14-14 2828 3838 2020 1616 66 20-20 4040

At last, we present several results below concerning the exact values of specific character sums used in Section V.

Lemma 3.

When pn3(mod4)p^{n}\equiv 3~{}(mod~{}4), we have

  1. 1.

    x𝔽pnχ(x(x12)(x1))=0\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x(x-\frac{1}{2})(x-1)\right)=0.

  2. 2.

    x𝔽pnχ((x12)(x2x+12))=0\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{2}\right)\right)=0.

  3. 3.

    x𝔽pnχ(x(x1)(x2x+12))=1\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x(x-1)\left(x^{2}-x+\frac{1}{2}\right)\right)=-1.

  4. 4.

    x𝔽pnχ((x1)(x2x+12))=λp,n\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left((x-1)\left(x^{2}-x+\frac{1}{2}\right)\right)=\lambda_{p,n}.

  5. 5.

    x𝔽pnχ(x(x12)(x2x+12))=1χ(2)λp,n\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{2}\right)\right)=-1-\chi(2)\lambda_{p,n}.

Proof.
  1. 1.

    Set y=x12y=x-\frac{1}{2}, then x=y+12x=y+\frac{1}{2} and

    x𝔽pnχ(x(x12)(x1))=y𝔽pnχ((y+12)y(y12))=y𝔽pnχ(y(y214)).\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x\left(x-\frac{1}{2}\right)(x-1)\right)=\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(y+\frac{1}{2}\right)y\left(y-\frac{1}{2}\right)\right)=\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(y\left(y^{2}-\frac{1}{4}\right)\right).

    Let y=zy=-z, then

    y𝔽pnχ(y(y214))=z𝔽pnχ(z(z214))=z𝔽pnχ(z(z214)).\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(y\left(y^{2}-\frac{1}{4}\right)\right)=\sum\limits_{z\in{\mathbb{F}}_{p^{n}}}\chi\left(-z\left(z^{2}-\frac{1}{4}\right)\right)=-\sum\limits_{z\in{\mathbb{F}}_{p^{n}}}\chi\left(z\left(z^{2}-\frac{1}{4}\right)\right).

    Then y𝔽pnχ(y(y214))=0\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(y\left(y^{2}-\frac{1}{4}\right)\right)=0. This implies that x𝔽pnχ(x(x12)(x1))=0\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x\left(x-\frac{1}{2}\right)(x-1)\right)=0.

  2. 2.

    Set y=x+1y=-x+1. Then x=y+1x=-y+1 and

    x𝔽pnχ((x12)(x2x+12))\displaystyle\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{2}\right)\right) =y𝔽pnχ((y+112)((y+1)2(y+1)+12))\displaystyle=\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(-y+1-\frac{1}{2}\right)\left((-y+1)^{2}-(-y+1)+\frac{1}{2}\right)\right)
    =y𝔽pnχ((y12)(y2y+12)).\displaystyle=-\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(y-\frac{1}{2}\right)\left(y^{2}-y+\frac{1}{2}\right)\right).

    Hence x𝔽pnχ((x12)(x2x+12))=0\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{2}\right)\right)=0.

  3. 3.

    Let u=x2xu=x^{2}-x. For any u𝔽pnu\in{\mathbb{F}}_{p^{n}}, the number of xx’s satisfying x2x=ux^{2}-x=u is 1+χ(1+4u)1+\chi(1+4u). Then

    x𝔽pnχ(x(x1)(x2x+12))\displaystyle\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x(x-1)\left(x^{2}-x+\frac{1}{2}\right)\right) =u𝔽pnχ(u(u+12))(1+χ(1+4u))\displaystyle=\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{2}\right)\right)(1+\chi(1+4u))
    =u𝔽pnχ(u(u+12))+u𝔽pnχ(u(u+12)(1+4u))\displaystyle=\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{2}\right)\right)+\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{2}\right)(1+4u)\right)
    =u𝔽pnχ(u(u+12))+u𝔽pnχ(u(u+14)(u+12)).\displaystyle=\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{2}\right)\right)+\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{4}\right)\left(u+\frac{1}{2}\right)\right).

    Note that

    u𝔽pnχ(u(u+14)(u+12))\displaystyle\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{4}\right)\left(u+\frac{1}{2}\right)\right) =v𝔽pnχ((v12)(v14)(v))\displaystyle=\sum\limits_{v\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(-v-\frac{1}{2}\right)\left(-v-\frac{1}{4}\right)(-v)\right)
    =v𝔽pnχ(v(v+14)(v+12)).\displaystyle=-\sum\limits_{v\in{\mathbb{F}}_{p^{n}}}\chi\left(v\left(v+\frac{1}{4}\right)\left(v+\frac{1}{2}\right)\right).

    Then u𝔽pnχ(u(u+14)(u+12))=0\sum\limits_{u\in{\mathbb{F}}_{p^{n}}}\chi\left(u\left(u+\frac{1}{4}\right)\left(u+\frac{1}{2}\right)\right)=0. This with Lemma 1 shows that

    x𝔽pnχ(x(x1)(x2x+12))=1.\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x(x-1)\left(x^{2}-x+\frac{1}{2}\right)\right)=-1.
  4. 4.

    Set y=x1y=x-1, then x𝔽pnχ((x1)(x2x+12))=y𝔽pnχ(y(y2+y+12))=y𝔽pnχ(y2+y+12y)\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left((x-1)\left(x^{2}-x+\frac{1}{2}\right)\right)=\sum\limits_{y\in{\mathbb{F}}_{p^{n}}}\chi\left(y\left(y^{2}+y+\frac{1}{2}\right)\right)=\sum\limits_{y\in{\mathbb{F}}_{p^{n}}^{*}}\chi\left(\frac{y^{2}+y+\frac{1}{2}}{y}\right).
    Let t=y2+y+12yt=\frac{y^{2}+y+\frac{1}{2}}{y}, then we can obtain a quadratic equation

    y2+(1t)y+12=0,y^{2}+(1-t)y+\frac{1}{2}=0,

    whose discriminant is Δ=t22t1\Delta=t^{2}-2t-1. For t𝔽pnt\in{\mathbb{F}}_{p^{n}}, the number of yy satisfying the above quadratic equation is 1+χ(Δ)1+\chi(\Delta). Then

    y𝔽pnχ(y2+y+12y)=t𝔽pn(1+χ(Δ))χ(t)=t𝔽pnχ(t)+t𝔽pnχ(t(t22t1))=λp,n.\sum\limits_{y\in{\mathbb{F}}_{p^{n}}^{*}}\chi\left(\frac{y^{2}+y+\frac{1}{2}}{y}\right)=\sum\limits_{t\in{\mathbb{F}}_{p^{n}}}(1+\chi(\Delta))\chi(t)=\sum_{t\in{\mathbb{F}}_{p^{n}}}\chi(t)+\sum\limits_{t\in{\mathbb{F}}_{p^{n}}}\chi(t(t^{2}-2t-1))=\lambda_{p,n}.
  5. 5.

    It is clear that x2x+120x^{2}-x+\frac{1}{2}\neq 0, otherwise (x12)2=(12)2\left(x-\frac{1}{2}\right)^{2}=-\left(\frac{1}{2}\right)^{2}, which contradicts to χ(1)=1\chi(-1)=-1. Then

    x𝔽pnχ(x(x12)(x2x+12))=x𝔽pnχ(x(x12)x2x+12).\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(x\left(x-\frac{1}{2}\right)\left(x^{2}-x+\frac{1}{2}\right)\right)=\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(\frac{x(x-\frac{1}{2})}{x^{2}-x+\frac{1}{2}}\right).

    Let t=x(x12)x2x+12t=\frac{x(x-\frac{1}{2})}{x^{2}-x+\frac{1}{2}}, then

    (t1)x2+(12t)x+t2=0.\left(t-1\right)x^{2}+\left(\frac{1}{2}-t\right)x+\frac{t}{2}=0. (5)

    Note that x=1x=1 if and only if t=1t=1. When t1t\neq 1, the discriminant of (5) is t2+t+14-t^{2}+t+\frac{1}{4}. Then we have

    x𝔽pnχ(x(x12)x2x+12)=χ(1)+t𝔽pn,t1(1+χ(Δ))χ(t)=1+(2)+t𝔽pn(1χ(t2t14))χ(t)=1t𝔽pnχ(t(t2t14)).\begin{array}[]{ll}\sum\limits_{x\in{\mathbb{F}}_{p^{n}}}\chi\left(\frac{x\left(x-\frac{1}{2}\right)}{x^{2}-x+\frac{1}{2}}\right)&=\chi(1)+\sum\limits_{t\in{\mathbb{F}}_{p^{n}},t\neq 1}\left(1+\chi(\Delta)\right)\chi(t)\\ &=1+(-2)+\sum\limits_{t\in{\mathbb{F}}_{p^{n}}}\left(1-\chi\left(t^{2}-t-\frac{1}{4}\right)\right)\chi(t)\\ &=-1-\sum\limits_{t\in{\mathbb{F}}_{p^{n}}}\chi\left(t\left(t^{2}-t-\frac{1}{4}\right)\right).\end{array}

    Set t=y2t=\frac{y}{2}, then

    t𝔽pnχ(t(t2t14))=t𝔽pnχ(y2(y24y214))=χ(2)λp,n.\sum\limits_{t\in{\mathbb{F}}_{p^{n}}}\chi\left(t\left(t^{2}-t-\frac{1}{4}\right)\right)=\sum\limits_{t\in{\mathbb{F}}_{p^{n}}}\chi\left(\frac{y}{2}\left(\frac{y^{2}}{4}-\frac{y}{2}-\frac{1}{4}\right)\right)=\chi(2)\lambda_{p,n}.

    That is desired result follows.

III The properties of the differential spectrum of a general cryptographic function over finite field

First, we give the definition of the differential spectrum of a cryptographic function.

Definition 2.

Let FF be a function from 𝔽q{\mathbb{F}}_{q} to 𝔽q{\mathbb{F}}_{q} with differential uniformity ΔF\Delta_{F}, and

ωi=#{(a,b)𝔽q×𝔽q:δF(a,b)=i},0iq,\omega_{i}=\#\{(a,b)\in{\mathbb{F}}_{q}\times{\mathbb{F}}_{q}:\delta_{F}(a,b)=i\},~{}0\leqslant i\leqslant q,

where δF(a,b)=#{x𝔽q:F(x+a)F(x)=b}\delta_{F}(a,b)=\#\{x\in{\mathbb{F}}_{q}:F(x+a)-F(x)=b\}. The differential spectrum of FF is defined as the multiset

𝕊F=[ω0,ω1,,ωΔF,ωΔF+1,,ωq].\mathbb{S}_{F}=\left[\omega_{0},\omega_{1},...,\omega_{\Delta_{F}},\omega_{\Delta_{F}+1},\cdots,\omega_{q}\right].

Sometimes we ignore the zeros in the differential spectrum. We remark that our definition of the differential spectrum is a little different from that in [34]. In our definition of ωi\omega_{i}, we consider all the pairs (a,b)𝔽q×𝔽q(a,b)\in{\mathbb{F}}_{q}\times{\mathbb{F}}_{q}, including a=0a=0. The values of ωi(i>ΔF)\omega_{i}(i>\Delta_{F}) can be obtained easily. That is, ωΔF+1==ωq1=0\omega_{\Delta_{F}+1}=\cdots=\omega_{q-1}=0 and ωq=1\omega_{q}=1.

From [15], it is known that the differential spectrum of a power function satisfies several identities. It is natural to consider how it behaves with respect to the differential spectrum of any function. In this section, we give some identities of the differential spectrum of a general cryptographic function. Let ff be a polynomial over 𝔽q{\mathbb{F}}_{q} with differential uniformity Δf\Delta_{f}. We have the following theorem.

Theorem 1.

We have

i=0qωi=q2,\sum\limits_{i=0}^{q}\omega_{i}=q^{2}, (6)
i=0qiωi=q2,\sum\limits_{i=0}^{q}i\omega_{i}=q^{2}, (7)

and

i=0qi2ωi=N4,\sum\limits_{i=0}^{q}i^{2}\omega_{i}=N_{4}, (8)

where

N4=#{(x1,x2,x3,x4)(𝔽q)4:{x1x2+x3x4=0,f(x1)f(x2)+f(x3)f(x4)=0.}.N_{4}=\#\bigg{\{}(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{q})^{4}:\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ f(x_{1})-f(x_{2})+f(x_{3})-f(x_{4})=0.\\ \end{array}\right.\bigg{\}}. (9)
Proof.

According to the definition of ωi\omega_{i}, we have

i=0qωi=i=0q#{(a,b)(𝔽q)2:δf(a,b)=i}=q2.\sum\limits_{i=0}^{q}\omega_{i}=\sum\limits_{i=0}^{q}\#\{(a,b)\in({\mathbb{F}}_{q})^{2}:\delta_{f}(a,b)=i\}=q^{2}.

The last equation holds since when ii runs through the integers in the range [0,q][0,q], each (a,b)(𝔽q)2(a,b)\in({\mathbb{F}}_{q})^{2} should occur.

Besides, for a fixed ii, there are ωi\omega_{i} distinct pairs (a,b)(a,b) such that δf(a,b)=i\delta_{f}(a,b)=i, then we have

iωi=δf(a,b)=i#{x𝔽q:f(x+a)f(x)=b}.i\omega_{i}=\sum\limits_{\delta_{f}(a,b)=i}\#\{x\in{\mathbb{F}}_{q}:f(x+a)-f(x)=b\}.

And for a given a𝔽qa\in{\mathbb{F}}_{q},

b𝔽q#{x𝔽q:f(x+a)f(x)=b}=x𝔽q1=q\sum\limits_{b\in{\mathbb{F}}_{q}}\#\{x\in{\mathbb{F}}_{q}:f(x+a)-f(x)=b\}=\sum\limits_{x\in{\mathbb{F}}_{q}}1=q

since for any x𝔽qx\in{\mathbb{F}}_{q}, there exists exactly one b𝔽qb\in{\mathbb{F}}_{q} satisfying f(x+a)f(x)=bf(x+a)-f(x)=b. Then

i=0qiωi\displaystyle\sum\limits_{i=0}^{q}i\omega_{i} =i=0q(a,b)(𝔽q)2δf(a,b)=i#{x𝔽q:f(x+a)f(x)=b}\displaystyle=\sum\limits_{i=0}^{q}\sum\limits_{\begin{subarray}{c}(a,b)\in({\mathbb{F}}_{q})^{2}\\ \delta_{f}(a,b)=i\end{subarray}}\#\{x\in{\mathbb{F}}_{q}:f(x+a)-f(x)=b\}
=(a,b)(𝔽q)2#{x𝔽q:f(x+a)f(x)=b}\displaystyle=\sum\limits_{(a,b)\in({\mathbb{F}}_{q})^{2}}\#\{x\in{\mathbb{F}}_{q}:f(x+a)-f(x)=b\}
=a𝔽qb𝔽q#{x𝔽q:f(x+a)f(x)=b}\displaystyle=\sum\limits_{a\in{\mathbb{F}}_{q}}\sum\limits_{b\in{\mathbb{F}}_{q}}\#\{x\in{\mathbb{F}}_{q}:f(x+a)-f(x)=b\}
=a𝔽qx𝔽q1\displaystyle=\sum\limits_{a\in{\mathbb{F}}_{q}}\sum\limits_{x\in{\mathbb{F}}_{q}}1
=q2.\displaystyle=q^{2}.

In the following, we prove the last statement. Note that

δf(α,β)=#{(x1,x2)(𝔽q)2:{x1x2=α,f(x1)f(x2)=β.},\delta_{f}(\alpha,\beta)=\#\bigg{\{}(x_{1},x_{2})\in({\mathbb{F}}_{q})^{2}:\left\{\begin{array}[]{l}x_{1}-x_{2}=\alpha,\\ f(x_{1})-f(x_{2})=\beta.\\ \end{array}\right.\bigg{\}},

since the number of solutions of x2x_{2} of the equation f(x2+α)f(x2)=βf(x_{2}+\alpha)-f(x_{2})=\beta is δf(α,β)\delta_{f}(\alpha,\beta) and x1x_{1} is uniquely determined by x2x_{2}.

It is clear that

N4\displaystyle N_{4} =#{(x1,x2,x3,x4)(𝔽q)4:{x1x2+x3x4=0,f(x1)f(x2)+f(x3)f(x4)=0.}\displaystyle=\#\bigg{\{}(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{q})^{4}:\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ f(x_{1})-f(x_{2})+f(x_{3})-f(x_{4})=0.\\ \end{array}\right.\bigg{\}}
=(α,β)(𝔽q)2#{(x1,x2,x3,x4)(𝔽q)4:{x1x2=x4x3=α,f(x1)f(x2)=f(x4)f(x3)=β.}\displaystyle=\sum\limits_{(\alpha,\beta)\in({\mathbb{F}}_{q})^{2}}\#\bigg{\{}(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{q})^{4}:\left\{\begin{array}[]{l}x_{1}-x_{2}=x_{4}-x_{3}=\alpha,\\ f(x_{1})-f(x_{2})=f(x_{4})-f(x_{3})=\beta.\\ \end{array}\right.\bigg{\}}
=(α,β)(𝔽q)2#{(x1,x2)(𝔽q)2:{x1x2=α,f(x1)f(x2)=β.}#{(x3,x4)(𝔽q)2:{x4x3=α,f(x4)f(x3)=β.}\displaystyle=\sum\limits_{(\alpha,\beta)\in({\mathbb{F}}_{q})^{2}}\#\bigg{\{}(x_{1},x_{2})\in({\mathbb{F}}_{q})^{2}:\left\{\begin{array}[]{l}x_{1}-x_{2}=\alpha,\\ f(x_{1})-f(x_{2})=\beta.\\ \end{array}\right.\bigg{\}}\cdot\#\bigg{\{}(x_{3},x_{4})\in({\mathbb{F}}_{q})^{2}:\left\{\begin{array}[]{l}x_{4}-x_{3}=\alpha,\\ f(x_{4})-f(x_{3})=\beta.\\ \end{array}\right.\bigg{\}}
=(α,β)(𝔽q)2(δf(α,β))2\displaystyle=\sum\limits_{(\alpha,\beta)\in({\mathbb{F}}_{q})^{2}}(\delta_{f}(\alpha,\beta))^{2}
=i=0q(α,β)(𝔽q)2δf(α,β)=ii2\displaystyle=\sum\limits_{i=0}^{q}\sum\limits_{\begin{subarray}{c}(\alpha,\beta)\in({\mathbb{F}}_{q})^{2}\\ \delta_{f}(\alpha,\beta)=i\end{subarray}}i^{2}
=i=0qi2ωi.\displaystyle=\sum\limits_{i=0}^{q}i^{2}\omega_{i}.

This completes the proof. ∎

IV On the number of solutions of certain systems of equations

In this section, we determine the number of solutions of several systems of equations which are needed in Section V.

Lemma 4.

Let pn3(mod4)p^{n}\equiv~{}3(mod~{}4). Let N˙(1,1,1)\dot{N}_{(1,1,1)} denote the number of solutions (y1,y2,y3)(𝔽pn)3(y_{1},y_{2},y_{3})\in({\mathbb{F}}_{p^{n}}^{*})^{3} of the following system of equations

{y1y2+y31=0,y12y22+y321=0,\left\{\begin{array}[]{l}y_{1}-y_{2}+y_{3}-1=0,\\ y_{1}^{2}-y_{2}^{2}+y_{3}^{2}-1=0,\\ \end{array}\right. (10)

with (χ(y1),χ(y2),χ(y3))=(1,1,1)(\chi(y_{1}),\chi(y_{2}),\chi(y_{3}))=(1,1,1). Then we have N˙(1,1,1)=pn2\dot{N}_{(1,1,1)}=p^{n}-2.

Proof.

The system (10) can be rewritten as

{y1y2=1y3,y12y22=1y32.\left\{\begin{array}[]{l}y_{1}-y_{2}=1-y_{3},\\ y_{1}^{2}-y_{2}^{2}=1-y_{3}^{2}.\\ \end{array}\right. (11)

If y3=1y_{3}=1, then we get (y1,y2,y3)=(y2,y2,1)(y_{1},y_{2},y_{3})=(y_{2},y_{2},1). Note that (y2,y2,1)(y_{2},y_{2},1) is a desired solution if and only if χ(y2)=1\chi(y_{2})=1. Therefore, the number of such desired solutions is pn12\frac{p^{n}-1}{2}. If y31y_{3}\neq 1, then y1y2y_{1}\neq y_{2}, we have

{y1y2=1y3,y1+y2=1+y3,\left\{\begin{array}[]{l}y_{1}-y_{2}=1-y_{3},\\ y_{1}+y_{2}=1+y_{3},\\ \end{array}\right.

whose solution is (y1,y2,y3)=(1,y2,y2)(y_{1},y_{2},y_{3})=(1,y_{2},y_{2}). Similarly, the number of such desired solutions is pn12\frac{p^{n}-1}{2}. Together with the two cases and removing one identical solution (1,1,1)(1,1,1), N˙(1,1,1)=pn12+pn121=pn2\dot{N}_{(1,1,1)}=\frac{p^{n}-1}{2}+\frac{p^{n}-1}{2}-1=p^{n}-2. ∎

Lemma 5.

Let pn3(mod4)p^{n}\equiv~{}3(mod~{}4). Let N¨(1,1,1)\ddot{N}_{(-1,-1,-1)} denote the number of solutions (y1,y2,y3)(𝔽pn)3(y_{1},y_{2},y_{3})\in({\mathbb{F}}_{p^{n}}^{*})^{3} of the following system of equations

{y1y2+y31=0,y12y22+y32=0,\left\{\begin{array}[]{l}y_{1}-y_{2}+y_{3}-1=0,\\ y_{1}^{2}-y_{2}^{2}+y_{3}^{2}=0,\\ \end{array}\right. (12)

with (χ(y1),χ(y2),χ(y3))=(1,1,1)(\chi(y_{1}),\chi(y_{2}),\chi(y_{3}))=(-1,-1,-1). Then we have N¨(1,1,1)=18(pn+1+(χ(2)1)λp,n)\ddot{N}_{(-1,-1,-1)}=\frac{1}{8}\left(p^{n}+1+(\chi(2)-1)\lambda_{p,n}\right).

Proof.

It is easy to check that y31y_{3}\neq 1 in (12), then we have

{y1y2=1y3,y1+y2=y321y3.\left\{\begin{array}[]{l}y_{1}-y_{2}=1-y_{3},\\ y_{1}+y_{2}=-\frac{y_{3}^{2}}{1-y_{3}}.\\ \end{array}\right.

Thus, we obtain the solutions of (12)

{y1=1+12(y31),y2=y3+12(y31).\left\{\begin{array}[]{l}y_{1}=1+\frac{1}{2(y_{3}-1)},\\ y_{2}=y_{3}+\frac{1}{2(y_{3}-1)}.\\ \end{array}\right.

Hence, (y1,y2,y3)(y_{1},y_{2},y_{3}) is a desired solution if and only if

χ(1+12(y31))=1,χ(y3+12(y31))=1,χ(y3)=1.\chi\left(1+\frac{1}{2(y_{3}-1)}\right)=-1,~{}\chi\left(y_{3}+\frac{1}{2(y_{3}-1)}\right)=-1,~{}\chi(y_{3})=-1.

This implies that

N¨(1,1,1)\displaystyle\ddot{N}_{(-1,-1,-1)} =18y3𝔽pn,y31[1χ(1+12(y31))][1χ(y3+12(y31))][1χ(y3)]\displaystyle=\frac{1}{8}\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}^{*},y_{3}\neq 1}\left[1-\chi\left(1+\frac{1}{2(y_{3}-1)}\right)\right]\cdot\left[1-\chi\left(y_{3}+\frac{1}{2(y_{3}-1)}\right)\right]\cdot\left[1-\chi(y_{3})\right]
=18y3𝔽pn,y31[1χ((y31)(y312))][1χ((y31)(y32y3+12))][1χ(y3)]\displaystyle=\frac{1}{8}\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}^{*},y_{3}\neq 1}\left[1-\chi\left((y_{3}-1)\left(y_{3}-\frac{1}{2}\right)\right)\right]\left[1-\chi\left((y_{3}-1)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)\right][1-\chi(y_{3})]
=18[y3𝔽pn1y3𝔽pnχ(y3)y3𝔽pnχ((y31)(y312))y3𝔽pnχ((y31)(y32y3+12))\displaystyle=\frac{1}{8}\Bigg{[}\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}1-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi(y_{3})-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left((y_{3}-1)\left(y_{3}-\frac{1}{2}\right)\right)-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left((y_{3}-1)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)
+y3𝔽pnχ((y31)2(y312)(y32y3+12))+y3𝔽pnχ(y3(y31)(y32y3+12))\displaystyle~{}~{}~{}~{}~{}~{}~{}+\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left((y_{3}-1)^{2}\left(y_{3}-\frac{1}{2}\right)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)+\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(y_{3}(y_{3}-1)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)
+y3𝔽pnχ(y3(y31)(y312))y3𝔽pnχ(y3(y312)(y31)2(y32y3+12))]\displaystyle~{}~{}~{}~{}~{}~{}~{}+\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(y_{3}(y_{3}-1)\left(y_{3}-\frac{1}{2}\right)\right)-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(y_{3}\left(y_{3}-\frac{1}{2}\right)(y_{3}-1)^{2}\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)\Bigg{]}
=18[pny3𝔽pnχ((y31)(y312))y3𝔽pnχ((y31)(y32y3+12))\displaystyle=\frac{1}{8}\Bigg{[}p^{n}-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left((y_{3}-1)\left(y_{3}-\frac{1}{2}\right)\right)-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left((y_{3}-1)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)
+y3𝔽pnχ((y312)(y32y3+12))1+y3𝔽pnχ(y3(y31)(y32y3+12))\displaystyle~{}~{}~{}~{}~{}~{}~{}+\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(\left(y_{3}-\frac{1}{2}\right)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)-1+\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(y_{3}(y_{3}-1)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)
+y3𝔽pnχ(y3(y312)(y31))y3𝔽pnχ(y3(y312)(y32y3+12))+1]\displaystyle~{}~{}~{}~{}~{}~{}~{}+\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(y_{3}\left(y_{3}-\frac{1}{2}\right)(y_{3}-1)\right)-\sum\limits_{y_{3}\in{\mathbb{F}}_{p^{n}}}\chi\left(y_{3}\left(y_{3}-\frac{1}{2}\right)\left(y_{3}^{2}-y_{3}+\frac{1}{2}\right)\right)+1\Bigg{]}
=18(pn+1+(χ(2)1)λp,n).\displaystyle=\frac{1}{8}(p^{n}+1+(\chi(2)-1)\lambda_{p,n}).

The last identity holds based on Lemma 1 and Lemma 3. ∎

Lemma 6.

Let pn3(mod4)p^{n}\equiv~{}3(mod~{}4). Let N˙˙˙(1,1,1,1)\dddot{N}_{(-1,-1,-1,-1)} denote the number of solutions (y1,y2,y3,y4)(𝔽pn)4(y_{1},y_{2},y_{3},y_{4})\in({\mathbb{F}}_{p^{n}}^{*})^{4} of the equation

y1y2+y3y4=0,y_{1}-y_{2}+y_{3}-y_{4}=0, (13)

with (χ(y1),χ(y2),χ(y3),χ(y4))=(1,1,1,1)(\chi(y_{1}),\chi(y_{2}),\chi(y_{3}),\chi(y_{4}))=(-1,-1,-1,-1). Then N˙˙˙(1,1,1,1)=116((pn1)(p2n2pn+5))\dddot{N}_{(-1,-1,-1,-1)}=\frac{1}{16}\left((p^{n}-1)\left(p^{2n}-2p^{n}+5\right)\right).

Proof.

We have

#{(y1,y2,y3,y4)(𝔽pn)4:y1y2+y3y4=0}\displaystyle\#\left\{(y_{1},y_{2},y_{3},y_{4})\in({\mathbb{F}}_{p^{n}}^{*})^{4}:y_{1}-y_{2}+y_{3}-y_{4}=0\right\}
=\displaystyle= #{(y1,y2,y3,y4)(𝔽pn)4:y1y2=y4y3}\displaystyle\#\left\{(y_{1},y_{2},y_{3},y_{4})\in({\mathbb{F}}_{p^{n}}^{*})^{4}:y_{1}-y_{2}=y_{4}-y_{3}\right\}
=\displaystyle= α𝔽pn#{(y1,y2,y3,y4)(𝔽pn)4:{y1y2=α,y4y3=α.}\displaystyle\sum\limits_{\alpha\in{\mathbb{F}}_{p^{n}}}\#\Bigg{\{}(y_{1},y_{2},y_{3},y_{4})\in({\mathbb{F}}_{p^{n}}^{*})^{4}:\left\{\begin{array}[]{l}y_{1}-y_{2}=\alpha,\\ y_{4}-y_{3}=\alpha.\end{array}\right.\Bigg{\}}
=\displaystyle= α𝔽pn#{(y1,y2)(𝔽pn)2:y1y2=α}#{(y3,y4)(𝔽pn)2:y4y3=α}\displaystyle\sum\limits_{\alpha\in{\mathbb{F}}_{p^{n}}}\#\left\{(y_{1},y_{2})\in({\mathbb{F}}_{p^{n}}^{*})^{2}:y_{1}-y_{2}=\alpha\right\}\cdot\#\left\{(y_{3},y_{4})\in({\mathbb{F}}_{p^{n}}^{*})^{2}:y_{4}-y_{3}=\alpha\right\}
=\displaystyle= α𝔽pn(#{(y1,y2)(𝔽pn)2:y1y2=α})2.\displaystyle\sum\limits_{\alpha\in{\mathbb{F}}_{p^{n}}}\left(\#\left\{(y_{1},y_{2})\in({\mathbb{F}}_{p^{n}}^{*})^{2}:y_{1}-y_{2}=\alpha\right\}\right)^{2}.

In the following, for a given α𝔽pn\alpha\in{\mathbb{F}}_{p^{n}}, we discuss the number of solutions (y1,y2)(y_{1},y_{2}) of the equation

y1y2=αy_{1}-y_{2}=\alpha

with χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=-1.

  1. 1.

    α=0\alpha=0. Then the desired solutions of y1y2=αy_{1}-y_{2}=\alpha should be (y1,y2)=(y1,y1)(y_{1},y_{2})=(y_{1},y_{1}) with χ(y1)=1\chi(y_{1})=-1. Besides, the number of such solutions is pn12\frac{p^{n}-1}{2}.

  2. 2.

    α\alpha is a square element in 𝔽pn{\mathbb{F}}_{p^{n}}^{*}. Let zi=yiα(i=1,2)z_{i}=\frac{y_{i}}{\alpha}(i=1,2), then χ(z1)=χ(z2)=1\chi(z_{1})=\chi(z_{2})=-1 and the equation y1y2=αy_{1}-y_{2}=\alpha becomes z1z2=1z_{1}-z_{2}=1. Thus, we have

    #{(z1,z2)(𝔽pn)2:z1z2=1,χ(z1)=χ(z2)=1}=#{z2𝔽pn:χ(z2+1)=χ(z2)=1}\#\left\{(z_{1},z_{2})\in({\mathbb{F}}_{p^{n}}^{*})^{2}:z_{1}-z_{2}=1,\chi(z_{1})=\chi(z_{2})=-1\right\}=\#\left\{z_{2}\in{\mathbb{F}}_{p^{n}}^{*}:\chi(z_{2}+1)=\chi(z_{2})=-1\right\}
    =14z2𝔽pn,z21(1χ(z2))(1χ(z2+1))=pn34.=\frac{1}{4}\sum\limits_{\begin{subarray}{c}z_{2}\in{\mathbb{F}}_{p^{n}}^{*},\\ z_{2}\neq-1\end{subarray}}(1-\chi(z_{2}))(1-\chi(z_{2}+1))=\frac{p^{n}-3}{4}.
  3. 3.

    α\alpha is a nonsquare element in 𝔽pn{\mathbb{F}}_{p^{n}}^{*}. The number of solutions (y1,y2)(y_{1},y_{2}) with χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=-1 of the equation y1y2=αy_{1}-y_{2}=\alpha is also pn34\frac{p^{n}-3}{4}. The proof is similar with 2) and we omit it.

In summary, we have

N˙˙˙(1,1,1,1)=(pn12)2+2pn12(pn34)2=116((pn1)(p2n2pn+5)).\dddot{N}_{(-1,-1,-1,-1)}=\left(\frac{p^{n}-1}{2}\right)^{2}+2\cdot\frac{p^{n}-1}{2}\cdot\left(\frac{p^{n}-3}{4}\right)^{2}=\frac{1}{16}\left((p^{n}-1)(p^{2n}-2p^{n}+5)\right).

V The differential spectrum of f1f_{1}

Let nn be an odd integer, pp be an odd prime satisfying p3(mod4)p\equiv 3~{}(mod~{}4). Recall that f1(x)=xpn+32+x2f_{1}(x)=x^{\frac{p^{n}+3}{2}}+x^{2} and f1(x)=xpn+32x2f_{-1}(x)=x^{\frac{p^{n}+3}{2}}-x^{2} are binomials over 𝔽pn{\mathbb{F}}_{p^{n}}. Note that f1(x)=f1(x)f_{-1}(x)=-f_{1}(-x), then we only study the differential properties of f1(x)f_{1}(x). In this section, we investigate the differential uniformity and the differential spectrum of f1f_{1}. The differential uniformity and the differential spectrum of f1f_{-1} can be obtained directly and we omit them.

V-A The differential uniformity of f1f_{1}

In this subsection, our primary objective is to determine the differential uniformity of f1f_{1}, accompanied by a discussion of the number of potential solutions associated with the differential equation.

Theorem 2.

Let nn be an odd integer, pp be an odd prime with pn3(mod4)p^{n}\equiv 3~{}(mod~{}4). The differential uniformity of f1f_{1} is pn+14\frac{p^{n}+1}{4}. Moreover, δf1(a,b)2\delta_{f_{1}}(a,b)\leq 2 when (a,b)(𝔽pn)2(a,b)\in({\mathbb{F}}_{p^{n}}^{*})^{2}.

Proof.

It is obvious that δf1(0,0)=pn\delta_{f_{1}}(0,0)=p^{n} and δf1(0,b)=0\delta_{f_{1}}(0,b)=0 for b0b\neq 0. For any (a,b)𝔽pn×𝔽pn(a,b)\in{\mathbb{F}}_{p^{n}}^{*}\times{\mathbb{F}}_{p^{n}}, the differential equation f1(x+a)f1(x)=bf_{1}(x+a)-f_{1}(x)=b becomes

(χ(x+a)χ(x))x2+2a(1+χ(x+a))x+(1+χ(x+a))a2b=0.(\chi(x+a)-\chi(x))x^{2}+2a(1+\chi(x+a))x+(1+\chi(x+a))a^{2}-b=0. (14)

When x{0,a}x\notin\{0,-a\}, we discuss (14) in four cases shown in Table III, in which x1x_{1} and x2x_{2} denote the two solutions of the quadratic equations in Case III and Case IV.

TABLE III: List of Equations and Solutions
Case I II III IV
(χ(x+a),χ(x))(\chi(x+a),\chi(x)) (1,1)(1,1) (1,1)(-1,-1) (1,1)(-1,1) (1,1)(1,-1)
EquationEquation 4ax+2a2b=04ax+2a^{2}-b=0 b=0b=0 2x2+b=02x^{2}+b=0 2x2+4ax+2a2b=02x^{2}+4ax+2a^{2}-b=0
xx b2a24a\frac{b-2a^{2}}{4a} ±b2\pm\sqrt{-\frac{b}{2}} 2a±2b2\frac{-2a\pm\sqrt{2b}}{2}
x+ax+a b+2a24a\frac{b+2a^{2}}{4a} a±b2a\pm\sqrt{-\frac{b}{2}} a±a1+u1ab-a\pm a\sqrt{1+\frac{u-1}{ab}}
x1x2x_{1}x_{2} b2\frac{b}{2} 2a2b2\frac{2a^{2}-b}{2}
(x1+a)(x2+a)(x_{1}+a)(x_{2}+a) a2+b2a^{2}+\frac{b}{2} b2-\frac{b}{2}
  1. 1.

    When b=0b=0, x=0x=0 is a solution of (14) if and only if χ(a)=1\chi(a)=-1, and x=ax=-a is a solution of equation (14) if and only if χ(a)=1\chi(a)=1. This indicates that for any a𝔽pna\in{\mathbb{F}}_{p^{n}}^{*}, f1(x+a)f1(x)=0f_{1}(x+a)-f_{1}(x)=0 has exactly one solution in {0,a}\{0,-a\}. For the remaining solutions not in {0,a}\{0,-a\}, replacing bb by 0 in Table III, it is effortless to check that f1(x+a)f1(x)=0f_{1}(x+a)-f_{1}(x)=0 has no solutions in Case I, Case III or Case IV. And for any a𝔽pna\in{\mathbb{F}}_{p^{n}}^{*}, there are

    14x𝔽pn{a}(1χ(x+a))(1χ(x))=pn34\frac{1}{4}\sum\limits_{x\in{\mathbb{F}}_{p^{n}}^{*}\setminus\{-a\}}(1-\chi(x+a))(1-\chi(x))=\frac{p^{n}-3}{4}

    solutions in Case II. In short, the equation f1(x+a)f1(x)=0f_{1}(x+a)-f_{1}(x)=0 has pn+14\frac{p^{n}+1}{4} solutions in total and the number of such (a,0)(a,0) is pn1p^{n}-1.

  2. 2.

    When b0b\neq 0,

    1. (a)

      it is clear that (14) cannot have solutions in both Cases III and IV simultaneously as χ(2b)\chi(2b) cannot be both 1-1 and 11 at the same time;

    2. (b)

      if (14) has two solutions in Case III, then χ(b2)=1\chi(-\frac{b}{2})=1 and χ(x1x2)=χ(b2)=1\chi(x_{1}x_{2})=\chi(\frac{b}{2})=1, which is a contradiction;

    3. (c)

      (14) has at most one solution in Case IV, otherwise both χ(2b)=1\chi(2b)=1 and χ(x1+a)χ(x2+a)=χ(2b)=1\chi(x_{1}+a)\chi(x_{2}+a)=\chi(-2b)=1 would hold simultaneously, which is impossible with χ(1)=1\chi(-1)=-1.

    From the discussion above, the equation f1(x+a)f1(x)=bf_{1}(x+a)-f_{1}(x)=b has at most two solutions when b0b\neq 0.

We finish the proof. ∎

V-B The value of N4N_{4} pertaining to f1f_{1}

Based on the discussion in Subsection V-A, to determine the differential spectrum of f1f_{1}, we are required to determine ω0\omega_{0}, ω1\omega_{1} and ω2\omega_{2}. Further, according to Theorem 1 and the fact that f1(x)=(1+χ(x))x2f_{1}(x)=(1+\chi(x))x^{2}, we need to examine the solutions of the system of equations

{x1x2+x3x4=0,(1+χ(x1))x12(1+χ(x2))x22+(1+χ(x3))x32(1+χ(x4))x42=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ (1+\chi(x_{1}))x_{1}^{2}-(1+\chi(x_{2}))x_{2}^{2}+(1+\chi(x_{3}))x_{3}^{2}-(1+\chi(x_{4}))x_{4}^{2}=0.\\ \end{array}\right.
Theorem 3.

Let N4N_{4} denote the number of solutions of the system of equations:

{x1x2+x3x4=0,(1+χ(x1))x12(1+χ(x2))x22+(1+χ(x3))x32(1+χ(x4))x42=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ (1+\chi(x_{1}))x_{1}^{2}-(1+\chi(x_{2}))x_{2}^{2}+(1+\chi(x_{3}))x_{3}^{2}-(1+\chi(x_{4}))x_{4}^{2}=0.\\ \end{array}\right. (15)

Then N4=116((pn1)(p2n+34pn+17+4(χ(2)1)λp,n))+1N_{4}=\frac{1}{16}\left((p^{n}-1)\left(p^{2n}+34p^{n}+17+4(\chi(2)-1)\lambda_{p,n}\right)\right)+1.

Proof.

For a solution (x1,x2,x3,x4)(𝔽pn)4(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{p^{n}})^{4} of (15), let 𝒩(i)\mathcal{N}^{(i)} denote the number of solutions containing ii zeros, where 0i40\leqslant i\leqslant 4. In the first place, we are trying to evaluate 𝒩(0)\mathcal{N}^{(0)}. Let 𝒩(i,j,k,l)\mathcal{N}_{(i,j,k,l)} denote the number of solutions (x1,x2,x3,x4)(𝔽pn)4(x_{1},x_{2},x_{3},x_{4})\in({\mathbb{F}}_{p^{n}}^{*})^{4} of the system (15) when (χ(x1),χ(x2),χ(x3),χ(x4))=(i,j,k,l),i,j,k,l{±1}(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(i,j,k,l),i,j,k,l\in\{\pm 1\}. Then we have 𝒩(0)=i,j,k,l{±1}𝒩(i,j,k,l)\mathcal{N}^{(0)}=\sum\limits_{i,j,k,l\in\{\pm 1\}}\mathcal{N}_{(i,j,k,l)}. Next, we compute 𝒩(i,j,k,l)\mathcal{N}_{(i,j,k,l)} in 1616 cases presented below.

  1. 1.

    When (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(1,1,1,1), the system (15) can be reduced to

    {x1x2+x3x4=0,x12x22+x32x42=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-x_{4}^{2}=0.\\ \end{array}\right.

    Set yi=xix4y_{i}=\frac{x_{i}}{x_{4}}, then we need to calculate the number of solutions of

    {y1y2+y31=0,y12y22+y321=0,\left\{\begin{array}[]{l}y_{1}-y_{2}+y_{3}-1=0,\\ y_{1}^{2}-y_{2}^{2}+y_{3}^{2}-1=0,\\ \end{array}\right.

    where χ(y1)=χ(y2)=χ(y3)=1\chi(y_{1})=\chi(y_{2})=\chi(y_{3})=1. According to Lemma 4, the number of the above system is pn2p^{n}-2. Combined with the condition that χ(x4)=1\chi(x_{4})=1 and noting that the number of such x4x_{4} is pn12\frac{p^{n}-1}{2}, we can obtain that 𝒩(1,1,1,1)=12(pn1)(pn2)\mathcal{N}_{(1,1,1,1)}=\frac{1}{2}(p^{n}-1)(p^{n}-2).

  2. 2.

    In this case, we consider there is exactly one nonsquare element among x1,x2,x3x_{1},x_{2},x_{3} and x4x_{4}.

    1. (a)

      When (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(1,1,1,-1), the system (15) can be reduced to

      {x1x2+x3x4=0,x12x22+x32=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=0.\\ \end{array}\right.

      Set yi=xix4y_{i}=\frac{x_{i}}{x_{4}}, then we need to calculate the number of solutions of

      {y1y2+y31=0,y12y22+y32=0,\left\{\begin{array}[]{l}y_{1}-y_{2}+y_{3}-1=0,\\ y_{1}^{2}-y_{2}^{2}+y_{3}^{2}=0,\\ \end{array}\right.

      with (χ(y1),χ(y2),χ(y3))=(1,1,1)(\chi(y_{1}),\chi(y_{2}),\chi(y_{3}))=(-1,-1,-1). According to Lemma 5, the number of solutions of the above system is 18(pn+1+(χ(2)1)λp,n)\frac{1}{8}(p^{n}+1+(\chi(2)-1)\lambda_{p,n}). Combined with the condition that χ(x4)=1\chi(x_{4})=-1 and noting that the number of such x4x_{4} is pn12\frac{p^{n}-1}{2}, we can obtain that 𝒩(1,1,1,1)=116((pn1)(pn+1+(χ(2)1)λp,n))\mathcal{N}_{(1,1,1,-1)}=\frac{1}{16}\left((p^{n}-1)(p^{n}+1+(\chi(2)-1)\lambda_{p,n})\right).

    2. (b)

      When (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(1,1,-1,1), the system (15) can be reduced to

      {x1x2+x3x4=0,x12x22x42=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ x_{1}^{2}-x_{2}^{2}-x_{4}^{2}=0.\\ \end{array}\right.

      This system of equations is the same as

      {x2x1+x4x3=0,x22x12+x42=0.\left\{\begin{array}[]{l}x_{2}-x_{1}+x_{4}-x_{3}=0,\\ x_{2}^{2}-x_{1}^{2}+x_{4}^{2}=0.\\ \end{array}\right.

      By a simple comparison, we have 𝒩(1,1,1,1)=𝒩(1,1,1,1)\mathcal{N}_{(1,1,-1,1)}=\mathcal{N}_{(1,1,1,-1)}. In the same manner, 𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)\mathcal{N}_{(-1,1,1,1)}=\mathcal{N}_{(1,1,-1,1)}=\mathcal{N}_{(1,-1,1,1)}=\mathcal{N}_{(1,1,1,-1)} can be deduced.

    In short, we have 𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=116((pn1)(pn+1+(χ(2)1)λp,n))\mathcal{N}_{(1,1,1,-1)}=\mathcal{N}_{(1,1,-1,1)}=\mathcal{N}_{(1,-1,1,1)}=\mathcal{N}_{(-1,1,1,1)}=\frac{1}{16}\big{(}(p^{n}-1)(p^{n}+1+(\chi(2)-1)\lambda_{p,n})\big{)}.

  3. 3.

    In this case, we consider there are exactly two nonsquare elements among x1,x2,x3x_{1},x_{2},x_{3} and x4x_{4}.

    1. (a)

      When (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(1,1,-1,-1), the system (15) can be reduced to

      {x1x2+x3x4=0,x12x22=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ x_{1}^{2}-x_{2}^{2}=0.\\ \end{array}\right.

      From the second equation above, we can obtain that x1=x2x_{1}=x_{2} since χ(x1)=χ(x2)\chi(x_{1})=\chi(x_{2}) and χ(1)=1\chi(-1)=-1. Then the solutions of this system of equations is (x1,x1,x3,x3)(x_{1},x_{1},x_{3},x_{3}). Combined with the condition that χ(x1)=1\chi(x_{1})=1 and χ(x3)=1\chi(x_{3})=-1, and noting that the number of such x1x_{1} and x3x_{3} is each pn12\frac{p^{n}-1}{2}, we can obtain that 𝒩(1,1,1,1)=14(pn1)2\mathcal{N}_{(1,1,-1,-1)}=\frac{1}{4}(p^{n}-1)^{2}.

    2. (b)

      Since x1x_{1} and x3x_{3} have the same status in the system (15) and so do x2x_{2} and x4x_{4}, it follows that 𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)\mathcal{N}_{(-1,-1,1,1)}=\mathcal{N}_{(1,-1,-1,1)}=\mathcal{N}_{(-1,1,1,-1)}=\mathcal{N}_{(1,1,-1,-1)}.

    3. (c)

      When (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(1,-1,1,-1), the system (15) can be reduced to

      {x1x2+x3x4=0,x12+x32=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}-x_{4}=0,\\ x_{1}^{2}+x_{3}^{2}=0.\\ \end{array}\right.

      Obviously, x12+x32=0x_{1}^{2}+x_{3}^{2}=0 has no solution when x10x_{1}\neq 0, x30x_{3}\neq 0, which means 𝒩(1,1,1,1)=0\mathcal{N}_{(1,-1,1,-1)}=0. Besides, it is easy to check that 𝒩(1,1,1,1)=0\mathcal{N}_{(-1,1,-1,1)}=0.

    In short, we have 𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=14(pn1)2\mathcal{N}_{(1,1,-1,-1)}=\mathcal{N}_{(-1,-1,1,1)}=\mathcal{N}_{(1,-1,-1,1)}=\mathcal{N}_{(-1,1,1,-1)}=\frac{1}{4}(p^{n}-1)^{2}, 𝒩(1,1,1,1)=𝒩(1,1,1,1)=0\mathcal{N}_{(1,-1,1,-1)}=\mathcal{N}_{(-1,1,-1,1)}=0.

  4. 4.

    In this case, we consider there are exactly three nonsquare elements among x1,x2,x3x_{1},x_{2},x_{3} and x4x_{4}. Suppose that (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(1,-1,-1,-1), then the second equality in (15) becomes 2x12=02x_{1}^{2}=0. It follows that x1=0x_{1}=0, a contradiction to xi0x_{i}\neq 0 for 1i41\leqslant i\leqslant 4. Thus, 𝒩(1,1,1,1)=0\mathcal{N}_{(1,-1,-1,-1)}=0. By the same procedure, the desired result follows. Thus, we have 𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=𝒩(1,1,1,1)=0\mathcal{N}_{(1,-1,-1,-1)}=\mathcal{N}_{(-1,1,-1,-1)}=\mathcal{N}_{(-1,-1,1,-1)}=\mathcal{N}_{(-1,-1,-1,1)}=0.

  5. 5.

    When (χ(x1),χ(x2),χ(x3),χ(x4))=(1,1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}),\chi(x_{4}))=(-1,-1,-1,-1), the system (15) can be reduced to

    x1x2+x3x4=0.x_{1}-x_{2}+x_{3}-x_{4}=0.

    According to Lemma 6, it follows that 𝒩(1,1,1,1)=116((pn1)(p2n2pn+5))\mathcal{N}_{(-1,-1,-1,-1)}=\frac{1}{16}\left((p^{n}-1)(p^{2n}-2p^{n}+5)\right).

Above all, we have

𝒩(0)\displaystyle\mathcal{N}^{(0)} =(i,j,k,l){±1}4𝒩(i,j,k,l)\displaystyle=\sum\limits_{(i,j,k,l)\in\{\pm 1\}^{4}}\mathcal{N}_{(i,j,k,l)}
=𝒩(1,1,1,1)+4𝒩(1,1,1,1)+4𝒩(1,1,1,1)+2𝒩(1,1,1,1)+4𝒩(1,1,1,1)+𝒩(1,1,1,1)\displaystyle=\mathcal{N}_{(1,1,1,1)}+4\mathcal{N}_{(1,1,1,-1)}+4\mathcal{N}_{(1,1,-1,-1)}+2\mathcal{N}_{(1,-1,1,-1)}+4\mathcal{N}_{(1,-1,-1,-1)}+\mathcal{N}_{(-1,-1,-1,-1)}
=(pn1)(pn2)2+12(pn1)(pn+1+(χ(2)1)λp,n)+(pn1)2+116((pn1)(p2n2pn+5))\displaystyle=\frac{(p^{n}-1)(p^{n}-2)}{2}+\frac{1}{2}(p^{n}-1)(p^{n}+1+(\chi(2)-1)\lambda_{p,n})+(p^{n}-1)^{2}+\frac{1}{16}\left((p^{n}-1)(p^{2n}-2p^{n}+5)\right)
=116((pn1)(p2n+26pn23+4(χ(2)1)λp,n)).\displaystyle=\frac{1}{16}\left((p^{n}-1)(p^{2n}+26p^{n}-23+4(\chi(2)-1)\lambda_{p,n})\right).

In the following, we consider the cases that there exists some xi=0x_{i}=0, where i{1,2,3,4}i\in\{1,2,3,4\} to evaluate 𝒩(i)\mathcal{N}^{(i)} with 1i41\leqslant i\leqslant 4 as follows.

  1. 1.

    Obviously, (0,0,0,0)(0,0,0,0) is a solution of (15). Suppose that there are exactly three variables xix_{i} taking the value 0 in a solution, it can be deduced that the solution must be (0,0,0,0)(0,0,0,0). This implies (15) can not have a solution with exactly three variables being 0 and the rest one being nonzero. Thus, we have 𝒩(4)=1\mathcal{N}^{(4)}=1 and 𝒩(3)=0\mathcal{N}^{(3)}=0.

  2. 2.

    In this case, we consider the condition that there are exactly two variables xix_{i} taking the value 0 in a solution. If x1=x2=0x_{1}=x_{2}=0, then the system (15) can be reduced to

    {x3x4=0,(1+χ(x3))x32(1+χ(x4))x42=0.\left\{\begin{array}[]{l}x_{3}-x_{4}=0,\\ (1+\chi(x_{3}))x_{3}^{2}-(1+\chi(x_{4}))x_{4}^{2}=0.\\ \end{array}\right.

    Then we obtain the solutions in the form of (0,0,x,x)(0,0,x,x) with x𝔽pnx\in{\mathbb{F}}_{p^{n}}^{*} and the number of such solutions is pn1p^{n}-1. By the same token, the quadruples in the form of (x,x,0,0)(x,x,0,0), (0,x,x,0)(0,x,x,0) and (x,0,0,x)(x,0,0,x) are all solutions and the number of each is pn1p^{n}-1. In short, 𝒩(2)=4(pn1)\mathcal{N}^{(2)}=4(p^{n}-1).

  3. 3.

    In this case, we consider the condition that there is exactly one variable xix_{i} taking the value 0 in a solution. If x4=0x_{4}=0, then the system (15) can be reduced to

    {x1x2+x3=0,(1+χ(x1))x12(1+χ(x2))x22+(1+χ(x3))x32=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}=0,\\ (1+\chi(x_{1}))x_{1}^{2}-(1+\chi(x_{2}))x_{2}^{2}+(1+\chi(x_{3}))x_{3}^{2}=0.\\ \end{array}\right. (16)

    For a solution (x1,x2,x3)(𝔽pn)3(x_{1},x_{2},x_{3})\in({\mathbb{F}}_{p^{n}}^{*})^{3} of (16), let 𝙽(i,j,k)\mathtt{N}_{(i,j,k)} denote the number of solutions (x1,x2,x3)(𝔽pn)3(x_{1},x_{2},x_{3})\in({\mathbb{F}}_{p^{n}}^{*})^{3} of the system of equations (16) when (χ(x1),χ(x2),χ(x3))=(i,j,k),i,j,k{±1}(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}))=(i,j,k),i,j,k\in\{\pm 1\}. Next, we examine the solutions of this system (16) in the following eight cases.

    1. (a)

      When (χ(x1),χ(x2),χ(x3))=(1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}))=(1,1,1), the system (16) can be reduced to

      {x1x2+x3=0,x12x22+x32=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}=0,\\ x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=0.\\ \end{array}\right.

      Let yi=xix3y_{i}=\frac{x_{i}}{x_{3}}, we shall calculate the number of solutions of

      {y1y2+1=0,y12y22+1=0,\left\{\begin{array}[]{l}y_{1}-y_{2}+1=0,\\ y_{1}^{2}-y_{2}^{2}+1=0,\\ \end{array}\right.

      with χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=1. Solving the equations above we get y1=0y_{1}=0, which contradicts to χ(y1)=1\chi(y_{1})=1. Therefore, 𝙽(1,1,1)=0\mathtt{N}_{(1,1,1)}=0.

    2. (b)

      Here we discuss that there is exactly one nonsquare element among x1,x2,x3x_{1},x_{2},x_{3}.

      1. i.

        When (χ(x1),χ(x2),χ(x3))=(1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}))=(1,1,-1), (16) can be reduced to

        {x1x2+x3=0,x12x22=0.\left\{\begin{array}[]{l}x_{1}-x_{2}+x_{3}=0,\\ x_{1}^{2}-x_{2}^{2}=0.\\ \end{array}\right.

        Solving the system of equations above we get x3=0x_{3}=0, which is a contradiction. Therefore, 𝙽(1,1,1)=0\mathtt{N}_{(1,1,-1)}=0. Similarly, we have 𝙽(1,1,1)=0\mathtt{N}_{(-1,1,1)}=0.

      2. ii.

        When (χ(x1),χ(x2),χ(x3))=(1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}))=(1,-1,1), the system (16) can be reduced to

        {x1+x3=0,x12+x32=0.\left\{\begin{array}[]{l}x_{1}+x_{3}=0,\\ x_{1}^{2}+x_{3}^{2}=0.\\ \end{array}\right.

        Since x12+x32=0x_{1}^{2}+x_{3}^{2}=0 has no solution in (𝔽pn)2({\mathbb{F}}_{p^{n}}^{*})^{2}, we have 𝙽(1,1,1)=0\mathtt{N}_{(1,-1,1)}=0.

      Thus, we have 𝙽(1,1,1)=𝙽(1,1,1)=𝙽(1,1,1)=0\mathtt{N}_{(1,1,-1)}=\mathtt{N}_{(1,-1,1)}=\mathtt{N}_{(-1,1,1)}=0.

    3. (c)

      Here we discuss that there are exactly two nonsquare elements among x1,x2,x3x_{1},x_{2},x_{3}. When (χ(x1),χ(x2),χ(x3))=(1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}))=(1,-1,-1), the second equation of (16) becomes x12=0x_{1}^{2}=0. It follows that x1=0x_{1}=0, a contradiction to x1𝔽pnx_{1}\in{\mathbb{F}}_{p^{n}}^{*}. Thus, 𝙽(1,1,1)=0\mathtt{N}_{(1,-1,-1)}=0 and similarly, we can get 𝙽(1,1,1)=𝙽(1,1,1)=0\mathtt{N}_{(-1,1,-1)}=\mathtt{N}_{(-1,-1,1)}=0.

    4. (d)

      When (χ(x1),χ(x2),χ(x3))=(1,1,1)(\chi(x_{1}),\chi(x_{2}),\chi(x_{3}))=(-1,-1,-1), (16) can be reduced to

      x1x2+x3=0.x_{1}-x_{2}+x_{3}=0.

      Set yi=xix3y_{i}=\frac{x_{i}}{x_{3}}, then χ(y1)=χ(y2)=1\chi(y_{1})=\chi(y_{2})=1 and we shall consider the equation below for the first step

      y1y2+1=0.y_{1}-y_{2}+1=0.

      Therefore, (y1,y2)(y_{1},y_{2}) is a desired solution if and only if

      χ(y1)=1andχ(y1+1)=1.\chi(y_{1})=1~{}\text{and}~{}\chi(y_{1}+1)=1.

      And the number of such solutions is

      14y1𝔽pn,y11(1+χ(y1))(1+χ(y1+1))=pn34.\frac{1}{4}\sum\limits_{y_{1}\in{\mathbb{F}}_{p^{n}}^{*},y_{1}\neq-1}(1+\chi(y_{1}))\cdot(1+\chi(y_{1}+1))=\frac{p^{n}-3}{4}.

      Therefore, 𝙽(1,1,1)=pn12pn34=18(pn3)(pn1)\mathtt{N}_{(-1,-1,-1)}=\frac{p^{n}-1}{2}\cdot\frac{p^{n}-3}{4}=\frac{1}{8}(p^{n}-3)(p^{n}-1).

    Based on the analysis above, when x4=0x_{4}=0, (15) has 18(pn3)(pn1)\frac{1}{8}(p^{n}-3)(p^{n}-1) solutions containing exactly one zero. As x2x_{2} and x4x_{4} share the same status in (15), when x2=0x_{2}=0, (15) has 18(pn3)(pn1)\frac{1}{8}(p^{n}-3)(p^{n}-1) such solutions. When x3=0x_{3}=0, the system (15) can be reduced to

    {x1x2x4=0,(1+χ(x1))x12(1+χ(x2))x22(1+χ(x4))x42=0.\left\{\begin{array}[]{l}x_{1}-x_{2}-x_{4}=0,\\ (1+\chi(x_{1}))x_{1}^{2}-(1+\chi(x_{2}))x_{2}^{2}-(1+\chi(x_{4}))x_{4}^{2}=0.\end{array}\right.

    This system is equivalent to

    {x2x1+x4=0,(1+χ(x2))x22(1+χ(x1))x12+(1+χ(x4))x42=0.\left\{\begin{array}[]{l}x_{2}-x_{1}+x_{4}=0,\\ (1+\chi(x_{2}))x_{2}^{2}-(1+\chi(x_{1}))x_{1}^{2}+(1+\chi(x_{4}))x_{4}^{2}=0.\end{array}\right.

    By a simple comparison, the number of solutions of (15) when x1=0x_{1}=0 equals that of (15) when x4=0x_{4}=0. Given the equivalent role of x1x_{1} and x3x_{3}, the same conclusion holds when any solution features solely x3=0x_{3}=0. In short, we have 𝒩(1)=12(pn3)(pn1)\mathcal{N}^{(1)}=\frac{1}{2}(p^{n}-3)(p^{n}-1).

In conclusion, we have

N4\displaystyle N_{4} =i=04𝒩(i)\displaystyle=\sum\limits_{i=0}^{4}\mathcal{N}^{(i)}
=116((pn1)(p2n+26pn23+4(χ(2)1)λp,n))+12((pn3)(pn1))+4(pn1)+0+1\displaystyle=\frac{1}{16}\left((p^{n}-1)\left(p^{2n}+26p^{n}-23+4(\chi(2)-1)\lambda_{p,n}\right)\right)+\frac{1}{2}\left((p^{n}-3)(p^{n}-1)\right)+4(p^{n}-1)+0+1
=116((pn1)(p2n+34pn+17+4(χ(2)1)λp,n))+1.\displaystyle=\frac{1}{16}\left((p^{n}-1)\left(p^{2n}+34p^{n}+17+4(\chi(2)-1)\lambda_{p,n}\right)\right)+1.

V-C The differential spectrum of f1f_{1}

Based on the analysis in subsections V-A and V-B, we present the differential spectrum of f1f_{1} as follows.

Theorem 4.

Let pn3(mod4)p^{n}\equiv 3~{}(mod~{}4). The differential spectrum of f1(x)=x2+xpn+32f_{1}(x)=x^{2}+x^{\frac{p^{n}+3}{2}} over 𝔽pn{\mathbb{F}}_{p^{n}} is

𝕊f1=[\displaystyle\mathbb{S}_{f_{1}}=\Big{[} ω0=18((pn1)(3pn+3+(χ(2)1)λp,n)),\displaystyle\omega_{0}=\frac{1}{8}\left((p^{n}-1)\left(3p^{n}+3+(\chi(2)-1)\lambda_{p,n}\right)\right),
ω1=14((pn1)(2pn2(χ(2)1)λp,n)),\displaystyle\omega_{1}=\frac{1}{4}\left((p^{n}-1)\left(2p^{n}-2-(\chi(2)-1)\lambda_{p,n}\right)\right),
ω2=18((pn1)(pn+1+(χ(2)1)λp,n)),\displaystyle\omega_{2}=\frac{1}{8}\left((p^{n}-1)\left(p^{n}+1+(\chi(2)-1)\lambda_{p,n}\right)\right),
ωpn+14=(pn1),\displaystyle\omega_{\frac{p^{n}+1}{4}}=(p^{n}-1),
ωpn=1].\displaystyle\omega_{p^{n}}=1\Big{]}.
Proof.

By Theorem 1, we have the following system of equations pertaining to f1f_{1}

{i=0qωi=q2,i=0qiωi=q2,i=0qi2ωi=N4.\left\{\begin{array}[]{l}\sum\limits_{i=0}^{q}\omega_{i}=q^{2},\\ \sum\limits_{i=0}^{q}i\omega_{i}=q^{2},\\ \sum\limits_{i=0}^{q}i^{2}\omega_{i}=N_{4}.\end{array}\right. (17)

It is obvious that ωq=1\omega_{q}=1. By Theorem 2, we have ωpn+14=pn1\omega_{\frac{p^{n}+1}{4}}=p^{n}-1, and ωi=0\omega_{i}=0 for 3iq13\leqslant i\leqslant q-1, ipn+14i\neq\frac{p^{n}+1}{4}. The value of N4N_{4} was determined in Theorem 3. By substituting certain values, the system (17) can be rewritten as follows

{ω0+ω1+ω2=q2ωpn+14ωq,ω1+2ω2=q2(pn+14)ωpn+14qωq,ω1+22ω2=N4(pn+14)2ωpn+14q2ωq.\left\{\begin{array}[]{l}\omega_{0}+\omega_{1}+\omega_{2}=q^{2}-\omega_{\frac{p^{n}+1}{4}}-\omega_{q},\\ \omega_{1}+2\omega_{2}=q^{2}-\left(\frac{p^{n}+1}{4}\right)\omega_{\frac{p^{n}+1}{4}}-q\omega_{q},\\ \omega_{1}+2^{2}\omega_{2}=N_{4}-\left(\frac{p^{n}+1}{4}\right)^{2}\omega_{\frac{p^{n}+1}{4}}q^{2}\omega_{q}.\end{array}\right.

The desired result follows by solving the above system. We finish the proof. ∎

Remark 1.

Note that nn is odd when pn3(mod4)p^{n}\equiv 3~{}(mod~{}4). Thus, when p7(mod8)p\equiv 7~{}(mod~{}8), we have χ(2)=1\chi(2)=1, then the differential spectrum of f1f_{1} can be expressed without λp,n\lambda_{p,n}, which is

[ω0=38(p2n1),ω1=12(pn1)2,ω2=18(p2n1),ωpn+14=pn1,ωpn=1].\displaystyle\bigg{[}\omega_{0}=\frac{3}{8}\left(p^{2n}-1\right),~{}\omega_{1}=\frac{1}{2}(p^{n}-1)^{2},~{}\omega_{2}=\frac{1}{8}\left(p^{2n}-1\right),~{}\omega_{\frac{p^{n}+1}{4}}=p^{n}-1,~{}\omega_{p^{n}}=1\bigg{]}.

When p3(mod8)p\equiv 3~{}(mod~{}8), we have χ(2)=1\chi(2)=-1, then the differential spectrum of f1f_{1} is

[\displaystyle\bigg{[} ω0=18((pn1)(3pn+32λp,n)),ω1=12((pn1)(pn1+λp,n)),\displaystyle\omega_{0}=\frac{1}{8}\left((p^{n}-1)\left(3p^{n}+3-2\lambda_{p,n}\right)\right),~{}\omega_{1}=\frac{1}{2}\left((p^{n}-1)\left(p^{n}-1+\lambda_{p,n}\right)\right),
ω2=18((pn1)(pn+12λp,n)),ωpn+14=pn1,ωpn=1].\displaystyle\omega_{2}=\frac{1}{8}\left((p^{n}-1)\left(p^{n}+1-2\lambda_{p,n}\right)\right),~{}\omega_{\frac{p^{n}+1}{4}}=p^{n}-1,~{}\omega_{p^{n}}=1\bigg{]}.
Remark 2.

According to Lemma 2, |λp,n|2q12\left|\lambda_{p,n}\right|\leqslant 2q^{\frac{1}{2}}. With Remark 1 we have ω218[(pn1)(pn+14pn2)]\omega_{2}\geqslant\frac{1}{8}\left[(p^{n}-1)(p^{n}+1-4p^{\frac{n}{2}})\right]. This implies ω2>0\omega_{2}>0 if and only if pn11p^{n}\geqslant 11. Consequently,

  1. 1.

    when pn=3p^{n}=3, the differential uniformity of f1f_{1} is 11 and based on Table II, the differential spectrum of f1f_{1} is [ω0=2,ω1=6,ω3=1][\omega_{0}=2,~{}\omega_{1}=6,~{}\omega_{3}=1], which represents the unique condition of a PN function within class of binomials described in Theorem 4;

  2. 2.

    when pn=7p^{n}=7, the differential uniformity of f1f_{1} is 22 and based on Remark 1, the differential spectrum of f1f_{1} is [ω0=18,ω1=12,ω2=18,ω7=1][\omega_{0}=18,~{}\omega_{1}=12,~{}\omega_{2}=18,\omega_{7}=1], which represents the unique condition of an APN function within the class of binomials described in Theorem 4;

  3. 3.

    when pn11p^{n}\geqslant 11, the function in Theorem 4 is exactly a locally APN function.

In what follows, we give some examples to verify our results.

Example 3.

Let p=3p=3, n=5n=5. Then pn1=242p^{n}-1=242, χ(2)=1\chi(2)=-1, λp,n=2\lambda_{p,n}=2. By Theorem 4, the differential spectrum of f1f_{1} is

[ω0=22022,ω1=29524,ω2=7260,ω61=242,ω243=1],\left[\omega_{0}=22022,~{}\omega_{1}=29524,~{}\omega_{2}=7260,~{}\omega_{61}=242,~{}\omega_{243}=1\right],

which coincides with the result calculated directly by MAGMA.

Example 4.

Let p=7p=7, n=3n=3. Then pn1=342p^{n}-1=342, χ(2)=1\chi(2)=1, λp,n=20\lambda_{p,n}=20. By Theorem 4, the differential spectrum of f1f_{1} is

[ω0=44118,ω1=58482,ω2=14706,ω86=342,ω343=1],\left[\omega_{0}=44118,~{}\omega_{1}=58482,~{}\omega_{2}=14706,~{}\omega_{86}=342,~{}\omega_{343}=1\right],

which coincides with the result calculated directly by MAGMA.

Example 5.

Let p=11p=11, n=3n=3. Then pn1=1330p^{n}-1=1330, χ(2)=1\chi(2)=-1, λp,n=58\lambda_{p,n}=58. By Theorem 4, the differential spectrum of f1f_{1} is

[ω0=645050,ω1=923020,ω2=202160,ω333=1330,ω1331=1],\left[\omega_{0}=645050,~{}\omega_{1}=923020,~{}\omega_{2}=202160,~{}\omega_{333}=1330,~{}\omega_{1331}=1\right],

which coincides with the result calculated directly by MAGMA.

VI Concluding remarks

In this paper, we conducted an in-depth investigation of the differential properties of the function fu(x)=xpn+32+ux2f_{u}(x)=x^{\frac{p^{n}+3}{2}}+ux^{2} for u=±1u=\pm 1. We expressed the differential spectrum of f±1f_{\pm 1} in terms of quadratic character sums. This complemented the work on the differential properties of the family of the binomial in [8]. In the process of calculating the aimed spectrum, we solved several systems of equations that could be of use in future research or other contexts. Additionally, we extend the properties of the differential spectrum property of a power function to that of any cryptographic function, and it may be used in calculating the differential spectrum of any other polynomial.

References

  • [1] F. Bao, Y. Xia, S. Chen, C. Li, and T. Helleseth, “The differential spectrum of a power permutation,” Adv. Math. Commun., 2023.
  • [2] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, pp. 3–72, 1991.
  • [3] A. Biryukov and C. D. Cannière, Encyclopedia of Cryptography and Security.   Springer, 2005.
  • [4] C. Blondeau, A. Canteaut, and P. Charpin, “Differential properties of power functions,” Int. J. Inf. Coding Theory, vol. 1, no. 2, pp. 149–170, 2010.
  • [5] ——, “Differential properties of xx2t1x\rightarrow x^{2^{t}-1},” IEEE Trans. Inform. Theory, vol. 57, no. 12, pp. 8127–8137, 2011.
  • [6] C. Blondeau and L. Perrin, “More differentially 6-uniform power functions,” Des. Codes Cryptogr., vol. 73, no. 2, pp. 487–505, 2014.
  • [7] L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, , and I. Villa, “Constructing APN functions through isotopic shifts,” IEEE Trans. Inform. Theory, vol. 66, no. 8, pp. 5299–5309, 2020.
  • [8] L. Budaghyan and M. Pal, “Arithmetization-oriented apn permutations,” Des. Codes Cryptogr., 2024.
  • [9] C. Carlet, P. Charpin, and V. A. Zinoviev, “Codes bent functions and permutations suitable for DES-like cryptosystems,” Des. Codes Cryptogr., vol. 15, no. 2, pp. 125–156, 1998.
  • [10] P. Charpin and J. Peng, “Differential uniformity and the associated codes of cryptographic functions,” Adv. Math. Commun., vol. 13, no. 4, pp. 579–600, 2019.
  • [11] S.-T. Choi, S. Hong, J.-S. No, and H. Chung, “Differential spectrum of some power functions in odd prime characteristic,” Finite Fields Appl., vol. 21, pp. 11–29, 2013.
  • [12] P. Dembowski and T. G. Ostrom, “Planes of order nn with collineation groups of order n2n^{2},” Math. Z., vol. 103, no. 2, pp. 239–258, 1968.
  • [13] H. Dobbertin, T. Helleseth, P. V. Kumar, and H. Martinsen, “Ternary m-sequences with three-valued cross-correlation function: new decimations of welch and niho type,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1473–1481, 2001.
  • [14] H. Dobbertin, D. Mills, E. N. Müller, A. Pott, and W. Willems, “APN functions in odd characteristic,” Discrete Math., vol. 267, no. 1-3, pp. 95–112, 2003.
  • [15] T. Helleseth, C. Rong, and D. Sandberg, “New families of almost perfect nonlinear power functions,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 475–485, 1999.
  • [16] T. Helleseth and D. Sandberg, “Some power functions with low differential uniformity,” Appl. Algebra Engrg. Comm. Comput., vol. 8, no. 5, pp. 363–370, 1997.
  • [17] Z. Hu, N. Li, L. Xu, X. Zeng, and X. Tang, “The differential spectrum and boomerang spectrum of a class of locally-APN functions,” Des. Codes Cryptogr., vol. 91, no. 5, pp. 1695–1711, 2023.
  • [18] S. Jiang, K. Li, Y. Li, and L. Qu, “Differential spectrum of a class of power functions,” J. Cryptology, vol. 9, no. 3, pp. 484–495, 2021.
  • [19] ——, “Differential and boomerang spectrums of some power permutations,” Cryptogr. Commun., vol. 14, pp. 371–393, 2022.
  • [20] L. Lei, W. Ren, and C. Fan, “The differential spectrum of a class of power functions over finite fields,” Adv. Math. Commun., vol. 15, no. 3, pp. 525–537, 2021.
  • [21] R. Lidl and H. Niederreiter, Finite Fields.   Cambridge University Press, 1997.
  • [22] G. Liu, S. Jiang, and K. Li, “On differential spectra of involutions with low differential uniformity over finite fields with even characteristic.” Appl. Algebra Engrg. Comm. Comput., 2024.
  • [23] Y. Man, Y. Xia, C. Li, and T. Helleseth, “On the differential properties of the power function xpm+2x^{p^{m}+2},” Finite Fields Appl., vol. 84, no. 10, pp. 1–22, 2022.
  • [24] G. J. Ness and T. Helleseth, “A new family of ternary almost perfect nonlinear mappings,” IEEE Trans. Inform. Theory, vol. 53, no. 7, pp. 2581–2586, 2007.
  • [25] K. Nyberg, “Perfect nonlinear s-boxes,” Advances in Cryptology-EUROCRYPT 1991, vol. 547, pp. 378–386, 1991.
  • [26] ——, “Differentially uniform mappings for cryptography,” Advances in Cryptology-EUROCRYPT 1994, vol. 765, pp. 55–64, 1994.
  • [27] D. Panario, D. Santana, and Q. Wang, “Ambiguity, deficiency and differential spectrum of normalized permutation polynomials over finite fields,” Finite Fields Appl., vol. 47, pp. 330–350, 2017.
  • [28] T. Pang, N. Li, and X. Zeng, “On the differential spectrum of a differentially 3-uniform power function,” Finite Fields Appl., vol. 87, 2023.
  • [29] J. Peng, C. H. Tan, and Q. Wang, “A new family of differentially 4-uniform permutations over 𝔽22m{\mathbb{F}}_{2}^{2m} for odd kk,” Sci. China Math., vol. 59, no. 6, pp. 1221–1234, 2016.
  • [30] J. H. Silverman, The arithmetic of elliptic curves, 2nd ed., ser. Graduate Texts in Mathematics.   Springer, Dordrecht, 2009, vol. 106.
  • [31] X. Tan and H. Yan, “Differential spectrum of a class of APN power functions,” Des. Codes Cryptogr., vol. 91, pp. 2755–2768, 2023.
  • [32] C. Tang, C. Ding, and M. Xiong, “Codes differentially δ\delta-uniform functions and tt-designs,” IEEE Trans. Inform. Theory, vol. 66, no. 6, pp. 3691–3703, 2020.
  • [33] Z. Tu, N. Li, Y. Wu, X. Zeng, X. Tang, and Y. Jiang, “On the differential spectrum and the apcn property of a class of power functions over finite fields,” IEEE Trans. Inform. Theory, vol. 69, no. 1, pp. 582–597, 2023.
  • [34] Y. Xia, F. Bao, S. Chen, C. Li, and T. Helleseth, “More differential properties of the Ness-Helleseth function,” IEEE Trans. Inform. Theory, vol. 70, no. 8, pp. 6076–6090, 2024.
  • [35] Y. Xia, X. Zhang, C. Li, and T. Helleseth, “The differential spectrum of a ternary power function,” Finite Fields Appl., vol. 64, pp. 1–16, 2020.
  • [36] Y. Xia, C. Li, F. Bao, S. Chen, and T. Helleseth, “Further investigation on differential properties of the generalized ness-helleseth function,” Des. Codes Cryptogr., 2024.
  • [37] X. Xie, S. Mesnager, N. Li, D. He, and X. Zeng, “On the niho type locally-APN power functions and their boomerang spectrum,” IEEE Trans. Inform. Theory, vol. 69, no. 6, pp. 4056–4064, 2023.
  • [38] M. Xiong and H. Yan, “A note on the differential spectrum of a differentially 4-uniform power function,” Finite Fields Appl., vol. 48, pp. 117–125, 2017.
  • [39] M. Xiong, H. Yan, and P. Yuan, “On a conjecture of differentially 8-uniform power functions,” Des. Codes Cryptogr., vol. 86, no. 8, pp. 1601–1621, 2018.
  • [40] G. Xu, X. Cao, and S. Xu, “Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method,” Cryptogr. Commun., vol. 8, no. 1, pp. 155–171, 2016.
  • [41] H. Yan and C. Li, “Differential spectra of a class of power permutations with characteristic 5,” Des. Codes Cryptogr., vol. 89, no. 6, pp. 1181–1191, 2021.
  • [42] H. Yan and Z. Li, “A note on the differential spectrum of a class of power mappings with niho exponent,” Cryptogr. Commun., vol. 14, no. 5, pp. 1081–1089, 2022.
  • [43] H. Yan, S. Mesnager, and X. Tan, “The complete differential spectrum of a class of power permutations over odd characteristic finite fields,” IEEE Trans. Inform. Theory, vol. 69, no. 11, pp. 7426–7438, 2023.
  • [44] ——, “On a class of APN power functions over odd characteristic finite fields: Their differential spectrum and c-differential properties,” Discrete Math., vol. 347, no. 4, 2024.
  • [45] H. Yan, Y. Xia, C. Li, T. Helleseth, M. Xiong, and J. Luo, “The differential spectrum of the power mapping xpn3x^{p^{n}-3},” IEEE Trans. Inform. Theory, vol. 68, no. 8, pp. 5535–5547, 2022.
  • [46] H. Yan, Z. Zhou, J. Weng, J. Wen, T. Helleseth, and Q. Wang, “Differential spectrum of kasami power permutations over odd characteristic finite fields,” IEEE Trans. Inform. Theory, vol. 65, no. 10, pp. 6819–6826, 2019.
  • [47] Z. Zha, S. S. L. Hu, and Y. Sun, “New constructions of APN polynomial functions in odd characteristic,” Appl. Algebra Eng. Commun. Comput., vol. 25, no. 4, pp. 249–263, 2014.
  • [48] Z. Zha and X. Wang, “Almost perfect nonlinear power functions in odd characteristic,” IEEE Trans. Inform. Theory, vol. 57, no. 7, pp. 4826–4832, 2011.