This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A note on closed-form spread option valuation under log-normal models

Nuerxiati Abudurexiti Xi’an Jiaotong Liverpool University, Suzhou, China.
Email: [email protected]
   Kai He Xi’an Jiaotong Liverpool University, Suzhou, China.
[email protected]
   Dongdong Hu Xi’an Jiaotong Liverpool University, Suzhou, China.
Email: [email protected]
   Hasanjan Sayit Xi’an Jiaotong Liverpool University, Suzhou, China.
Email: Hasanjan [email protected]
Abstract

In the papers [7] and [1], closed-form approximations for spread call option prices were studied under the log-normal models. In this paper, we give an alternative closed-form formula for the price of spread call options under the log-normal models also. Our formula can be seen as a generalization of the closed-form formula presented in [1] as their formula can be obtained by selecting special parameter values for our formula. Numerical tests show that our formula performs better for a certain range of model parameters than the closed-form formula presented in [1].

1 Introduction

A spread option is a contract that gives the owner the right, but not the obligation, to receive the difference, or spread, between the prices of two assets. Spread options can be written on various types of financial products including equities, bonds, currencies, and commodities. Their use is widespread in fixed income, currency, commodity futures, and energy markets. As such pricing and hedging techniques of spread options are very important for the financial industry.

One of the difficulties in pricing spread options is that the exercise boundary is not in a linear form when the strike price is not zero. When the strike price of the spread option is zero, a spread option becomes an exchange option for which a closed-form formula exists. This formula is called Margrabe formula in the literature (see [16]). When the strike price of the spread option is not zero, the exercise boundary is given by a curve and to obtain spread option price one needs to evaluate the risk-neutral probability that the joint log prices lie in one side of that curve, see our Proposition 4.1 below. Due to this non-linearity of the exercise boundary, it is challenging to compute spread option prices efficiently and accurately.

Numerous papers were devoted in pricing spread options in the past either by deriving approximate analytical closed-form formulas or by introducing various numerical methods. The most popular numerical method in pricing spread options is probably the application of the fast Fourier Transformation technique (FFT) which was introduced in [8] initially for pricing European options written on single asset. The idea of this FFT technique was later extended to the case of pricing problems of spread options; see [10] and [13] for example. Both of these papers apply FFT in bi-variate Fourier transformation setting. The recent papers [3, 5, 4] studied pricing problems of spread options under general price dynamics by using Fourier Transformation techniques also. In their papers, they applied the FFT technique to a lower bound for the spread option price that were obtained by using the similar idea in the paper [1]. By doing so they were able to give an approximate semi-closed form formula for the spread option prices. Their approach gives spread prices by a uni-variante Fourier inversion formula which is easier and faster to compute than the formulas that involve bi-variate Fourier Transformation in [10] and [13].

Analytical methods offer closed-form approximate formulas to spread option prices. The first such approximation is the Bachelier approximation (see [19] and [17]). In the Bachelier approximation, the price difference of two assets is approximated by a normal random variable. This approximation gives a closed-form formula for the spread option prices but it does not give very accurate spread prices. Another closed-form formula for spread options was proposed by [15]. This formula has been popular among practitioners as it is simple and gives relatively accurate spread prices. The Kirk’s closed-form formula is obtained by approximating the sum of the second asset with the fixed strike by a log-normal random variable. After this approximation is implemented, Kirk’s formula was obtained by using a similar approach in calculating [16] formula. The papers [7, 6] introduced a new approach in approximating spread option prices in closed-form under log-normal models also. They gave lower and upper bounds to the spread prices. The [7] spread option formula gives very accurate spread option prices, but it involves solving a nonlinear system of equations, which is not trivial.

The recent paper by [1] also developed a closed-form formula for spread option prices under log-normal models. They first gave a lower bound to the spread option price and obtained their closed form formula by computing this lower bound. Numerical tests show that the formula in [1] performs better than the Kirk’s formula, see Section 7 of [1] for this.

The purpose of this paper is to give an alternative closed-form analytical formula for spread options under the log-normal models also. Our formula can be seen as a generalization of the formula in [1], as their formula can be obtained by plugging in some special parameter values into our closed-form formula. Numerical tests show that our formula performs better than the closed formula in [1] for a large range of model parameters.

The paper is organized as follows. In Section 2 we describe our model. In Section 3, we review the [1] and [7] formulas. In Section 4, we present two propositions, Proposition 4.1 and Proposition 4.2, that are useful for our discussions in the remaining sections of the paper. Especially, our Proposition 4.2 gives a numerical procedure which performs faster compared to the Monte Carlo methods. Section 5 presents the main results of this paper. In this section, we obtain a closed-form formula for spread option price (see Proposition 5.4) and show that the closed-form formula for spread options presented in [1] is just a special case of our formula. Section 6 presents numerical results, and the Appendix section presents proofs of our results.

2 The Problem

We consider a financial market with one risk-free asset with a constant interest rate rr and two stocks in a finite time horizon [0,T][0,T]. The price dynamics of the two stocks under the risk neutral measure are given by

dS1(t)=(rq1)S1(t)dt+σ1S1(t)dW1(t),dS2(t)=(rq2)S2(t)dt+σ2S2(t)dW2(t),\begin{split}dS_{1}(t)=(r-q_{1})S_{1}(t)dt+\sigma_{1}S_{1}(t)dW_{1}(t),\\ dS_{2}(t)=(r-q_{2})S_{2}(t)dt+\sigma_{2}S_{2}(t)dW_{2}(t),\end{split} (1)

where q1q_{1} and q2q_{2} are instantaneous dividend yields of the two stocks respectively, σ1\sigma_{1} and σ2\sigma_{2} are positive constants that represent the volatilities of these two stocks, and W1(t)W_{1}(t) and W2(t)W_{2}(t) are two Brownian motions with correlation ρ\rho under the risk-neutral measure QQ. For the details of risk-neutral measure and risk-neutral pricing see [9, 12, 14, 2] and the references therein.

We denote by S1(0)S_{1}(0) and S2(0)S_{2}(0) the stock price at time t=0t=0 respectively and we let F1=S1(0)e(rq1)TF_{1}=S_{1}(0)e^{(r-q_{1})T} and F2=S2(0)e(rq2)TF_{2}=S_{2}(0)e^{(r-q_{2})T} denote the forward prices. Then the stock prices at time TT can be written as

S1(T)=F1e12σ12T+σ1W1(T),S2(T)=F2e12σ22T+σ2W2(T).S_{1}(T)=F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}W_{1}(T)},\;S_{2}(T)=F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}W_{2}(T)}. (2)

The price of a spread option with strike price KK is given by

ΠT=ΠT(F1,σ1,F2,σ2,K,ρ)=erTE[(S1(T)S2(T)K)+],\Pi_{T}=\Pi_{T}(F_{1},\sigma_{1},F_{2},\sigma_{2},K,\rho)=e^{-rT}E[(S_{1}(T)-S_{2}(T)-K)^{+}], (3)

where the expectation is taken under the risk-neutral measure QQ. In (3) we used a similar notation as in [7] for the spread price. By using the parity relation discussed in [7], we have

ΠT(F1,σ1,F2,σ2,K,ρ)=ΠT(F2,σ2,F1,σ1,K,ρ)+erT(F1F2K).\Pi_{T}(F_{1},\sigma_{1},F_{2},\sigma_{2},K,\rho)=\Pi_{T}(F_{2},\sigma_{2},F_{1},\sigma_{1},-K,\rho)+e^{-rT}(F_{1}-F_{2}-K). (4)

This shows that a closed-form formula for (3) when K>0K>0 can be used to obtain a closed-form formula for (3) when K<0K<0 by using (4). Therefore in our discussions below we assume K>0K>0. We also drop the measure QQ when we take expectations. All the expectations below are understood under the risk-neutral measure QQ.

Denote by (Y,X)(Y,X) a two dimensional Gaussian random vector with the same distribution as 1T(W1(T),W2(T))\frac{1}{\sqrt{T}}(W_{1}(T),W_{2}(T)). Then both XX and YY are standard normal and Cov(X,Y)=ρCov(X,Y)=\rho. With these new notations, we can express the spread option price as

ΠT=erTE[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)+].\Pi_{T}=e^{-rT}E[(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K)^{+}]. (5)

It can be easily seen from (5) above that when F2=0F_{2}=0 the spread price ΠT\Pi_{T} is given by Black-Scholes formula [2]. When K=0K=0, the spread option becomes an exchange option and in this case we have closed form formula, see [16] for this. For general model parameters, there is no exact closed-form solution exits for ΠT\Pi_{T}. As mentioned in the introduction, a number of papers have presented closed form approximation formulas for the spread prices ΠT\Pi_{T} in the past.

Our goal in this paper is to obtain an alternative approximate closed-form formula for the above equation (5). To achieve this goal, we first express the spread price by the probabilities of three events and then approximate these three probabilities separately to obtain an approximate closed form formula for ΠT\Pi_{T}.

Throughout the paper we use the following notations. For any x=(x1,x2,x3,x4,x5,ρ)x=(x_{1},x_{2},x_{3},x_{4},x_{5},\rho) we write

ΠT(x)=:erTE[(x1e12x22T+x2TYx3e12x42T+x4TXx5)+].\Pi_{T}(x)=:e^{-rT}E[(x_{1}e^{-\frac{1}{2}x^{2}_{2}T+x_{2}\sqrt{T}Y}-x_{3}e^{-\frac{1}{2}x^{2}_{4}T+x_{4}\sqrt{T}X}-x_{5})^{+}]. (6)

We denote

θ=:(F1,σ1,F2,σ2,K,ρ),θ¯=:(F2,σ2,F1,σ1,K,ρ).\theta=:(F_{1},\sigma_{1},F_{2},\sigma_{2},K,\rho),\;\;\bar{\theta}=:(F_{2},\sigma_{2},F_{1},\sigma_{1},-K,\rho). (7)

With these notations the put-call parity relation (4) is written as

ΠT(θ)=ΠT(θ¯)+erT(F1F2K).\Pi_{T}(\theta)=\Pi_{T}(\bar{\theta})+e^{-rT}(F_{1}-F_{2}-K). (8)

We use φ\varphi to denote the probability density function of the standard normal random variable and by Φ\Phi we denote the cumulative distribution function of the standard normal random variable.

3 Carmona-Durrleman and Bjerksund-Stensland formulas

The main purpose of this section is to give a review for the approaches in the two noticeable papers [7] and [1] in pricing spread options under log-normal models. In our Proposition 3.1 below, we explain that the Carmona-Durrleman formula always gives higher spread option prices than the Bjerksund-Stensland formula. This, both of them being lower bounds to the true spread prices, shows that the Carmona-Durrleman formula is more accurate than the Bjerksund-Stensland formula.

First recall that we are interested in computing EG+EG^{+}, where

G=F1e12σ12T+σ1TYF2e12σ22T+σ2TXK,G=F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K, (9)

and Y,XY,X are standard normal random variables with Cov(Y,X)=ρCov(Y,X)=\rho, see (5) and the arguments preceding to it for the details of this. The paper [7] gives lower bounds for EG+EG^{+} by using the arguments in their Proposition 2. In their paper they write down YY , adapting to our own notation, as Y=Zsinϕ+XcosϕY=Z\sin\phi+X\cos\phi, where ZZ is a standard normal random variable that is independent from XX and ϕ\phi is such that cosϕ=ρ\cos\phi=\rho. They introduce a family of random variables of the form Yθ=Zsinθ+XcosθY_{\theta}=Z\sin\theta+X\cos\theta and calculate

Π¯TCD(θ,d)=:E[(S1(T)S2(T)K)I(Yθd)].\bar{\Pi}_{T}^{CD}(\theta,d)=:E[(S_{1}(T)-S_{2}(T)-K)I(Y_{\theta}\leq d)]. (10)

Then the spread option price ΠT\Pi_{T} in (5) is approximated by erTΠ^TCDe^{-rT}\hat{\Pi}_{T}^{CD} with

Π^TCD=:supθRsupdRΠ¯TCD(θ,d).\hat{\Pi}_{T}^{CD}=:\sup_{\theta\in R}\sup_{d\in R}\bar{\Pi}_{T}^{CD}(\theta,d). (11)

A simple application of Girsanov theorem (see the proof in Appendix B of [1]) gives

Π¯TCD(θ,d)=F1Φ(d+σ1Tcos(θ+ϕ))F2Φ(d+σ2Tcosθ)KΦ(d),\bar{\Pi}_{T}^{CD}(\theta,d)=F_{1}\Phi(d+\sigma_{1}\sqrt{T}\cos(\theta+\phi))-F_{2}\Phi(d+\sigma_{2}\sqrt{T}\cos\theta)-K\Phi(d),\\ (12)

where Φ()\Phi(\cdot) denotes the cumulative distribution function of a standard normal random variable. So the problem of finding (11) reduces to maximizing the function on the right hand side of (12) for θ\theta and dd. The first order conditions for maximization gives the following two equations

F1φ(d+σ1Tcos(θ+ϕ))F2φ(d+σ2Tcosθ)Kφ(d)=0,F1σ1Tsin(θ+ϕ)φ(d+σ1Tcos(θ+ϕ))F2σ2Tsinθφ(d+σ2Tcosθ)+Kφ(d)=0,\begin{split}&F_{1}\varphi(d+\sigma_{1}\sqrt{T}\cos(\theta+\phi))-F_{2}\varphi(d+\sigma_{2}\sqrt{T}\cos\theta)-K\varphi(d)=0,\\ &F_{1}\sigma_{1}\sqrt{T}\sin(\theta+\phi)\varphi(d+\sigma_{1}\sqrt{T}\cos(\theta+\phi))-F_{2}\sigma_{2}\sqrt{T}\sin\theta\varphi(d+\sigma_{2}\sqrt{T}\cos\theta)+K\varphi(d)=0,\\ \end{split} (13)

where φ\varphi denotes the probability density function of a standard normal random variable. These two equations can be solved for φ(d+σ1Tcos(θ+ϕ))\varphi(d+\sigma_{1}\sqrt{T}\cos(\theta+\phi)) and φ(d+σ2Tcosθ)\varphi(d+\sigma_{2}\sqrt{T}\cos\theta) as follows

φ(d+σ1Tcos(θ+ϕ))=σ2Tsinθ+1σ2Tsinθσ1Tsin(θ+ϕ)Kφ(d)F1,φ(d+σ2Tcosθ)=1+σ1Tsin(θ+ϕ)σ2Tsinθσ1Tsin(θ+ϕ)Kφ(d)F2.\begin{split}\varphi(d+\sigma_{1}\sqrt{T}\cos(\theta+\phi))&=\frac{\sigma_{2}\sqrt{T}\sin\theta+1}{\sigma_{2}\sqrt{T}\sin\theta-\sigma_{1}\sqrt{T}\sin(\theta+\phi)}\frac{K\varphi(d)}{F_{1}},\\ \varphi(d+\sigma_{2}\sqrt{T}\cos\theta)&=\frac{1+\sigma_{1}\sqrt{T}\sin(\theta+\phi)}{\sigma_{2}\sqrt{T}\sin\theta-\sigma_{1}\sqrt{T}\sin(\theta+\phi)}\frac{K\varphi(d)}{F_{2}}.\end{split} (14)

Denoting the solution of (14) by θ\theta^{\star} and dd^{\star}, the spread option price presented in [7] equals to

ΠTCD=erTF1Φ(d+σ1Tcos(θ+ϕ))erTF2Φ(d+σ2Tcosθ)erTKΦ(d).\Pi_{T}^{CD}=e^{-rT}F_{1}\Phi(d^{\star}+\sigma_{1}\sqrt{T}\cos(\theta^{\star}+\phi))-e^{-rT}F_{2}\Phi(d^{\star}+\sigma_{2}\sqrt{T}\cos\theta^{\star})-e^{-rT}K\Phi(d^{\star}). (15)

Note here that the equation (14) above is equivalent to the equation (12) in the paper [7].

The above approach provides a method in pricing spread options by constructing proper lower bounds to it and then optimizing these lower bounds. The Carmona-Durrleman formula gives very precise spread price. However, to obtain spread price one needs to solve the equations (14) for dd^{\star} and θ\theta^{\star} numerically. The paper [7] in fact reduced this problem further and one only needs to solve θ\theta^{\star} numerically from (13) in their paper and use the relation for dd^{\star} in Proposition 6 in their paper to obtain dd^{\star}. While this method reduces the problem a bit, one still needs numerical procedure to obtain the prices of spread options.

Another interesting procedure in pricing spread options were proposed in the recent paper [1]. The paper also introduced lower bounds for the spread call option prices as follows

ΠTBS(a,b)=erTE[(S1(T)S2(T)K)I(S1(T)a(S2(T))bE[(S2(T))b])],\Pi_{T}^{BS}(a,b)=e^{-rT}E\big{[}(S_{1}(T)-S_{2}(T)-K)I\big{(}S_{1}(T)\geq\frac{a(S_{2}(T))^{b}}{E[(S_{2}(T))^{b}]}\big{)}\big{]}, (16)

where aa and bb are two parameters that needs to be determined by optimizing the lower bounds ΠTBS(a,b)\Pi_{T}^{BS}(a,b). Their proposed approximate spread option price is given by

ΠTBS=supa,bΠTBS(a,b).\Pi_{T}^{BS}=\sup_{a,b}\Pi_{T}^{BS}(a,b). (17)

In their paper the authors set

a=F2+K,b=F2F2+K.a=F_{2}+K,\;\;\;b=\frac{F_{2}}{F_{2}+K}. (18)

By evaluating the equation (16), they obtained the following formula for the spread call option price

ΠTBS=erT[F1Φ(d¯1)F2Φ(d¯2)KΦ(d¯3)],\Pi_{T}^{BS}=e^{-rT}[F_{1}\Phi(\bar{d}_{1})-F_{2}\Phi(\bar{d}_{2})-K\Phi(\bar{d}_{3})], (19)

where

d¯1=ln(F1a)+(12σ12+12b2σ22bρσ1σ2)TσT,d¯2=ln(F1a)+(12σ12bσ22+12b2σ22+ρσ1σ2)TσT,d¯3=ln(F1a)+(12σ12+12b2σ22)TσT,\begin{split}\bar{d}_{1}&=\frac{\ln\left(\frac{F_{1}}{a}\right)+(\frac{1}{2}\sigma_{1}^{2}+\frac{1}{2}b^{2}\sigma_{2}^{2}-b\rho\sigma_{1}\sigma_{2})T}{\sigma\sqrt{T}},\\ \bar{d}_{2}&=\frac{\ln\left(\frac{F_{1}}{a}\right)+(-\frac{1}{2}\sigma_{1}^{2}-b\sigma_{2}^{2}+\frac{1}{2}b^{2}\sigma_{2}^{2}+\rho\sigma_{1}\sigma_{2})T}{\sigma\sqrt{T}},\\ \bar{d}_{3}&=\frac{\ln\left(\frac{F_{1}}{a}\right)+(-\frac{1}{2}\sigma_{1}^{2}+\frac{1}{2}b^{2}\sigma_{2}^{2})T}{\sigma\sqrt{T}},\\ \end{split} (20)

and

σ=σ12+b2σ222ρbσ1σ2.\sigma=\sqrt{\sigma_{1}^{2}+b^{2}\sigma_{2}^{2}-2\rho b\sigma_{1}\sigma_{2}}. (21)

Clearly, the Bjerksund-Stensland formula is simpler than the Carmona-Durrleman formula as one does not have to apply numerical procedure to obtain spread option price in the Bjerksund-Stensland formula. However, as mentioned earlier, the Carmona-Durrleman formula gives more precise spread option prices than the Bjerksund-Stensland formula.

To see this, we write the relation S1(T)a(S2(T))bE[(S2(T))b]S_{1}(T)\geq\frac{a(S_{2}(T))^{b}}{E[(S_{2}(T))^{b}]} in (16) by using YθY_{\theta} defined as in the paper [7]. We obtain that in fact the lower bounds ΠTBS(a,b)\Pi_{T}^{BS}(a,b) are a subset of the lower bounds ΠTCD(θ,d)\Pi_{T}^{CD}(\theta,d) proposed by [7]. We state this fact as a proposition and write down the proof in the appendix.

Proposition 3.1.

We have

ΠTBS(a,b)=erTΠ¯TCD(θ0,d0),\Pi_{T}^{BS}(a,b)=e^{-rT}\bar{\Pi}_{T}^{CD}(\theta_{0},d_{0}), (22)

where the parameters θ0\theta_{0} and d0d_{0} are given by the following relations

sinθ0=σ1sinϕσ12+σ22b22σ1σ2bcosϕ,cosθ0=σ2b+σ1cosϕσ12+σ22b22σ1σ2bcosϕ,\sin\theta_{0}=\frac{-\sigma_{1}\sin\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}},\;\;\cos\theta_{0}=\frac{-\sigma_{2}b+\sigma_{1}\cos\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}}, (23)

and

d0=lnF1a12σ12T+12b2σ22Tσ12+σ22b22σ1σ2bcosϕT.d_{0}=\frac{\ln\frac{F_{1}}{a}-\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}b^{2}\sigma_{2}^{2}T}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}\sqrt{T}}. (24)

This shows the following relation

ΠTBSΠTCD.\Pi_{T}^{BS}\leq\Pi_{T}^{CD}. (25)
Remark 3.2.

We remark that the relation (25) shows that the Carmona-Durrleman spread option price is more accurate than the Bjerksund-Stensland spread option price. The advantage of the Bjerksund-Stensland formula over the Carmona-Durrleman formula however is that it is in closed-form and one does not need numerical procedure to obtain the spread option price.

Remark 3.3.

We remark here that it was brought to our attention by the referees that the result of our Proposition 3.1 above was also discussed in Appendix F of [1]. Our current proposition expresses this relation (25) more explicitly only.

4 A numerical procedure

In this section, we first express the spread price (3) as a linear combination of the probabilities of three events, see Proposition 4.1 below. Such representation will help us to derive a closed form spread option valuation formula in the next section, see Proposition 5.4. We also write down a numerical approximation formula (see Proposition 4.2 below) of the spread price by using Simpson’s rule for Riemann integrals. At the end of this section, we compare our formula (26) with a related formula discussed in [18].

The following proposition expresses the price of the spread option by probabilities of three events under the risk-neutral measure. The proof of this result uses the Girsanov’s change of measure technique for log-normal models, see the proof in Appendix C.

Proposition 4.1.

The price of the spread option is given by

ΠT=erTF1CD1erTF2CD2erTKCD3,\Pi_{T}=e^{-rT}F_{1}C_{D}^{1}-e^{-rT}F_{2}C_{D}^{2}-e^{-rT}KC_{D}^{3}, (26)

where

CD1=Q(g1F¯1eσ1TYαF¯2eσ2TXK0),CD2=Q(αF¯1eσ1TYg2F¯2eσ2TXK0),CD3=Q(F¯1eσ1TYF¯2eσ2TXK0),\begin{split}C_{D}^{1}&=Q\left(g_{1}\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}X}-K\geq 0\right),\\ C_{D}^{2}&=Q\left(\alpha\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}X}-K\geq 0\right),\\ C_{D}^{3}&=Q\left(\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-\bar{F}_{2}e^{\sigma_{2}\sqrt{T}X}-K\geq 0\right),\\ \end{split}

and α=eρσ1σ2T\alpha=e^{\rho\sigma_{1}\sigma_{2}T}, g1=eσ12Tg_{1}=e^{\sigma_{1}^{2}T}, g2=eσ22Tg_{2}=e^{\sigma_{2}^{2}T}, F¯1=F1e12σ12T\bar{F}_{1}=F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T}, F¯2=F2e12σ22T\bar{F}_{2}=F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}.

We remark that CD1C_{D}^{1} above represents the probability (under the risk neutral measure QQ) that a call option with strike price KK and maturity TT on the spread between g1g_{1} stocks with price dynamics S1(t)S_{1}(t) and α\alpha stocks with price dynamics S2(t)S_{2}(t) is exercised (ends up in the money). CD2C_{D}^{2} can be interpreted as the exercise probability of a call on the spread between α\alpha stocks with price dynamics S1(t)S_{1}(t) and g2g_{2} stocks with price dynamics S2(t)S_{2}(t). CD3C_{D}^{3} can be interpreted as the exercise probability of the call option with strike price KK of the spread S1(T)S2(T)S_{1}(T)-S_{2}(T).

The formula (26) has a simple form when K=0K=0. In fact, when K=0K=0, the formula (26) reduces to Margrabe’s formula [16]: ΠTM=erTF1Φ(ln(g1F¯1αF¯2)Tσ12+σ222σ2σ2ρ)erTF2Φ(ln(αF¯1g2F¯2)Tσ12+σ222σ2σ2ρ)\Pi_{T}^{M}=e^{-rT}F_{1}\Phi\left(\frac{\ln\left(\frac{g_{1}\bar{F}_{1}}{\alpha\bar{F}_{2}}\right)}{\sqrt{T}\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-2\sigma_{2}\sigma_{2}\rho}}\right)-e^{-rT}F_{2}\Phi\left(\frac{\ln\left(\frac{\alpha\bar{F}_{1}}{g_{2}\bar{F}_{2}}\right)}{\sqrt{T}\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}-2\sigma_{2}\sigma_{2}\rho}}\right)

Next, in Proposition 4.2 below, we write down a numerical procedure that approximates the spread price. Before we state our next result, we first fix some notations. Being a jointly Gaussian random variable with Cov(Y,X)=ρCov(Y,X)=\rho, (Y,X)(Y,X) has the property that XN(0,1)X\sim N(0,1) and Y|X=aN(aρ,1ρ2)Y|X=a\sim N(a\rho,1-\rho^{2}). We use this fact to write down an approximate formula for the spread call option price below. Let b>0b>0 be a number that the probability of the event X[b,b]cX\in[-b,b]^{c} is very small. Here the notation cc represents the complement of an event. We divide the interval [b,b][-b,b] into small equally spaced NN intervals for a large integer number N>0N>0. We denote ai=b(2iN1)a_{i}=b(\frac{2i}{N}-1) for i=1,2,,Ni=1,2,\cdots,N. With these notations fixed, we state our next result

Proposition 4.2.

For K>0K>0, let

G(a)=:F1Φ(d1(a))F2Φ(d2(a))KΦ(d3(a)),G(a)=:F_{1}\Phi(d^{1}(a))-F_{2}\Phi(d^{2}(a))-K\Phi(d^{3}(a)), (27)

where

d1(a)=ln(αF¯2g1F¯1eσ2Ta+Kg1F¯1)+σ1ρTaσ1T1ρ2,d2(a)=ln(g2F¯2αF¯1eσ2Ta+KαF¯1)+σ1ρTaσ1T1ρ2,d3(a)=ln(F¯2F¯1eσ2Ta+KF¯1)+σ1ρTaσ1T1ρ2,\begin{split}d^{1}(a)&=\frac{-\ln\left(\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}a}+\frac{K}{g_{1}\bar{F}_{1}}\right)+\sigma_{1}\rho\sqrt{T}a}{\sigma_{1}\sqrt{T}\sqrt{1-\rho^{2}}},\\ d^{2}(a)&=\frac{-\ln\left(\frac{g_{2}\bar{F}_{2}}{\alpha\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}a}+\frac{K}{\alpha\bar{F}_{1}}\right)+\sigma_{1}\rho\sqrt{T}a}{\sigma_{1}\sqrt{T}\sqrt{1-\rho^{2}}},\\ d^{3}(a)&=\frac{-\ln\left(\frac{\bar{F}_{2}}{\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}a}+\frac{K}{\bar{F}_{1}}\right)+\sigma_{1}\rho\sqrt{T}a}{\sigma_{1}\sqrt{T}\sqrt{1-\rho^{2}}},\\ \end{split} (28)

with F¯1\bar{F}_{1}, F¯2\bar{F}_{2}, α,g1,g2,\alpha,g_{1},g_{2}, given by Proposition 4.1 above. Then we have ΠT=erTΠ¯T\Pi_{T}=e^{-rT}\bar{\Pi}_{T} with

Π¯T=+G(a)𝑑Φ(a)=+G(a)φ(a)𝑑a.\bar{\Pi}_{T}=\int_{-\infty}^{+\infty}G(a)d\Phi(a)=\int_{-\infty}^{+\infty}G(a)\varphi(a)da. (29)

Denoting f(a)=:G(a)φ(a)f(a)=:G(a)\varphi(a), the Π¯T\bar{\Pi}_{T} in (29) can be approximated by Π¯Td(N,b)\bar{\Pi}_{T}^{d}(N,b) given by

Π¯Td(N,b)=:2b3N[f(b)+f(b)]+8b3Ni=1N11+(1)i2f(ai)+4b3Ni=1N11+(1)i+12f(ai),\bar{\Pi}_{T}^{d}(N,b)=:\frac{2b}{3N}[f(b)+f(-b)]+\frac{8b}{3N}\sum_{i=1}^{N-1}\frac{1+(-1)^{i}}{2}f(a_{i})+\frac{4b}{3N}\sum_{i=1}^{N-1}\frac{1+(-1)^{i+1}}{2}f(a_{i}), (30)

for properly chosen positive integer NN and positive number bb, where for each i=0,1,,Ni=0,1,\cdots,N, ai=b(2iN1)a_{i}=b(\frac{2i}{N}-1).

Remark 4.3.

In the above Proposition 4.2 we assume K>0K>0. If K<0K<0, we use (4). When K=0K=0 the spread price ΠT\Pi_{T} is given by Margrabe’s formula as discussed earlier.

Remark 4.4.

The approximation (30) is obtained by applying Simpson’s rule for the Riemann integral bbG(a)φ(a)𝑑a\int_{-b}^{b}G(a)\varphi(a)da. By using the well known error bound for Simpson’s rule, we obtain

|Π¯TΠ¯Td(N,b)|M(2b)5180N4,|\bar{\Pi}_{T}-\bar{\Pi}_{T}^{d}(N,b)|\leq\frac{M(2b)^{5}}{180N^{4}}, (31)

where MM is the maximum value of f(4)(a)f^{(4)}(a) (the fourth order derivative of f(a)=G(a)φ(a)f(a)=G(a)\varphi(a)) on [b,b][-b,b]. Clearly, the speed and precision of the approximation (30) depends on the model parameters. The MM in (31) depends on the model parameters also and it controls the error bound. Obtaining an explicit expression for MM is not trivial. However our extensive numerical tests show that erTΠ¯Td(500,5)e^{-rT}\bar{\Pi}_{T}^{d}(500,5) gives pretty good approximation for spread option prices for most of the model parameters.

Remark 4.5.

One can also approximate the Riemann-Stieltjes integral in (29) as

Π¯TRS(N,b)=:i=0N1[G(ai+1)+G(ai)2][Φ(ai+1)Φ(ai)],\bar{\Pi}_{T}^{RS}(N,b)=:\sum_{i=0}^{N-1}[\frac{G(a_{i+1})+G(a_{i})}{2}][\Phi(a_{i+1})-\Phi(a_{i})], (32)

for properly chosen positive integer NN and positive number bb, where for each i=0,1,,Ni=0,1,\cdots,N, ai=b(2iN1)a_{i}=b(\frac{2i}{N}-1), and use Π¯TRS(N,b)\bar{\Pi}_{T}^{RS}(N,b) as an approximation formula for the spread price. This approximation (32) is trapezoidal quadrature rule for Riemann-Stieltjes integral, see [11] for example. By Theorem 8 of [11], we have the following error bound

|Π¯TΠ¯TRS(N,b)|HbN[Φ(b)Φ(b)],|\bar{\Pi}_{T}-\bar{\Pi}_{T}^{RS}(N,b)|\leq\frac{Hb}{N}[\Phi(b)-\Phi(-b)],

where H=maxa[b,b]|G(a)|H=max_{a\in[-b,b]}|G^{\prime}(a)|. It can be easily checked that when K>0K>0 we have

maxxR|G(x)|12π(1ρ2)σ1(F1+F2+K)(σ2+σ1ρ),max_{x\in R}|G^{\prime}(x)|\leq\frac{1}{\sqrt{2\pi(1-\rho^{2})}\sigma_{1}}(F_{1}+F_{2}+K)(\sigma_{2}+\sigma_{1}\rho), (33)

and when K<0K<0, by put-call parity, we have

maxxR|G(x)|12π(1ρ2)σ2(F1+F2K)(σ1+σ2ρ).max_{x\in R}|G^{\prime}(x)|\leq\frac{1}{\sqrt{2\pi(1-\rho^{2})}\sigma_{2}}(F_{1}+F_{2}-K)(\sigma_{1}+\sigma_{2}\rho). (34)

Our numerical tests show, however, that (32) does not perform as good as the approximation (30) obtained by the Simpson’s rule.

Another relevant approach to our Proposition 4.2 above is given in the paper [18]. Here we review this approach. Denoting by EZE_{Z} the expectation with respect to a random variable ZZ, the paper [18] writes the spread price ΠT\Pi_{T} in (5) as

ΠTR=erTEX[EY[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)+/X]].\Pi_{T}^{R}=e^{-rT}E_{X}\Big{[}E_{Y}\big{[}(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K)^{+}/X\big{]}\Big{]}. (35)

The inner expectation EY[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)+/X]E_{Y}[\big{(}F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K)^{+}/X\big{]} is evaluated first and then the outer expectation EXE_{X} is found. This approach leads to an exact formula for the spread price ΠT\Pi_{T} as in [18]. The expression (35) can be simplified to (36) (adapted to our notation) in the footnote below. The derivation will be given in Appendix C.

The expressions in (35) can be simplified to: ΠR=erTE[F~(X)Φ(d~1(X))]erTE[K~(X)Φ(d~2(X))],\Pi^{R}=e^{-rT}E[\tilde{F}(X)\Phi(\tilde{d}_{1}(X))]-e^{-rT}E[\tilde{K}(X)\Phi(\tilde{d}_{2}(X))], (36) where d~1(x)=1/σ~T(ln(F~(x)/K~(x))+σ~2T/2),d~2(x)=1/σ~T(ln(F~(x)/K~(x))σ~2T/2),\tilde{d}_{1}(x)=1/\tilde{\sigma}\sqrt{T}\left(\ln\left(\tilde{F}(x)/\tilde{K}(x)\right)+\tilde{\sigma}^{2}T/2\right),\;\tilde{d}_{2}(x)=1/\tilde{\sigma}\sqrt{T}\left(\ln\left(\tilde{F}(x)/\tilde{K}(x)\right)-\tilde{\sigma}^{2}T/2\right), and F~(x)=F1e12σ12ρ2T+σ1Tρx,K~(x)=F2e12σ22T+σ2Tx+K,σ~=σ11ρ2.\tilde{F}(x)=F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho x},\;\tilde{K}(x)=F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}x}+K,\;\tilde{\sigma}=\sigma_{1}\sqrt{1-\rho^{2}}.

The formula (36) can be evaluated by using the above mentioned trapezoidal rule for Riemann-Stieltjes integrals or by using other Gaussian quadrature methods.

Remark 4.6.

We remark that the relation (26) can also be derived by using (36). The proof of this is given in the Appendix C. This shows, in particular, that (26) can be obtained by conditioning as it was done in [18] and without relying on Girsanov’s change of measure theorem.

5 Generalization of the Bjerksund-Stensland formula

As mentioned earlier, the [1] formula presented in Section 3 above performs highly accurately. In this section, we study the Bjerksund and Stensland formula further and give an alternative derivation for it. Our new approach in deriving the Bjerksund and Stensland formula in this section leads us to a more general formula than the Bjerksund and Stensland formula as our Corollary 5.5 below shows.

As pointed out in Section 4 above, the [7] and [1] spread option prices were obtained by maximizing lower bounds for the spread prices. In this section, instead of constructing lower bounds for spread call option prices, we directly approximate the probabilities CD1,CD2,CD3C_{D}^{1},C_{D}^{2},C_{D}^{3} in the Proposition 4.1 above.

Before presenting our main result of this paper, we first define the following three curves in the xx-yy coordinate system:

𝒞1:g1F¯1eσ1TyαF¯2eσ2TxK=0,𝒞2:αF¯1eσ1Tyg2F¯2eσ2TxK=0,𝒞3:F¯1eσ1TyF¯2eσ2TxK=0.\begin{split}\mathcal{C}_{1}:&\;\;g_{1}\bar{F}_{1}e^{\sigma_{1}\sqrt{T}y}-\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}-K=0,\\ \mathcal{C}_{2}:&\;\;\alpha\bar{F}_{1}e^{\sigma_{1}\sqrt{T}y}-g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}-K=0,\\ \mathcal{C}_{3}:&\;\;\bar{F}_{1}e^{\sigma_{1}\sqrt{T}y}-\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}-K=0.\\ \end{split} (37)

We denote by 𝒞1+,𝒞2+,𝒞3+\mathcal{C}_{1}^{+},\mathcal{C}_{2}^{+},\mathcal{C}_{3}^{+} the domains that lie above the three curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} in the xx-yy coordinate system respectively. Namely, the domain 𝒞1+\mathcal{C}_{1}^{+}, for example, is given by all (x,y)(x,y) such that

g1F¯1eσ1TyαF¯2eσ2TxK0,g_{1}\bar{F}_{1}e^{\sigma_{1}\sqrt{T}y}-\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}-K\geq 0, (38)

and the other two domains 𝒞2+\mathcal{C}_{2}^{+} and 𝒞3+\mathcal{C}_{3}^{+} are defined similarly.

Our approach in this section is to approximate the following probabilities

Q((X,Y)𝒞i+)Q((X,Y)\in\mathcal{C}_{i}^{+}) (39)

in closed form for each i=1,2,3i=1,2,3.

The difficulty in obtaining closed form approximations for (39) above is that the boundaries 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} of the domains 𝒞1+,𝒞2+,𝒞3+\mathcal{C}_{1}^{+},\mathcal{C}_{2}^{+},\mathcal{C}_{3}^{+} are not linear functions. Therefore, we wish to find linear functions y=κix+δiy=\kappa_{i}x+\delta_{i} with appropriate slope κi\kappa_{i} and intersection δi\delta_{i} for each i=1,2,3,i=1,2,3, so that the following approximations hold

Q((x,y)𝒞i+)Q(YκiX+δi),i=1,2,3.Q((x,y)\in\mathcal{C}_{i}^{+})\approx Q(Y\geq\kappa_{i}X+\delta_{i}),i=1,2,3. (40)

If we can achieve (40), then the latter probabilities in (40) can be written in closed-form by using the following lemma

Lemma 5.1.

For any two standard normal random variables YY and XX with Cov(Y,X)=ρCov(Y,X)=\rho, and any three real numbers m,n,,m,n,\ell, we have

Q(mYnX)=Φ(m2+n22ρmn)Q(mY-nX\geq\ell)=\Phi(\frac{-\ell}{\sqrt{m^{2}+n^{2}-2\rho mn}}) (41)

The application of Lemma 5.1 above leads us to

Q((x,y)𝒞i+)Q(YκiX+δi)=Φ(δi1+κi22ρκi),i=1,2,3,Q((x,y)\in\mathcal{C}_{i}^{+})\approx Q(Y\geq\kappa_{i}X+\delta_{i})=\Phi\big{(}\frac{-\delta_{i}}{\sqrt{1+\kappa_{i}^{2}-2\rho\kappa_{i}}}\big{)},i=1,2,3, (42)

and this will give us to a closed-form formula for the spread option price due to (26).

To construct lines y=κix+δiy=\kappa_{i}x+\delta_{i} that makes the above approximation as precise as possible, we fix some point (x0i,y0i)(x_{0}^{i},y_{0}^{i}) on the curve 𝒞i\mathcal{C}_{i} and some slope κi\kappa_{i} for each i=1,2,3,i=1,2,3, and use the following lines

y=κi(x0)x+δi(x0),δi(x0)=y0κi(x0)x0,i=1,2,3.y=\kappa_{i}(x_{0})x+\delta_{i}(x_{0}),\;\;\delta_{i}(x_{0})=y_{0}-\kappa_{i}(x_{0})x_{0},\;i=1,2,3. (43)

In the next lemma, we state some properties of the curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} above. The property (a) of this lemma is useful for our discussions in the remaining of this paper.

Lemma 5.2.

The three curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} have the following properties

  1. (a)

    For all the three curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} we have

    limx+yx=σ2σ1.\lim_{x\rightarrow+\infty}\frac{y}{x}=\frac{\sigma_{2}}{\sigma_{1}}.
  2. (b)

    When xx\rightarrow-\infty, the limit limxy\lim_{x\rightarrow-\infty}y exists and

    limxy={1σ1Tln(KF¯1)σ1Tfor 𝒞1,1σ1Tln(KF¯1)ρσ2Tfor 𝒞2,1σ1Tln(KF¯1)for 𝒞3.\lim_{x\rightarrow-\infty}y=\left\{\begin{array}[]{ll}\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\bar{F}_{1}}\right)-\sigma_{1}\sqrt{T}&\mbox{for $\mathcal{C}_{1}$},\\ \frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\bar{F}_{1}}\right)-\rho\sigma_{2}\sqrt{T}&\mbox{for $\mathcal{C}_{2}$},\\ \frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\bar{F}_{1}}\right)&\mbox{for $\mathcal{C}_{3}$}.\\ \end{array}\right.

Part (a) of the above Lemma 5.2 shows that the slopes of the asymptotic lines of all the three curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} when x+x\rightarrow+\infty is the same and is given by σ2σ1\frac{\sigma_{2}}{\sigma_{1}}. Part (b) gives lower bounds for each curves when xx\rightarrow-\infty.

5.1 Alternative derivation of the Bjerksund-Stensland formula

The purpose of this subsection is to derive the Bjerksund and Stensland spread option formula presented in [1] by using the arguments discussed in (40), (42), (43) above. In the next subsection, we apply a similar approach and obtain a generalization of the [1] spread option formula.

We consider two points (x0i,y0i)(x_{0}^{i},y_{0}^{i}) and (xi,yi)(x_{\ell}^{i},y_{\ell}^{i}) on the curve 𝒞i\mathcal{C}^{i} for each i=1,2,3i=1,2,3. The equation of the line that passes through these two points are given by

yi=yiy0ixix0ixi+y0iyiy0ixix0ix0i,i=1,2,3.y^{i}=\frac{y_{\ell}^{i}-y_{0}^{i}}{x_{\ell}^{i}-x_{0}^{i}}x^{i}+y_{0}^{i}-\frac{y_{\ell}^{i}-y_{0}^{i}}{x_{\ell}^{i}-x_{0}^{i}}x_{0}^{i},i=1,2,3.

From part (a) of Lemma 5.2, we see that when xix_{\ell}^{i} goes to ++\infty, yiy0ixix0i\frac{y_{\ell}^{i}-y_{0}^{i}}{x_{\ell}^{i}-x_{0}^{i}} monotonically increases to σ2σ1\frac{\sigma_{2}}{\sigma_{1}}. So we introduce a parameter 0<b10<b\leq 1 and define the following lines

i:yi=bσ2σ1xi+y0ibσ2σ1x0i,i=1,2,3.\ell^{i}:y^{i}=b\frac{\sigma_{2}}{\sigma_{1}}x^{i}+y_{0}^{i}-b\frac{\sigma_{2}}{\sigma_{1}}x_{0}^{i},i=1,2,3. (44)

Our goal is to use these lines i\ell_{i} in (44) to obtain a closed-form formula for the spread option. For this we need to discuss how to choose appropriate points (x0i,y0i)(x_{0}^{i},y_{0}^{i}). Since (x0i,y0i)(x_{0}^{i},y_{0}^{i}) lies on the curve 𝒞i\mathcal{C}_{i} for each i=1,2,3i=1,2,3, we plug in these points to the equations of the three curves and obtain the expressions for y0i,i=1,2,3,y_{0}^{i},i=1,2,3,

y01=1σ1Tln(F2eρσ1σ2T+(σ2Tx0112σ22T)+KF1)σ1T2,y02=1σ1Tln(F2eσ22T+(σ2Tx0212σ22T)+KF1)+(12σ1ρσ2)T,y03=1σ1Tln(F2eσ2Tx0312σ22T+KF1)+σ1T2.\begin{split}y_{0}^{1}&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{F_{2}e^{\rho\sigma_{1}\sigma_{2}T+(\sigma_{2}\sqrt{T}x_{0}^{1}-\frac{1}{2}\sigma_{2}^{2}T)}+K}{F_{1}}\right)-\frac{\sigma_{1}\sqrt{T}}{2},\\ y_{0}^{2}&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{F_{2}e^{\sigma_{2}^{2}T+(\sigma_{2}\sqrt{T}x_{0}^{2}-\frac{1}{2}\sigma_{2}^{2}T)}+K}{F_{1}}\right)+(\frac{1}{2}\sigma_{1}-\rho\sigma_{2})\sqrt{T},\\ y_{0}^{3}&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{F_{2}e^{\sigma_{2}\sqrt{T}x_{0}^{3}-\frac{1}{2}\sigma_{2}^{2}T}+K}{F_{1}}\right)+\frac{\sigma_{1}\sqrt{T}}{2}.\\ \end{split} (45)

To simplify the expressions for y0i,i=1,2,3,y_{0}^{i},i=1,2,3, above we apply the following approximations

F2eρσ1σ2T+(σ2Tx0112σ22T)+Ka1eρσ1q1T+q1Tx0112q12T,F2eσ22T+(σ2Tx0212σ22T)+Ka2eq2σ2T+q2Tx0212q22T,F2eσ2Tx0312σ22T+Ka3eq3Tx0312q32T,\begin{split}F_{2}e^{\rho\sigma_{1}\sigma_{2}T+(\sigma_{2}\sqrt{T}x_{0}^{1}-\frac{1}{2}\sigma_{2}^{2}T)}+K&\approx a_{1}e^{\rho\sigma_{1}q_{1}T+q_{1}\sqrt{T}x_{0}^{1}-\frac{1}{2}q^{2}_{1}T},\\ F_{2}e^{\sigma_{2}^{2}T+(\sigma_{2}\sqrt{T}x_{0}^{2}-\frac{1}{2}\sigma_{2}^{2}T)}+K&\approx a_{2}e^{q_{2}\sigma_{2}T+q_{2}\sqrt{T}x_{0}^{2}-\frac{1}{2}q^{2}_{2}T},\\ F_{2}e^{\sigma_{2}\sqrt{T}x_{0}^{3}-\frac{1}{2}\sigma_{2}^{2}T}+K&\approx a_{3}e^{q_{3}\sqrt{T}x_{0}^{3}-\frac{1}{2}q^{2}_{3}T},\\ \end{split} (46)

for some appropriate a1,a2,a3a_{1},a_{2},a_{3} and q1,q2,q3q_{1},q_{2},q_{3}. We remark that the approximations (46) are similar to Kirk approximation that was discussed in Appendix A. For example, one can let

a1=a2=a3=F2+K,q1=q2=q3=F2F2+Kσ2a_{1}=a_{2}=a_{3}=F_{2}+K,q_{1}=q_{2}=q_{3}=\frac{F_{2}}{F_{2}+K}\cdot\sigma_{2} (47)

as in Kirk approximation.

We would like to implement the approximations (46) to (45) and obtain approximated values for these points y01,y02,y03y_{0}^{1},y_{0}^{2},y_{0}^{3}. To this end, we define the following functions

z01(q,a,h)=1σ1Tln(aeρσ1qT+qTh12q2TF1)σ1T2,z02(q,a,h)=1σ1Tln(aeqσ2T+qTh12q2TF1)+(12σ1ρσ2)T,z03(q,a,h)=1σ1Tln(aeqTh12q2TF1)+σ1T2.\begin{split}z_{0}^{1}(q,a,h)&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{ae^{\rho\sigma_{1}qT+q\sqrt{T}h-\frac{1}{2}q^{2}T}}{F_{1}}\right)-\frac{\sigma_{1}\sqrt{T}}{2},\\ z_{0}^{2}(q,a,h)&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{ae^{q\sigma_{2}T+q\sqrt{T}h-\frac{1}{2}q^{2}T}}{F_{1}}\right)+(\frac{1}{2}\sigma_{1}-\rho\sigma_{2})\sqrt{T},\\ z_{0}^{3}(q,a,h)&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{ae^{q\sqrt{T}h-\frac{1}{2}q^{2}T}}{F_{1}}\right)+\frac{\sigma_{1}\sqrt{T}}{2}.\\ \end{split} (48)

Then with (46) and (47), we have

y01z01(F2F2+Kσ2,F2+K,x01),y02z02(F2F2+Kσ2,F2+K,x02),y03z03(F2F2+Kσ2,F2+K,x03).\begin{split}y_{0}^{1}&\approx z_{0}^{1}(\frac{F_{2}}{F_{2}+K}\cdot\sigma_{2},F_{2}+K,x_{0}^{1}),\;\;\;y_{0}^{2}\approx z_{0}^{2}(\frac{F_{2}}{F_{2}+K}\cdot\sigma_{2},F_{2}+K,x_{0}^{2}),\\ y_{0}^{3}&\approx z_{0}^{3}(\frac{F_{2}}{F_{2}+K}\cdot\sigma_{2},F_{2}+K,x_{0}^{3}).\end{split} (49)

Now, we are ready to state our next result. The following proposition shows that the spread option price ΠBS\Pi^{BS} presented in [1] can also be obtained by using the ideas in relations (40) and (42) above.

Proposition 5.3.

We have

ΠBS=erTF1Φ(δ11+κ22ρκ)erTF2Φ(δ21+κ22ρκ)erTKΦ(δ31+κ22ρκ),\begin{split}\Pi^{BS}&=e^{-rT}F_{1}\Phi(\frac{-\delta_{1}}{\sqrt{1+\kappa^{2}-2\rho\kappa}})-e^{-rT}F_{2}\Phi(\frac{-\delta_{2}}{\sqrt{1+\kappa^{2}-2\rho\kappa}})\\ &-e^{-rT}K\Phi(\frac{-\delta_{3}}{\sqrt{1+\kappa^{2}-2\rho\kappa}}),\\ \end{split} (50)

with κ=bσ2σ1\kappa=b\frac{\sigma_{2}}{\sigma_{1}} and δi=z0i(bσ2,a,x0i)bσ2σ1x0i,i=1,2,3\delta_{i}=z_{0}^{i}(b\sigma_{2},a,x_{0}^{i})-b\frac{\sigma_{2}}{\sigma_{1}}x_{0}^{i},i=1,2,3, where z0iz_{0}^{i} are given as in (48) and x0ix_{0}^{i} are any points.

We remark that the above relation (50) is obtained by using (42) and the line equations given as in (43) with the points (x0i,y0i)(x_{0}^{i},y_{0}^{i}) given by (x0i,z0i(bσ2σ1,a))(x_{0}^{i},z_{0}^{i}(b\frac{\sigma_{2}}{\sigma_{1}},a)) and these latter points do not have to lie on the curves 𝒞i\mathcal{C}_{i} for each i=1,2,3i=1,2,3. The proof of this proposition will be given in the appendix. It is also worthy to note that in the above proposition the choices of x0ix_{0}^{i} are irrelevant. It will be shown in the proof that, this is due to the choice of the approximations (48).

5.2 Extension of the Bjerksund-Stensland formula

From the relations (40), (42), and (43) above we see that appropriate choices of the slopes κi\kappa_{i} and the points (x0i,y0i)(x_{0}^{i},y_{0}^{i}) on the corresponding curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} are important for the spread option pricing formula. From the above subsection, we see that slopes of the form κi=bσ2σ1\kappa_{i}=b\frac{\sigma_{2}}{\sigma_{1}} and the points of the form (x0i,z0i(q,a))(x_{0}^{i},z_{0}^{i}(q,a)) give us simple formula for the spread prices. In this section, we elaborate on the choice of the parameter bb in our Proposition 5.3 above further. Our analysis will enable us to give a closed-form formula for the spread option price which is more general than the Bjerksund and Stensland spread option formula.

To this end, consider points (xi,yi)(x_{\ell}^{i},y_{\ell}^{i}) on the curves 𝒞i,i=1,2,3,\mathcal{C}_{i},i=1,2,3, respectively. By solving for yiy_{\ell}^{i} for each i=1,2,3i=1,2,3 we obtain

y1=1σ1Tln(αF¯2eσ2Tx1+Kg1F¯1),y2=1σ1Tln(g2F¯2eσ2Tx2+KαF¯1),y3=1σ1Tln(F¯2eσ2Tx3+KF¯1).\begin{split}y_{\ell}^{1}&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{1}}+K}{g_{1}\bar{F}_{1}}\right),\\ y_{\ell}^{2}&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{2}}+K}{\alpha\bar{F}_{1}}\right),\\ y_{\ell}^{3}&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{3}}+K}{\bar{F}_{1}}\right).\end{split} (51)

From Lemma (5.2) and Hopital’s rule we obtain

limx1y1x1=limx1(y1)=σ2σ1limx1αF¯2eσ2Tx1αF¯2eσ2Tx1+K,limx2y2x2=limx2(y2)=σ2σ1limx2g2F¯2eσ2Tx2g2F¯2eσ2Tx2+K,limx3y3x3=limx3(y3)=σ2σ1limx3F¯2eσ2Tx3F¯2eσ2Tx3+K.\begin{split}\lim_{x_{\ell}^{1}\rightarrow\infty}\frac{y_{\ell}^{1}}{x_{\ell}^{1}}&=\lim_{x_{\ell}^{1}\rightarrow\infty}(y_{\ell}^{1})^{\prime}=\frac{\sigma_{2}}{\sigma_{1}}\lim_{x_{\ell}^{1}\rightarrow\infty}\frac{\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{1}}}{\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{1}}+K},\\ \lim_{x_{\ell}^{2}\rightarrow\infty}\frac{y_{\ell}^{2}}{x_{\ell}^{2}}&=\lim_{x_{\ell}^{2}\rightarrow\infty}(y_{\ell}^{2})^{\prime}=\frac{\sigma_{2}}{\sigma_{1}}\lim_{x_{\ell}^{2}\rightarrow\infty}\frac{g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{2}}}{g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{2}}+K},\\ \lim_{x_{\ell}^{3}\rightarrow\infty}\frac{y_{\ell}^{3}}{x_{\ell}^{3}}&=\lim_{x_{\ell}^{3}\rightarrow\infty}(y_{\ell}^{3})^{\prime}=\frac{\sigma_{2}}{\sigma_{1}}\lim_{x_{\ell}^{3}\rightarrow\infty}\frac{\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{3}}}{\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x_{\ell}^{3}}+K}.\\ \end{split} (52)

Inspired by these relations, We define the following three functions

b1(x)=αF¯2eσ2TxαF¯2eσ2Tx+K,b2(x)=g2F¯2eσ2Txg2F¯2eσ2Tx+K,b3(x)=F¯2eσ2TxF¯2eσ2Tx+K.b_{1}(x)=\frac{\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}}{\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}+K},\;\;b_{2}(x)=\frac{g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}}{g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}+K},\;\;b_{3}(x)=\frac{\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}}{\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}+K}. (53)

We observe that, these functions are strictly increasing on the real line and takes values in the interval (0,1)(0,1).

We remark that from (52) we see that the slope of the asymptotic line of the curve 𝒞i\mathcal{C}_{i} is given by the limit of σ2σ1bi(x)\frac{\sigma_{2}}{\sigma_{1}}b_{i}(x) when x+x\rightarrow+\infty for each i=1,2,3i=1,2,3. We would like to replace the parameter bb in Proposition 5.2 with the above b1,b2,b3b_{1},b_{2},b_{3} in (53) and obtain a more general closed-form spread option price formula. We also have to specify a1,a2,a3a_{1},a_{2},a_{3}. We impose the constraints a1(x)b1(x)=F2,a2(x)b2(x)=F2,a_{1}(x)b_{1}(x)=F_{2},a_{2}(x)b_{2}(x)=F_{2}, and a3(x)b3(x)=F2a_{3}(x)b_{3}(x)=F_{2}, and obtain

a1(x)=F2+Keσ2Txρσ1σ2T+12σ22T,a2(x)=F2+Keσ2Tx12σ22T,a3(x)=F2+Keσ2Tx+12σ22T.\begin{split}a_{1}(x)&=F_{2}+Ke^{-\sigma_{2}\sqrt{T}x-\rho\sigma_{1}\sigma_{2}T+\frac{1}{2}\sigma_{2}^{2}T},a_{2}(x)=F_{2}+Ke^{-\sigma_{2}\sqrt{T}x-\frac{1}{2}\sigma_{2}^{2}T},\\ a_{3}(x)&=F_{2}+Ke^{-\sigma_{2}\sqrt{T}x+\frac{1}{2}\sigma_{2}^{2}T}.\end{split} (54)

Now, we are ready to state the main result of this paper.

Proposition 5.4.

When K>0K>0 the price of the spread option can be approximated by

ΠT(λ,μ,γ;θ)=:erTF1Φ(δ1(λ)1+κ12(λ)2ρκ1(λ))erTF2Φ(δ2(μ)1+κ22(μ)2ρκ2(μ))erTKΦ(δ3(γ)1+κ32(γ))2ρκ3(γ)),\begin{split}\Pi_{T}(&\lambda,\mu,\gamma;\theta)=:e^{-rT}F_{1}\Phi\big{(}\frac{-\delta_{1}(\lambda)}{\sqrt{1+\kappa_{1}^{2}(\lambda)-2\rho\kappa_{1}(\lambda)}}\big{)}\\ &-e^{-rT}F_{2}\Phi\big{(}\frac{-\delta_{2}(\mu)}{\sqrt{1+\kappa_{2}^{2}(\mu)-2\rho\kappa_{2}(\mu)}}\big{)}-e^{-rT}K\Phi\big{(}\frac{-\delta_{3}(\gamma)}{\sqrt{1+\kappa_{3}^{2}(\gamma))-2\rho\kappa_{3}(\gamma)}}\big{)},\\ \end{split} (55)

for some appropriately chosen parameters λ,μ,γ\lambda,\mu,\gamma, where

κ1(λ)=σ2σ1b1(λ),κ2(μ)=σ2σ1b2(μ),κ3(γ)=σ2σ1b3(γ),\kappa_{1}(\lambda)=\frac{\sigma_{2}}{\sigma_{1}}b_{1}(\lambda),\;\kappa_{2}(\mu)=\frac{\sigma_{2}}{\sigma_{1}}b_{2}(\mu),\;\kappa_{3}(\gamma)=\frac{\sigma_{2}}{\sigma_{1}}b_{3}(\gamma), (56)

and

δ1(λ)=z01(σ2b1(λ),a1(λ),λ)κ1(λ)λ,δ2(μ)=z02(σ2b2(μ),a2(μ),μ)κ2(μ)μ,δ3(γ)=z03(σ2b3(γ),a3(γ),γ)κ3(γ)γ,\begin{split}\delta_{1}(\lambda)&=z_{0}^{1}(\sigma_{2}b_{1}(\lambda),a_{1}(\lambda),\lambda)-\kappa_{1}(\lambda)\lambda,\\ \delta_{2}(\mu)&=z_{0}^{2}(\sigma_{2}b_{2}(\mu),a_{2}(\mu),\mu)-\kappa_{2}(\mu)\mu,\\ \delta_{3}(\gamma)&=z_{0}^{3}(\sigma_{2}b_{3}(\gamma),a_{3}(\gamma),\gamma)-\kappa_{3}(\gamma)\gamma,\end{split} (57)

and the functions z0i(),i=1,2,3,z_{0}^{i}(\cdot),i=1,2,3, are given as in (48), bi(),i=1,2,3,b_{i}(\cdot),i=1,2,3, are given as in (53), and θ\theta is given as in (7). When K<0K<0, the price of the spread option can be approximated by

Π¯T(λ,μ,γ;θ)=:erT(F1F2K)+ΠT(λ,μ,γ;θ¯),\bar{\Pi}_{T}(\lambda,\mu,\gamma;\theta)=:e^{-rT}(F_{1}-F_{2}-K)+\Pi_{T}(\lambda,\mu,\gamma;\bar{\theta}), (58)

where θ¯\bar{\theta} is given by (7).

We remark that our closed-form formula in the above proposition depends on the three parameters λ,μ,\lambda,\mu, and γ\gamma. If we choose the following parameter value

λ=(12σ2ρσ1)T,μ=12σ2T,γ=12σ2T,\begin{split}\lambda&=(\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T},\\ \mu&=-\frac{1}{2}\sigma_{2}\sqrt{T},\\ \gamma&=\frac{1}{2}\sigma_{2}\sqrt{T},\end{split} (59)

our formula in Proposition 5.4 reduces to the [1] formula. We state this fact as a Corollary below

Corollary 5.5.

When K>0K>0, we have

ΠTBS=ΠT(12σ2Tρσ1T,12σ2T,12σ2T;θ),\Pi^{BS}_{T}=\Pi_{T}(\frac{1}{2}\sigma_{2}\sqrt{T}-\rho\sigma_{1}\sqrt{T},-\frac{1}{2}\sigma_{2}\sqrt{T},\frac{1}{2}\sigma_{2}\sqrt{T};\theta), (60)

when K<0K<0 we have

ΠTBS=erT(F1F2K)+Π¯T(12σ1Tρσ2T,12σ1T,12σ1T;θ).\Pi^{BS}_{T}=e^{-rT}(F_{1}-F_{2}-K)+\bar{\Pi}_{T}(\frac{1}{2}\sigma_{1}\sqrt{T}-\rho\sigma_{2}\sqrt{T},-\frac{1}{2}\sigma_{1}\sqrt{T},\frac{1}{2}\sigma_{1}\sqrt{T};\theta). (61)
Remark 5.6.

Clearly our formula (55) generalizes the Bjerksund-Stensland formula as explained in the Corollary 5.5 above. The main challenge in applying the formula (55) in practice is to choose optimal parameter values λ,μ,γ\lambda,\mu,\gamma for the high accuracy of our approximation (55) to the true spread prices. The optimal values of λ,μ,γ\lambda,\mu,\gamma may depend on the range of model parameters. For example, high volatility σ1\sigma_{1} and σ2\sigma_{2} in both of the prices of the spread may need an optimal λ,μ,γ\lambda,\mu,\gamma while low volatility may need another optimal set of parameter values λ,μ,γ\lambda,\mu,\gamma.

6 Numerical results

In this section we test the performances of our Propositions 4.2 and 5.4. Namely, we use the Monte-Carlo (MC) method as a benchmark and compare the performance of the Proposition 4.2 with the MC method and the performance of the Proposition 5.4 with both the Bjerksund-Stensland formula and the MC method. The numerical computations for all these were implemented in Python 3.7.7 on a Legion desktop PC with 3.00GHz AMD Ryzen 5 4600H CPU.

We use the quasi-Monte Carlo method to obtain estimates for the price of the spread option in the numerical results. We use the two-dimensional Halton sequence in simulation. We use the control variate method suggested in the footnote of [1].

First, we discuss the performance of the Proposition 4.2. More specifically, we check the performance of (30). As stated in the Proposition 4.2, (30) is the application of the Simpson’s rule to the Riemann integral +f(a)𝑑a\int_{-\infty}^{+\infty}f(a)da, where f(a)f(a) is given as in the proposition. The error bound is given as in (31). Here MM is the maximum value of f(4)(a)f^{(4)}(a) on [b,b][-b,b]. Clearly, the value of MM depends on the underlying parameters of the spread option. As such the performance of ΠT(N,b)\Pi_{T}(N,b) depends on NN and bb. However, our extensive numerical tests show that the value of ΠT(500,5)\Pi_{T}(500,5) (which means N=500N=500 and b=5b=5) approximates the spread price pretty well for most of the model parameters.

In the following Table 1 we take the following model parameters r=0.05,T=1,F1=110e(r0.03)T,r=0.05,T=1,F_{1}=110e^{(r-0.03)T}, F2=100e(r0.02)T,σ1=0.1,σ2=0.15,F_{2}=100e^{(r-0.02)T},\sigma_{1}=0.1,\sigma_{2}=0.15, and test our formula (30) in Proposition 4.2 against the MC method with ΠT(500,5)\Pi_{T}(500,5).

Table 1: MC vs Proposition 4.2
K ρ\rho -0.95 -0.5 -0.1 0.3 0.8 0.95
-20 29.589165 28.994817 28.496876 28.070104 27.770086 27.754400
29.589155 28.994802 28.496847 28.070112 27.770084 27.754391
(0.000001) (0.000007) (0.000007) (0.000011) (0.000006) (0.000009)
-10 21.774860 20.904959 20.095212 19.270085 18.381078 18.256529
21.774855 20.904951 20.095207 19.270085 18.381078 18.256534
(0.000001) (0.000002) (0.000004) (0.000005) (0.000006) (0.000012)
-5 18.245477 17.248448 16.282814 15.230136 13.855745 13.551599
18.245473 17.248444 16.282809 15.230137 13.855740 13.551599
(0.000000) (0.000001) (0.000001) (0.000003) (0.000001) (0.000004)
5 12.122831 10.956214 9.771294 8.367403 5.967035 4.895080
12.122832 10.956212 9.771296 8.367407 5.967035 4.895077
(0.000003) (0.000002) (0.000002) (0.000003) (0.000005) (0.000005)
15 7.401225 6.242213 5.067175 3.679804 1.342507 0.366306
7.401220 6.242210 5.067171 3.679779 1.342501 0.366314
(0.000010) (0.000010) (0.000011) (0.000015) (0.000030) (0.000041)
25 4.098248 3.130020 2.203558 1.220011 0.104117 0.000326
4.098247 3.130016 2.203546 1.220039 0.104096 0.000347
(0.000009) (0.000016) (0.000028) (0.000051) (0.000073) (0.000047)
  • Parameters are r=0.05,T=1,F1=110e(r0.03)T,F2=100e(r0.02)T,σ1=0.1,σ2=0.15r=0.05,T=1,F_{1}=110e^{(r-0.03)T},F_{2}=100e^{(r-0.02)T},\sigma_{1}=0.1,\sigma_{2}=0.15.

  • The first row is Proposition 4.2. For the whole table it spent 0:00:00.453559. The RMSE for the table is 1.0681e051.0681e-05.

  • The Second row is MC simulation with 100,000100,000 paths. For the whole table it spent 0:00:04.313037.

  • The Third row is the Standard Error of the MC simulation method.

It can be seen from Table 1 above that the formula (30) in Proposition 4.2 with erTΠ¯T(500,5)e^{-rT}\bar{\Pi}_{T}(500,5) produces highly accurate spread option prices as they are very close to the spread prices obtained by the MC simulation. Also, the speed of this method is faster than the MC simulation. The time consumption for the whole table is recorded for both of these two methods, and the MC took 0:00:04:313037 seconds while the formula (30) in Proposition 4.2 took only 0:00:00.453559 seconds.

Next, we discuss the numerical performance of the Proposition 5.4. As stated in the Remark 5.6, the performance of the formula (55) depends on the choice of the three parameters λ,μ,\lambda,\mu, and γ\gamma. From Corollary 5.5, if we take λ0=:12σ2Tρσ1T,μ0=:12σ2T,γ0=:12σ2T,\lambda_{0}=:\frac{1}{2}\sigma_{2}\sqrt{T}-\rho\sigma_{1}\sqrt{T},\mu_{0}=:-\frac{1}{2}\sigma_{2}\sqrt{T},\gamma_{0}=:\frac{1}{2}\sigma_{2}\sqrt{T}, then ΠT(λ0,μ0,γ0;θ)=ΠTBS(θ)\Pi_{T}(\lambda_{0},\mu_{0},\gamma_{0};\theta)=\Pi_{T}^{BS}(\theta) for all the model parameters θ\theta. Since ΠTBSΠTMC\Pi_{T}^{BS}\leq\Pi^{MC}_{T} (Here ΠTMC\Pi^{MC}_{T} refers to spread prices obtained by Monte-Carlo methods), if we can find a (λ¯,μ¯,γ¯)(\bar{\lambda},\bar{\mu},\bar{\gamma}) such that ΠTBSΠT(λ¯,μ¯,γ¯)ΠMC\Pi_{T}^{BS}\leq\Pi_{T}(\bar{\lambda},\bar{\mu},\bar{\gamma})\leq\Pi^{MC} for all model parameters, then ΠT(λ¯,μ¯,γ¯)\Pi_{T}(\bar{\lambda},\bar{\mu},\bar{\gamma}) will be a more precise pricing formula for spread options compared to ΠTBS\Pi_{T}^{BS}. The determination of such (λ¯,μ¯,γ¯)(\bar{\lambda},\bar{\mu},\bar{\gamma}) is a challenging issue as the process involves six model parameters θ=(F1,σ1,F2,σ2,K,ρ)\theta=(F_{1},\sigma_{1},F_{2},\sigma_{2},K,\rho). We leave further investigation of our formula in Proposition 5.4 for future work. In our discussions below, we construct a formula by using the formula in Proposition 5.4 and demonstrate that it performs better than ΠTBS\Pi_{T}^{BS} for a certain range of model parameters.

To this end, for any θ\theta given by (7) we define

g(x)=:ΠT(12σ2Txσ1T,12σ2T,12σ2T;θ),g(x)=:\Pi_{T}(\frac{1}{2}\sigma_{2}\sqrt{T}-x\sigma_{1}\sqrt{T},-\frac{1}{2}\sigma_{2}\sqrt{T},\frac{1}{2}\sigma_{2}\sqrt{T};\theta), (62)

when K>0K>0 and

g(x)=erT(F1F2K)+ΠT(12σ1Txσ2T,12σ1T,12σ1T;θ),g(x)=e^{-rT}(F_{1}-F_{2}-K)+\Pi_{T}(\frac{1}{2}\sigma_{1}\sqrt{T}-x\sigma_{2}\sqrt{T},-\frac{1}{2}\sigma_{1}\sqrt{T},\frac{1}{2}\sigma_{1}\sqrt{T};\theta),

when K<0K<0. Due to Corollary 5.5, we have g(ρ)=ΠTBSg(\rho)=\Pi_{T}^{BS}. In the following discussions, we denote ΠT0=:g(0)\Pi^{0}_{T}=:g(0).

Our aim here is to find a proper value of x=x0x=x_{0} such that ΠTBS=g(ρ)g(x0)ΠTMC\Pi_{T}^{BS}=g(\rho)\leq g(x_{0})\leq\Pi^{MC}_{T} for most of the model parameters. The equation of the line that passes through the two points (0,g(0))(0,g(0)) and (ρ,g(ρ))(\rho,g(\rho)) (here we assume ρ0\rho\neq 0) is given by yg(ρ)=g(ρ)g(0)ρ(xρ)y-g(\rho)=\frac{g(\rho)-g(0)}{\rho}(x-\rho). By letting x=τρ,τ>0,x=\tau\rho,\tau>0, we obtain y=g(ρ)+(g(ρ)g(0))(τ1)y=g(\rho)+(g(\rho)-g(0))(\tau-1). We would like to choose τ\tau in a proper way so that the corresponding value yy gives a good approximation for the spread price. Based on these analysis, we denote δ=:|τ1|\delta=:|\tau-1| and we introduce the following formula

ΠTnew=:ΠTBS+|ΠTBSΠT0|δ.\Pi_{T}^{new}=:\Pi_{T}^{BS}+|\Pi_{T}^{BS}-\Pi_{T}^{0}|\delta. (63)

Note here that, by using the function g(x)g(x), the equation (63) is written as ΠTnew=g(ρ)+|g(ρ)g(0)|δ\Pi_{T}^{new}=g(\rho)+|g(\rho)-g(0)|\delta.

Clearly ΠTBSΠTnew\Pi_{T}^{BS}\leq\Pi_{T}^{new} for all model parameters. To obtain a good approximation for the spread price, the δ\delta in (63) needs to be selected properly so that ΠTnewΠTMC\Pi_{T}^{new}\leq\Pi_{T}^{MC} for a large range of model parameters. A proper choice of δ\delta is not an easy task as it involves six model parameters F1,σ1,F2,σ2,K,ρF_{1},\sigma_{1},F_{2},\sigma_{2},K,\rho as mentioned earlier. However, based on extensive numerical tests we take δ\delta as

δ=T24|K|σ12σ22F1+F2+|K|(1+ρ).\delta=\frac{T^{2}}{4}\frac{|K|\sigma_{1}^{2}\sigma_{2}^{2}}{F_{1}+F_{2}+|K|}(1+\rho). (64)

The following Table 2 reports the performance of (63) with δ\delta given by (64). In this table, MC simulations is used as a benchmark. It compares the performance of the Bjerksund-Stensland formula with the formula in (63).

Table 2: Equation (63) vs BS
KK ρ\rho -0.95 -0.5 -0.1 0.3 0.8 0.95
-20 72.447903 66.789701 60.467212 52.312289 36.540138 28.179235
72.443623 66.769020 60.460059 52.280630 36.384937 27.922717
72.452464 66.801532 60.525121 52.393443 36.580742 28.104203
(0.000429) (0.001113) (0.001847) (0.002868) (0.008091) (0.010341)
-10 67.093565 61.310225 54.852982 46.444229 29.736416 20.177831
67.092422 61.304703 54.851068 46.435707 29.692196 20.087154
67.096049 61.314047 54.869808 46.471202 29.773190 20.191560
(0.000211) (0.000431) (0.000679) (0.001232) (0.002493) (0.005674)
-5 64.536953 58.716686 52.218566 43.732412 26.714252 16.619350
64.536659 58.715262 52.218072 43.730210 26.702613 16.593433
64.537906 58.717813 52.222978 43.739778 26.728705 16.637189
(0.000092) (0.000162) (0.000249) (0.000393) (0.001105) (0.001943)
5 59.662399 53.825895 47.305453 38.779852 21.592906 11.151212
59.662096 53.824437 47.304949 38.777608 21.580957 11.122946
59.663653 53.827143 47.309946 38.787299 21.607722 11.177546
(0.000106) (0.000169) (0.000251) (0.000572) (0.000999) (0.002857)
10 57.344219 51.529121 45.027928 36.541698 19.508779 9.340300
57.343040 51.523442 45.025965 36.532959 19.462457 9.233733
57.348038 51.533277 45.044381 36.567951 19.553497 9.366418
(0.000254) (0.000443) (0.000688) (0.001142) (0.003330) (0.004886)
25 50.874145 45.228206 38.893744 30.730348 14.856800 6.131335
50.867437 45.195819 38.882554 30.680800 14.609299 5.675327
50.882510 45.242931 38.975629 30.838972 14.867635 5.961783
(0.000626) (0.001467) (0.002414) (0.003837) (0.008857) (0.014012)
  • Parameters are r=0.0125,T=4,F1=110e(r0.03)T,F2=100e(r0.02)T,σ1=0.45,σ2=0.45r=0.0125,T=4,F_{1}=110e^{(r-0.03)T},F_{2}=100e^{(r-0.02)T},\sigma_{1}=0.45,\sigma_{2}=0.45.

  • The first row corresponds to Equation (63) (the RMSE for the whole table is 0.04499244).

  • The second row corresponds to Bjerksund-Stensland formula (the RMSE for the whole table is 0.09539263).

  • The third row (in italics) is the MC simulation (100,000 trials).

  • The fourth row (in parentheses) is the standard error of the simulation.

As it can be seen from the above Table 2, the RMSE for the Bjerksund-Stensland formula is 0.09539263 while the RMSE for our formula (63) is 0.04499244 for the whole table. Here, in the calculations of RMSE, we used MC prices ( with 100,000 trials) as a benchmark, i.e.,

RMSE=in(piMCi)2n,RMSE=\sqrt{\frac{\sum_{i}^{n}(p_{i}-MC_{i})^{2}}{n}}, (65)

where pip_{i} are the corresponding prices (the prices obtained by (63) and by the Bjerksund-Stensland formula separately) and nn is the number of pairs of ρ\rho and KK (in the above table n=36n=36). Also, it can be seen from the above Table 2 that our formula (63) improves the Bjerksund-Stensland formula for each single case.

In the following Table 3, we compare the RMSEs of (63) and the Bjerksund-Stensland formula for different pairs of volatility. These are RMSE values for the whole of Table 2 (keeping all the other parameters the same as in Table 2) for different pairs of volatility σ1\sigma_{1} and σ2\sigma_{2}. To calculate these RMSE values, we fixed some of the parameters at r=0.0125,T=4,F1=110e(r0.03)T,F2=100e(r0.02)Tr=0.0125,T=4,F_{1}=110e^{(r-0.03)T},F_{2}=100e^{(r-0.02)T} as in Table 2 above first and for each pair (σ1,σ2)(\sigma_{1},\sigma_{2}) in Table 3 we calculated the corresponding prices for the model parameters θ(i,j)=:(F1,σ1,F2,σ2,Ki,ρj)\theta(i,j)=:(F_{1},\sigma_{1},F_{2},\sigma_{2},K_{i},\rho_{j}), 1i61\leq i\leq 6, 1j61\leq j\leq 6, where KiK_{i} covers the strikes in Table 2 above and ρj\rho_{j} covers the values of the correlations in Table 2. This gives us a total of 36 prices for each pair of volatility. Then we applied (65), using the MC prices (with 100,000 trials) as a benchmark.

Table 3: Comparisons of RMSEs
σ2\sigma_{2} σ1\sigma_{1} 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2 0.005909 0.029058 0.030207 0.046945 0.081544 0.128063 0.182532 0.244051
0.007179 0.034590 0.039178 0.059074 0.098215 0.150129 0.210959 0.279889
0.3 0.020722 0.016167 0.046015 0.092183 0.092402 0.113108 0.150941 0.196935
0.023713 0.027919 0.079596 0.145773 0.157443 0.192350 0.248998 0.317598
0.4 0.017899 0.039630 0.027755 0.056536 0.129770 0.163619 0.172579 0.190030
0.022821 0.059646 0.067248 0.149603 0.296980 0.367740 0.410464 0.468561
0.5 0.028926 0.060740 0.059701 0.078288 0.124226 0.124781 0.184020 0.211320
0.035954 0.091916 0.116627 0.129775 0.246966 0.462468 0.636327 0.733526
0.6 0.051932 0.056810 0.113127 0.121517 0.208418 0.297181 0.269992 0.232497
0.062087 0.092920 0.211088 0.200322 0.217517 0.370571 0.644388 0.923345
0.7 0.082681 0.071687 0.118770 0.158984 0.269682 0.432240 0.591094 0.637889
0.096480 0.117257 0.235437 0.357144 0.312307 0.333458 0.518622 0.834001
0.8 0.119084 0.097093 0.121044 0.188299 0.269457 0.513058 0.765237 0.986953
0.137104 0.156257 0.255172 0.446486 0.522409 0.449944 0.471600 0.705054
0.9 0.160631 0.128040 0.130843 0.191989 0.270768 0.506890 0.879435 1.210983
0.183463 0.202490 0.291729 0.488869 0.694849 0.702709 0.603389 0.633085
  • The first row corresponds to RMSEs of (63) (RMSE for the whole Table 2).

  • The second row corresponds to RMSEs of the Bjerksund-Stensland formula (RMSE for the whole of Table 2).

  • Benchmark is MC simulation (100,000 trials).

Table 3 above shows that our formula (63) consistently performs better than the Bjerksund-Stensland formula under the RMSE criteria for most of the cases.

We remark here that we do not claim that this particular choice of δ\delta in (64) above is optimal for obtaining an approximate spread option valuation formula. The relation (63) suggests that the δ\delta needs to be chosen as

ΠTMCΠTBS|ΠTBSΠT0|=δ(F1,σ1,F2,σ2,K,ρ),\frac{\Pi_{T}^{MC}-\Pi_{T}^{BS}}{|\Pi_{T}^{BS}-\Pi_{T}^{0}|}=\delta(F_{1},\sigma_{1},F_{2},\sigma_{2},K,\rho), (66)

(here we assume ρ0\rho\neq 0) for all the model parameters to match the MC values through (63). Obtaining an expression for δ\delta that satisfies (66) for all the model parameters is a difficult issue. Our choice (64) is based on observing the values of the left-hand-side of the expression (66) in our numerical tests. However, as mentioned earlier, the choice of δ\delta in (64) is not optimal, and we leave further discussions of these issues for future work. Here, we only attempt to demonstrate that the formula (55) can be used to improve the accuracy of the Bjerksund-Stensland formula.

7 Conclusion

In this paper, we give an alternative derivation for the Bjerksund-Stensland formula for log-normal models. Our approach is based on the approximation of the exercise boundary of the spread by linear functions whose slopes are chosen to be equal to the slope of the asymptotic lines of the exercise boundaries after some adjustment and that, in the meantime, pass through properly selected points to achieve high accuracy in the approximation. By doing this, we also developed a closed-form formula that contains the Bjerksund-Stensland formula as a special case, as explained in the Corollary 5.5. Unlike the Bjerksund-Stensland and Carmona-Durrleman formulas, our formula in Proposition 5.4 does not produce a lower or upper bound for spread price, making it challenging to choose the optimal parameter values λ,μ,γ\lambda,\mu,\gamma for high accuracy of the approximation. It is expected that such optimal values of λ,μ,γ\lambda,\mu,\gamma depend on the range of model parameters of the spread. In our numerical analysis section, we give an approximation formula for spread option price as an application of our formula (55) and show that it performs better than the Bjerksund-Stensland formula for some range of model parameters.

Appendix A: The Kirk formula

In this appendix we review an approximation that was used to derive Kirk’s formula as we use a similar idea of this approximation in (46).

In Kirk’s approximation the sum S2(T)+KS_{2}(T)+K of the second asset price S2(T)S_{2}(T) with the constant strike KK is approximated by a log-normal random variable. This approach reduces the spread price with strike KK into an exchange option and hence the spread price can be approximated by Margrabe’s formula [16]. Namely, if one implements the following approximation

F2e12σ22T+σ2TX+K(F2+K)e12θ2T+θTX,F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K\approx(F_{2}+K)e^{-\frac{1}{2}\theta^{2}T+\theta\sqrt{T}X}, (67)

with θ=F2F2+Kσ2\theta=\frac{F_{2}}{F_{2}+K}\sigma_{2} to the spread price in (5) and then apply the Margrabe’s formula one can obtain Kirk’s following formula

ΠTK=E[F1e12σ12T+σ1TY(F2+K)e12θ2T+θTX]+=erT{F1Φ(dK,1)+(F2+K)Φ(dK,2)},\begin{split}\Pi_{T}^{K}&=E\big{[}F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}Y}-(F_{2}+K)e^{-\frac{1}{2}\theta^{2}T+\theta\sqrt{T}X}\big{]}^{+}\\ &=e^{-rT}\big{\{}F_{1}\Phi(d_{K,1})+(F_{2}+K)\Phi(d_{K,2})\big{\}},\\ \end{split}

where

dK,1=lnF1F2+K+12σK2TσKT,dK,2=dK,1σKT,σK=σ122F2F2+Kρσ1σ2+(F2F2+K)2σ22.\begin{split}&d_{K,1}=\frac{\ln\frac{F_{1}}{F_{2}+K}+\frac{1}{2}\sigma_{K}^{2}T}{\sigma_{K}\sqrt{T}},\\ &d_{K,2}=d_{K,1}-\sigma_{K}\sqrt{T},\\ &\sigma_{K}=\sqrt{\sigma_{1}^{2}-2\frac{F_{2}}{F_{2}+K}\rho\sigma_{1}\sigma_{2}+\big{(}\frac{F_{2}}{F_{2}+K}\big{)}^{2}\sigma_{2}^{2}}.\end{split} (68)

Note here that the approximation (67) uses the weighted average F2F2+Kσ2+KF2+K0\frac{F_{2}}{F_{2}+K}\sigma_{2}+\frac{K}{F_{2}+K}0 of the volatility σ2\sigma_{2} of σ2WT2\sigma_{2}W_{T}^{2} and the volatility 0 (which corresponds to K) for θ\theta in (67).

Appendix B: The Greek parameters

The Greeks of option pricing formulas are important for risk management and hedging issues. In this section, we calculate the Greek parameters for our formula. First, observe that our formula (55) can also be written as follows

ΠT(λ,μ,γ)=erTF1Φ(I)erTF2Φ(J)erTKΦ(H),\Pi_{T}(\lambda,\mu,\gamma)=e^{-rT}F_{1}\Phi(I)-e^{-rT}F_{2}\Phi(J)-e^{-rT}K\Phi(H), (69)

where

I=ln(F1a1)+(12σ12ρσ1σ2b1+12σ22b12)Tσ¯1T,J=ln(F1a2)+(12σ12+ρσ1σ2+12σ22b22σ22b2)Tσ¯2T,H=ln(F1a3)+(12σ12+12σ22b32)Tσ¯3T,\begin{split}I=&\frac{\ln(\frac{F_{1}}{a_{1}})+(\frac{1}{2}\sigma_{1}^{2}-\rho\sigma_{1}\sigma_{2}b_{1}+\frac{1}{2}\sigma_{2}^{2}b_{1}^{2})T}{\bar{\sigma}_{1}\sqrt{T}},\\ J=&\frac{\ln(\frac{F_{1}}{a_{2}})+(-\frac{1}{2}\sigma_{1}^{2}+\rho\sigma_{1}\sigma_{2}+\frac{1}{2}\sigma_{2}^{2}b_{2}^{2}-\sigma_{2}^{2}b_{2})T}{\bar{\sigma}_{2}\sqrt{T}},\\ H=&\frac{\ln(\frac{F_{1}}{a_{3}})+(-\frac{1}{2}\sigma_{1}^{2}+\frac{1}{2}\sigma_{2}^{2}b_{3}^{2})T}{\bar{\sigma}_{3}\sqrt{T}},\end{split} (70)

with

σ¯1=σ122ρσ1σ2b1+σ22b12,σ¯2=σ122ρσ1σ2b2+σ22b22,σ¯3=σ122ρσ1σ2b3+σ22b32,\begin{split}\bar{\sigma}_{1}=&\sqrt{\sigma_{1}^{2}-2\rho\sigma_{1}\sigma_{2}b_{1}+\sigma_{2}^{2}b_{1}^{2}},\\ \bar{\sigma}_{2}=&\sqrt{\sigma_{1}^{2}-2\rho\sigma_{1}\sigma_{2}b_{2}+\sigma_{2}^{2}b_{2}^{2}},\\ \bar{\sigma}_{3}=&\sqrt{\sigma_{1}^{2}-2\rho\sigma_{1}\sigma_{2}b_{3}+\sigma_{2}^{2}b_{3}^{2}},\\ \end{split} (71)

and the functions b1(λ),b2(μ),b3(γ)b_{1}(\lambda),b_{2}(\mu),b_{3}(\gamma) are given as in (53).

Clearly, this formula is similar to the Bjerksund and Stensland formula (20) above. To find the Greeks, we assume b1,b2,b3b_{1},b_{2},b_{3} are constants as in Bjerksund and Stensland [1] and a1,a2,a3a_{1},a_{2},a_{3} are given as in (54). Under this assumptions, we calculate the Greeks as follows.

The Delta parameters of our formula are given as follows

ΠTF1=erTΦ(I)+erT{F1ϕ(I)σ¯1TF2ϕ(J)σ¯2TKϕ(H)σ¯3T}1F1,ΠTF2=erTΦ(J)erT{F1ϕ(I)σ¯1Ta1a1F2ϕ(J)σ¯2Ta2a2Kϕ(H)σ¯3Ta3a3}=erTΦ(J)erT{F1ϕ(I)σ¯1Tb1F2F2ϕ(J)σ¯2Tb2F2Kϕ(H)σ¯3Tb3F2}.\begin{split}\frac{\partial\Pi_{T}}{\partial F_{1}}=&e^{-rT}\Phi(I)+e^{-rT}\left\{\frac{F_{1}\phi(I)}{\bar{\sigma}_{1}\sqrt{T}}-\frac{F_{2}\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}-\frac{K\phi(H)}{\bar{\sigma}_{3}\sqrt{T}}\right\}\frac{1}{F_{1}},\\ \frac{\partial\Pi_{T}}{\partial F_{2}}=&-e^{-rT}\Phi(J)-e^{-rT}\left\{\frac{F_{1}\phi(I)}{\bar{\sigma}_{1}\sqrt{T}}\frac{a_{1}^{\prime}}{a_{1}}-\frac{F_{2}\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}\frac{a_{2}^{\prime}}{a_{2}}-\frac{K\phi(H)}{\bar{\sigma}_{3}\sqrt{T}}\frac{a_{3}^{\prime}}{a_{3}}\right\}\\ =&-e^{-rT}\Phi(J)-e^{-rT}\left\{\frac{F_{1}\phi(I)}{\bar{\sigma}_{1}\sqrt{T}}\frac{b_{1}}{F_{2}}-\frac{F_{2}\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}\frac{b_{2}}{F_{2}}-\frac{K\phi(H)}{\bar{\sigma}_{3}\sqrt{T}}\frac{b_{3}}{F_{2}}\right\}.\end{split} (72)

The Gamma parameters of our formula are given as follows

2ΠTF12=2erTϕ(I)1σ¯1TF1erT{F1ϕ(I)I1σ¯12TF2ϕ(J)J1σ¯22TKϕ(H)H1σ¯32T}1F12erT{F1ϕ(I)σ¯1TF2ϕ(J)σ¯2TKϕ(H)σ¯3T}1F12,2ΠTF1F2=erTϕ(I)a1a1σ¯1TerTϕ(J)1F1σ¯2T+erT{F1ϕ(I)Iσ¯12Ta1a1F2ϕ(J)Jσ¯22Ta2a2Kϕ(H)Hσ¯32Ta3a3}1F1=erTϕ(I)b1F2σ¯1TerTϕ(J)1F1σ¯2T+erT{F1ϕ(I)Iσ¯12Tb1F2F2ϕ(J)Jσ¯22Tb2F2Kϕ(H)Hσ¯32Tb3F2}1F1,\displaystyle\begin{split}\frac{\partial^{2}\Pi_{T}}{\partial F_{1}^{2}}=&2e^{-rT}\phi(I)\frac{1}{\bar{\sigma}_{1}\sqrt{T}F_{1}}\\ -&e^{-rT}\left\{F_{1}\phi(I)I\frac{1}{\bar{\sigma}_{1}^{2}T}-F_{2}\phi(J)J\frac{1}{\bar{\sigma}_{2}^{2}T}-K\phi(H)H\frac{1}{\bar{\sigma}_{3}^{2}T}\right\}\frac{1}{F_{1}^{2}}\\ -&e^{-rT}\left\{\frac{F_{1}\phi(I)}{\bar{\sigma}_{1}\sqrt{T}}-\frac{F_{2}\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}-\frac{K\phi(H)}{\bar{\sigma}_{3}\sqrt{T}}\right\}\frac{1}{F_{1}^{2}},\\ \frac{\partial^{2}\Pi_{T}}{\partial F_{1}\partial F_{2}}=&-e^{-rT}\phi(I)\frac{a_{1}^{\prime}}{a_{1}\bar{\sigma}_{1}\sqrt{T}}-e^{-rT}\phi(J)\frac{1}{F_{1}\bar{\sigma}_{2}\sqrt{T}}\\ +&e^{-rT}\left\{\frac{F_{1}\phi(I)I}{\bar{\sigma}_{1}^{2}T}\frac{a_{1}^{\prime}}{a_{1}}-\frac{F_{2}\phi(J)J}{\bar{\sigma}_{2}^{2}T}\frac{a_{2}^{\prime}}{a_{2}}-\frac{K\phi(H)H}{\bar{\sigma}_{3}^{2}T}\frac{a_{3}^{\prime}}{a_{3}}\right\}\frac{1}{F_{1}}\\ =&-e^{-rT}\phi(I)\frac{b_{1}}{F_{2}\bar{\sigma}_{1}\sqrt{T}}-e^{-rT}\phi(J)\frac{1}{F_{1}\bar{\sigma}_{2}\sqrt{T}}\\ +&e^{-rT}\left\{\frac{F_{1}\phi(I)I}{\bar{\sigma}_{1}^{2}T}\frac{b_{1}}{F_{2}}-\frac{F_{2}\phi(J)J}{\bar{\sigma}_{2}^{2}T}\frac{b_{2}}{F_{2}}-\frac{K\phi(H)H}{\bar{\sigma}_{3}^{2}T}\frac{b_{3}}{F_{2}}\right\}\frac{1}{F_{1}},\\ \end{split} (73)
2ΠTF22=2erTϕ(J)σ¯2Ta2a2erT{F1ϕ(I)Iσ¯12T(a1a1)2F2ϕ(J)Jσ¯22T(a2a2)2Kϕ(H)Hσ¯32T(a3a3)2}erT{F1ϕ(I)σ¯1Ta1′′a1(a1)2a12F2ϕ(J)σ¯2Ta2′′a2(a2)2a22Kϕ(H)σ¯3Ta3′′a3(a3)2a32}=2erTϕ(J)σ¯2Tb2F2erT{F1ϕ(I)Iσ¯12T(b1F2)2F2ϕ(J)Jσ¯22T(b2F2)2Kϕ(H)Hσ¯32T(b3F2)2}+erT{F1ϕ(I)σ¯1T(b1F2)2F2ϕ(J)σ¯2T(b2F2)2Kϕ(H)σ¯3T(b3F2)2}.\displaystyle\begin{split}\frac{\partial^{2}\Pi_{T}}{\partial F_{2}^{2}}=&2e^{-rT}\frac{\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}\frac{a_{2}^{\prime}}{a_{2}}\\ -e^{-rT}&\left\{\frac{F_{1}\phi(I)I}{\bar{\sigma}_{1}^{2}T}(\frac{a_{1}^{\prime}}{a_{1}})^{2}-\frac{F_{2}\phi(J)J}{\bar{\sigma}_{2}^{2}T}(\frac{a_{2}^{\prime}}{a_{2}})^{2}-\frac{K\phi(H)H}{\bar{\sigma}_{3}^{2}T}(\frac{a_{3}^{\prime}}{a_{3}})^{2}\right\}\\ -e^{-rT}&\left\{\frac{F_{1}\phi(I)}{\bar{\sigma}_{1}\sqrt{T}}\frac{a_{1}^{\prime\prime}a_{1}-(a_{1}^{\prime})^{2}}{a_{1}^{2}}-\frac{F_{2}\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}\frac{a_{2}^{\prime\prime}a_{2}-(a_{2}^{\prime})^{2}}{a_{2}^{2}}-\frac{K\phi(H)}{\bar{\sigma}_{3}\sqrt{T}}\frac{a_{3}^{\prime\prime}a_{3}-(a_{3}^{\prime})^{2}}{a_{3}^{2}}\right\}\\ =2e^{-rT}&\frac{\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}\frac{b_{2}}{F_{2}}-e^{-rT}\left\{\frac{F_{1}\phi(I)I}{\bar{\sigma}_{1}^{2}T}(\frac{b_{1}}{F_{2}})^{2}-\frac{F_{2}\phi(J)J}{\bar{\sigma}_{2}^{2}T}(\frac{b_{2}}{F_{2}})^{2}-\frac{K\phi(H)H}{\bar{\sigma}_{3}^{2}T}(\frac{b_{3}}{F_{2}})^{2}\right\}\\ +&e^{-rT}\left\{\frac{F_{1}\phi(I)}{\bar{\sigma}_{1}\sqrt{T}}(\frac{b_{1}}{F_{2}})^{2}-\frac{F_{2}\phi(J)}{\bar{\sigma}_{2}\sqrt{T}}(\frac{b_{2}}{F_{2}})^{2}-\frac{K\phi(H)}{\bar{\sigma}_{3}\sqrt{T}}(\frac{b_{3}}{F_{2}})^{2}\right\}.\\ \end{split} (74)

The Vegas are given by

ΠTσ1=erT{F1ϕ(I)(σ1ρσ2b1)Tσ¯1T+F2ϕ(J)(σ1ρσ2)Tσ¯2T+Kϕ(H)σ1Tσ¯3T}erT{F1ϕ(I)Iσ1ρσ2b1σ¯12F2ϕ(J)Jσ1ρσ2b2σ¯22Kϕ(H)Hσ1ρσ2b3σ¯32}.ΠTσ2=erT{F1ϕ(I)(ρσ1b1+σ2b12)Tσ¯1TF2ϕ(J)(ρσ1+σ2b222σ2b2)Tσ¯2TKϕ(H)σ2b32Tσ¯3T}erT{F1ϕ(I)Iρσ1b1+σ2b12σ¯12F2ϕ(J)Jρσ1b2+σ2b22σ¯22Kϕ(H)Hρσ1b3+σ2b32σ¯32}.\begin{split}\frac{\partial\Pi_{T}}{\partial\sigma_{1}}=&e^{-rT}\left\{F_{1}\phi(I)\frac{(\sigma_{1}-\rho\sigma_{2}b_{1})T}{\bar{\sigma}_{1}\sqrt{T}}+F_{2}\phi(J)\frac{(\sigma_{1}-\rho\sigma_{2})T}{\bar{\sigma}_{2}\sqrt{T}}+K\phi(H)\frac{\sigma_{1}T}{\bar{\sigma}_{3}\sqrt{T}}\right\}\\ -&e^{-rT}\left\{F_{1}\phi(I)I\frac{\sigma_{1}-\rho\sigma_{2}b_{1}}{\bar{\sigma}_{1}^{2}}-F_{2}\phi(J)J\frac{\sigma_{1}-\rho\sigma_{2}b_{2}}{\bar{\sigma}_{2}^{2}}-K\phi(H)H\frac{\sigma_{1}-\rho\sigma_{2}b_{3}}{\bar{\sigma}_{3}^{2}}\right\}.\\ \frac{\partial\Pi_{T}}{\partial\sigma_{2}}=&\\ e^{-rT}&\left\{F_{1}\phi(I)\frac{(-\rho\sigma_{1}b_{1}+\sigma_{2}b_{1}^{2})T}{\bar{\sigma}_{1}\sqrt{T}}-F_{2}\phi(J)\frac{(\rho\sigma_{1}+\sigma_{2}b_{2}^{2}-2\sigma_{2}b_{2})T}{\bar{\sigma}_{2}\sqrt{T}}-K\phi(H)\frac{\sigma_{2}b_{3}^{2}T}{\bar{\sigma}_{3}\sqrt{T}}\right\}-\\ e^{-rT}&\left\{F_{1}\phi(I)I\frac{-\rho\sigma_{1}b_{1}+\sigma_{2}b_{1}^{2}}{\bar{\sigma}_{1}^{2}}-F_{2}\phi(J)J\frac{-\rho\sigma_{1}b_{2}+\sigma_{2}b_{2}^{2}}{\bar{\sigma}_{2}^{2}}-K\phi(H)H\frac{-\rho\sigma_{1}b_{3}+\sigma_{2}b_{3}^{2}}{\bar{\sigma}_{3}^{2}}\right\}.\\ \end{split} (75)

The Θ\Theta of our formula is given by

ΠTT=rΠT+erT{F1ϕ(I)12σ12ρσ1σ2b1+12σ22b12σ¯1TF2ϕ(J)12σ12+ρσ1σ2+12σ22b22σ22b2σ¯2TKϕ(H)12σ12+12σ22b32σ¯3T}erT{F1ϕ(I)IF2ϕ(J)JKϕ(H)H}12T.\begin{split}\frac{\partial\Pi_{T}}{\partial T}=&-r\Pi_{T}\\ +&e^{-rT}\left\{F_{1}\phi(I)\frac{\frac{1}{2}\sigma_{1}^{2}-\rho\sigma_{1}\sigma_{2}b_{1}+\frac{1}{2}\sigma_{2}^{2}b_{1}^{2}}{\bar{\sigma}_{1}\sqrt{T}}-F_{2}\phi(J)\frac{-\frac{1}{2}\sigma_{1}^{2}+\rho\sigma_{1}\sigma_{2}+\frac{1}{2}\sigma_{2}^{2}b_{2}^{2}-\sigma_{2}^{2}b_{2}}{\bar{\sigma}_{2}\sqrt{T}}\right.\\ &\left.-K\phi(H)\frac{-\frac{1}{2}\sigma_{1}^{2}+\frac{1}{2}\sigma_{2}^{2}b_{3}^{2}}{\bar{\sigma}_{3}\sqrt{T}}\right\}-e^{-rT}\{F_{1}\phi(I)I-F_{2}\phi(J)J-K\phi(H)H\}\frac{1}{2T}.\\ \end{split} (76)

The ρ\rho is given by

ΠTr=T{erTF1Φ(I)erTF2Φ(J)erTKΦ(H)}=TΠT.\frac{\partial\Pi_{T}}{\partial r}=-T\{e^{-rT}F_{1}\Phi(I)-e^{-rT}F_{2}\Phi(J)-e^{-rT}K\Phi(H)\}=-T\Pi_{T}. (77)

The partial derivative w.r.t ρ\rho is given by

ΠTρ=erT{F1ϕ(I)b1σ1σ2Tσ¯1TF2ϕ(J)σ1σ2Tσ¯2T}+erT{F1ϕ(I)Ib1σ12¯F2ϕ(J)Jb2σ¯22Kϕ(H)Hb3σ¯32}σ1σ2.\begin{split}\frac{\partial\Pi_{T}}{\partial\rho}=&e^{-rT}\left\{-F_{1}\phi(I)\frac{b_{1}\sigma_{1}\sigma_{2}T}{\bar{\sigma}_{1}\sqrt{T}}-F_{2}\phi(J)\frac{\sigma_{1}\sigma_{2}T}{\bar{\sigma}_{2}\sqrt{T}}\right\}\\ +&e^{-rT}\left\{\frac{F_{1}\phi(I)Ib_{1}}{\bar{\sigma_{1}^{2}}}-\frac{F_{2}\phi(J)Jb_{2}}{\bar{\sigma}_{2}^{2}}-\frac{K\phi(H)Hb_{3}}{\bar{\sigma}_{3}^{2}}\right\}\sigma_{1}\sigma_{2}.\\ \end{split} (78)

It can be verified that the Greeks satisfy the following partial differential equations:

12σ12F122ΠTF12+ρσ1F1σ2F22ΠTF1F2+12σ22F222ΠTF22ΠTT=rΠT.\frac{1}{2}\sigma_{1}^{2}F_{1}^{2}\frac{\partial^{2}\Pi_{T}}{\partial F_{1}^{2}}+\rho\sigma_{1}F_{1}\sigma_{2}F_{2}\frac{\partial^{2}\Pi_{T}}{\partial F_{1}\partial F_{2}}+\frac{1}{2}\sigma_{2}^{2}F_{2}^{2}\frac{\partial^{2}\Pi_{T}}{\partial F_{2}^{2}}-\frac{\partial\Pi_{T}}{\partial T}=r\Pi_{T}. (79)

and

12σ1ΠTσ1+12σ2ΠTσ2+rΠTr=TΠTT.\frac{1}{2}\sigma_{1}\frac{\partial\Pi_{T}}{\partial\sigma_{1}}+\frac{1}{2}\sigma_{2}\frac{\partial\Pi_{T}}{\partial\sigma_{2}}+r\frac{\partial\Pi_{T}}{\partial r}=T\frac{\partial\Pi_{T}}{\partial T}. (80)

Appendix C: Proofs

Proof of Proposition 3.1: From (12) we have

Π¯TCD(θ0,d0)=F1Φ(d0+σ1Tcos(θ0+ϕ))F2Φ(d0+σ2Tcos(θ0))KΦ(d0).\begin{split}\bar{\Pi}_{T}^{CD}(\theta_{0},d_{0})=F_{1}\Phi(d_{0}+\sigma_{1}\sqrt{T}\cos(\theta_{0}+\phi))-F_{2}\Phi(d_{0}+\sigma_{2}\sqrt{T}\cos(\theta_{0}))-K\Phi(d_{0}).\end{split} (81)

Let d1,d2,d3,d_{1},d_{2},d_{3}, denote the values in (16), (17), (18) of [1] ( Bjerksund and Stensland formula). Observe that d0=d3d_{0}=d_{3}. Also note that

d0+σ2Tcosθ0=lnF1a12σ12T+12b2σ22Tσ12+σ22b22σ1σ2bcosϕT+σ2Tσ2b+σ1cosϕσ12+σ22b22σ1σ2bcosϕ=lnF1a12σ12T+12b2σ22Tbσ22T+σ1σ2Tcosϕσ12+σ22b22σ1σ2bcosϕT=d2,\begin{split}d_{0}+\sigma_{2}\sqrt{T}\cos\theta_{0}=&\frac{\ln\frac{F_{1}}{a}-\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}b^{2}\sigma_{2}^{2}T}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}\sqrt{T}}+\sigma_{2}\sqrt{T}\frac{-\sigma_{2}b+\sigma_{1}\cos\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}}\\ =&\frac{\ln\frac{F_{1}}{a}-\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}b^{2}\sigma_{2}^{2}T-b\sigma_{2}^{2}T+\sigma_{1}\sigma_{2}T\cos\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}\sqrt{T}}=d_{2},\end{split} (82)

and

d0+σ1Tcos(θ0+ϕ)=d0+σ1Tcosθ0cosϕσ1Tsinθ0sinϕ=lnF1a12σ12T+12b2σ22Tσ12+σ22b22σ1σ2bcosϕT+σ1T(σ2b+σ1cosϕ)cosϕσ12+σ22b22σ1σ2bcosϕσ1Tσ1sin2ϕσ12+σ22b22σ1σ2bcosϕ=lnF1a12σ12T+12b2σ22Tσ1σ2bTcosϕ+σ12Tcos2ϕ+σ12Tsin2ϕσ12+σ22b22σ1σ2bcosϕT=d1.\begin{split}&d_{0}+\sigma_{1}\sqrt{T}\cos(\theta_{0}+\phi)\\ =&d_{0}+\sigma_{1}\sqrt{T}\cos\theta_{0}\cos\phi-\sigma_{1}\sqrt{T}\sin\theta_{0}\sin\phi\\ =&\frac{\ln\frac{F_{1}}{a}-\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}b^{2}\sigma_{2}^{2}T}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}\sqrt{T}}+\sigma_{1}\sqrt{T}\frac{(-\sigma_{2}b+\sigma_{1}\cos\phi)\cos\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}}\\ -&\sigma_{1}\sqrt{T}\frac{-\sigma_{1}\sin^{2}\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}}\\ =&\frac{\ln\frac{F_{1}}{a}-\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}b^{2}\sigma_{2}^{2}T-\sigma_{1}\sigma_{2}bT\cos\phi+\sigma_{1}^{2}T\cos^{2}\phi+\sigma_{1}^{2}T\sin^{2}\phi}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}b^{2}-2\sigma_{1}\sigma_{2}b\cos\phi}\sqrt{T}}=d_{1}.\end{split} (83)

This completes the proof.

Proof of Proposition 4.1: Let

A={F1e12σ12T+σ1TYF2e12σ22T+σ2TXK>0},A=\{F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K>0\},

then we have

E[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)+]=E[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)1(A)],\begin{split}&E[(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K)^{+}]\\ &=E[(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K)1(A)],\end{split} (84)

where 1(A)1(A) is the indicator function of AA. The right-hand-side of (84) can be written as

E[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)+]=F1E[e12σ12T+σ1TYI(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0)]F2E[e12σ22T+σ2TXI(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0)]KQ(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0).\begin{split}&E[(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K)^{+}]\\ =&F_{1}E\left[e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}I(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0)\right]\\ -&F_{2}E\left[e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}I(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0)\right]\\ -&KQ\left(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right).\end{split} (85)

By using Girsanov’s change of measure theorem, the first two terms of the right-hand-side of (85) can be calculated as follows

F1E[e12σ12T+σ1TYI(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0)]=F1E[I(F1e12σ12T+σ1T(Y+σ1T)F2e12σ22T+σ2T(X+ρσ1T)K0)]=F1Q(F1e12σ12T+σ1TYF2e12σ22T+ρσ1σ2T+σ2TXK0)=F1Q(g1F¯1eσ1TYαF¯2eσ2TXK0),\begin{split}&F_{1}E\left[e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}I(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0)\right]\\ =&F_{1}E\left[I(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}(Y+\sigma_{1}\sqrt{T})}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}(X+\rho\sigma_{1}\sqrt{T})}-K\geq 0)\right]\\ =&F_{1}Q\left(F_{1}e^{\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right)\\ =&F_{1}Q\left(g_{1}\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}X}-K\geq 0\right),\end{split} (86)

and

F2E[e12σ22T+σ2TXI(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0)]=F2E[I(F1e12σ12T+σ1T(Y+ρσ2T)F2e12σ22T+σ2T(X+σ2T)K0)]=F2Q(F1e12σ12T+ρσ1σ2T+σ1TYF2e12σ22T+σ2TXK0)=F2Q(αF¯1eσ1TYg2F¯2eσ2TXK0).\begin{split}&F_{2}E\left[e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}I(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0)\right]\\ =&F_{2}E\left[I(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}(Y+\rho\sigma_{2}\sqrt{T})}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}(X+\sigma_{2}\sqrt{T})}-K\geq 0)\right]\\ =&F_{2}Q\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right)\\ =&F_{2}Q\left(\alpha\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-g_{2}\bar{F}_{2}e^{\sigma_{2}\sqrt{T}X}-K\geq 0\right).\end{split} (87)

The last term of the right-hand-side of (85) equals to

KQ(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0)=KQ(F¯1eσ1TYF¯2eσ2TXK0).\begin{split}&KQ\left(F_{1}e^{-\frac{1}{2}\sigma^{2}_{1}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma^{2}_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right)\\ =&KQ\left(\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-\bar{F}_{2}e^{\sigma_{2}\sqrt{T}X}-K\geq 0\right).\end{split} (88)


Proof of Proposition 4.2: From Proposition 4.1 we have (26). Observe that Y|X=θN(θρ,1ρ2)Y|X=\theta\sim N(\theta\rho,1-\rho^{2}). We use this to write each CD1,CD2,CD3C_{D}^{1},C_{D}^{2},C_{D}^{3} as follows,

CD1=+Q(g1F¯1eσ1TYαF¯2eσ2TxK0)φ(x)𝑑x=+Q(Yln(αF¯2g1F¯1eσ2Tx+Kg1F¯1)σ1T)φ(x)𝑑x=+Q(N(0,1)ln(αF¯2g1F¯1eσ2Tx+Kg1F¯1)+σ1ρTxσ1T1ρ2)φ(x)𝑑x=+Φ(ln(αF¯2g1F¯1eσ2Tx+Kg1F¯1)+σ1ρTxσ1T1ρ2)φ(x)𝑑x.\begin{split}C_{D}^{1}=&\int_{-\infty}^{+\infty}Q\left(g_{1}\bar{F}_{1}e^{\sigma_{1}\sqrt{T}Y}-\alpha\bar{F}_{2}e^{\sigma_{2}\sqrt{T}x}-K\geq 0\right)\varphi(x)dx\\ =&\int_{-\infty}^{+\infty}Q\left(Y\geq\frac{\ln\left(\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}\right)}{\sigma_{1}\sqrt{T}}\right)\varphi(x)dx\\ =&\int_{-\infty}^{+\infty}Q\left(N(0,1)\leq\frac{-\ln\left(\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}\right)+\sigma_{1}\rho\sqrt{T}x}{\sigma_{1}\sqrt{T}\sqrt{1-\rho^{2}}}\right)\varphi(x)dx\\ =&\int_{-\infty}^{+\infty}\Phi\left(\frac{-\ln\left(\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}\right)+\sigma_{1}\rho\sqrt{T}x}{\sigma_{1}\sqrt{T}\sqrt{1-\rho^{2}}}\right)\varphi(x)dx.\end{split}

The other two CD2C_{D}^{2} and CD3C_{D}^{3} can also be evaluated similarly. The expression (30) is obtained by applying Simpson’s rule for the Riemann integral in (29).

Proof of formula (36): Note that Y=𝑑ρX+1ρ2ZY\overset{d}{=}\rho X+\sqrt{1-\rho^{2}}Z for some independent (from XX) standard normal ZZ. Therefore we have

ΠT=erTEX[EZ[(F1e12σ12T+σ1ρTX+σ11ρ2TZF2e12σ22T+σ2TXK)+|X]]\Pi_{T}=e^{-rT}E_{X}\left[E_{Z}\left[\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\rho\sqrt{T}X+\sigma_{1}\sqrt{1-\rho^{2}}\sqrt{T}Z}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}-K\right)^{+}|X\right]\right] (89)

after conditioning with respect to XX. Observe that

EZ[(F1e12σ12T+σ1ρTx+σ11ρ2TZF2e12σ22T+σ2TxK)+]=EZ[(F1e12σ12ρ2T+σ1Tρxe12σ12(1ρ2)T+σ11ρ2TZ(F2e12σ22T+σ2Tx+K))+]=EZ[(F~e12σ~2T+σ~TZK~)+]\begin{split}&E_{Z}\left[\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\rho\sqrt{T}x+\sigma_{1}\sqrt{1-\rho^{2}}\sqrt{T}Z}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}x}-K\right)^{+}\right]\\ =&E_{Z}\left[\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho x}e^{-\frac{1}{2}\sigma_{1}^{2}(1-\rho^{2})T+\sigma_{1}\sqrt{1-\rho^{2}}\sqrt{T}Z}-\left(F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}x}+K\right)\right)^{+}\right]\\ =&E_{Z}\left[\left(\tilde{F}e^{-\frac{1}{2}\tilde{\sigma}^{2}T+\tilde{\sigma}\sqrt{T}Z}-\tilde{K}\right)^{+}\right]\end{split} (90)

with

F~=F1e12σ12ρ2T+σ1Tρx,K~=F2e12σ22T+σ2Tx+K,σ~=σ11ρ2.\begin{split}\tilde{F}&=F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho x},\\ \tilde{K}&=F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}x}+K,\\ \tilde{\sigma}&=\sigma_{1}\sqrt{1-\rho^{2}}.\end{split} (91)

Note that

erTEZ[(F~e12σ~2T+σ~TZK~)+]=erTF~Φ(d1)erTK~Φ(d2),e^{-rT}E_{Z}\left[\left(\tilde{F}e^{-\frac{1}{2}\tilde{\sigma}^{2}T+\tilde{\sigma}\sqrt{T}Z}-\tilde{K}\right)^{+}\right]\\ =e^{-rT}\tilde{F}\Phi(d_{1})-e^{-rT}\tilde{K}\Phi(d_{2}), (92)

where

d~1=1σ~T(ln(F~K~)+σ~2T2),d~2=1σ~T(ln(F~K~)σ~2T2).\begin{split}\tilde{d}_{1}&=\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{\tilde{F}}{\tilde{K}}\right)+\frac{\tilde{\sigma}^{2}T}{2}\right),\\ \tilde{d}_{2}&=\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{\tilde{F}}{\tilde{K}}\right)-\frac{\tilde{\sigma}^{2}T}{2}\right).\end{split} (93)

Therefore we have

ΠT=erTE[(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK)+]=erTE[F~(X)Φ(d~1(X))]erTE[K~(X)Φ(d~2(X))].\begin{split}\Pi_{T}=&e^{-rT}E\left[\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}-K\right)^{+}\right]\\ =&e^{-rT}E[\tilde{F}(X)\Phi(\tilde{d}_{1}(X))]-e^{-rT}E[\tilde{K}(X)\Phi(\tilde{d}_{2}(X))].\end{split} (94)

Proof of the statement of Remark 4.6: We have the following relation

erTE[F~(X)Φ(d~1(X))]erTE[K~(X)Φ(d~2(X))]=erTF1E[e12σ12ρ2T+σ1TρXΦ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+σ2TX+K)+σ~2T2))]erTF2E[e12σ22T+σ2TXΦ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+σ2TX+K)σ~2T2))]erTKE[Φ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+σ2TX+K)σ~2T2))].\begin{split}&e^{-rT}E[\tilde{F}(X)\Phi(\tilde{d}_{1}(X))]-e^{-rT}E[\tilde{K}(X)\Phi(\tilde{d}_{2}(X))]\\ =&e^{-rT}F_{1}E\left[e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)+\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ -&e^{-rT}F_{2}E\left[e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)-\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ -&e^{-rT}KE\left[\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)-\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right].\end{split} (95)

The first term in (95) is

E[erTF1e12σ12ρ2T+σ1TρXΦ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+σ2TX+K)+σ~2T2))]=erTF1E[Φ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+ρσ1σ2T+σ2TX+K)+σ~2T2))]=erTF1E[Φ(1σ~Tln(F1e12σ12T+σ1TρXF2e12σ22T+ρσ1σ2T+σ2TX+K))]=erTF1P(Z1σ~Tln(F1e12σ12T+σ1TρXF2e12σ22T+ρσ1σ2T+σ2TX+K))=erTF1P(F1e12σ12T+σ1T(ρX+1ρ2Z)F2e12σ22T+ρσ1σ2T+σ2TXK0)=erTF1P(F1e12σ12T+σ1TYF2e12σ22T+ρσ1σ2T+σ2TXK0),\begin{split}&E\left[e^{-rT}F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)+\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ =&e^{-rT}F_{1}E\left[\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{2}\sqrt{T}X}+K}\right)+\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ =&e^{-rT}F_{1}E\left[\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\ln\left(\frac{F_{1}e^{\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{2}\sqrt{T}X}+K}\right)\right)\right]\\ =&e^{-rT}F_{1}P\left(Z\leq\frac{1}{\tilde{\sigma}\sqrt{T}}\ln\left(\frac{F_{1}e^{\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{2}\sqrt{T}X}+K}\right)\right)\\ =&e^{-rT}F_{1}P\left(F_{1}e^{\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}(\rho X+\sqrt{1-\rho^{2}}Z)}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right)\\ =&e^{-rT}F_{1}P\left(F_{1}e^{\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right),\end{split} (96)

where ZZ represents a standard normal random variable independent from XX. Similarly, for the second and third terms of (95) we have

E[erTF2e12σ22T+σ2TXΦ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+σ2TX+K)σ~2T2))]=erTF2E[Φ(1σ~T(ln(F1e12σ12ρ2T+ρσ1σ2T+σ1TρXF2e12σ22T+σ2TX+K)σ~2T2))]=erTF2E[Φ(1σ~Tln(F1e12σ12T+ρσ1σ2T+σ1TρXF2e12σ22T+σ2TX+K))]=erTF2P(Z1σ~Tln(F1e12σ12T+ρσ1σ2T+σ1TρXF2e12σ22T+σ2TX+K))=erTF2P(F1e12σ12T+ρσ1σ2T+σ1TYF2e12σ22T+σ2TXK0),\begin{split}&E\left[e^{-rT}F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)-\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ =&e^{-rT}F_{2}E\left[\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)-\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ =&e^{-rT}F_{2}E\left[\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)\right)\right]\\ =&e^{-rT}F_{2}P\left(Z\leq\frac{1}{\tilde{\sigma}\sqrt{T}}\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)\right)\\ =&e^{-rT}F_{2}P\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\rho\sigma_{1}\sigma_{2}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right),\end{split} (97)

and

E[erTKΦ(1σ~T(ln(F1e12σ12ρ2T+σ1TρXF2e12σ22T+σ2TX+K)σ~2T2))]=erTKE[Φ(1σ~Tln(F1e12σ12T+σ1TρXF2e12σ22T+σ2TX+K))]=erTKP(Z1σ~Tln(F1e12σ12T+σ1TρXF2e12σ22T+σ2TX+K))=erTKP(F1e12σ12T+σ1TYF2e12σ22T+σ2TXK0).\begin{split}&E\left[e^{-rT}K\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\left(\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}\rho^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)-\frac{\tilde{\sigma}^{2}T}{2}\right)\right)\right]\\ =&e^{-rT}KE\left[\Phi\left(\frac{1}{\tilde{\sigma}\sqrt{T}}\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)\right)\right]\\ =&e^{-rT}KP\left(Z\leq\frac{1}{\tilde{\sigma}\sqrt{T}}\ln\left(\frac{F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}\rho X}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}+K}\right)\right)\\ =&e^{-rT}KP\left(F_{1}e^{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}\sqrt{T}Y}-F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T+\sigma_{2}\sqrt{T}X}-K\geq 0\right).\end{split} (98)

Proof of Lemma 5.1: Since XX and YY are two standard normal random variables with Cov(Y,X)=ρCov(Y,X)=\rho, we can write YY as Y=ρX+1ρ2ϵ~Y=\rho X+\sqrt{1-\rho^{2}}\tilde{\epsilon} with ϵ~N(0,1)\tilde{\epsilon}\sim N(0,1) and Cov(ϵ~,X)=0Cov(\tilde{\epsilon},X)=0. We have

mYnX=(mρn)X+m1ρ2ϵ~N(0,m2+n22ρmn).\begin{split}mY-nX&=(m\rho-n)X+m\sqrt{1-\rho^{2}}\tilde{\epsilon}\\ &\sim N(0,m^{2}+n^{2}-2\rho mn).\end{split}

therefore

Q(mYnXl)=Q(mYnXm2+n22ρmnlm2+n22ρmn)=Φ(lm2+n22ρmn).\begin{split}Q(mY-nX\geq l)&=Q\left(\frac{mY-nX}{\sqrt{m^{2}+n^{2}-2\rho mn}}\geq\frac{l}{\sqrt{m^{2}+n^{2}-2\rho mn}}\right)\\ &=\Phi\left(\frac{-l}{\sqrt{m^{2}+n^{2}-2\rho mn}}\right).\end{split}


Proof of Lemma 5.2: We can rewrite the three curves 𝒞1,𝒞2,𝒞3\mathcal{C}_{1},\mathcal{C}_{2},\mathcal{C}_{3} as

𝒞1:y=1σ1Tln(αF¯2g1F¯1eσ2Tx+Kg1F¯1),𝒞2:y=1σ1Tln(g2F¯2αF¯1eσ2Tx+KαF¯1),𝒞3:y=1σ1Tln(F¯2F¯1eσ2Tx+KF¯1).\begin{split}\mathcal{C}_{1}:\;&y=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}\right),\\ \mathcal{C}_{2}:\;&y=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{g_{2}\bar{F}_{2}}{\alpha\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{\alpha\bar{F}_{1}}\right),\\ \mathcal{C}_{3}:\;&y=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{\bar{F}_{2}}{\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{\bar{F}_{1}}\right).\end{split}

For curve 𝒞1\mathcal{C}_{1},

limx+yx=1σ1Tlimx+ln(αF¯2g1F¯1eσ2Tx+Kg1F¯1)x=1σ1Tlimx+αF¯2g1F¯1eσ2Txσ2TαF¯2g1F¯1eσ2Tx+Kg1F¯1=σ2σ1,limxy=1σ1Tln(Kg1F¯1)=1σ1Tln(KF¯1)σ1T.\begin{split}\lim_{x\rightarrow+\infty}\frac{y}{x}&=\frac{1}{\sigma_{1}\sqrt{T}}\lim_{x\rightarrow+\infty}\frac{\ln\left(\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}\right)}{x}\\ &=\frac{1}{\sigma_{1}\sqrt{T}}\lim_{x\rightarrow+\infty}\frac{\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}\sigma_{2}\sqrt{T}}{\frac{\alpha\bar{F}_{2}}{g_{1}\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}}=\frac{\sigma_{2}}{\sigma_{1}},\\ \lim_{x\rightarrow-\infty}y&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{g_{1}\bar{F}_{1}}\right)=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\bar{F}_{1}}\right)-\sigma_{1}\sqrt{T}.\end{split}

For curve 𝒞2\mathcal{C}_{2},

limx+yx=1σ1Tlimx+ln(g2F¯2αF¯1eσ2Tx+KαF¯1)x=1σ1Tlimx+g2F¯2αF¯1eσ2Txσ2Tg2F¯2αF¯1eσ2Tx+Kg1F¯1=σ2σ1,limxy=1σ1Tln(KαF¯1)=1σ1Tln(KF¯1)ρσ2T.\begin{split}\lim_{x\rightarrow+\infty}\frac{y}{x}&=\frac{1}{\sigma_{1}\sqrt{T}}\lim_{x\rightarrow+\infty}\frac{\ln\left(\frac{g_{2}\bar{F}_{2}}{\alpha\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{\alpha\bar{F}_{1}}\right)}{x}\\ &=\frac{1}{\sigma_{1}\sqrt{T}}\lim_{x\rightarrow+\infty}\frac{\frac{g_{2}\bar{F}_{2}}{\alpha\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}\sigma_{2}\sqrt{T}}{\frac{g_{2}\bar{F}_{2}}{\alpha\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{g_{1}\bar{F}_{1}}}=\frac{\sigma_{2}}{\sigma_{1}},\\ \lim_{x\rightarrow-\infty}y&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\alpha\bar{F}_{1}}\right)=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\bar{F}_{1}}\right)-\rho\sigma_{2}\sqrt{T}.\end{split}

For curve 𝒞3\mathcal{C}_{3},

limx+yx=1σ1Tlimx+ln(F¯2F¯1eσ2Tx+KF¯1)x=1σ1Tlimx+F¯2F¯1eσ2Txσ2TF¯2F¯1eσ2Tx+KF¯1=σ2σ1,limxy=1σ1Tln(KF¯1).\begin{split}\lim_{x\rightarrow+\infty}\frac{y}{x}&=\frac{1}{\sigma_{1}\sqrt{T}}\lim_{x\rightarrow+\infty}\frac{\ln\left(\frac{\bar{F}_{2}}{\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{\bar{F}_{1}}\right)}{x}\\ &=\frac{1}{\sigma_{1}\sqrt{T}}\lim_{x\rightarrow+\infty}\frac{\frac{\bar{F}_{2}}{\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}\sigma_{2}\sqrt{T}}{\frac{\bar{F}_{2}}{\bar{F}_{1}}e^{\sigma_{2}\sqrt{T}x}+\frac{K}{\bar{F}_{1}}}=\frac{\sigma_{2}}{\sigma_{1}},\\ \lim_{x\rightarrow-\infty}y&=\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{K}{\bar{F}_{1}}\right).\end{split} (99)


Proof of Proposition 5.3: From Proposition 4.1 we have (26). To obtain closed-form formula, we approximate the probabilities in (26) by replacing the corresponding curves by lines. Namely we replace 𝒞i\mathcal{C}_{i} by lines i\ell_{i} for each i=1,2,3i=1,2,3. For each ii, we have

CDiQ(yibσ2σ1xiy0ibσ2σ1x0i).\begin{split}C_{D}^{i}\approx Q\left(y^{i}-b\frac{\sigma_{2}}{\sigma_{1}}x^{i}\geq y_{0}^{i}-b\frac{\sigma_{2}}{\sigma_{1}}x_{0}^{i}\right).\end{split}

Next, we substitute y0iy_{0}^{i} by z0i(bσ2,a,x0i)z_{0}^{i}(b\sigma_{2},a,x_{0}^{i}) for each i=1,2,3i=1,2,3 and we use Lemma 5.1 to obtain

Q(yibσ2σ1xiy0ibσ2σ1x0i)Q(yibσ2σ1xiz0i(bσ2,a,x0i)bσ2σ1x0i)=Q(ϵ^iz0i(bσ2,a,x0i)bσ2σ1x0i1+(bσ2σ1)22ρbσ2σ1)=Φ(δi1+κ22ρκ).\begin{split}&Q\left(y^{i}-b\frac{\sigma_{2}}{\sigma_{1}}x^{i}\geq y_{0}^{i}-b\frac{\sigma_{2}}{\sigma_{1}}x_{0}^{i}\right)\\ \approx&Q\left(y^{i}-b\frac{\sigma_{2}}{\sigma_{1}}x^{i}\geq z_{0}^{i}(b\sigma_{2},a,x_{0}^{i})-b\frac{\sigma_{2}}{\sigma_{1}}x_{0}^{i}\right)\\ =&Q\left(\hat{\epsilon}_{i}\geq\frac{z_{0}^{i}(b\sigma_{2},a,x_{0}^{i})-b\frac{\sigma_{2}}{\sigma_{1}}x_{0}^{i}}{\sqrt{1+\left(b\frac{\sigma_{2}}{\sigma_{1}}\right)^{2}-2\rho b\frac{\sigma_{2}}{\sigma_{1}}}}\right)\\ =&\Phi\left(\frac{-\delta_{i}}{1+\kappa^{2}-2\rho\kappa}\right).\end{split}


Proof of Proposition 5.4: From (53) and (54), we know that ai(x)a_{i}(x), i=1,2,3i=1,2,3, are not constant and they are not necessarily equal to each other, the same is also true for bi(x)b_{i}(x), i=1,2,3i=1,2,3. Therefore, by substituting aa and bb with a1(λ)a_{1}(\lambda), a2(μ)a_{2}(\mu), a3(γ)a_{3}(\gamma) and b1(λ)b_{1}(\lambda), b2(μ)b_{2}(\mu), b3(γ)b_{3}(\gamma) respectively in Proposition 5.3 and by following the steps in Proposition 5.3, we get the result.

Proof of Corollary 5.5: When λ=(12σ2ρσ1)T\lambda=(\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T},

a1(λ)=a1((12σ2ρσ1)T)=F2+Keσ2T(12σ2ρσ1)Tρσ1σ2T+12σ22T=F2+K=a,b1(λ)=b1((12σ2ρσ1)T)=eρσ1σ2TF2e12σ22Teσ2T(12σ2ρσ1)Teρσ1σ2TF2e12σ22Teσ2T(12σ2ρσ1)T+K=F2F2+K=b,κ1(λ)=κ1((12σ2ρσ1)T)=σ2σ1b,\begin{split}a_{1}(\lambda)&=a_{1}\left((\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}\right)=F_{2}+Ke^{-\sigma_{2}\sqrt{T}(\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}-\rho\sigma_{1}\sigma_{2}T+\frac{1}{2}\sigma_{2}^{2}T}=F_{2}+K=a,\\ b_{1}(\lambda)&=b_{1}\left((\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}\right)=\frac{e^{\rho\sigma_{1}\sigma_{2}T}F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}e^{\sigma_{2}\sqrt{T}(\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}}}{e^{\rho\sigma_{1}\sigma_{2}T}F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}e^{\sigma_{2}\sqrt{T}(\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}}+K}=\frac{F_{2}}{F_{2}+K}=b,\\ \kappa_{1}(\lambda)&=\kappa_{1}\left((\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}\right)=\frac{\sigma_{2}}{\sigma_{1}}b,\end{split} (100)

and

z01(σ2b1(λ),a1(λ),λ)=1σ1Tln(aF1)+1σ1T(ρσ1σ2bT+σ2bT(12σ2ρσ1)T12σ22b2T)12σ1T=1σ1T(ln(aF1)+12σ22bT12σ22b2T12σ12T).\begin{split}&z_{0}^{1}(\sigma_{2}b_{1}(\lambda),a_{1}(\lambda),\lambda)\\ =&\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{\sigma_{1}\sqrt{T}}\left(\rho\sigma_{1}\sigma_{2}bT+\sigma_{2}b\sqrt{T}(\frac{1}{2}\sigma_{2}-\rho\sigma_{1})\sqrt{T}-\frac{1}{2}\sigma_{2}^{2}b^{2}T\right)-\frac{1}{2}\sigma_{1}\sqrt{T}\\ =&\frac{1}{\sigma_{1}\sqrt{T}}\left(\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T-\frac{1}{2}\sigma_{1}^{2}T\right).\end{split} (101)

Hence

δ1(λ)1+κ12(λ)2ρκ1(λ)=z01(σ2b1(λ),a1(λ),λ)+κ1(λ)λ1+κ12(λ)2ρκ1(λ)=1σ1T(ln(aF1)+12σ22bT12σ22b2T12σ12T)+1σ1T(12σ22bTρσ1σ2bT)1+(σ2σ1b)22ρσ2σ1b=ln(F1a)+12σ12T+12σ22b2Tρσ1σ2bTTσ12+b2σ222ρσ1σ2b.\begin{split}&\frac{-\delta_{1}(\lambda)}{\sqrt{1+\kappa_{1}^{2}(\lambda)-2\rho\kappa_{1}(\lambda)}}\\ =&\frac{-z_{0}^{1}(\sigma_{2}b_{1}(\lambda),a_{1}(\lambda),\lambda)+\kappa_{1}(\lambda)\lambda}{\sqrt{1+\kappa_{1}^{2}(\lambda)-2\rho\kappa_{1}(\lambda)}}\\ =&\frac{-\frac{1}{\sigma_{1}\sqrt{T}}\left(\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T-\frac{1}{2}\sigma_{1}^{2}T\right)+\frac{1}{\sigma_{1}\sqrt{T}}\left(\frac{1}{2}\sigma_{2}^{2}bT-\rho\sigma_{1}\sigma_{2}bT\right)}{\sqrt{1+\left(\frac{\sigma_{2}}{\sigma_{1}}b\right)^{2}-2\rho\frac{\sigma_{2}}{\sigma_{1}}b}}\\ =&\frac{\ln\left(\frac{F_{1}}{a}\right)+\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}\sigma_{2}^{2}b^{2}T-\rho\sigma_{1}\sigma_{2}bT}{\sqrt{T}\sqrt{\sigma_{1}^{2}+b^{2}\sigma_{2}^{2}-2\rho\sigma_{1}\sigma_{2}b}}.\end{split} (102)

When μ=12σ2T\mu=-\frac{1}{2}\sigma_{2}\sqrt{T},

a2(μ)=a2(12σ2T)=F2+Keσ2T(12σ2T)12σ22T=F2+K=a,b2(μ)=b2(12σ2T)=eσ22TF2e12σ22Teσ2T(12σ2T)eσ22TF2e12σ22Teσ2T(12σ2T)+K=F2F2+K=b,κ2(μ)=κ2(12σ2T)=σ2σ1b,\begin{split}a_{2}(\mu)&=a_{2}\left(-\frac{1}{2}\sigma_{2}\sqrt{T}\right)=F_{2}+Ke^{-\sigma_{2}\sqrt{T}(-\frac{1}{2}\sigma_{2}\sqrt{T})-\frac{1}{2}\sigma_{2}^{2}T}=F_{2}+K=a,\\ b_{2}(\mu)&=b_{2}\left(-\frac{1}{2}\sigma_{2}\sqrt{T}\right)=\frac{e^{\sigma_{2}^{2}T}F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}e^{\sigma_{2}\sqrt{T}(-\frac{1}{2}\sigma_{2}\sqrt{T})}}{e^{\sigma_{2}^{2}T}F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}e^{\sigma_{2}\sqrt{T}(-\frac{1}{2}\sigma_{2}\sqrt{T})}+K}=\frac{F_{2}}{F_{2}+K}=b,\\ \kappa_{2}(\mu)&=\kappa_{2}\left(-\frac{1}{2}\sigma_{2}\sqrt{T}\right)=\frac{\sigma_{2}}{\sigma_{1}}b,\end{split} (103)

and

z02(σ2b2(μ),a2(μ),μ)=1σ1Tln(aF1)+1σ1T(σ22bT12σ22bT12σ22b2T)+(12σ1ρσ2)T=1σ1T(ln(aF1)+12σ22bT12σ22b2T+12σ12Tρσ1σ2T).\begin{split}&z_{0}^{2}(\sigma_{2}b_{2}(\mu),a_{2}(\mu),\mu)\\ =&\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{\sigma_{1}\sqrt{T}}\left(\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T\right)+\left(\frac{1}{2}\sigma_{1}-\rho\sigma_{2}\right)\sqrt{T}\\ =&\frac{1}{\sigma_{1}\sqrt{T}}\left(\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T+\frac{1}{2}\sigma_{1}^{2}T-\rho\sigma_{1}\sigma_{2}T\right).\end{split} (104)

Hence

δ2(μ)1+κ22(μ)2ρκ2(μ)=z02(σ2b2(μ),a2(μ),μ)+κ2(μ)μ1+κ22(μ)2ρκ2(μ)=1σ1T(ln(aF1)+12σ22bT12σ22b2T+12σ12Tρσ1σ2T)+1σ1T(12σ22bT)1+(σ2σ1b)22ρσ2σ1b=ln(F1a)12σ12Tσ22bT+12σ22b2T+ρσ1σ2TTσ12+b2σ222ρσ1σ2b.\begin{split}&\frac{-\delta_{2}(\mu)}{\sqrt{1+\kappa_{2}^{2}(\mu)-2\rho\kappa_{2}(\mu)}}\\ =&\frac{-z_{0}^{2}(\sigma_{2}b_{2}(\mu),a_{2}(\mu),\mu)+\kappa_{2}(\mu)\mu}{\sqrt{1+\kappa_{2}^{2}(\mu)-2\rho\kappa_{2}(\mu)}}\\ =&\frac{-\frac{1}{\sigma_{1}\sqrt{T}}\left(\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T+\frac{1}{2}\sigma_{1}^{2}T-\rho\sigma_{1}\sigma_{2}T\right)+\frac{1}{\sigma_{1}\sqrt{T}}\left(-\frac{1}{2}\sigma_{2}^{2}bT\right)}{\sqrt{1+\left(\frac{\sigma_{2}}{\sigma_{1}}b\right)^{2}-2\rho\frac{\sigma_{2}}{\sigma_{1}}b}}\\ =&\frac{\ln\left(\frac{F_{1}}{a}\right)-\frac{1}{2}\sigma_{1}^{2}T-\sigma_{2}^{2}bT+\frac{1}{2}\sigma_{2}^{2}b^{2}T+\rho\sigma_{1}\sigma_{2}T}{\sqrt{T}\sqrt{\sigma_{1}^{2}+b^{2}\sigma_{2}^{2}-2\rho\sigma_{1}\sigma_{2}b}}.\end{split} (105)

When γ=12σ2T\gamma=\frac{1}{2}\sigma_{2}\sqrt{T},

a3(γ)=a3(12σ2T)=F2+Keσ2T12σ2T+12σ22T=F2+K=a,b3(γ)=b3(12σ2T)=F2e12σ22Teσ2T12σ2TF2e12σ22Teσ2T12σ2T+K=F2F2+K=b,κ3(γ)=κ3(12σ2T)=σ2σ1b,\begin{split}a_{3}(\gamma)&=a_{3}\left(\frac{1}{2}\sigma_{2}\sqrt{T}\right)=F_{2}+Ke^{-\sigma_{2}\sqrt{T}\frac{1}{2}\sigma_{2}\sqrt{T}+\frac{1}{2}\sigma_{2}^{2}T}=F_{2}+K=a,\\ b_{3}(\gamma)&=b_{3}\left(\frac{1}{2}\sigma_{2}\sqrt{T}\right)=\frac{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}e^{\sigma_{2}\sqrt{T}\frac{1}{2}\sigma_{2}\sqrt{T}}}{F_{2}e^{-\frac{1}{2}\sigma_{2}^{2}T}e^{\sigma_{2}\sqrt{T}\frac{1}{2}\sigma_{2}\sqrt{T}}+K}=\frac{F_{2}}{F_{2}+K}=b,\\ \kappa_{3}(\gamma)&=\kappa_{3}\left(\frac{1}{2}\sigma_{2}\sqrt{T}\right)=\frac{\sigma_{2}}{\sigma_{1}}b,\end{split} (106)

and

z03(σ2b3(γ),a3(γ),γ)=1σ1Tln(aF1)+1σ1T(12σ22bT12σ22b2T)+σ1T2=1σ1T(ln(aF1)+12σ22bT12σ22b2T+12σ12T).\begin{split}&z_{0}^{3}(\sigma_{2}b_{3}(\gamma),a_{3}(\gamma),\gamma)\\ =&\frac{1}{\sigma_{1}\sqrt{T}}\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{\sigma_{1}\sqrt{T}}\left(\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T\right)+\frac{\sigma_{1}\sqrt{T}}{2}\\ =&\frac{1}{\sigma_{1}\sqrt{T}}\left(\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T+\frac{1}{2}\sigma_{1}^{2}T\right).\end{split} (107)

Hence

δ3(γ)1+κ32(γ)2ρκ3(γ)=z03(σ2b3(γ),a3(γ),γ)+κ3(γ)γ1+κ32(γ)2ρκ3(γ)=1σ1T(ln(aF1)+12σ22bT12σ22b2T+12σ12T)+1σ1T(12σ22bT)1+(σ2σ1b)22ρσ2σ1b=ln(F1a)12σ12T+12σ22b2TTσ12+b2σ222ρσ1σ2b.\begin{split}&\frac{-\delta_{3}(\gamma)}{\sqrt{1+\kappa_{3}^{2}(\gamma)-2\rho\kappa_{3}(\gamma)}}\\ =&\frac{-z_{0}^{3}(\sigma_{2}b_{3}(\gamma),a_{3}(\gamma),\gamma)+\kappa_{3}(\gamma)\gamma}{\sqrt{1+\kappa_{3}^{2}(\gamma)-2\rho\kappa_{3}(\gamma)}}\\ =&\frac{-\frac{1}{\sigma_{1}\sqrt{T}}\left(\ln\left(\frac{a}{F_{1}}\right)+\frac{1}{2}\sigma_{2}^{2}bT-\frac{1}{2}\sigma_{2}^{2}b^{2}T+\frac{1}{2}\sigma_{1}^{2}T\right)+\frac{1}{\sigma_{1}\sqrt{T}}\left(\frac{1}{2}\sigma_{2}^{2}bT\right)}{\sqrt{1+\left(\frac{\sigma_{2}}{\sigma_{1}}b\right)^{2}-2\rho\frac{\sigma_{2}}{\sigma_{1}}b}}\\ =&\frac{\ln\left(\frac{F_{1}}{a}\right)-\frac{1}{2}\sigma_{1}^{2}T+\frac{1}{2}\sigma_{2}^{2}b^{2}T}{\sqrt{T}\sqrt{\sigma_{1}^{2}+b^{2}\sigma_{2}^{2}-2\rho\sigma_{1}\sigma_{2}b}}.\end{split} (108)

This completes the proof.

References

  • [1] P. Bjerksund and G. Stensland, Closed form spread option valuation, Quantitative Finance, 14 (2014), pp. 1785–1794.
  • [2] F. Black, The pricing of commodity contracts, Journal of financial economics, 3 (1976), pp. 167–179.
  • [3] R. Caldana and G. Fusai, Spread and basket option pricing: an application to interconnected power markets, 2012.
  • [4] R. Caldana and G. Fusai, A general closed-form spread option pricing formula, Journal of Banking &\& Finance, 37 (2013), pp. 4893–4906.
  • [5] R. Caldana, G. Fusai, A. Gnoatto, and M. Grasselli, General closed-form basket option pricing bounds, Quantitative Finance, 16 (2016), pp. 535–554.
  • [6] R. Carmona and V. Durrleman, Pricing and hedging spread options, Siam Review, 45 (2003), pp. 627–685.
  • [7] R. Carmona and V. Durrleman, Pricing and hedging spread options in a log-normal model (technical report: Department of operations research and financial engineering), Princeton, NJ: Princeton University, (2003).
  • [8] P. Carr and D. Madan, Option valuation using the fast fourier transform, Journal of computational finance, 2 (1999), pp. 61–73.
  • [9] F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing, Mathematische annalen, 300 (1994), pp. 463–520.
  • [10] M. A. H. Dempster and S. G. Hong, Spread option valuation and the fast fourier transform, in Mathematical Finance—Bachelier Congress 2000, Springer, 2002, pp. 203–220.
  • [11] S. S. Dragomir, Approximating the riemann-stieltjes integral by a trapezoidal quadrature rule with applications, Mathematical and Computer Modelling, 54 (2011), pp. 243–260.
  • [12] J. M. Harrison and S. R. Pliska, A stochastic calculus model of continuous trading: complete markets, Stochastic processes and their applications, 15 (1983), pp. 313–316.
  • [13] T. R. Hurd and Z. Zhou, A fourier transform method for spread option pricing, SIAM Journal on Financial Mathematics, 1 (2010), pp. 142–157.
  • [14] R. A. Jarrow and P. Protter, An introduction to financial asset pricing, Handbooks in Operations Research and Management Science, 15 (2007), pp. 13–69.
  • [15] E. Kirk and J. Aron, Correlation in the energy markets, Managing energy price risk, 1 (1995), pp. 71–78.
  • [16] W. Margrabe, The value of an option to exchange one asset for another, The journal of finance, 33 (1978), pp. 177–186.
  • [17] G. Poitras, Spread options, exchange options, and arithmetic brownian motion, The Journal of Futures Markets (1986-1998), 18 (1998), p. 487.
  • [18] K. Ravindran, Low-fat spreads, Risk, 6 (1993), pp. 66–67.
  • [19] D. Wilcox, Energy futures and options: Spread options in energy markets, Goldman Sachs & Co., New York, (1990).