This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Note on Holevo quantity of SU(2)SU(2)-invariant states

Yao-Kun Wang College of Mathematics, Tonghua Normal University, Tonghua, Jilin 134001, China    Li-Zhu Ge The Branch Campus of Tonghua Normal University, Tonghua, Jilin 134001, China    Shao-Ming Fei School of Mathematical Sciences, Capital Normal University, Beijing 100048, China Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany    Zhi-Xi Wang School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
Abstract

The Holevo quantity and the SU(2)SU(2)-invariant states have particular importance in quantum information processing. We calculate analytically the Holevo quantity for bipartite systems composed of spin-jj and spin-12\frac{1}{2} subsystems with SU(2)SU(2) symmetry, when the projective measurements are performed on the spin-12\frac{1}{2} subsystem. The relations among the Holevo quantity, the maximal values of the Holevo quantity and the states are analyzed in detail. In particular, we show that the Holevo quantity increases in the parameter region F<FdF<F_{d} and decreases in region F>FdF>F_{d} when jj increases, where FF is function of temperature in thermal equilibrium and Fd=j/(2j+1)F_{d}=j/(2j+1), and the maximum value of the Holevo quantity is attained at F=1F=1 for all jj. Moreover, when the dimension of system increases, the maximal value of the Holevo quantity decreases.

Keywords: Holevo quantity; SU(2)-invariant state; Projective measurement

I Introduction

The Holevo bound characterizes the capacity of quantum states in classical communication holevo ; bena . As an exceedingly useful upper bound on the accessible information it plays an important role in many quantum information processing nielsen . It is a keystone in the proof of many results in quantum information theory lupo ; zhang ; lloyd ; roga ; wu ; guo . With respect to the Holevo bound, the maximal Holevo quantity related to weak measurements has been studied in wang . The Holevo quantity of an ensemble {pi;ρA|i}\{p_{i};\rho_{A|i}\}, corresponding to a bipartite quantum state ρAB\rho_{AB} with the projective measurements {ΠiB}\{\Pi^{B}_{i}\} performed on the subsystem BB, is given by wang

χ{ρAB|{ΠiB}}=χ{pi;ρA|i}S(ipiρA|i)ipiS(ρA|i),\displaystyle\chi\{\rho_{AB}|\{\Pi^{B}_{i}\}\}=\chi\{p_{i};\rho_{A|i}\}\equiv S(\sum_{i}p_{i}\rho_{A|i})-\sum_{i}p_{i}S(\rho_{A|i}), (1)

where

pi=trAB[(IAΠiB)ρAB(IAΠiB)],ρA|i=1pitrB[(IAΠiB)ρAB(IAΠiB)].p_{i}=\mbox{tr}_{AB}[(I_{A}\otimes\Pi^{B}_{i})\rho_{AB}({I}_{A}\otimes\Pi^{B}_{i})],~{}~{}\rho_{A|i}=\frac{1}{p_{i}}\mbox{tr}_{B}[({I}_{A}\otimes\Pi^{B}_{i})\rho_{AB}({I}_{A}\otimes\Pi^{B}_{i})]. (2)

It denotes the A’s accessible information about the B’s measurement outcome when B projects its system by the projection operators {ΠiB}\{\Pi^{B}_{i}\}.

When measuring one particle in a composite quantum system, partial measurement in quantum mechanics has recently been generalized in long . It collapses-in or collapses-out the measured states. Measure of correlation is also very important in quantum gravity gyongyosi ; van , and characterizing coherence in quantum systems han .

The Holevo quantity (1) related to projective measurements depends on the bipartite states. In the following we study the Holevo quantity for a particular class of SU(2)SU(2)-invariant states. The SU(2)SU(2)-invariant states originate from thermal equilibrium states of spin systems with SU(2)SU(2)-invariant Hamiltonian Durkin . With respect to two spins S1\vec{S}_{1} and S2\vec{S}_{2}, a density matrices ρ\rho is said to be SU(2)SU(2)-invariant if U1U2ρU1U2=ρU_{1}\otimes U_{2}\rho U^{\dagger}_{1}\otimes U^{\dagger}_{2}=\rho, where Ua=exp(iηSa)U_{a}=\exp(i\vec{\eta}\cdot\vec{S}_{a}), a{1,2}a\in\{1,2\}, are the usual rotation operator representation of SU(2)SU(2) with real parameter η\vec{\eta} and =1\hbar=1 Schliemann1 ; Schliemann2 . Those SU(2)SU(2)-invariant states ρ\rho commute with the total spin J=S1+S2\vec{J}=\vec{S}_{1}+\vec{S}_{2}. The entanglement of SO(3)-invariant bipartite quantum states have been studied in Breuer1 ; Breuer2 . For the SU(2)SU(2)-invariant quantum spin systems it is shown that the negativity is the necessary and sufficient condition of separability Schliemann1 ; Schliemann2 . The relative entropy of entanglement has been analytically calculated in zwang for (2j+1)2(2j+1)\otimes 2 and (2j+1)3(2j+1)\otimes 3 dimensional SU(2)SU(2)-invariant quantum spin states. The entanglement of formation, I-concurrence, I-tangle and convex-roof-extended negativity of the SU(2)SU(2)-invariant states of spin-jj and spin-12\frac{1}{2} systems have been investigated in Manne by using the approach in Vollbrecht . The quantum discord and one way deficit for the SU(2)SU(2)-invariant states in spin-jj and spin-12\frac{1}{2} bipartite systems have been discussed respectively in cakmak ; wang1 .

II Holevo quantity of SU(2)SU(2)-invariant states

As an SU(2)SU(2)-invariant state commutes with all the components of J\vec{J}, ρ\rho has the general form Schliemann1 ,

ρ=J=|S1S2|S1+S2A(J)2J+1Jz=JJ|J,Jz00J,Jz|,\rho=\sum_{J=|S_{1}-S_{2}|}^{S_{1}+S_{2}}\frac{A(J)}{2J+1}\sum_{J^{z}=-J}^{J}|J,J^{z}\rangle_{0}{{}_{0}\langle J,J^{z}|}\,, (3)

where the constants A(J)0A(J)\geq 0, JA(J)=1\sum_{J}A(J)=1, |J,Jz0|J,J^{z}\rangle_{0} denotes the state of total spin JJ and zz-component JzJ^{z}. We discuss the case with S1\vec{S}_{1} of arbitrary spin jj and S2\vec{S}_{2} of spin 12\frac{1}{2}. A general SU(2)SU(2)-invariant density matrix has the form,

ρab=F2jm=j+12j12|j12,mj12,m|+1F2(j+1)m=j12j+12|j+12,mj+12,m|,\displaystyle\rho^{ab}=\frac{F}{2j}\sum_{m=-j+\frac{1}{2}}^{j-\frac{1}{2}}|j-\frac{1}{2},m\rangle\langle j-\frac{1}{2},m|+\frac{1-F}{2(j+1)}\sum_{m=-j-\frac{1}{2}}^{j+\frac{1}{2}}|j+\frac{1}{2},m\rangle\langle j+\frac{1}{2},m|, (4)

where F[0,1]F\in[0,1], which is a function of temperature in thermal equilibrium. ρab\rho^{ab} is a (2j+1)2(2j+1)\otimes 2 bipartite state. It has two eigenvalues λ1=F/(2j)\lambda_{1}={F}/{(2j)} and λ2=(1F)/(2j+2)\lambda_{2}=({1-F})/({2j+2}) with degeneracies 2j2j and 2j+22j+2, respectively cakmak . As the eigenstates of the total spin can be given by the Clebsch-Gordon coefficients shankar in coupling a spin-jj to spin-12\frac{1}{2},

|j±12,m=±j+12±m2j+1|j,m12|12,12+j+12m2j+1|j,m+12|12,12,\displaystyle|j\pm\frac{1}{2},m\rangle=\pm\sqrt{\frac{j+\frac{1}{2}\pm m}{2j+1}}|j,m-\frac{1}{2}\rangle\otimes|\frac{1}{2},\frac{1}{2}\rangle+\sqrt{\frac{j+\frac{1}{2}\mp m}{2j+1}}|j,m+\frac{1}{2}\rangle\otimes|\frac{1}{2},-\frac{1}{2}\rangle,

the density matrix (4) can be written in product basis form cakmak ,

ρab\displaystyle\rho^{ab} =\displaystyle= F2jm=j+12j12(a2|m12m12||1212|\displaystyle\frac{F}{2j}\sum_{m=-j+\frac{1}{2}}^{j-\frac{1}{2}}(a_{-}^{2}|m-\frac{1}{2}\rangle\langle m-\frac{1}{2}|\otimes|\frac{1}{2}\rangle\langle\frac{1}{2}|
+ab(|m12m+12||1212|\displaystyle+a_{-}b_{-}(|m-\frac{1}{2}\rangle\langle m+\frac{1}{2}|\otimes|\frac{1}{2}\rangle\langle-\frac{1}{2}|
+|m+12m12||1212|)\displaystyle+|m+\frac{1}{2}\rangle\langle m-\frac{1}{2}|\otimes|-\frac{1}{2}\rangle\langle\frac{1}{2}|)
+b2|m+12m+12||1212|)\displaystyle+b_{-}^{2}|m+\frac{1}{2}\rangle\langle m+\frac{1}{2}|\otimes|-\frac{1}{2}\rangle\langle-\frac{1}{2}|)
+1F2(j+1)m=j12j+12(a+2|m12m12||1212|\displaystyle+\frac{1-F}{2(j+1)}\sum_{m=-j-\frac{1}{2}}^{j+\frac{1}{2}}(a_{+}^{2}|m-\frac{1}{2}\rangle\langle m-\frac{1}{2}|\otimes|\frac{1}{2}\rangle\langle\frac{1}{2}|
+a+b+(|m12m+12||1212|\displaystyle+a_{+}b_{+}(|m-\frac{1}{2}\rangle\langle m+\frac{1}{2}|\otimes|\frac{1}{2}\rangle\langle-\frac{1}{2}|
+|m+12m12||1212|)\displaystyle+|m+\frac{1}{2}\rangle\langle m-\frac{1}{2}|\otimes|-\frac{1}{2}\rangle\langle\frac{1}{2}|)
+b+2|m+12m+12||1212|),\displaystyle+b_{+}^{2}|m+\frac{1}{2}\rangle\langle m+\frac{1}{2}|\otimes|-\frac{1}{2}\rangle\langle-\frac{1}{2}|),

where a±=±j+12±m2j+1a_{\pm}=\pm\sqrt{\frac{j+\frac{1}{2}\pm m}{2j+1}} and b±=j+12m2j+1b_{\pm}=\sqrt{\frac{j+\frac{1}{2}\mp m}{2j+1}}.

Any von Neumann measurement on the spin-12\frac{1}{2} subsystem can be written as Bk=VΠkVB_{k}=V\Pi_{k}V^{{\dagger}}, k=0,1,k=0,1, where Πk=|kk|\Pi_{k}=|k\rangle\langle k|, |k|k\rangle is the computational basis, V=tI+iyσSU(2)V=tI+i\vec{y}\cdot\vec{\sigma}\in SU(2), σ=(σ1,σ2,σ3)\vec{\sigma}=(\sigma_{1},\sigma_{2},\sigma_{3}) with σ1,σ2,σ3\sigma_{1},\sigma_{2},\sigma_{3} being Pauli matrices, tt\in\Re and y=(y1,y2,y3)3\vec{y}=(y_{1},y_{2},y_{3})\in\Re^{3}, t2+y12+y22+y32=1t^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=1. After the measurement, ρab\rho^{ab} has the ensemble of post-measurement states {ρk,pk}\{\rho_{k},p_{k}\}, with the post-measurement states ρk\rho_{k} and the corresponding probabilities pkp_{k},

pkρk\displaystyle p_{k}\rho_{k} =\displaystyle= (IBk)ρab(IBk)=(IVΠkV)ρab(IVΠkV)\displaystyle(I\otimes B_{k})\rho^{ab}(I\otimes B_{k})=(I\otimes V\Pi_{k}V^{{\dagger}})\rho^{ab}(I\otimes V\Pi_{k}V^{{\dagger}})
=\displaystyle= (IV)(IΠk)(IV)ρab(IV)(IΠk)(IV).\displaystyle(I\otimes V)(I\otimes\Pi_{k})(I\otimes V^{{\dagger}})\rho^{ab}(I\otimes V)(I\otimes\Pi_{k})(I\otimes V^{{\dagger}}).

Denote

N=m=jj\displaystyle N=\sum_{m=-j}^{j} (z3m(2Fj+Fj)j(j+1)(2j+1)|mm|\displaystyle(z_{3}\frac{m(2Fj+F-j)}{j(j+1)(2j+1)}|m\rangle\langle m|
+(z1+iz2)j(j+1)m(m+1)(2Fj+Fj)2j(j+1)(2j+1)|mm+1|\displaystyle+(z_{1}+iz_{2})\frac{\sqrt{j(j+1)-m(m+1)}(2Fj+F-j)}{2j(j+1)(2j+1)}|m\rangle\langle m+1|
+(z1iz2)j(j+1)m(m+1)(2Fj+Fj)2j(j+1)(2j+1)|m+1m|),\displaystyle+(z_{1}-iz_{2})\frac{\sqrt{j(j+1)-m(m+1)}(2Fj+F-j)}{2j(j+1)(2j+1)}|m+1\rangle\langle m|),

where z1=2(ty2+y1y3)z_{1}=2(-ty_{2}+y_{1}y_{3}), z2=2(ty1+y2y3)z_{2}=2(ty_{1}+y_{2}y_{3}), z3=t2+y32y12y22z_{3}=t^{2}+y_{3}^{2}-y_{1}^{2}-y_{2}^{2} with z12+z22+z32=1z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=1. By using the transformation properties of Pauli matrices in luo ; cakmak , we have the probabilities p0=p1=12p_{0}=p_{1}=\frac{1}{2}, and the corresponding post-measurement states

ρ0=(12j+1(m=jj|mm|N)VΠ0V\displaystyle\rho_{0}=(\frac{1}{2j+1}(\sum_{m=-j}^{j}|m\rangle\langle m|-N)\bigotimes V\Pi_{0}V^{\dagger} (7)

and

ρ1=(12j+1m=jj|mm|+N)VΠ1V.\displaystyle\rho_{1}=(\frac{1}{2j+1}\sum_{m=-j}^{j}|m\rangle\langle m|+N)\bigotimes V\Pi_{1}V^{\dagger}. (8)

By means of Eqs. (2), we have

ρA|0\displaystyle\rho_{A|0} =\displaystyle= trBρ0\displaystyle\mbox{tr}_{B}\rho_{0}
=\displaystyle= 12j+1(m=jj|mm|N\displaystyle\frac{1}{2j+1}(\sum_{m=-j}^{j}|m\rangle\langle m|-N
=\displaystyle= 12j+1I2j+1N,\displaystyle\frac{1}{2j+1}I_{2j+1}-N,

and

ρA|1\displaystyle\rho_{A|1} =\displaystyle= trBρ1\displaystyle\mbox{tr}_{B}\rho_{1}
=\displaystyle= 12j+1m=jj|mm|+N\displaystyle\frac{1}{2j+1}\sum_{m=-j}^{j}|m\rangle\langle m|+N
=\displaystyle= 12j+1I2j+1+N.\displaystyle\frac{1}{2j+1}I_{2j+1}+N.

Furthermore, we have

p0ρA|0+p0ρA|0=I2j+12j+1,\displaystyle p_{0}\rho_{A|0}+p_{0}\rho_{A|0}=\frac{I_{2j+1}}{2j+1}, (11)

and

S(ipiρA|i)=log(2j+1).\displaystyle S(\sum_{i}p_{i}\rho_{A|i})=\log(2j+1). (12)

According to the properties of tensor product, the eigenvalues of ρA|0\rho_{A|0} and ρA|1\rho_{A|1} being equal to the eigenvalues of ρ0\rho_{0} and ρ1\rho_{1} wang1 are the same as follow

λn±=12j+1±jnj(j+1)(2j+1)|(F(2j+1)j)|,\displaystyle\lambda_{n}^{\pm}=\frac{1}{2j+1}\pm\frac{j-n}{j(j+1)(2j+1)}\lvert(F(2j+1)-j)\rvert, (13)

where n=0,,jn=0,\cdots,\lfloor j\rfloor, and j\lfloor j\rfloor denotes the largest integer that is less or equal to jj. It is obvious that the eigenvalues are independent of the measurement. Consequently we have

ipiS(ρA|i))\displaystyle\sum_{i}p_{i}S(\rho_{A|i})) =\displaystyle= 12S(ρA|0)+12S(ρA|1)\displaystyle\frac{1}{2}S(\rho_{A|0})+\frac{1}{2}S(\rho_{A|1}) (14)
=\displaystyle= n=0jλn±logλn±.\displaystyle-\sum_{n=0}^{\lfloor j\rfloor}\lambda_{n}^{\pm}\log\lambda_{n}^{\pm}.

From Eqs. (1), (12) and (14), we have

[Theorem] The Holevo quantity of the SU(2)SU(2)-invariant states is given by

χ{ρAB|{ΠiB}}=log(2j+1)+n=0jλn±logλn±.\displaystyle\chi\{\rho_{AB}|\{\Pi^{B}_{i}\}\}=\log(2j+1)+\sum_{n=0}^{\lfloor j\rfloor}\lambda_{n}^{\pm}\log\lambda_{n}^{\pm}. (15)

Fig. 1 shows Holevo quantity as a function of the system parameter FF for different jj. Interestingly, the state ρab\rho^{ab} is separable for Fs2j/(2j+1)F_{s}\leq 2j/(2j+1) Schliemann , which is just twice Fd=j/(2j+1)F_{d}=j/(2j+1) where the Holevo quantity vanishes. As the dimension of the system increases, the Holevo quantity increases in the region F<FdF<F_{d} and decreases in the region F>FdF>F_{d}. The maximum value of the Holevo quantity is attained at F=1F=1 for all dimensional systems. Moreover, as jj increases, the maximum value of the Holevo quantity tends to decrease, so does the Holevo quantity, see Fig. 1(a). Furthermore, when jj tends to infinite, the Holevo quantity is symmetric around the point F=1/2F=1/2 where Holevo quantity is exactly zero, while its maximum values obtained at F=0F=0 and F=1F=1 keep unchange, see Fig. 1(b).

(a)[Uncaptioned image]  (b)[Uncaptioned image]

Figure 1: (Color online) Holevo quantity of SU(2)SU(2)-invariant states as a function of the system parameter FF for different jj.

III Conclusion

We have analytically calculated the Holevo quantity of SU(2)SU(2)-invariant states in bipartite spin-jj and spin-12\frac{1}{2} systems, with the projective measurements performed on the spin-12\frac{1}{2} subsystem. It has been shown that the Holevo quantity increases in the region F<FdF<F_{d} and decreases in the region F>FdF>F_{d} when jj increases, and the maximum value of the Holevo quantity is attained at F=1F=1 for all jj. The Holevo quantity and the SU(2)SU(2)-invariant states have particular importance in quantum information processing. Our results give explicit relations between the Holevo quantity and the SU(2)SU(2)-invariant states.

Acknowledgments    This work is supported by the National Natural Science Foundation of China (NSFC) under Grant 12065021 and 12075159; Beijing Natural Science Foundation (Grant No. Z190005); Academy for Multidisciplinary Studies, Capital Normal University; Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (No. SIQSE202001), the Academician Innovation Platform of Hainan Province.

References

  • (1) Holevo, A. S.: Probl. Inf. Transm 9, 177 (1973).
  • (2) Benatti, F.: J. Math. Phys 37, 5244 (1996).
  • (3) Nielsen, M. A., Chuang, I. L.: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).
  • (4) Lupo, C., Lloyd, S.: Phys. Rev. Lett. 113, 160502 (2014).
  • (5) Zhang, Z., Mower, J., Englund, D., Wong, F. N. C., Shapiro, J. H.: Phys. Rev. Lett. 112, 120506 (2014).
  • (6) Lloyd, S., Giovannetti, V., Maccone, L.: Phys. Rev. Lett. 106, 250501 (2011).
  • (7) Roga, W., Fannes, M., Życzkowski, K.: Phys. Rev. Lett. 105, 040505 (2010).
  • (8) Wu, S., Ma, Z., Chen, Z., Yu, S.: Sci. Rep 4, 4036 (2014).
  • (9) Guo,Y., Wu, S.: Sci. Rep 4, 7179 (2014).
  • (10) Wang, Y. K., Fei, S. M., Wang, Z. X., Cao, J. P., Fan, H.: Sci. Rep 5, 10727 (2015).
  • (11) Long, G. L.: Sci China Phys Mech 64, 8, 280321 (2021)
  • (12) Gyongyosi, L.: Quantum Eng 2, 1, e30 (2020).
  • (13) Proeyen, A. V.: AAPPS Bulletin 30, 2: 66-75 (2020).
  • (14) Han, J., et al: Fundamental Res 1, 1: 10-15 (2021).
  • (15) Durkin, G. A., Simon, C., Eisert, J., Bouwmeester, D.: Phys. Rev. A 70, 062305 (2004).
  • (16) Schliemann, J.: Phys. Rev. A 68, 012309 (2003).
  • (17) Schliemann, J.: Phys. Rev. A 72, 012307 (2005).
  • (18) Breuer, H. P.: Phys. Rev. A 72, 062330 (2005).
  • (19) Breuer, H. P.: J. Phys. A: Math. Gen. 38, 9019 (2005).
  • (20) Wang, Z., Wang, Z. X.: Phys. Lett. A 372, 7033 (2008).
  • (21) Manne, K. K., Caves, C. M.: Quantum. Inf. Comp. 8, 0295 (2008).
  • (22) Vollbrecht, K. G. H., Werner, R. F.: Phys. Rev. A 64, 062307 (2001).
  • (23) Cakmak, B., Gedik, Z.: J. Phys. A: Math. Theor. 46, 465302 (2013).
  • (24) Wang, Y. K., Ma, T. Fei, S. M., Wang, Z. X.: Rep. Math. Rhys 5, 10727 (2015).
  • (25) Shankar, R.: Principles of Quantum Mechanics, Plenum Press, New York, 1994.
  • (26) Luo, S.: Phys. Rev. A 77, 042303 (2008).
  • (27) Schliemann, J.: Phys. Rev. A 68 012309 (2003).