This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Nonlinear Moment Model for Radiative Transfer Equation

Ruo Li,   Peng Song  and  Lingchao Zheng CAPT, LMAM & School of Mathematical Sciences, Peking University, Beijing, China, email: [email protected]Institute of Applied Physics and Computational Mathematics, Beijing, China, email: [email protected]School of Mathematical Sciences, Peking University, Beijing, China, email: [email protected]
Abstract

We derive a nonlinear moment model for radiative transfer equation in 3D space, using the method to derive the nonlinear moment model for the radiative transfer equation in slab geometry. The resulted 3D HMPN{H\!M\!P}_{\!N} model enjoys a list of mathematical advantages, including global hyperbolicity, rotational invariance, physical wave speeds, spectral accuracy, and correct higher-order Eddington approximation. Simulation examples are presented to validate the new model numerically.

Keywords: Radiative transfer equation; moment method; nonlinear model; global hyperbolicity.

1 Introduction

The radiative transfer equation (RTE) depicts the motion of photons and their interaction with the background medium. It has lots of applications, such as radiation astronomy [35], optical imaging [26, 40], neutron transport in reactor physics [37, 16], light transport in atmospheric radiative transfer [31] and heat transfer [27]. Due to the integro-differential form and the high-dimensionality of RTE, how to develop efficient methods to solve it numerically is an important but challenging topic. So far, the commonly used numerical methods can be categorized into two groups: the probabilistic methods, like the direct simulation Monte Carlo (DSMC) method [21, 3, 24, 14, 1], and the deterministic methods [4, 28, 39, 25, 13, 15, 36, 2, 17, 20, 19], such as the discrete ordinates method (SNS_{N}) [4, 28, 39], the moment methods [25, 13, 15, 2, 20, 19] and etc.

The discrete ordinates method (SNS_{N}) is one of the most popular numerical methods to simulate the RTE, which solve the RTE along with a discrete set of angular directions from a given quadrature set. However, the SNS_{N} model assumes that the particles can only move along the directions in the quadrature set, thus once the coordinate system is rotated, the results of the SNS_{N} model can be different. The lack of rotational invariance results in numerical artifacts, known as ray effects [28].

In order to reduce the complexity of the RTE, the moment method focuses on the evolution of a finite number of moments of the specific intensity, which avoids the high-dimensionality of directly solving the RTE. Since the governing equation of a lower order moment commonly contains higher order moments, the moment system is often not automatically closed. Hence one has to take a moment closure to close the moment system. A practical method for the moment closure is to construct an ansatz to approximate the specific intensity. The pioneer works in moment method include the spherical harmonics method (PNP_{N}) [37] and the maximum entropy method (MNM_{N}) [29, 15, 36]. The PNP_{N} model constructs the ansatz using spherical harmonic polynomials. It can be regarded as a polynomial expansion of the specific intensity around the equilibrium, which is a constant function. One of the flaws is that the resulting system may lead to nonphysical oscillations, or even worse, negative particle concentration [6, 7, 34]. The MNM_{N} model constructs the ansatz using the principle of maximum entropy, as the maximum entropy closure for Boltzmann equation [29, 15]. Unfortunately, no explicit expression of the moment closure for MNM_{N} model can be given when the order N2N\geq 2. To implement the model numerically, one has to solve an ill-conditioned optimization problem to obtain an approximate moment closure. This almost prohibits the application of the MNM_{N} model.

Recently, a nonlinear moment model (called the MPN{M\!P}_{\!N} model) was proposed in [20] for the RTE in slab geometry. This model takes the ansatz of the M1M_{1} model (the first order MNM_{N} model) as the weight function, then constructs the ansatz by expanding the specific intensity around the weight function in terms of orthogonal polynomials in the velocity variables. Numerical examples in [20] demonstrated a quite promising performance as an improved approximation of the intensity in comparison of the PNP_{N} model. The MPN{M\!P}_{\!N} model was further improved in [19] by a globally hyperbolic regularization following the framework developed in [8, 9, 10, 18]. We note that the regularization in [19] is a subtle modification of the work in [10] instead of a direct application. Otherwise, the resulting system may change the M1M_{1} model, which leads to a wrong higher-order Eddington approximation. Eventually, the HMPN{H\!M\!P}_{\!N} model was proposed in [19] with not only global hyperbolicity, but also a physical higher-order Eddington approximation.

Encouraged by the elegant mathematical structure and the promising numerical performance of the HMPN{H\!M\!P}_{\!N} model for RTE in slab geometry, we in this paper try to extend the method to derive the HMPN{H\!M\!P}_{\!N} model for 3D problems. The steps of the extension are clear while there are still numerous difficulties. Fortunately, the 3D M1M_{1} model is explicit, which allow us to construct the ansatz to approximate the specific intensity using again the weighted polynomials with the weight function is the ansatz of the M1M_{1} model. To construct the function space of the weighted polynomials, we need to give the orthogonal polynomial basis with respect to the weight function. For the slab geometry [20], this can be implemented by a simple Gram-Schmidt orthogonalization. For the 3D case, we have to use quasi-orthogonal polynomials rather than orthogonal polynomials. Otherwise, it can be extremely involving to accomplish the calculation, which makes further analysis to the resulted model prohibited. We propose a procedure to make a quasi Gram-Schmidt orthogonalization to obtain the quasi-orthogonal polynomials in explicit expressions. This provides us a 3D MPN{M\!P}_{\!N} model in explicit formation, which can be mathematically analyzed. To achieve global hyperbolicity, we still adopt the method in [19] to regularize the 3D MPN{M\!P}_{\!N} model. Quite smoothly a globally hyperbolic 3D HMPN{H\!M\!P}_{\!N} model is eventually attained with a list of fabulous mathematical natures inherited from its 1D counterpart for the slab geometry. The resulted model is rotational invariant, with wave speeds not greater than that of light, spectral approximation accuracy, and correct higher-order Eddington approximation. We carry out preliminary numerical simulating using an abruptly splitting scheme to validate the new 3D HMPN{H\!M\!P}_{\!N} model. Some numerical examples on typical problems are presented with satisfactory performance.

The rest of this paper is arranged as follows. In Section 2, we briefly introduce the moment methods for RTE, and review how the MPN{M\!P}_{\!N} and the HMPN{H\!M\!P}_{\!N} model in slab geometry were derived in [20, 19]. In Section 3, we derive the 3D MPN{M\!P}_{\!N} model and prove that the model is rotational invariant. The hyperbolic regularization is applied to give the HMPN{H\!M\!P}_{\!N} model in Section 4. The model is analyzed in detail therein. In Section 5, we introduce the numerical scheme to carry out numerical simulations and present some numerical examples. The paper is then ended with a short conclusion remarks.

2 Preliminary

To model radiative transfer, the governing equation is a time-dependent equation of the specific intensity II as

1cIt+𝛀𝒙I=𝒮(I),\frac{1}{c}\dfrac{\partial{I}}{\partial{t}}+\bm{\Omega}\cdot\nabla_{\bm{x}}I={\mathcal{S}}(I), (2.1)

where cc is the speed of light, and the specific intensity I=I(t,𝒙;𝛀,ν)I=I(t,\bm{x};\bm{\Omega},\nu) depends on time t+t\in\mathbb{R}^{+}, the spatial coordinate of the photon 𝒙3\bm{x}\in\mathbb{R}^{3}, the velocity direction 𝛀𝕊2\bm{\Omega}\in\mathbb{S}^{2} and the frequency ν+\nu\in\mathbb{R}^{+}. In this paper, our study omits the independent variable ν\nu that II is a function of tt, 𝒙\bm{x} and 𝛀\bm{\Omega} only. The right hand side 𝒮(I){\mathcal{S}}(I) denotes the actions by the background medium on the photons. A form of 𝒮(I){\mathcal{S}}(I) adopted commonly was given in [5, 33] as

𝒮(I)=σtI+14πacσaT4+14πσs𝕊2Id𝛀+s4π,{\mathcal{S}}(I)=-\sigma_{t}I+\frac{1}{4\pi}ac\sigma_{a}T^{4}+\frac{1}{4\pi}\sigma_{s}\int_{\mathbb{S}^{2}}I\,\mathrm{d}\bm{\Omega}+\frac{s}{4\pi}, (2.2)

where aa is the radiation constant, and s=s(t,𝒙)s=s(t,\bm{x}) is an isotropic external source of radiation. The scattering coefficient σs\sigma_{s}, the absorption coefficient σa\sigma_{a}, and the material temperature T(t,𝒙)T(t,\bm{x}) depend on time tt and the spatial position 𝒙\bm{x}. The total opacity coefficient is σt=σa+σs\sigma_{t}=\sigma_{a}+\sigma_{s}.

In case that the problems slab geometry and spherical symmetric geometry are considered, the 3D RTE (2.1) can be simplified to 1D problem. Precisely, in the slab geometry, the specific intensity depends only upon the single spatial coordinate zz and the single angular coordinate arccosμ\arccos\mu, the angle between 𝛀\bm{\Omega} and the zz-axis. Then the specific intensity becomes I=I(z,μ)I=I(z,\mu), and (2.1) is simplified as

1cIt+μIz=𝒮(I).\dfrac{1}{c}\dfrac{\partial{I}}{\partial{t}}+\mu\dfrac{\partial{I}}{\partial{z}}={\mathcal{S}}(I). (2.3)

The spherical geometry with perfect symmetry is a slightly more complicated case. The RTE, where the specific intensity depends upon only on the distance from the origin r=𝒙r=\|\bm{x}\|, and the angular variable arccosμ\arccos\mu, which is the angle between 𝛀\bm{\Omega} and 𝒙\bm{x}. In this case, I=I(r,μ)I=I(r,\mu), and the 3D RTE (2.1) is simplified as

1cIt+μIr+1μ2rIμ=𝒮(I).\dfrac{1}{c}\dfrac{\partial{I}}{\partial{t}}+\mu\dfrac{\partial{I}}{\partial{r}}+\dfrac{1-\mu^{2}}{r}\dfrac{\partial{I}}{\partial{\mu}}={\mathcal{S}}(I). (2.4)

In [2, 20, 19, 30], for slab geometry and spherical symmetric geometry, some nonlinear moment models had been derived with global hyperbolicity and promising performance in handling problems with fair extreme specific intensity functions. The major aim of this paper is to develop models for 3D problems with similar techniques.

At first, we define the moments of the 3D specific intensity. Let α3\alpha\in\mathbb{N}^{3} be a 3D multi-index, i.e. α=(α1,α2,α3)T\alpha=(\alpha_{1},\alpha_{2},\alpha_{3})^{T}, α1,α2,α3\alpha_{1},\alpha_{2},\alpha_{3}\in\mathbb{N}. We define a function of tt, and 𝒙\bm{x}, denoted by Iα(t,𝒙){\langle I\rangle}_{\alpha}(t,\bm{x}), as

Iα(t,𝒙)𝕊2𝛀αI(t,𝒙;𝛀)d𝛀,α3,{\langle I\rangle}_{\alpha}(t,\bm{x})\triangleq\int_{\mathbb{S}^{2}}\bm{\Omega}^{\alpha}I(t,\bm{x};\bm{\Omega})\,\mathrm{d}\bm{\Omega},\quad\alpha\in\mathbb{N}^{3}, (2.5)

where 𝛀α=Ω1α1Ω2α2Ω3α3\bm{\Omega}^{\alpha}=\Omega_{1}^{\alpha_{1}}\Omega_{2}^{\alpha_{2}}\Omega_{3}^{\alpha_{3}}. We call that Iα{\langle I\rangle}_{\alpha} is the α\alpha-th moment of the specific intensity II.

Notice that 𝛀𝕊2\bm{\Omega}\in\mathbb{S}^{2} implies 𝛀=1\|\bm{\Omega}\|=1, thus one has

d=13Iα+2ed=Iα,α3,\sum_{d=1}^{3}{\langle I\rangle}_{\alpha+2e_{d}}={\langle I\rangle}_{\alpha},\qquad\forall\alpha\in\mathbb{N}^{3},

where ede_{d} represents the multi-index whose dd-th index is 1, and the else two indexes are 0. Therefore, we only need to consider these moments Iα{\langle I\rangle}_{\alpha}, α\alpha\in{\mathcal{I}}, where {\mathcal{I}} is a set of multi-indexes, defined by

{α:α3,α31}.{\mathcal{I}}\triangleq\left\{\alpha:\alpha\in\mathbb{N}^{3},\alpha_{3}\leq 1\right\}. (2.6)

The order of the multi-index α\alpha is defined as |α|=d=13αd|\alpha|=\sum_{d=1}^{3}\alpha_{d}, and we denote that N{α:α,|α|N}{\mathcal{I}}_{N}\triangleq\left\{\alpha:\alpha\in{\mathcal{I}},|\alpha|\leq N\right\}. It is clear that once {Iα:αN}\left\{{\langle I\rangle}_{\alpha}:\alpha\in{\mathcal{I}}_{N}\right\} is determined, one can obtain {Iα:α3,|α|N}\left\{{\langle I\rangle}_{\alpha}:\alpha\in\mathbb{N}^{3},|\alpha|\leq N\right\}. This allows us to discuss Iα{\langle I\rangle}_{\alpha} for α\alpha\in{\mathcal{I}} only to derive reduced models.

Multiplying (2.1) by 𝛀α\bm{\Omega}^{\alpha}, and taking the integration with respect to 𝛀\bm{\Omega} over 𝕊2\mathbb{S}^{2}, one can have

1cIαt+d=13Iα+edxd=𝒮(I)α,α.\frac{1}{c}\dfrac{\partial{{\langle I\rangle}_{\alpha}}}{\partial{t}}+\sum_{d=1}^{3}\dfrac{\partial{{\langle I\rangle}_{\alpha+e_{d}}}}{\partial{x_{d}}}={\langle{\mathcal{S}}(I)\rangle}_{\alpha},\quad{\alpha}\in{\mathcal{I}}. (2.7)

In order to derive a moment model for (2.1), we first truncate the system by discarding all the governing equations of high order moments Iα{\langle I\rangle}_{\alpha}, where |α|>N|\alpha|>N, for a given integer NN\in\mathbb{N}. The truncated moment system is

1cIαt+d=13Iα+edxd=𝒮(I)α,αN.\frac{1}{c}\dfrac{\partial{{\langle I\rangle}_{\alpha}}}{\partial{t}}+\sum_{d=1}^{3}\dfrac{\partial{{\langle I\rangle}_{\alpha+e_{d}}}}{\partial{x_{d}}}={\langle{\mathcal{S}}(I)\rangle}_{\alpha},\quad{\alpha}\in{\mathcal{I}}_{N}. (2.8)

However, the governing equations of Iα{\langle I\rangle}_{\alpha}, |α|=N|\alpha|=N, involve three N+1N+1 order moments Iα+ed{\langle I\rangle}_{\alpha+e_{d}} for d=1,2,3d=1,2,3, thus the truncated system (2.8) is not closed. Therefore, we need to determine all these moments, {Iα,αN+1}\left\{{\langle I\rangle}_{\alpha},\alpha\in{\mathcal{I}}_{N+1}\right\} to make this truncated system (2.8) closed.

We divide the moments in {Iα,αN+1}\left\{{\langle I\rangle}_{\alpha},\alpha\in{\mathcal{I}}_{N+1}\right\} into two parts: lower-order moments (also referred as known moments later on), and higher-order moments (also referred as unknown moments later on).

Iα,αN+1,|α|NIα,αN+1,|α|=N+1lower-order momentshigher-order moments(known moments)(unknown moments)\begin{array}[H]{ccc}{\langle I\rangle}_{\alpha},\alpha\in{\mathcal{I}}_{N+1},|\alpha|\leq N&&{\langle I\rangle}_{\alpha},\alpha\in{\mathcal{I}}_{N+1},|\alpha|=N+1\\ \Downarrow&&\Downarrow\\ \text{lower-order moments}&&\text{higher-order moments}\\ \text{({\it known moments})}&&\text{({\it unknown moments})}\end{array} (2.9)

The aim of the so-called moment closure to this system is to approximate the unknown moments as functions of known moments, saying to give a formulation as

IαEα=Eα(Iβ,βN),for αN+1,|α|=N+1.{\langle I\rangle}_{\alpha}\approx E_{\alpha}=E_{\alpha}({\langle I\rangle}_{\beta},\beta\in{\mathcal{I}}_{N}),\quad\text{for }\alpha\in{\mathcal{I}}_{N+1},|\alpha|=N+1. (2.10)

To achieve this goal, a practical approach is to construct an ansatz for the specific intensity. Precisely, let EαE_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}, be the known moments for a certain unknown specific intensity II. Then one may propose an expression I^(𝛀;Eα,αN)\hat{I}(\bm{\Omega};E_{\alpha},\alpha\in{\mathcal{I}}_{N}), called an ansatz to approximate II, such that

I^(;Eα,αN)α=Eα,αN.{\langle\hat{I}(\cdot;E_{\alpha},\alpha\in{\mathcal{I}}_{N})\rangle}_{\alpha}=E_{\alpha},\quad\alpha\in{\mathcal{I}}_{N}. (2.11)

Often we require that I^\hat{I} is uniquely determined by the consistency relations (2.11). With I^\hat{I} given, the higher-order moments of II are then approximated by the higher-order moments of I^\hat{I}, i.e.,

Eα=I^(;Eβ,βN)α,αN+1,|α|=N+1.E_{\alpha}={\langle\hat{I}(\cdot;E_{\beta},\beta\in{\mathcal{I}}_{N})\rangle}_{\alpha},\quad\alpha\in{\mathcal{I}}_{N+1},|\alpha|=N+1. (2.12)

Therefore, one may take the closed moment system

1cEαt+d=13Eα+edxd=𝒮(I^)α,αN,\frac{1}{c}\dfrac{\partial{E_{\alpha}}}{\partial{t}}+\sum_{d=1}^{3}\dfrac{\partial{E_{\alpha+e_{d}}}}{\partial{x_{d}}}=\langle{\mathcal{S}}(\hat{I})\rangle_{\alpha},\quad\alpha\in{\mathcal{I}}_{N}, (2.13)

as the reduced model to approximate the original RTE, where Eα+edE_{\alpha+e_{d}} are functions of EαE_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}, defined in (2.10) and (2.12).

Many existing models can be regarded as consequences using this moment closure approach. For example, the PNP_{N} model [25], the MNM_{N} model [29, 15], the positive PNP_{N} model [22], the B2B_{2} model [2], and the MPN{M\!P}_{\!N} model [20] are in this fold. The MPN{M\!P}_{\!N} model we proposed in [20], and then improved in [19] as the HMPN{H\!M\!P}_{\!N} model, is limited for problems in slab geometry, where it exhibits satisfactory numerical performance for some standard benchmarks. To extend the method therein to 3D RTE, below we first briefly review the methods in [20, 19] to derive models in slab geometry to clarify our idea.

The MPN{M\!P}_{\!N} model derived in [20] for RTE in slab geometry is based on a method to combine the PNP_{N} model and the MNM_{N} model, which was implemented by expanding the specific intensity around the ansatz of the M1M_{1} model in terms of orthogonal polynomials. The ansatz of the M1M_{1} model in slab geometry is

I^M1=ε(1+c0μ)4,\hat{I}_{M_{1}}=\frac{\varepsilon}{(1+c_{0}\mu)^{4}}, (2.14)

where ε\varepsilon and c0c_{0} are determined by the 0-th moment E0E_{0} and 11-th moment E1E_{1}, formulated as

c0=3E1/E02+43(E1/E0)2,ε=3(1c02)32(3+c02).c_{0}=-\frac{3E_{1}/E_{0}}{2+\sqrt{4-3(E_{1}/E_{0})^{2}}},\quad\varepsilon=\frac{3(1-c_{0}^{2})^{3}}{2(3+c_{0}^{2})}. (2.15)

Then the specific intensity is approximated by a weighted polynomial, with the weight function

ω[c0](μ)=1(1+c0μ)4.\omega^{[c_{0}]}(\mu)=\frac{1}{(1+c_{0}\mu)^{4}}. (2.16)

The function space of the weighted polynomials is

N[c0]{ω[c0]k=0Ngkμk}.\mathbb{H}^{[c_{0}]}_{N}\triangleq\left\{\omega^{[c_{0}]}\sum_{k=0}^{N}g_{k}\mu^{k}\right\}. (2.17)

Then the ansatz of the MPN{M\!P}_{\!N} model is written as

I^(μ;E0,,EN)i=0NfiΦi[c0](μ)N[c0],Φi[c0](μ)=ϕi[c0](μ)ω[c0](μ),\hat{I}(\mu;E_{0},\cdots,E_{N})\triangleq\sum_{i=0}^{N}f_{i}\Phi^{[c_{0}]}_{i}(\mu)\in\mathbb{H}^{[c_{0}]}_{N},\quad\Phi^{[c_{0}]}_{i}(\mu)=\phi^{[c_{0}]}_{i}(\mu)\omega^{[c_{0}]}(\mu), (2.18)

where Φi[c0](μ)=ϕi[c0](μ)ω[c0](μ)\Phi^{[c_{0}]}_{i}(\mu)=\phi^{[c_{0}]}_{i}(\mu)\omega^{[c_{0}]}(\mu), i=0,1,,Ni=0,1,\cdots,N, are the basis functions, ϕi[c0](μ)\phi^{[c_{0}]}_{i}(\mu) are orthogonal polynomials with respect to the weight function, and fif_{i} are the expansion coefficients.

The orthogonal polynomials ϕk[c0](μ)\phi^{[c_{0}]}_{k}(\mu) can be calculated by a simple Gram-Schmidt orthogonalization, formulated as

ϕ0[c0](μ)=1,ϕj[c0](μ)=μjk=0j1𝒦j,k𝒦k,kϕk[c0](μ),j1,\phi^{[c_{0}]}_{0}(\mu)=1,\quad\phi^{[c_{0}]}_{j}(\mu)=\mu^{j}-\sum_{k=0}^{j-1}\frac{{\mathcal{K}}_{j,k}}{{\mathcal{K}}_{k,k}}\phi^{[c_{0}]}_{k}(\mu),\quad j\geq 1, (2.19)

where 𝒦j,k=11μjϕk[c0](μ)ω[c0](μ)dμ{\mathcal{K}}_{j,k}=\int_{-1}^{1}\mu^{j}\phi^{[c_{0}]}_{k}(\mu)\omega^{[c_{0}]}(\mu)\,\mathrm{d}\mu, calculated by

𝒦0,0=ω[c0](μ)0,𝒦i,j=ω[c0](μ)i+jk=0j1𝒦j,k𝒦i,k𝒦k,k,1ji.{\mathcal{K}}_{0,0}={\langle\omega^{[c_{0}]}(\mu)\rangle}_{0},\quad{\mathcal{K}}_{i,j}={\langle\omega^{[c_{0}]}(\mu)\rangle}_{i+j}-\sum_{k=0}^{j-1}\frac{{\mathcal{K}}_{j,k}{\mathcal{K}}_{i,k}}{{\mathcal{K}}_{k,k}},\quad 1\leq j\leq i. (2.20)

Furthermore, by

f0=E0𝒦0,0,fi=1𝒦i,i(Eij=0i1𝒦i,jfj),1iN,f_{0}=\dfrac{E_{0}}{{\mathcal{K}}_{0,0}},\quad f_{i}=\frac{1}{{\mathcal{K}}_{i,i}}\left(E_{i}-\sum_{j=0}^{i-1}{\mathcal{K}}_{i,j}f_{j}\right),\quad 1\leq i\leq N, (2.21)

one can determine the coefficients fkf_{k}, and the ansatz I^(μ;E0,E1,EN)\hat{I}(\mu;E_{0},E_{1},\cdots E_{N}). Finally, we have the moment closure as

EN+1=k=0Nfk𝒦N+1,k.E_{N+1}=\sum_{k=0}^{N}f_{k}{\mathcal{K}}_{N+1,k}. (2.22)

Meanwhile, in the viewpoint of orthogonal projection, if we define the orthogonal projection to function space N[c0]\mathbb{H}^{[c_{0}]}_{N},

𝒫N:f=k=0+fkΦk[c0](μ)𝒫Nf=k=0NfkΦk[c0](μ),\mathcal{P}_{N}:f=\sum_{k=0}^{+\infty}f_{k}\Phi^{[c_{0}]}_{k}(\mu)\rightarrow\mathcal{P}_{N}f=\sum_{k=0}^{N}f_{k}\Phi^{[c_{0}]}_{k}(\mu), (2.23)

then the MPN{M\!P}_{\!N} moment system can be written as

1c𝒫N𝒫NIt+𝒫Nμ𝒫NIz=𝒫N𝒮(𝒫NI).\dfrac{1}{c}\mathcal{P}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{t}}+\mathcal{P}_{N}\mu\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{z}}=\mathcal{P}_{N}{\mathcal{S}}(\mathcal{P}_{N}I). (2.24)

The weight function (2.16) permits the MPN{M\!P}_{\!N} model to approximate a strongly anisotropic distribution with very high accuracy. In [19], the MPN{M\!P}_{\!N} model was further improved by a hyperbolic regularization, which provides global hyperbolicity. To achieve the required hyperbolicity, the model reduction framework in [10, 18] suggests adding one more projection between the operators μ\mu\cdot and z\dfrac{\partial{\cdot}}{\partial{z}} in (2.24) to regularize the MPN{M\!P}_{\!N} model to be globally hyperbolic, and the resulting model is

1c𝒫N𝒫NIt+𝒫Nμ𝒫N𝒫NIz=𝒫N𝒮(𝒫NI).\frac{1}{c}\mathcal{P}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{t}}+\mathcal{P}_{N}\mu\mathcal{P}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{z}}=\mathcal{P}_{N}{\mathcal{S}}(\mathcal{P}_{N}I). (2.25)

An interesting point observed in [19] is that this regularization changes the MPN{M\!P}_{\!N} model when N=1N=1. It is definitely inappropriate that the M1M_{1} model is changed by the regularization. In order to fix this defect, another weight function is introduced as

ω~[c0]=1(1+c0μ)5,\tilde{\omega}^{[c_{0}]}=\frac{1}{(1+c_{0}\mu)^{5}}, (2.26)

and then a new function space is defined as

~N[c0]{ω~[c0]k=0Ngkμk}.\tilde{\mathbb{H}}^{[c_{0}]}_{N}\triangleq\left\{\tilde{\omega}^{[c_{0}]}\sum_{k=0}^{N}g_{k}\mu^{k}\right\}. (2.27)

In this subspace, one can define the orthogonal polynomials ϕ~k[c0](μ)\tilde{\phi}^{[c_{0}]}_{k}(\mu) and the basis function Φ~k[c0](μ)\tilde{\Phi}^{[c_{0}]}_{k}(\mu), 0kN0\leq k\leq N. Furthermore, a new projection 𝒫~N\tilde{\mathcal{P}}_{N} is defined as

𝒫~N:f=k=0+fkΦ~k[c0](μ)𝒫~Nf=k=0NfkΦ~k[c0](μ).\tilde{\mathcal{P}}_{N}:f=\sum_{k=0}^{+\infty}f_{k}\tilde{\Phi}^{[c_{0}]}_{k}(\mu)\rightarrow\tilde{\mathcal{P}}_{N}f=\sum_{k=0}^{N}f_{k}\tilde{\Phi}^{[c_{0}]}_{k}(\mu). (2.28)

The new hyperbolic regularization in [19] adds one more projection 𝒫~N\tilde{\mathcal{P}}_{N} to give the HMPN{H\!M\!P}_{\!N} model formulated as

1c𝒫~N𝒫NIt+𝒫~Nμ𝒫~N𝒫NIz=𝒫~N𝒮(𝒫NI).\frac{1}{c}\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{t}}+\tilde{\mathcal{P}}_{N}\mu\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{z}}=\tilde{\mathcal{P}}_{N}{\mathcal{S}}(\mathcal{P}_{N}I). (2.29)

It was revealed that the HMPN{H\!M\!P}_{\!N} model enjoys some desired properties, such as

Property 1.
  1. 1.

    The HMPN{H\!M\!P}_{\!N} model is globally hyperbolic.

  2. 2.

    The characteristic speeds of the HMPN{H\!M\!P}_{\!N} model lie in [c,c][-c,c].

  3. 3.

    The regularization vanishes for the case N=1N=1.

  4. 4.

    Between the MPN{M\!P}_{\!N} model and the HMPN{H\!M\!P}_{\!N} model, the governing equation of EkE_{k}, k=0,,N1k=0,\dots,N-1 is not changed.

3 Moment Model Reduction

In this section, we adopt the strategy introduced in Section 2 to derive a MPN{M\!P}_{\!N} type model for the 3D RTE at first.

3.1 Formal derivation

Let us start with the M1M_{1} model in 3D case. The ansatz of specific intensity is

I^M1(𝛀;E0,Ee1,Ee2,Ee3)=ε(1+𝒄0𝛀)4.\hat{I}_{M_{1}}(\bm{\Omega};E_{0},E_{e_{1}},E_{e_{2}},E_{e_{3}})=\dfrac{\varepsilon}{(1+\bm{c}_{0}\cdot\bm{\Omega})^{4}}. (3.1)

with the known moments E0E_{0}, Ee1E_{e_{1}}, Ee2E_{e_{2}}, and Ee3E_{e_{3}}. We denote them as 𝑬0=(E0)T\bm{E}_{0}=(E_{0})^{T}, and 𝑬1=(Ee1,Ee2,Ee3)T\bm{E}_{1}=(E_{e_{1}},E_{e_{2}},E_{e_{3}})^{T}, respectively. Direct calculation yields that

𝒄0=2+43(𝑬1/E0)2𝑬1/E0𝑬1𝑬1,\bm{c}_{0}=\dfrac{-2+\sqrt{4-3(\|\bm{E}_{1}\|/E_{0})^{2}}}{\|\bm{E}_{1}\|/E_{0}}\dfrac{\bm{E}_{1}}{\|\bm{E}_{1}\|}, (3.2)

Following [20], we approximate the specific intensity with a weighted polynomial, and the weight function is chosen as the ansatz of the M1M_{1} model, as (3.1). For simplicity, we take the weight function as

ω[𝒄0](𝛀)=1(1+𝒄0𝛀)4.\omega^{[\bm{c}_{0}]}(\bm{\Omega})=\dfrac{1}{(1+\bm{c}_{0}\cdot\bm{\Omega})^{4}}.

Then the function space of weighted polynomials is defined as

N[𝒄0]{ω[𝒄0](𝛀)αNgα𝛀α}.\mathbb{H}^{[\bm{c}_{0}]}_{N}\triangleq\left\{\omega^{[\bm{c}_{0}]}(\bm{\Omega})\sum_{\alpha\in{\mathcal{I}}_{N}}g_{\alpha}\bm{\Omega}^{\alpha}\right\}. (3.3)

The ansatz of the 3D MPN{M\!P}_{\!N} model I^(𝛀)\hat{I}(\bm{\Omega}) is chosen to satisfy

I^N[𝒄0],I^α=Eα,αN.\hat{I}\in\mathbb{H}^{[\bm{c}_{0}]}_{N},\quad\langle\hat{I}\rangle_{\alpha}=E_{\alpha},\quad\alpha\in{\mathcal{I}}_{N}.

In order to determine the ansatz I^\hat{I}, we first rewrite I^\hat{I} as

I^(t,𝒙;𝛀)=I^(t;𝑬)=αNfα(t,𝒙)ϕα[𝒄0](𝛀)ω[𝒄0(t,𝒙)](𝛀)N[𝒄0],\hat{I}(t,\bm{x};\bm{\Omega})=\hat{I}(t;\bm{E})=\sum_{\alpha\in{\mathcal{I}}_{N}}f_{\alpha}(t,\bm{x})\phi^{[\bm{c}_{0}]}_{\alpha}(\bm{\Omega})\omega^{[\bm{c}_{0}(t,\bm{x})]}(\bm{\Omega})\in\mathbb{H}^{[\bm{c}_{0}]}_{N}, (3.4)

where ϕα[𝒄0],αN\phi^{[\bm{c}_{0}]}_{\alpha},\alpha\in{\mathcal{I}}_{N} are quasi-orthogonal polynomials with respect to the weight function ω[𝒄0]\omega^{[\bm{c}_{0}]}, and fαf_{\alpha} are the corresponding coefficients. On the quasi-orthogonal polynomials, we define the inner product

f,gN[𝒄0]𝕊2fgω[𝒄0]d𝛀,\left\langle{f},{g}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}}\triangleq\int_{\mathbb{S}^{2}}fg\omega^{[\bm{c}_{0}]}\,\mathrm{d}\bm{\Omega}, (3.5)

then the quasi-orthogonal polynomials ϕα[𝒄0]\phi^{[\bm{c}_{0}]}_{\alpha} satisfy that

ϕα[𝒄0],ϕβ[𝒄0]N[𝒄0]=𝕊2ϕα[𝒄0](𝛀)ϕβ[𝒄0](𝛀)ω[𝒄0](𝛀)d𝛀=0,when |α||β|.\left\langle{\phi^{[\bm{c}_{0}]}_{\alpha}},{\phi^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}}=\int_{\mathbb{S}^{2}}\phi^{[\bm{c}_{0}]}_{\alpha}(\bm{\Omega})\phi^{[\bm{c}_{0}]}_{\beta}(\bm{\Omega})\omega^{[\bm{c}_{0}]}(\bm{\Omega})\,\mathrm{d}\bm{\Omega}=0,\quad\text{when }|\alpha|\neq|\beta|. (3.6)

Moreover, the quasi-polynomial ϕα[𝒄0]\phi^{[\bm{c}_{0}]}_{\alpha} satisfies that its only |α||\alpha|-order term is 𝛀α\bm{\Omega}^{\alpha}, i.e.

ϕα[𝒄0]=𝛀α+β|α|1hα,β𝛀β.\phi^{[\bm{c}_{0}]}_{\alpha}=\bm{\Omega}^{\alpha}+\sum_{\beta\in{\mathcal{I}}_{|\alpha|-1}}h_{\alpha,\beta}\bm{\Omega}^{\beta}. (3.7)

For later usage, we denote the quasi-orthogonal functions

Φα[𝒄0]=ϕα[𝒄0]ω[𝒄0].\Phi^{[\bm{c}_{0}]}_{\alpha}=\phi^{[\bm{c}_{0}]}_{\alpha}\omega^{[\bm{c}_{0}]}. (3.8)
Remark 1.

Let us remark that ϕα[𝐜0]\phi^{[\bm{c}_{0}]}_{\alpha}, α\alpha\in{\mathcal{I}} are quasi-orthogonal polynomials, rather than orthogonal polynomials. In other words, ϕα[𝐜0],ϕβ[𝐜0]N[𝐜0]\left\langle{\phi^{[\bm{c}_{0}]}_{\alpha}},{\phi^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}} can be non-zero for |α|=|β||\alpha|=|\beta| and αβ\alpha\neq\beta.

Let us construct these quasi-orthogonal polynomials ϕα[𝒄0]\phi^{[\bm{c}_{0}]}_{\alpha} by the Gram-Schmidt orthogonalization. This Gram-Schmidt orthogonalization is different from the 1D case used in [20]. We denote α{\mathcal{E}}_{\alpha} as the moments of the weight function αω[𝒄0]α{\mathcal{E}}_{\alpha}\triangleq\langle\omega^{[\bm{c}_{0}]}\rangle_{\alpha} for later usage.

In (3.2), we denote 𝑬0\bm{E}_{0} and 𝑬1\bm{E}_{1} as the vector of moments of order 0 and order 11. In the following discussion, we will continue to use this notation, i.e. we denote 𝑬k\bm{E}_{k} as the vector of moments of order kk, whose dimension is 2k+12k+1. Similarly, we can denote ϕ[𝒄𝟎]k\bm{\phi^{[\bm{c}_{0}]}}_{k}, 𝚽[𝒄𝟎]k\bm{\Phi^{[\bm{c}_{0}]}}_{k}, 𝒇k\bm{f}_{k} and 𝓔k\bm{{\mathcal{E}}}_{k}. Using this notation, the moment closure

Eα(Eβ,βN),|α|=N+1,αE_{\alpha}(E_{\beta},\beta\in{\mathcal{I}}_{N}),\quad|\alpha|=N+1,\alpha\in{\mathcal{I}}

can be rewritten as

𝑬N+1(𝑬k, 0kN).\bm{E}_{N+1}(\bm{E}_{k},\ 0\leq k\leq N).

We denote by 𝝋k\bm{\varphi}_{k} to be the vector of 𝛀α\bm{\Omega}^{\alpha}, α\alpha\in{\mathcal{I}} and |α|=k|\alpha|=k. Using these notations, the ansatz (3.4) is rewritten as

I^=k=0N𝒇k𝚽[𝒄𝟎]k=ω[𝒄0]k=0N𝒇kϕ[𝒄𝟎]k.\hat{I}=\sum_{k=0}^{N}\bm{f}_{k}\bm{\Phi^{[\bm{c}_{0}]}}_{k}=\omega^{[\bm{c}_{0}]}\sum_{k=0}^{N}\bm{f}_{k}\bm{\phi^{[\bm{c}_{0}]}}_{k}. (3.9)

We denote the inner product as

𝒦α,β𝛀α,ϕβ[𝒄0]N[𝒄0],{\mathcal{K}}_{\alpha,\beta}\triangleq\left\langle{\bm{\Omega}^{\alpha}},{\phi^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}},

according to the properties of the quasi-orthogonal polynomials ϕα[𝒄0]\phi^{[\bm{c}_{0}]}_{\alpha} (3.6) and (3.7), we have

𝒦α,β=0, when |α|<|β|;𝒦α,β=ϕα[𝒄0],ϕβ[𝒄0]N[𝒄0]=𝒦β,α, when |α|=|β|.{\mathcal{K}}_{\alpha,\beta}=0,\text{ when }|\alpha|<|\beta|;\quad{\mathcal{K}}_{\alpha,\beta}=\left\langle{\phi^{[\bm{c}_{0}]}_{\alpha}},{\phi^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}}={\mathcal{K}}_{\beta,\alpha},\text{ when }|\alpha|=|\beta|.

Let us denote the matrix composed of

𝒦α,β,α,βN,|α|=i,|β|=j,{\mathcal{K}}_{\alpha,\beta},\quad\alpha,\beta\in{\mathcal{I}}_{N},|\alpha|=i,|\beta|=j,

as 𝓚i,j\bm{{\mathcal{K}}}_{i,j}, whose dimension is (2i+1)×(2j+1)(2i+1)\times(2j+1). It is not difficult to show that

  1. 1.

    𝓚i,j=0\bm{{\mathcal{K}}}_{i,j}=0, when i<ji<j.

  2. 2.

    𝓚k,k\bm{{\mathcal{K}}}_{k,k} is symmetric and positive definite.

Then, by the Gram-Schmidt orthogonalization, the calculation of the quasi-orthogonal polynomials can be written as

ϕ[𝒄𝟎]j=𝝋jk=0j1𝓚j,k𝓚k,k1ϕ[𝒄𝟎]k,j0.\bm{\phi^{[\bm{c}_{0}]}}_{j}=\bm{\varphi}_{j}-\sum_{k=0}^{j-1}\bm{{\mathcal{K}}}_{j,k}\bm{{\mathcal{K}}}_{k,k}^{-1}\bm{\phi^{[\bm{c}_{0}]}}_{k},\quad j\geq 0. (3.10)

Taking the inner product of 𝝋i\bm{\varphi}_{i} and the transpose of (3.10), one can derive the recursion relation of coefficients 𝒦α,β{\mathcal{K}}_{\alpha,\beta},

𝓚i,j=𝝋i,𝝋jTN[𝒄0]k=0j1𝓚i,k𝓚k,k1𝓚j,kT.\bm{{\mathcal{K}}}_{i,j}=\left\langle{\bm{\varphi}_{i}},{\bm{\varphi}_{j}^{T}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}}-\sum_{k=0}^{j-1}\bm{{\mathcal{K}}}_{i,k}\bm{{\mathcal{K}}}_{k,k}^{-1}\bm{{\mathcal{K}}}_{j,k}^{T}. (3.11)

Therefore, once α{\mathcal{E}}_{\alpha} are calculated, 𝒦α,β{\mathcal{K}}_{\alpha,\beta} is determined by (3.11), and ϕα[𝒄0]\phi^{[\bm{c}_{0}]}_{\alpha} is determined by (3.10). We note that all these formulations are explicit. The details of the calculation of α{\mathcal{E}}_{\alpha} are presented in Subsection 3.2.

Since the quasi-orthogonal polynomials have been calculated, one can simply determine the coefficients fαf_{\alpha} by the constraints of the known moments. To be precise, I^k=𝑬k\langle\hat{I}\rangle_{k}=\bm{E}_{k} implies that

j=0k𝓚k,j𝒇j=𝑬k,0kN,\sum_{j=0}^{k}\bm{{\mathcal{K}}}_{k,j}\bm{f}_{j}=\bm{E}_{k},\quad 0\leq k\leq N, (3.12)

thus the coefficients fαf_{\alpha}, αN\alpha\in{\mathcal{I}}_{N} are obtained by

𝒇k=𝓚k,k1(𝑬kj=0k1𝓚k,j𝒇j),0kN.\bm{f}_{k}=\bm{{\mathcal{K}}}_{k,k}^{-1}\left(\bm{E}_{k}-\sum_{j=0}^{k-1}\bm{{\mathcal{K}}}_{k,j}\bm{f}_{j}\right),\quad 0\leq k\leq N. (3.13)

Eventually, the moment closure of the MPN{M\!P}_{\!N} model is given as

𝑬N+1=I^N+1=j=0N𝓚N+1,j𝒇j.\bm{E}_{N+1}={\langle\hat{I}\rangle}_{N+1}=\sum_{j=0}^{N}\bm{{\mathcal{K}}}_{N+1,j}\bm{f}_{j}. (3.14)

Substituting (3.14) into (2.13), a closed moment system is attained. We refer this model as the 3D MPN{M\!P}_{\!N} moment system later on.

Remark 2.

Notice that 𝐜0\bm{c}_{0} and the weight function ω[𝐜0]\omega^{[\bm{c}_{0}]} are determined by 𝐄0\bm{E}_{0} and 𝐄1\bm{E}_{1}, therefore

I^edI^0=EedE0=ω[𝒄0]edω[𝒄0]0=𝒦ed,0𝒦0,0,d=1,2,3.\dfrac{{\langle\hat{I}\rangle}_{e_{d}}}{{\langle\hat{I}\rangle}_{0}}=\dfrac{E_{e_{d}}}{E_{0}}=\dfrac{{\langle\omega^{[\bm{c}_{0}]}\rangle}_{e_{d}}}{{\langle\omega^{[\bm{c}_{0}]}\rangle}_{0}}=\dfrac{{\mathcal{K}}_{e_{d},0}}{{\mathcal{K}}_{0,0}},\quad d=1,2,3.

Simple calculation yields

f0=E0/𝒦0,0,Eed𝒦ed,0f0=0,d=1,2,3,f_{0}=E_{0}/{\mathcal{K}}_{0,0},\quad E_{e_{d}}-{\mathcal{K}}_{e_{d},0}f_{0}=0,\quad d=1,2,3,

which tells that

fed=0,d=1,2,3.f_{e_{d}}=0,\quad d=1,2,3. (3.15)

It is essential for a reduced model to preserve the Galilean invariance of 3D RTE (2.1). It is often trivial to preserve the reduced model to be invariant under a translation. However, only both with translational invariance and rotational invariance, the reduced model in 3D is Galilean invariant. Unfortunately, the rotational invariance is not usually preserved by the model reduction of 3D RTE automatically. For instance, the extensively used SNS_{N} model, due to the lack of the rotational invariance, leads to the so-called ray-effect in numerical simulations, which is regarded as its major flaw [28].

Thanks to the rotational invariance of the weight function (the 3D M1M_{1} model), the rotational invariance of the 3D MPN{M\!P}_{\!N} model is trivial to be verified. We denote the orthogonal coordinate system as (𝒆x,𝒆y,𝒆z)(\bm{e}_{x},\bm{e}_{y},\bm{e}_{z}), and the coordinate of an element 𝒑\bm{p} is 𝒙=(𝒑𝒆x,𝒑𝒆y,𝒑𝒆z)T\bm{x}=(\bm{p}\cdot\bm{e}_{x},\bm{p}\cdot\bm{e}_{y},\bm{p}\cdot\bm{e}_{z})^{T}. After a given rotation, the orthogonal coordinate system becomes (𝒆x¯,𝒆y¯,𝒆z¯)(\overline{\bm{e}_{x}},\overline{\bm{e}_{y}},\overline{\bm{e}_{z}}), and there is a constant 3×33\times 3 orthogonal matrix 𝐆1{\bf G}_{1}, with Det(𝐆1)=1\text{Det}({\bf G}_{1})=1, satisfies that (𝒆x¯,𝒆y¯,𝒆z¯)=(𝒆x,𝒆y,𝒆z)𝐆1T(\overline{\bm{e}_{x}},\overline{\bm{e}_{y}},\overline{\bm{e}_{z}})=(\bm{e}_{x},\bm{e}_{y},\bm{e}_{z}){\bf G}_{1}^{T}, then the coordinate of the same element 𝒑\bm{p} is given by 𝒙¯=(𝒑𝒆x¯,𝒑𝒆y¯,𝒑𝒆z¯)T=𝐆1𝒙\overline{\bm{x}}=(\bm{p}\cdot\overline{\bm{e}_{x}},\bm{p}\cdot\overline{\bm{e}_{y}},\bm{p}\cdot\overline{\bm{e}_{z}})^{T}={\bf G}_{1}\bm{x}. Then the moments in the rotated system can be written as a linear combination of the moments in the original system. For any given kk\in\mathbb{N}, there exists a non-singular (2k+1)×(2k+1)(2k+1)\times(2k+1) matrix 𝐆k{\bf G}_{k}, satisfying that

𝝋k¯=𝐆k𝝋k,k0,\overline{\bm{\varphi}_{k}}={\bf G}_{k}\bm{\varphi}_{k},\quad k\geq 0,

where 𝝋k\bm{\varphi}_{k} and 𝝋k¯\overline{\bm{\varphi}_{k}} are the vectors of the kk-th moment of the weight function, defined in Subsection 3.1, in the original system and the rotated system, respectively. Furthermore, in the rotated system, the moments are denoted as 𝑬k¯\overline{\bm{E}_{k}}, 0kN0\leq k\leq N. One can directly verify that

𝑬k¯=𝐆k𝑬k,0kN.\overline{\bm{E}_{k}}={\bf G}_{k}\bm{E}_{k},\quad 0\leq k\leq N.

Let us give a lemma at first.

Lemma 2.
𝒟𝐆1𝒙(𝐆k+1𝑬k+1)=𝐆k𝒟𝒙(𝑬k+1),k0,\mathcal{D}_{{\bf G}_{1}\bm{x}}({\bf G}_{k+1}\bm{E}_{k+1})={\bf G}_{k}\mathcal{D}_{\bm{x}}(\bm{E}_{k+1}),\quad k\geq 0,

where 𝒟𝐱(𝐄k+1)\mathcal{D}_{\bm{x}}(\bm{E}_{k+1}) is defined as a (2k+1)(2k+1)-vector corresponding to 𝐄k\bm{E}_{k}. More accurately, if the 𝒩(α,k)\mathcal{N}(\alpha,k)-th element of 𝐄k\bm{E}_{k} is EαE_{\alpha}, |α|=k|\alpha|=k, then the 𝒩(α,k)\mathcal{N}(\alpha,k)-th element of 𝒟𝐱(𝐄k+1)\mathcal{D}_{\bm{x}}(\bm{E}_{k+1}) is d=13Eα+edxd\displaystyle\sum_{d=1}^{3}\dfrac{\partial{E_{\alpha+e_{d}}}}{\partial{x_{d}}}.

Proof.

Noticing 𝝋k¯=𝐆k𝝋k\overline{\bm{\varphi}_{k}}={\bf G}_{k}{\bm{\varphi}_{k}}, and the 𝒩(α,k)\mathcal{N}(\alpha,k)-th element of 𝝋k\bm{\varphi}_{k} is 𝛀α\bm{\Omega}^{\alpha}, we have

(𝐆1𝛀)α=|β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)𝛀β,|α|=k,α,({\bf G}_{1}\bm{\Omega})^{\alpha}=\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}\bm{\Omega}^{\beta},\quad|\alpha|=k,\alpha\in{\mathcal{I}}, (3.16)

and 𝑬k¯=𝐆k𝑬k\overline{\bm{E}_{k}}={\bf G}_{k}\bm{E}_{k} can be rewritten as

Eα¯=|β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)Eβ,|α|=k,α.\overline{E_{\alpha}}=\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}E_{\beta},\quad|\alpha|=k,\alpha\in{\mathcal{I}}. (3.17)

Moreover, multiplying (𝐆1𝛀)ed({\bf G}_{1}\bm{\Omega})^{e_{d}} on (3.16), one has

(𝐆1𝛀)α+ed=\displaystyle({\bf G}_{1}\bm{\Omega})^{\alpha+e_{d}}= |β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)𝛀β(𝐆1𝛀)ed\displaystyle\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}\bm{\Omega}^{\beta}({\bf G}_{1}\bm{\Omega})^{e_{d}}
=\displaystyle= l=13|β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)𝐆1,d,l𝛀β+el,|α|=k,α,\displaystyle\sum_{l=1}^{3}\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}{\bf G}_{1,d,l}\bm{\Omega}^{\beta+e_{l}},\quad|\alpha|=k,\alpha\in{\mathcal{I}},

which is equivalent to

Eα+ed¯=l=13|β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)𝐆1,d,lEβ+el,|α|=k,α,d=1,2,3.\overline{E_{\alpha+e_{d}}}=\sum_{l=1}^{3}\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}{\bf G}_{1,d,l}E_{\beta+e_{l}},\quad|\alpha|=k,\alpha\in{\mathcal{I}},d=1,2,3.

Noticing xd¯=s=13𝐆1,d,sxs\overline{x_{d}}=\sum_{s=1}^{3}{\bf G}_{1,d,s}x_{s} and 𝐆1{\bf G}_{1} is a orthogonal matrix, one has xs=d=13𝐆1,s,dTxd¯=d=13𝐆1,d,sxd¯x_{s}=\sum_{d=1}^{3}{\bf G}^{T}_{1,s,d}\overline{x_{d}}=\sum_{d=1}^{3}{\bf G}_{1,d,s}\overline{x_{d}}, and

d=13Eα+ed¯xd¯\displaystyle\sum_{d=1}^{3}\dfrac{\partial{\overline{E_{\alpha+e_{d}}}}}{\partial{\overline{x_{d}}}} =d=13s=13(l=13|β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)𝐆1,d,lEβ+el)xsxsxd¯\displaystyle=\sum_{d=1}^{3}\sum_{s=1}^{3}\dfrac{\partial{\left(\sum_{l=1}^{3}\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}{\bf G}_{1,d,l}E_{\beta+e_{l}}\right)}}{\partial{x_{s}}}\dfrac{\partial{x_{s}}}{\partial{\overline{x_{d}}}} (3.18)
=|β|=k,βd,l,s=13𝐆k,𝒩(α,k),𝒩(β,k)𝐆1,d,lEβ+elxs𝐆1,d,s\displaystyle=\sum_{|\beta|=k,\beta\in{\mathcal{I}}}\sum_{d,l,s=1}^{3}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}{\bf G}_{1,d,l}\dfrac{\partial{E_{\beta+e_{l}}}}{\partial{x_{s}}}{\bf G}_{1,d,s}
=l=13|β|=k,β𝐆k,𝒩(α,k),𝒩(β,k)Eβ+elxl.\displaystyle=\sum_{l=1}^{3}\sum_{|\beta|=k,\beta\in{\mathcal{I}}}{\bf G}_{k,\mathcal{N}(\alpha,k),\mathcal{N}(\beta,k)}\dfrac{\partial{E_{\beta+e_{l}}}}{\partial{x_{l}}}.

Compare (3.18) with (3.17), one can yield

𝒟𝐆1𝒙(𝐆k+1𝑬k+1)=𝐆k𝒟𝒙(𝑬k+1),k0.\mathcal{D}_{{\bf G}_{1}\bm{x}}({\bf G}_{k+1}\bm{E}_{k+1})={\bf G}_{k}\mathcal{D}_{\bm{x}}(\bm{E}_{k+1}),\quad k\geq 0.

For 0kN10\leq k\leq N-1, the 3D MPN{M\!P}_{\!N} system for the kk-th order moment can be written as

1c𝑬kt+𝒟𝒙(𝑬k+1)=𝑺k,\dfrac{1}{c}\dfrac{\partial{\bm{E}_{k}}}{\partial{t}}+\mathcal{D}_{\bm{x}}(\bm{E}_{k+1})=\bm{S}_{k}, (3.19)

and

1c𝑬k¯t+𝒟𝒙¯(𝑬k+1¯)=𝑺k¯,\dfrac{1}{c}\dfrac{\partial{\overline{\bm{E}_{k}}}}{\partial{t}}+\mathcal{D}_{\overline{\bm{x}}}(\overline{\bm{E}_{k+1}})=\overline{\bm{S}_{k}}, (3.20)

in the original coordinate system and rotated coordinate system, respectively, where 𝑺k\bm{S}_{k} and 𝑺k¯\overline{\bm{S}_{k}} are the vectors of SαS_{\alpha}, |α|=k|\alpha|=k in the original system and rotated system. According to Lemma 2 and noticing 𝑬k¯=𝐆k𝑬k\overline{\bm{E}_{k}}={\bf G}_{k}\bm{E}_{k}, 𝒙¯=𝐆1𝒙\overline{\bm{x}}={\bf G}_{1}\bm{x}, we have that (3.20) is equivalent to

1c𝐆k𝑬kt+𝐆k𝒟𝒙¯(𝑬k+1¯)=𝐆k𝑺k¯,\dfrac{1}{c}{\bf G}_{k}\dfrac{\partial{\bm{E}_{k}}}{\partial{t}}+{\bf G}_{k}\mathcal{D}_{\overline{\bm{x}}}(\overline{\bm{E}_{k+1}})={\bf G}_{k}\overline{\bm{S}_{k}},

thus we obtain the rotational invariance for 0kN10\leq k\leq N-1. Meanwhile, the governing equations of the NN-th moment in the original system and rotated system are

1c𝑬Nt+𝒟𝒙(𝑬N+1)=𝑺N,\dfrac{1}{c}\dfrac{\partial{\bm{E}_{N}}}{\partial{t}}+\mathcal{D}_{\bm{x}}(\bm{E}_{N+1})=\bm{S}_{N}, (3.21)

and

1c𝑬N¯t+𝒟𝒙¯(𝑬N+1(𝑬k¯,0kN))=𝑺N¯.\dfrac{1}{c}\dfrac{\partial{\overline{\bm{E}_{N}}}}{\partial{t}}+\mathcal{D}_{\overline{\bm{x}}}(\bm{E}_{N+1}(\overline{\bm{E}_{k}},0\leq k\leq N))=\overline{\bm{S}_{N}}. (3.22)

Therefore in order to obtain the rotational invariance, one only needs to show that based on the rotated known moments 𝑬k¯\overline{\bm{E}_{k}}, 0kN0\leq k\leq N, the moment closure of the 3D MPN{M\!P}_{\!N} model would give the rotated (N+1)(N+1)-th moments 𝑬N+1¯\overline{\bm{E}_{N+1}}, i.e.

𝑬N+1(𝑬k¯,0kN)=𝑬N+1(𝑬k,0kN)¯=𝐆N+1𝑬N+1.\bm{E}_{N+1}(\overline{\bm{E}_{k}},0\leq k\leq N)=\overline{\bm{E}_{N+1}(\bm{E}_{k},0\leq k\leq N)}={\bf G}_{N+1}\bm{E}_{N+1}.

Apart from the moments 𝝋k¯\overline{\bm{\varphi}_{k}} and 𝑬k¯\overline{\bm{E}_{k}}, in the following discussion, we denote the variables with an overline ¯\overline{*} as the variables in the rotated coordinate system, such as 𝒄0¯\overline{\bm{c}_{0}}, ω[𝒄0]¯\overline{\omega^{[\bm{c}_{0}]}}, 𝒇k¯\overline{\bm{f}_{k}}, and 𝓚i,j¯\overline{\bm{{\mathcal{K}}}_{i,j}}. Then we arrive the following theorem:

Theorem 3.

The 3D MPN{M\!P}_{\!N} model is rotational invariant.

Proof.

First, we consider the rotational invariance of the weight function. According to the expression of 𝒄0\bm{c}_{0} (3.2), we have for the rotated system, 𝒄0¯=𝐆1𝒄0\overline{\bm{c}_{0}}={\bf G}_{1}\bm{c}_{0}, thus the weight function is

ω[𝒄0]¯(𝛀)=ω[𝒄0¯](𝛀)=1(1+𝒄0¯𝛀)4.\overline{\omega^{[\bm{c}_{0}]}}(\bm{\Omega})=\omega^{[\overline{\bm{c}_{0}}]}(\bm{\Omega})=\dfrac{1}{(1+\overline{\bm{c}_{0}}\cdot\bm{\Omega})^{4}}.

Notice that 𝒄0¯𝐆1𝛀=𝒄0T𝐆1T𝐆1𝛀=𝒄0𝛀\overline{\bm{c}_{0}}\cdot{{\bf G}_{1}\bm{\Omega}}=\bm{c}_{0}^{T}{\bf G}_{1}^{T}{\bf G}_{1}\bm{\Omega}=\bm{c}_{0}\cdot\bm{\Omega}, we have

ω[𝒄0]¯(𝐆1𝛀)=ω[𝒄0](𝛀).\overline{\omega^{[\bm{c}_{0}]}}({\bf G}_{1}{\bm{\Omega}})=\omega^{[\bm{c}_{0}]}(\bm{\Omega}). (3.23)

Moreover, on the moments of the weight function, we have

𝕊2𝝋i𝝋jTω[𝒄0](𝛀)¯d𝛀=𝕊2𝐆i𝝋i𝝋jT𝐆jTω[𝒄0](𝛀)d𝛀=𝐆i𝝋i,𝝋jTN[𝒄0]𝐆jT,\int_{\mathbb{S}^{2}}\bm{\varphi}_{i}\bm{\varphi}_{j}^{T}\overline{\omega^{[\bm{c}_{0}]}(\bm{\Omega})}\,\mathrm{d}\bm{\Omega}=\int_{\mathbb{S}^{2}}{\bf G}_{i}\bm{\varphi}_{i}\bm{\varphi}_{j}^{T}{\bf G}_{j}^{T}\omega^{[\bm{c}_{0}]}(\bm{\Omega})\,\mathrm{d}\bm{\Omega}={\bf G}_{i}\left\langle{\bm{\varphi}_{i}},{\bm{\varphi}_{j}^{T}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}}{\bf G}_{j}^{T}, (3.24)

where the first equality is according to (3.23) and using a variable substitution (replace 𝛀\bm{\Omega} by 𝐆1𝛀{\bf G}_{1}\bm{\Omega}). Therefore, according to (3.11) and (3.24), using mathematical methods of induction, we have the coefficient matrix in the new coordinate system 𝓚i,j¯\overline{\bm{{\mathcal{K}}}_{i,j}} satisfies that

𝓚i,j¯=𝐆i𝓚i,j𝐆jT.\overline{\bm{{\mathcal{K}}}_{i,j}}={\bf G}_{i}\bm{{\mathcal{K}}}_{i,j}{\bf G}_{j}^{T}.

Analogously, by (3.13), we have 𝒇k¯=𝐆k𝒇k\overline{\bm{f}_{k}}={\bf G}_{k}\bm{f}_{k}. Then by (3.14), the moment closure is 𝐆N+1𝑬N+1=𝑬N+1¯{\bf G}_{N+1}\bm{E}_{N+1}=\overline{\bm{E}_{N+1}}, which ends the proof. ∎

3.2 Implementation details

Calculation of α{\mathcal{E}}_{\alpha}

In Subsection 3.1, the calculation of the Gram-Schmidt orthogonalization requires a practical method to obtain α{\mathcal{E}}_{\alpha}. However, the calculation of α{\mathcal{E}}_{\alpha} is not trivial. In this subsection, we present the way to calculate α{\mathcal{E}}_{\alpha}.

Let 𝒄=𝒄0𝒄0\bm{c}=\dfrac{\bm{c}_{0}}{\|\bm{c}_{0}\|}, and 𝒂,𝒃,𝒄\bm{a},\bm{b},\bm{c} is a unit orthogonal basis of 3\mathbb{R}^{3}, then we can decompose 𝛀\bm{\Omega} under this basis, i.e.

𝛀𝒂=sinθcosφ,𝛀𝒃=sinθsinφ,𝛀𝒄=cosθ,0θ<π, 0φ<2π,\bm{\Omega}\cdot\bm{a}=\sin\theta\cos\varphi,\quad\bm{\Omega}\cdot\bm{b}=\sin\theta\sin\varphi,\quad\bm{\Omega}\cdot\bm{c}=\cos\theta,\quad 0\leq\theta<\pi,\ 0\leq\varphi<2\pi,

then we have 𝛀=(𝛀𝒂)𝒂+(𝛀𝒃)𝒃+(𝛀𝒄)𝒄\bm{\Omega}=(\bm{\Omega}\cdot\bm{a})\bm{a}+(\bm{\Omega}\cdot\bm{b})\bm{b}+(\bm{\Omega}\cdot\bm{c})\bm{c}, and

α=𝕊2𝛀αω[𝒄0](𝛀)d𝛀=02π0πΩ1α1Ω2α2Ω3α3(1+𝒄0cosθ)4sinθdθdφ.{\mathcal{E}}_{\alpha}=\int_{\mathbb{S}^{2}}\bm{\Omega}^{\alpha}\omega^{[\bm{c}_{0}]}(\bm{\Omega})\,\mathrm{d}\bm{\Omega}=\int_{0}^{2\pi}\int_{0}^{\pi}\dfrac{\Omega_{1}^{\alpha_{1}}\Omega_{2}^{\alpha_{2}}\Omega_{3}^{\alpha_{3}}}{(1+\|\bm{c}_{0}\|\cos\theta)^{4}}\sin\theta\,\mathrm{d}\theta\,\mathrm{d}\varphi.

Notice that

Ω1=a1sinθcosφ+b1sinθsinφ+c1cosθ,\displaystyle\Omega_{1}=a_{1}\sin\theta\cos\varphi+b_{1}\sin\theta\sin\varphi+c_{1}\cos\theta,
Ω2=a2sinθcosφ+b2sinθsinφ+c2cosθ,\displaystyle\Omega_{2}=a_{2}\sin\theta\cos\varphi+b_{2}\sin\theta\sin\varphi+c_{2}\cos\theta,
Ω3=a3sinθcosφ+b3sinθsinφ+c3cosθ,\displaystyle\Omega_{3}=a_{3}\sin\theta\cos\varphi+b_{3}\sin\theta\sin\varphi+c_{3}\cos\theta,

we have

Ωkαk=\displaystyle\Omega_{k}^{\alpha_{k}}= (aksinθcosφ+bksinθsinφ+ckcosθ)αk\displaystyle(a_{k}\sin\theta\cos\varphi+b_{k}\sin\theta\sin\varphi+c_{k}\cos\theta)^{\alpha_{k}}
=\displaystyle= nkmkαkαk!(mknk)!nk!(αkmk)!(aksinθcosφ)mknk(bksinθsinφ)nk(ckcosθ)αkmk\displaystyle\sum_{n_{k}\leq m_{k}\leq\alpha_{k}}\dfrac{\alpha_{k}!}{(m_{k}-n_{k})!n_{k}!(\alpha_{k}-m_{k})!}(a_{k}\sin\theta\cos\varphi)^{m_{k}-n_{k}}(b_{k}\sin\theta\sin\varphi)^{n_{k}}(c_{k}\cos\theta)^{\alpha_{k}-m_{k}}
=\displaystyle= nkmkαkαk!(mknk)!nk!(αkmk)!akmknkbknkckαkmksinmkθcosαkmkθcosmknkφsinnkφ.\displaystyle\sum_{n_{k}\leq m_{k}\leq\alpha_{k}}\dfrac{\alpha_{k}!}{(m_{k}-n_{k})!n_{k}!(\alpha_{k}-m_{k})!}a_{k}^{m_{k}-n_{k}}b_{k}^{n_{k}}c_{k}^{\alpha_{k}-m_{k}}\sin^{m_{k}}\theta\cos^{\alpha_{k}-m_{k}}\theta\cos^{m_{k}-n_{k}}\varphi\sin^{n_{k}}\varphi.

Collecting the terms, we have

𝛀α=\displaystyle\bm{\Omega}^{\alpha}= k=13Ωkαk=nm|α|Cm,nα1,α2,α3sinmθcos|α|mθsinnφcosmnφ,\displaystyle\prod_{k=1}^{3}\Omega_{k}^{\alpha_{k}}=\sum_{n\leq m\leq|\alpha|}C^{\alpha_{1},\alpha_{2},\alpha_{3}}_{m,n}\sin^{m}\theta\cos^{|\alpha|-m}\theta\sin^{n}\varphi\cos^{m-n}\varphi,

where Cm,nα1,α2,α3C^{\alpha_{1},\alpha_{2},\alpha_{3}}_{m,n} are coefficients. Precisely, denote Cm,nα=Cm,nα1,α2,α3C^{\alpha}_{m,n}=C^{\alpha_{1},\alpha_{2},\alpha_{3}}_{m,n}, then one can obtain the recursion relationship of Cm,nαC^{\alpha}_{m,n}, formulated as

Cm,nα=ckCm,nαek+akCm1,nαek+bkCm1,n1αek,k=1,2,3,C_{m,n}^{\alpha}=c_{k}C_{m,n}^{\alpha-e_{k}}+a_{k}C_{m-1,n}^{\alpha-e_{k}}+b_{k}C_{m-1,n-1}^{\alpha-e_{k}},\quad k=1,2,3,

Furthermore, we can obtain α{\mathcal{E}}_{\alpha} by

α=nm|α|Cm,nα1,α2,α30πsinm+1θcos|α|mθ(1+c0cosθ)4dθ02πsinnφcosmnφdφ.{\mathcal{E}}_{\alpha}=\sum_{n\leq m\leq|\alpha|}{C^{\alpha_{1},\alpha_{2},\alpha_{3}}_{m,n}}\int_{0}^{\pi}\dfrac{\sin^{m+1}\theta\cos^{|\alpha|-m}\theta}{(1+c_{0}\cos\theta)^{4}}\,\mathrm{d}\theta\int_{0}^{2\pi}\sin^{n}\varphi\cos^{m-n}\varphi\,\mathrm{d}\varphi.

Direct calculation yields

I|α|,m=0πsinm+1θcos|α|mθ(1+c0cosθ)4dθ=11(1μ2)m/2μ|α|m(1+c0μ)4dμ=l=0m/2(m/2l)(1)lM|α|m+2l,I_{|\alpha|,m}=\int_{0}^{\pi}\dfrac{\sin^{m+1}\theta\cos^{|\alpha|-m}\theta}{(1+c_{0}\cos\theta)^{4}}\,\mathrm{d}\theta=\int_{-1}^{1}\dfrac{(1-\mu^{2})^{m/2}\mu^{|\alpha|-m}}{(1+c_{0}\mu)^{4}}\,\mathrm{d}\mu=\sum_{l=0}^{m/2}\binom{m/2}{l}(-1)^{l}M_{|\alpha|-m+2l},

where Ms=11μs(1+c0μ)4dμM_{s}=\int_{-1}^{1}\dfrac{\mu^{s}}{(1+c_{0}\mu)^{4}}\,\mathrm{d}\mu has already been calculated in the 1D MPN{M\!P}_{\!N} model [20]. On the other hand,

Jn,mn=02πsinnφcosmnφdφ={2Γ(1+mn2)Γ(1+n2)Γ(m+22),m,n are even,0,otherwise.J_{n,m-n}=\int_{0}^{2\pi}\sin^{n}\varphi\cos^{m-n}\varphi\,\mathrm{d}\varphi=\left\{\begin{aligned} &\dfrac{2\Gamma\left(\frac{1+m-n}{2}\right)\Gamma\left(\frac{1+n}{2}\right)}{\Gamma\left(\frac{m+2}{2}\right)},\quad&m,n\text{ are even},\\ &0,\quad&\text{otherwise.}\end{aligned}\right.

Moreover, when mm and nn are even,

Jn,mn=2Γ(1+mn2)Γ(1+n2)Γ(m+22)=2π(mn1)!!(n1)!!2mn22n2(m2)!=2π(mn1)!!(n1)!!2m2(m2)!.J_{n,m-n}=\dfrac{2\Gamma\left(\frac{1+m-n}{2}\right)\Gamma\left(\frac{1+n}{2}\right)}{\Gamma\left(\frac{m+2}{2}\right)}=2\pi\frac{(m-n-1)!!(n-1)!!}{2^{\frac{m-n}{2}}2^{\frac{n}{2}}(\frac{m}{2})!}=2\pi\frac{(m-n-1)!!(n-1)!!}{2^{\frac{m}{2}}\left(\frac{m}{2}\right)!}.

Therefore, we have

α=nm|α|Cm,nα1,α2,α3I|α|,mJn,mn.{\mathcal{E}}_{\alpha}=\sum_{n\leq m\leq|\alpha|}C^{\alpha_{1},\alpha_{2},\alpha_{3}}_{m,n}I_{|\alpha|,m}J_{n,m-n}.
Remark 3.

The choice of 𝐚\bm{a}, 𝐛\bm{b}, and 𝐜\bm{c} can be casual. For example, if 𝐜=(sinθ0cosφ0,sinθ0sinφ0,cosθ0)T\bm{c}=(\sin\theta_{0}\cos\varphi_{0},\sin\theta_{0}\sin\varphi_{0},\cos\theta_{0})^{T}, then 𝐚\bm{a}, 𝐛\bm{b}, and 𝐜\bm{c} can be chosen as

[𝒂,𝒃,𝒄]=[sinφ0cosθ0cosφ0sinθ0cosφ0cosφ0cosθ0sinφ0sinθ0sinφ00sinθ0cosθ0].[\bm{a},\bm{b},\bm{c}]=\left[\begin{array}[H]{ccc}\sin\varphi_{0}&\cos\theta_{0}\cos\varphi_{0}&\sin\theta_{0}\cos\varphi_{0}\\ -\cos\varphi_{0}&\cos\theta_{0}\sin\varphi_{0}&\sin\theta_{0}\sin\varphi_{0}\\ 0&-\sin\theta_{0}&\cos\theta_{0}\end{array}\right].

Interpolation

In Subsection 3.1, a Gram-Schmidt orthogonalization is adopted to evaluate the moment closure. However, the cost of the orthogonalization is O(N6)O(N^{6}), which is a difficult issue in the numerical simulations. In [20], thanks to the linear dependence of the moment closure on EkE_{k}, 2kN2\leq k\leq N, an interpolation is applied to reduce the cost. In the 3D MPN{M\!P}_{\!N} model, the dependence of the moment closure 𝑬N+1\bm{E}_{N+1} upon 𝑬k\bm{E}_{k}, 2kN2\leq k\leq N is linear. Precisely, we have

𝑬N+1=k=0N𝐂k(𝒄0)𝑬k,\bm{E}_{N+1}=\sum_{k=0}^{N}{\bf C}_{k}(\bm{c}_{0})\bm{E}_{k},

where 𝐂k(𝒄0){\bf C}_{k}(\bm{c}_{0}) is a (2N+3)×(2k+1)(2N+3)\times(2k+1) matrix, which depends on 𝒄0\bm{c}_{0} only. Therefore, a naive idea is to divide the unit sphere 𝕊2\mathbb{S}^{2} into several parts, and apply the interpolation. However, in order to get a sufficient accuracy, dividing the unit sphere will cost a lot, thus we need another interpolation method.

Noticing the rotational invariance of the 3D MPN{M\!P}_{\!N} model and the HMPN{H\!M\!P}_{\!N} model, we can calculate the moment closure 𝑬N+1¯\overline{\bm{E}_{N+1}} corresponding to 𝒄0¯=𝐆1𝒄0\overline{\bm{c}_{0}}={\bf G}_{1}\bm{c}_{0}, satisfying that 𝒄0¯\overline{\bm{c}_{0}} is parallel to 𝒆z\bm{e}_{z}. The procedure of the evaluation of the moment closure 𝑬N+1\bm{E}_{N+1} can be written as

  1. 1.

    Calculate 𝒄0\bm{c}_{0}, 𝒄0¯\overline{\bm{c}_{0}}.

  2. 2.

    Calculate the matrix 𝐆k{\bf G}_{k}, 1kN+11\leq k\leq N+1, whose cost is O(N3)O(N^{3}).

  3. 3.

    Calculate 𝑬¯k\overline{\bm{E}}_{k}, 0kN0\leq k\leq N by

    𝑬¯k=𝐆k𝑬k,\overline{\bm{E}}_{k}={\bf G}_{k}\bm{E}_{k},

    and the cost is O(N3)O(N^{3}).

  4. 4.

    Calculate 𝑬N+1¯\overline{\bm{E}_{N+1}} by interpolation, the cost is O(N3)O(N^{3}).

  5. 5.

    Calculate 𝑬N+1\bm{E}_{N+1} by

    𝑬N+1=𝐆N+11𝑬N+1¯,\bm{E}_{N+1}={\bf G}_{N+1}^{-1}\overline{\bm{E}_{N+1}},

    the cost is O(N2)O(N^{2}).

Therefore, by this interpolation, we reduce the cost of the evolution of the moment closure to O(N3)O(N^{3}), which broadens the application of the MPN{M\!P}_{\!N} model.

4 Hyperbolic Regularization

Similar as the 1D MPN{M\!P}_{\!N} model, the 3D MPN{M\!P}_{\!N} model needs to be regularized to achieve global hyperbolicity. We follow the idea in [19] to propose a novel hyperbolic regularization for the 3D MPN{M\!P}_{\!N} model.

At first, we introduce the orthogonal projection to the function space N[𝒄0]\mathbb{H}^{[\bm{c}_{0}]}_{N} in (3.3),

𝒫N:f=αfαϕα[𝒄0]𝒫Nf=αNfαϕα[𝒄0].\mathcal{P}_{N}:f=\sum_{\alpha\in{\mathcal{I}}}f_{\alpha}\phi^{[\bm{c}_{0}]}_{\alpha}\longrightarrow\mathcal{P}_{N}f=\sum_{\alpha\in{\mathcal{I}}_{N}}f_{\alpha}\phi^{[\bm{c}_{0}]}_{\alpha}. (4.1)

Then the 3D MPN{M\!P}_{\!N} moment system can be formulated as

1c𝒫N𝒫NIt+d=13𝒫NΩd𝒫NIxd=𝒫N𝒮(𝒫NI).\dfrac{1}{c}\mathcal{P}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{t}}+\sum_{d=1}^{3}\mathcal{P}_{N}\Omega_{d}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{x_{d}}}=\mathcal{P}_{N}{\mathcal{S}}(\mathcal{P}_{N}I). (4.2)

Using the similar method in [19], we introduce a new weight function

ω~[𝒄0](𝛀)=1(1+𝒄0𝛀)5,\tilde{\omega}^{[\bm{c}_{0}]}(\bm{\Omega})=\dfrac{1}{(1+\bm{c}_{0}\cdot\bm{\Omega})^{5}}, (4.3)

and the relationship between the weight function ω[𝒄0]\omega^{[\bm{c}_{0}]} and the new weight function ω~[𝒄0]\tilde{\omega}^{[\bm{c}_{0}]} is

ω[𝒄0](𝛀)=(1+𝒄0𝛀)ω~[𝒄0](𝛀),𝒄0ω[𝒄0](𝛀)=4𝛀ω~[𝒄0](𝛀)\omega^{[\bm{c}_{0}]}(\bm{\Omega})=(1+\bm{c}_{0}\cdot\bm{\Omega})\tilde{\omega}^{[\bm{c}_{0}]}(\bm{\Omega}),\quad\nabla_{\bm{c}_{0}}\omega^{[\bm{c}_{0}]}(\bm{\Omega})=-4\bm{\Omega}\tilde{\omega}^{[\bm{c}_{0}]}(\bm{\Omega})

Based on the new weight function, we can also define the function space ~N[𝒄0]\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}, the quasi-orthogonal polynomials ϕ~α[𝒄0]\tilde{\phi}^{[\bm{c}_{0}]}_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}, the quasi-orthogonal functions Φ~α[𝒄0]\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}, the coefficients 𝒦~α,β{\tilde{{\mathcal{K}}}}_{\alpha,\beta}, and the orthogonal projection 𝒫~N\tilde{\mathcal{P}}_{N}.

Then, according to the hyperbolic regularization used in [19], the 3D HMPN{H\!M\!P}_{\!N} model can be written as

1c𝒫~N𝒫NIt+d=13𝒫~NΩd𝒫~N𝒫NIxd=𝒫~N𝒮(𝒫NI).\dfrac{1}{c}\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{t}}+\sum_{d=1}^{3}\tilde{\mathcal{P}}_{N}\Omega_{d}\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{x_{d}}}=\tilde{\mathcal{P}}_{N}{\mathcal{S}}(\mathcal{P}_{N}I). (4.4)

Let us show the details of the regularization. In order to calculate the difference between the HMPN{H\!M\!P}_{\!N} model (4.4) and the MPN{M\!P}_{\!N} model (4.2), here we first introduce a lemma.

Lemma 4.
Φα[𝒄0]N[𝒄0]~N+1[𝒄0],Φα[𝒄0]c0,d~N+1[𝒄0],|α|N,d=1,2,3.\Phi^{[\bm{c}_{0}]}_{\alpha}\in\mathbb{H}^{[\bm{c}_{0}]}_{N}\subset\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N+1},\quad\dfrac{\partial{\Phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}\in\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N+1},\quad|\alpha|\leq N,\ d=1,2,3.
Proof.

In this proof, we only consider the situation when |α|=N|\alpha|=N. We have

Φα[𝒄0]=ω[𝒄0]ϕα[𝒄0]=ω~[𝒄0]ϕα[𝒄0](1+𝒄0𝛀),\Phi^{[\bm{c}_{0}]}_{\alpha}=\omega^{[\bm{c}_{0}]}\phi^{[\bm{c}_{0}]}_{\alpha}=\tilde{\omega}^{[\bm{c}_{0}]}\phi^{[\bm{c}_{0}]}_{\alpha}(1+\bm{c}_{0}\cdot\bm{\Omega}),
Φα[𝒄0]c0,d=ω[𝒄0]c0,dϕα[𝒄0]+ω[𝒄0]ϕα[𝒄0]c0,d=4Ωdω~[𝒄0]ϕα[𝒄0]+(1+𝒄0𝛀)ω~[𝒄0]ϕα[𝒄0]c0,d.\dfrac{\partial{\Phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}=\dfrac{\partial{\omega^{[\bm{c}_{0}]}}}{\partial{c_{0,d}}}\phi^{[\bm{c}_{0}]}_{\alpha}+\omega^{[\bm{c}_{0}]}\dfrac{\partial{\phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}=-4\Omega_{d}\tilde{\omega}^{[\bm{c}_{0}]}\phi^{[\bm{c}_{0}]}_{\alpha}+(1+\bm{c}_{0}\cdot\bm{\Omega})\tilde{\omega}^{[\bm{c}_{0}]}\dfrac{\partial{\phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}.

We have ω~[𝒄0]ϕα[𝒄0]~N[𝒄0]\tilde{\omega}^{[\bm{c}_{0}]}\phi^{[\bm{c}_{0}]}_{\alpha}\in\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N} and (1+𝒄0𝛀)ω~[𝒄0]ϕα[𝒄0]c0,d~N[𝒄0](1+\bm{c}_{0}\cdot\bm{\Omega})\tilde{\omega}^{[\bm{c}_{0}]}\dfrac{\partial{\phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}\in\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}, thus

Φα[𝒄0]𝒫~NΦα[𝒄0]=(I𝒫~N)(ω~[𝒄0]𝒄0𝛀ϕα[𝒄0])=d=13c0,dΦ~α+ed[𝒄0],\Phi^{[\bm{c}_{0}]}_{\alpha}-\tilde{\mathcal{P}}_{N}\Phi^{[\bm{c}_{0}]}_{\alpha}=(I-\tilde{\mathcal{P}}_{N})(\tilde{\omega}^{[\bm{c}_{0}]}\bm{c}_{0}\cdot\bm{\Omega}\phi^{[\bm{c}_{0}]}_{\alpha})=\sum_{d=1}^{3}c_{0,d}\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha+e_{d}},
Φα[𝒄0]c0,d𝒫~NΦα[𝒄0]c0,d=4Φ~α+ed[𝒄0].\dfrac{\partial{\Phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}-\tilde{\mathcal{P}}_{N}\dfrac{\partial{\Phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}=-4\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha+e_{d}}.

According to the proof of Lemma 4, we have

Corollary 5.
Φα[𝒄0]𝒫~NΦα[𝒄0]={0,|α|<N,d=13c0,dΦ~α+ed[𝒄0],|α|=N.,\Phi^{[\bm{c}_{0}]}_{\alpha}-\tilde{\mathcal{P}}_{N}{\Phi^{[\bm{c}_{0}]}_{\alpha}}=\left\{\begin{aligned} &0,\quad&|\alpha|<N,\\ &\sum_{d=1}^{3}c_{0,d}\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha+e_{d}},\quad&|\alpha|=N.\end{aligned}\right.,
Φα[𝒄0]c0,d𝒫~NΦα[𝒄0]c0,d={0,|α|<N,4Φ~α+ed[𝒄0],|α|=N.,\dfrac{\partial{\Phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}-\tilde{\mathcal{P}}_{N}{\dfrac{\partial{\Phi^{[\bm{c}_{0}]}_{\alpha}}}{\partial{c_{0,d}}}}=\left\{\begin{aligned} &0,\quad&|\alpha|<N,\\ &-4\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha+e_{d}},\quad&|\alpha|=N.\end{aligned}\right.,

Substituting the terms in Corollary 5 to (4.4), the difference between the HMPN{H\!M\!P}_{\!N} system and the MPN{M\!P}_{\!N} system is

d=13𝒫~NΩd(𝒫~N𝒫NIxd𝒫NIxd)\displaystyle\sum_{d=1}^{3}\tilde{\mathcal{P}}_{N}\Omega_{d}\left(\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{x_{d}}}-\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{x_{d}}}\right) (4.5)
=\displaystyle= d=13𝒫~NΩd(𝒫~N(αNδ|α|,NfαΦα[𝒄0])xd(αNδ|α|,NfαΦα[𝒄0])xd)\displaystyle\sum_{d=1}^{3}\tilde{\mathcal{P}}_{N}\Omega_{d}\left(\tilde{\mathcal{P}}_{N}\dfrac{\partial{\left(\sum_{\alpha\in{\mathcal{I}}_{N}}\delta_{|\alpha|,N}f_{\alpha}\Phi^{[\bm{c}_{0}]}_{\alpha}\right)}}{\partial{x_{d}}}-\dfrac{\partial{\left(\sum_{\alpha\in{\mathcal{I}}_{N}}\delta_{|\alpha|,N}f_{\alpha}\Phi^{[\bm{c}_{0}]}_{\alpha}\right)}}{\partial{x_{d}}}\right)
=\displaystyle= d=13𝒫~NΩd(αNδ|α|,N(l=134fαΦ~α+el[𝒄0]c0,lxdfαxdl=13c0,lΦ~α+el[𝒄0])),\displaystyle\sum_{d=1}^{3}\tilde{\mathcal{P}}_{N}\Omega_{d}\left(\sum_{\alpha\in{\mathcal{I}}_{N}}\delta_{|\alpha|,N}\left(\sum_{l=1}^{3}4f_{\alpha}\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha+e_{l}}\dfrac{\partial{c_{0,l}}}{\partial{x_{d}}}-\dfrac{\partial{f_{\alpha}}}{\partial{x_{d}}}\sum_{l=1}^{3}c_{0,l}\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha+e_{l}}\right)\right),

where δi,j\delta_{i,j} is the Kronecker delta. Then one can consider the inner product of (4.5) with 𝛀α\bm{\Omega}^{\alpha} to carry out the HMPN{H\!M\!P}_{\!N} system, written as

1cEαt+d=13(Eα+edxdRα,d)=Sα,\dfrac{1}{c}\dfrac{\partial{E_{\alpha}}}{\partial{t}}+\sum_{d=1}^{3}\left(\dfrac{\partial{E_{\alpha+e_{d}}}}{\partial{x_{d}}}-R_{\alpha,d}\right)=S_{\alpha}, (4.6)

where Sα𝒮(𝒫NI)αS_{\alpha}\triangleq\langle{\mathcal{S}}(\mathcal{P}_{N}I)\rangle_{\alpha} is the α\alpha-th order moment of the right hand side 𝒮(𝒫NI){\mathcal{S}}(\mathcal{P}_{N}I), and Rα,dR_{\alpha,d}, according to (4.5), is

Rα,d={0,|α|<N,βN,|β|=Nl=13(fβxdc0,l4fβc0,lxd)𝒦~α+ed,β+el,|α|=N.R_{\alpha,d}=\begin{cases}0,\quad&|\alpha|<N,\\ \sum\limits_{\beta\in{\mathcal{I}}_{N},|\beta|=N}\sum\limits_{l=1}^{3}\left(\dfrac{\partial{f_{\beta}}}{\partial{x_{d}}}c_{0,l}-4f_{\beta}\dfrac{\partial{c_{0,l}}}{\partial{x_{d}}}\right){\tilde{{\mathcal{K}}}}_{\alpha+e_{d},\beta+e_{l}},\quad&|\alpha|=N.\end{cases} (4.7)
Remark 4.

If α+ed\alpha+e_{d}\notin{\mathcal{I}}, i.e. α3=1\alpha_{3}=1 and d=3d=3, then 𝒦~α+ed,β+el{\tilde{{\mathcal{K}}}}_{\alpha+e_{d},\beta+e_{l}} can be calculated by

𝒦~α+e3,β+el=𝒦~αe3,β+el𝒦~αe3+2e1,β+el𝒦~αe3+2e2,β+el.{\tilde{{\mathcal{K}}}}_{\alpha+e_{3},\beta+e_{l}}={\tilde{{\mathcal{K}}}}_{\alpha-e_{3},\beta+e_{l}}-{\tilde{{\mathcal{K}}}}_{\alpha-e_{3}+2e_{1},\beta+e_{l}}-{\tilde{{\mathcal{K}}}}_{\alpha-e_{3}+2e_{2},\beta+e_{l}}.

Analogously, for β+el\beta+e_{l}\notin{\mathcal{I}}, 𝒦~α+ed,β+el{\tilde{{\mathcal{K}}}}_{\alpha+e_{d},\beta+e_{l}} can also be calculated.

Therefore, one can conclude that

Property 6.

The regularization does not change the moment equations for EαE_{\alpha}, αN1\alpha\in{\mathcal{I}}_{N-1}.

On the other hand, notice that if N=1N=1, according to (4.7) and (3.15), we have that the HMPN{H\!M\!P}_{\!N} model is exact the same as the MPN{M\!P}_{\!N} model. Thus, as the HMPN{H\!M\!P}_{\!N} model in slab geometry [19], we have the following property,

Property 7.

The hyperbolic regularization in 3D case does not change the M1M_{1} model, in other words, the HMPN{H\!M\!P}_{\!N} model is the same as the M1M_{1} model when N=1N=1.

In Section 3, the rotational invariance of the 3D MPN{M\!P}_{\!N} model has been proved and in this section we investigate the rotational invariance of the 3D HMPN{H\!M\!P}_{\!N} model. According to Theorem 3, the remaining part is Rα,dR_{\alpha,d} in (4.7), a simple conclusion is given as

Theorem 8.

The 3D HMPN{H\!M\!P}_{\!N} model is rotational invariant.

Proof.

According to (3.17), one only needs to prove that

d=13Rα,d¯=d=13|β|=N,β𝐆N,𝒩(α,N),(β,N)Rβ,d,|α|=N,α.\sum_{d=1}^{3}\overline{R_{\alpha,d}}=\sum_{d=1}^{3}\sum_{|\beta|=N,\beta\in{\mathcal{I}}}{\bf G}_{N,\mathcal{N}(\alpha,N),\mathcal{(}\beta,N)}R_{\beta,d},\quad|\alpha|=N,\alpha\in{\mathcal{I}}. (4.8)

According to (4.7), we have

d=13Rα,d¯=d=13|γ|=N,γl=13(fγ¯xd¯c0,l¯4fγ¯c0,l¯xd¯)𝒦~α+ed,γ+el¯,\displaystyle\sum_{d=1}^{3}\overline{R_{\alpha,d}}=\sum_{d=1}^{3}\sum\limits_{|\gamma|=N,\gamma\in{\mathcal{I}}}\sum\limits_{l=1}^{3}\left(\dfrac{\partial{\overline{f_{\gamma}}}}{\partial{\overline{x_{d}}}}\overline{c_{0,l}}-4\overline{f_{\gamma}}\dfrac{\partial{\overline{c_{0,l}}}}{\partial{\overline{x_{d}}}}\right)\overline{{\tilde{{\mathcal{K}}}}_{\alpha+e_{d},\gamma+e_{l}}}, |α|=N.\displaystyle|\alpha|=N. (4.9)

Noticing that

fγ¯=|γ|=N,γ𝐆N,𝒩(γ,N),𝒩(γ,N)fγ,xd¯=d=13𝐆1,d,dxd,c0,l¯=l=13𝐆1,l,lc0,l,\displaystyle\overline{f_{\gamma}}=\sum_{|\gamma^{\prime}|=N,\gamma^{\prime}\in{\mathcal{I}}}{\bf G}_{N,\mathcal{N}(\gamma,N),\mathcal{N}(\gamma^{\prime},N)}f_{\gamma^{\prime}},\quad\overline{x_{d}}=\sum_{d^{\prime}=1}^{3}{\bf G}_{1,d,d^{\prime}}x_{d}^{\prime},\quad\overline{c_{0,l}}=\sum_{l^{\prime}=1}^{3}{\bf G}_{1,l,l^{\prime}}c_{0,l^{\prime}},
𝒦~α+ed,γ+el¯=d′′,l′′=13|α′′|=N,α′′|γ′′|=N,γ′′𝐆1,d,d′′𝐆N,𝒩(α,N),𝒩(α′′,N)𝒦~α′′+ed′′,γ′′+el′′𝐆N,𝒩(γ′′,N),𝒩(γ,N)T𝐆1,l′′,lT,\displaystyle\overline{{\tilde{{\mathcal{K}}}}_{\alpha+e_{d},\gamma+e_{l}}}=\sum_{d^{\prime\prime},l^{\prime\prime}=1}^{3}\sum_{|\alpha^{\prime\prime}|=N,\alpha^{\prime\prime}\in{\mathcal{I}}}\sum_{|\gamma^{\prime\prime}|=N,\gamma^{\prime\prime}\in{\mathcal{I}}}{\bf G}_{1,d,d^{\prime\prime}}{\bf G}_{N,\mathcal{N}(\alpha,N),\mathcal{N}(\alpha^{\prime\prime},N)}{\tilde{{\mathcal{K}}}}_{\alpha^{\prime\prime}+e_{d^{\prime\prime}},\gamma^{\prime\prime}+e_{l^{\prime\prime}}}{\bf G}^{T}_{N,\mathcal{N}(\gamma^{\prime\prime},N),\mathcal{N}(\gamma,N)}{\bf G}^{T}_{1,l^{\prime\prime},l},

direct calculations yield that (4.9) can be simplified as

d=13Rα,d¯=d=13|α′′|=N,α′′𝐆N,𝒩(α,N),𝒩(α′′,N)Rα′′,d,\sum_{d=1}^{3}\overline{R_{\alpha,d}}=\sum_{d=1}^{3}\sum_{|\alpha^{\prime\prime}|=N,\alpha^{\prime\prime}\in{\mathcal{I}}}{\bf G}_{N,\mathcal{N}(\alpha,N),\mathcal{N}(\alpha^{\prime\prime},N)}R_{\alpha^{\prime\prime},d},

which is equivalent to (4.8). ∎

According to the calculations before, the ansatz I^\hat{I} can be determined by the moments EαE_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}. According to (3.4), meanwhile, the ansatz can be also determined by c0,1,c0,2,c0,3,fαc_{0,1},c_{0,2},c_{0,3},f_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}. Noticing that fe1=fe2=fe3=0f_{e_{1}}=f_{e_{2}}=f_{e_{3}}=0, we can use a vector 𝒘(N+1)2\bm{w}\in\mathbb{R}^{(N+1)^{2}}, which is defined as

𝒘=(f0,c0,1,c0,2,c0,3,fα,αN,|α|2)T,\bm{w}=\left(f_{0},c_{0,1},c_{0,2},c_{0,3},f_{\alpha},\alpha\in{\mathcal{I}}_{N},|\alpha|\geq 2\right)^{T}, (4.10)

to describe the ansatz. Therefore, we can rewrite the MPN{M\!P}_{\!N} system (2.13) and the HMPN{H\!M\!P}_{\!N} system (4.6) by using the variables 𝒘\bm{w} instead of EαE_{\alpha}.

Notice that 𝒫~N𝒫NIs\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{s}}, s=t,x1,x2,x3s=t,x_{1},x_{2},x_{3}, can be linearly expressed by Φ~α[𝒄0]\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}, thus there exist a (N+1)2×(N+1)2(N+1)^{2}\times(N+1)^{2} matrix 𝐃{\bf D}, satisfies that

𝒫~N𝒫NIs=(𝚽~[𝒄𝟎])T𝐃𝒘s,s=t,x1,x2,x3,\tilde{\mathcal{P}}_{N}\dfrac{\partial{\mathcal{P}_{N}I}}{\partial{s}}=(\bm{\tilde{\Phi}^{[\bm{c}_{0}]}})^{T}{\bf D}\dfrac{\partial{\bm{w}}}{\partial{s}},\quad s=t,x_{1},x_{2},x_{3}, (4.11)

where 𝚽~[𝒄𝟎]\bm{\tilde{\Phi}^{[\bm{c}_{0}]}} is a vector of all quasi-orthogonal functions Φ~α[𝒄0]\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha} for αN\alpha\in{\mathcal{I}}_{N}, whose dimension is (N+1)2(N+1)^{2}. Therefore, the HMPN{H\!M\!P}_{\!N} system (4.4) can be rewritten as

1c(𝚽~[𝒄𝟎])T𝐃𝒘t+d=13𝒫~NΩd(𝚽~[𝒄𝟎])T𝐃𝒘xd=S.\dfrac{1}{c}(\bm{\tilde{\Phi}^{[\bm{c}_{0}]}})^{T}{\bf D}\dfrac{\partial{\bm{w}}}{\partial{t}}+\sum_{d=1}^{3}\tilde{\mathcal{P}}_{N}\Omega_{d}(\bm{\tilde{\Phi}^{[\bm{c}_{0}]}})^{T}{\bf D}\dfrac{\partial{\bm{w}}}{\partial{x_{d}}}=S. (4.12)

Taking the inner product of (4.12) with 𝚽~[𝒄𝟎]\bm{\tilde{\Phi}^{[\bm{c}_{0}]}}, one can obtain the matrix form of the HMPN{H\!M\!P}_{\!N} system, written as

1c𝚲𝐃𝒘t+d=13𝐌d𝐃𝒘xd=𝑺~,\dfrac{1}{c}\bm{\Lambda}{\bf D}\dfrac{\partial{\bm{w}}}{\partial{t}}+\sum_{d=1}^{3}{\bf M}_{d}{\bf D}\dfrac{\partial{\bm{w}}}{\partial{x_{d}}}=\tilde{\bm{S}}, (4.13)

where 𝚲α,β=Φ~α[𝒄0],Φ~β[𝒄0]N[𝒄0]{\bf\Lambda}_{\alpha,\beta}=\left\langle{\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}},{\tilde{\Phi}^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}} is symmetric positive definite, and 𝐌d,α,β=Φ~α[𝒄0],ΩdΦ~β[𝒄0]N[𝒄0]{\bf M}_{d,\alpha,\beta}=\left\langle{\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}},{\Omega_{d}\tilde{\Phi}^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\mathbb{H}^{[\bm{c}_{0}]}_{N}} are symmetric, for d=1,2,3d=1,2,3, and S~α=𝕊2SΦ~α[𝒄0]d𝛀\tilde{S}_{\alpha}=\int_{\mathbb{S}^{2}}S\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}\,\mathrm{d}\bm{\Omega}.

Theorem 9.

The 3D HMPN{H\!M\!P}_{\!N} model is globally hyperbolic. Precisely, 𝐧𝕊2\forall\bm{n}\in\mathbb{S}^{2}, 𝐀cd=13(𝚲𝐃)1(nd𝐌d𝐃){\bf A}\triangleq c\sum_{d=1}^{3}({\bf\Lambda}{\bf D})^{-1}(n_{d}{\bf M}_{d}{\bf D}) is real diagonalizable. Moreover, the eigenvalue of 𝐀{\bf A} is not greater than the speed of light.

Proof.

Notice that, for 𝒏𝕊2\forall\bm{n}\in\mathbb{S}^{2},

𝐀=cd=13nd𝐃1𝚲1𝐌d𝐃=𝐃1𝚲1𝐌𝐃,{\bf A}=c\sum_{d=1}^{3}n_{d}{\bf D}^{-1}{\bf\Lambda}^{-1}{\bf M}_{d}{\bf D}={\bf D}^{-1}{\bf\Lambda}^{-1}{\bf M}{\bf D},

where 𝚲{\bf\Lambda} is symmetric positive definite, and 𝐌α,β=Φ~α[𝒄0],d=13ndΩdΦ~β[𝒄0]~N[𝒄0]{\bf M}_{\alpha,\beta}=\left\langle{\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}},{\sum_{d=1}^{3}n_{d}\Omega_{d}\tilde{\Phi}^{[\bm{c}_{0}]}_{\beta}}\right\rangle_{\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}} is symmetric, we have that 𝐀{\bf A} is diagonalisable with real eigenvalues, thus the HMPN{H\!M\!P}_{\!N} system is globally hyperbolic.

Moreover, denote λ\lambda as the eigenvalue of 𝐀{\bf A}, then λ\lambda is the eigenvalue of c𝚲1𝐌c{\bf\Lambda}^{-1}{\bf M}, and suppose 𝝃(N+1)2\bm{\xi}\in\mathbb{R}^{(N+1)^{2}} is the corresponding eigenvector, i.e. 𝐌𝝃=λ𝚲𝝃{\bf M}\bm{\xi}=\lambda{\bf\Lambda}\bm{\xi}. Precisely, denote =𝝃T𝚽[𝒄𝟎]~N[𝒄0]\mathcal{F}=\bm{\xi}^{T}\bm{\Phi^{[\bm{c}_{0}]}}\in\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}, we have

Φ~α[𝒄0],(cd=13ndΩdλ)~N[𝒄0]=0,αN.\left\langle{\tilde{\Phi}^{[\bm{c}_{0}]}_{\alpha}},{\left(c\sum_{d=1}^{3}n_{d}\Omega_{d}-\lambda\right)\mathcal{F}}\right\rangle_{\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}}=0,\quad\forall\alpha\in{\mathcal{I}}_{N}. (4.14)

Notice ~N[𝒄0]\mathcal{F}\in\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}, thus (4.14) implies

,(cd=13ndΩdλ)~N[𝒄0]=0.\left\langle{\mathcal{F}},{\left(c\sum_{d=1}^{3}n_{d}\Omega_{d}-\lambda\right)\mathcal{F}}\right\rangle_{\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}}=0.

Therefore,

λ=c,(𝒏𝛀)~N[𝒄0],~N[𝒄0].\lambda=\dfrac{c\left\langle{\mathcal{F}},{(\bm{n}\cdot\bm{\Omega})\mathcal{F}}\right\rangle_{\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}}}{\left\langle{\mathcal{F}},{\mathcal{F}}\right\rangle_{\tilde{\mathbb{H}}^{[\bm{c}_{0}]}_{N}}}.

Notice |𝒏𝛀|1|\bm{n}\cdot\bm{\Omega}|\leq 1, we have

|λ|c.|\lambda|\leq c.

At the end of this section, we give a summary of the properties of the 3D HMPN{H\!M\!P}_{\!N} model.

  • The 3D HMPN{H\!M\!P}_{\!N} model is rotational invariant.

  • The 3D HMPN{H\!M\!P}_{\!N} model is globally hyperbolic.

  • All the characteristic speeds of the 3D HMPN{H\!M\!P}_{\!N} model are not greater than the speed of light.

  • The hyperbolic regularization adopted in the 3D HMPN{H\!M\!P}_{\!N} model does not change the governing equations of EαE_{\alpha} for |α|N1|\alpha|\leq N-1 in the 3D MPN{M\!P}_{\!N} model.

  • The hyperbolic regularization vanishes when N=1N=1, i.e. the 3D HMPN{H\!M\!P}_{\!N} model is exactly the same as the 3D MPN{M\!P}_{\!N} model and the 3D M1M_{1} model.

5 Numerical Validation

In this section, we try to validate the 3D HMPN{H\!M\!P}_{\!N} model by numerical experiments. For this purpose, we first give a preliminary numerical scheme for the regularized reduced model (5.1), and then perform numerical simulations on some typical examples to demonstrate its validity. Due to practical difficulties in a 3D computation and noticing that our aim is to validate the new model, we currently only perform our numerical simulations on 2D domains. Actually, 2D numerical results are enough to demonstrate the major features of our model.

5.1 Numerical scheme

We first collect the equations in the regularized reduced model (4.6) in a matrix formation as

1c𝑼t+d=12[𝑭d(𝑼)xd+𝐑d(𝑼)𝑼xd]=𝑺,\dfrac{1}{c}\dfrac{\partial{{\bm{U}}}}{\partial{t}}+\sum_{d=1}^{2}\left[\dfrac{\partial{{\bm{F}}_{d}({\bm{U}})}}{\partial{x_{d}}}+{\bf R}_{d}({\bm{U}})\dfrac{\partial{{\bm{U}}}}{\partial{x_{d}}}\right]=\bm{S}, (5.1)

where 𝑼{\bm{U}}, 𝑭(𝑼){\bm{F}}({\bm{U}}), 𝐑d𝑼xd{\bf R}_{d}\dfrac{\partial{{\bm{U}}}}{\partial{x_{d}}} and 𝑺\bm{S} are vectors in (N+1)2\mathbb{R}^{(N+1)^{2}}, whose α\alpha-th element are 𝑼α=Eα{\bm{U}}_{\alpha}=E_{\alpha}, 𝑭d,α=Eα+ed{\bm{F}}_{d,\alpha}=E_{\alpha+e_{d}}, (𝐑d𝑼xd)α=Rα,d\left({\bf R}_{d}\dfrac{\partial{{\bm{U}}}}{\partial{x_{d}}}\right)_{\alpha}=R_{\alpha,d}, and 𝑺α=Sα\bm{S}_{\alpha}=S_{\alpha}, respectively.

Denote the computational domain by [xl,xr]×[yl,yr][x_{l},x_{r}]\times[y_{l},y_{r}], where we can make a finite volume discretization conveniently. The domain is partitioned uniformly into Nx×NyN_{x}\times N_{y} cells. The (i,j)(i,j)-th mesh cell is [xi1/2,xi+1/2]×[yj1/2,yj+1/2][x_{i-1/2},x_{i+1/2}]\times[y_{j-1/2},y_{j+1/2}], i=1,,Nxi=1,\dots,N_{x}, j=1,,Nyj=1,\dots,N_{y} with xi+1/2=xl+iΔxx_{i+1/2}=x_{l}+i\Delta x, yj+1/2=yl+jΔyy_{j+1/2}=y_{l}+j\Delta y, and Δx=xrxlNx\Delta x=\frac{x_{r}-x_{l}}{N_{x}}, Δy=yrylNy\Delta y=\frac{y_{r}-y_{l}}{N_{y}}. Let 𝑼i,jn{\bm{U}}_{i,j}^{n} be the approximation of the solution 𝑼{\bm{U}} on the (i,j)(i,j)-th mesh cell at the nn-th time step tnt_{n}.

For the purpose to validate the model, the numerical scheme for (5.1) the simpler the better that we adopt abruptly a splitting scheme in each time step. Precisely, we split it into three parts: convection terms in two spatial directions and the source term as

convection in x-direction:\displaystyle\text{convection in }x\text{-direction:}\quad 1c𝑼t+𝑭1(𝑼)x+𝐑1(𝑼)𝑼x=0,\displaystyle\frac{1}{c}\dfrac{\partial{{\bm{U}}}}{\partial{t}}+\dfrac{\partial{{\bm{F}}_{1}({\bm{U}})}}{\partial{x}}+{\bf R}_{1}({\bm{U}})\dfrac{\partial{{\bm{U}}}}{\partial{x}}=0, (5.2)
convection in y-direction:\displaystyle\text{convection in }y\text{-direction:}\quad 1c𝑼t+𝑭2(𝑼)y+𝐑2(𝑼)𝑼y=0,\displaystyle\frac{1}{c}\dfrac{\partial{{\bm{U}}}}{\partial{t}}+\dfrac{\partial{{\bm{F}}_{2}({\bm{U}})}}{\partial{y}}+{\bf R}_{2}({\bm{U}})\dfrac{\partial{{\bm{U}}}}{\partial{y}}=0, (5.3)
source part: 1c𝑼t=𝑺.\displaystyle\frac{1}{c}\dfrac{\partial{{\bm{U}}}}{\partial{t}}=\bm{S}. (5.4)

Next, we give the numerical scheme for both parts in our code.

Source term

The right hand side 𝒮(I){\mathcal{S}}(I) denotes the actions by the background medium on the photons. Generally, it contains a scattering term, an absorption term, and an emission term, and has the form [5, 33]

𝒮(I)=14πσs𝕊2Idμ(σa+σs)I+14πσaacT4+s4π,{\mathcal{S}}(I)=\dfrac{1}{4\pi}\sigma_{s}\int_{\mathbb{S}^{2}}I\,\mathrm{d}\mu-(\sigma_{a}+\sigma_{s})I+\dfrac{1}{4\pi}\sigma_{a}acT^{4}+\dfrac{s}{4\pi}, (5.5)

where aa is the radiation constant; T(𝒙,t)T(\bm{x},t) is the material temperature; σa(𝒙,T)\sigma_{a}(\bm{x},T), σs(𝒙,T)\sigma_{s}(\bm{x},T) and σt=σa+σs\sigma_{t}=\sigma_{a}+\sigma_{s} are the absorption, scattering, and total opacity coefficients, respectively; and s(𝒙)s(\bm{x}) is an isotropic external source. The temperature is related to the internal energy ee, whose evolution equation is

et=σa(𝕊2Id𝛀acT4).\dfrac{\partial{e}}{\partial{t}}=\sigma_{a}\left(\int_{\mathbb{S}^{2}}I\,\mathrm{d}\bm{\Omega}-acT^{4}\right). (5.6)

The relationship between TT and ee is problem-dependent, and we will assign it in the numerical examples when necessary.

Noticing the quartic term acσaT4ac\sigma_{a}T^{4} in 𝒮(I){\mathcal{S}}(I) and the evolution equation of ee (5.6), we adopt the implicit Euler scheme on them as

𝑼i,jn+1𝑼i,jncΔt=𝑺i,jn+1,ei,jn+1ei,jnΔt=σa,i,jn+1(E0,i,jn+1ac(Ti,jn+1)4).\frac{{\bm{U}}_{i,j}^{n+1}-{\bm{U}}_{i,j}^{n}}{c\Delta t}=\bm{S}^{n+1}_{i,j},\quad\dfrac{e_{i,j}^{n+1}-e_{i,j}^{n}}{\Delta t}=\sigma_{a,i,j}^{n+1}\left(E_{0,i,j}^{n+1}-ac(T_{i,j}^{n+1})^{4}\right).

One can directly check that in the absence of any external source of radiation, i.e., s=0s=0, this discretization satisfies the conservation of total energy as

ei,jn+1ei,jnΔt+E0,i,jn+1E0,i,jncΔt=0.\frac{e^{n+1}_{i,j}-e^{n}_{i,j}}{\Delta t}+\frac{E^{n+1}_{0,i,j}-E^{n}_{0,i,j}}{c\Delta t}=0.

Convection part

Without loss of generality, we only consider the convection part in xx-direction. For a better reading experience below, the subscript of dimension is suppressed, i.e. we will use 𝑭{\bm{F}} and 𝐑{\bf R} instead of 𝑭1{\bm{F}}_{1} and 𝐑1{\bf R}_{1}. The hyperbolic regularization in Section 4 modifies the governing equation of EαE_{\alpha}, αN\alpha\in{\mathcal{I}}_{N}, |α|=N|\alpha|=N, such that these equations can not be written into a conservation form. Therefore, the classical Riemann solvers for hyperbolic conservation laws can not be directly applied to solve (5.2). In the numerical simulations of the HMPN{H\!M\!P}_{\!N} system in slab geometry [19], we adopt the DLM theory [32] to deal with the non-conservation terms, and we continue to use this method here. Precisely, the key is introducing a path Γ(τ;,)\Gamma(\tau;\cdot,\cdot), τ[0,1]\tau\in[0,1] to connect two states 𝑼L{\bm{U}}^{L} and 𝑼R{\bm{U}}^{R} beside the Riemann problem such that

Γ(0;𝑼L,𝑼R)=𝑼L,Γ(1;𝑼L,𝑼R)=𝑼R.\Gamma(0;{\bm{U}}^{L},{\bm{U}}^{R})={\bm{U}}^{L},\quad\Gamma(1;{\bm{U}}^{L},{\bm{U}}^{R})={\bm{U}}^{R}.

The path allows a generalization of the Rankine-Hugoniot condition to the non-conservation system as

𝑭(𝑼L)𝑭(𝑼R)+01[vs𝐈𝐑(Γ(τ;𝑼L,𝑼R))]Γτ(τ;𝑼L,𝑼R)dτ=0,{\bm{F}}({\bm{U}}^{L})-{\bm{F}}({\bm{U}}^{R})+\int_{0}^{1}[v_{s}{\bf I}-{\bf R}(\Gamma(\tau;{\bm{U}}^{L},{\bm{U}}^{R}))]\dfrac{\partial{\Gamma}}{\partial{\tau}}(\tau;{\bm{U}}^{L},{\bm{U}}^{R})\,\mathrm{d}\tau=0, (5.7)

if the two states 𝑼L{\bm{U}}^{L} and 𝑼R{\bm{U}}^{R} are connected by a shock with shock speed vsv_{s}. Then the weak solution of the non-conservation system can be defined. Readers can find more details of the constrained path and the theory results in [32]. We then introduce the finite volume scheme in [38] to discretize the non-conservation system (5.2). This scheme can be treated as a non-conservation version of the HLL scheme and has been successfully applied to some non-conservation models [12, 11].

Applying the finite volume scheme in [38] yields

𝑼i,jn+1𝑼i,jncΔt+𝑭^i+1/2,jn𝑭^i1/2,jnΔx+𝐑^i+1/2,jn𝐑^i1/2,jn+Δx=0.\dfrac{{\bm{U}}^{n+1}_{i,j}-{\bm{U}}_{i,j}^{n}}{c\Delta t}+\dfrac{\hat{{\bm{F}}}_{i+1/2,j}^{n}-\hat{{\bm{F}}}_{i-1/2,j}^{n}}{\Delta x}+\dfrac{\hat{{\bf R}}_{i+1/2,j}^{n-}-\hat{{\bf R}}_{i-1/2,j}^{n+}}{\Delta x}=0. (5.8)

Here the flux 𝑭^i+1/2,jn\hat{{\bm{F}}}^{n}_{i+1/2,j} is the HLL numerical flux for the conservation term 𝑭(𝑼)x\dfrac{\partial{{\bm{F}}({\bm{U}})}}{\partial{x}}, given by

𝑭^i+1/2,jn={𝑭(𝑼i,jn),λi+1/2,jL0,λi+1/2,jR𝑭(𝑼i,jn)λi+1/2,jL𝑭(𝑼i+1,jn)+λi+1/2,jLλi+1/2,jR(𝑼i+1,jn𝑼i,jn)λi+1/2,jRλi+1/2,jL,λi+1/2,jL<0<λi+1/2,jR,𝑭(𝑼i+1,jn),λi+1/2,jR0,\hat{{\bm{F}}}_{i+1/2,j}^{n}=\begin{cases}{\bm{F}}({\bm{U}}_{i,j}^{n}),&\lambda^{L}_{i+1/2,j}\geq 0,\\ \dfrac{\lambda^{R}_{i+1/2,j}{\bm{F}}({\bm{U}}_{i,j}^{n})-\lambda^{L}_{i+1/2,j}{\bm{F}}({\bm{U}}_{i+1,j}^{n})+\lambda^{L}_{i+1/2,j}\lambda^{R}_{i+1/2,j}({\bm{U}}^{n}_{i+1,j}-{\bm{U}}^{n}_{i,j})}{\lambda^{R}_{i+1/2,j}-\lambda^{L}_{i+1/2,j}},&\lambda^{L}_{i+1/2,j}<0<\lambda^{R}_{i+1/2,j},\\ {\bm{F}}({\bm{U}}_{i+1,j}^{n}),&\lambda^{R}_{i+1/2,j}\leq 0,\\ \end{cases} (5.9)

where λi+1/2,jL\lambda^{L}_{i+1/2,j} and λi+1/2,jR\lambda^{R}_{i+1/2,j} are defined as

λi+1/2,jL=min(λi,jL,λi+1,jL),λi+1/2,jR=max(λi,jR,λi+1,jR).\lambda^{L}_{i+1/2,j}=\min(\lambda^{L}_{i,j},\lambda^{L}_{i+1,j}),\quad\lambda^{R}_{i+1/2,j}=\max(\lambda^{R}_{i,j},\lambda^{R}_{i+1,j}).

Here λi,jL\lambda^{L}_{i,j} and λi,jR\lambda^{R}_{i,j} are the minimum and maximum characteristic speeds of 𝑼i,jn{\bm{U}}_{i,j}^{n}, respectively. flux 𝐑^i+1/2,jn±\hat{{\bf R}}_{i+1/2,j}^{n\pm} is the special treatment of the finite volume scheme in [38] for the non-conservation term 𝐑(𝑼)𝑼x{\bf R}({\bm{U}})\dfrac{\partial{{\bm{U}}}}{\partial{x}}, given by

𝐑^i+1/2,jn={0,λi+1/2,jL0,λi+1/2,jL𝒈i+1/2,jnλi+1/2,jRλi+1/2,jL,λi+1/2,jL<0<λi+1/2,jR,𝒈i+1/2,jn,λi+1/2,jR0,\hat{{\bf R}}_{i+1/2,j}^{n-}=\begin{cases}0,&\lambda^{L}_{i+1/2,j}\geq 0,\\ -\dfrac{\lambda^{L}_{i+1/2,j}\bm{g}_{i+1/2,j}^{n}}{\lambda^{R}_{i+1/2,j}-\lambda^{L}_{i+1/2,j}},&\lambda^{L}_{i+1/2,j}<0<\lambda^{R}_{i+1/2,j},\\ \bm{g}_{i+1/2,j}^{n},&\lambda^{R}_{i+1/2,j}\leq 0,\\ \end{cases} (5.10)

and

𝐑^i+1/2,jn+={𝒈i+1/2,jn,λi+1/2,jL0,λi+1/2,jR𝒈i+1/2,jnλi+1/2,jRλi+1/2,jL,λi+1/2,jL<0<λi+1/2,jR,0,λi+1/2,jR0,\hat{{\bf R}}_{i+1/2,j}^{n+}=\begin{cases}-\bm{g}^{n}_{i+1/2,j},&\lambda^{L}_{i+1/2,j}\geq 0,\\ -\dfrac{\lambda^{R}_{i+1/2,j}\bm{g}_{i+1/2,j}^{n}}{\lambda^{R}_{i+1/2,j}-\lambda^{L}_{i+1/2,j}},&\lambda^{L}_{i+1/2,j}<0<\lambda^{R}_{i+1/2,j},\\ 0,&\lambda^{R}_{i+1/2,j}\leq 0,\\ \end{cases} (5.11)

where

𝒈i+1/2,jn=01𝐑(Γ(τ;𝑼i,jn,𝑼i+1,jn))Γτ(τ;𝑼i,jn,𝑼i+1,jn)dτ.\bm{g}_{i+1/2,j}^{n}=\int_{0}^{1}{\bf R}(\Gamma(\tau;{\bm{U}}_{i,j}^{n},{\bm{U}}_{i+1,j}^{n}))\dfrac{\partial{\Gamma}}{\partial{\tau}}(\tau;{\bm{U}}_{i,j}^{n},{\bm{U}}_{i+1,j}^{n})\,\mathrm{d}\tau. (5.12)

Since the implicit scheme is adopted in the discretization of the source term, one can easily check that the discretization is unconditionally stable. Thus the time step is constrained by the convection term and complies with the CFL condition

CFL:=maxi,j|λ(𝑼i,jn)|ΔtΔx<1.\text{CFL}:=\max_{i,j}|\lambda({\bm{U}}_{i,j}^{n})|\frac{\Delta t}{\Delta x}<1.

Notice 𝒘\bm{w} and 𝑼\bm{U} are uniquely determined by each other, therefore the path Γ(τ;𝑼L,𝑼R)\Gamma(\tau;\bm{U}^{L},\bm{U}^{R}) is equivalent to the path γ(τ;𝒘L,𝒘R)\gamma(\tau;\bm{w}^{L},\bm{w}^{R}), where 𝒘\bm{w} is defined in (4.10), and 𝒘L\bm{w}^{L} and 𝒘R\bm{w}^{R} are the value of 𝒘\bm{w} when 𝑼{\bm{U}} is equal to 𝑼L{\bm{U}}^{L} and 𝑼R{\bm{U}}^{R}, respectively. In [19], we verified that the choice of the path Γ(τ;,)\Gamma(\tau;\cdot,\cdot) is not essential, thus in this paper we simply choose the path as a linear path between 𝒘L\bm{w}^{L} and 𝒘R\bm{w}^{R}, i.e.

γ(τ;𝒘L,𝒘R)=𝒘L+τ(𝒘R𝒘L),0τ1.\gamma(\tau;\bm{w}^{L},\bm{w}^{R})=\bm{w}^{L}+\tau(\bm{w}^{R}-\bm{w}^{L}),\quad 0\leq\tau\leq 1.

Boundary condition

We adopt the method in [20] and [19] to deal with the boundary condition. In Section 3, one can determine an injective function between the distribution function I^\hat{I} and the moments EαE_{\alpha}, thus we can construct the boundary condition of the reduced model based on the boundary condition of the RTE. Without loss of generality, we take the left boundary, i.e. x=xlx=x_{l} and i=0i=0 in Ui,jU_{i,j} as an example.

On the left boundary, the specific intensity is given by

IB(t,𝒙;𝛀)={I(t,𝒙;𝛀),𝛀𝒆x<0,Iout(t,𝒙;𝛀),𝛀𝒆x>0,I^{B}(t,\bm{x};\bm{\Omega})=\left\{\begin{aligned} &I(t,\bm{x};\bm{\Omega}),\quad&\bm{\Omega}\cdot\bm{e}_{x}<0,\\ &I_{\text{out}}(t,\bm{x};\bm{\Omega}),\quad&\bm{\Omega}\cdot\bm{e}_{x}>0,\end{aligned}\right.

where IoutI_{\text{out}} is the specific intensity outside of the domain, which depends on the specific problem and the intensity inside the domain on the boundary I(t,𝒙;𝛀)I(t,\bm{x};\bm{\Omega}), where 𝒙1=xl\bm{x}_{1}=x_{l}. Here we list some of the commonly used boundary conditions and the choices of the intensity IoutI_{\text{out}}, for later usage.

  • Infinite boundary condition:

    Iout(t,𝒙;𝛀)=I(t,𝒙;𝛀),𝛀𝒆x>0.I_{\text{out}}(t,\bm{x};\bm{\Omega})=I(t,\bm{x};\bm{\Omega}),\quad\bm{\Omega}\cdot\bm{e}_{x}>0.
  • Reflective boundary condition:

    Iout(t,𝒙;𝛀)=I(t,𝒙;𝛀2(𝛀𝒆x)𝒆x),𝛀𝒆x>0.I_{\text{out}}(t,\bm{x};\bm{\Omega})=I(t,\bm{x};\bm{\Omega}-2(\bm{\Omega}\cdot\bm{e}_{x})\bm{e}_{x}),\quad\bm{\Omega}\cdot\bm{e}_{x}>0.
  • Vacuum boundary condition:

    Iout(t,𝒙;𝛀)=0,𝛀𝒆x>0.I_{\text{out}}(t,\bm{x};\bm{\Omega})=0,\quad\bm{\Omega}\cdot\bm{e}_{x}>0.
  • Inflow boundary condition:

    Iout(t,𝒙;𝛀)=Iinflow(t,𝒙;𝛀),𝛀𝒆x>0.I_{\text{out}}(t,\bm{x};\bm{\Omega})=I_{\text{inflow}}(t,\bm{x};\bm{\Omega}),\quad\bm{\Omega}\cdot\bm{e}_{x}>0.

    where IinflowI_{\text{inflow}} is the specific intensity of the external inflow.

Furthermore, we replace the intensity I(t,𝒙;𝛀)I(t,\bm{x};\bm{\Omega}) by the specific intensity constructed by the moments in the cell near the left boundary. Precisely,

I(t,𝒙;𝛀)=I^(𝛀;𝑼(t,𝒙)),I(t,\bm{x};\bm{\Omega})=\hat{I}\left(\bm{\Omega};{\bm{U}}(t,\bm{x})\right),

where 𝑼(t,𝒙){\bm{U}}(t,\bm{x}) is the moments in the cell near the left boundary, i.e. [x1/2=xl,x3/2=xl+Δx]×[yj1/2,yj+1/2][x_{1/2}=x_{l},x_{3/2}=x_{l}+\Delta x]\times[y_{j-1/2},y_{j+1/2}] at time tt. Then one can directly obtain the flux across the left boundary. Precisely, the α\alpha-th flux at tt and 𝒙\bm{x} is given by

𝕊2𝛀α+e1IB(t,𝒙;𝛀)d𝛀=𝛀𝒆x<0𝛀α+e1I^(𝛀;𝑼(t,𝒙))d𝛀+𝛀𝒆x>0𝛀α+e1Iout(t,𝒙;𝛀)d𝛀.\int_{\mathbb{S}^{2}}\bm{\Omega}^{\alpha+e_{1}}I^{B}(t,\bm{x};\bm{\Omega})\,\mathrm{d}\bm{\Omega}=\int_{\bm{\Omega}\cdot\bm{e}_{x}<0}\bm{\Omega}^{\alpha+e_{1}}\hat{I}(\bm{\Omega};{\bm{U}}(t,\bm{x}))\,\mathrm{d}\bm{\Omega}+\int_{\bm{\Omega}\cdot\bm{e}_{x}>0}\bm{\Omega}^{\alpha+e_{1}}I_{\text{out}}(t,\bm{x};\bm{\Omega})\,\mathrm{d}\bm{\Omega}.

5.2 Numerical examples

Below, we present some numerical examples to show different features of the 3D HMPN{H\!M\!P}_{\!N} model.

Inflow problem

This example is used to study the behaviour of the solution of the HMPN{H\!M\!P}_{\!N} model, hence the right hand side vanishes, i.e. the RTE degenerates into

1cIt+𝛀𝒙I=0.\dfrac{1}{c}\dfrac{\partial{I}}{\partial{t}}+\bm{\Omega}\cdot\nabla_{\bm{x}}I=0. (5.13)

The initial state is chosen as

I0(𝒙;𝛀)={acδ(𝛀𝛀0),x<0 and y<0,1034πac,otherwise,I_{0}(\bm{x};\bm{\Omega})=\left\{\begin{aligned} &ac\delta(\bm{\Omega}-\bm{\Omega}_{0}),\quad&x<0\text{ and }y<0,\\ &\dfrac{10^{-3}}{4\pi}ac,\quad&\text{otherwise},\end{aligned}\right.

where 𝛀0=1\|\bm{\Omega}_{0}\|=1. The distribution function is a Dirac delta function, which is extremely anisotropic and hard to approximate with the PNP_{N} model, which approximates the specific intensity with polynomials. On the other hand, due to the fact the SNS_{N} model only considers the particles along with a discrete set of angular directions, when the 𝛀0\bm{\Omega}_{0} does not belong to this set, the SNS_{N} model can not get a good approximation.

The computational domain is [0.2,0.2]×[0.2,0.2][-0.2,0.2]\times[-0.2,0.2], and the infinite boundary conditions are prescribed at the boundaries.

Refer to caption
(a) cosθ0=310\cos\theta_{0}=\dfrac{3}{10}, ctend=0.05ct_{\text{end}}=0.05
Refer to caption
(b) cosθ0=310\cos\theta_{0}=\dfrac{3}{10}, ctend=0.1ct_{\text{end}}=0.1
Refer to caption
(c) cosθ0=310\cos\theta_{0}=\dfrac{3}{10}, ctend=0.2ct_{\text{end}}=0.2
Refer to caption
(d) cosθ0=610\cos\theta_{0}=\dfrac{6}{10}, ctend=0.05ct_{\text{end}}=0.05
Refer to caption
(e) cosθ0=610\cos\theta_{0}=\dfrac{6}{10}, ctend=0.1ct_{\text{end}}=0.1
Refer to caption
(f) cosθ0=610\cos\theta_{0}=\dfrac{6}{10}, ctend=0.2ct_{\text{end}}=0.2
Refer to caption
(g) cosθ0=910\cos\theta_{0}=\dfrac{9}{10}, ctend=0.05ct_{\text{end}}=0.05
Refer to caption
(h) cosθ0=910\cos\theta_{0}=\dfrac{9}{10}, ctend=0.1ct_{\text{end}}=0.1
Refer to caption
(i) cosθ0=910\cos\theta_{0}=\dfrac{9}{10}, ctend=0.2ct_{\text{end}}=0.2
Figure 1: Profile of E0E_{0} of the inflow problem with the HMP2{H\!M\!P}_{2} model, where the directions are different

In order to validate the capability of the 3D HMPN{H\!M\!P}_{\!N} model to simulate Dirac delta functions in any direction, we choose some different 𝛀0\bm{\Omega}_{0}, with 𝛀0=(cosθ0,sinθ0)\bm{\Omega}_{0}=(\cos\theta_{0},\sin\theta_{0}), and cosθ0=310\cos\theta_{0}=\dfrac{3}{10}, 610\dfrac{6}{10}, and 910\dfrac{9}{10}. We simulate this problem with the 3D HMPN{H\!M\!P}_{\!N} model till ctend=0.05,0.1ct_{\text{end}}=0.05,0.1, and 0.20.2, with N=2N=2. Nx=Ny=160N_{x}=N_{y}=160 is applied in this example. The results of the contours of E0ac\dfrac{E_{0}}{ac} are presented in Figure 1. The black line represents the direction of 𝛀0\bm{\Omega}_{0}, i.e. the slope of each line is tanθ0\tan\theta_{0}, and the dashed lines (x=ctendcosθ0x=ct_{\text{end}}\cos\theta_{0} and y=ctendsinθ0y=ct_{\text{end}}\sin\theta_{0}) figure out the theoretical results of the wave in xx-direction and yy-direction, respectively. From the results, one can conclude that the 3D HMPN{H\!M\!P}_{\!N} model can capture the wave well. Therefore, the approximation of the HMPN{H\!M\!P}_{\!N} to the delta function in any direction is satisfying.

Gaussian source problem

This example is to show the rotational invariance of the MPN{M\!P}_{\!N} model. The initial specific intensity is a Gaussian distribution in space [23]:

I0(𝒙;𝛀)=14πac2πθe𝒙22θ,θ=1100,𝒙(L,L)×(L,L).\displaystyle I_{0}(\bm{x};\bm{\Omega})=\dfrac{1}{4\pi}\dfrac{ac}{\sqrt{2\pi\theta}}e^{-\frac{\|\bm{x}\|^{2}}{2\theta}},\quad\theta=\frac{1}{100},\quad\bm{x}\in(-L,L)\times(-L,L). (5.14)

Here the computational domain is set by L=1L=1, and ctend=0.5ct_{\text{end}}=0.5 so that that the energy reaching the boundaries is negligible, and vacuum boundary conditions are prescribed at all the boundaries. The medium is purely scattering with σs=σt=1\sigma_{s}=\sigma_{t}=1, thus the material coupling term vanishes. We also set the external source to be zero.

Refer to caption
(a) N=2N=2
Refer to caption
(b) N=3N=3
Refer to caption
(c) N=4N=4
Figure 2: Profile of E0E_{0} of the Gassian source problem with the HMPN{H\!M\!P}_{\!N} model

We use 400×400400\times 400 cells to simulate this problem, with the HMP2{H\!M\!P}_{2} model, the HMP3{H\!M\!P}_{3} model, and the HMP4{H\!M\!P}_{4} model, and the results are presented in Figure 2, from which one can conclude the contours of the E0ac\dfrac{E_{0}}{ac} are circles and there is no ray effect. This validates the rotational invariance of the 3D HMPN{H\!M\!P}_{\!N} model.

Bilateral inflow problem

In the previous numerical example, we validate the capability of the 3D HMPN{H\!M\!P}_{\!N} model to simulate Dirac delta function. In this example, we show that the 3D HMPN{H\!M\!P}_{\!N} model can also approximate isotropic distribution function.

We use the RTE without right hand side (5.13), and the initial state is chosen as

I0(𝒙;𝛀)={acδ(𝛀𝛀0),x<210 and y<210,ac4π,x>210 and y>210,1034πac,otherwise,I_{0}(\bm{x};\bm{\Omega})=\left\{\begin{aligned} &ac\delta(\bm{\Omega}-\bm{\Omega}_{0}),\quad&x<-\dfrac{2}{10}\text{ and }y<-\dfrac{2}{10},\\ &\dfrac{ac}{4\pi},\quad&x>\dfrac{2}{10}\text{ and }y>\dfrac{2}{10},\\ &\dfrac{10^{-3}}{4\pi}ac,\quad&\text{otherwise},\end{aligned}\right.

where 𝛀0=(22,22)T\bm{\Omega}_{0}=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})^{T}. In the bottom-left region, the distribution function is a Dirac delta function, which is extremely anisotropic and hard to approximate with the PNP_{N} model, which approximates the specific intensity with polynomials. Meanwhile, in the upper-right region, the distribution function is a constant with respect to the velocity direction 𝛀\bm{\Omega}, which is isotropic. Generally, it is challenging to get a good approximation on a Dirac delta function and a constant function.

The computational domain is [1,1]×[1,1][-1,1]\times[-1,1], and the infinite boundary conditions are prescribed at the boundaries. We simulate this problem with the MPN{M\!P}_{\!N} model and the PNP_{N} model till ctend=0.1ct_{\text{end}}=0.1 with N=2N=2, 33, and 44. Nx=Ny=400N_{x}=N_{y}=400 is applied in this example.

Refer to caption
(a) HMP2{H\!M\!P}_{2} model
Refer to caption
(b) P2P_{2} model
Refer to caption
(c) E0E_{0} when y=xy=x
Refer to caption
(d) HMP3{H\!M\!P}_{3} model
Refer to caption
(e) P3P_{3} model
Refer to caption
(f) E0E_{0} when y=xy=x
Refer to caption
(g) HMP4{H\!M\!P}_{4} model
Refer to caption
(h) P4P_{4} model
Refer to caption
(i) E0E_{0} when y=xy=x
Figure 3: Profile of E0E_{0} of the bilateral inflow with the HMP2{H\!M\!P}_{2} model and the P2P_{2} model

In Figure 3, we present the E0E_{0} of the 3D HMPN{H\!M\!P}_{\!N} model and the PNP_{N} model for N=2N=2, 33, and 44, and additionally, we present the E0ac\dfrac{E_{0}}{ac} of these two models along the line y=xy=x. According to the results in Figure 3, we can conclude that in the upper-right region, for this constant function, the HMPN{H\!M\!P}_{\!N} model and the PNP_{N} model gets similar results, i.e. these two models can approximate this kind of isotropic function well. However, in the bottom-left region, for this Dirac delta function, the HMPN{H\!M\!P}_{\!N} model gets a good approximation, but there are unphysical oscillations in the results of the PNP_{N} model. In particular, due to these unphysical oscillations, along the line y=xy=x, E0ac\dfrac{E_{0}}{ac} of the PNP_{N} model can be even greater than 11. Therefore, one can conclude that the HMPN{H\!M\!P}_{\!N} model can not only get a good approximate on an isotropic distribution function, but also approximate the Dirac delta function well.

Lattice problem

The lattice problem is a checkerboard of highly scattering and highly absorbing regions loosely based on a small part of a lattice core. The computational domain is [0,7]×[0,7][0,7]\times[0,7], divided into 49 grids in Figure 4. In the red grids and the black grid, the absorbing and scattering coefficients are 0 and 1 respectively. In the white grids, the absorption and scattering are 10 and 0, respectively. The external source ss is set as acac in the black grid, and 0 in other grids. The initial state is set as I=108acI=10^{-8}ac, and vacuum boundary condition are prescribed on all boundaries.

Figure 4: Computational domain of the lattice problem
Refer to caption
(a) N=2N=2
Refer to caption
(b) N=4N=4
Refer to caption
(c) N=6N=6
Figure 5: Profile of E0E_{0} of the lattice problem with the HMPN{H\!M\!P}_{\!N} model

We simulate this problem with the HMPN{H\!M\!P}_{\!N} model with N=2N=2, 44, and 66 till ctend=3.2ct_{\text{end}}=3.2, the number of grids is 200×200200\times 200, and the results of log10E0ac\log_{10}\dfrac{E_{0}}{ac} are presented in Figure 5. According to the results, the HMPN{H\!M\!P}_{\!N} model gives a satisfying result, and the result of E0E_{0} is always positive in this problem.

6 Conclusion

The 3D HMPN{H\!M\!P}_{\!N} model was derived as a reduced nonlinear model for RTE in 3D space. The model is hopeful to capture both very singular specific intensity as Dirac delta function and very regular specific intensity as constant function. The model has some mathematical advantages, including global hyperbolicity, rotational invariance, physical wave speeds, spectral accuracy, and correct higher-order Eddington approximation. We validated the new model by some preliminary numerical results. In the following, we will try to apply the model to some practical problems.

Acknowledgements

The authors are partially supported by Science Challenge Project, No. TZ2016002, the CAEP foundation (No. CX20200026), and the National Natural Science Foundation of China (Grant No. 91630310 and 11421110001, 11421101).

References

  • [1] E. Abdikamalov, A. Burrows, C. D. Ott, F. Löffler, E. O’Connor, J. C. Dolence, and E. Schnetter. A new Monte Carlo method for time-dependent neutrino radiation transport. The Astrophysical Journal, 755(2):111, 2012.
  • [2] G. W. Alldredge, R. Li, and W. Li. Approximating the M2M_{2} method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic & Related Models, 9(2), 2016.
  • [3] G. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994.
  • [4] J. E. Broadwell. Study of rarefied shear flow by the discrete velocity method. Journal of Fluid Mechanics, 19(03):401–414, 1964.
  • [5] T. A. Brunner. Forms of approximate radiation transport. Tech. Rep SAND2002-1778, 2002.
  • [6] T. A. Brunner and J. P. Holloway. One-dimensional Riemann solvers and the maximum entropy closure. Journal of Quantitative Spectroscopy and Radiative Transfer, 69(5):543–566, 2001.
  • [7] T. A. Brunner and J. P. Holloway. Two-dimensional time dependent Riemann solvers for neutron transport. Journal of Computational Physics, 210:386–399, 2005.
  • [8] Z. Cai, Y. Fan, and R. Li. Globally hyperbolic regularization of Grad’s moment system in one dimensional space. Comm. Math. Sci., 11(2):547–571, 2013.
  • [9] Z. Cai, Y. Fan, and R. Li. Globally hyperbolic regularization of Grad’s moment system. Comm. Pure Appl. Math., 67(3):464–518, 2014.
  • [10] Z. Cai, Y. Fan, and R. Li. A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math., 75(5):2001–2023, 2015.
  • [11] Z. Cai, Y. Fan, R. Li, and Z. Qiao. Dimension-reduced hyperbolic moment method for the Boltzmann equation with BGK-type collision. Commun. Comput. Phys., 15(5):1368–1406, 2014.
  • [12] Z. Cai, R. Li, and Z. Qiao. Globally hyperbolic regularized moment method with applications to microflow simulation. Computers and Fluids, 81:95–109, 2013.
  • [13] B. Davison. On the rate of convergence of the spherical harmonics method for the plane case, isotropic scattering. Canadian Journal of Physics, 38(11):1526–1545, 1960.
  • [14] J. D. Densmore, K. G. Thompson, and T. J. Urbatsch. A hybrid transport-diffusion Monte Carlo method for frequency-dependent radiative-transfer simulations. Journal of Computational Physics, 231(20):6924–6934, 2012.
  • [15] B. Dubroca and J. Feugeas. Theoretical and numerical study on a moment closure hierarchy for the radiative transfer equation. Comptes Rendus de l’Academie des Sciences Series I Mathematics, 329(10):915–920, 1999.
  • [16] J. J. Duderstadt and W. R. Martin. Transport theory. Wiley, New York, 1979.
  • [17] Y. Fan, J. An, and L. Ying. Fast algorithms for integral formulations of steady-state radiative transfer equation. Journal of Computational Physics, 380:191–211, 2019.
  • [18] Y. Fan, J. Koellermeier, J. Li, R. Li, and M. Torrilhon. Model reduction of kinetic equations by operator projection. Journal of Statistical Physics, 162(2):457–486, 2016.
  • [19] Y. Fan, R. Li, and L. Zheng. A nonlinear hyperbolic model for radiative transfer equation in slab geometry. arXiv preprint arXiv:1911.05472, 2019.
  • [20] Y. Fan, R. Li, and L. Zheng. A nonlinear moment model for radiative transfer equation in slab geometry. Journal of Computational Physics, 404:109128, 2020.
  • [21] J. Fleck and J. Cummings. An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys., 8(3):313–342, 1971.
  • [22] C. Hauck and R. McClarren. Positive PNP_{N} closures. SIAM Journal on Scientific Computing, 32(5):2603–2626, 2010.
  • [23] C. D. Hauck, M. Frank, and E. Olbrant. Perturbed, entropy-based closure for radiative transfer. SIAM Journal on Applied Mathematics, 6(3):557–587, 2013.
  • [24] C. K. Hayakawa, J. Spanier, and V. Venugopalan. Coupled forward-adjoint Monte Carlo simulations of radiative transport for the study of optical probe design in heterogeneous tissues. SIAM Journal on Applied Mathematics, 68(1):253–270, 2007.
  • [25] J. H. Jeans. Stars, gaseous, radiative transfer of energy. Monthly Notices of the Royal Astronomical Society, 78:28–36, 1917.
  • [26] A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher. Optical tomography using the time-independent equation of radiative transfer—part 1: forward model. Journal of Quantitative Spectroscopy and Radiative Transfer, 72(5):691–713, 2002.
  • [27] R. Koch and R. Becker. Evaluation of quadrature schemes for the discrete ordinates method. Journal of Quantitative Spectroscopy and Radiative Transfer, 84(4):423–435, 2004.
  • [28] E. W. Larsen and J. E. Morel. Advances in discrete-ordinates methodology. In Nuclear Computational Science, pages 1–84. Springer, 2010.
  • [29] C. D. Levermore. Moment closure hierarchies for kinetic theories. Journal of Statistical Physics, 83(5-6):1021–1065, 1996.
  • [30] R. Li, W. Li, and L. Zheng. A nonlinear three-moment model for radiative transfer in spherical symmetry. Mathematics and Computers in Simulation, 170:285 – 299, 2020.
  • [31] A. Marshak and A. Davis. 3D radiative transfer in cloudy atmospheres. Springer Science & Business Media, 2005.
  • [32] G. D. Maso, P. G. LeFloch, and F. Murat. Definition and weak stability of nonconservative products. J. Math. Pures Appl., 74(6):483–548, 1995.
  • [33] R. G. McClarren, T. M. Evans, R. B. Lowrie, and J. D. Densmore. Semi-implicit time integration for PNP_{N} thermal radiative transfer. Journal of Computational Physics, 227(16):7561–7586, 2008.
  • [34] R. G. McClarren, J. P. Holloway, and T. A. Brunner. On solutions to the PnP_{n} equations for thermal radiative transfer. Journal of Computational Physics, 227(5):2864–2885, 2008.
  • [35] D. Mihalas. Stellar Atmospheres. San Francisco, WH Freeman and Co., 650p, 1978.
  • [36] G. N. Minerbo. Maximum entropy eddington factors. Journal of Quantitative Spectroscopy and Radiative Transfer, 20(6):541–545, 1978.
  • [37] G. Pomraning. The equations of radiation hydrodynamics. Pergamon Press, 1973.
  • [38] S. Rhebergen, O. Bokhove, and J. J. W. van der Vegt. Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys., 227(3):1887–1922, 2008.
  • [39] K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27(12):2502–2509, Jun 1988.
  • [40] T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio. Hybrid radiative-transfer–diffusion model for optical tomography. Applied optics, 44(6):876–886, 2005.