This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Note On Determining Projections for
Non-Homogeneous Incompressible Fluids

Benjamin Faktor [email protected] Canyon Crest Academy
5951 Village Center Loop Road
San Diego, CA 92130
 and  Michael Holst [email protected] Department of Mathematics
University of California San Diego
La Jolla CA 92093
Abstract.

In this note, we consider a viscous incompressible fluid in a finite domain in both two and three dimensions, and examine the question of determining degrees of freedom (projections, functionals, and nodes). Our particular interest is the case of non-constant viscosity, representing either a fluid with viscosity that changes over time (such as an oil that loses viscosity as it degrades), or a fluid with viscosity varying spatially (as in the case of two-phase or multi-phase fluid models). Our goal is to apply the determining projection framework developed by the second author in previous work for weak solutions to the Navier-Stokes equations, in order to establish bounds on the number of determining functionals for this case, or equivalently, the dimension of a determining set, based on the approximation properties of an underlying determining projection. The results for the case of time-varying viscosity mirror those for weak solutions established in earlier work for constant viscosity. The case of space-varying viscosity, treated within a single-fluid Navier-Stokes model, is quite challenging to analyze, but we explore some preliminary ideas for understanding this case.

Key words and phrases:
Navier-Stokes equations, fluid mechanics, non-homogeneous fluids, weak solutions, determining sets, determine degrees of freedom, inertial manifolds, rough interpolants
MH was supported in part by NSF DMS/FRG Award 1262982 and NSF DMS/CM Award 1620366.

1. Introduction

In the following, we consider a viscous incompressible fluid in Ωd\Omega\subset\mathbb{R}^{d}, where Ω\Omega is an open bounded domain with Lipschitz continuous boundary, and where d=2d=2 or d=3d=3. Given the kinematic viscosity ν>0\nu>0, and the vector volume force function f(x,t)f(x,t) for each xΩx\in\Omega and t(0,)t\in(0,\infty), the governing Navier-Stokes equations (NSE) for the fluid velocity vector u=u(x,t)u=u(x,t) and the scalar pressure field p=p(x,t)p=p(x,t) are given by:

utνΔu+(u)u+p\displaystyle\frac{\partial u}{\partial t}-\nu\Delta u+(u\cdot\nabla)u+\nabla p =finΩ×(0,),\displaystyle=f\ \ \mathrm{in}\ \ \Omega\times(0,\infty), (1.1)
u\displaystyle\nabla\cdot u =0inΩ×(0,).\displaystyle=0\ \ \mathrm{in}\ \ \Omega\times(0,\infty). (1.2)

One is also provided with initial conditions u(0)=u0u(0)=u_{0}, as well as boundary conditions on Ω×(0,)\partial\Omega\times(0,\infty). Our goal in this article is to examine some questions about a concept known as determining degrees of freedom in the flow described by (1.1)–(1.2). While the classical setting involves the assumption of a constant bulk viscosity ν>0\nu>0, our particular interest here is in the case of non-constant viscosity, representing either a fluid with viscosity ν(t)\nu(t) that changes over time (such as an oil that loses viscosity as it degrades), or a fluid with viscosity ν(x)\nu(x) varying spatially (as in the case of two-phase or multi-phase fluid models), or both, represented by a viscosity ν(x,t)\nu(x,t) that changes over space and time. We will assume that ν\nu is everywhere positive as a function of time and/or space, and will also assume that it a priori satisfies some uniform pointwise upper and lower bounds, based on some underlying physical considerations. Although we do not consider dependence of the viscosity on fluid velocity in this work, we note that there has long been an active numerical simulation community that studies this case, and there is now also growing interest in the analysis of the Navier-Stokes equations with variable viscosity; cf. [20, 19, 7, 6, 18, 8].

The notion of determining modes for the NSE was first introduced in [10] as an attempt to identify and estimate the number of degrees of freedom in turbulent flows; a thorough discussion of the role of determining sets in turbulence theory can be found in [5]. This core idea later led to the study of Inertial Manifolds [11]. Estimates of the number of determining modes under various assumptions have been developed sine the early 1980’s; some examples include [9, 26]. The notion of determining nodes and related concepts were introduced in [12, 13], followed by determining volumes in [14, 24], and various estimates of their number in different modeling scenarios can be found in e.g. [25, 26]. A unified framework for modes, nodes, and volumes was presented in [2, 3], including the relationship to Inertial Manifolds. In [21, 23], we extended the results of [2, 3] to the more general setting of weak solutions lying in a suitably defined divergence-free solution space VV (see §2 below). In particular, we showed that if a projection operator RN:VVNL2(Ω)R_{N}\colon V\to V_{N}\subset L^{2}(\Omega) into a subset VNV_{N} with N=dim(VN)<N=\dim(V_{N})<\infty, satisfies an approximation inequality for γ>0\gamma>0 of the form,

uRNuL2(Ω)C1NγuH1(Ω),\|u-R_{N}u\|_{L^{2}(\Omega)}\leqslant C_{1}N^{-\gamma}\|u\|_{H^{1}(\Omega)}, (1.3)

then the operator RNR_{N} is a determining projection for the system (1.1)–(1.2) in the sense of Definition 1.1 below, provided NN is large enough. Furthermore, in [21, 23], we also derived explicit bounds on the dimension NN which guarantees that RNR_{N} is determining, and we gave explicit constructions of determining projections for both smooth and weak solutions using “rough” finite element quasi-interpolants. Our more recent article [22] generalized these results further, to a more general family of regularized NSE and MHD models that includes (1.1)–(1.2) as a special case. This area of research has continued to generate substantial activity; a survey through 2009 appears in our earlier article [22], and much more recent related activity includes [16, 34, 15] and the references therein, among many other related works that are too numerous to list here.

Bounds on the number of determining modes, nodes, and volumes are usually phrased in terms of a generalized Grashof number, defined for the two-dimensional NSE as:

Gr=cρ2Fν2=Fλ1ν2,Gr=\frac{c_{\rho}^{2}F}{\nu^{2}}=\frac{F}{\lambda_{1}\nu^{2}},

where λ1\lambda_{1} is the smallest eigenvalue of the Stokes operator and cρ=1/λ1c_{\rho}=1/\sqrt{\lambda_{1}} is the related (best) Poincaré constant. Here, F=lim supt(Ω|f(x,t)|2)1/2F=\limsup_{t\rightarrow\infty}(\int_{\Omega}|f(x,t)|^{2})^{1/2} if fL2(Ω)f\in L^{2}(\Omega) for almost every tt, or F=lim suptλ1fH1(Ω)F=\limsup_{t\rightarrow\infty}\sqrt{\lambda_{1}}\|f\|_{H^{-1}(\Omega)} if fH1(Ω)f\in H^{-1}(\Omega) for almost every tt. Due to the failure of the Sobolev embedding H1C0H^{1}\hookrightarrow C^{0} in dimensions 2 and 3, determining node analysis, which was based on point-wise interpolants of the velocity, was limited to H2H^{2}-regular solutions, although it was understood that determining modes and volume elements made sense under weaker conditions. To construct a general analysis framework for the case of weak (e.g., H1H^{1}-regular solutions) solutions to (1.1)–(1.2), in [23] we introduced the notions of determining projections and determining functionals, which we now define. (The standard spaces HH, VV, and VV^{\prime} for (1.1)–(1.2) are reviewed below in §2.)

Definition 1.1 (Determining Projections for the NSE).

Let f(t),g(t)Vf(t),g(t)\in V^{\prime} be any two forcing functions satisfying

limtf(t)g(t)V=0,\lim_{t\rightarrow\infty}\|f(t)-g(t)\|_{V^{\prime}}=0, (1.4)

and let u,vVu,v\in V be corresponding weak solutions to (1.1)–(1.2). The projection operator RN:VVNL2(Ω)R_{N}\colon V\to V_{N}\subset L^{2}(\Omega),   N=dim(VN)<N=\dim(V_{N})<\infty, is called a determining projection for weak solutions of the dd-dimensional NSE if

limtRN(u(t)v(t))L2(Ω)=0,\lim_{t\rightarrow\infty}\|R_{N}(u(t)-v(t))\|_{L^{2}(\Omega)}=0, (1.5)

implies that

limtu(t)v(t)H=0.\lim_{t\rightarrow\infty}\|u(t)-v(t)\|_{H}=0. (1.6)

Given a basis {ϕi}i=1N\{\phi_{i}\}_{i=1}^{N} for the finite-dimensional space VNV_{N}, and a set of bounded linear functionals {li}i=1N\{l_{i}\}_{i=1}^{N} from VV^{\prime}, a projection operator can be constructed as:

RNu=i=1Nli(u)ϕi.R_{N}u=\sum_{i=1}^{N}l_{i}(u)\phi_{i}. (1.7)

Condition (1.5) is then implied by:

limt|li(u(t)v(t))|=0,i=1,,N\lim_{t\rightarrow\infty}|l_{i}(u(t)-v(t))|=0,\ \ \ \ \ i=1,\ldots,N (1.8)

and in this case we refer to {li}i=1N\{l_{i}\}_{i=1}^{N} as a set of determining functionals.

The analysis of whether RNR_{N} or {li}i=1N\{l_{i}\}_{i=1}^{N} are determining can be reduced to an analysis of the approximation properties of RNR_{N}. Note that in this construction, the basis {ϕi}i=1N\{\phi_{i}\}_{i=1}^{N} need not span a subspace of the solution space VV, so that the functions ϕi\phi_{i} need not, for example, be divergence-free. Note that Definition 1.1 encompasses each of the notions of determining modes, nodes, and volumes by making particular choices for the sets of functions {ϕi}i=1N\{\phi_{i}\}_{i=1}^{N} and {li}i=1N\{l_{i}\}_{i=1}^{N}.

Outline

Preliminary material is presented in §2, including notation used for Lebesgue and Sobolev spaces and norms, and some inequalities for bounding the terms appearing in weak formulations of the NSE. In §3, we given an overview of the general framework for constructing determining projections for the NSE for both two and three spatial dimensions. To make use of the framework to establish bounds on the number of determining degrees of freedom for weak solutions, one must assume, or establish, a single a priori bound for solutions to the equations, and also provide a projection operator that satisfies a single approximation inequality. The remainder of the article then turns to the necessary a priori bounds for non-constant viscosity. In §4, we derive some a priori bounds for the case of time-varying viscosity that are needed to make use of the determining projection framework in §3. Section §5 looks briefly at a simplified model for space-varying viscosity. We first develop a natural weak formulation for a simplified model, where the viscosity is allowed to now be space-varying, but is also assumed to be explicitly given as data, and in particular, does not depend on the fluid velocity. Using this simplified formulation, we then establish some basic a priori bounds for use with the determining projection framework from §3. Some additional technical tools are summarized in Appendix A, a priori estimates for the constant viscosity case are presented in Appendix B.

2. Preliminary material

We briefly review some background material and notation, following the approach taken in our earlier articles [21, 23, 22], which in turn followed the notational conventions used in [4, 29, 32, 33]. To keep the discussion in this section as clear and concise as possible, we have placed some technical results that are repeatedly used throughout the paper in Appendix A.

Let Ωd\Omega\subset\mathbb{R}^{d} denote an open bounded set. The embedding and other standard results we will need to rely on are known to hold for example if the domain Ω\Omega has a locally Lipschitz boundary, denoted as Ω𝒞0,1\Omega\in\mathcal{C}^{0,1} (cf. [1]). For example, open bounded convex sets Ωd\Omega\subset\mathbb{R}^{d} satisfy Ω𝒞0,1\Omega\in\mathcal{C}^{0,1} (Corollary 1.2.2.3 in [17]), so that convex polyhedral domains are in 𝒞0,1\mathcal{C}^{0,1}. Let Hk(Ω)H^{k}(\Omega) denote the usual Sobolev spaces Wk,2(Ω)W^{k,2}(\Omega). Employing multi-index notation, the distributional partial derivative of order |α||\alpha| is denoted DαD^{\alpha}, so that the (integer-order) norms and semi-norms in Hk(Ω)H^{k}(\Omega) may be denoted

uHk(Ω)2=j=0k|Ω|jkd|u|Hj(Ω)2,|u|Hj(Ω)2=|α|=jDαuL2(Ω), 0jk,\|u\|^{2}_{H^{k}(\Omega)}=\sum_{j=0}^{k}|\Omega|^{\frac{j-k}{d}}|u|_{H^{j}(\Omega)}^{2},\ \ \ \ \ \ |u|^{2}_{H^{j}(\Omega)}=\sum_{|\alpha|=j}\|D^{\alpha}u\|_{L^{2}(\Omega)},\ \ \ 0\leqslant j\leqslant k,

where |Ω||\Omega| represents the measure of Ω\Omega. Fractional order Sobolev spaces and norms may be defined for example through Fourier transform and extension theorems, or through interpolation. A fundamentally important subspace is the k=1k=1 case of

H0k(Ω)={closureofC0(Ω)inHk(Ω)},H^{k}_{0}(\Omega)=\{\mathrm{closure~{}of}~{}C_{0}^{\infty}(\Omega)~{}\mathrm{in}~{}H^{k}(\Omega)\},

for which the Poincaré Inequality holds. (See Lemma A.2 in Appendix A.) The spaces above extend naturally (cf. [32]) to product spaces of vector functions u=(u1,u2,,ud)u=(u_{1},u_{2},\ldots,u_{d}), which are denoted with the same letters but in bold-face; for example, 𝐇0k(Ω)=(H0k(Ω))d\mathbf{H}^{k}_{0}(\Omega)=\left(H^{k}_{0}(\Omega)\right)^{d}. The inner-products and norms in these product spaces are extended in the natural Euclidean way; the convention here will be to subscript these extended vector norms the same as the scalar case.

Define now the space 𝒱\mathcal{V} of divergence free 𝐂\mathbf{C}^{\infty} vectors with compact support as

𝒱={ϕ𝐂0(Ω)|ϕ=0}.\mathcal{V}=\left\{\phi\in\mathbf{C}_{0}^{\infty}(\Omega)~{}|~{}\nabla\cdot\phi=0\right\}.

Two subspaces of 𝐋2(Ω)\mathbf{L}^{2}(\Omega) and 𝐇01(Ω)\mathbf{H}^{1}_{0}(\Omega) are fundamental to the study of the NSE:

H={closureof𝒱in𝐋2(Ω)},V={closureof𝒱in𝐇01(Ω)}.H=\{\mathrm{closure~{}of}~{}\mathcal{V}~{}\mathrm{in}~{}\mathbf{L}^{2}(\Omega)\},\ \ \ \ \ \ \ \ \ \ V=\{\mathrm{closure~{}of}~{}\mathcal{V}~{}\mathrm{in}~{}\mathbf{H}^{1}_{0}(\Omega)\}.

We use a fairly standard notation (cf. [32]) for inner-products and norms in HH and VV is:

(u,v)H\displaystyle(u,v)_{H} =(u,v)L2(Ω),uH=uL2(Ω),\displaystyle=(u,v)_{L^{2}(\Omega)},\quad\|u\|_{H}=\|u\|_{L^{2}(\Omega)}, (2.1)
(u,v)V\displaystyle(u,v)_{V} =[u,v]H1(Ω),uV=|u|H1(Ω).\displaystyle=[u,v]_{H^{1}(\Omega)},\quad\|u\|_{V}=|u|_{H^{1}(\Omega)}. (2.2)

Thanks to the Poincaré inequality, the H1H^{1}-semi-inner-product [u,v]H1(Ω)[u,v]_{H^{1}(\Omega)} is an inner-product on VV, and the H1H^{1}-semi-norm |u|H1(Ω)|u|_{H^{1}(\Omega)} is a norm on VV.

The NSE (1.1)–(1.2) with homogeneous Dirichlet (no-slip) boundary conditions are equivalent (cf. [32]) to the functional differential equation:

dudt+νAu+B(u,u)=f,u(0)=u0,\frac{du}{dt}+\nu Au+B(u,u)=f,\ \ \ \ \ u(0)=u_{0}, (2.3)

where the Stokes operator AA and bilinear map BB are defined as

Au=PΔu,B(u,v)=P[(u)v],Au=-P\Delta u,\ \ \ \ \ B(u,v)=P[(u\cdot\nabla)v],

where the operator PP is the Leray orthogonal projector, P:H01VP\colon H_{0}^{1}\to V and P:L2HP\colon L^{2}\to H, respectively. Weak formulations of the NSE will use the bilinear Dirichlet form a(,)a(\cdot,\cdot) and trilinear form b(,,)b(\cdot,\cdot,\cdot) as:

a(u,v)=(u,v)H,b(u,v,w)=(B(u,v),w)H=(P((u)v),w)H.a(u,v)=(\nabla u,\nabla v)_{H},\ \ \ \ \ b(u,v,w)=(B(u,v),w)_{H}=(P((u\cdot\nabla)v),w)_{H}.

Again, thanks to the Poincaré inequality, the form a(,)a(\cdot,\cdot) is actually an inner-product on V, and as noted above, the induced semi-norm ||H1(Ω)=a(,)1/2|\cdot|_{H^{1}(\Omega)}=a(\cdot,\cdot)^{1/2} is in fact a norm on V, equivalent to the H1H^{1}-norm. A priori bounds and various symmetries can be derived for the trilinear form b(,,)b(\cdot,\cdot,\cdot); the results of this type that we will need are collected together in Appendix A.

A general weak formulation of the NSE (1.1)–(1.2) can be written as (cf. [32, 33, 4]):

Definition 2.1 (Weak Solutions of the NSE).

Given fL2([0,T];V)f\in L^{2}([0,T];V^{\prime}), a weak solution of the NSE satisfies uL2([0,T];V)Cw([0,T];H)u\in L^{2}([0,T];V)\cap C_{w}([0,T];H), du/dtLloc1((0,T];V)du/dt\in L^{1}_{\text{loc}}((0,T];V^{\prime}), and

<dudt,v>+νa(u,v)+b(u,u,v)\displaystyle<\frac{du}{dt},v>+\nu a(u,v)+b(u,u,v) =<f,v>,vV, for almost every t,\displaystyle=<f,v>,\ \ \forall v\in V,\ \ \text{~{}for~{}almost~{}every~{}}t, (2.4)
u(0)\displaystyle u(0) =u0.\displaystyle=u_{0}. (2.5)

Here, the space Cw([0,T];H)C_{w}([0,T];H) is the subspace of L([0,T];H)L^{\infty}([0,T];H) of weakly continuous functions, and <,><\cdot,\cdot> denotes the duality pairing between VV and VV^{\prime}, where HH is the Riesz-identified pivot space in the Gelfand triple VH=HVV\subset H=H^{\prime}\subset V^{\prime}. Note that since the Stokes operator can be uniquely extended to A:VVA\colon V\to V^{\prime}, and since it can be shown that B:V×VVB\colon V\times V\to V^{\prime} (cf. [4, 33] for both results), the functional form (2.3) still makes sense for weak solutions, and the total operator represents a mapping VVV\to V^{\prime}.

Consider now two forcing functions f,gL2([0,];V)f,g\in L^{2}([0,\infty];V^{\prime}) and corresponding weak solutions uu and vv to (2.3) in either the two- or three-dimensional case. Subtracting equations (2.3) for uu and vv yields an equation for the difference function w=uvw=u-v, namely

dwdt+νAw+B(u,u)B(v,v)\displaystyle\frac{dw}{dt}+\nu Aw+B(u,u)-B(v,v) =fg.\displaystyle=f-g. (2.6)

Since the residual of (2.6) lies in the dual space VV^{\prime}, for almost every tt, we can consider duality pairing of (2.6) with a function in VV, and in particular with wVw\in V, which yields

<dwdt,w>+νa(w,w)+b(u,u,w)b(v,v,w)=<fg,w> for almost every t.<\frac{dw}{dt},w>+\nu a(w,w)+b(u,u,w)-b(v,v,w)=<f-g,w>\ \text{~{}for~{}almost~{}every~{}}t.

Using the notation (2.1)–(2.2) going forward, it can be shown (cf. [32, 33]) that

12ddtwH2\displaystyle\frac{1}{2}\frac{d}{dt}\|w\|_{H}^{2} =<dwdt,w>\displaystyle=<\frac{dw}{dt},w> (2.7)

in the sense of distributions. Lemma A.4 in Appendix A establishes the symmetry relation b(w,u,w)=b(u,u,w)b(v,v,w),u,v,wVb(w,u,w)=b(u,u,w)-b(v,v,w),\forall u,v,w\in V, so the function w=uvw=u-v must satisfy

12ddtwH+νwV2+b(w,u,w)\displaystyle\frac{1}{2}\frac{d}{dt}\|w\|_{H}+\nu\|w\|_{V}^{2}+b(w,u,w) =<fg,w>.\displaystyle=<f-g,w>. (2.8)

Equation (2.8) will be the starting point for our analysis of determining projections below. In the introduction, we highlighted an approximation property (1.3) that we will assume that a determining projection satisfies, and we will give an explicit example of such a projection below from [21, 23]. A useful consequence of property (1.3) that was noted in [23] is the following.

Lemma 2.2.

Let RN:VVNL2(Ω)R_{N}\colon V\to V_{N}\subset L^{2}(\Omega),   N=dim(VN)<N=\dim(V_{N})<\infty, satisfy the following approximation inequality for some γ>0\gamma>0:

uRNuL2(Ω)\displaystyle\|u-R_{N}u\|_{L^{2}(\Omega)} C1NγuH1(Ω).\displaystyle\leqslant C_{1}N^{-\gamma}\|u\|_{H^{1}(\Omega)}. (2.9)

Then the following inequalities hold:

uL2(Ω)\displaystyle\|u\|_{L^{2}(\Omega)} 2C12N2γuH1(Ω)+2RNuL2(Ω)2,\displaystyle\leqslant 2C_{1}^{2}N^{-2\gamma}\|u\|_{H^{1}(\Omega)}+2\|R_{N}u\|_{L^{2}(\Omega)}^{2}, (2.10)
uH1(Ω)\displaystyle\|u\|_{H^{1}(\Omega)} [N2γ/(2C12)]uL2(Ω)[N2γ/C12]RNuL2(Ω)2.\displaystyle\geqslant[N^{2\gamma}/(2C_{1}^{2})]\|u\|_{L^{2}(\Omega)}-[N^{2\gamma}/C_{1}^{2}]\|R_{N}u\|_{L^{2}(\Omega)}^{2}. (2.11)
Proof.

We start with squaring (2.9),

uRNuL2(Ω)2\displaystyle\|u-R_{N}u\|_{L^{2}(\Omega)}^{2} =uL2(Ω)22(u,RNu)L2(Ω)+RNuL2(Ω)2C12N2γuH1(Ω)2.\displaystyle=\|u\|_{L^{2}(\Omega)}^{2}-2(u,R_{N}u)_{L^{2}(\Omega)}+\|R_{N}u\|_{L^{2}(\Omega)}^{2}\leqslant C_{1}^{2}N^{-2\gamma}\|u\|_{H^{1}(\Omega)}^{2}.

Rearranging the inequality we have

uL2(Ω)2\displaystyle\|u\|_{L^{2}(\Omega)}^{2} C12N2γuH1(Ω)2RNuL2(Ω)2+2(u,RNu)L2(Ω)\displaystyle\leqslant C_{1}^{2}N^{-2\gamma}\|u\|_{H^{1}(\Omega)}^{2}-\|R_{N}u\|_{L^{2}(\Omega)}^{2}+2(u,R_{N}u)_{L^{2}(\Omega)}
C12N2γuH1(Ω)2RNuL2(Ω)2+2uL2(Ω)RNuL2(Ω)\displaystyle\leqslant C_{1}^{2}N^{-2\gamma}\|u\|_{H^{1}(\Omega)}^{2}-\|R_{N}u\|_{L^{2}(\Omega)}^{2}+2\|u\|_{L^{2}(\Omega)}\|R_{N}u\|_{L^{2}(\Omega)}
=C12N2γuH1(Ω)2RNuL2(Ω)2+(12uL2(Ω))(22RNuL2(Ω))\displaystyle=C_{1}^{2}N^{-2\gamma}\|u\|_{H^{1}(\Omega)}^{2}-\|R_{N}u\|_{L^{2}(\Omega)}^{2}+\left(\tfrac{1}{\sqrt{2}}\|u\|_{L^{2}(\Omega)}\right)\left(2\sqrt{2}\|R_{N}u\|_{L^{2}(\Omega)}\right)
C12N2γuH1(Ω)2RNuL2(Ω)2+12uL2(Ω)2+2RNuL2(Ω)2,\displaystyle\leqslant C_{1}^{2}N^{-2\gamma}\|u\|_{H^{1}(\Omega)}^{2}-\|R_{N}u\|_{L^{2}(\Omega)}^{2}+\tfrac{1}{2}\|u\|_{L^{2}(\Omega)}^{2}+2\|R_{N}u\|_{L^{2}(\Omega)}^{2},

which after multiplying through by 2 and simplifying gives (2.10). Rearrangement of the terms in (2.10) then also gives (2.11) ∎

Finally, we note key tools for establishing a number of a priori estimates in Sections 4 and 5 will be both classical and generalized Gronwall inequalities (cf. [9, 24]) which we include in Appendix A.

3. The framework for constructing determining projections

We now give an overview of the general framework for constructing determining projections for the NSE for both two and three spatial dimensions, represented by Theorem 3.1 below. To make use of the framework to establish bounds on the number of determining degrees of freedom for weak solutions, one must assume, or establish, a single a priori bound for solutions to the equations, (inequality (3.2) below) and also provide a projection operator that satisfies a single approximation inequality (inequality (2.9) above).

Our earlier results in [21, 23] are included as particular instances of this framework, and we include in Appendix B the well-known a priori bounds for constant viscosity in the d=2d=2 and d=3d=3 cases that were used in [21, 23, 22]. The remainder of the article then turns to the necessary a priori bounds for non-constant viscosity.

Theorem 3.1 (Existence of Determining Projections for the NSE on domains Ω2\Omega\subset\mathbb{R}^{2}).

Let f(t),g(t)Vf(t),g(t)\in V^{\prime} be any two forcing functions satisfying

limtf(t)g(t)V=0,\lim_{t\rightarrow\infty}\|f(t)-g(t)\|_{V^{\prime}}=0,

and let u,vVu,v\in V be the corresponding weak solutions to (1.1)–(1.2) for d=2d=2. If there exists a projection operator RN:VVNL2(Ω)R_{N}\colon V\to V_{N}\subset L^{2}(\Omega), N=dim(VN)N=\dim(V_{N}), satisfying

limtRN(u(t)v(t))L2(Ω)=0,\lim_{t\rightarrow\infty}\|R_{N}(u(t)-v(t))\|_{L^{2}(\Omega)}=0,

and satisfying for γ>0\gamma>0 the approximation inequality

uRNuL2(Ω)C1NγuH1(Ω),\|u-R_{N}u\|_{L^{2}(\Omega)}\leqslant C_{1}N^{-\gamma}\|u\|_{H^{1}(\Omega)},

then

limtu(t)v(t)H=0\lim_{t\rightarrow\infty}\|u(t)-v(t)\|_{H}=0

holds if NN is such that

>N>C(1ν2lim suptf(t)V)1γ,\infty>N>C\left(\frac{1}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}\right)^{\frac{1}{\gamma}},

where CC is a constant independent of ν\nu and ff.

Proof.

Staying with the notation (2.1)–(2.2), we begin with equation (2.8), employing inequality (A.3) from Theorem A.3 in Appendix A, along with Cauchy-Schwarz and Young’s inequalities, to yield

12ddtwH2+νwV2\displaystyle\frac{1}{2}\frac{d}{dt}\|w\|_{H}^{2}+\nu\|w\|_{V}^{2} uV|w|HwV+fgVwV\displaystyle\leqslant\|u\|_{V}|w|_{H}\|w\|_{V}+\|f-g\|_{V^{\prime}}\|w\|_{V}
1νuV2wH2+1νfgV2+ν2wV2.\displaystyle\leqslant\frac{1}{\nu}\|u\|_{V}^{2}\|w\|_{H}^{2}+\frac{1}{\nu}\|f-g\|_{V^{\prime}}^{2}+\frac{\nu}{2}\|w\|_{V}^{2}.

Equivalently, this is

ddtwH2+νwV22νuV2wH22νfgV2.\frac{d}{dt}\|w\|_{H}^{2}+\nu\|w\|_{V}^{2}-\frac{2}{\nu}\|u\|_{V}^{2}\|w\|_{H}^{2}\leqslant\frac{2}{\nu}\|f-g\|_{V^{\prime}}^{2}.

To bound the second term on the left from below, we employ the approximation inequality (2.11) from Lemma 2.2, which yields

ddtwH2+(νN2γ2C122νuV2)wH22νfgV2+νN2γC12RNwL2(Ω)2.\frac{d}{dt}\|w\|_{H}^{2}+\left(\frac{\nu N^{2\gamma}}{2C_{1}^{2}}-\frac{2}{\nu}\|u\|_{V}^{2}\right)\|w\|_{H}^{2}\leqslant\frac{2}{\nu}\|f-g\|_{V^{\prime}}^{2}+\frac{\nu N^{2\gamma}}{C_{1}^{2}}\|R_{N}w\|_{L^{2}(\Omega)}^{2}.

This is a differential inequality of the form

ddtwH2+αwH2β,\frac{d}{dt}\|w\|_{H}^{2}+\alpha\|w\|_{H}^{2}\leqslant\beta,

with obvious definition of α\alpha and β\beta.

The Generalized Gronwall Lemma A.6 can now be applied. Recall that we have assumed both fgV0\|f-g\|_{V^{\prime}}\rightarrow 0 and RNwL2(Ω)0\|R_{N}w\|_{L^{2}(\Omega)}\rightarrow 0 as tt\rightarrow\infty. Since it is assumed that uu and vv, and hence ww, are in VV, so that all other terms appearing in α\alpha and β\beta remain bounded, it must hold that

limt1Ttt+Tβ+(τ)𝑑τ=0,lim supt1Ttt+Tα(τ)𝑑τ<.\lim_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\beta^{+}(\tau)d\tau=0,\ \ \ \ \ \ \ \ \limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\alpha^{-}(\tau)d\tau<\infty.

It remains to verify that for some fixed T>0T>0,

lim supt1Ttt+Tα(τ)𝑑τ>0.\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\alpha(\tau)d\tau>0.

This means we must verify the following inequality for some fixed T>0T>0:

N2γ\displaystyle N^{2\gamma} >2C12ν(lim supt1Ttt+T2uV2ν𝑑τ)=4C12ν2lim supt1Ttt+TuV2𝑑τ.\displaystyle>\frac{2C_{1}^{2}}{\nu}\left(\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\frac{2\|u\|_{V}^{2}}{\nu}d\tau\right)=\frac{4C_{1}^{2}}{\nu^{2}}\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u\|_{V}^{2}d\tau. (3.1)

The following a priori bound on any weak solution can be shown to hold (Lemma B.2 in Appendix B):

lim supt1Ttt+Tu(τ)H2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{H}^{2}d\tau 2ν2lim suptf(t)V2,\displaystyle\leqslant\frac{2}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}, (3.2)

for any T>cρ2/ν>0T>c_{\rho}^{2}/\nu>0, where cρc_{\rho} is the best constant from the Poincaré inequality (Lemma A.2 in Appendix A). Therefore, if

N2γ\displaystyle N^{2\gamma} >8C12(1ν2lim suptf(t)V)24C12ν2(2ν2lim suptf(t)V2),\displaystyle>8C_{1}^{2}\left(\frac{1}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}\right)^{2}\geqslant\frac{4C_{1}^{2}}{\nu^{2}}\left(\frac{2}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}\right), (3.3)

implying that (3.1) holds, then by the Gronwall Lemma A.6, it follows that

limtw(t)H=limtu(t)v(t)H=0.\lim_{t\rightarrow\infty}\|w(t)\|_{H}=\lim_{t\rightarrow\infty}\|u(t)-v(t)\|_{H}=0.

Remark 3.2.

Theorem 3.1 for the d=2d=2 case can be extended to d=3d=3 in several ways, which we will not reproduce here. For example, in [23] a finite energy dissipation assumption was used to extend Theorem 3.1 to d=3d=3 case; a different approach for the d=3d=3 case is taken in [21].

Remark 3.3.

In the case of constant viscosity, the required a priori estimate in (3.2) in the proof of Theorem 3.1 is provided by Lemma B.2 in Appendix B). For the case of time-varying viscosity, the required estimate is provided by Lemma C.1 or Lemma 4.2 in Section 4. For the case of our simple model of space-varying viscosity, the required estimate is provided by Proposition 5.3 in Section 5.

4. A priori estimates for time-varying viscosity

In this section, we develop the a priori estimates needed to apply the determining projection framework from §3 (Theorem 3.1) to the case of a time-varying viscosity function ν=ν(t)\nu=\nu(t). The first is an L2L^{2} estimate that is used to prove the second and third estimates, following the strategy for the case of constant viscosity (see Appendix B). The second estimate is what is needed for use with with Theorem 3.1 in different contexts. The time-varying viscosity is assumed to satisfy νL1(0,T)\nu\in L^{1}(0,T) and obey the a priori pointwise bounds:

0<ν¯\displaystyle 0<\underline{\nu} ν(t)ν¯<+,t(0,T),\displaystyle\leqslant\nu(t)\leqslant\overline{\nu}<+\infty,\quad\forall t\in(0,T), (4.1)

where

ν¯=inf0<t<Tν(t),\displaystyle\underline{\nu}=\inf_{0<t<T}\nu(t), ν¯=sup0<t<Tν(t).\displaystyle\qquad\overline{\nu}=\sup_{0<t<T}\nu(t). (4.2)

The first estimate gives a bound on the L2L^{2}-norm of a weak solution to (1.1)–(1.2).

Lemma 4.1 (L2L^{2}-Estimates, time-varying viscosity).

Let νL1(0,T)\nu\in L^{1}(0,T) and assume that (4.1)–(4.2) hold. Let uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3. It holds that

lim suptu(t)H2K¯ν¯lim suptf(t)V2\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2}\leqslant\frac{\bar{K}}{\underline{\nu}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2} (4.3)

where K=lim supt0teϕs(t))/cρ2𝑑sK=\limsup_{t\rightarrow\infty}\int_{0}^{t}e^{-\phi_{s}(t))/c_{\rho}^{2}}ds, ϕs(t)=stν(z)𝑑z\phi_{s}(t)=\int_{s}^{t}\nu(z)dz, and cρc_{\rho} is the Poincaré constant.

Proof.

Beginning with equation (2.4) for v=uv=u, using (2.7), and noting that Theorem A.4 in Appendix A ensures b(u,u,u)=0b(u,u,u)=0, we are left with

12ddtuH2+νuV2\displaystyle\frac{1}{2}\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} fVuV.\displaystyle\leqslant\|f\|_{V^{\prime}}\|u\|_{V}.

Applying Young’s inequality leads to

ddtuH2+2νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+2\nu\|u\|_{V}^{2} (2νfV)(2νuV)1νfV2+νuV2,\displaystyle\leqslant\left(\sqrt{\frac{2}{\nu}}\|f\|_{V^{\prime}}\right)\left(\sqrt{2\nu}\|u\|_{V}\right)\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}+\nu\|u\|_{V}^{2},

which gives then

ddtuH2+νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}. (4.4)

Employing the Poincaré inequality we end up with

ddtuH2+νcρ2uH2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\frac{\nu}{c_{\rho}^{2}}\|u\|_{H}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}.

This is a differential inequality for u(t)H2\|u(t)\|_{H}^{2}, and by Gronwall’s Inequality (Lemma A.5) it holds that

u(t)H2\displaystyle\|u(t)\|_{H}^{2} u(r)H2ertν(τ)/cρ2𝑑τ+rt1ν(s)f(s)V2estν(τ)/cρ2𝑑τ𝑑s\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{-\int_{r}^{t}\nu(\tau)/c_{\rho}^{2}d\tau}+\int_{r}^{t}\frac{1}{\nu(s)}\|f(s)\|_{V^{\prime}}^{2}e^{-\int_{s}^{t}\nu(\tau)/c_{\rho}^{2}d\tau}ds
=u(r)H2e1/cρ2stν(τ)𝑑τ+rt1νe1/cρ2stν(τ)𝑑τf(s)V2𝑑s\displaystyle=\|u(r)\|_{H}^{2}e^{-1/c_{\rho}^{2}\int_{s}^{t}\nu(\tau)d\tau}+\int_{r}^{t}\frac{1}{\nu}e^{-1/c_{\rho}^{2}\int_{s}^{t}\nu(\tau)d\tau}\|f(s)\|_{V^{\prime}}^{2}ds
=u(r)H2eϕr(t)/cρ2+rt1νeϕs(t)/cρ2f(s)V2𝑑s\displaystyle=\|u(r)\|_{H}^{2}e^{-\phi_{r}(t)/c_{\rho}^{2}}+\int_{r}^{t}\frac{1}{\nu}e^{-\phi_{s}(t)/c_{\rho}^{2}}\|f(s)\|_{V^{\prime}}^{2}ds
u(r)H2eϕr(t)/cρ2+suprδt1ν(δ)f(δ)V2rteϕs(t)/cρ2𝑑s\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{-\phi_{r}(t)/c_{\rho}^{2}}+\sup_{r\leqslant\delta\leqslant t}\frac{1}{\nu(\delta)}\|f(\delta)\|_{V^{\prime}}^{2}\int_{r}^{t}e^{-\phi_{s}(t)/c_{\rho}^{2}}ds
u(r)H2eϕr(t)/cρ2+Kν¯suprδtf(δ)V2,\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{\phi_{r}(t)/c_{\rho}^{2}}+\frac{K}{\underline{\nu}}\sup_{r\leqslant\delta\leqslant t}\|f(\delta)\|_{V^{\prime}}^{2},

where ϕc(t)=ctν(z)𝑑z\phi_{c}(t)=\int_{c}^{t}\nu(z)dz and K=0teϕs(t)/cρ2𝑑sK=\int_{0}^{t}e^{-\phi_{s}(t)/c_{\rho}^{2}}ds, which must hold for every r(0,t]r\in(0,t]. Taking the lim supt\limsup_{t\rightarrow\infty} of both sides of the inequality leaves (4.3) with obvious definition of K¯\bar{K}. ∎

The following estimate gives the a bound on the time-averaged H1H^{1}-semi-norm of a weak solution to (1.1)–(1.2).

Lemma 4.2 (Time-averaged H1H^{1}-Estimates, time-varying viscosity).

Let
uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations  (1.1)–(1.2), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3. Then for every TT with Tcρ2/ν¯>0T\geqslant c_{\rho}^{2}/\underline{\nu}>0 it holds that

lim supt1Ttt+Tu(τ)V2𝑑τK¯ν¯3+cρ2ν¯2cρ2lim suptf(t)V2\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau\leqslant\frac{\bar{K}\underline{\nu}^{3}+c_{\rho}^{2}}{\underline{\nu}^{2}c_{\rho}^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2} (4.5)

where K¯=lim supt0teϕs(t))/cρ2𝑑s\bar{K}=\limsup_{t\rightarrow\infty}\int_{0}^{t}e^{-\phi_{s}(t))/c_{\rho}^{2}}ds, ϕs(t)=stν(z)𝑑z\phi_{s}(t)=\int_{s}^{t}\nu(z)dz, and cρc_{\rho} is the Poincaré constant.

Proof.

We begin with (4.4), which was

ddtuH2+νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}.

Dividing by ν(t)\nu(t) and integrating from tt to t+Tt+T with T>0T>0 gives

tt+T1ν(t)ddtu(τ)H2𝑑τ+tt+Tu(τ)V2𝑑τ\displaystyle\int_{t}^{t+T}\frac{1}{\nu(t)}\frac{d}{dt}\|u(\tau)\|_{H}^{2}d\tau+\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau tt+T1ν2(τ)f(τ)V2𝑑τ.\displaystyle\leqslant\int_{t}^{t+T}\frac{1}{\nu^{2}(\tau)}\|f(\tau)\|_{V^{\prime}}^{2}d\tau.

Integrating by parts the left-most term gives

1ν(t+T)u(t+T)H21ν(t)u(t)H2+tt+T1ν2(τ)u(τ)H2𝑑τ\frac{1}{\nu(t+T)}\|u(t+T)\|_{H}^{2}-\frac{1}{\nu(t)}\|u(t)\|_{H}^{2}+\int_{t}^{t+T}\frac{1}{\nu^{2}(\tau)}\|u(\tau)\|_{H}^{2}d\tau
+tt+Tu(τ)V2𝑑τtt+T1ν2(τ)f(τ)V2𝑑τ+\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau\leq\int_{t}^{t+T}\frac{1}{\nu^{2}(\tau)}\|f(\tau)\|_{V^{\prime}}^{2}d\tau

Dropping the positive first and third terms on the left and bounding the integral on the right gives

tt+Tu(τ)V2𝑑τ\displaystyle\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau 1ν(t)u(t)H2+Tsuptst+T1ν2(s)f(s)V2.\displaystyle\leqslant\frac{1}{\nu(t)}\|u(t)\|_{H}^{2}+T\sup_{t\leqslant s\leqslant t+T}\frac{1}{\nu^{2}(s)}\|f(s)\|_{V^{\prime}}^{2}.

Taking the lim supt\limsup_{t\rightarrow\infty} of both sides, and dividing by TT, gives

lim supt1Ttt+Tu(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau 1Tlim supt1ν(t)u(t)H2+lim supt1ν2(t)f(t)V2\displaystyle\leqslant\frac{1}{T}\limsup_{t\rightarrow\infty}\frac{1}{\nu(t)}\|u(t)\|_{H}^{2}+\limsup_{t\rightarrow\infty}\frac{1}{\nu^{2}(t)}\|f(t)\|_{V^{\prime}}^{2}
1ν¯Tlim suptu(t)H2+1ν¯2lim suptf(t)V2.\displaystyle\leqslant\frac{1}{\underline{\nu}T}\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2}+\frac{1}{\underline{\nu}^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}.

Using the estimate from Lemma 4.1 and bounding the right-most term gives then

lim supt1Ttt+Tu(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau (1ν¯TKν¯+1ν¯2)lim suptf(t)V2.\displaystyle\leqslant\left(\frac{1}{\underline{\nu}T}\cdot\frac{K}{\underline{\nu}}+\frac{1}{\underline{\nu}^{2}}\right)\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}.

Since Tcρ2/ν¯>0T\geqslant c_{\rho}^{2}/\underline{\nu}>0, we end up with (4.5). ∎

Remark 4.3.

If one takes ν(t)c\nu(t)\equiv c, we find that K=cρ2/ν¯K=c_{\rho}^{2}/\underline{\nu}, recovering the bounds for constant viscosity in both of the above estimates for time-varying viscosity (see Appendix B).

5. Weak formulation and estimates for space-varying viscosity

The remaining two sections of the notes are first steps to understanding the case of space-varying viscosity, and are both preliminary and somewhat speculative. In this section, we attempt to develop a weak formulation that is appropriate for viscosity that can vary with the spatial location. In the next section, and we establish some preliminary a priori bounds for the space-varying case. As was the case for the time-varying viscosity, we will make some basic assumptions on the now space-varying viscosity:

0<ν¯\displaystyle 0<\underline{\nu} ν(x)ν¯<+,xΩ,\displaystyle\leqslant\nu(x)\leqslant\overline{\nu}<+\infty,\quad\forall x\in\Omega, (5.1)

where

ν¯=infxΩν(x),\displaystyle\underline{\nu}=\inf_{x\in\Omega}\nu(x), ν¯=supxΩν(x).\displaystyle\qquad\overline{\nu}=\sup_{x\in\Omega}\nu(x). (5.2)

Let us consider the effects of a space-varying viscosity on equations (2.4) and (2.5). Our interest here is to develop a weak formulation analogous to (2.4), but in which the viscosity is allowed to be space-varying, with its gradient is not necessarily zero. Unlike with the time-dependent case, the NSE will now require an extra term νu\nabla\nu\cdot\nabla u that we will call the viscosity-velocity divergence term. If ν0\nabla\nu\neq 0, then we must consider νA\nu A to be the modified Stokes operator. We will assume that νW\nu\in W, where WW is an appropriate Banach space that will be determined later, such that νA\nu A remains a bounded linear map, where AA is the stokes operator as in the earlier discussion. The term νa(u,η)\nu a(u,\eta) appearing in (2.4) now becomes a(νu,η)a(\nu u,\eta). We note that νa(u,η)\nu a(u,\eta) is bounded from below by ν|u|H1(Ω)2\nu|u|_{H^{1}(\Omega)}^{2} and a(νu,η)a(\nu u,\eta) is bounded from below by |νu|H1(Ω)2|\nu u|_{H^{1}(\Omega)}^{2}.

We begin with the NSE without consideration of viscosities λ\lambda and ν\nu as constants. This can be written as follows from  [31]:

ρDuDt=ρfp+(λu)+(2νD)\rho\frac{Du}{Dt}=\rho f-\nabla p+\nabla(\lambda\nabla\cdot u)+\nabla\cdot(2\nu D)

where Drs=12(urxs+usxr)D_{rs}=\frac{1}{2}(\frac{\partial u_{r}}{\partial x_{s}}+\frac{\partial u_{s}}{\partial x_{r}}) is the symmetric component of the gradient of velocity, often referred to as the deformation tensor or rate-of-strain tensor, and DuDt=ut+uu\frac{Du}{Dt}=\frac{\partial u}{\partial t}+u\cdot\nabla u is the material derivative. The following hold:

(2νD)\displaystyle\nabla\cdot(2\nu D) =(νu)+(νu),\displaystyle=\nabla(\nu\nabla\cdot u)+\nabla\cdot(\nu\nabla u),
(νu)\displaystyle\nabla\cdot(\nu\nabla u) =[ν,u]+ν2u,\displaystyle=[\nu,u]+\nu\nabla^{2}u,

where [ν,u]i=νui[\nu,u]_{i}=\nabla\nu\cdot\nabla u_{i} (we will use νu\nabla\nu\cdot\nabla u to denote this term) , and (assuming the fluid is incompressible)

u=0.\nabla\cdot u=0.

With this, we can write

ρDuDt\displaystyle\rho\frac{Du}{Dt} =ρfp+ν2u+νu\displaystyle=\rho f-\nabla p+\nu\nabla^{2}u+\nabla\nu\cdot\nabla u (5.3)
u(0)\displaystyle u(0) =u0\displaystyle=u_{0} (5.4)

Multiplying both sides by a test function η:3\eta:\mathbb{R}^{3}\rightarrow\mathbb{R}, integrating over an appropriate domain Ω3\Omega\subset\mathbb{R}^{3}, we find that

ΩρutηΩν2uη+Ωρ(u)uη+ΩpηΩ(νu)η=Ωρfη\int_{\Omega}\rho\frac{\partial u}{\partial t}\cdot\eta-\int_{\Omega}\nu\nabla^{2}u\cdot\eta+\int_{\Omega}\rho(u\cdot\nabla)u\cdot\eta+\int_{\Omega}\nabla p\cdot\eta-\int_{\Omega}(\nabla\nu\cdot\nabla u)\cdot\eta=\int_{\Omega}\rho f\cdot\eta

We reverse-integrate by parts the diffusive term μ2uη\mu\nabla^{2}u\cdot\eta and pressure term pη\nabla p\cdot\eta, and use the Divergence Theorem:

Ωpη\displaystyle\int_{\Omega}\nabla p\cdot\eta =Ωpη+Ωpηn^\displaystyle=-\int_{\Omega}p\nabla\cdot\eta+\int_{\partial\Omega}p\eta\cdot\hat{n}
Ω2uνη\displaystyle-\int_{\Omega}\nabla^{2}u\cdot\nu\eta =Ωu(νη)Ωνun^η\displaystyle=\int_{\Omega}\nabla u\cdot\nabla(\nu\eta)-\int_{\partial\Omega}\nu\frac{\partial u}{\partial\hat{n}}\cdot\eta
=Ωνuη+ΩuνηΩun^νη\displaystyle=\int_{\Omega}\nu\nabla u\cdot\nabla\eta+\int_{\Omega}\nabla u\nabla\nu\eta-\int_{\partial\Omega}\frac{\partial u}{\partial\hat{n}}\cdot\nu\eta

Substituting back, the result is

Ωρutη\displaystyle\int_{\Omega}\rho\frac{\partial u}{\partial t}\cdot\eta +Ωνuη+Ωuνη+Ωρ(u)uη\displaystyle+\int_{\Omega}\nu\nabla u\cdot\nabla\eta+\int_{\Omega}\nabla u\cdot\nabla\nu\eta+\int_{\Omega}\rho(u\cdot\nabla)u\cdot\eta
ΩpηΩ(νu)η\displaystyle\quad-\int_{\Omega}p\nabla\cdot\eta-\int_{\Omega}(\nabla\nu\cdot\nabla u)\cdot\eta
=Ωρfη+Ω(νun^pn^)η\displaystyle=\int_{\Omega}\rho f\cdot\eta+\int_{\partial\Omega}(\nu\frac{\partial u}{\partial\hat{n}}-p\hat{n})\cdot\eta

Choosing the test function η\eta so that η=0\eta=0 on Ω\partial\Omega removes the term involving the boundary integral. The divergence constraint u=0\nabla\cdot u=0 is now Ωqu=0\int_{\Omega}q\nabla\cdot u=0 qQ=L2(Ω)\forall q\in Q=L^{2}(\Omega) . With this, we can write the weak formulation of the NSE:
Find uU=L2((0,T);V)u\in U=L^{2}((0,T);V) such that

Ωρutη+Ωνuη\displaystyle\int_{\Omega}\rho\frac{\partial u}{\partial t}\cdot\eta+\int_{\Omega}\nu\nabla u\cdot\nabla\eta +Ωuνη+Ωρ(u)uη\displaystyle+\int_{\Omega}\nabla u\cdot\nabla\nu\eta+\int_{\Omega}\rho(u\cdot\nabla)u\cdot\eta
ΩpηΩ(νu)η\displaystyle\qquad-\int_{\Omega}p\nabla\cdot\eta-\int_{\Omega}(\nabla\nu\cdot\nabla u)\cdot\eta
=Ωρfη,ηV=𝐇01(Ω),\displaystyle=\int_{\Omega}\rho f\cdot\eta,\quad\forall\eta\in V=\mathbf{H}^{1}_{0}(\Omega),
Ωqu\displaystyle\int_{\Omega}q\nabla\cdot u =0,qQ=L2(Ω).\displaystyle=0,\quad\forall q\in Q=L^{2}(\Omega).

Employing again the Leray orthogonal projector PP to incorporate the divergence constraint into our functional framework, we have the final weak formulation that allows for variable viscosity: Given fL2((0,T);H)f\in L^{2}((0,T);H), if uL2((0,T);V)u\in L^{2}((0,T);V) satisfies

(dudt,η)+a(νu,η)+b(u,u,η)(a(ν,u),η)\displaystyle\left(\frac{du}{dt},\eta\right)+a(\nu u,\eta)+b(u,u,\eta)-(a(\nu,u),\eta) =(f,η),ηV,\displaystyle=(f,\eta),~{}~{}~{}\forall\eta\in V, (5.5)
u(0)\displaystyle u(0) =u0\displaystyle=u_{0} (5.6)

then uu will be called a weak solution of the NSE with space-varying viscosity.

To go further with this analysis, we will need some type of a bound from below for the rather inconvenient term a(νu,u)a(\nu u,u), involving something more useful, such as some multiple of uH1(Ω)\|u\|_{H^{1}(\Omega)}. Under suitable regularity assumptions on ν\nu and uu, we have the following.

Proposition 5.1.

Let νH1(Ω)\nu\in H^{1}(\Omega) satisfy (5.1)–(5.2), and let uVH2(Ω)u\in V\cap H^{2}(\Omega). Then

a(νu,u)ν¯|u|H1(Ω)2.a(\nu u,u)\geqslant\underline{\nu}|u|_{H^{1}(\Omega)}^{2}.
Proof.

We first use the definition of the bilinear form a(,)a(\cdot,\cdot) to write:

a(νu,u)\displaystyle a(\nu u,u) =([νu],u)L2(Ω)=Ω[νu]u=Ω(ν)uu+Ων(u)2\displaystyle=(\nabla[\nu u],\nabla u)_{L^{2}(\Omega)}=\int_{\Omega}\nabla[\nu u]\cdot\nabla u=\int_{\Omega}(\nabla\nu)u\nabla u+\int_{\Omega}\nu(\nabla u)^{2}
Ω(ν)uu+ν¯Ω(u)2\displaystyle\geqslant\int_{\Omega}(\nabla\nu)u\nabla u+\underline{\nu}\int_{\Omega}(\nabla u)^{2}
=Ω(ν)uu+ν¯|u|H1(Ω)2.\displaystyle=\int_{\Omega}(\nabla\nu)u\nabla u+\underline{\nu}|u|_{H^{1}(\Omega)}^{2}.

We are done if we can show that Ω(ν)uu0\int_{\Omega}(\nabla\nu)u\nabla u\geqslant 0. To this end, we integrate by parts to find that

Ω(ν)uu\displaystyle\int_{\Omega}(\nabla\nu)u\nabla u =ΩνuuΩνu2uΩν(u)2\displaystyle=\int_{\partial\Omega}\nu u\nabla u-\int_{\Omega}\nu u\nabla^{2}u-\int_{\Omega}\nu(\nabla u)^{2}
ΩνuuΩνu2uν¯|u|H1(Ω)2.\displaystyle\geqslant\int_{\partial\Omega}\nu u\nabla u-\int_{\Omega}\nu u\nabla^{2}u-\bar{\nu}|u|_{H^{1}(\Omega)}^{2}.

Note that Ωνuu\int_{\partial\Omega}\nu u\nabla u vanishes due to the compact support of functions in VV. It remains to show that Ωνu2u+ν¯|u|H1(Ω)20\int_{\Omega}\nu u\nabla^{2}u+\bar{\nu}|u|_{H^{1}(\Omega)}^{2}\leqslant 0; showing Ωu2u+|u|H1(Ω)20\int_{\Omega}u\nabla^{2}u+|u|_{H^{1}(\Omega)}^{2}\leqslant 0 will suffice. Integrating by parts the integral term gives

Ωu2u=ΩuuΩ(u)2=|u|H1(Ω)2.\int_{\Omega}u\nabla^{2}u=\int_{\partial\Omega}u\nabla u-\int_{\Omega}(\nabla u)^{2}=-|u|_{H^{1}(\Omega)}^{2}.

Thus, Ωu2u+|u|H1(Ω)20\int_{\Omega}u\nabla^{2}u+|u|_{H^{1}(\Omega)}^{2}\leqslant 0, which is what we were after. ∎

We now establish some basic preliminary a priori bounds for the weak formulation of the simplified space-varying viscosity NSE model.

The first estimate gives a bound on the L2L^{2}-norm of a weak solution to (1.1)–(1.2).

Proposition 5.2 (L2L^{2}-Estimates, space-varying viscosity).

Let uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (5.3)–(5.4), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3, and assume that Proposition 5.1 holds. Then it holds that

lim suptu(t)H2cρ22ν¯2lim suptf(t)V2+cρ22ν¯2lim suptνu(t)W2,\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2}\leqslant\frac{c_{\rho}^{2}}{2\underline{\nu}^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}+\frac{c_{\rho}^{2}}{2\underline{\nu}^{2}}\limsup_{t\rightarrow\infty}\|\nabla\nu\cdot\nabla u(t)\|_{W}^{2}, (5.7)

where cρc_{\rho} is the constant from the Poincaré inequality (Lemma A.2 in Appendix A), and ν¯=infΩν>0\underline{\nu}=\inf_{\Omega}\nu>0.

Proof.

Beginning with (5.5) for η=u\eta=u, using (2.7), noting that Theorem A.4 guarantees b(u,u,u)=0b(u,u,u)=0, and under the assumption that Proposition 5.1 holds, we can start with

12ddtuH2+ν¯|u|V2fV|u|V+νuW|u|V.\frac{1}{2}\frac{d}{dt}\|u\|_{H}^{2}+\underline{\nu}|u|_{V}^{2}\leqslant\|f\|_{V^{\prime}}|u|_{V}+\|\nabla\nu\cdot\nabla u\|_{W}|u|_{V}.

Applying Young’s Inequality leads to

ddtuH2+2ν¯|u|V2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+2\underline{\nu}|u|_{V}^{2} (ν¯fV)(1ν¯|u|V)+(ν¯νuW)(1ν¯|u|V)\displaystyle\leqslant\left(\sqrt{\underline{\nu}}\|f\|_{V^{\prime}}\right)\left(\frac{1}{\sqrt{\underline{\nu}}}|u|_{V}\right)+\left(\sqrt{\underline{\nu}}\|\nabla\nu\cdot\nabla u\|_{W}\right)\left(\frac{1}{\sqrt{\underline{\nu}}}|u|_{V}\right)
ν¯2fV2+12ν¯|u|V2+ν¯2νuW2+12ν¯|u|V2,\displaystyle\leqslant\frac{\underline{\nu}}{2}\|f\|_{V^{\prime}}^{2}+\frac{1}{2\underline{\nu}}|u|_{V}^{2}+\frac{\underline{\nu}}{2}\|\nabla\nu\cdot\nabla u\|_{W}^{2}+\frac{1}{2\underline{\nu}}|u|_{V}^{2},

which gives then

ddtuH2+ν¯|u|V212ν¯fV2+12ν¯νuW2.\frac{d}{dt}\|u\|_{H}^{2}+\underline{\nu}|u|_{V}^{2}\leqslant\frac{1}{2\underline{\nu}}\|f\|_{V^{\prime}}^{2}+\frac{1}{2\underline{\nu}}\|\nabla\nu\cdot\nabla u\|_{W}^{2}. (5.8)

Employing the Poincaré inequality, we we end up with

ddtuH2+ν¯cρ2uH212ν¯fV2+12ν¯νuW2.\frac{d}{dt}\|u\|_{H}^{2}+\frac{\underline{\nu}}{c_{\rho}^{2}}\|u\|_{H}^{2}\leqslant\frac{1}{2\underline{\nu}}\|f\|_{V^{\prime}}^{2}+\frac{1}{2\underline{\nu}}\|\nabla\nu\cdot\nabla u\|_{W}^{2}.

This is a differential inequality for u(t)H2\|u(t)\|_{H}^{2}, and by Gronwall’s Inequality (Lemma A.5) it holds that

u(t)H2\displaystyle\|u(t)\|_{H}^{2} u(r)H2ertν¯/cρ2𝑑τ+rt12ν¯(f(s)V2+νu(s)W2)ertν¯/cρ2𝑑τds\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{-\int_{r}^{t}\underline{\nu}/c_{\rho}^{2}d\tau}+\int_{r}^{t}\frac{1}{2\underline{\nu}}\left(\|f(s)\|_{V^{\prime}}^{2}\|+\|\nabla\nu\cdot\nabla u(s)\|_{W}^{2}\right)e^{-\int_{r}^{t}\underline{\nu}/c_{\rho}^{2}d\tau}ds
=u(r)H2eν¯(tr)/cρ2+rt12ν¯eν¯(ts)/cρ2(f(s)V2+νu(s)W2)ds\displaystyle=\|u(r)\|_{H}^{2}e^{-\underline{\nu}(t-r)/c_{\rho}^{2}}+\int_{r}^{t}\frac{1}{2\underline{\nu}}e^{-\underline{\nu}(t-s)/c_{\rho}^{2}}\left(\|f(s)\|_{V^{\prime}}^{2}\|+\|\nabla\nu\cdot\nabla u(s)\|_{W}^{2}\right)ds
u(r)H2eν¯(tr)/cρ2\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{-\underline{\nu}(t-r)/c_{\rho}^{2}}
+12ν¯suprδt(f(δ)V2+νu(δ)W2)rteν¯(ts)/cρ2ds\displaystyle+\frac{1}{2\underline{\nu}}\sup_{r\leqslant\delta\leqslant t}\left(\|f(\delta)\|_{V^{\prime}}^{2}\|+\|\nabla\nu\cdot\nabla u(\delta)\|_{W}^{2}\right)\int_{r}^{t}e^{\underline{\nu}(t-s)/c_{\rho}^{2}}ds
=u(r)H2eν¯(tr)/cρ2\displaystyle=\|u(r)\|_{H}^{2}e^{-\underline{\nu}(t-r)/c_{\rho}^{2}}
+12ν¯suprδs(f(δ)V2+νu(δ)W2)cρν¯2(e0eν¯(tr)/cρ2),\displaystyle+\frac{1}{2\underline{\nu}}\sup_{r\leqslant\delta\leqslant s}\left(\|f(\delta)\|_{V^{\prime}}^{2}\|+\|\nabla\nu\cdot\nabla u(\delta)\|_{W}^{2}\right)\frac{c_{\rho}}{\underline{\nu}^{2}}\left(e^{0}-e^{-\underline{\nu}(t-r)/c_{\rho}^{2}}\right),

or more simply

u(t)H2u(r)H2eν¯(tr)/cρ2+cρ22ν¯2suprδt(f(δ)V2+νu(δ)W2),\displaystyle\|u(t)\|_{H}^{2}\leqslant\|u(r)\|_{H}^{2}e^{\underline{\nu}(t-r)/c_{\rho}^{2}}+\frac{c_{\rho}^{2}}{2\underline{\nu}^{2}}\sup_{r\leqslant\delta\leqslant t}\left(\|f(\delta)\|_{V^{\prime}}^{2}\|+\|\nabla\nu\cdot\nabla u(\delta)\|_{W}^{2}\right),

which must hold for every r(0,t]r\in(0,t]. Taking the lim supt\limsup_{t\rightarrow\infty} of both sides of the inequality leaves (5.7) ∎

The second estimate gives a bound on the time-averaged H1H^{1}-semi-norm of a weak solution to (5.3)–(5.4).

Proposition 5.3 (Time-averaged H1H^{1}-Estimates, space-varying viscosity).

Let uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (5.3)–(5.4), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3, and assume that Proposition 5.1 holds. Then for every TT with Tcρ2/ν¯>0T\geqslant c_{\rho}^{2}/\underline{\nu}>0 it holds that

lim supt1Ttt+T|u(τ)|V2𝑑τ1ν¯2(lim suptf(t)V2+lim suptνuW2),\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}|u(\tau)|_{V}^{2}d\tau\leqslant\frac{1}{\underline{\nu}^{2}}\left(\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}+\limsup_{t\rightarrow\infty}\|\nabla\nu\cdot\nabla u\|_{W}^{2}\right), (5.9)

where cρc_{\rho} is the constant from the Poincaré inequality (Lemma A.2 in Appendix A), and ν¯=infΩν>0\underline{\nu}=\inf_{\Omega}\nu>0.

Proof.

We can begin with (5.8) from the proof of Proposition 5.2, which was

ddtuH2+ν¯|u|V212ν¯fV2+12ν¯νuW2.\frac{d}{dt}\|u\|_{H}^{2}+\underline{\nu}|u|_{V}^{2}\leqslant\frac{1}{2\underline{\nu}}\|f\|_{V^{\prime}}^{2}+\frac{1}{2\underline{\nu}}\|\nabla\nu\cdot\nabla u\|_{W}^{2}.

Integrating from tt to t+tt+t with T0T\geqslant 0 gives

u(t+T)H2u(t)H2+ν¯tt+T|u(τ)|V2𝑑τ12ν¯tt+Tf(τ)V2+12ν¯tt+TνuW2\|u(t+T)\|_{H}^{2}-\|u(t)\|_{H}^{2}+\underline{\nu}\int_{t}^{t+T}|u(\tau)|_{V}^{2}d\tau\leqslant\frac{1}{2\underline{\nu}}\int_{t}^{t+T}\|f(\tau)\|_{V^{\prime}}^{2}+\frac{1}{2\underline{\nu}}\int_{t}^{t+T}\|\nabla\nu\cdot\nabla u\|_{W}^{2}

Dropping the positive first term on the left and bounding the integral on the right gives

tt+T|u(τ)|V21ν¯u(t)H2+T2ν¯2suptst+Tf(s)V2+T2ν¯2suptst+TνuW2.\int_{t}^{t+T}|u(\tau)|_{V}^{2}\leqslant\frac{1}{\underline{\nu}}\|u(t)\|_{H}^{2}+\frac{T}{2\underline{\nu}^{2}}\sup_{t\leqslant s\leqslant t+T}\|f(s)\|_{V^{\prime}}^{2}+\frac{T}{2\underline{\nu}^{2}}\sup_{t\leqslant s\leqslant t+T}\|\nabla\nu\cdot\nabla u\|_{W}^{2}.

Taking the lim supt\limsup_{t\rightarrow\infty} of both sides, and dividing by TT, gives

lim supt1Ttt+T|u(τ)|V2\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}|u(\tau)|_{V}^{2} 1ν¯Tlim suptu(t)H2+12ν¯2lim suptf(t)V2\displaystyle\leqslant\frac{1}{\underline{\nu}T}\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2}+\frac{1}{2\underline{\nu}^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}
+12ν¯2lim suptνu(t)W2\displaystyle+\frac{1}{2\underline{\nu}^{2}}\limsup_{t\rightarrow\infty}\|\nabla\nu\cdot\nabla u(t)\|_{W}^{2}

Using the estimate from Proposition 5.2 gives then

lim supt1Ttt+T|u(τ)|V2\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}|u(\tau)|_{V}^{2}\leqslant (1ν¯Tcρ22ν¯2+12ν¯2)\displaystyle\left(\frac{1}{\underline{\nu}T}\cdot\frac{c_{\rho}^{2}}{2\underline{\nu}^{2}}+\frac{1}{2\underline{\nu}^{2}}\right)
(lim suptf(t)V2+lim suptνu(t)W2)\displaystyle\left(\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}+\limsup_{t\rightarrow\infty}\|\nabla\nu\cdot\nabla u(t)\|_{W}^{2}\right)

Since Tcρ2/ν¯T\geqslant c_{\rho}^{2}/\underline{\nu}, we end up with (5.9) ∎

Remark 5.4.

To use these estimates with the determining projection framework of §3 (Theorem 3.1), it remains to determine appropriate function spaces for ν\nu so that terms involving ν\nu and ν\nabla\nu are well-defined and compabible with both the weak formulation, the theory for weak solutions uu, and any estimates we established above for determining projections. Although ν\nu spatially varies, it is taken here to be given as data, and one can reverse-engineer any assumptions needed for e.g. νu\nabla\nu\cdot\nabla u, or other terms involving ν\nu, to be well-defined. Allowing for a more complicated class of variable viscosity, such as viscosity that varies with the velocity, would greatly complicate this discussion.

Appendix A Some technical tools

Here is a collection of some standard technical tools that we use in the paper.

Young’s inequality is used repeatedly throughout.

Lemma A.1 (Young’s Inequality).

For a,b0a,b\geqslant 0, 1<p,q<1<p,q<\infty, 1/p+1/q=11/p+1/q=1, it holds that

abapp+bqq.ab\leqslant\frac{a^{p}}{p}+\frac{b^{q}}{q}. (A.1)
Proof.

See for example [27]. ∎

We use the Poincaré Inequality in several places; in our setting, it takes the following form for both the classical Sobolev space H01(Ω)H^{1}_{0}(\Omega) and the space of vector-valued functions 𝐇01(Ω)\mathbf{H}^{1}_{0}(\Omega).

Lemma A.2 (Poincaré Inequality).

If Ω\Omega is bounded, then it holds that

uL2(Ω)cρ(Ω)|u|H1(Ω),uH01(Ω).\|u\|_{L^{2}(\Omega)}\leqslant c_{\rho}(\Omega)|u|_{H^{1}(\Omega)},~{}~{}\forall u\in H^{1}_{0}(\Omega). (A.2)
Proof.

For example see [30]. ∎

In this paper, we use the notation HH and VV for L2(Ω)L^{2}(\Omega) and H1(Ω)H^{1}(\Omega), respectively.
The following a priori bounds can be derived for the trilinear form b(,,)b(\cdot,\cdot,\cdot).

Lemma A.3 (Trilinear Form Bounds).

If Ωd\Omega\subset\mathbb{R}^{d}, then the trilinear form b(u,v,w)b(u,v,w) is bounded on V×V×VV\times V\times V as follows, where d=2d=2 or d=3d=3 is the spatial dimension:

d=2:\displaystyle d=2: |b(u,v,w)|21/2uL2(Ω)1/2|u|H1(Ω)1/2|v|H1(Ω)wL2(Ω)1/2|w|H1(Ω)1/2,\displaystyle|b(u,v,w)|\leqslant 2^{1/2}\|u\|_{L^{2}(\Omega)}^{1/2}|u|_{H^{1}(\Omega)}^{1/2}|v|_{H^{1}(\Omega)}\|w\|_{L^{2}(\Omega)}^{1/2}|w|_{H^{1}(\Omega)}^{1/2}, (A.3)
d=3:\displaystyle d=3: |b(u,v,w)|2uL2(Ω)1/4|u|H1(Ω)3/4|v|H1(Ω)wL2(Ω)1/4|w|H1(Ω)3/4.\displaystyle|b(u,v,w)|\leqslant 2\|u\|_{L^{2}(\Omega)}^{1/4}|u|_{H^{1}(\Omega)}^{3/4}|v|_{H^{1}(\Omega)}\|w\|_{L^{2}(\Omega)}^{1/4}|w|_{H^{1}(\Omega)}^{3/4}. (A.4)

Moreover, from Hölder inequalities we have for d=2d=2 or d=3d=3:

|b(v,u,v)|uL(Ω)vL2(Ω)2.|b(v,u,v)|\leqslant\|\nabla u\|_{L^{\infty}(\Omega)}\|v\|_{L^{2}(\Omega)}^{2}. (A.5)
Proof.

See [28, 32, 33, 4]. ∎

The following useful symmetries can be shown for the trilinear form.

Lemma A.4 (Trilinear Form Symmetries).

If Ωd\Omega\subset\mathbb{R}^{d}, then the trilinear form b(u,v,w)b(u,v,w) on V×V×VV\times V\times V has the following symmetries:

b(u,v,v)\displaystyle b(u,v,v) =0,\displaystyle=0,
b(u,v,w)\displaystyle b(u,v,w) =b(u,w,v),\displaystyle=-b(u,w,v),
b(uv,u,uv)\displaystyle b(u-v,u,u-v) =b(u,u,uv)b(v,v,uv).\displaystyle=b(u,u,u-v)-b(v,v,u-v).
Proof.

See [32, 33, 4]. ∎

The classical Gronwall inequality is as follows.

Lemma A.5 (Gronwall Inequality).

If α(t)\alpha(t) and β(t)\beta(t) are real-valued and non-negative on (0,)(0,\infty), and if the function y(t)y(t) satisfies the following differential inequality:

y(t)+α(t)y(t)β(t),a.e. on(0,),y^{\prime}(t)+\alpha(t)y(t)\leqslant\beta(t),~{}~{}\text{a.e.~{}on}~{}(0,\infty),

then y(t)y(t) is bounded on (0,)(0,\infty) by

y(t)\displaystyle y(t) y(0)e0tα(τ)𝑑τ+0tβ(s)e0tα(τ)𝑑τ𝑑s.\displaystyle\leqslant y(0)e^{-\int_{0}^{t}\alpha(\tau)d\tau}+\int_{0}^{t}\beta(s)e^{-\int_{0}^{t}\alpha(\tau)d\tau}ds.
Proof.

See for example [27]. ∎

The following generalized Gronwall inequality is used repeatedly throughout Sections 4 and 5 to obtain a priori estimates.

Lemma A.6 (Generalized Gronwall Lemma).

Let T>0T>0 be fixed, and let α(t)\alpha(t) and β(t)\beta(t) be locally integrable and real-valued on (0,)(0,\infty), satisfying:

lim inft1Ttt+Tα(τ)𝑑τ=m>0,lim supt1Ttt+Tα(τ)𝑑τ=M<,\liminf_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\alpha(\tau)d\tau=m>0,\ \ \ \ \ \limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\alpha^{-}(\tau)d\tau=M<\infty,
limt1Ttt+Tβ+(τ)𝑑τ=0,\lim_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\beta^{+}(\tau)d\tau=0,

where α=max{α,0}\alpha^{-}=\max\{-\alpha,0\} and β+=max{β,0}\beta^{+}=\max\{\beta,0\}. If y(t)y(t) is an absolutely continuous non-negative function on (0,)(0,\infty), and y(t)y(t) satisfies the following differential inequality:

y(t)+α(t)y(t)β(t),a.e. on(0,),y^{\prime}(t)+\alpha(t)y(t)\leqslant\beta(t),\ \ \text{a.e.~{}on}~{}(0,\infty),

then limty(t)=0\lim_{t\rightarrow\infty}y(t)=0.

Proof.

See [9, 24]. ∎

Appendix B A priori estimates for constant viscosity

Variations of the following two a priori bounds on solutions to the NSE can be found throughout the literature on the Navier-Stokes equations; cf. [32, 33, 4]. For example, Lemmas B.1 and B.2 below (both from [21]) are simple generalizations to fVf\in V^{\prime} of the bounds in e.g. [4], presented there for fHf\in H.

The first estimate gives a bound on the L2L^{2}-norm of a weak solution to (1.1)–(1.2).

Lemma B.1 (L2L^{2}-Estimates, constant viscosity).

Let uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3. It holds that

lim suptu(t)H2\displaystyle\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2} cρ2ν2lim suptf(t)V2,\displaystyle\leqslant\frac{c_{\rho}^{2}}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}, (B.1)

where cρc_{\rho} is the constant from the Poincare inequality.

Proof.

Beginning with equation (2.4) for v=uv=u, using (2.7), and noting that Theorem A.4 in Appendix A ensures b(u,u,u)=0b(u,u,u)=0, we are left with

12ddtuH2+νuV2\displaystyle\frac{1}{2}\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} fVuV.\displaystyle\leqslant\|f\|_{V^{\prime}}\|u\|_{V}.

Applying Young’s inequality leads to

ddtuH2+2νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+2\nu\|u\|_{V}^{2} (2νfV)(2νuV)1νfV2+νuV2,\displaystyle\leqslant\left(\sqrt{\frac{2}{\nu}}\|f\|_{V^{\prime}}\right)\left(\sqrt{2\nu}\|u\|_{V}\right)\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}+\nu\|u\|_{V}^{2},

which gives then

ddtuH2+νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}. (B.2)

Employing the Poincaré inequality we end up with

ddtuH2+νcρ2uH2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\frac{\nu}{c_{\rho}^{2}}\|u\|_{H}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}.

This is a differential inequality for u(t)H2\|u(t)\|_{H}^{2}, and by Gronwall’s Inequality (Lemma A.5) it holds that

u(t)H2\displaystyle\|u(t)\|_{H}^{2} u(r)H2ertν/cρ2𝑑τ+rt1νf(s)V2estν/cρ2𝑑τ𝑑s\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{-\int_{r}^{t}\nu/c_{\rho}^{2}d\tau}+\int_{r}^{t}\frac{1}{\nu}\|f(s)\|_{V^{\prime}}^{2}e^{-\int_{s}^{t}\nu/c_{\rho}^{2}d\tau}ds
=u(r)H2eν(tr)/cρ2+rt1νeν(ts)/cρ2f(s)V2𝑑s\displaystyle=\|u(r)\|_{H}^{2}e^{-\nu(t-r)/c_{\rho}^{2}}+\int_{r}^{t}\frac{1}{\nu}e^{-\nu(t-s)/c_{\rho}^{2}}\|f(s)\|_{V^{\prime}}^{2}ds
u(r)H2eν(tr)/cρ2+1νsuprδtf(δ)V2rteν(ts)/cρ2𝑑s\displaystyle\leqslant\|u(r)\|_{H}^{2}e^{-\nu(t-r)/c_{\rho}^{2}}+\frac{1}{\nu}\sup_{r\leqslant\delta\leqslant t}\|f(\delta)\|_{V^{\prime}}^{2}\int_{r}^{t}e^{-\nu(t-s)/c_{\rho}^{2}}ds
=u(r)H2eν(tr)/cρ2+1νsuprδtf(δ)V2cρ2ν(e0eν(tr)/cρ2),\displaystyle=\|u(r)\|_{H}^{2}e^{-\nu(t-r)/c_{\rho}^{2}}+\frac{1}{\nu}\sup_{r\leqslant\delta\leqslant t}\|f(\delta)\|_{V^{\prime}}^{2}\frac{c_{\rho}^{2}}{\nu}\left(e^{0}-e^{-\nu(t-r)/c_{\rho}^{2}}\right),

or more simply

u(t)H2u(r)H2eν(tr)/cρ2+cρ2ν2suprδtf(δ)V2,\|u(t)\|_{H}^{2}\leqslant\|u(r)\|_{H}^{2}e^{-\nu(t-r)/c_{\rho}^{2}}+\frac{c_{\rho}^{2}}{\nu^{2}}\sup_{r\leqslant\delta\leqslant t}\|f(\delta)\|_{V^{\prime}}^{2},

which must hold for every r(0,t]r\in(0,t]. Taking the lim supt\limsup_{t\rightarrow\infty} of both sides of the inequality leaves (B.1). ∎

The second estimate gives a bound on the time-averaged H1H^{1}-semi-norm of a weak solution to (1.1)–(1.2).

Lemma B.2 (Time-averaged H1H^{1}-Estimates, constant viscosity).

Let uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3. Then for every TT with Tcρ2/ν>0T\geqslant c_{\rho}^{2}/\nu>0 it holds that

lim supt1Ttt+Tu(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau 2ν2lim suptf(t)V2,\displaystyle\leqslant\frac{2}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}, (B.3)

where cρc_{\rho} is the constant from the Poincare inequality.

Proof.

We begin with (B.2), which was

ddtuH2+νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}.

Integrating from tt to t+Tt+T with T>0T>0 gives

u(t+T)H2u(t)H2+νtt+Tu(τ)V2𝑑τ\displaystyle\|u(t+T)\|_{H}^{2}-\|u(t)\|_{H}^{2}+\nu\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau 1νtt+Tf(τ)V2𝑑τ.\displaystyle\leqslant\frac{1}{\nu}\int_{t}^{t+T}\|f(\tau)\|_{V^{\prime}}^{2}d\tau.

Dropping the positive first term on the left and bounding the integral on the right gives

tt+Tu(τ)V2𝑑τ\displaystyle\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau 1νu(t)H2+Tν2suptst+Tf(s)V2.\displaystyle\leqslant\frac{1}{\nu}\|u(t)\|_{H}^{2}+\frac{T}{\nu^{2}}\sup_{t\leqslant s\leqslant t+T}\|f(s)\|_{V^{\prime}}^{2}.

Taking the lim supt\limsup_{t\rightarrow\infty} of both sides, and dividing by TT, gives

lim supt1Ttt+Tu(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau 1νTlim suptu(t)H2+1ν2lim suptf(t)V2.\displaystyle\leqslant\frac{1}{\nu T}\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2}+\frac{1}{\nu^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}.

Using the estimate from Lemma B.1 gives then

lim supt1Ttt+Tu(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\|u(\tau)\|_{V}^{2}d\tau (cρ2ν3T+1ν2)lim suptf(t)V2.\displaystyle\leqslant\left(\frac{c_{\rho}^{2}}{\nu^{3}T}+\frac{1}{\nu^{2}}\right)\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}.

Since Tcρ2/ν>0T\geqslant c_{\rho}^{2}/\nu>0, we end up with (B.3). ∎

Appendix C Additional a priori estimates for time-varying viscosity

The following estimate gives a bound on the time-averaged product of viscosity and the H1H^{1}-semi-norm of the weak solution to (1.1)–(1.2).

Lemma C.1 (Time-averaged H1H^{1}-Estimates, time-varying viscosity).

Let
uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3. Then for every TT with Tcρ2/ν¯>0T\geqslant c_{\rho}^{2}/\underline{\nu}>0 it holds that

lim supt1Ttt+Tν(τ)u(τ)V2𝑑τK¯ν¯+cρ2ν¯cρ2lim suptf(t)V2\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\nu(\tau)\|u(\tau)\|_{V}^{2}d\tau\leqslant\frac{\bar{K}\underline{\nu}+c_{\rho}^{2}}{\underline{\nu}c_{\rho}^{2}}\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2} (C.1)

where K¯=lim supt0teϕs(t))/cρ2𝑑s\bar{K}=\limsup_{t\rightarrow\infty}\int_{0}^{t}e^{-\phi_{s}(t))/c_{\rho}^{2}}ds, ϕs(t)=stν(z)𝑑z\phi_{s}(t)=\int_{s}^{t}\nu(z)dz, and cρc_{\rho} is the Poincaré constant.

Proof.

We begin with (4.4), which was

ddtuH2+νuV2\displaystyle\frac{d}{dt}\|u\|_{H}^{2}+\nu\|u\|_{V}^{2} 1νfV2.\displaystyle\leqslant\frac{1}{\nu}\|f\|_{V^{\prime}}^{2}.

Integrating from tt to t+Tt+T with T>0T>0 gives

u(t+T)H2u(t)H2+tt+Tν(τ)u(τ)V2𝑑τ\displaystyle\|u(t+T)\|_{H}^{2}-\|u(t)\|_{H}^{2}+\int_{t}^{t+T}\nu(\tau)\|u(\tau)\|_{V}^{2}d\tau tt+T1ν(τ)f(τ)V2𝑑τ.\displaystyle\leqslant\int_{t}^{t+T}\frac{1}{\nu(\tau)}\|f(\tau)\|_{V^{\prime}}^{2}d\tau.

Dropping the positive first term on the left and bounding the integral on the right gives

tt+Tν(τ)u(τ)V2𝑑τ\displaystyle\int_{t}^{t+T}\nu(\tau)\|u(\tau)\|_{V}^{2}d\tau u(t)H2+Tsuptst+T1ν(s)f(s)V2.\displaystyle\leqslant\|u(t)\|_{H}^{2}+T\sup_{t\leqslant s\leqslant t+T}\frac{1}{\nu(s)}\|f(s)\|_{V^{\prime}}^{2}.

Taking the lim supt\limsup_{t\rightarrow\infty} of both sides, and dividing by TT, gives

lim supt1Ttt+Tν(τ)u(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\nu(\tau)\|u(\tau)\|_{V}^{2}d\tau 1Tlim suptu(t)H2+lim supt1ν(t)f(t)V2.\displaystyle\leqslant\frac{1}{T}\limsup_{t\rightarrow\infty}\|u(t)\|_{H}^{2}+\limsup_{t\rightarrow\infty}\frac{1}{\nu(t)}\|f(t)\|_{V^{\prime}}^{2}.

Using the estimate from Lemma 4.1 and bounding the right-most term gives then

lim supt1Ttt+Tν(τ)u(τ)V2𝑑τ\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\nu(\tau)\|u(\tau)\|_{V}^{2}d\tau (Kν¯T+1ν¯)lim suptf(t)V2.\displaystyle\leqslant\left(\frac{K}{\underline{\nu}T}+\frac{1}{\underline{\nu}}\right)\limsup_{t\rightarrow\infty}\|f(t)\|_{V^{\prime}}^{2}.

Since Tcρ2/ν¯>0T\geqslant c_{\rho}^{2}/\underline{\nu}>0, we end up with (C.1). ∎

The following estimate is a variation of the other time-varying estimates from Lemmas 4.2 and C.1 and gives yet another slightly different bound on the time-averaged H1H^{1}-semi-norm of a weak solution to 1.11.2.

Proposition C.2 (Time-averaged H1H^{1}-Estimates, time-varying viscosity).

Let
uL2((0,T);V)u\in L^{2}((0,T);V) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain Ωd\Omega\subset\mathbb{R}^{d}, d=2d=2 or d=3d=3. Then for every TT with Tcρ/ν¯>0T\geqslant c_{\rho}/\underline{\nu}>0 it holds that

lim supt1Ttt+T1ν(τ)|u(τ)|H1(Ω)2𝑑τClim suptf(t)L2(Ω)2\limsup_{t\rightarrow\infty}\frac{1}{T}\int_{t}^{t+T}\frac{1}{\nu(\tau)}|u(\tau)|_{H^{1}(\Omega)}^{2}d\tau\leqslant C\limsup_{t\rightarrow\infty}\|f(t)\|_{L^{2}(\Omega)}^{2}

where CC is dependent only on K¯=lim supt0teϕs(t))/cρ2𝑑s\bar{K}=\limsup_{t\rightarrow\infty}\int_{0}^{t}e^{-\phi_{s}(t))/c_{\rho}^{2}}ds, ϕs(t)=stν(z)𝑑z\phi_{s}(t)=\int_{s}^{t}\nu(z)dz, and cρc_{\rho} the Poincaré constant.

Proof.

References

  • [1] R. A. Adams. Sobolev Spaces. Academic Press, San Diego, CA, 1978.
  • [2] B. Cockburn, D. A. Jones, and E. S. Titi. Degrés de liberté déterminants pour équations nonlinéaires dissipatives. C.R. Acad. Sci. Paris, Série I, 321:563–568, 1995.
  • [3] B. Cockburn, D. A. Jones, and E. S. Titi. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comp., 66(219):1073–1087, 1997.
  • [4] P. Constantin and C. Foias. Navier-Stokes Equations. University of Chicago Press, Chicago, IL, 1988.
  • [5] P. Constantin, C. Foias, O. Manley, and R. Temam. Determining modes and fractal dimension of turbulent flows. J. Fluid Mech., 150:427–440, 1985.
  • [6] A. de Araujo, M. Arnaud, and E. Lucena. On the Navier-Stokes equations with variable viscosity in stationary form. Far East Journal of Applied Mathematics, 80(2):107–124, 2013.
  • [7] A. de Araujo and S. de Silva. Navier-Stokes equations with variable viscosity in nonstationary form. Far East Journal of Applied Mathematics, 90(3):173–188, 2015.
  • [8] G. de Araujo, M. Miranda, and L. Medeiros. On the Navier-Stokes equations with variable viscosity in a noncylindrical domain. Applicable Analysis, 86(3):287–313, 2007.
  • [9] C. Foias, O. P. Manley, R. Temam, and Y. Treve. Asymptotic analysis of the Navier-Stokes equations. Physica D9, pages 157–188, 1983.
  • [10] C. Foias and G. Prodi. Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension two. Rend. Sem. Mat. Univ. Padova, 39:1–34, 1967.
  • [11] C. Foias, G. Sell, and R. Temam. Inertial manifolds for nonlinear evolutionary equations. J. Diff. Eq., 73:309–353, 1988.
  • [12] C. Foias and R. Temam. Asymptotic numerical analysis for the Navier-Stokes equations. Nonlinear Dynamics and Turbulence, 1983.
  • [13] C. Foias and R. Temam. Determining the solutions of the Navier-Stokes equations by a set of nodal values. Math. Comp., 43:177–183, 1984.
  • [14] C. Foias and E. S. Titi. Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity, 4:135–153, 1991.
  • [15] C. Gal and Y. Guo. Inertial manifolds for the hyperviscous Navier–Stokes equations. Journal of Differential Equations, 265(9):4335–4374, 2018.
  • [16] C. Gal and T. Medjo. On a regularized family of models for homogeneous incompressible two-phase flows. Journal of Nonlinear Science, 24:1033–1103, 2014.
  • [17] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman Publishing, Marshfield, MA, 1985.
  • [18] G. Gui and P. Zhang. Global smooth solutions to the 2-d inhomogeneous Navier-Stokes equations with variable viscosity. Chinese Annals of Mathematics, Series B, 30B(5):607–630, 2009.
  • [19] A. Hammadi and Z. Ping. Global well-posedness of 3-d density-dependent Navier-Stokes system with variable viscosity. Science China Mathematics, 58(6):1129–1150, 2015.
  • [20] Z. He and X. Liao. Solvability of the two-dimensional stationary incompressible inhomogeneous Navier-Stokes equations with variable viscosity coefficient. arXiv:2005.13277v1, May 2020.
  • [21] M. Holst. Some bounds on the number of determining nodes for weak solutions of the Navier-Stokes equations. Technical Report CRPC-95-1, Applied Mathematics and CRPC, California Institute of Technology, 1995.
  • [22] M. Holst, E. Lunasin, and G. Tsogtgerel. Analysis of a general family of regularized Navier-Stokes and MHD models. J. Nonlin. Sci., 20(5):523–567, 2010. Available as arXiv:0901.4412 [math.AP].
  • [23] M. Holst and E. Titi. Determining projections and functionals for weak solutions of the Navier-Stokes equations. In Y. Censor and S. Reich, editors, Recent Developments in Optimization Theory and Nonlinear Analysis, volume 204 of Contemporary Mathematics, pages 125–138, Providence, RI, 1997. American Mathematical Society. Available as arXiv:1001.1357 [math.AP].
  • [24] D. A. Jones and E. S. Titi. Determing finite volume elements for the 2D Navier-Stokes equations. Physica D60, pages 117–133, 1992.
  • [25] D. A. Jones and E. S. Titi. On the number of determining nodes for the 2D Navier-Stokes equations. J. Math. Anal. Appl., 168:72–88, 1992.
  • [26] D. A. Jones and E. S. Titi. Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations. Indiana University Mathematics Journal, 42(3):875–887, 1993.
  • [27] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover Publications, New York, NY, 1970.
  • [28] O. A. Ladyženskaja. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York, NY, 1969.
  • [29] J. L. Lions. Quelques Méthodes de Résolution de Problèmes aux Limites NonLinéaires. Dunod, Paris, 1969.
  • [30] J. Nečas. Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague, Czechoslovakia, 1967.
  • [31] L. Segel and G. Handelman. Mathematics Applied to Continuum Mechanics. Dover Publications, New York, NY, 1961.
  • [32] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, New York, NY, 1977.
  • [33] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 1983.
  • [34] M. Zelati and C. Gal. Singular limits of voigt models in fluid dynamics. Journal of Mathematical Fluid Mechanics, 17:233–259, 2015.