This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A non-commutative F&M Riesz Theorem

Michael T. Jury Supported by NSF grant DMS-1900364 Robert T.W. Martin Supported by NSERC grant 2020-05683 University of Manitoba Edward J. Timko Partially supported by a PIMS postdoctoral fellowship Georgia Institute of Technology
Abstract

We extend results on analytic complex measures on the complex unit circle to a non-commutative multivariate setting. Identifying continuous linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz CC^{*}-algebra, the free disk operator system, with non-commutative (NC) analogues of complex measures, we refine a previously developed Lebesgue decomposition for positive NC measures to establish an NC version of the Frigyes and Marcel Riesz Theorem for ‘analytic’ measures, i.e. complex measures with vanishing positive moments. The proof relies on novel results on the order properties of positive NC measures that we develop and extend from classical measure theory.

1 Introduction

The Riesz–Markov theorem identifies any finite and regular Borel measure on the complex unit circle with a bounded linear functional on the Banach space of continuous functions. By the Weierstrass approximation theorem, the Banach space of continuous functions on the circle is the supremum norm–closure of the linear span of the disk algebra and its conjugate algebra. The disk algebra is often defined as the unital Banach algebra of analytic functions in the complex unit disk with continuous boundary values. This is completely isometrically isomorphic to the unital norm–closed operator algebra generated by the shift operator, S=MzS=M_{z}, of multiplication by the independent variable zz on H2H^{2}. Here, H2H^{2} denotes the Hardy space, the Hilbert space of analytic functions in the complex unit disk that have square–summable Taylor series coefficients at 0, equipped with the 2\ell^{2}-inner product of these coefficients.

An immediate non-commutative (NC) multivariate generalization of H2H^{2} is then d2\mathbb{H}^{2}_{d}, the NC Hardy space or full Fock space, which consists of square–summable power series in several formal NC variables 𝔷=(𝔷1,,𝔷d)\mathfrak{z}=(\mathfrak{z}_{1},\cdots,\mathfrak{z}_{d}). Elements of d2\mathbb{H}^{2}_{d} are power series,

h(𝔷)=ω𝔽dh^ω𝔷ω,h(\mathfrak{z})=\sum_{\omega\in\mathbb{F}^{d}}\hat{h}_{\omega}\mathfrak{z}^{\omega},

with square–summable coefficients h^ω\hat{h}_{\omega}\in\mathbb{C}. The free monoid, 𝔽d\mathbb{F}^{d}, is the set of all words, ω=i1in\omega=i_{1}\cdots i_{n}, 1ikd1\leq i_{k}\leq d, in the dd letters {1,,d}\{1,\cdots,d\}. This is a monoid with product given by concatenation of words and the unit \varnothing is the empty word containing no letters. Given any ω=i1in𝔽d\omega=i_{1}\cdots i_{n}\in\mathbb{F}^{d}, the free monomial 𝔷ω\mathfrak{z}^{\omega} is 𝔷i1𝔷in\mathfrak{z}_{i_{1}}\cdots\mathfrak{z}_{i_{n}} and 𝔷=1\mathfrak{z}^{\varnothing}=1, viewed as a constant NC function. As in the classical setting, left multiplication Lk:=M𝔷kLL_{k}:=M^{L}_{\mathfrak{z}_{k}} by any of the dd independent NC variables defines an isometry on d2\mathbb{H}^{2}_{d}, and we call these isometries the left free shifts. These play the role of the shift in this NC Hardy space theory.

The NC analogues of the disk algebra, the continuous functions (equivalently, the disk operator system, the supremum norm–closed linear span of the disk algebra and its conjugates) and positive measures are then the free disk algebra, 𝔸d:=Alg{I,L1,,Ld}\mathbb{A}_{d}:=\mathrm{Alg}\{I,L_{1},\cdots,L_{d}\}^{-\|\cdot\|}, the free disk system,

𝒜d:=(𝔸d+𝔸d),\mathscr{A}_{d}:=\left(\mathbb{A}_{d}+\mathbb{A}_{d}^{*}\right)^{-\|\cdot\|},

and NC measures, i.e. bounded linear functionals on the free disk system. We denote the Banach space of all NC measures by 𝒜d\mathscr{A}_{d}^{\dagger} and the cone of positive NC measures by (𝒜d)+\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. In [15, 14], the first two named authors constructed the Lebesgue decomposition of any positive NC measure with respect to a canonical NC Lebesgue measure and showed that the sets of absolutely continuous and singular NC measures are positive and hereditary cones, in syzygy with classical measure theory.

The isometric left free shifts Lk=M𝔷kLL_{k}=M^{L}_{\mathfrak{z}_{k}} on d2\mathbb{H}^{2}_{d} have pairwise orthogonal ranges and it follows that the linear map L:=(L1,,Ld):d2dd2L:=\left(L_{1},\cdots,L_{d}\right):\mathbb{H}^{2}_{d}\otimes\mathbb{C}^{d}\rightarrow\mathbb{H}^{2}_{d} is an isometry from several copies of d2\mathbb{H}^{2}_{d} into itself. Such an isometry is called a row isometry. By the classical Wold decomposition theorem, any isometry on Hilbert space decomposes as the direct sum of a pure isometry, i.e. an isometry unitarily equivalent to copies of the shift on H2H^{2}, and a unitary operator. There is an exact analogue of the Wold decomposition theorem for row isometries, established by G. Popescu; any row isometry decomposes as the direct sum of a pure row isometry, unitarily equivalent to several copies of the left free shift and a surjective or Cuntz row isometry, the multivariate analogue of a unitary operator [21]. The CC^{*}-algebra d=C{I,L1,,Ld}\mathscr{E}_{d}=C^{*}\{I,L_{1},\cdots,L_{d}\} and its quotient, 𝒪d\mathscr{O}_{d}, by the compact operators are the celebrated Cuntz–Toeplitz and Cuntz algebras [4], respectively. These are universal CC^{*}-algebras for row isometries and are important objects in CC^{*}-algebra theory. Any *-representation, π\pi, of d\mathscr{E}_{d} determines and is uniquely determined by the row isometry Π:=π(L)=(π(L1),,π(Ld))\Pi:=\pi(L)=(\pi(L_{1}),\cdots,\pi(L_{d})).

The Lebesgue–von Neumann–Wold decomposition of a single isometry on Hilbert space further splits the unitary direct summand into the direct sum of a unitary with absolutely continuous spectral measure (with respect to Lebesgue measure) and a singular unitary. In [18], M. Kennedy extended the Lebesgue–von Neumann–Wold decomposition for single isometries to row isometries. A new feature in this decomposition is that the Cuntz direct summand of any row isometry generally splits as the direct sum of three different types which we will call absolutely continuous (AC) Cuntz, von Neumann type (called singular in [18]) and dilation–type.

A Gelfand–Naimark–Segal (GNS) construction applied to the free disk algebra and any positive NC measure μ\mu produces a Hilbert space d2(μ)\mathbb{H}^{2}_{d}(\mu) and a row isometry Πμ\Pi_{\mu} acting on d2(μ)\mathbb{H}^{2}_{d}(\mu). Any cyclic row isometry (or *-representation of d\mathscr{E}_{d}) can be obtained as the GNS row isometry of a positive NC measure, as recorded in Lemma 2.2. The role of normalized Lebesgue measure on the circle is played by the so-called vacuum state of the Fock space, m(Lω)=1,Lω12m(L^{\omega})=\langle{1},{L^{\omega}1}\rangle_{\mathbb{H}^{2}} where 11 is identified with the vacuum vector 𝔷\mathfrak{z}^{\varnothing}. We call mm NC Lebesgue measure. Observe that if we identify normalized Lebesgue measure, mm, with a positive linear functional on the norm-closure of the linear span of the disk algebra and its conjugate algebra, via the Riesz–Markov Theorem, then m(Sk)=1,Sk1H2m(S^{k})=\langle{1},{S^{k}1}\rangle_{H^{2}}. Thus, our definition of NC Lebesgue measure recovers normalized Lebesgue measure when d=1d=1. In [15, 14], the first two named authors constructed the Lebesgue decomposition of any positive NC measure, μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}, μ=μac+μs\mu=\mu_{ac}+\mu_{s}, where μac,μs(𝒜d)+\mu_{ac},\mu_{s}\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} are absolutely continuous and singular, respectively, with respect to NC Lebesgue measure in the sense of [14, Corollary 8.12, Corollary 8.13]. In particular, it is shown that the sets of absolutely continuous and singular NC measures are positive cones that are hereditary in the sense that if μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} and λ\lambda is absolutely continuous or singular, then μλ\mu\leq\lambda implies that μ\mu is also absolutely continuous or singular, respectively, in parallel with classical measure theory. In our NC Lebesgue decomposition, μ\mu is absolutely continuous if and only if its GNS row isometry Πμ\Pi_{\mu} is the direct sum of pure and AC Cuntz row isometries, while μ\mu is singular if and only if Πμ\Pi_{\mu} is the direct sum of von Neumann–type and dilation–type row isometries [14, Corollary 8.12, Corollary 8.13].

In this paper we further refine the NC Lebesgue decomposition of [14] by proving that the sets of dilation–type and von Neumann type NC measures (NC measures whose GNS row isometries are dilation or von Neumann type) are both positive hereditary cones in Theorem 3.18. This yields, in Corollary 3.19, a refined Kennedy–Lebesgue–von Neumann decomposition of any positive NC measure. We then apply this decomposition to obtain analogues of classical results due to Frigyes and Marcel Riesz characterizing analytic (complex) NC measures, which are those bounded linear functionals on the free disk system which annihilate {Lβ1|β𝔽d\{}}\{L^{\beta}1|\ \beta\in\mathbb{F}^{d}\backslash\{\varnothing\}\}. In particular, in Theorem 5.2, we show that a complex NC measure is analytic if and only if its absolutely continuous, singular, dilation and von Neumann parts are each also analytic. We apply this to establish an analogue of the classical F&M Riesz theorem in Theorem 5.5. The classical theorem states that analytic measures are absolutely continuous [25], [11, Chapter 4]. We remark that the NC F&M Riesz theorem obtained here is related, but not equivalent to, one previously developed in [3, Theorem A] using different techniques. Both Theorem 5.5 of the present paper and Theorem A of [3] conclude that an analytic NC measure need not be absolutely continuous, however the results of this paper and those of [3] describe the obstruction in different ways. We discuss the relationship between these two results in Remark 5.10.

2 Background and Notation

Throughout, given h,hh,h^{\prime} in a Hilbert space \mathcal{H}, we denote the inner product of hh and hh^{\prime} by h,h\langle h,h^{\prime}\rangle, with ,\langle\cdot,\cdot\rangle being conjugate linear in the first argument and linear in the second. We borrow notation from [15, 14]. The Fock space or NC Hardy space is

d2:={h(𝔷)=ω𝔽dh^ω𝔷ω|h^ω,ω𝔽d|h^ω|2<+},\mathbb{H}^{2}_{d}:=\left\{\left.h(\mathfrak{z})=\sum_{\omega\in\mathbb{F}^{d}}\hat{h}_{\omega}\mathfrak{z}^{\omega}\right|\ \hat{h}_{\omega}\in\mathbb{C},\ \sum_{\omega\in\mathbb{F}^{d}}|\hat{h}_{\omega}|^{2}<+\infty\right\},

equipped with the 2\ell^{2}-inner product of the power series coefficients h^ω\hat{h}_{\omega}. Elements of the NC Hardy space can be viewed as free non-commutative functions in the NC unit row–ball, 𝔹d\mathbb{B}^{d}_{\mathbb{N}}, of all finite–dimensional strict row contractions:

𝔹d=n=1𝔹nd;𝔹nd:={Z=(Z1,,Zd)n×n1×d|ZZ=Z1Z1+ZdZd<In};\mathbb{B}^{d}_{\mathbb{N}}=\bigsqcup_{n=1}^{\infty}\mathbb{B}^{d}_{n};\quad\mathbb{B}^{d}_{n}:=\left\{\left.Z=(Z_{1},\cdots,Z_{d})\in\mathbb{C}^{n\times n}\otimes\mathbb{C}^{1\times d}\right|\ ZZ^{*}=Z_{1}Z_{1}^{*}+\cdots Z_{d}Z_{d}^{*}<I_{n}\right\};

see, for example, [16, 15, 14, 23, 26, 1] for details.

The left free shift L=(L1,,Ld)L=(L_{1},\cdots,L_{d}) is the row isometry on the full Fock space d2\mathbb{H}^{2}_{d} whose component operators act by left multiplication by the independent variables, Lk=M𝔷kLL_{k}=M^{L}_{\mathfrak{z}_{k}}. The free or NC disk algebra is 𝔸d:=Alg{I,L1,,Ld}\mathbb{A}_{d}:=\mathrm{Alg}\{I,L_{1},\cdots,L_{d}\}^{-\|\cdot\|}, the free disk system is 𝒜d:=(𝔸d+𝔸d)\mathscr{A}_{d}:=\left(\mathbb{A}_{d}+\mathbb{A}_{d}^{*}\right)^{-\|\cdot\|}. This is a self-adjoint unital norm-closed subspace of operators, i.e. an operator system. A (complex) NC measure is a bounded linear functional on the free disk system. The set of all complex NC measures is denoted by 𝒜d\mathscr{A}_{d}^{\dagger}, and the positive NC measures by (𝒜d)+\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. We remark that any μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is uniquely determined by the moments (μ(Lα))α𝔽d(\mu(L^{\alpha}))_{\alpha\in\mathbb{F}^{d}}.

Given a𝔸da\in\mathbb{A}_{d}, we write a=a(L)=MaLa=a(L)=M^{L}_{a} for the operator of left multiplication by a(𝔷)a(\mathfrak{z}) on d2\mathbb{H}^{2}_{d}, where

a(𝔷)=ω𝔽da^ω𝔷ω,a(\mathfrak{z})=\sum_{\omega\in\mathbb{F}^{d}}\hat{a}_{\omega}\mathfrak{z}^{\omega},

is the NC function determined by aa. The partial Cesàro sums of the series for a(L)a(L) converge in the strong operator topology to a(L)=Ma(𝔷)La(L)=M^{L}_{a(\mathfrak{z})}, as shown in [7, Lemma 1.1]. More generally, given a row isometry Π\Pi, we write aa(Π)a\mapsto a(\Pi) for the unique representation of 𝔸d\mathbb{A}_{d} satisfying 𝔷α(Π)=Πα\mathfrak{z}^{\alpha}(\Pi)=\Pi^{\alpha} for all α𝔽d\alpha\in\mathbb{F}^{d}.

The free disk system has the semi-Dirichlet property [9]:

𝔸d𝔸d(𝔸d+𝔸d)=𝒜d.\mathbb{A}_{d}^{*}\mathbb{A}_{d}\subseteq(\mathbb{A}_{d}+\mathbb{A}_{d}^{*})^{-\|\cdot\|}=\mathscr{A}_{d}.

The semi-Dirichlet property enables one to apply a Gelfand–Naimark–Segal (GNS)-type construction to (μ,𝔸d)(\mu,\mathbb{A}_{d}), where μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is any positive NC measure. One obtains a GNS–Hilbert space d2(μ)\mathbb{H}^{2}_{d}(\mu) as the norm closure of the free disk algebra (modulo vectors of zero length) with respect to the pre-inner product

(a1,a2)μ(a1a2).(a_{1},a_{2})\mapsto\mu\left(a_{1}^{*}a_{2}\right).

Elements of this Hilbert space are equivalence classes a+Nμa+N_{\mu}, a𝔸da\in\mathbb{A}_{d}, where NμN_{\mu} is the left ideal of all those a𝔸da\in\mathbb{A}_{d} such that μ(aa)=0\mu(a^{*}a)=0. This construction provides a representation πμ:𝔸d(d2)\pi_{\mu}:\mathbb{A}_{d}\rightarrow\mathcal{L}(\mathbb{H}^{2}_{d}), where

πμ(a)a+Nμ:=aa+Nμ.\pi_{\mu}(a)\,a^{\prime}+N_{\mu}:=aa^{\prime}+N_{\mu}.

This is a unital completely isometric isomorphism, so that the image of the left free shifts,

Πμ:=(Πμ;1,,Πμ;d),Πμ;k:=πμ(Lk),k=1,,d,\Pi_{\mu}:=\left(\Pi_{\mu;1},\cdots,\Pi_{\mu;d}\right),\quad\quad\Pi_{\mu;k}:=\pi_{\mu}(L_{k}),\quad k=1,\ldots,d,

defines a row isometry, which we call the GNS row isometry of μ\mu, acting on the GNS space d2(μ)\mathbb{H}^{2}_{d}(\mu). The original positive NC measure μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} then has the spacial representation

μ(Lω)=I+Nμ,ΠμωI+Nμ.\mu(L^{\omega})=\langle{I+N_{\mu}},{\Pi_{\mu}^{\omega}\,I+N_{\mu}}\rangle.

If μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} and μλ\mu\leq\lambda, then the map

p+Nλp+Nμ,p+N_{\lambda}\,\mapsto\,p+N_{\mu},

extends by continuity to a contraction Eμ,λ:d2(λ)d2(μ)E_{\mu,\lambda}:\mathbb{H}^{2}_{d}(\lambda)\rightarrow\mathbb{H}^{2}_{d}(\mu) with dense range. In this case, setting Dμ,λ:=Eμ,λEμ,λD_{\mu,\lambda}:=E^{*}_{\mu,\lambda}E_{\mu,\lambda}, we have

μ(Lω)=I+Nλ,Dμ,λΠλω(I+Nλ),\mu(L^{\omega})=\langle{I+N_{\lambda}},{D_{\mu,\lambda}\,\Pi_{\lambda}^{\omega}(I+N_{\lambda})}\rangle,

and D0D\geq 0 can be viewed as the ‘NC Radon–Nikodym derivative’ of μ\mu with respect to λ\lambda.

Remark 2.1.

The NC Radon–Nikodym derivative, Dμ,λD_{\mu,\lambda} is λ\lambda- or Πλ\Pi_{\lambda}-Toeplitz in the sense that

Πλ;jDμ,λΠλ;k=δj,kDμ,λ.\Pi_{\lambda;j}^{*}D_{\mu,\lambda}\Pi_{\lambda;k}=\delta_{j,k}D_{\mu,\lambda}.

Here, recall that a bounded linear operator TT on the Hardy space H2H^{2} is called Toeplitz if TT is the compression Tf:=PH2Mf|H2T_{f}:=P_{H^{2}}M_{f}|_{H^{2}} of the bounded multiplication operator MfM_{f} for some fL(𝔻)f\in L^{\infty}(\partial\mathbb{D}). A theorem of Brown and Halmos identifies the Toeplitz operators as the set of all bounded linear operators, T(H2)T\in\mathscr{L}(H^{2}), obeying the simple algebraic condition

STS=T,S^{*}TS=T,

where S=MzS=M_{z} is the shift [2, Theorem 6].

We refer to Eμ,λE_{\mu,\lambda} as the co-embedding determined by the inequality μλ\mu\leq\lambda, since its adjoint is injective. Given μ,ν,λ(𝒜d)+\mu,\nu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} satisfying μνλ\mu\leq\nu\leq\lambda, it follows that

Eμ,νEν,λ=Eμ,λ.E_{\mu,\nu}E_{\nu,\lambda}=E_{\mu,\lambda}.

We remark that that Eμ,λE_{\mu,\lambda}^{*} is unitarily equivalent to an embedding of NC reproducing kernel Hilbert spaces; see [15, Lemma 3][14].

We now record the fact that any cyclic row isometry is unitarily equivalent to the GNS row isometry of a positive NC measure. The proof is straightforward and thus omitted.

Lemma 2.2.

Let Π\Pi be a cyclic row isometry on a Hilbert space \mathcal{H} with a cyclic vector xx. Define a positive NC measure μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} by setting μ(Lω)=x,Πωx\mu(L^{\omega})=\langle{x},{\Pi^{\omega}x}\rangle. The map Ux:d2(μ)U_{x}:\mathbb{H}^{2}_{d}(\mu)\rightarrow\mathcal{H} defined by Uxa+Nμ=a(Π)xU_{x}\,a+N_{\mu}=a(\Pi)x, a𝔸da\in\mathbb{A}_{d}, extends to a surjective isometry that intertwines Πμ\Pi_{\mu} and Π\Pi.

Let 𝔏d:=Alg{I,L1,,Ld}weak-\mathfrak{L}^{\infty}_{d}:=\mathrm{Alg}\{I,L_{1},\cdots,L_{d}\}^{-\text{weak-}*} denote the left free analytic Toeplitz algebra or the Free Hardy Algebra. From a result of Davidson–Pitts [7, Corollary 2.12], it follows that 𝔏d=Alg{I,L1,,Ld}WOT\mathfrak{L}^{\infty}_{d}=\mathrm{Alg}\{I,L_{1},\cdots,L_{d}\}^{-\text{WOT}}, the closure of Alg{I,L1,,Ld}\mathrm{Alg}\{I,L_{1},\cdots,L_{d}\} in the weak operator topology (WOT). That is, 𝔏d\mathfrak{L}^{\infty}_{d} is a free semigroup algebra, the unital WOT–closed operator algebra generated by a row isometry [5]. The algebra 𝔏d\mathfrak{L}^{\infty}_{d} can also be identified with the left multiplier algebra of d2\mathbb{H}^{2}_{d}, viewed as a non-commutative reproducing kernel Hilbert space (RKHS) [26, 16, 1]. We remark that this left multiplier algebra is equal to the unital Banach algebra d\mathbb{H}^{\infty}_{d} of all free NC functions in the NC unit row-ball 𝔹d\mathbb{B}^{d}_{\mathbb{N}} that are uniformly bounded in supremum norm [26, 23]. The NC or free Toeplitz system is

𝒯d:=(𝔏d+(𝔏d))weak-=𝒜dweak-.\mathscr{T}_{d}:=\left(\mathfrak{L}^{\infty}_{d}+(\mathfrak{L}^{\infty}_{d})^{*}\right)^{-\text{weak-}*}=\mathscr{A}_{d}^{-\text{weak-}*}.

We also use the right free shift R=(R1,,Rd)R=(R_{1},\cdots,R_{d}), the row isometry of right multiplications Rk:=M𝔷kRR_{k}:=M^{R}_{\mathfrak{z}_{k}} by the independent NC variables on the Fock space. The right free analtyic Toeplitz algebra is d:=Alg{I,R1,,Rd}WOT\mathfrak{R}^{\infty}_{d}:=\mathrm{Alg}\{I,R_{1},\cdots,R_{d}\}^{-\mathrm{WOT}}.

2.1 Stucture of GNS row isometries

By [18], any row isometry Π\Pi on a Hilbert space \mathcal{H} can be decomposed as the direct sum of four types of row isometries:

Π=ΠLΠACCΠdilΠvN.\Pi=\Pi_{L}\oplus\Pi_{\mathrm{ACC}}\oplus\Pi_{\mathrm{dil}}\oplus\Pi_{\mathrm{vN}}.

Here ΠL\Pi_{L} is pure typeL-L if it is unitarily equivalent to an ampliation of LL. The remaining three types are Cuntz, i.e. surjective row isometries. A Cuntz row isometry is the multi-variable analogue of a unitary in our context and we sometimes call a Cuntz row isometry a Cuntz unitary. We also call any pure typeL-L row isometry a pure row isometry. The summand ΠACC\Pi_{\mathrm{ACC}} is absolutely continuous Cuntz (or AC Cuntz or ACC), meaning that ΠACC\Pi_{\mathrm{ACC}} is a Cuntz row isometry and the free semigroup algebra it generates is completely isometrically isomorphic and weak-* homeomorphic to 𝔏d\mathfrak{L}^{\infty}_{d}. The summand ΠvN\Pi_{\mathrm{vN}} is von Neumann type, meaning the free semigroup algebra it generates is self-adjoint and hence a von Neumann algebra. The leftover piece Πdil\Pi_{\mathrm{dil}} is of dilation type. A row isometry Π\Pi is of dilation type if it has no direct summand of the previous three types. Any dilation type row isometry Π\Pi has a block upper triangular decomposition

Π(LI0T),\Pi\simeq\begin{pmatrix}L\otimes I&*\\ 0&T\end{pmatrix},

so that Π\Pi has a restriction to an invariant subspace that is unitarily equivalent to a pure row isometry and Π\Pi is the minimal row isometric dilation of its compression TT to the orthogonal complement of this invariant space. Since Π\Pi is of Cuntz type, TT is necessarily a non-isometric row co-isometry [21]. A row isometry containing only pure typeL-L and ACC summands is said to be absolutely continuous (or AC), and a row isometry containing only dilation–type and von Neumann–type summands is said to be singular.

We form the set of labels

Types={L,Cuntz,ac,s,ACC,dil,vN,all}.\mathrm{Types}=\{\text{L},\text{Cuntz},\text{ac},\text{s},\text{ACC},\text{dil},\text{vN},\text{all}\}.

For a given row isometry Π\Pi, if we write “Π\Pi is type 𝔱\mathfrak{t}”, then we mean “Π\Pi is pure type LL” when 𝔱=L\mathfrak{t}=\mathrm{L}, “Π\Pi is Cuntz–type” when 𝔱=Cuntz\mathfrak{t}=\mathrm{Cuntz}, “Π\Pi is absolutely continuous” when 𝔱=ac\mathfrak{t}=\mathrm{ac}, “Π\Pi is singular” when 𝔱=s\mathfrak{t}=\mathrm{s}, “Π\Pi is absolutely continuous Cuntz” when 𝔱=ACC\mathfrak{t}=\mathrm{ACC}, “Π\Pi is dilation–type” when 𝔱=dil\mathfrak{t}=\mathrm{dil}, and “Π\Pi is von Neumann–type” when 𝔱=vN\mathfrak{t}=\mathrm{vN}. We include the trivial type, 𝔱=all\mathfrak{t}=\mathrm{all}. If Π\Pi is of type all\mathrm{all} this simply means that Π\Pi can be any row isometry.

Definition 2.3.

Let 𝔱Types\mathfrak{t}\in\mathrm{Types}. A positive NC measure μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is said to be type 𝔱\mathfrak{t} if its GNS row isometry Πμ\Pi_{\mu} is type 𝔱\mathfrak{t}.

Let 𝔱Types\mathfrak{t}\in\mathrm{Types} and consider a row isometry Π\Pi. There is an orthogonal projection P𝔱P_{\mathfrak{t}} that commutes with Π\Pi such that Π\Pi restricted to the range of P𝔱P_{\mathfrak{t}} is the type 𝔱\mathfrak{t} summand of Π\Pi. In the case of a GNS row isometry Πμ\Pi_{\mu}, we write Pμ;𝔱P_{\mu;\mathfrak{t}}. Given a positive NC measure μ\mu, we denote by μ𝔱\mu_{\mathfrak{t}} the positive NC measure satisfying

μ𝔱(Lβ)=I+Nμ,Pμ;𝔱Πμβ(I+Nμ),β𝔽d.\mu_{\mathfrak{t}}(L^{\beta})=\langle{I+N_{\mu}},{P_{\mu;\mathfrak{t}}\Pi^{\beta}_{\mu}(I+N_{\mu})}\rangle,\quad\beta\in\mathbb{F}^{d}.

One may readily verify that Eμ𝔱,μE_{\mu_{\mathfrak{t}},\mu} is a co-isometry satisfying

Eμ𝔱,μEμ𝔱,μ=Pμ;𝔱.E_{\mu_{\mathfrak{t}},\mu}^{*}E_{\mu_{\mathfrak{t}},\mu}=P_{\mu;\mathfrak{t}}.

Note that Eμ𝔱,μE_{\mu_{\mathfrak{t}},\mu}^{*} satisfies

Eμ𝔱,μ(a+Nμ𝔱)=Pμ;𝔱(a+Nμ).E_{\mu_{\mathfrak{t}},\mu}^{*}(a+N_{\mu_{\mathfrak{t}}})=P_{\mu;\mathfrak{t}}(a+N_{\mu}).

Because Pμ;𝔱P_{\mu;\mathfrak{t}} is reducing for Πμ\Pi_{\mu}, it follows that Eμ𝔱,μΠμ𝔱β=ΠμβEμ𝔱,μE_{\mu_{\mathfrak{t}},\mu}^{*}\Pi_{\mu_{\mathfrak{t}}}^{\beta}=\Pi_{\mu}^{\beta}E_{\mu_{\mathfrak{t}},\mu}^{*} for all words β\beta. From this, we see that Πμ𝔱\Pi_{\mu_{\mathfrak{t}}} is unitarily equivalent to the restriction of Π\Pi to RanPμ;𝔱\mathrm{Ran}\,P_{\mu;\mathfrak{t}}. Therefore, the GNS row isometry of μ𝔱\mu_{\mathfrak{t}} is type 𝔱\mathfrak{t}, and thus μ𝔱\mu_{\mathfrak{t}} is type 𝔱\mathfrak{t}.

There is an additional projection associated with any row isometry Π\Pi, and that is the free semigroup algebra structure projection QQ of Π\Pi. With 𝔖(Π):=Alg{I,Π1,,Πd}WOT\mathfrak{S}(\Pi):=\mathrm{Alg}\{I,\Pi_{1},\cdots,\Pi_{d}\}^{-\text{WOT}} denoting the free semigroup algebra of Π\Pi, we denote by QQ largest projection in 𝔖(Π)\mathfrak{S}(\Pi) so that Q𝔖(Π)QQ\mathfrak{S}(\Pi)Q is self-adjoint [8, Structure Theorem 2.6]. It has the following properties. First, 𝔖(Π)\mathfrak{S}(\Pi) has the decomposition

𝔖(Π)=vN(Π)Q+Q𝔖(Π)Q,\mathfrak{S}(\Pi)=\mathrm{vN}(\Pi)Q+Q^{\perp}\mathfrak{S}(\Pi)Q^{\perp},

where vN(Π)\mathrm{vN}(\Pi) denotes the von Neumann algebra generated by {Π1,,Πd}\{\Pi_{1},\cdots,\Pi_{d}\}. When QIQ\neq I,

Q𝔖(Π)Q=𝔖(Π)QQ^{\perp}\mathfrak{S}(\Pi)Q^{\perp}=\mathfrak{S}(\Pi)Q^{\perp}

is completely isometrically isomorphic and weak-* homeomorphic to 𝔏d\mathfrak{L}^{\infty}_{d}. Here and elsewhere, P=IPP^{\perp}=I-P whenever PP is an orthogonal projection.

This is related to the subspace of all weak-* continuous vectors for a row isometry Π\Pi. A vector xx\in\mathcal{H} is weak-* continuous if the linear functional x(𝒜d)+\ell_{x}\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}, defined by x(Lα):=x,Παx\ell_{x}(L^{\alpha}):=\langle{x},{\Pi^{\alpha}x}\rangle, is weak-* continuous [10]. A bounded operator X:d2X:\mathbb{H}^{2}_{d}\rightarrow\mathcal{H} is an intertwiner for Π\Pi if

XLα=ΠαX,α𝔽d.XL^{\alpha}=\Pi^{\alpha}X,\quad\alpha\in\mathbb{F}^{d}.

The following theorem combines results of Davidson–Li–Pitts and Kennedy to characterize the set WC(Π)\mathrm{WC}(\Pi) of all weak-* continuous vectors of Π\Pi in terms of bounded intertwiners.

Theorem 2.4 (Davidson–Li–Pitts, Kennedy).

Let Π\Pi be a row isometry on \mathcal{H}.

  1. 1.

    If x,yWC(Π)x,y\in\mathrm{WC}(\Pi) then the linear functional x,y:𝔸d\ell_{x,y}:\mathbb{A}_{d}\rightarrow\mathbb{C},

    x,y(Lα)=x,Παy,α𝔽d,\ell_{x,y}(L^{\alpha})=\langle{x},{\Pi^{\alpha}y}\rangle_{\mathcal{H}},\quad\alpha\in\mathbb{F}^{d},

    is weak-* continuous.

  2. 2.

    WC(Π)\mathrm{WC}(\Pi) is a closed Π\Pi-invariant subspace, and

    WC(Π)={Xh|hd2,X an intertwiner}\mathrm{WC}(\Pi)=\{Xh\,|\,h\in\mathbb{H}^{2}_{d},\,X\text{ \rm{an intertwiner}}\}
  3. 3.

    If QQ is the structure projection of Π\Pi, then

    WC(Π)=RanQ.\mathrm{WC}(\Pi)=\mathrm{Ran}\,Q^{\perp}.
Proof.

Items 1 and 2 are directly from [10, Theorem 2.7]. For item 3, we note the following. The second dual 𝔸d\mathbb{A}_{d}^{\dagger\dagger} of 𝔸d\mathbb{A}_{d} is a free semi-group algebra, and thus there exists a structure projection 𝔮\mathfrak{q} for 𝔸d\mathbb{A}_{d}^{\dagger\dagger}. Let π^\hat{\pi} denote the weak-* continuous representation of d\mathscr{E}_{d}^{\dagger\dagger} determined by π\pi. By [10, Proposition 5.2], π^(𝔮)=QWC\hat{\pi}(\mathfrak{q})^{\bot}=Q_{\mathrm{WC}}, where QWCQ_{\mathrm{WC}} denotes the projection onto the closed subspace WC(Π)WC(\Pi). In comments following [10, Proposition 5.2], it is shown that π^(𝔮)=Q\hat{\pi}(\mathfrak{q})=Q if and only if π\pi is “regular”, meaning that the aπ(a)|WC(Π)a\mapsto\pi(a)|_{\mathrm{WC}(\Pi)} and aπ(a)|RanQa\mapsto\pi(a)|_{\mathrm{Ran}\,Q^{\bot}} coincide. By [10, Theorem 3.4] and [18, Corollary 4.17], we see that π\pi is always regular. ∎

3 Convex and order structure of NC measures

If 0μλ0\leq\mu\leq\lambda are positive NC measures, it is natural to ask whether the contractive co-embedding Eμ,λ:d2(λ)d2(μ)E_{\mu,\lambda}:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\mu) intertwines the various structure projections of μ\mu and λ\lambda. That is, do we generally have that Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λE_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda}, where 𝔱Types\mathfrak{t}\in\mathrm{Types}? By [14, Corollary 8.11] the sets of absolutely continuous (AC) and singular positive NC measures are positive hereditary cones. It is therefore also natural to ask whether the sets of von Neumann type and dilation type NC measures are also positive hereditary cones, as we prove in Theorem 3.18 at the end of this section.

Definition 3.1.

Let μ,λ(𝒜d)+\mu,\lambda\in(\mathscr{A}_{d})^{\dagger}_{+}. We say that 𝔱Types\mathfrak{t}\in\mathrm{Types} is a hereditary type if μλ\mu\leq\lambda and λ\lambda being type 𝔱\mathfrak{t} together imply that μ\mu is type 𝔱\mathfrak{t}. A positive sub-cone, 𝒫0𝒫\mathscr{P}_{0}\subseteq\mathscr{P}, of a postive cone, 𝒫\mathscr{P}, is hereditary, if p0𝒫0p_{0}\in\mathscr{P}_{0}, p𝒫p\in\mathscr{P} and pp0p\leq p_{0} imply that p𝒫0p\in\mathscr{P}_{0}. We say that 𝔱\mathfrak{t} determines a hereditary cone if the set of type–𝔱\mathfrak{t} positive NC measures form a hereditary cone.

Lemma 3.2.

Let λ,μ(𝒜d)+\lambda,\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} with μλ\mu\leq\lambda. If c𝒜dc\in\mathscr{A}_{d} is positive semi-definite, then

Eμ,λπμ(c)Eμ,λπλ(c).E_{\mu,\lambda}^{*}\pi_{\mu}(c)E_{\mu,\lambda}\leq\pi_{\lambda}(c).
Proof.

By [12, Lemma 4.6] the cone of ‘positive finite sums of squares’ of free polynomials, i.e. elements of the form

j=1Npj(L)pj(L),pj{𝔷1,,𝔷d},\sum_{j=1}^{N}p_{j}(L)^{*}p_{j}(L),\quad\quad p_{j}\in\mathbb{C}\{\mathfrak{z}_{1},...,\mathfrak{z}_{d}\},

is norm-dense in the cone of positive elements of the free disk system, 𝒜d\mathscr{A}_{d}. Hence, to prove the claim, it suffices to show that

Eμ,λπμ(p(L)p(L))Eμ,λπλ(p(L)p(L)),E^{*}_{\mu,\lambda}\pi_{\mu}\left(p(L)^{*}p(L)\right)E_{\mu,\lambda}\leq\pi_{\lambda}\left(p(L)^{*}p(L)\right),

for any p{𝔷1,,𝔷d}p\in\mathbb{C}\{\mathfrak{z}_{1},...,\mathfrak{z}_{d}\}. This is easily verified:

Eμ,λπμ(p(L)p(L))Eμ,λ\displaystyle E_{\mu,\lambda}^{*}\pi_{\mu}\left(p(L)^{*}p(L)\right)E_{\mu,\lambda} =\displaystyle= Eμ,λπμ(p)πμ(p)Eμ,λ\displaystyle E_{\mu,\lambda}^{*}\pi_{\mu}(p)^{*}\pi_{\mu}(p)E_{\mu,\lambda}
=\displaystyle= πλ(p)Eμ,λEμ,λπλ(p)\displaystyle\pi_{\lambda}(p)^{*}E_{\mu,\lambda}^{*}E_{\mu,\lambda}\pi_{\lambda}(p)
\displaystyle\leq πλ(p)πλ(p)=πλ(p(L)p(L)).\displaystyle\pi_{\lambda}(p)^{*}\pi_{\lambda}(p)=\pi_{\lambda}(p(L)^{*}p(L)).

Proposition 3.3.

Let 𝔱Types\mathfrak{t}\in\mathrm{Types}.

  1. (a)

    If μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} are such that Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λPλ;𝔱E_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda}P_{\lambda;\mathfrak{t}} and λ\lambda is of type 𝔱\mathfrak{t}, then μ\mu is also of type 𝔱\mathfrak{t}. In particular, if this formula holds for all μ,λ(𝒜d)+\mu,\lambda\in(\mathscr{A}_{d})^{\dagger}_{+} such that μλ\mu\leq\lambda, then 𝔱\mathfrak{t} is a hereditary type.

  2. (b)

    If Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λE_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda} whenever μ,λ(𝒜d)+\mu,\lambda\in(\mathscr{A}_{d})^{\dagger}_{+} are such that μλ\mu\leq\lambda, then 𝔱\mathfrak{t} determines a hereditary cone.

  3. (c)

    Suppose that 𝔱,𝔲\mathfrak{t},\mathfrak{u} are types and λ,μ(𝒜d)+\lambda,\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} are such that Pλ;𝔱=Pλ;𝔲P_{\lambda;\mathfrak{t}}^{\bot}=P_{\lambda;\mathfrak{u}} and similarly for μ\mu. If μ𝔱λ𝔱\mu_{\mathfrak{t}}\leq\lambda_{\mathfrak{t}} and μ𝔲λ𝔲\mu_{\mathfrak{u}}\leq\lambda_{\mathfrak{u}}, then Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λE_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda}.

  4. (d)

    Suppose that μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}, μλ\mu\leq\lambda, 𝔱\mathfrak{t} is a type and Pμ;𝔱Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λP_{\mu;\mathfrak{t}}E_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda}. If μ\mu is of type 𝔱\mathfrak{t} then μλ𝔱\mu\leq\lambda_{\mathfrak{t}}.

Proof.

(a) Suppose μλ\mu\leq\lambda and λ\lambda is type 𝔱\mathfrak{t}. Then Pλ;𝔱=IP_{\lambda;\mathfrak{t}}=I and thus Eμ,λ=Pμ;𝔱Eμ,λE_{\mu,\lambda}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda}, and therefore

μ(Lβ)=Eμ,λ(I+Nλ),ΠμβEμ,λ(I+Nλ)=Eμ,λ(I+Nλ),Pμ;𝔱ΠμβEμ,λ(I+Nλ)=μ𝔱(Lβ)\mu(L^{\beta})=\langle{E_{\mu,\lambda}(I+N_{\lambda})},{\Pi^{\beta}_{\mu}E_{\mu,\lambda}(I+N_{\lambda})}\rangle=\langle{E_{\mu,\lambda}(I+N_{\lambda})},{P_{\mu;\mathfrak{t}}\Pi_{\mu}^{\beta}E_{\mu,\lambda}(I+N_{\lambda})}\rangle=\mu_{\mathfrak{t}}(L^{\beta})

for each β𝔽d\beta\in\mathbb{F}^{d}. Thus, μ\mu is type 𝔱\mathfrak{t}.

(b) The hereditary property follows from (a). To see that 𝔱\mathfrak{t} determines a cone, suppose μ,ν\mu,\nu are type 𝔱\mathfrak{t}. Clearly, μ,νμ+ν\mu,\nu\leq\mu+\nu. Then

I=Eμ,μ+νEμ,μ+ν+Eν,μ+νEν,μ+ν,I=E_{\mu,\mu+\nu}^{*}E_{\mu,\mu+\nu}+E_{\nu,\mu+\nu}^{*}E_{\nu,\mu+\nu},

Pμ;𝔱=IP_{\mu;\mathfrak{t}}=I and Pν;𝔱=IP_{\nu;\mathfrak{t}}=I. Thus,

Pμ+ν;𝔱\displaystyle P_{\mu+\nu;\mathfrak{t}} =(Eμ,μ+νEμ,μ+ν+Eν,μ+νEν,μ+ν)Pμ+ν;𝔱\displaystyle=(E_{\mu,\mu+\nu}^{*}E_{\mu,\mu+\nu}+E_{\nu,\mu+\nu}^{*}E_{\nu,\mu+\nu})P_{\mu+\nu;\mathfrak{t}}
=Eμ,μ+νPμ;𝔱Eμ,μ+ν+Eν,μ+νPν;𝔱Eν,μ+ν\displaystyle=E_{\mu,\mu+\nu}^{*}P_{\mu;\mathfrak{t}}E_{\mu,\mu+\nu}+E_{\nu,\mu+\nu}^{*}P_{\nu;\mathfrak{t}}E_{\nu,\mu+\nu}
=Eμ,μ+νEμ,μ+ν+Eν,μ+νEν,μ+ν=I.\displaystyle=E_{\mu,\mu+\nu}^{*}E_{\mu,\mu+\nu}+E_{\nu,\mu+\nu}^{*}E_{\nu,\mu+\nu}=I.

Therefore, (μ+ν)𝔱=μ+ν(\mu+\nu)_{\mathfrak{t}}=\mu+\nu is type 𝔱\mathfrak{t}.

(c) Define Uμ:d2(μ)d2(μ𝔱)d2(μ𝔲)U_{\mu}:\mathbb{H}^{2}_{d}(\mu)\to\mathbb{H}^{2}_{d}(\mu_{\mathfrak{t}})\oplus\mathbb{H}^{2}_{d}(\mu_{\mathfrak{u}}) by setting Uμh=Eμ𝔱,μh(Eμ𝔲,μh)U_{\mu}h=E_{\mu_{\mathfrak{t}},\mu}h\oplus(E_{\mu_{\mathfrak{u}},\mu}h) for hd2(μ)h\in\mathbb{H}^{2}_{d}(\mu). Then it follows from comments following Definition 2.3 that UμU_{\mu} is a surjective isometry. The surjective isometry Uλ:d2(λ)d2(λ𝔱)d2(λ𝔲)U_{\lambda}:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\lambda_{\mathfrak{t}})\oplus\mathbb{H}^{2}_{d}(\lambda_{\mathfrak{u}}) is defined similarly. We note that, with respect to this direct sum decomposition,

UμEμ,λ\displaystyle U_{\mu}E_{\mu,\lambda} =\displaystyle= [Eμ𝔱,μEμ𝔲,μ]Eμ,λ=[Eμ𝔱,λEμ𝔲,λ]\displaystyle\begin{bmatrix}E_{\mu_{\mathfrak{t}},\mu}\\ E_{\mu_{\mathfrak{u}},\mu}\end{bmatrix}E_{\mu,\lambda}=\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda}\\ E_{\mu_{\mathfrak{u}},\lambda}\end{bmatrix}
=\displaystyle= [Eμ𝔱,λ𝔱Eλ𝔱,λEμ𝔲,λ𝔲Eλ𝔲,λ]=[Eμ𝔱,λ𝔱00Eμ𝔲,λ𝔲][Eλ𝔱,λEλ𝔲,λ]\displaystyle\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}E_{\lambda_{\mathfrak{t}},\lambda}\\ E_{\mu_{\mathfrak{u}},\lambda_{\mathfrak{u}}}E_{\lambda_{\mathfrak{u}},\lambda}\end{bmatrix}=\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}&0\\ 0&E_{\mu_{\mathfrak{u}},\lambda_{\mathfrak{u}}}\end{bmatrix}\begin{bmatrix}E_{\lambda_{\mathfrak{t}},\lambda}\\ E_{\lambda_{\mathfrak{u}},\lambda}\end{bmatrix}
=\displaystyle= [Eμ𝔱,λ𝔱00Eμ𝔲,λ𝔲]Uλ.\displaystyle\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}&0\\ 0&E_{\mu_{\mathfrak{u}},\lambda_{\mathfrak{u}}}\end{bmatrix}U_{\lambda}.

Thus,

Eμ,λUλ=Uμ[Eμ𝔱,λ𝔱00Eμ𝔲,λ𝔲].E_{\mu,\lambda}U_{\lambda}^{*}=U_{\mu}^{*}\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}&0\\ 0&E_{\mu_{\mathfrak{u}},\lambda_{\mathfrak{u}}}\end{bmatrix}.

Let Cμ:d2(μ)d2(μ𝔱)d2(μ𝔲)C_{\mu}:\mathbb{H}^{2}_{d}(\mu)\to\mathbb{H}^{2}_{d}(\mu_{\mathfrak{t}})\oplus\mathbb{H}^{2}_{d}(\mu_{\mathfrak{u}}) be defined by Cμh=Eμ𝔱,μh0C_{\mu}h=E_{\mu_{\mathfrak{t}},\mu}h\oplus 0, with CλC_{\lambda} similarly defined. Then

Pμ;𝔱Eμ,λ=CμUμEμ,λ=Cμ[Eμ𝔱,λ𝔱00Eμ𝔲,λ𝔲]Uλ=Eμ𝔱,μEμ𝔱,λ𝔱Eλ𝔱,λP_{\mu;\mathfrak{t}}E_{\mu,\lambda}=C_{\mu}^{*}U_{\mu}E_{\mu,\lambda}=C_{\mu}^{*}\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}&0\\ 0&E_{\mu_{\mathfrak{u}},\lambda_{\mathfrak{u}}}\end{bmatrix}U_{\lambda}=E_{\mu_{\mathfrak{t}},\mu}^{*}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}E_{\lambda_{\mathfrak{t}},\lambda}

and

Eμ,λPλ;𝔱=Eμ,λUλCλ=Uμ[Eμ𝔱,λ𝔱00Eμ𝔲,λ𝔲]Cλ=Eμ𝔱,μEμ𝔱,λ𝔱Eλ𝔱,λ.E_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=E_{\mu,\lambda}U_{\lambda}^{*}C_{\lambda}=U_{\mu}^{*}\begin{bmatrix}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}&0\\ 0&E_{\mu_{\mathfrak{u}},\lambda_{\mathfrak{u}}}\end{bmatrix}C_{\lambda}=E_{\mu_{\mathfrak{t}},\mu}^{*}E_{\mu_{\mathfrak{t}},\lambda_{\mathfrak{t}}}E_{\lambda_{\mathfrak{t}},\lambda}.

Therefore, Pμ;𝔱Eμ,λ=Eμ,λPλ;𝔱P_{\mu;\mathfrak{t}}E_{\mu,\lambda}=E_{\mu,\lambda}P_{\lambda;\mathfrak{t}}.

(d) Since μ\mu is type 𝔱\mathfrak{t}, we have Pμ;𝔱=IP_{\mu;\mathfrak{t}}=I and so Eμ,λPλ;𝔱=Eμ,λE_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=E_{\mu,\lambda}. Let c𝒜dc\in\mathscr{A}_{d} be positive semi-definite. By Lemma 3.2, we have

Eμ,λπλ(c)Eμ,λπλ(c),E_{\mu,\lambda}^{*}\pi_{\lambda}(c)E_{\mu,\lambda}\leq\pi_{\lambda}(c),

and so

μ(c)\displaystyle\mu(c) =\displaystyle= I+Nλ,Eμ,λπμ(c)Eμ,λ(I+Nλ)\displaystyle\langle{I+N_{\lambda}},{E_{\mu,\lambda}^{*}\pi_{\mu}(c)E_{\mu,\lambda}(I+N_{\lambda})}\rangle
=\displaystyle= Pλ;𝔱(I+Nλ),Eμ,λπμ(c)Eμ,λPλ;𝔱(I+Nλ)\displaystyle\langle{P_{\lambda;\mathfrak{t}}(I+N_{\lambda})},{E_{\mu,\lambda}^{*}\pi_{\mu}(c)E_{\mu,\lambda}P_{\lambda;\mathfrak{t}}(I+N_{\lambda})}\rangle
\displaystyle\leq I+Nλ,Pλ;𝔱πλ(c)(I+Nλ)\displaystyle\langle{I+N_{\lambda}},{P_{\lambda;\mathfrak{t}}\pi_{\lambda}(c)(I+N_{\lambda})}\rangle
=\displaystyle= λ𝔱(c).\displaystyle\lambda_{\mathfrak{t}}(c).

That is, μλ𝔱\mu\leq\lambda_{\mathfrak{t}}. ∎

Lemma 3.4.

Suppose that 𝔱,𝔲,𝔴Types\mathfrak{t},\mathfrak{u},\mathfrak{w}\in\mathrm{Types} and that Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λE_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda} for all μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} of type 𝔴\mathfrak{w} for which μλ\mu\leq\lambda. Further assume that Pν;𝔱=Pν;𝔲P_{\nu;\mathfrak{t}}^{\bot}=P_{\nu;\mathfrak{u}} for all ν(𝒜d)+\nu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} of type 𝔴\mathfrak{w}. Then the following assertions hold:

  1. (i)

    If ν1,ν2,μ(𝒜d)+\nu_{1},\nu_{2},\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}, of type 𝔴\mathfrak{w}, are such that ν1+ν2=μ\nu_{1}+\nu_{2}=\mu and ν1\nu_{1} and ν2\nu_{2} are type 𝔱\mathfrak{t} and 𝔲\mathfrak{u}, respectively, then ν1=μ𝔱\nu_{1}=\mu_{\mathfrak{t}} and ν2=μ𝔲\nu_{2}=\mu_{\mathfrak{u}}.

  2. (ii)

    For any μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} of type 𝔴\mathfrak{w}, one has (μ+λ)𝔱=μ𝔱+λ𝔱(\mu+\lambda)_{\mathfrak{t}}=\mu_{\mathfrak{t}}+\lambda_{\mathfrak{t}}.

Proof.

(i) Plainly ν1μ\nu_{1}\leq\mu and ν2μ\nu_{2}\leq\mu. It follows from Proposition 3.3(d) that ν1μ𝔱\nu_{1}\leq\mu_{\mathfrak{t}} and ν2μ𝔲\nu_{2}\leq\mu_{\mathfrak{u}} since

Eμ,λPλ;𝔲\displaystyle E_{\mu,\lambda}P_{\lambda;\mathfrak{u}} =\displaystyle= Eμ,λEμ,λPλ;𝔱\displaystyle E_{\mu,\lambda}-E_{\mu,\lambda}P_{\lambda;\mathfrak{t}}
=\displaystyle= Eμ,λPμ;𝔱Eμ,λ\displaystyle E_{\mu,\lambda}-P_{\mu;\mathfrak{t}}E_{\mu,\lambda}
=\displaystyle= (IPμ;𝔱)Eμ,λ=Pμ;𝔲Eμ,λ.\displaystyle(I-P_{\mu;\mathfrak{t}})E_{\mu,\lambda}=P_{\mu;\mathfrak{u}}E_{\mu,\lambda}.

For any positive semi-definite c𝒜dc\in\mathscr{A}_{d}, set

δ1=μ𝔱(c)ν1(c),δ2=μ𝔲(c)ν2(c).\delta_{1}=\mu_{\mathfrak{t}}(c)-\nu_{1}(c),\quad\delta_{2}=\mu_{\mathfrak{u}}(c)-\nu_{2}(c).

Note that δ1,δ2\delta_{1},\delta_{2} are non-negative real numbers. As

0=ν1(c)+ν2(c)μ(c)=(δ1+δ2),0=\nu_{1}(c)+\nu_{2}(c)-\mu(c)=-(\delta_{1}+\delta_{2}),

it follows that δ1=δ2=0\delta_{1}=\delta_{2}=0. As every element of 𝒜d\mathscr{A}_{d} is a linear combination of positive semi-definite elements, assertion (i) is proved.

(ii) It follows from Proposition 3.3(b) that μ𝔱+λ𝔱\mu_{\mathfrak{t}}+\lambda_{\mathfrak{t}} is type 𝔱\mathfrak{t} and μ𝔲+λ𝔲\mu_{\mathfrak{u}}+\lambda_{\mathfrak{u}} is type 𝔲\mathfrak{u}. As (μ𝔱+λ𝔱)+(μ𝔲+λ𝔲)=μ+λ(\mu_{\mathfrak{t}}+\lambda_{\mathfrak{t}})+(\mu_{\mathfrak{u}}+\lambda_{\mathfrak{u}})=\mu+\lambda, it follows from (i) that

μ𝔱+λ𝔱=(μ+λ)𝔱.\mu_{\mathfrak{t}}+\lambda_{\mathfrak{t}}=(\mu+\lambda)_{\mathfrak{t}}.

Remark 3.5.

Let 𝔱,𝔲,𝔴Types\mathfrak{t},\mathfrak{u},\mathfrak{w}\in\mathrm{Types} be such that Pμ;𝔴=Pμ;𝔱+Pμ;𝔲P_{\mu;\mathfrak{w}}=P_{\mu;\mathfrak{t}}+P_{\mu;\mathfrak{u}} for all μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. It follows from Proposition 3.3 that the following assertions are equivalent.

  1. (i)

    Eμ,λPλ;𝔱=Pμ;𝔱Eμ,λE_{\mu,\lambda}P_{\lambda;\mathfrak{t}}=P_{\mu;\mathfrak{t}}E_{\mu,\lambda} whenever μ,λ(𝒜d)+\mu,\lambda\in(\mathscr{A}_{d})^{\dagger}_{+} are of type 𝔴\mathfrak{w} and μλ\mu\leq\lambda.

  2. (ii)

    μ𝔱λ𝔱\mu_{\mathfrak{t}}\leq\lambda_{\mathfrak{t}} and μ𝔲λ𝔲\mu_{\mathfrak{u}}\leq\lambda_{\mathfrak{u}} whenever μ,λ(𝒜d)+\mu,\lambda\in(\mathscr{A}_{d})^{\dagger}_{+} are of type 𝔴\mathfrak{w} and μλ\mu\leq\lambda.

Indeed, that (ii) implies (i) it precisely Proposition 3.3(c). In the other direction, we first note that μ𝔱λ\mu_{\mathfrak{t}}\leq\lambda and μ𝔲λ\mu_{\mathfrak{u}}\leq\lambda. Assume (i). Since μ𝔱\mu_{\mathfrak{t}} and μ𝔲\mu_{\mathfrak{u}} are type 𝔱\mathfrak{t} and 𝔲\mathfrak{u}, respectively, it then follows from Proposition 3.3(d) that μ𝔱λ𝔱\mu_{\mathfrak{t}}\leq\lambda_{\mathfrak{t}} and μ𝔲λ𝔲\mu_{\mathfrak{u}}\leq\lambda_{\mathfrak{u}}. In particular, (i) and (ii) hold in the case where 𝔴=all\mathfrak{w}=\mathrm{all}, in which case our starting assumption is that Pμ;𝔴=I=Pμ;𝔱+Pμ;𝔲P_{\mu;\mathfrak{w}}=I=P_{\mu;\mathfrak{t}}+P_{\mu;\mathfrak{u}}.

Proposition 3.6.

Suppose that γ,λ(𝒜d)+\gamma,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} and γλ\gamma\leq\lambda. Let E:=Eγ,λ:d2(λ)d2(γ)E:=E_{\gamma,\lambda}:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\gamma) be the contractive co-embedding. Then EPλac=PγacEEP_{\lambda_{ac}}=P_{\gamma_{ac}}E and EPλs=PγsEEP_{\lambda_{s}}=P_{\gamma_{s}}E. That is 𝔱=ac\mathfrak{t}=\mathrm{ac} and 𝔲=s\mathfrak{u}=\mathrm{s} are hereditary types and determine positive hereditary cones.

Proof.

By [14, Corollary 8.8], if γ=γac+γs\gamma=\gamma_{ac}+\gamma_{s} and λ=λac+λs\lambda=\lambda_{ac}+\lambda_{s} are the NC Lebesgue decompositions of γ,λ\gamma,\lambda, then γsλs\gamma_{s}\leq\lambda_{s}. Since λ=γ+(λγ)γ\lambda=\gamma+(\lambda-\gamma)\geq\gamma, it follows from [14, Corollary 8.14] that λac=γac+(λγ)acγac\lambda_{ac}=\gamma_{ac}+(\lambda-\gamma)_{ac}\geq\gamma_{ac}. Thus, λacγac\lambda_{ac}\geq\gamma_{ac} as well. The proposition now follows from Proposition 3.3(c). ∎

Corollary 3.7.

With γλ\gamma\leq\lambda as above, if D=EED=E^{*}E, where E:=Eγ,λE:=E_{\gamma,\lambda}, then DPλ;ac=Pλ;acDDP_{\lambda;ac}=P_{\lambda;ac}D.

In the next lemma, recall that if QλQ_{\lambda} is the structure projection of Πλ\Pi_{\lambda}, that Qλ=Qλ;WCQ_{\lambda}^{\perp}=Q_{\lambda;\mathrm{WC}} is the projection onto WC(Πλ)\rm{WC}(\Pi_{\lambda}) by Theorem 2.4.

Lemma 3.8.

Suppose μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} with μλ\mu\leq\lambda. Let QλQ_{\lambda} and QμQ_{\mu} be the structure projections of Πλ\Pi_{\lambda} and Πμ\Pi_{\mu}, respectively. Then, Eμ,λQλ=QμEμ,λQλE_{\mu,\lambda}Q_{\lambda}^{\bot}=Q_{\mu}^{\bot}E_{\mu,\lambda}Q_{\lambda}^{\bot}.

Proof.

Set E=Eμ,λE=E_{\mu,\lambda}. Let hd2(λ)h\in\mathbb{H}^{2}_{d}(\lambda) be a WC vector of Πλ\Pi_{\lambda}. By Theorem 2.4 there is an intertwiner X:d2d2(λ)X:\mathbb{H}^{2}_{d}\to\mathbb{H}^{2}_{d}(\lambda) and a vector gd2g\in\mathbb{H}^{2}_{d} such that Xg=hXg=h. As EXEX intertwines Πλ\Pi_{\lambda} and Πμ\Pi_{\mu}, it follows that Eh=EXgEh=EXg is a WC vector of Πμ\Pi_{\mu}. Thus, EQλ=QμEQλEQ_{\lambda}^{\bot}=Q_{\mu}^{\bot}EQ_{\lambda}^{\bot}. ∎

Lemma 3.9.

Suppose μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} with μλ\mu\leq\lambda. Let Pλ:=Pλ;CuntzP_{\lambda}:=P_{\lambda;Cuntz} be the Πλ\Pi_{\lambda}-reducing projection onto the support of its Cuntz direct summand. Then, Eμ,λPλ=PμEμ,λPλE_{\mu,\lambda}P_{\lambda}=P_{\mu}E_{\mu,\lambda}P_{\lambda}. In particular, if λ\lambda is Cuntz type, then μ\mu is Cuntz type, and 𝔱=Cuntz\mathfrak{t}=\mathrm{Cuntz} is a hereditary type.

Proof.

It follows from Popescu’s Wold decomposition theorem, [21, Theorem 1.3], that the range of PλP_{\lambda} is the set of all xd2(λ)x\in\mathbb{H}^{2}_{d}(\lambda) so that for any non-negative integer, NN, there exist {xα|α𝔽d,|α|=N}d2(λ)\{x_{\alpha}|\ \alpha\in\mathbb{F}^{d},|\alpha|=N\}\subset\mathbb{H}^{2}_{d}(\lambda) such that

x=|α|=NΠλαxα.x=\sum_{|\alpha|=N}\Pi_{\lambda}^{\alpha}x_{\alpha}.

Set E=Eμ,λE=E_{\mu,\lambda}. Then,

Ex=|α|=NΠμαExα,Ex=\sum_{|\alpha|=N}\Pi_{\mu}^{\alpha}Ex_{\alpha},

for any non-negative integer NN. It follows that EPλ=PμEPλEP_{\lambda}=P_{\mu}EP_{\lambda}, from which the remaining claim follows on application of Proposition 3.3(a). ∎

Lemma 3.10.

Let Π\Pi be a row isometry on a Hilbert space \mathcal{H} and set

0:=β,γ𝔽dΠβΠγWC(Π).\mathcal{H}_{0}:=\bigvee_{\beta,\gamma\in\mathbb{F}^{d}}\Pi^{\beta}\Pi^{\gamma*}\mathrm{WC}(\Pi).

Then 0\mathcal{H}_{0} is Π\Pi-reducing and the restriction of Π\Pi to 0\mathcal{H}_{0}^{\perp} is the von Neumann–type summand of Π\Pi.

Proof.

By a result of M. Kennedy, a row isometry, Π\Pi, is of von Neumann type if and only if it has no wandering vectors [17]. Specifically, any pure or AC Cuntz row isometry has wandering vectors. Since a dilation–type row isometry has a pure typeL-L restriction to the non-trivial invariant subspace of its weak-* continuous vectors, it also has wandering vectors. It is clear that any wandering vector for Π\Pi belongs to WC(Π)WC(\Pi). By construction 0WC(Π)={0}\mathcal{H}_{0}^{\perp}\cap WC(\Pi)=\{0\} so that Π\Pi restricted to 0\mathcal{H}_{0}^{\perp} has no wandering vectors and is hence of von Neumann type. That is, 0RanPvN\mathcal{H}_{0}^{\bot}\subset\mathrm{Ran}\,P_{\mathrm{vN}}. Let hRanPvNh\in\mathrm{Ran}\,P_{\mathrm{vN}}, let vd2v\in\mathbb{H}^{2}_{d}, and let X:d2X:\mathbb{H}^{2}_{d}\to\mathcal{H} be an intertwiner. Then, for any words β,γ\beta,\gamma, we have

ΠβΠγXv,h=ΠβΠγXv,PvNh=ΠβΠγ(PvNX)v,h.\langle{\Pi^{\beta}\Pi^{\gamma*}Xv},{h}\rangle=\langle{\Pi^{\beta}\Pi^{\gamma*}Xv},{P_{\mathrm{vN}}h}\rangle=\langle{\Pi^{\beta}\Pi^{\gamma*}(P_{\mathrm{vN}}X)v},{h}\rangle.

Since PvNXvWC(Π)RanPvNP_{\mathrm{vN}}Xv\in\mathrm{WC}(\Pi)\cap\mathrm{Ran}\,P_{\mathrm{vN}}, we have PvNXv=0P_{\mathrm{vN}}Xv=0 and thus h0h\in\mathcal{H}_{0}^{\bot}. Therefore, 0=RanPvN\mathcal{H}_{0}^{\bot}=\mathrm{Ran}\,P_{\mathrm{vN}}. ∎

Remark 3.11.

If Π\Pi is of dilation type on \mathcal{H}, then WC(Π)\mathrm{WC}(\Pi) is Π\Pi-invariant but cannot contain any Π\Pi-reducing subspace. Thus, 0=\mathcal{H}_{0}=\mathcal{H} for dilation–type row isometries.

Remark 3.12.

By Theorem 2.4, we have WC(Π)\mathrm{WC}(\Pi) equal to the range of QQ^{\bot}, where QQ is the structure projection of Π\Pi. Suppose Π\Pi and Ξ\Xi are unitarily equivalent row isometries. That is, there exists UU a surjective isometry such that UΠα=ΞαUU\Pi^{\alpha}=\Xi^{\alpha}U for each word α\alpha. It then follows from Lemma 3.10 that UPΠ;vN=PΞ;vNUUP_{\Pi;\rm{vN}}=P_{\Xi;\rm{vN}}U.

The following fact is well–known and can be found in [14, Lemma 8.9]:

Lemma 3.13.

Let Π\Pi and Ξ\Xi be row isometries on Hilbert spaces ,𝒥\mathcal{H},\mathcal{J} respectively and suppose that Π\Pi is a Cuntz unitary. If X:𝒥X:\mathcal{H}\rightarrow\mathcal{J} is a bounded linear map satisfying

XΠα=ΞαX,α𝔽d,X\Pi^{\alpha}=\Xi^{\alpha}X,\quad\alpha\in\mathbb{F}^{d},

then

ΠαX=XΞα,α𝔽d,\Pi^{\alpha}X^{*}=X^{*}\Xi^{\alpha},\quad\alpha\in\mathbb{F}^{d},

and XXX^{*}X is in the commutant of the von Neumann algebra of Π\Pi, and similarly XXXX^{*} is in the commutant of the von Neumann algebra of Ξ\Xi.

Lemma 3.14.

Suppose μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} satisfy μλ\mu\leq\lambda. If λ\lambda is of von Neumann type, then so is μ\mu. That is, 𝔱=vN\mathfrak{t}=\mathrm{vN} is a hereditary type.

Proof.

The set of all positive singular NC measures is a positive hereditary cone so that μ\mu is necessarily singular. That is, μ=μdil+μvN\mu=\mu_{\rm{dil}}+\mu_{\rm{vN}}, is the sum of a positive dilation–type and a von Neumann–type NC measure. Suppose that xWC(μ)d2(μdil)x\in\mathrm{WC}(\mu)\subseteq\mathbb{H}^{2}_{d}(\mu_{\rm{dil}}) is a weak-* continuous vector. By Theorem 2.4, there is a bounded intertwiner X:d2d2(μ)X:\mathbb{H}^{2}_{d}\rightarrow\mathbb{H}^{2}_{d}(\mu) and a vector fd2f\in\mathbb{H}^{2}_{d} so that Xf=xXf=x. Since μλ\mu\leq\lambda, the co-embedding E:d2(λ)d2(μ)E:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\mu) is contractive and EΠλα=ΠμαEE\Pi_{\lambda}^{\alpha}=\Pi_{\mu}^{\alpha}E for any word α\alpha. By Lemma 3.13, we also have that EΠμα=ΠλαEE^{*}\Pi_{\mu}^{\alpha}=\Pi_{\lambda}^{\alpha}E^{*}, so that Y:=EX:d2d2(λ)Y:=E^{*}X:\mathbb{H}^{2}_{d}\rightarrow\mathbb{H}^{2}_{d}(\lambda) is an intertwiner:

YLα=EXLα=EΠμαX=ΠλαY.YL^{\alpha}=E^{*}XL^{\alpha}=E^{*}\Pi_{\mu}^{\alpha}X=\Pi_{\lambda}^{\alpha}Y.

Setting y=Yfd2(λ)y=Yf\in\mathbb{H}^{2}_{d}(\lambda), we see that yy is in the range of a bounded interwtiner. Thus, yWC(λ)={0}y\in\rm{WC}(\lambda)=\{0\}, since λ\lambda is of von Neumann type. Because EE^{*} is injective, we have x=0x=0. It follows that WC(μ)={0}\rm{WC}(\mu)=\{0\}, and thus μdil=0\mu_{\rm{dil}}=0. We conclude that μ\mu is of von Neumann type. ∎

Lemma 3.15.

Suppose μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} satisfy μλ\mu\leq\lambda. Then, Eμ,λPλ;dil=Pμ;dilEμ,λPλ;dilE_{\mu,\lambda}P_{\lambda;\rm{dil}}=P_{\mu;\rm{dil}}E_{\mu,\lambda}P_{\lambda;\rm{dil}}.

The above lemma and Proposition 3.3(a) imply that 𝔱=dil\mathfrak{t}=\mathrm{dil} is also a hereditary type.

Proof.

Set Pλ:=Pλ;dilP_{\lambda}:=P_{\lambda;\rm{dil}}, Pμ:=Pμ;dilP_{\mu}:=P_{\mu;\mathrm{dil}} and E=Eμ,λE=E_{\mu,\lambda}. We know that Pλ=Pλ;dilPλ;sP_{\lambda}=P_{\lambda;\rm{dil}}\leq P_{\lambda;\rm{s}}, that EPλ;s=Pμ;sEEP_{\lambda;\rm{s}}=P_{\mu;\rm{s}}E and that EΠλβ=ΠμβEE\Pi_{\lambda}^{\beta}=\Pi_{\mu}^{\beta}E for every word β\beta. Hence we assume, without loss in generality, that both μ\mu and λ\lambda are singular. The GNS row isometry of any singular NC measure is Cuntz, so we assume in particular that Πλ,Πμ\Pi_{\lambda},\Pi_{\mu} are Cuntz. Note that WC(λ)RanPλ\mathrm{WC}(\lambda)\subset\mathrm{Ran}\,P_{\lambda} is Πλ\Pi_{\lambda}-invariant and that RanPλ\mathrm{Ran}\,P_{\lambda} is the smallest Πλ\Pi_{\lambda}-reducing subspace of d2(λ)\mathbb{H}^{2}_{d}(\lambda) which contains WC(λ)\mathrm{WC}(\lambda) by Lemma 3.10. Let xd2(λdil)x\in\mathbb{H}^{2}_{d}(\lambda_{\rm{dil}}), and denote by πλ\pi_{\lambda} and πμ\pi_{\mu} the GNS representations of d\mathscr{E}_{d} induced by λ\lambda and μ\mu, respectively. Since xd2(λdil)x\in\mathbb{H}^{2}_{d}(\lambda_{\rm{dil}}), it belongs to RanPλ\mathrm{Ran}\,P_{\lambda}, where Pλ=Pλ;dilP_{\lambda}=P_{\lambda;\mathrm{dil}} and thus by Lemma 3.10, there is a sequence of operators A1,A2,dA_{1},A_{2},\ldots\in\mathscr{E}_{d} and a yWC(λ)y\in\mathrm{WC}(\lambda) such that

x=limnπλ(An)y.x=\lim_{n}\pi_{\lambda}(A_{n})y.

Since Πλ\Pi_{\lambda} is Cuntz, we can again apply Lemma 3.13 to find that

Ex=limnπμ(An)Ey.Ex=\lim_{n}\pi_{\mu}(A_{n})Ey.

Because yWC(λ)y\in\mathrm{WC}(\lambda), it follows from Lemma 3.8 that EyWC(μ)Ey\in\mathrm{WC}(\mu). Thus, ExRanPμEx\in\mathrm{Ran}\,P_{\mu}, where Pμ=Pμ;dilP_{\mu}=P_{\mu;dil} by Lemma 3.10 again. ∎

Lemma 3.16.

Let λ(𝒜d)+\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. If xRanPλ;vNx\in\mathrm{Ran}\,P_{\lambda;\mathrm{vN}}, then the positive NC measure λx\lambda_{x} determined by λx(Lα)=x,Πλαxλ\lambda_{x}(L^{\alpha})=\langle{x},{\Pi_{\lambda}^{\alpha}x}\rangle_{\lambda}, α𝔽d\alpha\in\mathbb{F}^{d}, is of von Neumann type.

Proof.

Let x\mathcal{H}_{x} denote the cyclic subspace of d2(λ)\mathbb{H}^{2}_{d}(\lambda) generated by xx. Note that there is a surjective isometry U:d2(λx)xU:\mathbb{H}^{2}_{d}(\lambda_{x})\to\mathcal{H}_{x} such that U(a+Nλx)=πλ(a)xU(a+N_{\lambda_{x}})=\pi_{\lambda}(a)x for each a𝔸da\in\mathbb{A}_{d}. Because λ\lambda is von Neumann type, for any given word β\beta, there exists a net (aγ)γ(a_{\gamma})_{\gamma} in 𝔸d\mathbb{A}_{d} such that (Πλβ)(\Pi^{\beta}_{\lambda})^{*} is the weak-* limit of (πλ(aγ))γ(\pi_{\lambda}(a_{\gamma}))_{\gamma}. As Uπλ(a)U=πλx(a)U^{*}\pi_{\lambda}(a)U=\pi_{\lambda_{x}}(a) for any a𝔸da\in\mathbb{A}_{d}, it follows that (Πλxβ)(\Pi^{\beta}_{\lambda_{x}})^{*} is the weak-* limit of (πλx(aγ))γ(\pi_{\lambda_{x}}(a_{\gamma}))_{\gamma}. This shows that the weak-* closure of πλx(𝔸d)\pi_{\lambda_{x}}(\mathbb{A}_{d}) is self-adjoint, and thus Πλx\Pi_{\lambda_{x}} is of von Neumann type. ∎

Lemma 3.17.

Let μ,ν(𝒜d)+\mu,\nu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. If νμ\nu\leq\mu and ν\nu is of von Neumann type, then νμvN\nu\leq\mu_{\rm{vN}}. That is, 𝔱=vN\mathfrak{t}=\mathrm{vN} is a hereditary type.

Proof.

By Proposition 3.6, Eν,μPμ;ac=Pν;acEν,μE_{\nu,\mu}P_{\mu;\rm{ac}}=P_{\nu;\rm{ac}}E_{\nu,\mu}. By Lemma 3.15, Eν,μPμ;dil=Pν;dilEν,μPμ;dilE_{\nu,\mu}P_{\mu;\rm{dil}}=P_{\nu;\rm{dil}}E_{\nu,\mu}P_{\mu;\rm{dil}}. As ν\nu is of von Neumann type, we know that Pν;dil=0=Pν;acP_{\nu;\rm{dil}}=0=P_{\nu;\rm{ac}}, and thus

Eν,μ=Eν,μ(Pμ;ac+Pμ;dil+Pμ;vN)=Eν,μPμ;vN.E_{\nu,\mu}=E_{\nu,\mu}(P_{\mu;\rm{ac}}+P_{\mu;\rm{dil}}+P_{\mu;\rm{vN}})=E_{\nu,\mu}P_{\mu;\rm{vN}}.

Thus, for any positive semi-definite c𝒜dc\in\mathscr{A}_{d}, we have

ν(c)\displaystyle\nu(c) =\displaystyle= I+Nν,πν(c)(I+Nν)\displaystyle\langle{I+N_{\nu}},{\pi_{\nu}(c)(I+N_{\nu})}\rangle
=\displaystyle= I+Nμ,Eν,μπν(c)Eν,μ(I+Nμ)\displaystyle\langle{I+N_{\mu}},{E_{\nu,\mu}^{*}\pi_{\nu}(c)E_{\nu,\mu}(I+N_{\mu})}\rangle
=\displaystyle= Pμ;vN(I+Nμ),Eν,μπν(c)Eν,μPμ;vN(I+Nμ).\displaystyle\langle{P_{\mu;\rm{vN}}(I+N_{\mu})},{E_{\nu,\mu}^{*}\pi_{\nu}(c)E_{\nu,\mu}P_{\mu;\rm{vN}}(I+N_{\mu})}\rangle.

By Lemma 3.2, we have Eν,μπν(c)Eν,μπμ(c)E_{\nu,\mu}^{*}\pi_{\nu}(c)E_{\nu,\mu}\leq\pi_{\mu}(c), and thus

ν(c)Pμ;vN(I+Nμ),πμ(c)Pμ;vN(I+Nμ)=μvN(c)\nu(c)\leq\langle{P_{\mu;\rm{vN}}(I+N_{\mu})},{\pi_{\mu}(c)P_{\mu;\rm{vN}}(I+N_{\mu})}\rangle=\mu_{\rm{vN}}(c)

That is, νμvN\nu\leq\mu_{\rm{vN}}. ∎

Theorem 3.18.

Suppose μ,λ(𝒜d)+\mu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} satisfy μλ\mu\leq\lambda. Let E:d2(λ)d2(μ)E:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\mu) denote the contractive co-embedding. Then, EPλ;vN=Pμ;vNEEP_{\lambda;vN}=P_{\mu;vN}E, and EPλ;dil=Pμ;dilEEP_{\lambda;dil}=P_{\mu;dil}E and the sets of positive NC measures of dilation and von Neumann type are positive hereditary cones.

Proof.

Assume first that μ\mu and λ\lambda are singular. Set x=Pλ;vNE(I+Nμ)d2(λ)x=P_{\lambda;\rm{vN}}E^{*}(I+N_{\mu})\in\mathbb{H}^{2}_{d}(\lambda). Plainly, λxμλ\lambda_{x}\leq\mu\leq\lambda, where, as before, λx(Lω):=x,Πλωxλ\lambda_{x}(L^{\omega}):=\langle{x},{\Pi_{\lambda}^{\omega}x}\rangle_{\lambda}. By Lemma 3.16, we see that λx\lambda_{x} is of von Neumann type, and thus by Lemma 3.17 we see that λxμvN\lambda_{x}\leq\mu_{\rm{vN}}. Then, for any a𝔸da\in\mathbb{A}_{d},

(a+Nμ),EPλ;vNE(a+Nμ)=λx(aa)μvN(aa)=a+Nμ,Pμ;vN(a+Nμ),\langle{(a+N_{\mu})},{EP_{\lambda;\rm{vN}}E^{*}(a+N_{\mu})}\rangle=\lambda_{x}(a^{*}a)\leq\mu_{\rm{vN}}(a^{*}a)=\langle{a+N_{\mu}},{P_{\mu;\rm{vN}}(a+N_{\mu})}\rangle,

whence

EPλ;vNEPμ;vN.EP_{\lambda;\rm{vN}}E^{*}\leq P_{\mu;\rm{vN}}.

Let QQ be the projection onto the range of EPλ;vNEP_{\lambda;\rm{vN}}. Applying the Douglas factorization lemma then yields RanEPλ;vNRanPμ;vN\mathrm{Ran}\,EP_{\lambda;\rm{vN}}\subseteq\mathrm{Ran}\,P_{\mu;\rm{vN}}. In particular, QPμ;vNQ\leq P_{\mu;vN}, and it follows that

Pμ;vNEPλ;vN=Pμ;vNQEPλ;vN=QEPλ;vN=EPλ;vN.P_{\mu;\rm{vN}}EP_{\lambda;\rm{vN}}=P_{\mu;\rm{vN}}QEP_{\lambda;\rm{vN}}=QEP_{\lambda;\rm{vN}}=EP_{\lambda;\rm{vN}}. (3.1)

As μ\mu and λ\lambda are assumed singular, we have Pλ;dil=Pλ;vNP_{\lambda;\rm{dil}}=P_{\lambda;\rm{vN}}^{\perp} (and similarly for μ\mu). Then,

Pμ;vNE\displaystyle P_{\mu;\rm{vN}}E =Pμ;vNE(Pλ;dil+Pλ;vN)\displaystyle=P_{\mu;\rm{vN}}E(P_{\lambda;\rm{dil}}+P_{\lambda;\rm{vN}})
=Pμ;vNPμ;dil=0EPλ;dil+Pμ;vNEPλ;vN\displaystyle=\underbrace{P_{\mu;\rm{vN}}P_{\mu;\rm{dil}}}_{=0}EP_{\lambda;\rm{dil}}+P_{\mu;\rm{vN}}EP_{\lambda;\rm{vN}} by Lemma 3.15
=EPλ;vN\displaystyle=EP_{\lambda;\rm{vN}} by Equation (3.1).\displaystyle\mbox{by Equation (\ref{vNtwineeq})}.

As Pλ;dil=IPλ;vNP_{\lambda;\rm{dil}}=I-P_{\lambda;\rm{vN}}, the theorem is proved in the case where λ\lambda and μ\mu are singular.

In the general case, where λ\lambda and μ\mu are not necessarily singular, we note that μλ\mu\leq\lambda implies μsλs\mu_{s}\leq\lambda_{s}, thus Eμs,λsPλs;vN=Pμs;vNEμs,λsE_{\mu_{\rm{s}},\lambda_{\rm{s}}}P_{\lambda_{\rm{s}};\rm{vN}}=P_{\mu_{\rm{s}};\rm{vN}}E_{\mu_{\rm{s}},\lambda_{\rm{s}}}. As seen in the proof of Proposition 3.3, there are unitary intertwiners Uμ:d2(μ)d2(μac)d2(μs)U_{\mu}:\mathbb{H}^{2}_{d}(\mu)\to\mathbb{H}^{2}_{d}(\mu_{\rm{ac}})\oplus\mathbb{H}^{2}_{d}(\mu_{\rm{s}}) and Uλ:d2(λ)d2(λac)d2(λs)U_{\lambda}:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\lambda_{\rm{ac}})\oplus\mathbb{H}^{2}_{d}(\lambda_{\rm{s}}) such that

UμEUλ=[Eμac,λac00Eμs,λs].U_{\mu}EU_{\lambda}^{*}=\begin{bmatrix}E_{\mu_{\rm{ac}},\lambda_{\rm{ac}}}&0\\ 0&E_{\mu_{\rm{s}},\lambda_{\rm{s}}}\end{bmatrix}.

Since μs=μvN+μdil\mu_{s}=\mu_{\mathrm{vN}}+\mu_{\mathrm{dil}} and d2(μs)d2(μvN)d2(μdil)\mathbb{H}^{2}_{d}(\mu_{\mathrm{s}})\simeq\mathbb{H}^{2}_{d}(\mu_{\mathrm{vN}})\oplus\mathbb{H}^{2}_{d}(\mu_{\mathrm{dil}}), it follows that UμPμ;vNUμ=0Pμs;vNU_{\mu}P_{\mu;\rm{vN}}U_{\mu}^{*}=0\oplus P_{\mu_{\rm{s}};\rm{vN}} and a similar formula holds for λ\lambda. Thus,

UμPμ;vNEUλ=(UμPμ;vNUμ)(UμEUλ)=(UμEUλ)(UλPλ;vNUλ)=UμEPλ;vNUλ.U_{\mu}P_{\mu;\rm{vN}}EU_{\lambda}^{*}=(U_{\mu}P_{\mu;\rm{vN}}U_{\mu}^{*})(U_{\mu}EU_{\lambda}^{*})=(U_{\mu}EU_{\lambda}^{*})(U_{\lambda}P_{\lambda;\rm{vN}}U_{\lambda}^{*})=U_{\mu}EP_{\lambda;\rm{vN}}U_{\lambda}^{*}.

That is, Pμ;vNE=EPλ;vNP_{\mu;\rm{vN}}E=EP_{\lambda;\rm{vN}}. As Pμ;acE=EPλ;acP_{\mu;\rm{ac}}E=EP_{\lambda;\rm{ac}}, we have

Pμ;dilE=(IPμ;acPμ;vN)E=E(IPλ;acPλ;vN)=EPλ;dil.P_{\mu;\rm{dil}}E=(I-P_{\mu;\rm{ac}}-P_{\mu;\rm{vN}})E=E(I-P_{\lambda;\rm{ac}}-P_{\lambda;\rm{vN}})=EP_{\lambda;\rm{dil}}.

It now follows from Proposition 3.3(b) that the dilation–type and von Neumann–type positive NC measures form hereditary cones. ∎

The following result refines our NC Lebesgue decomposition, [14, Section 8], by further decomposing any positive and singular NC measure into positive dilation–type and von Neumann–type NC measures:

Corollary 3.19 (NC Kennedy–Lebesgue–von Neumann decomposition).

Any positive NC measure μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} has a unique NC Kennedy–Lebesgue–von Neumann decomposition,

μ=μac+μdil+μvN,\mu=\mu_{ac}+\mu_{dil}+\mu_{vN},

where μac,μdil,μvN(𝒜d)+\mu_{ac},\mu_{dil},\mu_{vN}\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} are positive NC measures of absolutely continuous–type, dilation–type and von Neumann–type, respectively. The absolutely continuous, dilation–type and von Neumann–type positive NC measures each form a positive hereditary cone. If ν1,ν2,ν3\nu_{1},\nu_{2},\nu_{3} are, respectively, absolutely continuous, dilation–type and von Neumann–type positive NC measures, and μ=ν1+ν2+ν3\mu=\nu_{1}+\nu_{2}+\nu_{3}, then

ν1=μac,ν2=μdilandν3=μvN.\nu_{1}=\mu_{\rm{ac}},\quad\nu_{2}=\mu_{\rm{dil}}\quad\mbox{and}\quad\nu_{3}=\mu_{\rm{vN}}.

Moreover, if 𝔱{ac,dil,vN}\mathfrak{t}\in\{\rm{ac},\rm{dil},\rm{vN}\}, then for any ν,λ(𝒜d)+\nu,\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}

(ν+λ)𝔱=ν𝔱+λ𝔱.(\nu+\lambda)_{\mathfrak{t}}=\nu_{\mathfrak{t}}+\lambda_{\mathfrak{t}}.
Proof.

It is already known from [14] that the absolutely continuous positive NC measures form a hereditary cone and the fact that the dilation– and von Neumann–type positive NC measures form hereditary cones was proven in Theorem 3.18. The additivity of ()𝔱(\cdot)_{\mathfrak{t}} follows from Theorem 3.18 and Lemma 3.4(ii). That ν1=λac\nu_{1}=\lambda_{\rm{ac}} follows from Proposition 3.6, leaving ν2+ν3=λs\nu_{2}+\nu_{3}=\lambda_{\rm{s}}. From this and Lemma 3.4(i), we have ν3=(λs)vN=λvN\nu_{3}=(\lambda_{\rm{s}})_{\rm{vN}}=\lambda_{\rm{vN}}, the second equality following from Lemma 3.10. It now follows that ν2=λdil\nu_{2}=\lambda_{\rm{dil}}. ∎

Example 3.20.

In contrast to the types just discussed, the set of Cuntz–type positive NC measures is not a cone. For a univariate example, consider normalized Lebesgue measure θ\theta on the upper and lower half-circles 𝔻+\partial\mathbb{D}_{+} and 𝔻\partial\mathbb{D}_{-}, which sum to normalized Lebesgue measure. Both of these measures have the property that their ‘GNS representations’ are unitary. One can use this to construct a (perhaps somewhat trivial) multi-variable example by setting

μ±(Lα)={𝔻±ζk𝑑θ(ζ)Lα=L1k0otherwise,\mu_{\pm}(L^{\alpha})=\begin{cases}\int_{\partial\mathbb{D}_{\pm}}\zeta^{k}d\theta(\zeta)&L^{\alpha}=L_{1}^{k}\\ 0&\text{otherwise},\end{cases}

for each word α\alpha. To see that μ±\mu_{\pm} is Cuntz, it suffices to note that Πμ±\Pi_{\mu_{\pm}} is unitarily equivalent to (U±,0,,0)(U_{\pm},0,\ldots,0), where U±U_{\pm} is the unitary operator of multiplication by ζ\zeta on L2(𝔻±)L^{2}(\partial\mathbb{D}_{\pm}).

Example 3.21.

On the other hand the set of pure positive NC measures is not hereditary. The example [10, Example 2.11], based on [7, Example 3.2], provides a row isometry, Π=(Π1,,Πd):d\Pi=(\Pi_{1},\cdots,\Pi_{d}):\mathcal{H}\otimes\mathbb{C}^{d}\rightarrow\mathcal{H}, on a separable Hilbert space \mathcal{H} so that Π\Pi is Cuntz (surjective) and there is a bounded intertwiner, X:d2X:\mathbb{H}^{2}_{d}\rightarrow\mathcal{H},

XLk=ΠkX,k=1,,d,XL_{k}=\Pi_{k}X,\quad k=1,\ldots,d,

so that XX has dense range and x:=X1x:=X1\in\mathcal{H} is Π\Pi-cyclic. Set T:=XXT:=X^{*}X. Now choose any real number c>0c>0 and note that T+cIcI>0T+cI\geq cI>0. This is a strictly positive left Toeplitz operator which is bounded below, and hence it is factorizable by [24, Theorem 1.5]. That is, there exists an FdF\in\mathfrak{R}_{d}^{\infty} such that T+cI=FFT+cI=F^{*}F such that g=F1g=F1 is cyclic for LL. Define the positive NC measures μT(Lω):=1,TLω12\mu_{T}(L^{\omega}):=\langle{1},{TL^{\omega}1}\rangle_{\mathbb{H}^{2}} and μT+cI(Lω):=1,(T+cI)12\mu_{T+cI}(L^{\omega}):=\langle{1},{(T+cI)1}\rangle_{\mathbb{H}^{2}}. Then clearly ΠμTΠ\Pi_{\mu_{T}}\simeq\Pi, where Π\Pi is the AC Cuntz row isometry considered above and μTμT+cI\mu_{T}\leq\mu_{T+cI}. Since gg is LL-cyclic

μT+cI(Lω)=1,FFLω12=g,Lωg2,ω𝔽d.\mu_{T+cI}(L^{\omega})=\langle{1},{F^{*}FL^{\omega}1}\rangle_{\mathbb{H}^{2}}=\langle{g},{L^{\omega}g}\rangle_{\mathbb{H}^{2}},\quad\omega\in\mathbb{F}^{d}.

Clearly p+NμT+cIp(L)gp+N_{\mu_{T+cI}}\mapsto p(L)g extends to an onto isometry intertwining the GNS row isometry of μT+cI\mu_{T+cI} and LL so that μT+cI\mu_{T+cI} is of pure typeL-L and μT+cIμT\mu_{T+cI}\geq\mu_{T} where μT\mu_{T} is AC Cuntz.

4 Complex NC measures

Our goal for the remainder of the paper is to apply the preceding results to study analytic (and complex) NC measures. As for positive NC measures we define:

Definition 4.1.

An NC measure μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is absolutely continuous (AC) if it has a weak-* continuous extension to the free Toeplitz system, 𝒯d=𝒜dweak-\mathscr{T}_{d}=\mathscr{A}_{d}^{-\text{weak-}*}.

Let m(𝒜d)+m\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} be given by m(b)=1,b1m(b)=\langle{1},{b1}\rangle, b𝒜db\in\mathscr{A}_{d}. We call mm NC Lebesgue measure, and note that it is absolutely continuous. It plays the role of normalized Lebesgue measure in this NC measure theory [15, 14].

In [7, Theorem 2.10], Davidson–Pitts show that any bounded linear functional on 𝔸d\mathbb{A}_{d} that extends weak-* continuously to 𝔸dweak-=Ld\mathbb{A}_{d}^{-\text{weak-}*}=L^{\infty}_{d} is a vector functional, for d2d\geq 2. The next lemma shows that their proof extends to our setting.

Lemma 4.2.

Any absolutely continuous NC measure μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger}, for d2d\geq 2, is a vector functional. That is, if μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is absolutely continuous, then there exist f,gd2f,g\in\mathbb{H}^{2}_{d} such that

μ(b)=f,bg,b𝒜d.\mu(b)=\langle{f},{bg}\rangle,\quad b\in\mathscr{A}_{d}.
Proof.

By general considerations, μ\mu can be extended (with generally ϵ>0\epsilon>0 increase in norm) to a weak-* continuous linear functional, μ^\hat{\mu}, acting on (d2)\mathcal{L}(\mathbb{H}^{2}_{d}). Indeed, since 𝒯d=𝒜dweak-\mathscr{T}_{d}=\mathscr{A}_{d}^{-\text{weak-}*} is weak-* closed, it can be identified with the annihilator 𝒮\mathscr{S}^{\perp} where 𝒮Tr(d2)\mathscr{S}\subseteq\mathrm{Tr}(\mathbb{H}^{2}_{d}) is a norm-closed subspace of the trace-class operators on d2\mathbb{H}^{2}_{d}, the pre-dual of (d2)\mathscr{L}(\mathbb{H}^{2}_{d}) [20, Corollary 2.4.11]. Thus, for any K𝒮K\in\mathscr{S} and any a𝒯da\in\mathscr{T}_{d}, we have tr(Ka)=0\mathrm{tr}(Ka)=0. If q:Tr(d2)Tr(d2)/𝒮q:\mathrm{Tr}(\mathbb{H}^{2}_{d})\rightarrow\mathrm{Tr}(\mathbb{H}^{2}_{d})/\mathscr{S} is the quotient map, then q:(Tr(d2)/𝒮)(d2)q^{*}:\left(\mathrm{Tr}(\mathbb{H}^{2}_{d})/\mathscr{S}\right)^{*}\to\mathscr{L}(\mathbb{H}^{2}_{d}) can be identified with the inclusion map of 𝒯d\mathscr{T}_{d} into (d2)\mathscr{L}(\mathbb{H}^{2}_{d}) [20, Proposition 2.4.13]. That is, the pre-dual of 𝒯d\mathscr{T}_{d} is isomorphic to Tr(d2)/𝒮\mathrm{Tr}(\mathbb{H}^{2}_{d})/\mathscr{S} and linear functionals on 𝒜d\mathscr{A}_{d} which extend weak-* continuously to 𝒯d\mathscr{T}_{d} can be identified with this quotient space. It follows that we can identify μ\mu with the equivalence class K+𝒮K+\mathscr{S} for some KTr(d2)K\in\mathrm{Tr}(\mathbb{H}^{2}_{d}). Hence, for any S𝒮S\in\mathscr{S} and a𝒯da\in\mathscr{T}_{d},

tr((K+S)a)=tr(Ka)=μ(a).\mathrm{tr}((K+S)a)=\mathrm{tr}(Ka)=\mu(a).

Since

μ=infS𝒮K+STr(d2),\|\mu\|=\inf_{S\in\mathscr{S}}\|K+S\|_{\mathrm{Tr}(\mathbb{H}^{2}_{d})},

there exists, for any ϵ>0\epsilon>0, an S𝒮S^{\prime}\in\mathscr{S} so that

K+STr(d2)μ+ϵ.\|K+S^{\prime}\|_{\mathrm{Tr}(\mathbb{H}^{2}_{d})}\leq\|\mu\|+\epsilon.

Set K=K+SK^{\prime}=K+S^{\prime}. Then μ^:(d2)\hat{\mu}:\mathscr{L}(\mathbb{H}^{2}_{d})\to\mathbb{C} given by

μ^(A)=tr(AK),A(d2),\hat{\mu}(A)=\mathrm{tr}(AK^{\prime}),\quad A\in\mathscr{L}(\mathbb{H}^{2}_{d}),

is a weak-* continuous extension of μ\mu to (d2)\mathscr{L}(\mathbb{H}^{2}_{d}) with norm μ^μ+ϵ\|\hat{\mu}\|\leq\|\mu\|+\epsilon. The trace-class operator KK^{\prime} has a singular-value decomposition

K=k=1skxk,yk;xk,ykd2,sk0.K^{\prime}=\sum_{k=1}^{\infty}s_{k}\langle{x_{k}},{\cdot}\rangle y_{k};\quad\quad x_{k},y_{k}\in\mathbb{H}^{2}_{d},\ s_{k}\geq 0.

Choose any sequence of words ωk𝔽d\omega_{k}\in\mathbb{F}^{d} so that RanRωkRanRωj\mathrm{Ran}\,R^{\omega_{k}}\perp\mathrm{Ran}\,R^{\omega_{j}} for kjk\neq j. For example, one can choose the words ωk+1=2k1\omega_{k+1}=2^{k}1 for kk\in\mathbb{N}. Then,

x:=k=1sk1/2Rωkxkandy:=k=1sk1/2Rωkykx:=\sum_{k=1}^{\infty}s_{k}^{1/2}R^{\omega_{k}}x_{k}\quad\mbox{and}\quad y:=\sum_{k=1}^{\infty}s_{k}^{1/2}R^{\omega_{k}}y_{k}

both converge to elements in d2\mathbb{H}^{2}_{d}. In what follows, δk,j=0\delta_{k,j}=0 when kjk\neq j and δj,j=1\delta_{j,j}=1 for all jj. For any a1,a2𝔸da_{1},a_{2}\in\mathbb{A}_{d}, we have

x,a1a2y\displaystyle\langle{x},{a_{1}^{*}a_{2}y}\rangle =\displaystyle= k,j=1sk1/2sj1/2Rωkxk,a1a2Rωjyjd2\displaystyle\sum_{k,j=1}^{\infty}s_{k}^{1/2}s_{j}^{1/2}\langle{R^{\omega_{k}}x_{k}},{a_{1}^{*}a_{2}R^{\omega_{j}}y_{j}}\rangle_{\mathbb{H}^{2}_{d}}
=\displaystyle= k,j=1sk1/2sj1/2xk,a1RωkRωj=δk,jIa2yjd2\displaystyle\sum_{k,j=1}^{\infty}s_{k}^{1/2}s_{j}^{1/2}\langle{x_{k}},{a_{1}^{*}\underbrace{R^{\omega_{k}*}R^{\omega_{j}}}_{=\delta_{k,j}I}a_{2}y_{j}}\rangle_{\mathbb{H}^{2}_{d}}
=\displaystyle= k=1skxk,a1a2ykd2\displaystyle\sum_{k=1}^{\infty}s_{k}\langle{x_{k}},{a_{1}^{*}a_{2}y_{k}}\rangle_{\mathbb{H}^{2}_{d}}
=\displaystyle= tr(a1a2K)\displaystyle\mathrm{tr}\left(a_{1}^{*}a_{2}K\right)
=\displaystyle= μ^(a1a2)=μ(a1a2).\displaystyle\hat{\mu}(a_{1}^{*}a_{2})=\mu(a_{1}^{*}a_{2}).

The lemma now follows from the fact that 𝔸d𝔸d\mathbb{A}_{d}^{*}\mathbb{A}_{d} is norm dense in 𝒜d\mathscr{A}_{d}, ∎

Given μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger}, define μ𝒜d\mu^{*}\in\mathscr{A}_{d}^{\dagger} by

μ(b)=μ(b)¯,b𝒜d.\mu^{*}(b)=\overline{\mu(b^{*})},\quad b\in\mathscr{A}_{d}.

We also set

Reμ=μ+μ2andImμ=μμ2i.\mathrm{Re}\,\mu=\frac{\mu+\mu^{*}}{2}\quad\quad\mbox{and}\quad\quad\mathrm{Im}\,\mu=\frac{\mu-\mu^{*}}{2i}.
Corollary 4.3.

Any absolutely continuous NC measure μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} can be decomposed as μ=(μ1μ2)+i(μ3μ4)\mu=\left(\mu_{1}-\mu_{2}\right)+i\left(\mu_{3}-\mu_{4}\right) where each μk0\mu_{k}\geq 0 is AC. In particular, μ1+μ2+μ3+μ4\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4} is AC.

Proof.

Applying Lemma 4.2 to μ\mu, we obtain vectors x,yd2x,y\in\mathbb{H}^{2}_{d} such that μ(b)=x,by\mu(b)=\langle{x},{by}\rangle for b𝒜db\in\mathscr{A}_{d}. Set λ:=12(mx+my)\lambda:=\frac{1}{2}\left(m_{x}+m_{y}\right), where,

mh(b):=h,bh,b𝒜d,hd2.m_{h}(b):=\langle{h},{bh}\rangle,\quad b\in\mathscr{A}_{d},\;h\in\mathbb{H}^{2}_{d}.

Then we observe that, for any positive semi-definite c𝒜dc\in\mathscr{A}_{d},

2λ(c)±2Reμ(c)=mx±y(c)0,2\lambda(c)\pm 2\mathrm{Re}\,\mu(c)=m_{x\pm y}(c)\geq 0,

and similarly,

2λ(c)±2Imμ(c)=mx±iy(c)0.2\lambda(c)\pm 2\mathrm{Im}\,\mu(c)=m_{x\pm iy}(c)\geq 0.

Therefore, we can set μ1=λ+Reμ\mu_{1}=\lambda+\mathrm{Re}\,\mu, μ2=λReμ\mu_{2}=\lambda-\mathrm{Re}\,\mu, etc. ∎

4.1 General Wittstock decomposition

Any μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} can be written as a linear combination of four positive NC measures,

μ=(μ1μ2)+i(μ3μ4);μk(𝒜d)+,\mu=\left(\mu_{1}-\mu_{2}\right)+i\left(\mu_{3}-\mu_{4}\right);\quad\quad\mu_{k}\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+},

where

Reμ=μ+μ2=μ1μ2,andImμ=μμ2i=μ3μ4.\mathrm{Re}\,\mu=\frac{\mu+\mu^{*}}{2}=\mu_{1}-\mu_{2},\quad\mbox{and}\quad\mathrm{Im}\,\mu=\frac{\mu-\mu^{*}}{2i}=\mu_{3}-\mu_{4}.

This also works for operator-valued NC measures, i.e. operator-valued completely bounded maps on the free disk system, by the Wittstock decomposition theorem [27] [19, Theorem 8.5].

Definition 4.4.

If λ:=(λ1,λ2,λ3,λ4)(𝒜d)+; 4\vec{\lambda}:=(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4})\subset(\mathscr{A}_{d})^{{\dagger};\,4}_{+} is such that μ=(λ1λ2)+i(λ3λ4)\mu=(\lambda_{1}-\lambda_{2})+i(\lambda_{3}-\lambda_{4}), then we call λ\vec{\lambda} a Wittstock decomposition of μ\mu. The set of all Wittstock decompositions of μ\mu is denoted by 𝒲(μ)\mathscr{W}(\mu). Given a Wittstock decomposition λ𝒲(μ)\vec{\lambda}\in\mathscr{W}(\mu), the total variation of μ\mu with respect to λ\vec{\lambda} is

|λ|:=λ1+λ2+λ3+λ40.|\vec{\lambda}|:=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\geq 0.
Remark 4.5.

The total variation |λ||\vec{\lambda}| depends on the choice of Wittstock decomposition of μ\mu and this is not uniquely determined by μ\mu. Indeed, if λ=(λk)k=14\vec{\lambda}=(\lambda_{k})_{k=1}^{4} is any Wittstock decomposition of μ\mu, then so is μ\vec{\mu} where μ1=λ1+γ\mu_{1}=\lambda_{1}+\gamma, μ2=λ2+γ\mu_{2}=\lambda_{2}+\gamma and λ3=μ3\lambda_{3}=\mu_{3}, λ4=μ4\lambda_{4}=\mu_{4}, for any γ(𝒜d)+\gamma\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. This is a rather trivial example of non-uniqueness and in this case |μ|=|λ|+2γ|λ||\vec{\mu}|=|\vec{\lambda}|+2\gamma\geq|\vec{\lambda}|. However, even if μ,λ𝒲(μ)\vec{\mu},\vec{\lambda}\in\mathscr{W}(\mu) are two different Wittstock decompositions of μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} so that |λ||μ||\vec{\lambda}|\leq|\vec{\mu}|, this need not imply that μkλk\mu_{k}\geq\lambda_{k} for each kk. That is, one could have, for example, that μ1μ2=λ1λ2\mu_{1}-\mu_{2}=\lambda_{1}-\lambda_{2} without having μ1=λ1+γ\mu_{1}=\lambda_{1}+\gamma and μ2=λ2+γ\mu_{2}=\lambda_{2}+\gamma for some γ(𝒜d)+\gamma\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}.

Proposition 4.6.

Let μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger}. Then, μ\mu is absolutely continuous if and only if there exists a μ𝒲(μ)\vec{\mu}\in\mathscr{W}(\mu) such that |μ||\vec{\mu}| is absolutely continuous.

Proof.

If μ\mu is absolutely continuous, then we can apply Corollary 4.3. Conversely, suppose that μ=(μ1,μ2,μ3,μ4)𝒲(μ)\vec{\mu}=(\mu_{1},\mu_{2},\mu_{3},\mu_{4})\in\mathscr{W}(\mu) is such that |μ||\vec{\mu}| is absolutely continuous. Recall that the absolutely continuous NC measures form a hereditary cone. As μj|μ|\mu_{j}\leq|\vec{\mu}|, it follows that μj\mu_{j} is absolutely continuous for each jj. Thus, μ\mu is then absolutely continuous. ∎

Definition 4.7.

Let 𝔱{ac,s,dil,vN}\mathfrak{t}\in\{\rm{ac},\rm{s},\rm{dil},\rm{vN}\}. A complex NC measure μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is type 𝔱\mathfrak{t}, if there exists a Wittstock decomposition μ=(μk)k=14𝒲(μ)\vec{\mu}=(\mu_{k})_{k=1}^{4}\in\mathscr{W}(\mu) such that |μ|=μ1+μ2+μ3+μ4|\vec{\mu}|=\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4} is type 𝔱\mathfrak{t}.

Remark 4.8.

Since |μ|μk|\vec{\mu}|\geq\mu_{k} for each 1k41\leq k\leq 4, where μ=(μk)k\vec{\mu}=(\mu_{k})_{k} is a Wittstock decomposition of μ\mu, and the sets of AC, singular, dilation–type and von Neumann–type NC measures are positive hereditary cones, it follows that if |μ||\vec{\mu}| is one of these four types, then so is each μk\mu_{k}. It follows that μ\vec{\mu} cannot, for example, be both absolutely continuous and von Neumann type without also being (0,0,0,0)(0,0,0,0).

Lemma 4.9.

Let 𝔱,𝔲{ac,s,dil,vN}\mathfrak{t},\mathfrak{u}\in\{\rm{ac},\rm{s},\rm{dil},\rm{vN}\} and suppose (ν𝔱)𝔲=0(\nu_{\mathfrak{t}})_{\mathfrak{u}}=0 for all ν(𝒜d)+\nu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. If μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is type 𝔱\mathfrak{t} and (λ1,λ2,λ3,λ4)𝒲(μ)(\lambda_{1},\lambda_{2},\lambda_{3},\lambda_{4})\in\mathscr{W}(\mu), then

λ1;𝔲=λ2;𝔲,λ3;𝔲=λ4;𝔲.\lambda_{1;\mathfrak{u}}=\lambda_{2;\mathfrak{u}},\quad\lambda_{3;\mathfrak{u}}=\lambda_{4;\mathfrak{u}}.
Proof.

Since μ\mu is type 𝔱\mathfrak{t}, there exist (μ1,μ2,μ3,μ4)𝒲(μ)(\mu_{1},\mu_{2},\mu_{3},\mu_{4})\in\mathscr{W}(\mu), where each μj\mu_{j} is type 𝔱\mathfrak{t}. Thus, (μj)𝔱=μj(\mu_{j})_{\mathfrak{t}}=\mu_{j} for each jj. By separating the real and imaginary parts of μ\mu, we find that

μ1μ2=λ1λ2,μ3μ4=λ3λ4,\mu_{1}-\mu_{2}=\lambda_{1}-\lambda_{2},\quad\mu_{3}-\mu_{4}=\lambda_{3}-\lambda_{4},

and thus

μ1+λ2=λ1+μ2,μ3+λ4=λ3+μ4.\mu_{1}+\lambda_{2}=\lambda_{1}+\mu_{2},\quad\mu_{3}+\lambda_{4}=\lambda_{3}+\mu_{4}.

Using Corollary 3.19, we have

λ2;𝔲=(μ1)𝔲+(λ2)𝔲=(μ1+λ2)𝔲=(λ1+μ2)𝔲=λ1;𝔲.\lambda_{2;\mathfrak{u}}=(\mu_{1})_{\mathfrak{u}}+(\lambda_{2})_{\mathfrak{u}}=(\mu_{1}+\lambda_{2})_{\mathfrak{u}}=(\lambda_{1}+\mu_{2})_{\mathfrak{u}}=\lambda_{1;\mathfrak{u}}.

Likewise, we find that λ3;𝔲=λ4;𝔲\lambda_{3;\mathfrak{u}}=\lambda_{4;\mathfrak{u}}. ∎

By the preceeding lemma, the condition (ν𝔱)𝔲=0(\nu_{\mathfrak{t}})_{\mathfrak{u}}=0 is symmetric in 𝔱,𝔲\mathfrak{t},\mathfrak{u} and it occurs when (𝔱,𝔲){(ac,s),(ac,dil),(ac,vN),(dil,vN)}(\mathfrak{t},\mathfrak{u})\in\{(\rm{ac},\rm{s}),(\rm{ac},\rm{dil}),(\rm{ac},\rm{vN}),(\rm{dil},\rm{vN})\}, i.e. whenever Pν;𝔱Pν;𝔲=0P_{\nu;\mathfrak{t}}P_{\nu;\mathfrak{u}}=0 for every ν(𝒜d)+\nu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}.

Any μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} with Wittstock decomposition μ=(μ1μ2)+i(μ3μ4)\mu=(\mu_{1}-\mu_{2})+i(\mu_{3}-\mu_{4}) has a corresponding Lebesgue decomposition:

μ=μac+μs,\mu=\mu_{\rm{ac}}+\mu_{s},

where

μac=(μ1;acμ2;ac)+i(μ3;acμ4;ac),\mu_{\rm{ac}}=(\mu_{1;\rm{ac}}-\mu_{2;\rm{ac}})+i(\mu_{3;\rm{ac}}-\mu_{4;\rm{ac}}),

and similarly for μs\mu_{\rm{s}}. Similarly, μs=μdil+μvN.\mu_{\rm{s}}=\mu_{\rm{dil}}+\mu_{\rm{vN}}. More generally, for 𝔱Types\mathfrak{t}\in\rm{Types}, we set

μ𝔱:=(μ1;𝔱μ2;𝔱)+i(μ3;𝔱μ4;𝔱).\mu_{\mathfrak{t}}:=(\mu_{1;\mathfrak{t}}-\mu_{2;\mathfrak{t}})+i(\mu_{3;\mathfrak{t}}-\mu_{4;\mathfrak{t}}).

4.2 GNS formula

Let μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} and let μ=(μk)k=14\vec{\mu}=(\mu_{k})_{k=1}^{4} be a Wittstock decomposition of μ\mu. Since |μ|μk|\vec{\mu}|\geq\mu_{k}, there exists a corresponding contractive co-embedding Ek:d2(|μ|)d2(μk)E_{k}:\mathbb{H}^{2}_{d}(|\vec{\mu}|)\to\mathbb{H}^{2}_{d}(\mu_{k}) for k=1,2,3,4k=1,2,3,4. Then, given a1,a2𝔸da_{1},a_{2}\in\mathbb{A}_{d},

μk(a1a2)=I+N|μ|,π|μ|(a1)Dkπ|μ|(a2)(I+N|μ|);Dk:=EkEk.\mu_{k}(a_{1}^{*}a_{2})=\langle{I+N_{|\vec{\mu}|}},{\pi_{|\vec{\mu}|}(a_{1})^{*}D_{k}\pi_{|\vec{\mu}|}(a_{2})(I+N_{|\vec{\mu}|})}\rangle;\quad\quad D_{k}:=E_{k}^{*}E_{k}.

It then follows that

μ(a1a2)=I+N|μ|,π|μ|(a1)Tμπ|μ|(a2)(I+N|μ|),\mu(a_{1}^{*}a_{2})=\langle{I+N_{|\vec{\mu}|}},{\pi_{|\vec{\mu}|}(a_{1})T_{\mu}\pi_{|\vec{\mu}|}(a_{2})(I+N_{|\vec{\mu}|})}\rangle, (4.1)

where

Tμ:=(D1D2)+i(D3D4)T_{\mu}:=(D_{1}-D_{2})+i(D_{3}-D_{4})

is a |μ||\vec{\mu}|-Toeplitz operator, i.e.

π|μ|(Lk)Tμπ|μ|(Lj)=δk,jTμ.\pi_{|\vec{\mu}|}(L_{k}^{*})T_{\mu}\pi_{|\vec{\mu}|}(L_{j})=\delta_{k,j}T_{\mu}.

5 Analytic NC measures

Definition 5.1.

An analytic NC measure, μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger}, is any complex NC measure that annihilates 𝔸d(0):=𝔸d{I}\mathbb{A}_{d}^{(0)}:=\mathbb{A}_{d}\setminus\{I\}.

The following is an analogue of [11, Corollary 2, Chapter 4].

Theorem 5.2.

If μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is a complex NC measure that annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)}, then each of μac\mu_{\rm{ac}}, μs\mu_{\rm{s}}, μdil\mu_{\rm{dil}} and μvN\mu_{\rm{vN}} annihilate 𝔸d(0)\mathbb{A}_{d}^{(0)}.

Proof.

Let μ=(μ1,μ2,μ3,μ4)𝒲(μ)\vec{\mu}=(\mu_{1},\mu_{2},\mu_{3},\mu_{4})\in\mathscr{W}(\mu). As in Section 4.2, if λ:=|μ|\lambda:=|\vec{\mu}|, then

μ(Lα)=I+Nλ,TμΠλα(I+Nλ)λ,α𝔽d,\mu(L^{\alpha})=\langle{I+N_{\lambda}},{T_{\mu}\Pi_{\lambda}^{\alpha}(I+N_{\lambda})}\rangle_{\lambda},\quad\alpha\in\mathbb{F}^{d},

where

Tμ=(D1D2)+i(D3D4);Dk=EkEkT_{\mu}=(D_{1}-D_{2})+i(D_{3}-D_{4});\quad\quad D_{k}=E_{k}^{*}E_{k}

and each Ek:d2(λ)d2(μk)E_{k}:\mathbb{H}^{2}_{d}(\lambda)\to\mathbb{H}^{2}_{d}(\mu_{k}) is the contractive co-embedding arising from μk|μ|\mu_{k}\leq|\vec{\mu}|. By Proposition 3.6, Theorem 3.18 and Corollary 3.7, it further follows that if 𝔱{ac,s,dil,vN}\mathfrak{t}\in\{\rm{ac},\rm{s},\rm{dil},\rm{vN}\}, then

μ𝔱(Lα)=I+Nλ,Tμ;𝔱Πλα(I+Nλ),α𝔽d,\mu_{\mathfrak{t}}(L^{\alpha})=\langle{I+N_{\lambda}},{T_{\mu;\mathfrak{t}}\Pi_{\lambda}^{\alpha}(I+N_{\lambda})}\rangle,\quad\alpha\in\mathbb{F}^{d},

where Tμ;𝔱=TμPλ;𝔱=Pλ;𝔱TμT_{\mu;\mathfrak{t}}=T_{\mu}P_{\lambda;\mathfrak{t}}=P_{\lambda;\mathfrak{t}}T_{\mu}. In particular, since μ|𝔸d(0)0\mu|_{\mathbb{A}_{d}^{(0)}}\equiv 0, we can find a sequence of NC polynomials (an)n(a_{n})_{n} in 𝔸d\mathbb{A}_{d} such that an+NλPλ;𝔱(I+Nλ)a_{n}+N_{\lambda}\rightarrow P_{\lambda;\mathfrak{t}}(I+N_{\lambda}). Then, for any α\alpha\neq\varnothing,

0\displaystyle 0 =\displaystyle= limnμ(Lαan)\displaystyle\lim_{n\to\infty}\mu\left(L^{\alpha}a_{n}\right)
=\displaystyle= I+Nλ,TμΠλαPλ;𝔱(I+Nλ)λ\displaystyle\langle{I+N_{\lambda}},{T_{\mu}\Pi_{\lambda}^{\alpha}P_{\lambda;\mathfrak{t}}(I+N_{\lambda})}\rangle_{\lambda}
=\displaystyle= I+Nλ,TμPλ;𝔱Πλα(I+Nλ)λ\displaystyle\langle{I+N_{\lambda}},{T_{\mu}P_{\lambda;\mathfrak{t}}\Pi_{\lambda}^{\alpha}(I+N_{\lambda})}\rangle_{\lambda}
=\displaystyle= μ𝔱(Lα).\displaystyle\mu_{\mathfrak{t}}(L^{\alpha}).

This proves that μ𝔱\mu_{\mathfrak{t}} also annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)} for any 𝔱{ac,s,dil,vN}\mathfrak{t}\in\{\rm{ac},\rm{s},\rm{dil},\rm{vN}\}. ∎

In the next lemma, we say that μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is of Cuntz–type if it has a Wittstock decomposition (μk)k=14(\mu_{k})_{k=1}^{4} whose corresponding total variation μ1+μ2+μ3+μ4\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4} is Cuntz–type. It follows from Lemma 3.9 that each μk\mu_{k} is of Cuntz–type.

Lemma 5.3.

If μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} is a complex NC measure of Cuntz–type that annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)}, then it also annihilates 𝔸d\mathbb{A}_{d}.

Proof.

Let μ𝒲(μ)\vec{\mu}\in\mathscr{W}(\mu) and set λ:=|μ|\lambda:=|\vec{\mu}|. By hypothesis, λ\lambda is Cuntz. Since Πλ\Pi_{\lambda} is Cuntz, I+NλI+N_{\lambda} is the limit of a sequence of equivalence classes of NC polynomials an𝔸d(0)a_{n}\in\mathbb{A}_{d}^{(0)}, as follows from [13, Theorem 6.4]. With TμT_{\mu} as in Section 4.2, we have

μ(I)=limnI+Nλ,Tμ(an+Nλ)=limnμ(an)=0.\mu(I)=\lim_{n\to\infty}\langle{I+N_{\lambda}},{T_{\mu}\,(a_{n}+N_{\lambda})}\rangle=\lim_{n\to\infty}\mu(a_{n})=0.

Remark 5.4.

At this point, the proof of the classical F&M Riesz theorem, as presented in [11, Chapter 4], is straightforward. Given any complex measure μ\mu obeying the above assumptions we have that

𝔻a(ζ)μs(dζ)=0,\int_{\partial\mathbb{D}}a(\zeta)\mu_{s}(d\zeta)=0,

for any a𝒜(𝔻)a\in\mathcal{A}(\mathbb{D}), 𝒜(𝔻)=𝔸1\mathcal{A}(\mathbb{D})=\mathbb{A}_{1}. We then consider the complex measure μs(ζ¯)(dζ):=ζ¯μs(dζ)\mu_{s}^{(\overline{\zeta})}(d\zeta):=\overline{\zeta}\mu_{s}(d\zeta). This is again a complex singular measure which annihilates 𝒜(𝔻)(0)=𝒜(𝔻)I\mathcal{A}(\mathbb{D})^{(0)}=\mathcal{A}(\mathbb{D})\setminus I. By the above lemma μ\mu also annihilates 𝒜(𝔻)\mathcal{A}(\mathbb{D}). In particular it annihilates 11, so that by construction

𝔻ζkμs(dζ)=0;k{1,0,1,2,}.\int_{\partial\mathbb{D}}\zeta^{k}\mu_{s}(d\zeta)=0;\quad\quad k\in\{-1,0,1,2,...\}.

Proceeding inductively, we conclude that all moments of μs\mu_{s} vanish so that μs0\mu_{s}\equiv 0. In the NC setting, this argument breaks down for singular NC measures of dilation–type; see Section 6.

The main result of this section is an analogue of the F&M Riesz theorem:

Theorem 5.5.

(NC F&M Riesz Theorem) Every analytic NC measure μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} has vanishing von Neumann part.

When d=1d=1, the von Neumann part of an isometry is the singular part of its unitary direct summand. Hence any analytic measure on the circle is absolutely continuous and we recover the classical F&M Riesz theorem with a new proof. Note, however, that as soon as d2d\geq 2, an analytic NC measure, μ\mu, will be AC if and only if it has no dilation part. That is, an analytic linear functional on 𝒜d\mathscr{A}_{d} need not extend weak-* continuously to 𝒯d\mathscr{T}_{d}; see Proposition 6.1.

Note that XLjXX\mapsto L_{j}^{*}X is a contractive linear map on (d2)\mathscr{L}(\mathbb{H}^{2}_{d}). As Lj(𝔸d+𝔸d)𝔸d+𝔸dL_{j}^{*}(\mathbb{A}_{d}+\mathbb{A}_{d}^{*})\subset\mathbb{A}_{d}+\mathbb{A}_{d}^{*}, it follows by continuity that bLjbb\mapsto L_{j}^{*}b is a contractive linear endomorphism of 𝒜d\mathscr{A}_{d}.

Definition 5.6.

Let λ𝒜d\lambda\in\mathscr{A}_{d}^{\dagger} and k=1,2,,dk=1,2,\ldots,d. Define λ(k)𝒜d\lambda^{(k)}\in\mathscr{A}_{d} by

λ(k)(b)=λ(Lkb),b𝒜d.\lambda^{(k)}(b)=\lambda(L_{k}^{*}b),\quad b\in\mathscr{A}_{d}.
Lemma 5.7.

Let a0𝔸da_{0}\in\mathbb{A}_{d} and λ(𝒜d)+\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. Define μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} by setting μ(b)=λ(a0ba0)\mu(b)=\lambda(a_{0}^{*}ba_{0}) for b𝒜db\in\mathscr{A}_{d}. If λ\lambda is absolutely continuous, then so is μ\mu. If λ\lambda is von Neumann type, then so is μ\mu.

Proof.

Plainly, Xa0Xa0X\mapsto a_{0}^{*}Xa_{0} is a continuous linear map on (d2)\mathscr{L}(\mathbb{H}^{2}_{d}). It is readily verified that a0(𝒜d)a0𝒜da_{0}(\mathscr{A}_{d})a_{0}\subset\mathscr{A}_{d}, and thus μ\mu is indeed defined. It is an elementary exercise to produce an isometry V:d2(μ)d2(λ)V:\mathbb{H}^{2}_{d}(\mu)\to\mathbb{H}^{2}_{d}(\lambda) satisfying

V(a+Nμ)=aa0+Nλ,a𝔸d.V(a+N_{\mu})=aa_{0}+N_{\lambda},\quad a\in\mathbb{A}_{d}.

We see immediately that RanV\mathrm{Ran}\,V is a closed Πλ\Pi_{\lambda}-invariant subspace of d2(λ)\mathbb{H}^{2}_{d}(\lambda) and that Πλ|RanV\Pi_{\lambda}|_{\mathrm{Ran}\,V} is unitarily equivalent to Πμ\Pi_{\mu}.

Suppose that λ\lambda is absolutely continuous. Then every element of d2(λ)\mathbb{H}^{2}_{d}(\lambda) is a weak-* continuous vector. In particular, V(I+Nμ)V(I+N_{\mu}) is weak-* continuous. For any b𝒜db\in\mathscr{A}_{d}, we note that Vπλ(b)V=πμ(b)V^{*}\pi_{\lambda}(b)V=\pi_{\mu}(b), and thus

μ(b)=I+Nμ,πμ(b)(I+Nμ)=V(I+Nμ),πλ(b)V(I+Nμ).\mu(b)=\langle{I+N_{\mu}},{\pi_{\mu}(b)(I+N_{\mu})}\rangle=\langle{V(I+N_{\mu})},{\pi_{\lambda}(b)V(I+N_{\mu})}\rangle.

Therefore, μ\mu is absolutely continuous.

Now suppose instead that λ\lambda is of von Neumann type. Let 𝔚μ\mathfrak{W}_{\mu} and 𝔚λ\mathfrak{W}_{\lambda} denote the weak-* closures of πμ(𝔸d)\pi_{\mu}(\mathbb{A}_{d}) and πλ(𝔸d)\pi_{\lambda}(\mathbb{A}_{d}), respectively. Clearly, RanV\mathrm{Ran}\,V is 𝔚λ\mathfrak{W}_{\lambda} invariant. As Πλ\Pi_{\lambda} is of von Neumann type, it follows that 𝔚λ\mathfrak{W}_{\lambda} is a von Neumann algebra, and thus RanV\mathrm{Ran}\,V is Πλ\Pi_{\lambda}-reducing. In particular, 𝔚λ|RanV\mathfrak{W}_{\lambda}|_{\mathrm{Ran}\,V} is a von Neumann algebra. As 𝔚λ|RanV\mathfrak{W}_{\lambda}|_{\mathrm{Ran}\,V} is unitarily equivalent to 𝔚μ\mathfrak{W}_{\mu}, we see that Πμ\Pi_{\mu} is of von Neumann type. That is, μ\mu is of von Neumann type. ∎

Remark 5.8.

If λ(𝒜d)+\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is of dilation–type, it is generally not true that λ(k)\lambda^{(k)} is of dilation–type and hence the classical proof as described in Remark 5.4 breaks down. The next section, Section 6 provides an example of a dilation–type NC measure, ξ(𝒜d)+\xi\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}, so that Ξ[2]:=ξAdL2,L2(𝒜d)+\Xi^{[2]}:=\xi\circ\mathrm{Ad}_{L_{2}^{*},L_{2}}\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is weak-* continuous and such that ξ(2)=ξ(L2())𝒜d\xi^{(2)}=\xi(L_{2}^{*}(\cdot))\in\mathscr{A}_{d}^{\dagger} is analytic but not weak-* continuous, see Proposition 6.1.

Proposition 5.9.

Let μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} and k{1,2,,d}k\in\{1,2,\ldots,d\}. If μ\mu is absolutely continuous, then μ(k)\mu^{(k)} is absolutely continuous. If μ\mu is of von Neumann type, then μ(k)\mu^{(k)} is of von Neumann type.

Proof.

Let 𝔱{ac,vN}\mathfrak{t}\in\{\rm{ac},\rm{vN}\}, and let μ\mu be of type 𝔱\mathfrak{t}. First assume that μ\mu is positive. For each b𝒜db\in\mathscr{A}_{d}, set

ϕ1(b)=12μ((I+Lk)b(I+Lk)),ϕ2(b)=12μ((ILk)b(ILk)),\phi_{1}(b)=\frac{1}{2}\mu((I+L_{k})^{*}b(I+L_{k})),\quad\phi_{2}(b)=\frac{1}{2}\mu((I-L_{k})^{*}b(I-L_{k})),
ϕ3(b)=12μ((I+iLk)b(I+iLk)),ϕ4(b)=12μ((IiLk)b(IiLk)).\phi_{3}(b)=\frac{1}{2}\mu((I+iL_{k})^{*}b(I+iL_{k})),\quad\phi_{4}(b)=\frac{1}{2}\mu((I-iL_{k})^{*}b(I-iL_{k})).

Then,

ϕ1(b)ϕ2(b)+i(ϕ3(b)ϕ4(b))\displaystyle\phi_{1}(b)-\phi_{2}(b)+i(\phi_{3}(b)-\phi_{4}(b)) =\displaystyle= 12μ(Lkb+bLk)+i2μ(iLkb+ibLk)\displaystyle\frac{1}{2}\mu(L_{k}^{*}b+bL_{k})+\frac{i}{2}\mu(-iL_{k}^{*}b+ibL_{k})
=\displaystyle= μ(b),\displaystyle\mu(b),

for all b𝒜db\in\mathscr{A}_{d} and so (ϕ1,ϕ2,ϕ3,ϕ4)𝒲(μ(k))(\phi_{1},\phi_{2},\phi_{3},\phi_{4})\in\mathscr{W}(\mu^{(k)}). Because μ\mu is type 𝔱\mathfrak{t}, it follows from Lemma 5.7 that each ϕj\phi_{j} is type 𝔱\mathfrak{t}, and thus μ(k)\mu^{(k)} is type 𝔱\mathfrak{t}.

Now consider the general case of μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger}. Since μ\mu is type 𝔱\mathfrak{t}, there exists a (μ1,μ2,μ3,μ4)𝒲(μ)(\mu_{1},\mu_{2},\mu_{3},\mu_{4})\in\mathscr{W}(\mu) such that each μj\mu_{j} is of type 𝔱\mathfrak{t}. It follows that μj(k)\mu_{j}^{(k)} is type 𝔱\mathfrak{t} for each j,kj,k. Let (ϕj,)=14(\phi_{j,\ell})_{\ell=1}^{4} be a Wittstock decomposition of μj\mu_{j} where each ϕj,\phi_{j,\ell} is type 𝔱\mathfrak{t}. Then

μ(k)\displaystyle\mu^{(k)} =\displaystyle= μ1(k)μ2(k)+i(μ3(k)μ4(k))\displaystyle\mu_{1}^{(k)}-\mu_{2}^{(k)}+i(\mu_{3}^{(k)}-\mu_{4}^{(k)})
=\displaystyle= ϕ1,1ϕ1,2+i(ϕ1,3ϕ1,4)(ϕ2,1ϕ2,2+i(ϕ2,3ϕ2,4))\displaystyle\phi_{1,1}-\phi_{1,2}+i(\phi_{1,3}-\phi_{1,4})-(\phi_{2,1}-\phi_{2,2}+i(\phi_{2,3}-\phi_{2,4}))
+i(ϕ3,1ϕ3,2+i(ϕ3,3ϕ3,4))i(ϕ4,1ϕ4,2+i(ϕ4,3ϕ4,4))\displaystyle+i(\phi_{3,1}-\phi_{3,2}+i(\phi_{3,3}-\phi_{3,4}))-i(\phi_{4,1}-\phi_{4,2}+i(\phi_{4,3}-\phi_{4,4}))
=\displaystyle= (ϕ1,1+ϕ2,2+ϕ3,4+ϕ4,3)(ϕ1,2+ϕ2,1+ϕ3,3+ϕ4,4)\displaystyle(\phi_{1,1}+\phi_{2,2}+\phi_{3,4}+\phi_{4,3})-(\phi_{1,2}+\phi_{2,1}+\phi_{3,3}+\phi_{4,4})
+i(ϕ1,3+ϕ2,4+ϕ3,1+ϕ4,2)i(ϕ4,1+ϕ3,2+ϕ2,3+ϕ1,4).\displaystyle+i(\phi_{1,3}+\phi_{2,4}+\phi_{3,1}+\phi_{4,2})-i(\phi_{4,1}+\phi_{3,2}+\phi_{2,3}+\phi_{1,4}).

As each ϕj,\phi_{j,\ell} is of type 𝔱\mathfrak{t}, it follows that μ(k)\mu^{(k)} has a Wittstock decomposition ψ\vec{\psi} such that |ψ||\vec{\psi}| is of type 𝔱\mathfrak{t}, and therefore μ(k)\mu^{(k)} is of type 𝔱\mathfrak{t}. ∎

Proof.

(of Theorem 5.5) By Corollary 5.2 and Lemma 5.3, if μ𝒜d\mu\in\mathscr{A}_{d}^{\dagger} annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)}, then μvN\mu_{\rm{vN}} annihilates 𝔸d\mathbb{A}_{d}. By Proposition 5.9, for any k{1,2,,d}k\in\{1,2,\ldots,d\}, we see that μvN(k)\mu_{vN}^{(k)} is of von Neumann type. Since, by definition, μvN(k)=μvN(Lk)\mu_{\rm{vN}}^{(k)}=\mu_{\rm{vN}}(L_{k}^{*}\cdot) and μvN\mu_{\rm{vN}} annihilates 𝔸d\mathbb{A}_{d}, we have that μvN(k)\mu^{(k)}_{\rm{vN}} is a von Neumann type NC measure which annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)}. By Lemma 5.3 again, μvN(k)\mu^{(k)}_{\rm{vN}} annihilates 𝔸d\mathbb{A}_{d} so that

0=μvN(k)(I)=μvN(Lk).0=\mu_{\rm{vN}}^{(k)}(I)=\mu_{\rm{vN}}(L_{k}^{*}).

Proceeding inductively we obtain that

μvN(Lα)=0,\mu_{\rm{vN}}\left(L^{\alpha*}\right)=0,

for any α𝔽d\alpha\in\mathbb{F}^{d} and we conclude that μvN0\mu_{\rm{vN}}\equiv 0. ∎

Remark 5.10.

An NC F&M Riesz theorem was previously obtained in [3, Theorem A], by R. Clouâtre and the second two named authours of the present paper, using different techniques. Both Theorem 5.5 and [3, Theorem A] disallow the presence of von Neumann type summands in their corresponding models of analytic linear functionals on 𝒜d\mathscr{A}_{d}, though what this means in these two cases is different. Both papers find that analytic linear functionals on 𝒜d\mathscr{A}_{d} need not have weak-* continuous extensions to the weak-* closure, 𝒯d\mathscr{T}_{d}, of 𝒜d\mathscr{A}_{d}, as we detail in the next section. We also remark that the results of [3] and the current paper describe the obstruction to weak-* continuous extension in different ways.

To compare the two sets of results, fix λ𝒜d\lambda\in\mathscr{A}_{d}^{\dagger} and suppose λ(𝔸d)={0}\lambda(\mathbb{A}_{d})=\{0\}, as this is the definition of analyticity used in [3]. There, the free disk system is viewed as embedded, completely isometrically, inside the Cuntz algebra, 𝒪d\mathscr{O}_{d}, via the quotient map q:d𝒪dq:\mathscr{E}_{d}\to\mathscr{O}_{d} whose kernel is the compact operators. Let Λ\Lambda be an extension of λ\lambda to 𝒪d\mathscr{O}_{d}. In [3, Theorem A], it is proved that there exists a *-representation π:𝒪d()\pi:\mathscr{O}_{d}\to\mathscr{L}(\mathcal{H}), a π(𝒪d)\pi(\mathscr{O}_{d})-cyclic vector h1h_{1}\in\mathcal{H} and a vector h2h_{2}\in\mathcal{H} such that

Λ(x)=h2,π(x)h1,x𝒪d,\Lambda(x)=\langle{h_{2}},{\pi(x)h_{1}}\rangle,\quad x\in\mathscr{O}_{d},

Λ=h12=h22\|\Lambda\|=\|h_{1}\|^{2}=\|h_{2}\|^{2}, and the restriction of π(L):=(π(L1),,π(Ld))\pi(L):=(\pi(L_{1}),\ldots,\pi(L_{d})) to the norm closure of π(𝔸d)h1\pi(\mathbb{A}_{d})h_{1} is unitarily equivalent to LL. The triple (π,h1,h2)(\pi,h_{1},h_{2}) is referred to as a “Riesz representation” of the functional Λ\Lambda. The particular form of the representation implies that π(L)\pi(L) has no von Neumann–type summand, as is noted in [3]. We note that

λ(b)=h2,π(q(b))h1,b𝒜d.\lambda(b)=\langle{h_{2}},{\pi(q(b))h_{1}}\rangle,\quad b\in\mathscr{A}_{d}.

The representation π\pi and the vector h1h_{1} are such that |Λ^|(f)=h1,π^(f)h1|\hat{\Lambda}|(f)=\langle{h_{1}},{\hat{\pi}(f)h_{1}}\rangle, where Λ^\hat{\Lambda} and π^\hat{\pi} denote their weak-* continuous extensions to the second dual of 𝒪d\mathscr{O}_{d} and |Λ^||\hat{\Lambda}| is the ‘radial’ part of the polar decomposition a normal linear functional. In the present paper, we find that there exists a Wittstock decomposition λ\vec{\lambda} of λ\lambda and a Π|λ|\Pi_{|\vec{\lambda}|}-Toeplitz operator TT, such that

λ(a2a1)=I+N|λ|,π|λ|(a2)Tπ|λ|(a1)(I+N|λ|),a1,a2𝔸d,\lambda(a_{2}^{*}a_{1})=\langle{I+N_{|\vec{\lambda}|}},{\pi_{|\vec{\lambda}|}(a_{2})^{*}T\pi_{|\vec{\lambda}|}(a_{1})(I+N_{|\vec{\lambda}|})}\rangle,\quad a_{1},a_{2}\in\mathbb{A}_{d},

with Π|λ|=(π|λ|(L1),,π|λ|(Ld))\Pi_{|\vec{\lambda}|}=(\pi_{|\vec{\lambda}|}(L_{1}),\ldots,\pi_{|\vec{\lambda}|}(L_{d})) having no von Neumann–type summand. One will recall that we assume in Theorem 5.5 that λ𝒜d\lambda\in\mathscr{A}_{d}^{\dagger} annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)}, not 𝔸d\mathbb{A}_{d}. However, this is equivalent to the analyticity assumptions of [3, Theorem A], since a vector functional applied to a *-representation of 𝒪d\mathscr{O}_{d} annihilates 𝔸d(0)\mathbb{A}_{d}^{(0)} if and only if it annihilates 𝔸d\mathbb{A}_{d}; see Lemma 5.3.

As another point of contrast, our total variation |λ|=λ1+λ2+λ3+λ4|\vec{\lambda}|=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} is not uniquely determined by λ\lambda. From the polar decomposition Λ^(x)=|Λ^|(vx)\hat{\Lambda}(x)=|\hat{\Lambda}|(v^{*}x), we may readily produce a Wittstock decomposition ν\vec{\nu} of λ\lambda, but it is not generally of the type that have proven useful in this paper, nor of course is |ν||\vec{\nu}| equal to |Λ^||\hat{\Lambda}|. We also remark that, unless the GNS row isometry of |λ||\vec{\lambda}| is Cuntz, |λ||\vec{\lambda}| need not have a unique positive Kreĭn–Arveson extension to d\mathscr{E}_{d} (see the proposition below).

For yet another point of contrast, it follows from [3, Corollary 5.2] that λ\lambda can be analytic and admit a weak-* continuous extension to 𝒜d\mathscr{A}_{d}, with π(L)\pi(L) having a dilation–type summand. In the representation of this paper, λ\lambda admits a weak-* continuous extension to 𝒯d\mathscr{T}_{d} precisely when Π|λ|\Pi_{|\vec{\lambda}|} is absolutely continuous (for some λ𝒲(λ)\vec{\lambda}\in\mathscr{W}(\lambda)). Despite these differences, we can collect some necessary and sufficient conditions for the absolute continuity of an analytic λ\lambda. By combining Proposition 4.6, Lemma 4.2 and [3, Theorem B], we see that the following conditions are equivalent, where we suppose λ𝒜d\lambda\in\mathscr{A}_{d}^{\dagger} is analytic, λ(𝔸d(0))={0}\lambda(\mathbb{A}_{d}^{(0)})=\{0\}.

  1. (i)

    λ\lambda extends weak-* continuously to 𝒯d\mathscr{T}_{d}.

  2. (ii)

    There exists a λ𝒲(λ)\vec{\lambda}\in\mathscr{W}(\lambda) such that |λ||\vec{\lambda}| is absolutely continuous.

  3. (iii)

    There exist f,gd2f,g\in\mathbb{H}^{2}_{d} such that λ(b)=f,bg\lambda(b)=\langle{f},{bg}\rangle, b𝒜db\in\mathscr{A}_{d}.

  4. (iv)

    The weak-* continuous extension of λ\lambda to the second dual of 𝒜d\mathscr{A}_{d} annihilates {a^𝔮𝔮a^|a𝔸d}\{\hat{a}^{*}\mathfrak{q}-\mathfrak{q}\hat{a}^{*}|\ a\in\mathbb{A}_{d}\}, where 𝔮\mathfrak{q} is the free semi-group structure projection of the second dual of 𝔸d\mathbb{A}_{d}.

It should be noted that the equivalences (i)\Leftrightarrow(ii)\Leftrightarrow(iii) do not require analyticity of λ\lambda. For (iv), we remark that λ\lambda extends weak-* continuously 𝒯d\mathscr{T}_{d} if and only if bλ(b)λ(I)m(b)b\mapsto\lambda(b)-\lambda(I)m(b) does, and so the different conditions for analyticity from these two papers do not present any difficulties here.

Proposition 5.11.

If μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is Cuntz type, then μ\mu has a unique positive Kreĭn–Arveson extension Λ\Lambda to the Cuntz–Toeplitz algebra, d\mathscr{E}_{d}.

Proof.

Let Λ:d\Lambda:\mathscr{E}_{d}\rightarrow\mathbb{C} be any Kreĭn–Arveson (positive) extension of λ(𝒜d)+\lambda\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}. Apply the GNS construction to (Λ,d)\left(\Lambda,\mathscr{E}_{d}\right) to obtain a GNS Hilbert space L2(Λ)L^{2}(\Lambda) and a *-representation πΛ\pi_{\Lambda} satisfying

Λ(x)=I+NΛ,πΛ(x)(I+NΛ);xd.\Lambda(x)=\langle{I+N_{\Lambda}},{\pi_{\Lambda}(x)(I+N_{\Lambda})}\rangle;\quad\quad x\in\mathscr{E}_{d}.

By construction, I+NΛI+N_{\Lambda} is cyclic for the GNS row isometry ΠΛ\Pi_{\Lambda}. Observe that there is an isometry V:d2(λ)L2(Λ)V:\mathbb{H}^{2}_{d}(\lambda)\to L^{2}(\Lambda) with ΠΛ\Pi_{\Lambda}-invariant range. Indeed, for any a𝔸da\in\mathbb{A}_{d},

a+Nλ2=λ(aa)=Λ(aa)=a+NΛ2.\|a+N_{\lambda}\|^{2}=\lambda\left(a^{*}a\right)=\Lambda\left(a^{*}a\right)=\|a+N_{\Lambda}\|^{2}.

Thus, there is an isometry V:d2(λ)L2(Λ)V:\mathbb{H}^{2}_{d}(\lambda)\to L^{2}(\Lambda) determined by V(a+Nλ)=a+NΛV(a+N_{\lambda})=a+N_{\Lambda}, a𝔸da\in\mathbb{A}_{d}. Plainly, VΠλ;k=ΠΛ;kVV\Pi_{\lambda;k}=\Pi_{\Lambda;k}V for each kk.

Next, observe that Vd2(λ)V\mathbb{H}^{2}_{d}(\lambda) is ΠΛ\Pi_{\Lambda}-reducing and ΠΛ|Vd2(λ)\Pi_{\Lambda}|_{V\mathbb{H}^{2}_{d}(\lambda)} is unitarily equivalent to Πλ\Pi_{\lambda}. Indeed, Πλ\Pi_{\lambda} is Cuntz, and so any given element xd2(λ)x\in\mathbb{H}^{2}_{d}(\lambda) is the norm-limit of vectors xn+Nλx_{n}+N_{\lambda}, where xn𝔸d(0)x_{n}\in\mathbb{A}_{d}^{(0)}, as shown in [13, Theorem 6.4]. Hence, for any zdz\in\mathscr{E}_{d} and k=1,2,,dk=1,2,\ldots,d,

z+NΛ,ΠΛ;kVx\displaystyle\langle{z+N_{\Lambda}},{\Pi_{\Lambda;k}^{*}Vx}\rangle =\displaystyle= limnz+Nλ,ΠΛ;kV(xn+Nλ)\displaystyle\lim_{n\to\infty}\langle{z+N_{\lambda}},{\Pi_{\Lambda;k}^{*}V(x_{n}+N_{\lambda})}\rangle
=\displaystyle= limnLkz+NΛ,xn+NΛ\displaystyle\lim_{n\to\infty}\langle{L_{k}z+N_{\Lambda}},{x_{n}+N_{\Lambda}}\rangle
=\displaystyle= limnz+NΛ,(Lkxn)+NΛ\displaystyle\lim_{n\to\infty}\langle{z+N_{\Lambda}},{(L_{k}^{*}x_{n})+N_{\Lambda}}\rangle
=\displaystyle= limnz+NΛ,VΠλ;k(xn+Nλ)\displaystyle\lim_{n\to\infty}\langle{z+N_{\Lambda}},{V\Pi_{\lambda;k}^{*}(x_{n}+N_{\lambda})}\rangle
=\displaystyle= z+NΛ,VΠλ;kx.\displaystyle\langle{z+N_{\Lambda}},{V\Pi_{\lambda;k}^{*}x}\rangle.

That is, ΠΛ;kV=VΠλ;k\Pi_{\Lambda;k}^{*}V=V\Pi_{\lambda;k}^{*} for each kk, whence Vπλ(y)=πΛ(y)VV\pi_{\lambda}(y)=\pi_{\Lambda}(y)V for each ydy\in\mathscr{E}_{d}.

Finally, note that I+NΛ=V(I+Nλ)I+N_{\Lambda}=V(I+N_{\lambda}). Since πΛ(d)(I+NΛ)\pi_{\Lambda}(\mathscr{E}_{d})(I+N_{\Lambda}) is dense in L2(Λ)L^{2}(\Lambda) and πλ(d)(I+Nλ)\pi_{\lambda}(\mathscr{E}_{d})(I+N_{\lambda}) is dense in d2(λ)\mathbb{H}^{2}_{d}(\lambda), it follows that Vd2(λ)=L2(Λ)V\mathbb{H}^{2}_{d}(\lambda)=L^{2}(\Lambda), showing that VV is in fact a surjective isometry. Therefore, for any zdz\in\mathscr{E}_{d},

Λ(z)=I+Nλ,πλ(z)(I+Nλ).\Lambda(z)=\langle{I+N_{\lambda}},{\pi_{\lambda}(z)(I+N_{\lambda})}\rangle.\qed

6 A Dilation-type example

Recall that there is, in essence, a bijection between positive, finite and regular Borel measures on the circle and the set of Herglotz functions in the disk, i.e. analytic functions in the complex unit disk with positive semi-definite real part. This correspondence extends to positive NC measures and non-commutative (left) Herglotz functions in 𝔹d\mathbb{B}^{d}_{\mathbb{N}}, μHμ\mu\leftrightarrow H_{\mu}; see [12, 13]. A fractional linear transformation, the so-called Cayley transform, then implements a bijection between the left NC Schur class of contractive NC functions in 𝔹d\mathbb{B}^{d}_{\mathbb{N}} and and the left NC Herglotz class. If μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is the (essentially) unique NC measure corresponding to the contractive NC function b[d]1b\in[\mathbb{H}^{\infty}_{d}]_{1}, we write μ=μb\mu=\mu_{b}, and μb\mu_{b} is called the NC Clark measure of bb; see [15, Section 3] for details.

By [15, Corollary 7.25], if b[d]1b\in[\mathbb{H}^{\infty}_{d}]_{1} is inner, i.e. an isometric left multiplier, then its NC Clark measure is singular, so that its GNS representation Πb:=Πμb\Pi_{b}:=\Pi_{\mu_{b}} is a Cuntz row isometry which can be decomposed as the direct sum of a dilation–type row isometry and a von Neumann type row isometry [14].

Classically, any sum of Dirac point masses is singular with respect to Lebesgue measure on the circle. Motivated by this, consider the positive linear functional ξ(𝒜2)+\xi\in(\mathscr{A}_{2}^{\dagger})_{+} defined by

ξ(Lα)={02α12α;α𝔽2,\xi(L^{\alpha})=\left\{\begin{array}[]{cc}0&2\in\alpha\\ 1&2\notin\alpha\end{array}\right.;\quad\quad\alpha\in\mathbb{F}^{2},

and ξ(I)=1\xi(I)=1. Here, 2α2\notin\alpha is used to indicate that α\alpha does not contain the ‘letter’ 22. One may think of ξ\xi as a ‘Dirac point mass’ at the point (1,0)𝔹12(1,0)\in\partial\mathbb{B}^{2}_{1}, where 𝔹12\mathbb{B}^{2}_{1} is the first level of the NC unit ball 𝔹2\mathbb{B}^{2}_{\mathbb{N}}. Setting Z:=(1,0)Z:=(1,0), we note that ξ(Lα)=Zα\xi(L^{\alpha})=Z^{\alpha} for all words α\alpha. Since ZZ is a row contraction, it follows from results of Popescu that the map ξ\xi extends to a positive linear functional on 𝒜2\mathscr{A}_{2} [22, Theorem 2.1].

Before continuing, we remark that the example of this section is related to [3, Example 2], which is itself related to atomic representations of [7]. This example is also a special case of [6, Example 5.1]. However, we here choose to start from the linear functional, ξ\xi, rather than the functional’s representation as a vector functional on a representation, to emphasize the NC function theory associated with the NC measure.

Claim 1.

L2+NξL_{2}+N_{\xi} is a wandering vector for Πξ\Pi_{\xi} and Πξ\Pi_{\xi} has vanishing von Neumann part.

Proof.

Note that any wandering vector for Πξ\Pi_{\xi} is always a weak-* continuous vector. Indeed, if ww is wandering for Πξ\Pi_{\xi}, then

ξw(Lα)\displaystyle\xi_{w}(L^{\alpha}) =\displaystyle= w,Πξαw22(ξ)\displaystyle\langle{w},{\Pi_{\xi}^{\alpha}w}\rangle_{\mathbb{H}^{2}_{2}(\xi)}
=\displaystyle= w22(ξ)2δα,=w2m(Lα),\displaystyle\|w\|^{2}_{\mathbb{H}^{2}_{2}(\xi)}\delta_{\alpha,\varnothing}=\|w\|^{2}m(L^{\alpha}),

is a constant multiple of NC Lebesgue measure, and hence is absolutely continuous.

To see that L2+NξL_{2}+N_{\xi} is wandering for Πξ\Pi_{\xi}, note that

L2+Nξ,Πξα(L2+Nξ)=ξ(L2LαL2)=δα,.\langle{L_{2}+N_{\xi}},{\Pi_{\xi}^{\alpha}(L_{2}+N_{\xi})}\rangle=\xi(L_{2}^{*}L^{\alpha}L_{2})=\delta_{\alpha,\varnothing}.

However L2+NξL_{2}+N_{\xi} is also *-cyclic for Πξ\Pi_{\xi} since πξ(L2)(L2+Nξ)=I+Nξ\pi_{\xi}(L_{2})^{*}(L_{2}+N_{\xi})=I+N_{\xi} , which is cyclic for Πξ\Pi_{\xi}. This means that the smallest reducing subspace that contains the weak-* continuous vector L2+NξL_{2}+N_{\xi} is all of 22(ξ)\mathbb{H}^{2}_{2}(\xi), so that 22(ξvN)={0}\mathbb{H}^{2}_{2}(\xi_{\rm{vN}})=\{0\} by Lemma 3.10. ∎

In what follows, if ω=i1in𝔽d\omega=i_{1}\cdots i_{n}\in\mathbb{F}^{d}, ik{1,,d}i_{k}\in\{1,\cdots,d\}, is any word, then we set ωt:=ini1\omega^{\mathrm{t}}:=i_{n}\cdots i_{1}. This letter reversal map is an involution on the free monoid.

Claim 2.

The NC measure ξ\xi is the NC Clark measure of bξ(Z)=Z1b_{\xi}(Z)=Z_{1}, Z𝔹2Z\in\mathbb{B}^{2}_{\mathbb{N}}; a left-inner NC function. Thus, Πξ\Pi_{\xi} is purely of dilation–type.

Proof.

Given Z𝔹n2Z\in\mathbb{B}^{2}_{n}, let ZL:=Z1L1++ZdLdZ\otimes L^{*}:=Z_{1}\otimes L_{1}^{*}+\cdots+Z_{d}\otimes L_{d}^{*}. The (left) Herglotz function, HξH_{\xi} of ξ\xi is

Hξ(Z)\displaystyle H_{\xi}(Z) =\displaystyle= (idnξ)((InId2+ZL)(InId2ZL)1)\displaystyle(\mathrm{id}_{n}\otimes\xi)\left((I_{n}\otimes I_{\mathbb{H}^{2}_{d}}+Z\otimes L^{*})(I_{n}\otimes I_{\mathbb{H}^{2}_{d}}-Z\otimes L^{*})^{-1}\right)
=\displaystyle= 2αZαξ(Lαt)In\displaystyle 2\sum_{\alpha}Z^{\alpha}\xi\left(L^{\alpha^{\mathrm{t}}}\right)^{*}-I_{n}
=\displaystyle= 2k=0Z1kIn=2(IZ1)1In\displaystyle 2\sum_{k=0}^{\infty}Z_{1}^{k}-I_{n}=2(I-Z_{1})^{-1}-I_{n}
=\displaystyle= (I+Z1)(IZ1)1.\displaystyle(I+Z_{1})(I-Z_{1})^{-1}.

It follows that the Cayley transform,

bξ(Z):=(Hξ(Z)I)(Hξ(Z)+I)1,b_{\xi}(Z):=(H_{\xi}(Z)-I)(H_{\xi}(Z)+I)^{-1},

of HξH_{\xi} is bξ(Z)=Z1b_{\xi}(Z)=Z_{1}, which is inner. By [15, Corollary 7.25], Πξ\Pi_{\xi} is the direct sum of a dilation–type and a von Neumann–type row isometry and the previous claim shows that the von Neumann part vanishes. ∎

Claim 3.

For any word α\alpha such that 2α2\in\alpha, the vector Lα+NξL^{\alpha}+N_{\xi} is weak-* continuous. In particular, the closed span of {Lα+Nξ:2α}\{L^{\alpha}+N_{\xi}:2\in\alpha\} is contained in WC(Πξ)\rm{WC}(\Pi_{\xi}).

The proof below uses the concept of the NC Herglotz space of NC Cauchy transforms with respect to a positive NC measure, see [15, Section 3.8, Lemma 5.2]. The NC Herglotz space, +(Hμ)\mathscr{H}^{+}(H_{\mu}) of any positive NC measure, μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+}, is a non-commutative reproducing kernel Hilbert space (NC-RKHS) of NC functions in the NC unit row–ball [13, 12, 15, 14]. The details of this construction will not be relevant or needed for our purposes here. It will suffice to remark that if μ(𝒜d)+\mu\in\left(\mathscr{A}_{d}\right)^{\dagger}_{+} is a positive NC measure, then there is an onto and isometric linear map, 𝒞μ:d2(μ)+(Hμ)\mathscr{C}_{\mu}:\mathbb{H}^{2}_{d}(\mu)\rightarrow\mathscr{H}^{+}(H_{\mu}), the free Cauchy transform.

Proof.

Given any β𝔽2\beta\in\mathbb{F}^{2} so that 2β2\in\beta, the vector Lβ+NξL^{\beta}+N_{\xi} is a WC vector if and only if

ξβ(Lα):=Lβ+Nξ,Πξα(Lβ+Nξ)ξ=ξ(LβLαLβ),\xi_{\beta}(L^{\alpha}):=\langle{L^{\beta}+N_{\xi}},{\Pi_{\xi}^{\alpha}\,(L^{\beta}+N_{\xi})}\rangle_{\xi}=\xi\left(L^{\beta*}L^{\alpha}L^{\beta}\right),

is an absolutely continuous (weak-* continuous) NC measure. The free Cauchy transform of I+Nξβ22(ξβ)I+N_{\xi_{\beta}}\in\mathbb{H}^{2}_{2}(\xi_{\beta}), is then,

h(Z):=α𝔽2Zαξ(LβLαLβ).h(Z):=\sum_{\alpha\in\mathbb{F}^{2}}Z^{\alpha}\xi\left(L^{\beta*}L^{\alpha*}L^{\beta}\right).

The Taylor coefficients (hα)α(h_{\alpha})_{\alpha} of hh vanish if α,β\alpha,\beta are not comparable. Thus, hα0h_{\alpha}\neq 0 if and only if α=βγ\alpha=\beta\gamma or if β=αγ\beta=\alpha\gamma. Since β𝔽2\beta\in\mathbb{F}^{2} is fixed, there are only finitely many words α\alpha such that β=αγ\beta=\alpha\gamma. On the other hand if α=βγ\alpha=\beta\gamma, then

hα=hβγ=ξ(LβLγ)=0,h_{\alpha}=h_{\beta\gamma}=\xi\left(L^{\beta*}L^{\gamma*}\right)=0,

since 2β2\in\beta. This proves that hh has at most finitely many non-zero Taylor coefficients and so h{𝔷1,𝔷2}22h\in\mathbb{C}\{\mathfrak{z}_{1},\mathfrak{z}_{2}\}\subseteq\mathbb{H}^{2}_{2} and I+NξβI+N_{\xi_{\beta}} is a weak-* continuous vector for Πξβ\Pi_{\xi_{\beta}}. Indeed, since 𝒞ξβ(I+Nξβ)22\mathscr{C}_{\xi_{\beta}}(I+N_{\xi_{\beta}})\in\mathbb{H}^{2}_{2}, I+NξβI+N_{\xi_{\beta}} is a weak-* analytic vector for ξβ\xi_{\beta} in the sense of [14, Definition 8.2] and is hence a weak-* continuous vector by [14, Corollary 8.3].

Since this vector is cyclic and WC(ξβ)\rm{WC}(\xi_{\beta}) must be Πξβ\Pi_{\xi_{\beta}}-invariant, we see that WC(Πξβ)=22(ξβ)\rm{WC}(\Pi_{\xi_{\beta}})=\mathbb{H}^{2}_{2}(\xi_{\beta}). Therefore, ξβ\xi_{\beta} is weak-* continuous and Lβ+NξL^{\beta}+N_{\xi} is a weak-* continuous vector for Πξ\Pi_{\xi}. ∎

Proposition 6.1.

The positive NC measure defined by Ξ(Lα):=ξ(L2LαL2)\Xi(L^{\alpha}):=\xi\left(L_{2}^{*}\,L^{\alpha}\,L_{2}\right) is equal to NC Lebesgue measure, mm, and hence is weak-* continuous. The NC measure γ:=ξ(2)𝒜2\gamma:=\xi^{(2)*}\in\mathscr{A}_{2}^{\dagger}, i.e. cξ(cL2)c\mapsto\xi\left(cL_{2}\right), annihilates the NC disk algebra 𝔸2\mathbb{A}_{2}, but is not weak-* continuous.

Proof.

The vector L2+NξL_{2}+N_{\xi} is a unit wandering vector for the dilation–type positive NC measure ξ\xi. Hence, Ξ(Lα)=δα,=m(Lα)\Xi(L^{\alpha})=\delta_{\alpha,\varnothing}=m(L^{\alpha}). Consider the sequence (L1k)L2𝒜2(L_{1}^{k})^{*}L_{2}^{*}\in\mathscr{A}_{2}. This converges weak-* to 0, and yet,

γ(L1kL2)=ξ(L1k)¯=1,\gamma\left(L_{1}^{k*}L_{2}^{*}\right)=\overline{\xi(L_{1}^{k})}=1,

which of course cannot converge to 0. ∎

References

  • [1] J.A. Ball, G. Marx, and V. Vinnikov. Noncommutative reproducing kernel Hilbert spaces. J. Funct. Anal., 271:1844–1920, 2016.
  • [2] H. Arlen Brown and P. B. Halmos. Algebraic properties of toeplitz operators. rem, 100:173, 1963.
  • [3] Raphaël Clouâtre, Robert TW Martin, and Edward J Timko. Analytic functionals for the non-commutative disc algebra. Accepted by J. Funct. Anal. arXiv:2104.02130, 2021.
  • [4] J. Cuntz. Simple CC^{*}-algebras generated by isometries. Communications in mathematical physics, 57:173–185, 1977.
  • [5] Kenneth R. Davidson. Free semigroup algebras, a survey. In Systems, approximation, singular integral operators, and related topics, pages 209–240. 2001.
  • [6] Kenneth R. Davidson, David W. Kribs, and Miron E. Shpigel. Isometric dilations of non-commuting finite rank n-tuples. Canadian Journal of Mathematics, 53:506–545, 2001.
  • [7] Kenneth R. Davidson and David R. Pitts. Invariant subspaces and hyper-reflexivity for free semigroup algebras. Proceedings of the London Mathematical Society, 78:401–430, 1999.
  • [8] K.R. Davidson, E. Katsoulis, and D.R. Pitts. The structure of free semigroup algebras. J. Reine Angew. Math., 533:99–126, 2001.
  • [9] K.R. Davidson and E.G. Katsoulis. Dilation theory, commutant lifting and semicrossed products. Doc. Math., 16:781–868, 2011.
  • [10] K.R. Davidson, J. Li, and D.R. Pitts. Absolutely continuous representations and a Kaplansky density theorem for free semigroup algebras. J. Funct. Anal., 224:160–191, 2005.
  • [11] K. Hoffman. Banach spaces of analytic functions. Courier Corporation, 2007.
  • [12] M.T. Jury and R.T.W. Martin. Non-commutative Clark measures for the Free and Abelian Toeplitz algebras. J. Math. Anal. Appl., 456:1062–1100, 2017.
  • [13] M.T. Jury and R.T.W. Martin. Column-extreme multipliers of the Free Hardy space. J. Lond. Math. Soc., In press, 2019.
  • [14] M.T. Jury and R.T.W. Martin. Lebesgue decomposition of non-commutative measures. Int. Math. Res. Not., In press, 2020.
  • [15] M.T. Jury and R.T.W. Martin. Fatou’s theorem for non-commutative measures. arXiv:1907.09590, 2021.
  • [16] M.T. Jury, R.T.W. Martin, and E. Shamovich. Blaschke–singular–outer factorization of free non-commutative functions. Advances in Mathematics, 384:article 107720, 2021.
  • [17] Matthew Kennedy. Wandering vectors and the reflexivity of free semigroup algebras. Journal für die reine und angewandte Mathematik (Crelle’s Journal), 2011:47–53, 2011.
  • [18] Matthew Kennedy. The structure of an isometric tuple. Proceedings of the London Mathematical Society, 106:1157–1177, 2013.
  • [19] V. Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge University Press, New York, NY, 2002.
  • [20] G.K. Pedersen. Analysis now. Springer, 2012.
  • [21] G. Popescu. Isometric dilations for infinite sequences of noncommuting operators. Trans. Amer. Math. Soc., 316:523–536, 1989.
  • [22] G. Popescu. Non-commutative disc algebras and their representations. Proc. Amer. Math. Soc., 124:2137–2148, 1996.
  • [23] G. Popescu. Free holomorphic functions on the unit ball of B()nB(\mathcal{H})^{n}. J. Funct. Anal., 241:268–333, 2006.
  • [24] Gelu Popescu. Entropy and multivariable interpolation. American Mathematical Soc., 2006.
  • [25] F. Riesz and M. Riesz. Über die randwerte einer analytischen funktion. Quatrièime Congris des Math. Scand. Stockholm, pages 27–44, 1916.
  • [26] Guy Salomon, Orr Shalit, and Eli Shamovich. Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball. Transactions of the American Mathematical Society, 370:8639–8690, 2018.
  • [27] G. Wittsock. Ein operatorwertiger Hahn–Banach Satz. J. Funct. Anal., 40:127–150, 1981.

Michael T. Jury, Department of Mathematics, University of Florida

E-mail address: [email protected]

Robert T. W. Martin, Department of Mathematics, University of Manitoba

E-mail address: [email protected]

Edward J. Timko, Department of Mathematics, Georgia Institute of Technology

E-mail address: [email protected]